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Abstract There are a number of points in the development of dual scaling which
have escaped our attention. In my Beijing paper, problems with joint graphical
display were discussed to fill the gap of understanding, and the current paper deals
with some other points. These two papers can be regarded as a sequel to my paper,
entitled “Gleaning in the field of dual scaling,” written 20 years ago. Noting that the
basic premise of dual scaling lies in duality of exhaustive analysis, we will look at a
few more points in this paper. Outcry one is on linear and nonlinear analysis. As is
well known, dual scaling is a method for simultaneous regressions of row variates
and column variates on data, capturing all linear and nonlinear relations contained
in the data. From this point of view, Likert scores, used as scores for data analysis,
are far from satisfactory, for it is a strictly linear and data-independent procedure.
Outcry two is on our definition of multidimensional quantification space, because
the traditional framework needs to be modified so as to satisfy our objective, that is,
describing both row and column structure of data in a symmetric comprehensive
way. Outcry three is on a logical alternative to problem-plagued joint graphical
display, and a recommended alternative is cluster analysis. Finally, outcry four is
on the distinction between dual space and total space, leading to the suggestion that
simple correspondence analysis fails to provide exhaustive analysis of information
in data.

Keywords Coordinates for data • Simultaneous symmetric analysis • Joint
graphical display • Doubled space • Cluster analysis • Dual space versus total
space

1 Introduction

In 1996, Nishisato presented his presidential address, entitled “Gleaning in the field
of dual scaling,” in which he identified a number of hidden or unsolved aspects
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of dual scaling (Nishisato 1996). It is 20 years since then, and one wonders if
dual scaling is well understood and if some of the problems raised then have
been solved to our satisfaction. Some major problems were discussed in the paper,
entitled “Multidimensional joint graphical display of symmetric analysis: Back to
the fundamentals” (Nishisato 2016a). The current paper supplements it with further
discussion of the problems in quantification theory. Current concerns are with the
nature of multidimensional space used in quantification, in particular about the
point that we must at least double the dimensionality of the space to accommodate
quantified variates, which makes us wonder if we should still pursue joint graphical
display or consider an alternative to graphical display. Simple correspondence
analysis is known as one of the main realms of quantification theory, and it is dual
scaling of the contingency table. The current paper, however, will take us to the
point at which we may have to say “farewell” to it. Let us discuss these problems as
outcries.

1.1 Outcry 1: Linear and Nonlinear Analysis

This is a well-known aspect of quantification theory, but it seems that the point needs
to be reemphasized. Suppose that we collect data on preference of tea under different
water temperatures. Each subject is given ten cups of tea, ranging from freezing cold
to boiling hot, and is asked to rate the preference of ten cups of tea on the 10-point
scale, ranging from the worst to the best. If we use 10-point Likert scales for the
temperature and for the preference ratings, the data can be presented as a 10-by-10
contingency table of choice frequencies. Typical analysis of the table using Likert
scores without transformation, however, would not capture such a nonlinear relation
as might be expected, namely, the preference being at the lowest (least liked) when
the tea temperature is boiling hot, followed by freezing cold, then lukewarm, then
ordinary cold ice tea, and finally optimally hot tea at the highest (most preferred).
There are at least two distinct approaches to this kind of nonlinear relation. The first
approach is to predict the preference Likert scores as a nonlinear function of the
temperature of tea, indicated by Likert scores. Should we use a quadratic term, a
cubic term, interaction terms, or higher order terms? The choice of these is not easy,
but we must seek the best possible nonlinear function, and this is, however, not
what most investigators would normally do—they do not consider any nonlinear
function. Furthermore, what can we do to deal with multidimensional aspects of the
data in this nonlinear regression approach? This is not a simple problem. The second
approach is via correlation of the Likert scores of the two variables. In this approach,
it is well known that Pearsonian correlation captures only linear relations; thus this
is not an appropriate way to analyze nonlinear relations. One should realize then that
Likert scores are predetermined quantities, independently of the data structure, and
without additional operations of nonlinear transformations, one cannot generally
expect exhaustive analysis of information in data through Likert scores. In contrast
to these two approaches, dual scaling (correspondence analysis, homogeneity
analysis, optimal scaling) is a method to find optimal scores for both the temperature
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and the preference ratings as regressions on the data. In other words, dual scaling
is used to transform Likert scores typically nonlinearly so as to make the regression
of rows (ten cups of tea) on preference ratings and the regression of columns (ten
preference values) on tea simultaneously linear (Hirschfeld 1935). Thus, this is a
data-dependent method of scaling row values and column values in the optimal way,
the reason why it is also called optimal scaling (Bock 1960), and multidimensional
aspects of the data can be handled without problems. In this context, dual scaling
is a method of projecting row values to the column values and column values to
row values in the symmetric way. The common projection operators are known as
singular values, which are also Hirschfeld’s simultaneous regression coefficients
and Guttman’s maximal correlation coefficients between row quantification and
column quantification. In terms of multidimensional decomposition, Nishisato
(2006) has shown that dual scaling maximizes the Cramér’s coefficient (Cramér
1946) and that this coefficient is the sum of the squared nonlinear correlation
coefficients of principal components. This indicates how dual scaling deals with
multidimensional nonlinear relations in the data.

In summary, Likert scores are predetermined scores, independently of the data,
and should be used only for the purpose of data collection. Once data are collected,
Likert scores should be subjected to transformation, typically nonlinear, so as to best
describe the information in data.

There is a caution on the use of order constraints in analysis. Because the
response categories are ordered (e.g., never < sometimes < often < always), one may
wish to derive scores for these categories under the order constraint. This may sound
reasonable, but one should not even be tempted to impose such an order constraint
if the study aims to explore the information in the data, that is, if the research is
exploratory. The reason is clear. The order constraint permanently wipes out the
possibility of ever finding nonlinear relations in the data (e.g., one’s ability to lift a
heavy object increases as one gets older to a certain point and then decreases beyond
a certain age). Thus, a general advice is not to use the order constraint in exploratory
research. Note that there are many studies on ordered categories in quantification
theory, but that the above advice should be kept in mind.

1.2 Outcry 2: Nature of Multidimensional Space
for Symmetric Analysis

Dual scaling is based on the mathematical decomposition of data, called dual
relations:

Pm
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where fij is the frequency of cell (i, j) of a contingency table, yik and xkj are
weights for row i and column j, called standard coordinates, of component k, �kxkj

and �kyik are the corresponding principal coordinates, and ¡k is the singular value
of component k. This is nothing but Hirschfeld’s simultaneous linear regressions
with the singular value as the regression coefficient, and the singular value is
also Guttman’s maximal correlation between the rows and the columns and also
Nishisato’s projection operator for rows onto columns and vice versa. From the last
point, we can conclude that the row axis and the column axis for each component are
separated by the angle � k D cos�1�k (Nishisato and Clavel 2003, 2008). This space
discrepancy indicates that if we analyze a two-by-two contingency table, we obtain
a single component, but the fact of the matter is that dual scaling of this contingency
table requires a two-dimensional graph, one for row variables and the other for
column variables with the two axes separated by the angle � . This means that one
component of dual scaling outcome requires two dimensions and two components
four dimensions. From this point of view, the currently most popular graphical
methods used in quantification studies are all problematic. The first two (symmetric
and nonsymmetric graphs) are traditional quantification approaches to graphical
display (see, e.g., Benzécri et al. 1973; Nishisato 1980, 1994, 2007; Greenacre
1984; Lebart et al. 1984; Gifi 1990; Le Roux and Rouanet 2004; Beh and Lombardo
2014), and the third one (biplot) is a more general and mathematical invention with
a variety of graphical choices (see, e.g., Gabriel 1971; Gower and Hand 1996).

1. Symmetric display or French plot: The two sets of principal coordinates, �kxkj

and �kyik, are plotted in the same space (i.e., without taking the space discrepancy
� k into consideration). In other words, a two-dimensional configuration of
data points is plotted in a unidimensional graph; similarly, a four-dimensional
configuration is plotted in a two-dimensional graph. Thus, unless the singular
value ¡ is very close to 1, the symmetric display does not offer a usable graph
(see, for example, the warning by Lebart et al. 1977). Generally speaking,
symmetric display is an illogical and obviously wrong graph for the data, but
for its simplicity, it has unfortunately become a routine method for graphing
quantification results. This practice should immediately be discarded.

2. Nonsymmetric display: This method plots the principal coordinates of one
variable and the standard coordinate of the other variable, for example, �kxkj

and yik. This is the projection of x onto the standard space of y. But, the standard
coordinates are not the coordinates of the data, but artificially adjusted for the
common variance, independently of the data at hand. Thus, projecting data
onto these coordinates is not a logical way to describe data, thus making the
joint graph not usable. See the demonstration (Nishisato 1996) that the standard
coordinates associated with a small singular value are much further from the
origin than those associated with a large singular value because the standard
coordinates reciprocally compensate the frequencies of data points. One can
consider the problem of principal component analysis, in which we start with
a linear combination of variables, then find the principal axis, which is defined as
the axis on which projections of data have the largest variance. Those projections
of data on the principal axis are called principal coordinates. Therefore, principal
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coordinates are the coordinates of data in the most informative way. Standard
coordinates, on the other hand, do not represent projections of data points unless
the singular value is 1.

3. Biplot: Consider the singular-value decomposition of a two-way data,
Y�a�1 � aX, where Y and X are, respectively, matrices of left and right singular
vectors of the data matrix, � is the diagonal matrix of singular values, and ’ is
bounded by 0 and 1. In biplot, graphical display of both variates are considered
for various values of ’. Notice, however, that only when ’ is either 0 or 1, it
offers a plot comparable to the above two traditional plots, that is, nonsymmetric
display of (2). In introducing coordinate systems for a set of variables, one of the
most popular methods is through principal component analysis, where principal
coordinates are the projections of data on principal axes. In this regard, principal
coordinates represent data structure. It is true that the principal coordinate
system is only one way of representing data, and there are an infinite number
of coordinates systems, which, however, should be orthogonal transformations
of the principal coordinates so long as we want to represent the data structure.
Those variates used in biplots are not related to principal coordinates in any
imaginable ways, except for one set of variates, Y or X, when ’ is 0 or 1. From
the view of the graphical display in Euclidean space, therefore, it is the current
author’s personal view that a question mark has to be placed on the use of biplots
for exploring data structure.

Considering that each of these popular methods for joint graphical display leaves
a serious concern from the viewpoint that we wish to represent data in Euclidean
multidimensional space, there seems to be an urgent problem of either finding a
better method of graphical display or to give up a graphical display completely and
look for a non-graphical way of summarizing the outcome of quantification.

1.3 Outcry 3: From “Graphing Is Believing”
to Cluster Analysis

“Graphing is believing” (Nishisato 1997) was an attempt to legitimize joint
graphical display of quantification results in Euclidean space. Since then, the author
realized that a complete description of data requires a large number of dimensions,
more precisely at least twice the dimensions that the traditional joint graphical
display deals with. To clarify why we must at least double the dimensionality of
space, Nishisato and Clavel (2010) proposed a framework for comprehensive dual
scaling with doubled dimensions, and noting this aspect of expanded (doubled)
dimensionality for graphical display, the authors proposed the use of cluster analysis
as an alternative to the traditional graphical displays.

To illustrate their procedure, let us use an example from Stebbins (1950): 500
seeds of six varieties of barley were planted at six agricultural stations in the United
States, and at the harvest time, 500 seeds at each station were randomly chosen
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Table 1 Varieties of barley seeds after a number of years at different locations (from Stebbins
1950)

Locations
Arlington Ithaca St. Paul Moccasin Moro Davis

Barley (Virginia) (New York) (Minnesota) (Montana) (Oregon) (California)

CTa 446 57 83 87 6 362
Ha 4 34 305 19 4 34
WS 4 0 4 241 480 65
Ma 1 343 2 21 0 0
Ga 13 9 15 58 0 1
Me 4 0 0 4 0 27

aBarley: CT Coast & Trebi, Ha Hanchen, WS White Smyrna, Ma Manchuria, Ga Gatemi, Me
Meloy

and sorted into six varieties of barley, and those seeds were again planted in the
following year, and at the harvest time, 500 randomly chosen seeds were again
classified into six varieties, and so on. This experiment was repeated over a number
of years to see if certain varieties of barley will become dominant at particular
locations. The numbers of years of these experiments are not uniform but different
from station to station. The final counts reported in Stebbins (1950) are summarized
in the 6 � 6 contingency table (Table 1).

A complete dual scaling analysis of this data set is reported in Nishisato
(1994), which shows the percentage contributions of the five components are, in
the descending order, 38, 33, 25, 3, and 1%, showing the dominance of three
components. Following Nishisato and Clavel (2003), the 12 � 12 super-distance
matrix, consisting of the within-set distances of stations (between-station distances),
the between-set distances (those between stations and barley varieties), and the
within-set distances of barley varieties (between barley varieties), was calculated
as given in Table 2.

This 12 � 12 matrix contains the distance information of all the variables in
Euclidean space. Clavel and Nishisato (2008) and Nishisato and Clavel (2008)
thoroughly analyzed this table by the hierarchical clustering method and the k-
means clustering (see the results in their papers). Nishisato (2012) argued, however,
that the investigators would typically be interested in the relations between row
variables (stations) and column variables (varieties of barley), not relations within
stations or within barley varieties, and therefore proposed that we should analyze
only the between-set distance matrix, that is, the “barley varieties”-by-“locations”
distance matrix. Although the current example of the between-set distance matrix is
6 � 6, the number of rows and the number of columns are not always equal; hence
the between-set distance matrix is typically rectangular, as opposed to square. In
order to deal with a rectangular distance matrix for clustering, Nishisato (2012)
proposed a very simple and intuitive method of clustering, called clustering with the
p-percentile filter. This method is very simple and does not require a complicated
algorithm: calculate the p-percentile distance (the criterion distance) out of the
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Table 2 Within-set and between-set distances in five-dimensional space (from Clavel and
Nishisato 2008)

CT 0.0 (Symmetric upper portion is omitted)
Ha 2.1 0.0
WS 1.9 2.5 0.0
Ma 2.6 2.9 2.8 0.0
Ga 1.7 2.1 1.7 2.6 0.0
Me 1.3 2.6 2.2 3.0 2.2 0.0
Ara 0.6 2.3 2.1 2.7 1.8 1.5 0.0
It 2.3 2.7 2.6 0.9 2.4 2.8 2.5 0.0
SP 2.0 0.9 2.5 2.9 2.1 2.5 2.3 2.7 0.0
Mo 1.5 2.2 0.9 2.5 1.2 1.9 1.7 2.3 2.2 0.0
Mo 2.1 2.6 0.7 2.9 1.9 2.4 2.4 2.8 2.7 1.1 0.0
Da 0.6 2.1 1.8 2.6 1.7 1.3 0.6 2.4 2.1 1.4 2.0 0.0

aLocations: Ar Arlington, It Ithaca, SP St. Paul, Mo Mocasin, Mo Moro, Da Davis

Table 3 The 6 � 6 filtered
between-set distance matrix,
using 22-percentile criterion
point

CTa Ha WS Ma Ga Me

Arb 0.6 – – – – –
It – – – 0.9 – –
SP – 0.9 – – – –
Moc – – 0.9 – 1.2 –
Mor – – 0.7 – – –
Da 0.6 – – – – 1.3

aCT Coast & Trebi, Ha Hanchen, WS White
Smyrna, Ma Manchuria, Ga Gatemi, Me
Meloy
bAr Arlington, It Ithaca, SP St. Paul, Mo
Mocasin, Mo Moro, Da Davis

elements of the between-set distance matrix, discard all distances which are larger
than the criterion distance (i.e., variables which are widely separated do not belong
to the same cluster), and see what clusters one can see among the remaining
distances. The underlying idea is that we are interested only in those variables which
are close to one another, thus we might as well discard all irrelevant distances from
clustering. This method is simple and depending the value of p one chooses, the
cluster can be tight or loose, and two clusters may or may not overlap. See its
application in Nishisato (2014).

Let us apply the clustering with the p-percentile filter to the 6 � 6 matrix of the
between-set distances, that is, the distance matrix between the six barley varieties
and the six locations (see the 6 � 6 part of the left-bottom of the distance matrix). At
the current stage of development, the choice of p is arbitrary, and for this example,
p D 22 percentile was chosen, that is, all distances greater than this were discarded
from the original 6 � 6 distance matrix, as shown in Table 3.
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From this choice of the cutting point, we can identify the following clusters
(Coast & Trebi at Arlington and Davis), (Hanchen at St. Paul), (White Smyrna at
Mocasin and Moro), (Manchuria at Ithaca), (Gatemi at Mocasin), and (Meloy at
Davis). As we can see, some clusters are overlapping. We can also guess that the
overlapping can be eliminated by reducing the percentile point, although this may
result in discarding some variables from analysis.

This filtering method is still at its infancy, and there are many studies needed
before it can compete with other existing clustering methods, for example, how
to determine the optimal p value for a given data set and how to calculate the
distance between clusters. Its advantages over other methods are, among others,
easiness or simplicity and capability to deal with rectangular matrices unlike some
other existing methods. As for the traditional analysis through graphical display,
see Nishisato (1994), noting that we must sacrifice much information in graphical
display.

1.4 Outcry 4: Limitation of Simple Correspondence Analysis?

Traditionally, the French correspondence analysis identifies simple correspondence
analysis and multiple correspondence analysis as two distinct forms of quantifi-
cation. These “simple” and “multiple” methods correspond to dual scaling of the
contingency table and that of multiple-choice data, respectively.

As was described in Nishisato (1980, 2016b), however, the two types of analysis
are closely related to each other. Let us reproduce the example from Nishisato
(2016b)— in response to the two multiple-choice questions:

Q1: Do you smoke? (yes, no)
Q2: Do you prefer coffee to tea? (yes, not always, no)

The data can be represented in three forms as shown in Table 4.

Table 4 Three forms for
representing the information
in the contingency table

C D
"

3 2 1

1 2 4

#

Fa D

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 1 0 0

1 0 1 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 1 0

1 0 0 0 1

0 1 1 0 0

0 1 0 1 0

0 1 0 1 0

0 1 0 0 1

0 1 0 0 1

0 1 0 0 1

0 1 0 0 1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

Fb D

2

6
6
6
6
6
6
6
6
4

3 0 3 0 0

2 0 0 2 0

1 0 0 0 1

0 1 1 0 0

0 2 0 2 0

0 4 0 0 4

3

7
7
7
7
7
7
7
7
5
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If we are given one of the three forms, the other two forms can be generated
from it. In this regard, the three formats are “equivalent” in some sense. Since the
latter two forms yield identical singular values, let us eliminate the second format Fa

from our discussion. The remaining formats are data forms respectively for simple
correspondence analysis and multiple-correspondence analysis. But, as Nishisato
(1980) has shown, the two formats yield different numbers of components. An m � n
table of C yields the “smaller number of m and n minus 1” components, while the
corresponding Fb provides “m C n � 2” components. Nishisato (2016b) calls twice
of the space of C as “dual space” and the space for Fb as “total space.” As is clear,
when m D n, dual space and total space have the same number of dimensions, but
when m ¤ n, the dimensionality of total space is greater than that of dual space.
What is the nature of these extra components in total space when m ¤ n?

The implication of this discrepancy is that simple correspondence analysis, which
deals with the format of C, fails to capture the total information in Fb when m ¤ n,
which is the format for multiple correspondence analysis. Thus, if we are to analyze
the data information exhaustively, the conclusion is that we should always use
multiple correspondence analysis, that is, dual scaling of multiple-choice data Fb,
rather than simple correspondence analysis or dual scaling of contingency tables C.
Does this mean “Limitation of simple correspondence analysis”?

We can stretch our imagination to the quantification of multimode contingency
tables. For example, consider a three-mode data, which can be described as a
trilinear decomposition of frequency fijk. The contingency table format will again
restrict the total number of dimensions to the smallest number of categories of the
variables minus 1. In this case, one can always represent the data in the response-
pattern format with frequencies (e.g., Fb), which will most typically yield more
components than the corresponding analysis of the three-way contingency table.
Can we then abandon simple correspondence analysis completely and always use
multiple correspondence analysis? The author’s view is “yes, we can.”

2 Concluding Remarks

Dual scaling quantifies categorical data in such a way that variates for the rows
and those for the columns are determined as simultaneous regressions of them on
the data in hand. As such, dual scaling provides the optimal way to explain the
data. As is clear from such phrases as simultaneous linear regressions (Hirschfeld
1935), reciprocal averaging (Horst 1935), and dual scaling (Nishisato 1980), the
basic premise of dual scaling lies in symmetric analysis of rows and columns of
a data matrix. It was clarified in the current paper as well as my Beijing paper
that we need to expand the multidimensional space to accommodate both variates.
This awareness of expanded space has led to the criticism of the current methods
of joint graphical display, leading to the suggestion for an alternative method of
graphical display, that is, cluster analysis. In the same context, we were brought
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back to Nishisato (1980) on the analytical comparisons between the contingency
table format and its response-pattern format of the same data. When the number
of rows is not equal to the number of columns of the data matrix, the response-
pattern format of the same data yields more components than the contingency
table format. If we are to pursue exhaustive analysis in the data, therefore, it is
recommended that we should analyze the data represented in the response-pattern
format rather than the contingency format. Data-dependent quantification, analysis
in expanded multidimensional space, and exhaustive analysis using the response-
pattern representation of the data are three major messages of the current paper.
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