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Preface

This volume represents presentations given at the 81st annual meeting of the
Psychometric Society in Asheville, North Carolina, during July 11–15, 2016. The
meeting, organized by the University of North Carolina at Greensboro, was one
of the largest Psychometric Society meetings in the United States, both in terms
of participants and number of presentations. It attracted 415 participants, with
204 papers being presented, along with 95 poster presentations, 3 pre-conference
workshops, 3 keynote presentations, 6 invited presentations, 2 career-award presen-
tations, a debate, 2 dissertation-award winners, 9 symposia, a trivial-pursuit lunch,
and Psychometrika’s 80th anniversary celebration.

Since the 77th meeting in Lincoln, Nebraska, Springer publishes the proceedings
volume from the annual meeting of the Psychometric Society so as to allow
presenters to quickly make their ideas available to the wider research community
while still undergoing a thorough review process. The first four volumes of the
meetings in Lincoln, Arnhem, Madison, and Beijing were received successfully,
and we expect a successful reception of these proceedings too.

We asked authors to use their presentation at the meeting as the basis of their
chapters, possibly extended with new ideas or additional information. The result is a
selection of 36 state-of-the-art chapters addressing a diverse set of topics, including
item response theory, equating, classical test theory, factor analysis, structural equa-
tion modeling, dual scaling, multidimensional scaling, power analysis, cognitive
diagnostic models, and multilevel models.

Amsterdam L. Andries van der Ark
Umeå Marie Wiberg
Urbana-Champaign, IL Steven A. Culpepper
Urbana-Champaign, IL Jeffrey A. Douglas
Hong Kong Wen-Chung Wang
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New Results on an Improved Parallel EM
Algorithm for Estimating Generalized Latent
Variable Models

Matthias von Davier

Abstract The second generation of a parallel algorithm for generalized latent
variable models, including MIRT models and extensions, on the basis of the general
diagnostic model (GDM) is presented. This new development further improves the
performance of the parallel-E parallel-M algorithm presented in an earlier report by
means of additional computational improvements that produce even larger gains
in performance. The additional gain achieved by this second-generation parallel
algorithm reaches factor 20 for several of the examples reported with a sixfold
gain based on the first generation. The estimation of a multidimensional IRT
model for large-scale data may show a larger reduction in runtime compared to
a multiple-group model which has a structure that is more conducive to parallel
processing of the E-step. Multiple population models can be arranged such that
the parallelism directly exploits the ability to estimate multiple latent variable
distributions separately in independent threads of the algorithm.

Keywords Parallel EM-algorithm • MIRT • Diagnostic modeling • Estimation
• Latent variable modeling

1 Introduction

This work was partially completed while the author was at the Educational Testing Service.

M. von Davier (�)
National Board of Medical Examiners, 3750 Market Street, Philadelphia, PA, 19104-3102, USA
e-mail: mvondavier@nbme.org

© Springer International Publishing AG 2017
L.A. van der Ark et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 196, DOI 10.1007/978-3-319-56294-0_1
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This chapter reports on the second generation of a parallel algorithm for generalized
latent variable models on the basis of the general diagnostic model (von Davier
2005, 2008, 2014). This new development further improves the performance of the
parallel-E parallel-M algorithm presented in an earlier report (von Davier 2016) by

The original version of this chapter was revised. An erratum to this chapter can be found at
https://doi.org/10.1007/978-3-319-56294-0_37

mailto:mvondavier@nbme.org
https://doi.org/10.1007/978-3-319-56294-0_37


2 M. von Davier

means of additional computational improvements that produce even larger gains
in performance. The additional gain achieved by this second-generation parallel
algorithm reaches factor 20 for several of the examples were reported with a
sixfold gain based on the first generation. The estimation of a multidimensional
IRT model for large-scale data may show a larger reduction in runtime compared
to a multiple-group model which has a structure that is more conducive to parallel
processing of the E-step. Multiple population models can be arranged such that
the parallelism directly exploits the ability to estimate multiple latent variable
distributions separately in independent threads of the algorithm.

This development allows estimation of advanced psychometric models for very
large datasets in a matter of seconds or minutes, rather than hours. Unlike methods
that rely on simplifications of the likelihood equations that are only available for a
specific set of constrained problems such as bifactor models, the approach presented
here is applicable to all types of multidimensional latent variable models, including
multidimensional models, multigroup and mixture models, as well as growth curve
and growth mixture models.

Parallel processing is now available in a number of compilers and hence found
its way into software packages such as LatentGold, Mplus, and FlexMirt. While
these packages allow users to utilize one or multiple cores, their documentation is
somewhat limited. In the present report, the approach to parallelism is detailed at
the level of algorithmic description, and the types of gains are exemplified based
on a range of hardware platforms that are typically available as workstations or
servers. Moreover, the software presented here is available for research purposes on
all major operating systems, in particular, on Linux, Microsoft Windows, and Apple
OS X platforms.

2 A General Latent Variable Model

The general latent variable model used in this evaluation of an improved algorithm
for parallel processing is based on the general diagnostic model (GDM) (von Davier
2005). This family of models contains a large class of well-known psychometric
approaches as special cases, including IRT, MIRT, latent class models, HYBRID
models, and mixture models (von Davier 2008), as well as models for longitudinal
data (von Davier et al. 2011) and several diagnostic models (von Davier 2014, 2016).

The probability of a correct item response X D 1 by a respondent from a
population C D c and with skill attribute pattern a D (a1, : : : , ak) on item i can be
written as

P .X D 1ji; a; c/ D
exp

�
ˇic C

PK
kD1�ickh .qik; ak/

�

1 C exp
�
ˇic C

PK
kD1�ickh .qik; ak/

� (1)

This is the general model introduced by von Davier (2005). The qik are indicator
variables for i D 1 , . . , I and k D 1 , : : : , K and are provided as an input. These
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Q-matrix entries qik describe which of the skill attributes is required for which item.
Note that Eq. (1) also contains a population indicator c, which makes it suitable
both for multiple-group and mixture distribution models (von Davier and Rost
1995; von Davier and Yamamoto 2004; von Davier 2005, 2008; von Davier and
Rost 2016). While the general model given in Eq. (1) served as the basis for the
formal specification of the log-linear cognitive diagnostic model (L-CDM) (Henson,
Templin and Willse 2009) and other developments for binary skill attributes and
data, von Davier (2005, 2008) utilized the general form to derive the linear or partial-
credit GDM:

P .X D xji; a; c/ D
exp

�
ˇixc C

PK
kD1x�ickh .qik; ak/

�

1 C
Pm

i

�
ˇiyc C

PK
kD1y�ickh .qik; ak/

� (2)

Note that this leads to a model that contains located latent class models, multiple
classification latent class models, IRT models, and multidimensional IRT models,
as well as a compensatory version of the reparameterized unified model, as special
cases (von Davier 2005). In addition, the linear GDM as well as the general family
is suitable for binary, polytomous ordinal, and mixed-format item response data.

One common application of generalized latent variable models is the use for
confirmatory analysis. In this case, a Q-matrix provides the required loading pattern,
and constraints on the skill attribute space provide the structure of the model. One
example is what is commonly called a multi-trait-multi-method model, in which
each observed indicator variable is cross classified with respect to two different sets
of latent variables. In the examples analyzed for this report, a seven-dimensional
model of this type is analyzed, which contains two loadings for each item, one
for a set of four latent variables (subdomains) and one for a set of three variables
(processes). Figure 1 provides an illustration of this model used as example.

3 Method

The EM algorithm (Dempster et al. 1977) is one of the most frequently used
approaches for estimating latent variable models (e.g., McLachlan and Krishnan
1997). The name of the algorithm stems from the alternating, iterative repetition of
two steps, the E (expectation) step and the M (maximization) step. The estimation of
generalized latent variable models using the EM algorithm requires the estimation
of expected values for all required sufficient statistics of the structural parameters
of the measurement model as well as the estimation of latent variable distributions
in one or more populations. In the M-step, the expected values serve as sufficient
statistics for the maximization of parameters. Parallel implementations of the EM
algorithm have been used in image processing, in particular in Gaussian mixture
modeling for some time (Cui et al. 2014; Cui et al. 2010; Das et al. 2007; Lopez
de Teruel et al. 1999). In contrast to Gaussian mixtures, certain latent variable
models require computationally more costly calculations in the M-step as well.
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x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

knowledge application reasoning

x12

number algebra geometry data

Fig. 1 Confirmatory multidimensional IRT model with seven dimensions. Three of the variables
describe processing skills, and four variables describe subdomains of mathematics. While the
figure uses on only 12 items, the real data example contains 214 items in a balanced incomplete
block design administered to approx. 8000 students

While parallelizing the E-step is straightforward in terms of distribution of the
work, the aggregation of the partial results obtained in distributed ways separately
by each core is again a potentially costly calculation or aggregation process. A
new algorithm was developed based on the first generation parallel-E parallel-M
algorithm described in von Davier (2016). This new algorithm can be described as
a parallel-E parallel-M algorithm with tiling-based aggregation of results. This new
approach is based on three different phases of parallel execution of the necessary
calculations:

1. Parallel E-step: Distributed calculation of expected counts for sufficient statistics
2. Tiling: Rearranging distributed latent variable space and parallel aggregation
3. Parallel M-Step: ML-estimation of parameters based on aggregated counts

Gains are largest for the parallelism introduced in part (1) that concerns the
E-step by conducting estimation of expected counts separately in subsamples
distributed across cores. The smallest gains are obtained by the conversion of the
M-step to parallel execution in part (3). The aggregation step that follows the E-step
in part (2) provides somewhat more advantages than the parallel M-step, either in the
form of a multiple-group approach where aggregation can be completely avoided,
or in the form of tiling, where the latent variable space aggregation is rearranged
so that it can take place in parallel as well. Shared memory allocation of all latent
variable distributions and rearranging the direction of aggregation are crucial in the
process. More details about the different approaches utilized in version 1 can be
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Table 1 Summary of example analyses used in the comparisons

Case Scales Model Groups Items Sample QPT Total Ncat

A 1 2PL/GPCM 312 293 1,614,281 21 21 2–4
B 1 2PL/GPCM 283 133 1,803,599 21 21 2–4
C 7 MTMM 1 214 7377 3 2187 3
D 2 MIRT 1 175 5763 15 225 3
E 2 MIRT 1 175 5763 31 961 3
F NA LCA 54 54 246,112 1 1 6
G 5 MIRT 1 150 2026 5 3125 2

The examples cover a wide range of latent variable models from IRT to MIRT, confirmatory
models, and latent class models. The items are mixed format, and their number varies from 54
to 293; the number of respondents varies from 2026 to 1.8 million

found in von Davier (2016). The tiling process resulting in an improved ability to
utilize parallelism in aggregation is detailed in Gan et al. (2009).

4 Data

Table 1 shows an overview of the test cases. All test cases reported here are based
on sequential and parallel versions, except two additional ones, that were only run
on the fastest hardware platform, and only in parallel mode, since sequential mode
or running these on a laptop would take unacceptably long periods of time. The test
cases are from typical applications of generalized latent variable models, ranging
from IRT, to classification of respondents by means of a latent class analysis, to
MIRT applications with 2, 5, and 7 dimensions, and finally multiple population
IRT for linking in large-scale international assessments with approximately 300
populations and 2,000,000 test takers distributed across these populations.

5 Results

Table 2 shows the results for a (somewhat older) Dual-CPU 12-Core Intel Xeon
workstation running at 3.46 GHZ per core. These are given for the sequential
algorithm, running only on a single core, as well as for parallel-E parallel-M version
1 and the improved version 2 of the PE-PM algorithm, running on all available cores.

Table 3 shows the results for a 4-CPU AMD Opteron (Piledriver architecture)
server with 64/32 cores, running at 2.6 GHZ per core. This architecture offers 64
integer arithmetic cores, with each CPU offering 16 integer units that share eight
floating point units. In this sense, we see a performance that is more reflective of
32 FPUs, but with some added capacity for caching and pre-fetching and integer
processing. The measures are given for the sequential algorithm, running only on a
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Table 2 Results of the comparison of parallel-E parallel-M versions 1 and 2 on a 12-Core Xeon
workstation as well as the sequentially executed algorithm

Parallel V1 Parallel V2
Case Iterations Likelihood Sec. Sec. Speedup Sec.

A 126 �14,547,731.24 1356 168 807% 153
B 112 �14,639,728.20 1127 117 963% 96
C 165 �125,200.51 2465 314 785% 343
D 76 �14,468,510.90 44 11 400% 11
E 86 �14,468,485.63 1155 163 708% 145
F 1028 �1,234,570.30 7444 1039 716% 964
G 277 �130,786.39 2499 949 263% 726

Table 3 Results of the comparison of parallel-E parallel-M versions 1 and 2 on a 64/32-Core
AMD Piledriver server as well as the sequentially executed algorithm

Parallel V1 Parallel V2
Case Iterations Likelihood Sec. Sec. Speedup Sec.

A 126 �14,547,731.24 2074 256 810% 114
B 112 �14,639,728.20 1553 185 839% 90
C 165 �125,200.51 6131 889 689% 300
D 76 �14,468,510.90 116 21 552% 5
E 86 �14,468,485.63 1945 150 1296% 116
F 1028 �1,234,570.30 6427 377 1704% 227
G 277 �130,786.39 6771 287 2359% 563

single core, as well as for parallel-E parallel-M version 1 and the improved version
2 of the PE-PM algorithm, running on all available cores.

These results show that a gain in the order of 800% for a 12 core workstation
and in the order of 2000% for a 32/64 core 4-CPU server is well within reach.
The examples provided here show also that for most cases, the version 2 of the
parallel algorithm that uses tiling reduction performs for most cases at a much higher
level than version 1. Unlike algorithms that either utilize reduction of dimensionality
(Gibbons and Hedeker 1992; Rijmen et al. 2014; Cai 2010, 2013), the algorithm
presented here is a general-purpose solution for speeding up calculations and can
be applied to any latent variable model available through this family of models (von
Davier and Rost 2016) to speed up estimation substantially.

6 Discussion

Massive gains in processing speed can be realized by using the parallel-E parallel-M
algorithm with tile reduction (PEPM-TR) for estimating generalized latent variable
models. The present paper shows that gains in the order of 2000% in processing
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speed are not uncommon. That is, according to Amdahl’s (1967) law, the percent
parallel processing with 32 cores is at a level of

P D

�
1 �

1

G

��
C

C � 1

�

see von Davier (2016). For G D 20 and C D 64, we obtain a value of P D 0.965
or a level of parallism of 96.5% for this algorithm. For gains around 800%
obtained with the 12 core hardware, we obtain a very similar estimate of a level
of 95.5% parallelism. This is a gain that allows using all available data in almost
any psychometric analysis. Recent analyses of the combined database of the first
five PISA data collections were conducted with almost two million students in
more than 300 populations (approximately 60 countries or country/language groups
participating on average across 5 cycles) and up to 300 items. The analysis with an
IRT model of this very large dataset takes about 2–3 min on the workstation and
about 90 s on the server hardware tested here. Multidimensional models for this
type of massive databases are easily within reach and can be estimated in less than
an hour. This enables a much more rigorous quality control and allows analysts to
rerun and to obtain results based on more stringent convergence criteria, resulting
in more accurate estimates.
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Properties of Second-Order Exponential Models
as Multidimensional Response Models

Carolyn J. Anderson and Hsiu-Ting Yu

Abstract Second-order exponential (SOE) models have been proposed as item
response models (e.g., Anderson et al., J. Educ. Behav. Stat. 35:422–452, 2010;
Anderson, J. Classif. 30:276–303, 2013. doi: 10.1007/s00357-00357-013-9131-x;
Hessen, Psychometrika 77:693–709, 2012. doi:10.1007/s11336-012-9277-1 Hol-
land, Psychometrika 55:5–18, 1990); however, the philosophical and theoretical
underpinnings of the SOE models differ from those of standard item response
theory models. Although presented as reexpressions of item response theory models
(Holland, Psychometrika 55:5–18, 1990), which are reflective models, the SOE
models are formative measurement models. We extend Anderson and Yu (Psy-
chometrika 72:5–23, 2007) who studied unidimensional models for dichotomous
items to multidimensional models for dichotomous and polytomous items. The
properties of the models for multiple latent variables are studied theoretically and
empirically. Even though there are mathematical differences between the second-
order exponential models and multidimensional item response theory (MIRT)
models, the SOE models behave very much like standard MIRT models and in some
cases better than MIRT models.

Keywords Dutch Identity • Log-multiplicative association models • Formative
models • Reflective models • Composite indicators • Skew normal • Bi-variate
exponential

1 Introduction

Philosophical, theoretical, and empirical differences between second-order
exponential (SOE) models and multidimensional item response theory (MIRT)
models exist; however, these differences that have not been fully discussed nor
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widely recognized in the literature on SOE models are derived based on the
Dutch Identity (Holland 1990; Hessen 2012). Equivalent to SOE models, log-
multiplicative association (LMA) models were derived as latent variable models
from statistical graphical models (Anderson and Vermunt 2000), as well as from
item response models using rest scores in lieu of the latent variables (Anderson and
Yu 2007; Anderson et al. 2010). Anderson and Yu (2007) studied unidimensional
LMA models for dichotomous data. The LMA models are formative measurement
models, and they are item response models in their own right. A better understanding
of the properties of LMA models as item response models leads to implications
regarding the use and performance of LMA models for analyzing response data.
The LMA models have a number of advantages, including maximum likelihood
estimation does not require an assumption for the marginal distribution of the latent
variables and the models can be fit directly to response patterns using Newton-
Raphson. The goal of this paper is to extend Anderson and Yu (2007) to study the
properties of multidimensional LMA (or equivalently SOE) models for dichotomous
and polytomous items.

Holland (1990) proposed and used the Dutch Identity to derive SOE models for
data based on underlying uni- and multidimensional IRT models for dichotomous
items. The SOE models are equivalent to LMA models, which are special cases of
a log-linear model with two-way interactions. Hessen (2012) extended the Dutch
Identity to polytomous items and derived an LMA model; however, he focused on
models analogous to the partial credit model (i.e., models in the Rasch family),
even though his extension of the Dutch Identity is more general. For models in the
Rasch family, category scores are set to fixed values (e.g., consecutive integers).
Hessen (2012) mentioned that the category scores could be treated as parameters
and estimated. We treat category scores as parameters that are estimated. We extend
and generalize the results in Anderson and Yu (2007) and Hessen (2012) to the case
of multidimensional models for dichotomous and polytomous items. We highlight
the philosophical, theoretical, and empirical differences between LMA and MIRT
models.

In the first section of this paper, we discuss the philosophical and theoretical dif-
ferences between standard MIRT and LMA models. In the following two sections,
two properties of LMA are theoretically and empirically studied: the downward
collapsibility of LMA models and the effect of different marginal distributions of
the latent variables on the models’ performance. We conclude with a discussion the
potential uses of LMA models in measurement contexts.

2 Reflective and Formative Models

The differences between reflective and formative latent variable models have been
discussed by Markus and Borsboom (2013), Bollen and Bauldry (2011), and others.
Our intent here is to show the philosophical differences between LMA and MIRT
models and how they lead to different mathematical models.
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Fig. 1 Graphs corresponding to reflective (left) and formative (right) models for six items and two
latent continuous variables

A reflective model posits that latent variables are prior to behavior, and the
latent variables are conceived of as existing whether they are measured or not.
A reflective model is illustrated by the graph on the left in Fig. 1. The values on the
latent variables lead to observed responses; therefore, behavior indicates or reflects a
person’s value on the unobserved quantity. A change in the value of a latent variable
causes a change in the response behavior. The items are effect indicators (Bollen
and Bauldry 2011).

To algebraically take into account the directional nature of the relationship
between � and y, models are developed by writing the joint distribution of �

and y as f .y;�/ D f .yj�/f .�/. For a MIRT model, the marginal distribution of
the latent variables f .�/ is typically assumed to be multivariate normal, and the
distribution for the responses conditional on the latent variables f .yj�/ is a product
of multinomial logistic regression models. The model for responses to items is
found by numerically integrating over the latent variables; that is, the probability
of response pattern y is

P.y/ D

Z

�1

: : :

Z

�M

IY
iD1

expŒˇij C
P

m ˛ijm�m�P
h expŒˇih C

P
m ˛ihm�m�

f .�/d.�/; (1)

where ˇij is a location parameter for response option j of item i, and ˛ijm is the slope
parameter for response option j of item i on latent variable �m.

In a formative model, the direction of the relationship between � and y is
reversed relative to the reflective model. A graph representing a formative model
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is illustrated on the right in Fig. 1. Items define and give meaning to latent variables.
The items are composite indicators because � are composites of the values of
the items (Bollen and Bauldry 2011). The joint distribution of y and � is found
by first specifying the distribution for f .y/ and then the distribution for f .�jy/;
that is, f .y;�/ D f .�jy/f .y/. Assuming that f .y/ is multinomial and f .�jy/ is
a homogeneous conditional, Gaussian distribution leads to an LMA model for
the probabilities of observed response patterns y (Anderson and Vermunt 2000;
Anderson et al. 2010). The model for data is

P.y/ D exp

2
4�C

IX
iD1

�ij C
X

i

X
k�i

X
m

X
m0¤m

�mm0�ijm�kjm0

3
5 ; (2)

where � ensures probabilities sum to 1 over response patterns, �ij is the marginal
effect term for response option j to item i, �ijm is the category scale value for response
j to item i on latent variable m, and �mm0 is a within response pattern variance or
covariance of the latent variable(s). The �ijs and �ijms in (2) are analogous to the ˇijs
and ˛ijms, respectively, in (1). Based on the LMA model, the conditional means of
the latent variables given y equal:

E.�mjy/ D

MX
m0D1

�mm0

 
IX

iD1

�ijm0

!
: (3)

Models (1) and (2) are very general models. In this paper, we study the case
where each item is directly related to one and only one latent variable, that is,
�ijm ¤ 0 and ˛ijm ¤ 0 for one and only one m. We expect that the results we find
will be the same for more complex models, but we leave this for future study.

The MIRT model given in (1) is not only philosophically different but mathemat-
ically different from the LMA model given in (2).

3 Downward Collapsibility of LMA Models

If an item is dropped from data generated from a MIRT model, the data excluding
the item still follow a MIRT model and theoretically yield the same estimates of item
parameters for the remaining items. If an item is dropped from (or added to) an LMA
model, the resulting model is a different model with different parameter estimates.
We theoretically and empirically study the effect on LMA model parameter
estimates when dropping an item from data (i.e., collapse data over an item). In
the first section, we consider the case when data are generated from an LMA model
(not collapsible), and in the second section, we consider the case when data are
generated from a MIRT model (downward collapsible).
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3.1 LMA-Generated Data

Suppose that item 1 is directly related to �1 and it is dropped from the data. Let y�1

indicate the data excluding item 1. Rather than (3), the conditional means for �1 and
�m are

E.�1jy�1/ D �11
X
i¤1

�ij1 C
X
m>1

 
�1m

X
k

�kjm

!
C �11

X
j

�1j1P.Y1 D jjy�1/

and

E.�mjy�1/ D �1m

X
i¤1

�ij1 C
X
m0>1

 
�mm0

X
k

�kjm0

!
C �1m

X
j

�1j1P.Y1 D jjy�1/;

respectively. The last term in each of these equations for the conditional means is
unobserved and equals the expected biases of the means due to dropping item 1.

Dropping an item that is directly related to �1 changes the conditional variances
of �1 and any �m directly related to �1 (i.e., �1m ¤ 0). In particular, the conditional
variances after collapsing over item 1 are

var.�1jy�1/ D �11 C �211

0
B@
X

j

�2ij1P.Y1 D jjy�1/ �

0
@X

j

�ij1P.Y1 D jjy�1/

1
A
2
1
CA ;

and

var.�mjy�1/ D �mm C �21m

0
B@
X

j

�2ij1P.Y1 D jjy�1/ �

0
@X

j

�ij1P.Y1 D jjy�1/

1
A
2
1
CA :

The conditional variances will increase for larger values of �11 and �1m. The change
of var.�mjy�1/ is smaller than that for var.�1jy�1/ because �21m � �211. Regardless of
the value of �11 and �1m, the conditional means and variances are affected the most
when an item with the largest values of �ij1 is dropped, and they are least affected
when the item with the smallest values of �ij1 is dropped.

Our interest is in the theoretical behavior of the LMA models; therefore, P.y/s
were computed from an LMA (six items, three response options per item), so the
LMA model fits the data perfectly. The size of the scale values for an item was
measured by

P
j �
2
ijm. Two additional data sets were created by collapsing over the

item with the smallest value and the largest value of
P

j �
2
ijm. The item with the

weakest relationship to a �m should have the smallest effect on the results, and
collapsing over the item with the strongest relationship to a �m should have the
largest effect.
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Throughout this paper, maximum likelihood estimation was used to estimate
parameters of LMA and MIRT models. The LMA models were fit to data using
SASő PROC NLP (version 9.4, SAS Institute Inc. 2015). The MIRT models were
fit to data using flexMIRT (Houts and Cai 2013) assuming bivariate (multivariate)
normality.1

In terms of goodness of fit, the likelihood ratio goodness-of-fit statistic (G2)
is used as an index but is not compared to a �2 distribution because there is no
sampling variability. As a second index, we used the dissimilarity index:

D D
X

y

jP.y/ � OP.y/j
2

;

where the sum is over all response patterns, P.y/ is the probability of response
pattern y, and OP.y/ is the fitted value of the probability of response pattern y from a
model. The index D is interpretable as the proportion of data that would have to be
moved from one response pattern to another for the model to fit perfectly (Agresti
2013).

Any misfit of the LMA model fit to the six items is due to numerical inaccuracy in
the data generation and/or model estimation. The LMA model fits the probabilities
of response patterns for the six items nearly perfectly. When collapsing over the
weak item, the parameter estimates and goodness-of-fit statistics of the LMA model
were nearly identical to those when the model was fit to all six items. Specifically,
collapsing over the weak item had a smaller impact on the goodness of fit than
collapsing over the strong item (i.e., G2 D 0:0000 versus G2 D 0:0002 and D D

0:0002 versus D D 0:0049). All of the LMA models fit the probabilities better than
all of the MIRT models.

When collapsing over the strong item, there were noticeable differences between
the estimated parameters from the LMA model fit to those used to generate the data.
The variance of �m increased the most when the item dropped is the strong item.
Specifically, when the strong item is dropped, the variance of the latent variable to
which it is connected goes from 0:87 to 1:66, but when the weak item is dropped,
the variance of the latent variable to which it is connected goes from 0:77 to 0:88.
As predicted, both O�11 and O�22 increased when collapsing over either the weak or
strong item. The change in both variances occurs because when we collapse over an
item related to, say �1, leads to less information to estimate the latent variable �2,
which increases uncertainty (i.e., larger �22).

1Files containing code and data that reproduce all analyses can be downloaded from http://faculty.
education.illinois.edu/cja/homepage.

http://faculty.education.illinois.edu/cja/homepage
http://faculty.education.illinois.edu/cja/homepage
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3.2 MIRT-Generated Data

If �1 and �2 were discrete, then we could collapse over, for example, item 1 and
expect O�ijm for i ¤ 1 to remain the same. Since for the LMA models O� equals a
weighted sum of category scores, O� is empirically discrete and LMA models might
be collapsible. When data are generated from a model that implies collapsibility,
whether LMA scale values are affected by dropping items is an open question.
Since MIRT models imply collapsibility, probabilities were generated from a two-
dimensional MIRT model with � � MVN.� D .0; 0/; 	 D 0:5/ for eight items
where items 1–4 were related to �1, and items 5–8 were related to �2. The generated
probabilities were collapsed over one item at a time until there were only four items
remaining. We alternated collapsing over an item related to �1 and one related to �2.

Since LMA models are formative measurement models, we are primarily
interested in the O�ijms, which are used to compute estimates of the conditional
means of the latent variables (i.e., OE.�mjy/). The scale values O�ijm were essentially
unaffected by collapsing the data. When data were collapsed over an item, both of
the O�mms increased. When the first item was dropped, which was related to �2, the
increase of O�22 was greater than that for O�11. When the second item was dropped,
which was related to �1, the increase in O�11 was greater than that for O�22. This pattern
continued until there are only four items remaining.

In sum, if data are generated from a MIRT model, which collapsibility, then the
LMA model yields nearly the same O�ijms when items are dropped. Conversely, we
can consider adding items. If the data come from a model that implies collapsibility
and then when adding items (assuming that the added items are related to the
underlying latent variable(s)), the O�ijms are not expected to change, and O�mms are
expected to be smaller.

4 Different Marginal Distributions

A property often given as an advantage of LMA models is that a marginal
distribution of the latent variables is a mixture of normals, which can take on many
different shapes. The goal of this section is to determine whether and when an LMA
model may perform well in terms of goodness of fit and parameter recovery and
compare LMA model performance with a corresponding MIRT model.

In this study, we generated probabilities for response patterns by numerically
integrating out the latent variables from a MIRT model assuming one of four
different underlying distributions. The multivariate normal (MVN) was chosen
because this is the typical assumption made when fitting a MIRT model. The
multivariate skew normal was chosen because the MVN is a special case of the skew
normal, and there has been some interest in using the skew normal as an alternative
to the normal distribution (Azevedo et al. 2011; Casabianca and Junker 2016; Lee
2002). Marshall-Olkin bivariate exponential distribution (Mardia et al. 1979) was
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chosen because some variables in the data that we often analyze are very skewed.
Lastly, a mixture of two multivariate normal distributions was chosen to mimic a
situation where individuals have opposite attitudes or views. This also reflects a
situation where there is an important group variable that has not been included in
the model, and there is differential item functioning.

As the number of items increases to 1, �mm �! 0, an LMA model will yield the
actual marginal distribution of the latent variables. The behavior of LMA models
for short tests or subscales is less certain; therefore, we empirically examine the
behavior of the models when fit to generated data for short tests. Probabilities of
response patterns were generated using the MIRT model in (1) for M D 2 latent
variables and I D 4 or 6 items with J D 2, 3, or 4 response options. For the
multivariate normal distribution, we also fit models to data with M D 3 and I D 6

items.
Both the MIRT and the LMA models were fit to all of the data sets. Albeit

naive, when the distribution generating the data is not normal, the MIRT models
were fit to data assuming multivariate normality. Although not reported here, two
additional models were fit as baseline models: the log-linear model of independence
and the homogeneous (all two-way interaction) log-linear model. The probabilities
of response patterns were multiplied by 1,000,000 to retain more decimal places and
accuracy. Besides the dissimilarity index D, a second measure of goodness of fit is
reported for the models: the percent of association accounted for by a model,

Percent association D
G2

independence � G2
model

G2
independence

� 100%;

where the likelihood ratio statistic G2 from the independence model is a measure of
the amount of association in the data.

To examine parameter recovery, we used the correlation between the parameters
used to generate the data and the estimated parameters from the LMA and MIRT
models. Given our focus on LMA models, we are primarily interested in the
estimation of the �ijm parameters. The marginal effect terms �ij generally are viewed
as nuisance parameters from an LMA model framework, but the correlations for
marginal terms are reported for the sake of completeness.

The results for different numbers of items and response options are all very
similar; therefore, we only report the result for one case (i.e., six items, three
response options, and two latent variables). Goodness-of-fit statistics are reported in
Table 1, and correlations between estimated parameters and those used to generate
the data are reported in Table 2.

When data were generated using the bivariate normal distribution (� D 0, 	 D

0:5), the MIRT model should fit perfectly. Any misfit is due to numerical inaccuracy
in generating the probabilities and/or estimating the model. The MIRT models
essentially fit perfectly; however, the goodness-of-fit indices for the LMA models
are just shy of perfect. When data were generated using a skew normal (i.e., � D 0,
	 D 0:75, and shape parameters 2 and 3) or a bivariate exponential distribution (i.e.,
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Table 1 Goodness-of-fit statistics for LMA and MIRT models fit to date generated from a MIRT
model with different underlying distributions for f .�/

Dissimilarity Percent association

Underlying distribution LMA MIRT LMA MIRT

Bivariate normal 0:0016 0:0002 99:99 100.00

Skew normal 0:0268 0:0268 97:14 97.16

Bivariate exponential 0:0127 0:0129 98:44 98.39

Mixture of normals 0:0346 0:0708 99:43 96.05

Table 2 Correlations between LMA and MIRT model parameter estimates and parameters used
generated MIRT model probabilities for different f .�/s

LMA MIRT LMA MIRT

Underlying distribution r.˛ijm; O�ijm/ r.˛ijm; Oaijm/ r.ˇij; O�ij/ r.ˇijm; Obij/

Bivariate normal 0:9980 1:0000 0:9839 1:0000

Skew normal 0:9950 0:9962 0:8361 0:7506

Bivariate exponential 0:9326 0:9077 0:8257 0:7894

Mixture of normals 0:9971 0:9430 0:9665 0:9428

f .�/ D exp.�1:0�1 � 0:5�2 � 0:2max.�1; �2//
 where 
 normalized the function),
the LMA and MIRT models both provide good representations of the data, and
there are no systematic differences in terms of which model fits the data better.
When data were generated from the mixture of two normals (i.e., �1 D .�2;�2/0,
�2 D .2; 2/0, 	 D 0:5, and mixing weight of 0:5), the LMA models clearly fit the
data better than the MIRT models.

More differences between the models’ performance were found in terms of
parameter recovery. When data were from the bivariate normal, MIRT parameters
are perfectly correlated with those used to generate the data; however, the LMA
parameters were just short of perfect. For the skew normal, the correlations between
the ˛ijms used to generate the data and the estimated �ijms parameters from the LMA
models were about the same as the corresponding correlations of parameters from
the MIRT models; however, the correlations for the ˇijms were much larger for
the LMA model than the MIRT model. For the exponential and mixture of normal
distributions, the correlations for the estimated �ijms and �ijs from the LMA models
were considerably larger than those for parameters from the MIRT models.

5 Discussion

The LMA models and standard MIRT models were shown to be philosophically and
mathematically different models; however, they share some important properties.
For short tests, the LMA models performed nearly as well as standard MIRT models
when the underlying distribution of the latent variables is multivariate normal, and
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the LMA and MIRT models empirically perform equally well when the underlying
distribution is skew normal. With the skew normal, the goodness of fit is about
the same for both the LMA and MIRT models; however, the estimation of the ˇijs
parameters had lower correlations with the parameters used to generate the data than
the LMA model parameters. The LMA models perform better than MIRT models in
terms of goodness of model fit to data and parameter recovery when data arise from
an LMA model and when f .�/ follows either a bivariate exponential distribution or
a mixture of two normal distributions.

The LMA models are more flexible than discussed in this paper. The LMA
models can include covariates for the latent variables, the marginal effect terms
(i.e., the �ij), and the conditional variances and covariances of the latent variables
(Anderson 2013). The models also permit various restrictions on parameters,
including equality, ordinal, partially ordinal, linear transformations, and/or any
desired transformation (Anderson 2013). The LMA models can also represent more
complex latent variable structures than those studied in this paper, such as those
where items “load” on multiple correlated or uncorrelated latent variables (e.g., bi-
factor models). Since the assumptions and theory are the same, we expect the same
results for more complex models such as those that we found for the simpler models
reported in this paper.

Our focus was on short tests because these are cases where LMA and MIRT
models may differ. Although we used common commercial software (SAS) to fit
the LMA models to data, one bottleneck to more widespread applications of LMA
models is a limitation to the size of the problem that can be handled. The size
of the cross-classification of items (i.e., number of response patterns) increases
exponentially when adding items and/or categories per item. When scores are input,
the pseudo-likelihood method given in Anderson et al. (2007) works well and can
be implemented in any program that fits conditional multinomial logistic models.
Recently Paek (2016), Paek and Anderson (2017) proposed a solution to the more
general problem where scores are estimated. In simulations, Paek (2016) showed
that the algorithm yields nearly identical parameter estimates as MLE of LMA
models for short tests and that the algorithm recovers parameters used to simulate
the data in longer tests (i.e., 20 and 50 items). The more general algorithm also can
be implemented in any software program that fits conditional multinomial logistic
regression models.

We do not advocate that LMA models replace MIRT models because they
are philosophically and theoretically different measurement models. The LMA
models actually may be complimentary to applications of MIRT models. Suppose a
researcher desires a reflective model but does not know what marginal distribution of
the latent variable(s) should be used when fitting a MIRT model to data. The LMA
models can be used to estimate the marginal distribution of the latent variables,
which could confirm or suggest a distribution to be used when fitting the MIRT
model to data.

The empirical studies in this paper imply that one cannot conclusively determine
whether the model should be formative or reflective. Whether one performs better
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than the other is an empirical question. The choice between using an LMA model
or a MIRT model for a particular case depends on a researcher’s conceptualization
of the latent variable.
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Pseudo-likelihood Estimation
of Multidimensional Response Models:
Polytomous and Dichotomous Items

Youngshil Paek and Carolyn J. Anderson

Abstract Log-multiplicative association (LMA) models have been proposed as
uni- and multidimensional item response models for dichotomous and/or polyto-
mous items. A problem that prevents more widespread use of LMA models is that
current estimation methods for moderate to large problems are computationally
prohibitive. As a special case of a log-linear model, maximum likelihood estimation
(MLE) of LMA models requires iteratively computing fitted values for all possible
response patterns, the number of which increases exponentially as the number of
items and/or response options per item increases. Anderson et al. (J. Stat. Softw.
20, 2007, doi:10.18637/jss.v020.i06) used pseudo-likelihood estimation for linear-
by-linear models, which are special cases of LMA models, but in their proposal,
the category scores are fixed to specific values. The solution presented here extends
pseudo-likelihood estimation to more general LMA models where category scores
are estimated. Our simulation studies show that parameter estimates from the new
algorithm are nearly identical to parameter estimates from MLE, work for large
numbers of items, are insensitive to starting values, and converge in a small number
of iterations.

Keywords Log-multiplicative association models • Log linear-by-linear models •
Second-order exponential models • Multidimensional item response theory • For-
mative measurement models

1 Introduction

Log-multiplicative association (LMA) models have been proposed as uni- and
multidimensional item response models for dichotomous and/or polytomous items
(Anderson et al. 2010; Holland 1990; Hessen 2012, and others). They are formative
measurement models (Anderson and Yu 2017) that do not require an assumption
for the marginal distribution of the latent variables. Although maximum likelihood
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estimation can be accomplished for small numbers of items, the estimation of LMA
models for moderate to large problems is computationally prohibitive because fitted
values for all possible response patterns must be iteratively computed. The number
of response patterns increases exponentially as the number of items and/or response
options per item increases. Pseudo-likelihood estimation (PLE) was proposed by
Anderson et al. (2010) for log linear-by-linear models which are special cases of
LMA models where the category scores (e.g., slopes for the latent variables) are
set to fixed values at input. We extend the pseudo-likelihood approach to general
LMA models where category scores are treated as parameters and are estimated.
This method works for large numbers of items and response options.

One of the most widely used programs for estimating LMA models is `EM

(Vermunt 1997), which used quasi- or unidimensional Newton-Raphson. With `EM

we were able to fit an LMA model to 12 binary items (i.e., 212 D 4096 response
patterns). LMA models can also be fit using analytic derivatives and a Newton-
Raphson algorithm as implemented in SAS® procedure NLP (SAS Institute Inc.
2015). Using SAS, the largest problem that we successfully fit had seven items each
with five response categories (i.e., 57 D 78; 125 response patterns). Adding a single
item increased the number of response patterns to 390; 625, and estimation became
problematic. Ten items with five response categories per item (i.e., 9; 765; 625
response patterns) are beyond the capability of current estimation methods.

Pseudo-likelihood estimation simplifies estimation of large complex models by
maximizing the product of likelihoods of a set of conditional models based on the
complex model. The method, first proposed by Besag (1974), has been used to solve
estimation problems in a number of different settings (Huwang and Huwang 2002;
Geys et al. 1999; Liang and Yu 2003; Johnson and Riezler 2002; Strauss and Ikeda
1990; Wasserman and Pattison 1990; Molenberghs and Verbeke 2005). The original
uses of PLE to estimate parameters of Rasch models were limited to unidimensional
models for pairs of binary items (Arnold and Strauss 1991; Zwinderman 1995). Smit
(2000) extended the use of PLE to a set of dichotomous items and studied the quality
of the estimates relative to other standard estimation methods. Pseudo-likelihood
estimation (Anderson et al. 2007) of LMA models was developed to handle only the
special case, when category scale values are assumed and set to fixed values. The
estimation method and algorithm that we propose use pseudo-likelihood estimation
but add a step for estimating the category scores.

PLE parameter estimates are asymptotically normal and consistent (Geys et al.
1999; Aerts et al. 2002), which is important for forming confidence intervals and
hypothesis testing. Other advantages of PLE are that it is fast and stable, and
implementation is straightforward.

The structure of the paper is as follows. In the first section, LMA models are
presented in a form that is key to our algorithm. In the second section, we discuss
pseudo-likelihood estimation and present our algorithm. In the subsequent sections,
we present the results of simulation studies showing that the new step for estimation
of category scores works (i.e., one latent variable) and simulation studies showing
that the method works for multidimensional models. We conclude with a discussion
and possible extensions of the algorithm.
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2 Log-Multiplicative Association Models

LMA models are log-linear models that include all two-way interactions, but the
interaction terms are replaced by products of pairs of category scores and an
association parameter. Let y represent a response pattern (i.e., a cell in a cross-
classification of I items), i D 1; : : : ; I be an index for items, and j D 1; : : : ; J
the index for response options. Items can have different numbers of responses,
but to keep notation simple, we will not put subscripts on j or J. Furthermore, let
m D 1; : : : ;M be the index for latent variables. The LMA model for the probability
of response pattern y is

P.y/ D exp

2
4�C

IX
iD1

�ij C
X

i

X
k�i

X
m

X
m0¤m

�mm0�ijm�kjm0

3
5 ; (1)

where � ensures the probabilities sum to 1 over all response patterns, �ij is the
marginal effect terms for item i and response option j, �ijm is the category score
for item i and response option j on latent variable m, and �mm0 is the association
parameter.

To derive (1) as an item response model, four assumptions are necessary:

1. The distribution of y is multinomial.
2. The responses to variables are independent given the latent variables.
3. The distribution of the latent variables is conditional homogeneous Gaussian.
4. Logits of responses are linear functions of the latent variables.

Details of the derivation using statistical graphical models1 are given by Anderson
and Vermunt (2000), and details using a traditional item response theory perspective
are given by Holland (1990) and Hessen (2012). Both derivations yield (1); however,
the fact that the underlying model is a formative measurement model was given little
attention until Anderson and Yu (2007, 2017).

Although there are no latent variables in (1), the parameters in (1) represent
the moments of the distribution of the latent variables conditional on response
patterns. The distribution of the latent variable(s) within a response pattern is a
multivariate normal, where the mean ��m depends on the response pattern (i.e., y).
In particular, the mean for the mth latent variable equals ��m D

PM
m0 �mm0

PI
i �ijm0 .

The conditional covariance is �mm0 .
The key to the algorithm is the model implied by (1) for the conditional

probability that yi D j (response option is j for item i), which is

P.yi D jjy�i/ D
expŒ�ij C

P
m �ijm.
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m0 �mm0

P
k¤i �k`m0/�

PJ
hD1 expŒ�ih C

P
m �ihm.

P
m0 �mm0

P
k¤i �k`m0/�

; (2)

1The assumption regarding logits is not made in the graphical modeling derivation.
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where y�i represents the responses to all items except item i. Note that the quantityP
m �mm0

P
k¤i �k`m0 is an estimate of the value of the latent variable m based on

responses to all items except item i. Furthermore,

��m D
X
m0

�mm0

X
i

�ijm0 �
X
m0

�mm0

X
k¤i

�k`m0 :

This approximation is expected to be closer as the number of items increases. The
term on the right (i.e.,

P
m0 �mm0

P
k¤i �k`m0) is a “rest-score,” which is a test total

minus the score for the item being studied.
Equation (2) is an item response function for a multidimensional item response

model with an estimate of the latent variable. The interpretation of the parameters
analogous to traditional IRT parameters is that �ijm is the slope or discrimination
parameter and �ij is the location parameter.

We can derive the conditional multinomial logistic regression model given by (2)
from an LMA given by (1); however, the reverse is also true. Given a set of I
equations, one for each item, of the same form as (2), the set uniquely implies (1)
(Anderson and Yu 2007; Anderson et al. 2010). This is important for our estimation
algorithm.

3 Pseudo-Likelihood Estimation

3.1 Method

In PLE, the sum of the logarithms of the conditional likelihoods, which is the
pseudo-likelihood function (i.e.,

P
i ln.f .yijy�i//), is maximized. If the category

scores �ijm are known, maximizing the pseudo-likelihood function is done by
fitting a single conditional multinomial logistic regression model to “stacked” data
using MLE (Anderson et al. 2010). In other words, if we vertically concatenate
equations defined in (2) over items, then the explanatory or predictor variables equal
�ijm

P
k¤i �k`m0 , which are input as fixed values (e.g., �ijm D j for j D 1; : : : ; J). The

parameters that are estimated are the �ijs and �mm0 s. However, this method works
only for the log-linear-by-linear models and does not estimate the �ijms.

We extend the PLE algorithm given in Anderson et al. (2010), to provide
estimates of �ijms. Estimating category scale values requires fitting (2) to each item,
one at a time, to get updated estimates of the �ijms for j D 1; : : : ; J (fixed item i).
These new estimates are then used in computing the value of the predictor variable
for the next item. This is repeated until �ijms for all items have been updated. For
multidimensional models, after updating �ijms for all items, a “stacked” regression
as discussed previously is performed to get new estimates of �mm0 and �ij. Note that
we are maximizing the pseudo-likelihood function by fitting logistic models to data
using MLE.
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3.2 The Algorithm

The algorithm only requires data manipulation and iteratively fitting of conditional
multinomial logistic regressions by MLE. For this study, we wrote a set of SAS®

macros implementing the algorithm. The macros along with examples are available
at http://faculty.education.illinois.edu/cja/homepage.

Given a set of arbitrary starting values, the algorithm proceeds as follows:

1. Update O�ijm and O�ij

(a) For item i, use MLE to fit (2) to the data using the current values of O�kjm

(k ¤ i) and O�mm0 .
(b) Repeat step 1(a) until the O�ijms have been updated for all items.

2. Update O�mm0 and O�ij

(a) Compute O�ijm
P

k¤i O�k`m0 using the current estimates.
(b) Fit a conditional multinomial logistic regression model to the “stacked” data

using MLE where O�ijm
P

k¤i O�k`m0 is the predictor variable.

3. Repeat Step(s) until the algorithm converges.

Convergence can be assessed in a number of ways. These include (i) no change
in the value of the maximum of the likelihood for the stacked regression, (ii) no
changes in the values of the maximums of the likelihood for each of the items, (iii)
no changes in the parameter estimates, and (iv) the estimated values of O�ij equal the
same values in both Steps 1 and 2. If one of the convergence criteria is satisfied,
then all will be satisfied.

For this algorithm to converge, identification constraints need to be imposed on
the parameters of the LMA model. For LMA models, these are setting a location for
the parameters and scale of the latent variables. For location, one possibility is to use
zero-sum constraints, that is,

P
j �ij D 0 and

P
j �ijm D 0, which can be achieved by

using effect coding. Another possibility is to set one value to a constant, for example,
�i1 D 0 and �i1m D 0, which can be achieved by dummy coding. One additional
constraint is required to set the scale for each latent variable. The scale can be set
by setting

P
j �
2
ijm D 1 for just one item for each latent variable or by fixing �mm to

a constant. To avoid nonlinear constraints, we used �mm D 1. If alternative scaling
is desired, the parameters can be linearly transformed after convergence.

This algorithm is modular in the sense that parameters of unidimensional models
where scale values are estimated can be obtained using just Steps 1 and 3, log-linear-
by-linear models can be obtained using Steps 2 and 3, and multidimensional models
with estimated scale values can be obtained using Steps 1, 2, and 3.

The global convergence of the algorithm given in Anderson et al. (2010) is
guaranteed provided that the maximum of the likelihood of the logistic regression
model fit to the “stacked” data is achieved. Whether the new step of estimating
category scale values (i.e., the �ijms) combined with the stacked regression finds a
global maximum is an open question. No evidence of a local maximum was found
in on our simulation studies, which are reported below.

http://faculty.education.illinois.edu/cja/homepage
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4 Simulation Studies

Step 1 of the algorithm is new; therefore, the first set of simulations examines
the performance for unidimensional models, which only requires Steps 1 and 3.
The second set of simulations examines the performance for multidimensional
models that require all three steps of the algorithm. Each simulation condition
was replicated 30 times, and the parameter estimates from the replications were
averaged. The averaged parameter estimates were used to compute the evaluation
criteria assessing the performance of PLE.

For all simulation studies, data were simulated using the MIRT model:

P.y/ D

IY
iD1

expŒˇij C
P

m ˛ijm�m�P
h expŒˇih C

P
m ˛ihm�m�

; (3)

where ˇij is a location parameter for response option j of item i, and ˛ijm is the slope
parameter for response option j of item i on latent variable �m. The distribution for �m

was (multivariate) normal with mean equal to 0 and correlations set to 0:50. Values
for item parameters were drawn from the following distributions: ˛ijm � N.0:1; 1/
and ˇij � N.0; 1/.

Theoretically, when data are simulated from a unidimensional item response
theory model [i.e., (3) where M D 1] using a normal distribution for the latent
variable, correlations between the parameters used to simulate the data and the
parameter estimates from an LMA model should be very close to 1:000 (Anderson
and Yu 2017). Large correlations should be found even though the IRT and the
LMA models are mathematically different. When the marginal distribution of � is
not normal (e.g., exponential, skew normal, mixture of normals), the LMA models
perform as well as or better than analogous IRT models in terms of parameter
recovery and goodness-of-fit model. This is true when the IRT models are estimated
assuming a marginal normal distribution for the latent variable. Estimating an
LMA does not require an assumption for the marginal distribution, but rather the
marginal distribution for the latent variable will be a mixture of as many normal
distributions as there are response patterns. This mixture can closely approximate
a normal distribution, especially for large numbers of response patterns, and it
can approximate many other distributions as well. The same results are true for
multidimensional models.

4.1 Unidimensional Models

4.1.1 Small Numbers of Items

The first simulation study was designed to test Step 1 and to determine how similar
PLE parameter estimates of an LMA are to the MLE parameter estimates. To test
Step 1, data sets with small numbers of items (i.e., 4 and 6) were simulated using
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Table 1 Root-mean-square differences between parameter estimates from MLE and PLE for
small numbers of items

2 categories 3 categories 5 categories

Parameter N D 200 500 1000 200 500 1000 200 500 1000

M D 1 latent variable

�ijm 4 items 0:001 0:001 0:000 0:016 0:011 0:007 0:014 0:007 0:006

6 items 0:002 0:001 0:001 0:019 0:013 0:008 0:012 0:008 0:014

�ij 4 items 0:000 0:000 0:000 0:022 0:011 0:009 0:016 0:009 0:007

6 items 0:000 0:000 0:000 0:035 0:022 0:012 0:017 0:013 0:029

M D 2 latent variables

�ijm 4 items 0:003 0:001 0:000 0:038 0:018 0:013 0:058 0:027 0:010

6 items 0:011 0:006 0:001 0:035 0:024 0:009 0:021 0:011 0:006

�ij 4 items 0:000 0:000 0:000 0:012 0:004 0:003 0:028 0:008 0:003

6 items 0:001 0:000 0:000 0:042 0:037 0:010 0:014 0:006 0:004

M D 3 latent variables

�ijm 6 items 0:019 0:006 0:000 0:057 0:019 0:018 0:067 0:014 0:009

�ij 6 items 0:001 0:003 0:003 0:029 0:010 0:008 0:024 0:006 0:003

the model in (3), varying the number of response categories (i.e., 2, 3, and 5) and
sample size (i.e., 200, 500, and 1000). LMA models were fit to all data sets.

Since the numbers of items in this simulation study are small, we can fit LMA
models by MLE, which we can compare with the parameter estimates obtained
from PLE. Correlation coefficients were calculated to assess the similarity of the
parameter estimates from PLE and MLE of the LMA models. All results for
the unidimensional models with small numbers of items are essentially the same
regardless of the sample size, the number of response options, the number of items,
and the parameter types (i.e., �ij and �ij). The correlations are all between 0:999
and 1:000. As further evidence that the algorithm is working, the top of Table 1
contains the root-mean-square differences between the MLE and PLE estimates for
the different design conditions. For the unidimensional models with small numbers
of items, the root-mean-square differences range from 0:000 to 0:035.

4.1.2 Large Numbers of Items

The second set of simulations of unidimensional models was designed to assess how
well the PLE algorithm performs with large numbers of items. For this simulation
study, data sets with 20 and 50 items were simulated using the MIRT model given
by (3), varying the number of response categories (i.e., 2, 3, and 5) and sample size
(i.e., 200, 500, and 1000).

In the top section of Table 2, correlations between PLE estimates of parameters
and those used to simulate the data for each sample size, number of categories
(response options), parameter types, and number of items are reported. We averaged
the correlations over items and categories to simplify the interpretation. The esti-
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Table 2 For large numbers of items, correlations between parameter estimates from PLE and
those used to simulate the data

2 categories 3 categories 5 categories

Parameter I N D 200 500 1000 200 500 1000 200 500 1000

M D 1 latent variable

�ijm 20 0:979 0:989 0:986 0:994 0:994 0:995 0:992 0:994 0:995

50 0:987 0:994 0:995 0:976 0:980 0:982 0:973 0:975 0:994

�ij 20 0:996 0:999 0:999 0:986 0:986 0:987 0:994 0:997 0:998

50 0:998 0:999 0:999 0:987 0:990 0:991 0:992 0:993 0:990

M D 2 latent variables

�ijm 20 0:989 0:994 0:998 0:994 0:996 0:996 0:992 0:994 0:994

50 0:989 0:997 0:998 0:988 0:992 0:992 0:994 0:992 0:992

�ij 20 0:957 0:957 0:957 0:992 0:992 0:992 0:975 0:976 0:974

50 0:998 0:998 0:998 0:972 0:973 0:974 0:983 0:985 0:898

M D 3 latent variables

�ijm 20 0:987 0:996 0:997 0:993 0:996 0:997 0:992 0:994 0:995

50 0:974 0:993 0:998 0:991 0:992 0:993 0:994 0:993 0:995

�ij 20 0:992 0:986 0:985 0:995 0:995 0:995 0:977 0:978 0:978

50 0:995 0:996 0:995 0:964 0:964 0:964 0:987 0:988 0:990

M D 4 latent variables

�ijm 20 0:973 0:991 0:997 0:992 0:996 0:996 0:991 0:995 0:995

50 0:989 0:992 0:997 0:993 0:996 0:996 0:994 0:996 0:996

�ij 20 0:978 0:975 0:972 0:973 0:976 0:974 0:976 0:978 0:978

50 0:983 0:983 0:985 0:971 0:972 0:973 0:980 0:982 0:982

mates from PLE were highly correlated with the parameters used to simulate the
data. Those for �ijm ranged from 0:973 to 0:995 and those for �ij ranged from 0:986

to 0:999. There does not seem to be any regular pattern in terms of the conditions of
the study design.

In sum, for all conditions, our PLE algorithm for unidimensional models yielded
very high correlations between the estimates and the parameters used to simulate the
data, which lends support that the new step works well, both with small and large
numbers of items.

4.2 Multidimensional Models

4.2.1 Small Numbers of Items

The set of simulations for multidimensional models examines the similarity of the
parameter estimates from PLE and MLE. The number of items and response cate-
gories and sample size were the same as those for unidimensional models with small
numbers of items. Since the simulation study was intended for multidimensional
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models, data were simulated using two correlated latent variables, where each item
is related to one and only one latent variable. We also simulated data for a three-
dimensional model for six items, where there are two items per latent variable.

All results for multidimensional models are essentially the same over number of
latent variables, sample size, number of response options, number of items, and
parameter types (�ij and �ijm). The correlations were all equal to 1:000, which
gives very strong support for our algorithm. Table 1 contains root-mean-square
differences between the PLE and MLE parameter estimates. The values range from
0:000 to 0:057 for the �ijm and from 0:000 to 0:042 for the �ijs, which indicate the
parameter estimates are very close in absolute terms. The PLE and MLE values
seem to be closer for lower numbers of latent variables.

In sum, these results support that combining Steps 1 and 2 of the algorithm works
very well for multidimensional models.

4.2.2 Large Numbers of Items

This set of simulations was conducted to illustrate that the PLE algorithm works for
large numbers of items with multiple latent variables. The simulation design was
the same as the one for unidimensional models with 20 and 50 items; however, we
used the same multidimensional model where two latent variables are correlated
each item is related to only one latent variable. We also added simulations for both
3 and 4 dimensional models.

Table 2 contains the correlations between PLE parameter estimates and those
used to simulate the data for different numbers of latent variables, items, sample
size, and response options. For the multidimensional models, the correlations for
�ijm range from 0:973 to 0:998, and those for �ij range from 0:957 to 0:998. No
noticeable patterns among the correlations were found based on the factors of the
study design.

5 Discussion

The results of our simulation studies show that the parameter estimates from
the proposed PLE algorithm are nearly equivalent to the parameters from MLE
of LMA models. Furthermore, the PLE algorithm works for large numbers of
items and converges in a small number of iterations (around 15 for polytomous
items and 30 for dichotomous items). Although the details were not reported, the
convergence of the algorithm was not sensitive to starting values. The algorithm
could be implemented in any program that fits conditional multinomial logistic
regression models. The algorithm and its implementation in SAS are flexible enough
to be modified to permit covariates and constraints on parameters. We expect that
modifications to the algorithm are possible for more complex LMA models and that
they would converge so long as necessary identification constraints for the LMA
model are imposed on the parameters.
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Although our interest in LMA models is as formative measurement models, the
algorithm would work in other cases where models equivalent to LMA models need
to be estimated.
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Fitting Graded Response Models to Data
with Non-Normal Latent Traits

Tzu-Chun Kuo and Yanyan Sheng

Abstract Fitting item response theory (IRT) models often relies on the assumption
of a normal distribution for the person latent trait(s). Violating the assumption of
normality may bias the estimates of IRT item and person parameters, especially
when sample sizes are not large. In practice, the actual distribution for person
parameters may not always be normal, and hence it is important to understand how
IRT models perform under such situations. This study focuses on the performance
of the multi-unidimensional graded response model using a Hasting-within-Gibbs
procedure. The results of this study provide a general guideline for estimating
the multi-unidimensional graded response model under the investigated conditions
where the latent traits may not assume a normal distribution.

Keywords Polytomous item response theory • Multi-unidimensional graded
response models • Hastings-within-Gibbs • Non-normal distributions

1 Introduction

Polytomous item response theory (IRT; Lord 1980) models are applicable for
tests with items involving more than two response categories. Polytomous responses
include nominal and ordinal responses. Ordinal polytomous responses, such as
Likert scale items (Likert 1932), are broadly used in many fields, including
education, psychology, and marketing. This study focuses on the graded response
model (GRM; Samejima 1969), the most widely used IRT model for polytomous
response data (e.g., Ferero and Maydeu-Olivares 2009; Rubio et al. 2007).
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In many circumstances, multidimensional IRT (MIRT; Reckase 1997, 2009)
models are adopted when distinct multiple traits are involved in producing the mani-
fest responses for an item. A special case of the MIRT model applies to the situation
where the instrument consists of several subscales with each measuring one latent
trait, such as the Minnesota Multiphasic Personality Inventory (MMPI; Buchanan
1994). In the IRT literature, such a model is called the multi-unidimensional (Sheng
and Wikle 2007) or the simple structure MIRT (McDonald 1999) model and is the
major focus of the study.

The multi-unidimensional GRM applies to situations where a K-item instrument
consists of m subscales or dimensions, each containing kv polytomous response
items that measure one latent dimension. With a probit link, the probability that
the ith (i D 1; 2; : : :N) person contains a Likert scale response with c categories
(c D 1; 2; : : : ;Cj) for the jth (j D 1; 2; : : :K) item is defined as

P.Yvij D cj�vi; ˛vj; ıj/ D ˆ.˛vj�vi � ıj;c�1/ �ˆ.˛vj�vi � ıj;c/

D

Z ıj;c

ıj;c�1

�.zI˛vj�vi/dz; (1)

where ˆ.�/ and �.�/ are the standard normal CDF and PDF, respectively, z is a
standard normal variate, ˛vj and �vi denote the item discrimination and the person’s
latent trait in the vth dimension (v D 1; 2; : : : ;m), and ıj;c denotes the item threshold
parameter for the cth response category of item j (Samejima 1969), the latter of
which satisfies

�1 D ıj;0 < ıj;1 < : : : < ıj;Cj�1 < ıj;Cj D 1: (2)

From a theoretical perspective, latent trait distributions in the IRT literature
are often assumed to be normal. Therefore, some common estimation methods,
such as marginal maximum likelihood and Bayesian techniques, are developed
assuming normal latent traits. However, in some psychological instruments, such
as depression and anxiety tests, the population latent traits may follow a non-
normal distribution. Research has shown that violating the assumption of normality
may bias the estimates of IRT item and latent trait parameters (e.g., Sass et al.
2008; Reise and Revicki 2014). In the literature, studies have been conducted
to investigate item and person parameter recovery in estimating unidimensional
dichotomous (e.g., Kirisci et al. 2001; Sass et al. 2008) and unidimensional multi-
group dichotomous (e.g., Santo et al. 2013) models, where the latent trait follows a
non-normal distribution. However, little has been conducted to investigate parameter
recovery in estimating multidimensional polytomous models in this regard.

In view of the above, this study focuses on investigating parameter recovery of
estimating multi-unidimensional GRMs when latent traits are either normal or non-
normal. Specifically, different distributions of person parameters are adopted, and
the performances of estimating item and person parameters using Hastings-within-
Gibbs (HwG; Kuo and Sheng 2015) are compared. The remainder of the paper is
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outlined as follows. In Sect. 2, the HwG estimation is introduced. The simulation
study is described and the results are discussed in Sect. 3. Finally, the conclusion for
this study is summarized in Sect. 4.

2 Hastings-Within-Gibbs Estimation Procedure

For the past two decades, fully Bayesian has gained an increased popularity due to
improved computational efficiency. There are two types of fundamental mechanisms
among the Markov chain Monte Carlo (MCMC) algorithm: Gibbs sampling (Geman
and Geman 1984) and Metropolis-Hastings (MH; Hastings 1970; Metropolis and
Ulam 1949). Gibbs sampling is adopted in situations when the full conditional
distribution of each parameter can be derived in closed form. If any of the full
conditional distribution is not in an obtainable form, MH can be used via choosing
a proposal or candidate distribution by the current value of the parameters. Then
a proposal value is generated from the proposal distribution and accepted in the
Markov chain with a certain amount of probability.

Hastings-within-Gibbs (HwG) is a form of the hybrid between Gibbs sampling
and MH and has proved to be useful for complicated IRT models, such as
GRMs. In the literature, Albert and Chib (1993) proposed a Gibbs sampler for the
unidimensional GRM model. Cowels (1996) proposed a HwG procedure by using
an MH step within the Gibbs sampler developed by Albert and Chib (1993) for
sampling the threshold parameters to improve mixing and to accelerate convergence.
Kuo and Sheng (2015) extended Cowles’ approach to the more general multi-
unidimensional GRM.

3 Simulation Study

To investigate parameter recovery of the HwG procedure in situations when latent
traits are not normal, a Monte Carlo simulation study was carried out where tests
with two subscales were considered so that the first half measured one latent trait
(�1) and the second half measured the other (�2).

3.1 Simulated Data

In the study, three factors were manipulated: sample size (N), test length (K), and
intertrait correlation (	). The choice of N, K, and 	 was based on previous studies
with similar models. For example, when investigating multidimensional GRMs, Fu
et al. (2010) adopted N D 500; 1000, K D 10; 20; 30, 	 D 0:1; 0:3; 0:5; 0:7; 0:9 for
dichotomous items and N D 1000, K D 20, 	 D 0:2; 0:4; 0:6; 0:8 for polytomous
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items involving three categories. Working with dichotomous multi-unidimensional
models, Sheng (2008) adopted N D 1000, K D 18, 	 D 0:2; 0:5; 0:8 in the
simulation studies, while Sheng and Headrick (2012) adopted N D 1000, K D 10,
	 D 0:2; 0:4; 0:6. Wollack et al. (2002) conducted simulation studies with nominal
response models, and they observed that parameter recovery was improved by
increasing the test length from 10 to 30 items but that increasing the test length
from 20 to 30 items did not produce a noticeable difference. Consequently, with
our study, N polytomous responses (N D 500; 1000) to K items (K D 20; 40)
were generated according to the multi-unidimensional GRM, where the population
correlation between the two latent traits (	) was set to be 0:2; 0:5, or 0:8. Each item
was set to be measured on a Likert scale with three categories so that two threshold
parameters were estimated for each item. The item discrimination parameters ˛v
were generated randomly from uniform distributions so that ˛vj � U.0; 2/. The
threshold parameters ıj1 and ıj2 were sorted values based on those randomly
generated from a standard normal distribution, i.e., ıj1 D min.X1;X2/ and ıj2 D

max.X1;X2/, where X1;X2 � N.0; 1/.
The person parameters of the first dimension (�1) and the second dimension

(�2) were generated based on the Method of Percentile (MOP; Koran et al. 2015)
Power Method transformation. The MOP transformation was developed to generate
multivariate distributions with specified values of median, interdecile ranges, left-
right tail-weight ratios (a skewness function) and tail-weight factors (a kurtosis
function) for each distribution, and the pairwise correlations.

To generate �1 and �2 using the MOP transformation, �1 were generated from a
standard normal distribution, and �2 were generated from one of the following four
distributions: (1) skewness D 0, kurtosis = 0 (Dist. 1), (2) skewness D 0, kurtosis D

25 (Dist. 2), (3) skewness D 2, kurtosis D 7 (Dist. 3), and (4) skewness D 3, kurtosis
D 21 (Dist. 4). The correlation between �1 and �2 (i.e., the true intertrait correlation,
	) was set to be 0:2; 0:5, or 0:8. Note that the skewness and kurtosis considered in
each of the four distributions are conventional values and they can be transferred to
left-right tail-weight ratios and tail-weight factors in order to implement the MOP
transformation technique (see Koran et al. 2015).

Harwell et al. (1996) suggested that a minimum of 25 replications for Monte
Carlo studies in IRT-based research is needed in order to obtain a better accuracy.
Therefore, this study carried out 25 replications for each scenario, where root-mean-
squared differences (RMSDs) and bias were used to evaluate the recovery of each
item parameter. Let  denote the true value of a parameter (e.g., ˛vj or ıj;c) and Or

is the estimate in the rth replication (r D 1; : : : ;R). The RMSD is defined as

RMSD D

sPR
rD1. Or � /2

R
; (3)

and the bias is defined as

bias D

PR
rD1. Or � /

R
: (4)
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The 10% trimmed means of these measures were calculated across items to provide
summary statistics.

3.2 Results

Tables 1, 2, 3, and 4 display the results of the simulation study under the twelve
test situations. The results indicated that the HwG procedure had an overall better
estimation when �2 followed a normal distribution. The non-normality of �2
affected the accuracy of estimating ˛2. Specifically, distributions 2–4 had overall
larger RMSDs of ˛2 than distribution 1 (normal). ˛1 had similar RMSDs across
these four distributions when 	 D 0:2 or 0.5. However, the non-normality of �2 had
more influence on estimating ˛1 when the two dimensions were highly correlated
(i.e., 	 D 0:8). On the other hand, the performance of estimating ı was affected
more by skewness than kurtosis. Specifically, even though distribution 2 had the
heaviest kurtosis, its RMSDs for estimating ı were smaller than those from skewed
distributions (i.e., distributions 3 and 4). The estimation of 	 was sensitive to both
skewness and kurtosis. Distributions 2–4 had larger RMSDs in estimating 	 than
distribution 1. A further comparison of its RMSDs under the four distributions
indicated that they were similar when 	 D 0:2 but became more different when
the actual correlation was higher (i.e., 0.5 or 0.8).

Posterior estimates for the person parameters (�1 and �2) were also obtained and
correlated with their corresponding true values. Tables 1, 2, 3, and 4 summarize
all the correlation results, where r.�1; O�1/ and r.�2; O�2/ represent the correlations
between the posterior estimates ( O�) and their corresponding true values (�) for
dimensions 1 and 2, respectively. The results indicate that �1 was estimated fairly
well due to the satisfaction of normality assumption. On the other hand, the
estimation of �2 was affected by kurtosis more than skewness, as distribution 2
had an overall lower r.�2; O�2/ than distribution 3 (less kurtotic but more skewed).
However, extreme skewed distributions (i.e., distribution 4) had an overall lower
r.�2; O�2/ than distributions 2 and 3. In addition, a comparison of K D 40 and
K D 20 for the same sample size conditions (i.e., Table 2 vs. Table 1 and Table 4 vs.
Table 3) indicates that the former had consistently larger r.�2; O�2/ values than the
latter. This suggests that the accuracy of estimating �2 improved with the increase
in test length regardless of its distribution.

Further, it is found that an increase of sample size can improve the accuracy of
estimating model parameters. For example, with the test length of K D 20, the
RMSDs of estimating ˛, ı, and 	 when N D 1000 were in general smaller than
those when N D 500, especially when the true intertrait correlation was higher.
One shall note that when 	 D 0:2, larger sample sizes helped reduce the RMSDs
of ˛2 when �2 was non-normal. This is however not observed with 	 D 0:5 or
0:8. In terms of estimating � , larger sample size tended to increase the accuracy of
estimating �1. This pattern is only observed when estimating �2 in distributions 2
and 3 when 	 < 0:8.
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4 Conclusion and Discussion

In general, with the use of Monte Carlo simulations, this study demonstrates that
departure from normal distributions for the latent traits in the multi-unidimensional
GRM does affect the accuracy of its parameter recovery. This is in line with
findings from previous studies with unidimensional IRT models (e.g., Sass et al.
2008; Reise and Revicki 2014). Specifically, what we found in our study are that
skewed distributions would affect more on the accuracy in estimating the item step
parameters and that kurtotic distributions affect the estimation of person parameters.
In situations where not all latent traits are normally distributed (such as what
was considered in the simulation study), the non-normal shape associated with
a few latent traits would affect the estimation of parameters in other dimensions
when the intertrait correlation is moderate to high. As non-normal latent trait
distributions are common in many polytomous response items, and examples of such
instruments include mental tests, business satisfaction, cross-cultural differences,
etc., one needs to be aware of the shapes of latent trait distributions before fitting
the model to actual data. However, such information may not always be available in
practice. It is hence important to find alternate solutions, such as using a more robust
estimation method or a non-normal prior distribution. In addition, this study shows
that increased sample size and/or test length can help improve the estimation of
the multi-unidimensional GRM parameters. This finding not only confirms results
from previous studies dealing with normal latent trait(s) (e.g., Linacre 2002; Sheng
2010; Kuo and Sheng 2015; Wollack et al. 2002) but also extends to situations
where the latent traits are not normal. One may consider reducing the effect of non-
normality by increasing sample size/test length under the non-normal conditions.
The minimum number of persons/items necessary to reach a desired level of
accuracy can be an interesting study that requires further investigation.

This study focuses on Likert scale items involving three scales, and therefore
two threshold parameters need to be estimated for each item. Further study can
evaluate the estimation of these procedures using items with more than three scales
or with different numbers of scales. In addition, this study investigates the effects
of non-normal latent traits using the HwG estimation method. Further study can
include other estimation techniques, such as marginal maximum likelihood (Bock
and Aitkin 1981) and Metropolis-Hastings Robbins-Monro (Cai 2010a,b). Lastly,
the simulation study adopted 25 replications due to the computational expense of
the MCMC procedures. Further studies can consider more replications to achieve a
better accuracy.
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An Extension of Rudner-Based Consistency
and Accuracy Indices for Multidimensional
Item Response Theory

Wenyi Wang, Lihong Song, and Shuliang Ding

Abstract Although the field of multidimensional item response theory (MIRT)
has enjoyed tremendous growth over recent years, solutions to some problems
remain to be studied. One case in point is the estimate of classification accuracy
and consistency indices. There have been a few research studies focusing on these
indices based on total scores under MIRT. The purposes of this study are to extend
Rudner-based index for MIRT under complex decision rules and to compare it with
the Guo-based index and the Lee-based index. The Rudner-based index assumes
that an ability estimation error follows a multivariate normal distribution around
each examinee’s ability estimate, and a simple Monte Carlo method is used to
estimate accuracy and consistency indices. The simulation results showed that the
Rudner-based index worked well under various conditions. Finally, conclusions are
described along with thoughts for future research.

Keywords Classification consistency • Classification accuracy • Multidimen-
sional item response theory • Decision rule

1 Introduction

For criterion-referenced tests, classification consistency and accuracy are important
indicators to evaluate the reliability and validity of classification results. Numerous
procedures have been proposed to estimate these indices in the framework of
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unidimensional item response theory (UIRT) (Huynh 1990; Lathrop and Cheng
2013; Lee 2010; Rudner 2001, 2005; Schulz et al. 1999; Wang et al. 2000; Wyse
and Hao 2012). Some of these were based on total scores, while others on latent
trait estimates (Lathrop and Cheng 2013). The Lee approach (Lee 2010) belongs to
the former, whereas the Rudner approach (Rudner 2001, 2005) and its extension,
the Guo approach (Guo 2006), fall into the latter category.

Multidimensional item response theory (MIRT) has been devoted to models
that include more than one latent trait to account for the multidimensional nature
of complex constructs. MIRT has been successfully employed to analyze many
criterion-referenced tests, which are multidimensional to some degree (Bolt and
Lall 2003; Chang and Wang 2016; Debeer et al. 2014; Makransky et al. 2012;
Rijmen et al. 2014; Yao and Boughton 2007; Zhang 2012). For example, the overall
construct of mathematics in IEA’s Trends in International Mathematics and Science
Study encompassed four content domains: number, algebra, geometry, and data and
chance.

Although MIRT has enjoyed tremendous growth, solutions to some problems
remain to be studied. One case in point is the estimate of classification accuracy
and consistency indices under different decision rules. There have been a few
research studies on estimating these indices based on total scores under MIRT
(Grima and Yao 2011; LaFond 2014; Yao 2016). It is inflexible to estimate accuracy
and consistency indices derived from total scores if a correct one-to-one mapping
cannot be established between the decision rules based on latent ability and total
scores. For example, if a compensatory model was used to analyze a between-item
multidimensional test (Adams et al. 1997) that consists of items measuring more
than one content domain with different slope parameters, we often cannot establish
a one-to-one mapping between total scores and a decision rule based on a composite
latent ability score.

The current paper addresses this issue whenever the decision rules aligned either
on latent ability scale or on total score scale. For one of two indices based on latent
ability described above, the Guo-based index has been extended to MIRT under
complex decision rules for the single administration of a test (Wang et al. 2016).
The purposes of this study are to extend the Rudner-based index for MIRT and
to compare it with the Guo-based and Lee-based indices. The Rudner-based index
assumed that an ability estimation error follows a multivariate normal distribution
around the examinee’s ability estimate, and Monte Carlo simulation can be easily
used to estimate the accuracy and consistency indices. The rest of this article
proceeds as follows. Section 2 starts with a review of a MIRT model, decision rule,
the Guo-based index, and the Lee-based index. Section 3 introduces test information
and the Rudner-based index. Section 4 provides a simulation study and explains the
simulation results. Finally, conclusions and suggestions are described in Sect. 5.
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2 Model and Methods

2.1 A Multidimensional Graded Response Model

A multidimensional graded response model (MGRM) is a generalization of the
unidimensional graded response model, and it uses response function that has the
normal ogive or logistic function (Cai 2010; Reckase 2009). The parameterization
of this model given here considers the lowest score on item j to be 0 and the highest
score to be Kj. Let ™ D (�1, �2, ... , �D)

0

denote a vector of ability with the number
of dimensions of D, ’j be a vector of slope parameter related to item discrimination
parameter of item j, ˇjk be a threshold parameter related to item difficulty with
which an examinee will reach the kth step of item j, j D 1,2, . . . , J, and yj is an item
response to item j. Given an examinee with abilities in the ™-vector, his probability
of successfully performing the work in step k or more advanced steps in answering
an item j can be written as (Cai 2010)

P�
jk .™/ D P

�
yj � kj™;’j;“j

�
D

1

1C exp
�
ˇjk � ’0

j™
� ; (1)

where k D0,1, . . . , Kj with P�
j0 .™/ D 1 and P�

jKj
.™/ D 0.

The probability of receiving a specific score k is the difference between the
probability of successfully performing the work for step k or more advanced steps
and that of the work for k C 1 or more advanced steps. Then the probability that an
examinee will receive a score of k is

Pjk .™/ D P
�
yj D kj™;’j;“j

�
D P�

jk .™/ � P�
j;kC1 .™/: (2)

Assuming local or conditional independence of the responses given the ™-vector,
the likelihood function of the observed data yi is

L .yij™i;’;“/ D
YJ

jD1

YKj

kD0
P
�
yij D kj™i;’j;“j

�1.yijDk/; (3)

where an indicator function is defined as

1.yijDk/ D

�
1 if yij D k
0 otherwise:

(4)

A number of computer programs have been developed for estimating item
parameters in the MGRM, such as BMIRT (Yao 2003), IRTPRO program (Cai et al.
2011), MIRT package for the R environment (Chalmers 2012), and so on. For a
test data set with a particular sample size N, given an already calibrated set of item
parameters, the ability vector could be estimated either via (weighted) maximum
likelihood estimation (MLE) or using Bayesian methods such as maximum a
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posteriori (MAP) estimation or expected a posteriori (EAP) estimation (Wang
2015). In this article, the ability estimate for examinee i, denoted by O™i, was obtained
from the MLE.

2.2 Decision Rule for Multidimensional Latent Ability

Decision rules were designed to increase the reliability and validity of the resulting
decisions (Douglas and Mislevy 2010). For more details about complex decision
rules, please refer to Douglas and Mislevy (2010). For example, an international
student will qualify for admission to a China’s university as a graduate student if
the student has reached a passing grade on China’s college entrance examination
and the minimum required level of Chinese Proficiency Test (HSK).

For the above example, without loss of generality, we assume that one needs
to estimate an accuracy index on a total score scale, and this is achieved via the
following decision regions:

Rc0 D
˚
™ W �.c�1/0 < � .™/ < �c0

	
; (5)

where c D1,2, . . . , C, � c0 is a cut score on the total score scale, � 1

< �00 < �10 < . . . < �C0 D C 1, and �
�

O™i

�
denote the expected summed score

in Eq. (11).
If the accuracy index of each dimension needed to be estimated, it can be

achieved via the following decision regions:

Rcd D
˚
™ W �.c�1/d � �d < �cd

	
; (6)

where c D 1 , 2 , . . . , C, d D 1 , 2 , . . . , D, � ck is a cut score of the dth dimension,
and � 1 < �0d < �1d < . . . < �Cd D C 1.

If a compensatory rule was applied on a composite score scale, the decision
regions are defined as follows:

Rc.DC1/ D
n
™ W �.c�1/.DC1/ �

XD

dD1
wk�k < �c.DC1/

o
; (7)

where c D1,2, . . . , C, � (c � 1)(D C 1) is a cut score on the composite score scale, and
wd is a weight on the dth dimension.

2.3 Lee-Based Indices

First, we briefly describe the accuracy and consistency indices for total scores using
MIRT model (Grima and Yao 2011; Yao 2016), which are based on the Lee approach
(Lee 2010). Let us assume now that the test scores on one test form are used to
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classify examinees into C categories defined by cutoff scores �00 , �10 , . . . , �C0.
That is, examinees with an observed score greater than or equal to � (c � 1)0 and less
than � c0 are assigned to the cth category.

Next, we will first present some formulas. Let x D
PJ

jD1yj be a particular

realization of the total score X for an examinee, and P
�

X D xj O™i

�
be a conditional

distribution of X given an ability estimate O™i. Supposing that item and ability param-
eters are estimated, because of the MIRT’s assumption of conditional independence
of the responses given the ™-vector, the conditional probability of total score x
located in the cth category can be written as

Opic D
X

y1;y2;:::;yJ W�.c�1/0�
PJ

jD1yj<�c0

YJ

jD1
Pjyj

�
O™i

�
; (8)

where c D 1 , 2 , . . . , C and Pjyj .™/ is defined by Eq. (2). The conditional distribu-
tion of X was approximated by using Monte Carlo simulation.

Given the conditional probability of scoring in each performance category, the
conditional classification consistency index O�i is defined as the probability that an
examinee with O™i is classified into the same category in two independent adminis-
trations of parallel forms of a test, and it can be written as (Wyse and Hao 2012)

O�i D
XC

cD1
.Opic 	 Opic/ : (9)

The conditional classification consistency index quantifies classification consis-
tency for different levels of ™. The marginal classification consistency index O� is
given by

O� D

PN
iD1

O�i

N
D

PN
iD1

PC
cD1 .Opic 	 Opic/

N
: (10)

Now, supposing we have a set of true cut scores on the summed-score metric,
�00 , �10 , . . . , �C0, we need to determine the “true” category of each examinee

with O™i or �
�

O™i

�
(i.e., expected summed score). The expected summed score for

an examinee with ability O™i is obtained by

�
�

O™i

�
D
XJ

jD1

XKj

kD0
kPjk

�
O™i

�
: (11)

Then by comparing �
�

O™i

�
with true cut scores, we know the “true” classification

of �
�

O™i

�
of examinee i. If �

�
O™i

�
2


�.c�1/0; �c0

�
is satisfied for a particular category,

then the cth category is assumed as the “true” category of the examinee. Let Owic be

the flag of the performance-level category, meaning that �
�

O™i

�
is classified into

category c, Owic D 1, and 0 otherwise. The conditional classification accuracy index
O�i is defined as the probability that an examinee with O™i is classified into the “true”
category assuming known cut scores on a single test, and it can be written as
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O�i D Opic; for �
�

O™i

�
2


�.c�1/0; �c0

�
: (12)

The marginal classification accuracy index � is given by (Wyse and Hao 2012)

O� D

PN
iD1 O�i

N
D

PN
iD1

PC
cD1

�
Op�

ic Owic
�

N
: (13)

2.4 Guo-Based Indices

In this section, the Guo approach is described to estimate the consistency and accu-
racy indices for multidimensional latent ability. This approach is computationally
easy and can be directly adapted to MIRT because it is closely tied to the normalized
likelihood.

Guo (2006) defined classification accuracy index as the percentage of agreement
between the observed and expected proportions of examinees in each of the
categories under the UIRT framework. Next, we will introduce an extension of the
Guo approach. The extension was proposed by Wang et al. (2016) and is suitable
for estimating the consistency and accuracy indices for complex decision rules in
MIRT. Supposing the ™ space can be partitioned into C separate decision regions,
R1 , R2 , . . . , RC, corresponding to the various categories, we can determine the true
category of each examinee with ™. In other words, a decision rule is a function
from the ™ space into the set of categories. From the idea of the Guo approach, the
expected probability of scoring in any particular category can be obtained using the
likelihood functions as

Opic D pi .Rc/ D

R
Rc

L .yij™;’;“/ d™
PC

cD1

R
Rc

L .yij™;’;“/ d™
; (14)

where L(yij ™, ’, “) is defined by Eq. (3), and c D 1 , 2 , . . . , C.
Classification consistency provides a measure of the proportion of examinees

who would be classified into the same category on parallel replications of the same
test. The classification consistency index can be expressed as

O� D

PN
iD1

PC
cD1

�
Op�

ic Opic
�

N
: (15)

As discussed above, the entry Owic is 1 if an examinee’s ability estimate O™i is
classified into category c, and 0 otherwise. Then the classification accuracy index
can be written as

O� D

PN
iD1

PC
cD1 .Opic 	 Owic/

N
: (16)



An Extension of Rudner-Based Consistency and Accuracy Indices for. . . 49

3 Rudner-Based Indices

3.1 Fisher Information Under the MGRM

Within MIRT, test information is used to evaluate the measurement precision for
the ability estimate. For example, the asymptotic variance of the MLE can be
approximated by the inverse of test information (Wang 2015). A definition of item
information (Ackerman 1994; Yao and Schwarz 2006) is the following:

Ij .™/ D �E

�
@2 log Pj .™/

@™@™T

�
; (17)

where Pj .™/ D
QKj

kD0Pjk.™/
1.yjDk/ . When it was applied to MGRM, the diagonal

elements of Ij(™) become



Ij .™/


dd D

PKj

kD0
1

Pjk.™/

h
@Pjk.™/

@�d

i2

D
PKj

kD0

h
adP�

jk.™i/
�
1�P�

jk.™i/
�
�adP�

jkC1
.™i/

�
1�P�

jkC1

�i2

P�

jk.™i/�P�

jkC1
.™i/

;

(18)

where d D 1 , 2 , . . . , D. Note that this formula was originally shown by Chang
(1996), Reckase (2009), and Samejima (1969) in the unidimensional case. The
nondiagonal elements of Ij(™) are



Ij .™/


dd0

D

KjX
kD0

1

Pjk .™/

�
@Pjk .™/

@�d

��
@Pjk .™/

@�d0

�
; (19)

where d , d
0

D 1 , 2 , . . . , D and d ¤ d
0

.The diagonal and nondiagonal elements of
Ij(™) can be expressed by a unified formula as

Ij .™/ D

8̂
<
:̂

KjX
kD0

h
P�

jk .™i/
�
1 � P�

jk .™i/
�

� P�
jkC1 .™i/

�
1 � P�

jkC1

�i2

P�
jk .™i/ � P�

jkC1 .™i/

9>=
>;

2
6666664

a2j1 aj1aj2
::: aj1ajD

aj2aj1 a2j2
::: aj2ajD

: : : : : :
: : : : : :

ajDaj1 ajDaj2
::: a2jD

3
7777775
: (20)
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Since the Fisher information is additive (Chang 1996) for the local independent
assumption, the test information is the sum of item information functions at point ™

I.J/ .™/ D

JX
jD1

Ij .™/ : (21)

3.2 Rudner-Based Indices

In this section, the Rudner approach was extended to estimate the consistency and
accuracy indices for MIRT. The computation of this approach is relatively easy
by assuming that the estimated ability is distributed asymptotically according to a
multivariate normal distribution N(™, †). Here, the asymptotic covariance matrix of
the MLE can be approximated by the inverse of the test information matrix (Chang
1996; Chang and Stout 1993; Wang 2015).

Similar to the notation in the definition of the Guo-based index, the Rudner-based
accuracy index, which is the expected probability of an examinee’s true ability in
any particular category, can be obtained using multivariate normal distribution as

Opic D

Z

Rc

1

.2/d=2
ˇ̌
ˇI.J/

�
O™i

�ˇ̌
ˇ
�1=2

exp

�
�
1

2

�
™ � O™i

�T
I.J/

�
O™i

� �
™ � O™i

��
d™; (22)

where I.J/
�

O™i

�
is the determinant of the test information matrix. The integrations

involved in Eq. (22) can be approximated by using Monte Carlo simulation.
The Rudner-based consistency index is the expected probability of examinees

who would be classified into the same category under independence administration,
and it can be expressed as

O� D

PN
iD1

PC
cD1 .Opic 	 Opic/

N
: (23)

By contrast, as discussed above, the entry Owic is 1 if an examinee’s ability
estimate O™i is classified into category c, and 0 otherwise. Then the classification
accuracy index can be written as

O� D

PN
iD1

PC
cD1 .Opic 	 Owic/

N
: (24)
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3.3 Theoretical Analysis of Lee-, Rudner-, and Guo-Based
Indices

Next, we briefly analyze the above three indices. Firstly, all of three indices need to
compute the values of large sums of expressions in Eq. (8) or complex integrals
in Eqs. (14) and (22). Monte Carlo simulation provides a powerful method for
generating random numbers to compute these values. The Rudner’s method assumes
that the ability estimate follows a multivariate normal distribution. Because the
method of generating multivariate normal random vectors in estimating Rudner-
based index is usually much easier than Metropolis-Hastings and Gibbs sampling in
estimating the Guo- and Lee-based indices. Thus, the Rudner’s method is expected
to perform best. Secondly, both the Guo- and Lee-based accuracy indices are
expected to yield similar performance, because we have proved that they have the
same theoretical value under certain conditions in the following theorem.

Theorem 1 If the prior distribution of ability is non-informative and the decision
rule can establish the unique correspondence between the set of ability space
‚D f‚c, c D 1, 2, ... , Cg and the set of true scores T D fTc, c D 1, 2, ... , Cg, then
both the Guo- and Lee-based accuracy indices have the same theoretical value.

Proof Let g(™) be a true distribution of ability. Let �Lee and �™(c) be the marginal
and conditional classification accuracy index which were given by Lee (2010). The
following equations are derived:

�Lee D
R

™2‚

� .™/ g .™/ d™ D
CP

cD1

R
™2‚c

�™.c/g .™/ d™ D
CP

cD1

P .x 2 Tc; ™ 2 ‚c/

D
CP

cD1

P
yiW
P

jyij2Tc

P .YDyi; ™ 2 ‚c/D
CP

cD1

P
yiW
P

jyij2Tc

P .YDyi/ pi .‚c/ ;

(25)

where the third equation is satisfied because the events x 2 Tc and ™ 2‚c imply
the correct classification; the last equation is satisfied because a uniform prior
distribution of ability is employed, and the factor of pi(‚c) in the last term is defined
by Eq. (14).

4 Simulation Study

Given that the classification consistency and accuracy indices based on the Rudner
approach are new to multidimensional latent ability, an important question is
whether the Rudner-based indices can accurately estimate their true values. The
true accuracy indices were computed as the method proposed by Lathrop and Cheng
(2013). The true/simulated accuracy was the proportion of examinees whose O™ or x
was classified in the same category as their simulated ™. Similarly, the true/simulated
consistency was the proportion of examinees whose O™ or x on two parallel tests were
classified in the same category. This was also called a test-retest consistency rate.
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4.1 Simulation Design

A simulation study following the MGRM was conducted. The dimensions were
initialized to 1, 2, and 4, respectively. In a two- or four-factor model, three levels of
correlation between pairs of dimensions, 	 D 0.00, 	 D 0.50, and 	 D 0.80 were
considered. The sample consisted of either N D 1000 or N D 3000 examinees. The
sample size of N D 1000 was chosen as the lower bound (Yao and Boughton 2007).
The ability vectors were generated from multivariate normal distributions with an
appropriately sized mean vector of 0 and covariance matrix †, where the diagonal
elements of†were all 1 and the off-diagonal elements were given by the correlation
for the associated condition.

Test length for the one-, two, and four-factor model could be either 10 or 20,
either 15 or 30, and either 30 or 60. In order to balance the information of the
domains or dimensions (Yao 2012, 2014), the number of items for each dimension
(Kroehne et al. 2014; Yao 2012, 2014) was constrained. For example, in the two-
factor model, the constraints for a 15-item test are such that two five-item sets each
loaded exclusively on one of the two dimensions and the remaining five items loaded
on both of the two dimensions. There are ten items measuring each dimension. The
above simulation conditions have been often used in the literature (Wang 2015;
Wang and Nydick 2015; Yao and Boughton 2007).

The fully crossed design yielded 14 conditions for each sample size, where each
condition was replicated ten times to estimate an averaged simulated consistency.
Item parameters were fixed across all replications. They were originally described
and used by Cai (2010) (Table 1 in Sect. 4.4) with two dimensions and ten three-
category items. Considering the above constraints, these item parameters were used
to construct six tests. For example, the slope parameters for the first and third or
second and fourth dimensions are between 1.6 and 2.6 or 1.1 and 2.6.

The three decision rules were shown in Table 1. Let’s take decision rule A as an
example: when a test had ten items and each item was scored against three ordered
categories, the two cut scores of 10 and 16 were used to classify examinees into
three categories. Note that Monte Carlo method can be used to tackle intractable
summations or high-dimensional integrals. Therefore, Monte Carlo method with
Monte Carlo sample size of 3000 was employed to estimate Eqs. (8), (14) and (22),
based on one of our previous studies (Wang et al. 2016).

It should be noted that for decision rules A and B, we can compute an expected
summed score by using Eq. 11 given an examinee’s ability estimate. Then we know
under which category of the examinee should be classified. But for decision rules

Table 1 Three decision rules

Decision rule Scale of decision rule Cut scores

A Total score scale 50% and 80% of perfect score
B The ™k total score scale 50% and 80% of perfect score
C An equally weighted composite of the ™s 0 and 0.75 of composite score
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C, we often cannot establish a one-to-one mapping between total scores and the
equally weighted composites of latent ability because of test items with different
slope parameters.

4.2 Results

Due to similar results, we only presented the results with the sample size of 3000.
Tables 2, 3, and 4 display the simulated and estimated classification accuracy for
the three decision rules under 14 conditions for N D 3000 and Monte Carlo sample
size D 3000. The results suggest that:

(a) The Rudner-based indices worked well because their values matched closely
with the simulated accuracy rates.

(b) The difference between the three simulates and estimates tended to increase
when the number of dimensions increased.

(c) The difference between the three simulates tended to become trivial when the
test length increased.

(d) For decision rule A or B, the difference between the Lee- and Guo-based
accuracy indices was very small.

(e) For decision rule B, different methods provided similar magnitude of accuracy
when the test length was the same, regardless of the number of dimensions.

(f) For decision rule C, the Guo- and Rudner-based indices had similar performance
across various conditions.

If we look at Table 3, for one dimension, the simulated accuracy of total score
was found be smaller than the simulated accuracy of estimated ability, which
was consistent with the previous research (Lathrop and Cheng 2013). For four

Table 2 Simulated and estimated classification accuracy for decision rule A

Simulated Estimated
Dimension Correlation Test length Guo Lee Rudner Guo Lee Rudner

1 NA 10 0.820 0.813 0.820 0.833 0.825 0.821
20 0.867 0.862 0.867 0.877 0.871 0.874

2 0.0 15 0.849 0.844 0.849 0.859 0.855 0.843
30 0.870 0.868 0.870 0.900 0.896 0.896

0.5 15 0.860 0.857 0.860 0.875 0.868 0.849
30 0.866 0.866 0.866 0.907 0.902 0.899

0.8 15 0.864 0.863 0.864 0.880 0.872 0.849
30 0.864 0.861 0.864 0.913 0.908 0.902

4 0.0 30 0.867 0.870 0.867 0.873 0.876 0.868
60 0.876 0.881 0.876 0.906 0.914 0.915

0.5 30 0.859 0.865 0.859 0.895 0.895 0.883
60 0.873 0.877 0.873 0.924 0.928 0.926

0.8 30 0.864 0.871 0.864 0.910 0.908 0.886
60 0.887 0.887 0.887 0.932 0.933 0.929
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Table 3 Simulated and estimated classification accuracy of one dimension for decision rule B

Simulated Estimated
Dimension Correlation Test length Guo Lee Rudner Guo Lee Rudner

2 0.0 15 0.827 0.828 0.827 0.841 0.840 0.825
30 0.862 0.862 0.862 0.885 0.885 0.882

0.5 15 0.837 0.837 0.837 0.856 0.852 0.830
30 0.858 0.857 0.858 0.892 0.890 0.885

0.8 15 0.841 0.841 0.841 0.860 0.856 0.832
30 0.854 0.853 0.854 0.900 0.897 0.890

4 0.0 30 0.817 0.820 0.817 0.826 0.839 0.827
60 0.850 0.851 0.850 0.863 0.879 0.878

0.5 30 0.823 0.832 0.823 0.844 0.851 0.835
60 0.847 0.852 0.847 0.882 0.890 0.887

0.8 30 0.828 0.836 0.828 0.856 0.859 0.837
60 0.856 0.859 0.856 0.890 0.894 0.890

Table 4 Simulated and estimated classification accuracy for decision rule C

Simulated Estimated
Dimension Correlation Test length Guo Rudner Guo Rudner

1 NA 10 0.811 0.811 0.822 0.805
20 0.859 0.859 0.869 0.863

2 0.0 15 0.835 0.835 0.846 0.827
30 0.863 0.863 0.888 0.885

0.5 15 0.854 0.854 0.871 0.845
30 0.874 0.874 0.905 0.898

0.8 15 0.864 0.864 0.878 0.852
30 0.873 0.873 0.914 0.905

4 0.0 30 0.848 0.848 0.840 0.837
60 0.855 0.855 0.885 0.894

0.5 30 0.863 0.863 0.883 0.875
60 0.874 0.874 0.914 0.919

0.8 30 0.877 0.877 0.907 0.895
60 0.896 0.896 0.929 0.930

dimensions, however, the simulated accuracy of total score was relatively larger
than the simulated accuracy of estimated ability.

For clearly indicating the difference between the simulated and estimated
accuracy, Table 5 provides summaries of the bias, absolute error (ABS), and root
mean square error (RMSE) of the classification accuracy estimates. The results
indicate that among the three methods, the Rudner’s method typically had the lowest
bias, the lowest ABS, and the lowest RMSE across all conditions, while the Guo’s
and Lee’s methods were both fairly comparable. In addition, all of the three methods
overestimated the simulated classification accuracy.
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Table 5 Error of estimation for three accuracy indices

Decision rule Dimension Indices BIAS ABS RMSE

Decision rule A ALL Guo 0.0282 0.0282 0.0323
Lee 0.0262 0.0262 0.0304
Rudner 0.0181 0.0227 0.0277

Decision rule B Dimension 1 Guo 0.0228 0.0228 0.0251
Lee 0.0231 0.0231 0.0253
Rudner 0.0147 0.0174 0.0216

Dimension 2 Guo 0.0239 0.0239 0.0253
Lee 0.0225 0.0225 0.0246
Rudner 0.0132 0.0188 0.0218

Dimension 3 Guo 0.0235 0.0235 0.0280
Lee 0.0280 0.0280 0.0303
Rudner 0.0231 0.0231 0.0274

Dimension 4 Guo 0.0268 0.0268 0.0301
Lee 0.0296 0.0296 0.0313
Rudner 0.0241 0.0241 0.0278

Decision rule C ALL Guo 0.0216 0.0228 0.0253
Rudner 0.0131 0.0199 0.0236

Note. The lowest BIAS, ABS, RMSE in each condition are in boldface type. Dimension 1
belongs to one-, two-, and four-factor model; Dimension 2 belongs to two- and four-factor model;
Dimensions 3 and 4 belong to four-factor model

For the simulated and estimated consistency of the three decision rules, the
results (were not shown here) suggest that:

(a) The Lee-based index was better than the Rudner- and Guo-based indices
because the Guo-based indices often exceeded the simulated indices, while the
Rudner-based indices did not.

(b) The difference between the three simulates and estimates tended to become
trivial when the test length increased.

(c) For decision rule C, the Guo- and Rudner-based indices had similar perfor-
mance across various conditions.

5 Discussions

Based on previous studies (Grima and Yao 2011; Guo 2006; Lathrop and Cheng
2013; Rudner 2001, 2005; Wyse and Hao 2012; Yao 2016), the Rudner-based
consistency and accuracy indices have been adapted for MIRT in this paper, and
their performance was evaluated under the MGRM through the simulation study.
The simulation results show that:

(a) The Rudner-based indices worked very well because their values matched
closely with the test-retest consistency rates or the true accuracy rates.
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(b) For the decision rule based on total scores, the difference between the Lee- and
Guo-based accuracy indices was very small and had a very similar trend as test
length increased, which completely conformed to the theoretical results.

(c) The findings show somewhat difference between the three indices, but the
difference tended to be small with increasing test length.

(d) The Lee-based indices could not be applicable for a decision rule based on a
composite latent ability score when a one-to-one mapping cannot be established
between total scores and the decision rule, but the flexible Guo- and Rudner-
based indices can be used in this case and tended to perform similarly.

Several directions are described based on the current research. First, it is worthy
to study how to choose a better decision rule for making more valid decision
closely related to improve teaching and learning. Second, they might be useful
for developing an item selection algorithm in adaptive tests since item selection
is the most important procedure in adaptive testing (Chang and Wang 2016). Third,
the construction of their confidence intervals needed further investigation in future.
Fourth, they should be applied to many other MIRT models. Finally, we should
consider making estimate of consistency and accuracy based on the Rudner- and
Guo- based indices where the asymptotic posterior covariance matrix of ability
estimate was obtained by Bayesian method (Wang 2015). In addition, as a remark,
if the slope parameters were very diverse, the total score method might perform
poorly. In this study, the slope parameters for one dimension are between 1.6 and
2.6 or 1.1 and 2.6, which were not very diverse. Replicating this study with more
diverse slope parameters would be an important area for future research.
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Supporting Diagnostic Inferences Using
Significance Tests for Subtest Scores

William Lorié

Abstract Users of content-heterogeneous assessments based on unidimensional
trait models often request information about examinee strengths and weaknesses
in specific subareas. This is commonly called diagnostic information, and a
standard way of providing it is by computing and reporting subscores. However,
in the many cases where subscores fail to provide reliable information sufficiently
independent of the total score, they cannot support claims about subarea strengths
and weaknesses relative to total score expectations. These kinds of claims are
referred to here as diagnostic inferences. This paper introduces a method to support
diagnostic inferences for assessment programs developed and maintained using item
response theory (IRT). The method establishes null and alternative hypotheses for
the number correct on subsets of items or subtests. Statistical significance testing
is then conducted to determine the strength of the statistical evidence in favor
of a diagnostic inference. If the subtest score is modeled as a Poisson binomial
distribution with probabilities set to those expected by the IRT model conditional
on fixed item parameters and person scores, then a determination can be made, by
individual or groups, whether and which diagnostic inferences are supported. This
paper presents results of power computations showing the subtest lengths generally
required for supporting diagnostic inferences under different conditions and effect
sizes.

Keywords Item response theory • Subscores • Diagnostic inferences • Statistical
power • Poisson binomial

1 Introduction

Users of assessments based on unidimensional trait models often call for more
information, commonly called diagnostic information, about student strengths and
weaknesses in specific subareas. Several researchers have questioned a standard
response to this call—reporting subscores—arguing that subscores seldom carry
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reliable information sufficiently independent of the total score to support justifiable
claims about strengths and weaknesses. A diagnostic inference is defined in this
paper as a claim regarding a student’s performance in a subarea, after conditioning
on what is known and reported about his or her overall performance.

This paper (1) presents a conceptual framework for supporting diagnostic
inferences; (2) shows how testing for diagnostic inferences can be conducted using
subtest responses, regardless of the combination of items a student has taken; and (3)
reports the numbers of items required to detect diagnostic information for different
combinations of overall score and strength (or weakness) effect magnitude.

2 Diagnostic Information and Subscores

Diagnostic information refers to claims about student knowledge, skill, or ability
with respect to subareas of tests assessing heterogeneous content. Such tests are
typically scaled using unidimensional models when tests for dimensionality (e.g.,
the DIMTEST procedure, Nandakumar and Stout 1993; Stout 1987; Stout et al.
2001; Stout et al. 1992) reveal that the collection of items is essentially unidimen-
sional. However, even when tests are sufficiently unidimensional to report one total
score, test users often request information supporting diagnostic inferences, and
testing programs report subscores to satisfy this need. These scores are subject to the
same technical requirements of all scores, such as having adequate reliability and
sufficient distinctiveness from other scores, including each other (Standards 1.13–
1.15, American Educational Research Association et al. 2014).

Several researchers (Haberman 2008; Monaghan 2006; Sinharay 2010), however,
have noted a lack of evidence of adequate reliability or distinctiveness for subscores
on many tests. Sinharay (2010), for example, showed that out of 25 testing programs
reporting between two and seven subscores, only nine had at least one subscore
providing added value above and beyond the total score. Sinharay (2010) notes that
subscores “have to consist of at least 20 items and have to be sufficiently distinct
from each other to have any hope of adding value” (p.169), placing a great price—
in terms of testing cost and time—on subscore-based diagnostic information.

3 A Conceptual Framework for Supporting Diagnostic
Inferences

This paper presents a hypothesis testing approach to investigating and supporting
diagnostic inferences on tests designed and built using item response theory
(IRT). For this method, item and person parameters set the conditions for a null
hypothesis against which one may test alternative hypotheses about an individual’s
performance on items in a subarea of the tested domain.
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The approach is based on the idea that, per the theory, a test furnishes all the
information it is designed to provide via the total score, but that when a new
individual or group takes the test, their performance in subareas may deviate from
what is expected by theory, and occasionally such deviations may be sufficiently
extreme to justify a claim about relative strength or weakness in one or more
subareas.

Typically, there is a moderate-to-strong positive correlation between overall
performance and performance in a subarea because the two measures share items
and because the skills they measure are conceptually related. Thus, reporting
on performance in a subarea can appear to add little information beyond what
is conveyed in the total score. But, subareas vary in difficulty and can cover
instructionally distinct content, and to that extent, diagnostic inferences might
provide meaningful, unique information to test score users. In addition, some
students may follow patterns of content coverage, exhibit study habits, or otherwise
manifest strengths and weaknesses that deviate from the norm under which a
unidimensional scale is constructed and applied to all. The perspective of this paper
is that a subtest score or subscore conveys new information for a student if that
subscore deviates sufficiently from what would have been predicted by the student’s
reported total score.

3.1 Hypothesis Testing at the Individual Level

This paper adopts a hypothesis testing approach at the level of the individual to
assess the evidence for a relative strength or weakness in a subarea. The null
hypothesis is that a person’s test performance in a subarea is as expected, based
on their total score. Several alternative hypotheses are possible for a specific person
j and subarea s:

1js. The performance of j on s is better than expected by chance.
2js. The performance of j on s is worse than expected by chance.
3js. The performance of j on s is outside of the range expected by chance.

Rendering a diagnostic inference that person j has a relative strength in subarea s
is equivalent to formally testing for and finding statistically significant evidence in
support of alternative hypothesis (1js). Likewise, a diagnostic inference that j has a
relative weakness in s is supported by evidence against the null and for hypothesis
(2js). The first two alternatives correspond to one-tailed tests in the same way that
hypothesis (3js) corresponds to a two-tailed test.

Including other individuals and/or other subareas extends the set of alternative
hypotheses about subarea performance. Assume all individuals belong to group g.
One important set of alternative hypotheses relates to the group level:

1s. The performance of g on s is better than expected by chance.
2s. The performance of g on s is worse than expected by chance.
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3s. The performance of g on s is outside of the range expected by chance.

These alternatives will be considered in connection to results of power computa-
tions presented later.

Two analogues to alternative hypotheses for the ANOVA omnibus tests across
treatment conditions, formulated here for individuals and groups, are noteworthy:

3j. The performance of j on at least one subarea is outside of the range expected
by chance.

3. The performance of g on at least one subarea is outside of the range expected
by chance.

The well-known multiple comparisons problem applies to these alternative
hypotheses, when investigators finding a positive result wish to identify the specific
subarea(s) for which an individual or group is exhibiting atypical performance,
and the direction of the effect—i.e., whether it is a relative strength or a relative
weakness. Controlling the type I error rate (usually denoted ˛) for (3j) and (3) is
relevant when there are many subareas. If a hypothesis test is run for each subarea
individually—i.e., if a test for alternative hypothesis (3js) is run on each subarea s—
the likelihood of one being flagged in the absence of any real underlying strength
or weakness is the type I error rate for hypothesis (3js). Thus, it is important to
interpret results of diagnostic inferences considering precisely which alternatives
were hypothesized.

The central question for diagnostic inferences from the perspective of a student
or educator is whether that student is relatively strong or weak in each area, or if
their performance is otherwise typical. Accordingly, our focus here is on alternative
hypotheses (1js)–(3js).

3.2 Formulating the Null and Alternative Hypotheses

Unidimensional dichotomous IRT models and their multidimensional IRT (MIRT)
extensions assume that responses to items are independent after conditioning on
ability, and thus, the count of correct responses to a subset of dichotomous items
(a subtest) follows a Poisson binomial distribution with parameters given by the
probabilities of each item’s being correctly responded to by a person at a given
level of the latent trait. This property has also been demonstrated in González et al.
(2016).

More specifically, the counts of correct responses nsi by a person i in a subarea s
with J total dichotomous items, indexed by j, follow a Poisson binomial distribution,
with the trial probabilities pij D (pi1, : : : , piJ) given by the theoretical probabilities
of correct responses on the items, conditional on person parameters:

nsi � PBD .pi1; : : : ; piJ/ ;
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where

pij D P
�
Xij D 1j�i; �j

�
; (1)

and PBD denotes the Poisson binomial distribution, Xij is zero (if the response
of person i to item j is incorrect) or 1 (if correct), � i is the (set of) latent trait
parameter(s) for person i, and � j is the (set of) item parameter(s) for item j.

In practice, the parameters for items are usually estimated from field-testing and
treated as known when estimating person parameters. The probabilities are then
generated from the measurement model in Eq. (1), with estimates in place of the
parameters.

The paradigm of statistical hypothesis testing can thus be brought to bear on the
task of supporting diagnostic inferences. Formally, one can test the hypothesis that
the count of correct responses on a subtest is greater (or less) than expected, given a
significance level ˛. This furnishes direct evidence for relative strength or weakness
in that subarea.

4 Testing for Diagnostic Inferences in Practice

This section and the next address the power of the Poisson binomial test for
providing evidence of relative strength or weakness in a subarea. Testing for diag-
nostic inferences can be practically conducted in large-scale assessment settings, as
illustrated here for a statewide testing program.

4.1 Data Sparseness and Possible Diagnostic Inferences

A statewide grade 6 mathematics computerized adaptive testing (CAT) program
administers 45 items per student in four broad reporting categories, which are further
subdivided into 36 learning objectives or subareas. Each item is classified into one
of these subareas.

When a student takes the test, each item is drawn from a large pool of operational
items, per the program’s rules for meeting the test blueprint during a test session,
algorithms for minimizing error in estimating the student’s total score, and other
constraints. Thus, and typical of a large-scale CAT, any given administration of the
assessment yields a very sparse student-by-item matrix, with approximately 95% of
the data “missing,” by design.

This sparseness is not considered a problem in operational testing; in fact, it is a
sought-after benefit because it allows for the control of item exposure and increases
a testing program’s longevity. However, it complicates psychometric reanalysis
of operational data because less information is available to estimate reliability,
(re)calibrate items, estimate person parameters, etc. It is more difficult to investigate
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Table 1 Possible diagnostic inferences for different statistical power profiles

Power profile Possible diagnostic inferences

Power to
detect
relative
strength?

Power to
detect
relative
weakness?

An area of
relative
strength

An area of
relative
weakness

Not an area
of relative
strength

Not an area
of relative
weakness

Neither an
area of
relative
strength nor
weakness

No No No No No No No
Yes No Yes No Yes No No
No Yes No Yes No Yes No
Yes Yes Yes Yes No No Yes

whether any new, proposed subscores add value above and beyond what is furnished
by the total score, because subscores with identical intended interpretations would
have to be calculated from different sets of items.

These complications arising from data sparseness are not an issue for hypothesis
testing to support diagnostic inferences, because the question of whether an
individual took sufficient items to support a diagnostic inference can be answered
person by person. By computing the conditional probabilities of the most extreme
responses (all incorrect or all correct) and comparing these to the threshold of
statistical significance (˛), researchers can determine whether there is sufficient
power to detect an effect. For each student and subarea, if there is power to
detect a relative strength of any magnitude, then a statistical test is conducted with
the alternative (1js). If there is power to detect a relative strength, then a test is
conducted to evaluate alternative (2js) against the null. If there is sufficient power
for both tests, then failure to reject the null in both cases is evidence for alternative
(3js).

Whether there is sufficient power to detect an effect for each alternative hypoth-
esis determines the diagnostic inferences possible for that subarea and student
(Table 1).

Reports can state the status of diagnostic inference testing and results for each
student and subarea. The set of possible flags should include, at minimum, two
elements: “an area of relative strength” and “an area of relative weakness.” There
is an important distinction to be made (and communicated to report audiences)
between a subarea where a student exhibits typical performance and one where there
simply is no basis for making a claim about relative strength, relative weakness,
or lack thereof (the first row of Table 1). Moreover, although the distinction can
be difficult to communicate, performance that is “typical” because tests of relative
strength and weakness failed to prove otherwise—in contrast to performance in a
subarea for which there were few items to make such a claim—is a meaningful one
that can also be conveyed to report audiences.



Supporting Diagnostic Inferences Using Significance Tests for Subtest Scores 65

4.2 Computation of Statistical Power Profiles and Diagnostic
Inferences

To show the feasibility of practical application of these hypothesis tests for
diagnostic inferences, results and computation time are reported for assessing power
to detect and generating detection results on 36 subareas for approximately1 65,000
students taking the assessment in 2015.

Second, testing for the group-level alternatives (1s)–(3s) by grouping students
into schools enhances power considerably. Fortunately, as will be shown, more
extensive Poisson binomial calculations did not significantly affect computation
time.

4.2.1 Many Subareas and Students, Individual Level

To generate the results needed to produce diagnostic inferences for the above-
referenced program, the author wrote R code (version 3.2.3, R Core Team 2015)
to read student response and item parameter data and compute power-to-detect and
statistical significance flag results for all students and subareas. Poisson binomial
probability masses were computed with the R package “poibin” (Hong 2013b).

For any given student, there was sufficient power to detect a relative weakness for
very few of the subareas (on average 5.2 subareas out of 36), since students take very
few items in any given subarea. Summarizing the student-by-subarea item exposure
count matrix reveals that the most likely number of exposures to any subarea for any
student is just one (56% of the elements). The next most likely value is two (30%),
followed by zero (11%) and three (3%). In just 16 cases was a student assessed on
a subarea four times. With such low item exposures, it is very difficult to reach the
power-to-detect threshold.

Despite such low by-standard item exposures, there was sufficient power for
testing for relative weakness on at least one subarea for over 80% of the tested
group. Thus, if their subtest scores were low enough to merit the inference, it was
possible to report at least one positive diagnostic inference (“an area of relative
weakness”) for these students. A negative diagnostic inference (“not an area of
relative weakness”) could also be reported for a student on any subarea for which
there was sufficient power to test for relative weakness, but where no relative
weakness was found (formally, no rejection of the null). At least one positive
diagnostic inference of relative weakness was flagged for 17% of those students
for whom there was sufficient power to test for relative weakness on at least one
subarea.

1Approximate numbers of students and schools are reported here to preserve anonymity of the data
source.
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Power for detecting a relative strength was lower than that for detecting a relative
weakness, because the conditional probabilities for correct responses for the tested
population tended to be higher than 0.5. A MacBook Pro with a 2.5 GHz Intel Core
i7 processor and 8 GB in two 1333 MHz DDR3 memory modules, running R 3.2.3
GUI 1.66 Mavericks build (7060) (R Core Team 2015), took 306 s to complete the
calculations.

4.2.2 Many Subareas and Students, Group Level

The analysis was repeated, this time after grouping students into schools (N
approximately 650). Each school in the data file contained between 1 and 424
records of students taking the test, with a mean of 99.8. About 5% of schools had
five or fewer records.

For any given school, there was sufficient power to detect a relative weakness
for almost every subarea (on average 34.8 subareas out of 36). There was sufficient
power to detect a relative strength for a by-school average of 32.9 of the subareas.

Each subarea was flagged for relative weakness in fewer than ten schools to over
half of the schools, depending on the subarea. Subareas were flagged for relative
strength in less than ten schools to about 70% of the schools, again depending on
the subarea. The above-referenced computer took 366 s to complete the calculations.

The next section incorporates effect magnitude, as well as other considerations,
in estimating a rule of thumb for the numbers of items needed per subarea to detect
a relative strength or weakness with a lower bound on its magnitude.

5 Subtest Length Requirements for Diagnostic Inferences

Simulation-based research was conducted to identify the subtest length required for
supporting diagnostic inferences. Statistical power was estimated as a function of
� , � c (the student’s true ability on the class of items in the subtest), and the number
of items in the subtest. Three values of � were chosen (0, ˙1 SD units), and six
different effects, or deviations of � c from � (˙1, ˙2, ˙5 SD units). The three effect
magnitudes are termed “moderate,” “large,” and “very large” solely for this study.
Where effects are positive, power was estimated for hypothesis tests concerning
relative strength. Where they are negative, power was estimated for hypothesis tests
concerning relative weakness.

The largest effect magnitudes were chosen to approximate cases in which a
student’s responses to the subtest are best characterized under a mastery framework,
in which correct responses for true non-masters in the subarea are “lucky guesses”
and incorrect responses from true masters are “careless slips.” As such, the “very
large” effect size should be such that it does not depend on � , and this is better
obtained with a deviation of ˙5 SD units than with deviations of ˙3 or ˙4 SD units.
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Table 2 Experimental conditions classified by location of the null and effect size

Effect size
Location of null Moderate Large Very large

Same side of
mean as effect
direction

™ D 1 and ™c D 2; or
™ D �1 and ™c D �2

™ D 1 and ™c D 3; or
™ D �1 and ™c D �3

™ D 1 and ™c D 6; or
™ D �1 and ™c D �6

Mean ™ D 0 and ™c D ˙1 ™ D 0 and ™c D ˙2 ™ D 0 and ™c D ˙5
Opposite side of
mean as effect
direction

™ D 1 and ™c D 0; or
™ D �1 and ™c D 0

™ D 1 and ™c D �1; or
™ D �1 and ™c D 1

™ D 1 and ™c D �4; or
™ D �1 and ™c D 4

Subtest length varied from 1 to 60 items. Response probabilities were computed
based on the 1-parameter logistic (1PL) IRT model, with difficulty parameters
drawn from a standard normal distribution.

For each of the 3 � 6 � 60 D 1080 � by � c by subtest length conditions,
a response vector was randomly generated using the 1PL-predicted probabilities
based on � c, a number correct was computed, and the appropriate tail probability
was calculated for a Poisson binomial distribution under the (null) item success
probabilities determined by � . Any tail probability less than or equal to ˛ (set to
0.05) indicated a null rejection. This was replicated 50,000 times for each condition.
Poisson binomial probability cumulative distribution functions and point masses
were computed with the R package “poibin” (Hong 2013b).

Inspection of the resulting power plots confirmed symmetry in those pairs of �
by � c conditions where the direction of the effect and its relation to the sign of � are
the same. An example is detecting a moderate relative weakness for a student one
standard deviation below the mean and detecting a moderate relative strength for a
student one standard deviation above the mean. Results for pairs such as this were
averaged and treated as one condition, resulting in an effective replication count of
100,000 per condition. In the example just cited, this combined condition can be
described as detecting a moderate effect in the direction of the same side of the
mean as the (null) � .

The nine combined conditions are described in Table 2. They are ordered left to
right and top to bottom by decreasing hypothesized item requirements. Detecting
larger effect sizes requires fewer cases than detecting smaller effect sizes. Thus,
detecting very large effects should require the fewest items. As for the vertical
ordering, detecting an effect directed toward the same side of the mean as the
null hypothesis (e.g., detecting a relative weakness for a student who is already
performing below the mean) should require more items than detecting an effect
directed in the opposite direction (e.g., detecting a relative strength for the same
student). Detecting effects for students at the mean might occupy an intermediate
position with respect to item requirements.

The ordering of hypothesized item requirements bears out in the results of the
simulation study. Table 3 displays the numbers of items required to detect an effect
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Table 3 Subtest length required and estimated power for nine experimental conditions

Effect size
Location of null Moderate Large Very large

Same side of mean as effect direction 49 (0.800) 19 (0.825) 10 (0.826)
Mean 36 (0.802) 12 (0.815) 6 (0.905)
Opposite side of mean as effect direction 36 (0.804) 10 (0.813) 4 (0.932)

for these nine scenarios, with the power threshold set to 0.8. Estimates of the power
at the item counts are in parentheses. The power estimates for one item less than the
shown item counts are all smaller than 0.800 (to three decimal places).

Three observations can readily be made about item requirements. First, diagnos-
tic inferences are best supported when there is a very large effect. To detect these
effects, between four and six items are needed, but ten are required to detect “very
large” strengths for a student already performing above average or to detect “very
large” weaknesses for one below average. Second, large effects—on the order to
2 SDs—can be detected with ten items but only when testing for relative strength
in students performing below average or relative weakness in those performing well
overall. Third, reliable detection of moderate (1 SD) or weaker effects requires more
items than are typically included in subtests.

6 Conclusions

Users of assessments based on unidimensional trait models often want more
information about student strengths and weaknesses in specific subareas, commonly
called diagnostic information. Several researchers have questioned a standard
method of providing this information—reporting subscores—arguing that subscores
seldom carry reliable information sufficiently independent of the total score, or each
other, to support justifiable claims about strengths and weaknesses.

This paper presented a conceptual framework for supporting diagnostic infer-
ences grounded in statistical hypothesis testing and standard IRT assumptions. A
Poisson binomial model provides the probabilities of observing extreme values
of number correct in a subarea, conditional on the null hypothesis item response
probabilities determined by estimates of the total score. Testing for diagnostic
inferences can be conducted in practice at the individual or group level and
directly on subtest responses regardless of the combination of items a student has
taken. Previously prohibitive computations such as those needed to obtain Poisson
binomial probability mass functions are now feasible with advances in computing
power and algorithmic efficiency (see, e.g., Barrett and Gray 2014; Hong 2013a).
This means that whether there is sufficient information in a student’s or a group’s
responses to support a diagnostic inference is a matter that can be determined
separately for each student or group. This research shows that in IRT contexts,
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reliable total scores can be leveraged in many cases to meet test users’ diagnostic
information needs directly.

The numbers of items required for diagnostic inferences is consistent with other
findings on subtest length requirements for reliable subscores (e.g., Sinharay 2010).
Unsurprisingly, the size of the effect to be detected has a strong influence on item
requirements, but so does the direction of the effect with respect to the location
of the null hypothesis, with effects harder to detect when the null is on the same
side of the mean as the effect direction and easier to detect when the null and the
effect direction are on opposite sides of the mean. Item requirements become to
item exposure requirements in the context of detecting effects for groups rather than
individuals.

Diagnostic inferences through hypothesis testing is particularly well-suited to
contexts in which validating proposed subscores may not be practical due to data
matrix sparseness or possible group differences in subscale structure.
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A Comparison of Two MCMC Algorithms
for the 2PL IRT Model

Meng-I Chang and Yanyan Sheng

Abstract Markov chain Monte Carlo (MCMC) techniques have become popular
for estimating item response theory (IRT) models. The current development of
MCMC includes two major algorithms: Gibbs sampling and the No-U-Turn sampler
(NUTS), which can be implemented in two specialized software packages JAGS
and Stan, respectively. This study focused on comparing these two algorithms
in estimating the two-parameter logistic (2PL) IRT model where different prior
specifications for the discrimination parameter were considered. Results suggest
that Gibbs sampling performed similarly to the NUTS under most of the conditions
considered. In addition, both algorithms recovered model parameters with a similar
precision except for small sample size situations. Findings from this study also shed
light on the use of the two MCMC algorithms with more complicated IRT models.

Keywords Item response theory • Markov chain Monte Carlo • Gibbs sampling •
No-U-Turn sampler

1 Introduction

Item response theory (IRT; Lord 1980) is a measurement theory used in edu-
cational and psychological measurements (e.g., achievement tests, rating scales,
and inventories) that investigates a mathematical relationship between individuals’
abilities (or other mental traits) and item responses. It is based on the idea that the
probability of a correct response to an item is a mathematical function of person
and item parameters (Hemker et al. 1995). Fully Bayesian estimation can be used to
estimate model parameters by summarizing the posterior distribution. For decades
during which IRT has been developed, fully Bayesian was not computationally
practical for models with a large number of parameters such as IRT models.
Modern computational technology and the development in Markov chain Monte
Carlo (MCMC; e.g., Metropolis et al. 1953) algorithms, however, have changed
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that (Béguin and Glas 2001; Bolt and Lall 2003; Bradlow et al. 1999; Chib and
Greenberg 1995; de la Torre et al. 2006; Fox and Glas 2001; Johnson and Sinharay
2005; Patz and Junker 1999).

1.1 Markov Chain Monte Carlo (MCMC)

MCMC methods are a class of algorithms that can be used to simulate draws from
the posterior distribution. The concept of MCMC methods is to generate samples
from a probability distribution via constructing a Markov chain that has the desired
distribution as its stationary distribution. In MCMC, the quality of the sample
improves as a function of the number of steps. After a number of steps, the state
of the chain is then used as a sample of the desired distribution. MCMC methods
have been proved useful in practically all aspects of Bayesian inference, such as
parameter estimation and model comparisons. They can be applied in situations
(e.g., with small sample sizes) where the maximum likelihood methods are difficult
to implement. The samples produced by the MCMC procedure can also be used for
conducting model fit diagnosis, model selection, and model-based prediction.

1.2 Gibbs Sampling

Among MCMC algorithms, Gibbs sampling (Geman and Geman 1984) is one of the
simpler random walk algorithms. The idea of the random walk method is that at each
step, the direction of the proposed move is random. If the relative probability of the
proposed position is more than that of the current position, then the proposed move
is always accepted. If the relative probability of the proposed position, however, is
less than that of the current position, the acceptance of the proposed move is by
chance. Due to the randomness, if the process were started over again, then the
movement would certainly be different. Regardless of the specific movement, in the
long run the relative frequency of visits will be close to the target distribution.

Gibbs sampling is applicable when the joint posterior distribution is not explicitly
known, but the conditional posterior distribution of each parameter is known.
The process of a Gibbs sampler is to obtain the joint posterior distribution by
iteratively generating a random sample from the full conditional distribution for
each parameter. The problem of the random walk algorithms, however, is that
they may need too much time to reach convergence to the target distribution
for complicated models with many parameters. These methods tend to explore
parameter space via inefficient random walks (Neal 1993).
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1.3 No-U-Turn Sampler (NUTS)

Other MCMC algorithms such as No-U-Turn sampler (NUTS; Hoffman and
Gelman 2014) try to avoid the random walk behavior by introducing an auxiliary
momentum vector and implementing Hamiltonian dynamics so the potential energy
function is the target density. Basically, NUTS generates a proposal in a way similar
to rolling a small marble on a hilly surface (the posterior distribution). The marble is
given a random velocity and can move for several discrete steps in that direction. The
movement follows the laws of physics, so the marble gains kinetic energy when it
falls down the hill and earns potential energy when it climbs back up the hill. In this
manner, a proposal is generated that can be a great distance from the original starting
point. The proposed point is then accepted or rejected according to the Metropolis
rule. NUTS utilizes a recursive algorithm to construct a set of possible candidate
points that cross a wide strip of the target distribution, stopping automatically when
it starts to double back and retrace its steps.

One of the primary challenges in implementing MCMC algorithms such as Gibbs
sampling and NUTS is the availability of accessible software. This issue, however,
can be resolved via two emerging computer programs: JAGS (Plummer 2003) and
Stan (Stan Development Team 2016) developed for implementing Gibbs sampling
and NUTS, respectively.

1.4 Two-Parameter Logistic IRT Model

In this study, the main focus is on the two-parameter logistic (2PL) IRT model
(Birnbaum 1968), and it is defined as

P
�
Yij D 1j�i; aj; bj

�
D

1

1C exp


�aj

�
�i � bj

� ; (1)

where Yij is the probability that the ith individual responds to the jth item correctly
(Yij D 1) or incorrectly (Yij D 0), � i is the latent ability for subject i, aj is the
discrimination parameter, and bj is the difficulty parameter for item j.

Prior research has been conducted on the development and application of IRT
models under the fully Bayesian framework using Gibbs sampling (e.g., Albert
1992; Baker 1998; Ghosh et al. 2000; Sheng 2010; Sheng and Wikle 2007) as well
as NUTS (e.g., Caughey and Warshaw 2014; Copelovitch et al. 2015). Recently,
Grant et al. (2016) fitted the Rasch model (Rasch 1960) using both Gibbs sampling
and NUTS, which were implemented in JAGS and Stan, respectively. They noted the
memory problems of using JAGS for huge number of items. Their study, however,
only focused on the computation speed and scalability, and the results showed that
NUTS performed better than Gibbs sampling. To date, no study has compared these
algorithms in estimating IRT models. Therefore, the purpose of this study is to
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investigate their performance in parameter recovery of the 2PL IRT model where
different sample sizes, test lengths, and prior specifications for the discrimination
parameter are concerned.

2 Methods

This study was conducted by using the computer program R (R Core Team 2016).
Data were generated for the 2PL IRT model as defined in (1). Test length (K)
was manipulated to be 10 and 20 items and sample size (N) to be 100, 500,
and 1000 examinees. Model parameters were generated such that � i�N(0, 1),
aj�lognormal(0, 0.5), and bj�N(0, 1). For the MCMC procedures, normal priors
were assumed for both � i and bj such that � i�N(0, 1) and bj�N(0 , 1). Three prior
specifications were considered for aj such that (1) aj�lognormal(0, 0.5), which
is commonly used in BILOG-MG (Zimowski et al. 2003); (2) aj�N(0, 1) (0, 1),
which is another common way to specify the discrimination parameter (Sahu 2002;
Sheng 2008; Spiegelhalter et al. 2003); and via a transformation to ˛j so that aj is
assumed to be exp (̨ j) and having a standard normal prior for ˛j. Any real value
exponentiated will be positive. Therefore, with the third prior specification, Eq. (1)
can be written as

logit
�
pij
�

D exp
�
˛j
� �
�i � bj

�
; (2)

where ˛j�N(0, 1). Gibbs sampling and NUTS were implemented to each simulated
data set via the use of JAGS and Stan where the burn-in stage used in JAGS
or warm-up stage used in Stan was set to be 3000 iterations followed by four
chains with 5000 iterations. For both algorithms, the initial values for the model
parameters were set the same. Convergence was evaluated using the Gelman-Rubin
R statistic (Gelman and Rubin 1992). For each simulated condition, ten replications
were conducted to avoid erroneous results in estimation due to sampling error. The
accuracy of parameter estimates was evaluated using bias and the root mean square
error (RMSE), which are defined as

bias D

Pn
jD1

�bj � j
�

n
; (3)

RMSE D

sPn
jD1

�bj � j
�2

n
; (4)

where  is the true value of an item parameter (e.g., aj or bj), b is the estimated
value of that parameter in the kth replication using either Gibbs sampling or NUTS,
and n is the total number of replications. In addition, the root mean square of
difference (RMSD) was used to assess the consistence between parameter estimates
of competing algorithms (Jurich and Goodman 2009) and is defined as
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RMSD D

sPn
jD1

�bj;Gibbs sampling �bj;NUTS
�2

n
; (5)

where bj;Gibbs sampling and bj;NUTS are the estimates of any parameter estimated via
the use of Gibbs sampling and NUTS, respectively, and n is as defined in (3) and
(4). These measures were averaged over items to provide summary information.

3 Results

For the 2PL IRT model, bR is less than 1.1 for each model parameter under all test
conditions, suggesting that convergence appears satisfactory for both algorithms.

The results of bias, RMSE, and RMSD averaged across items from Gibbs
sampling and NUTS for recovering the discrimination and difficulty parameters are
summarized in Tables 1, 2, and 3.

The results indicate that Gibbs sampling performs comparably to NUTS under
most conditions tested. Both algorithms recover true item parameters with similar
precision as RMSEs are virtually identical except that they tend to be larger with
the maximum value of 0.632 for the condition where the prior distribution for aj

is lognormal using Gibbs sampling than NUTS when sample size is small (i.e.,
N D 100) (see Table 1). When given adequate sample size and sufficient number
of items (e.g., N D 1000 and K D 10), discrimination parameter estimates become
more stable with the maximum value of RMSE equal to 0.141 (see Table 3). In
addition, bias is close to zero for all conditions, indicating that both algorithms

Table 1 Average Bias, RMSE, and RMSD for recovering item parameters in the 2PL IRT model
when N D 100

Gibbs sampling NUTS
K Prior for aj Parameters Bias RMSE Bias RMSE RMSD

10 1 a 0.070 0.472 �0.003 0.324 0.206
b �0.028 0.263 �0.160 0.252 0.051

2 a �0.041 0.335 �0.042 0.335 0.006
b �0.027 0.253 �0.027 0.254 0.005

3 a �0.025 0.404 �0.026 0.401 0.009
b �0.026 0.261 �0.029 0.261 0.005

20 1 a 0.139 0.632 �0.030 0.283 0.428
b �0.027 0.285 �0.019 0.264 0.060

2 a �0.107 0.299 �0.108 0.300 0.005
b �0.026 0.274 �0.026 0.276 0.005

3 a �0.022 0.433 �0.025 0.432 0.009
b �0.026 0.279 �0.026 0.281 0.006

Note. Prior 1, aj�lognormal(0, 0.5); prior 2, aj�N(0, 1) (0, 1); prior 3, aj D exp(˛j), ˛j�N(0, 1)
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Table 2 Average Bias, RMSE, and RMSD for recovering item parameters in the 2PL IRT model
when N D 500

Gibbs sampling NUTS
K Prior for aj Parameters Bias RMSE Bias RMSE RMSD

10 1 a 0.049 0.225 0.030 0.199 0.077
b �0.048 0.181 �0.044 0.166 0.042

2 a 0.015 0.197 0.012 0.196 0.005
b �0.049 0.181 �0.050 0.181 0.003

3 a 0.027 0.216 0.025 0.216 0.006
b �0.048 0.179 �0.048 0.180 0.005

20 1 a 0.051 0.190 0.035 0.160 0.051
b �0.002 0.176 0.012 0.163 0.032

2 a 0.020 0.159 0.019 0.158 0.003
b �0.003 0.172 �0.004 0.170 0.003

3 a 0.034 0.178 0.035 0.179 0.004
b �0.004 0.173 �0.003 0.173 0.004

Note. Prior 1, aj�lognormal(0, 0.5); prior 2, aj�N(0, 1) (0, 1); prior 3, aj D exp(˛j), ˛j�N(0, 1)

Table 3 Average Bias, RMSE, and RMSD for recovering item parameters in the 2PL IRT model
when N D 1000

Gibbs sampling NUTS
K Prior for aj Parameters Bias RMSE Bias RMSE RMSD

10 1 a �0.001 0.141 �0.0003 0.132 0.025
b 0.016 0.133 0.020 0.129 0.018

2 a �0.007 0.135 �0.007 0.134 0.007
b 0.017 0.139 0.018 0.132 0.007

3 a �0.008 0.139 �0.008 0.130 0.004
b 0.018 0.133 0.017 0.187 0.003

20 1 a �0.006 0.105 �0.017 0.098 0.036
b �0.014 0.078 �0.015 0.083 0.017

2 a �0.028 0.100 �0.030 0.101 0.003
b �0.016 0.081 �0.016 0.081 0.003

3 a �0.015 0.101 �0.017 0.101 0.003
b �0.012 0.077 �0.013 0.080 0.002

Note. Prior 1, aj�lognormal(0, 0.5); prior 2, aj�N(0, 1) (0, 1); prior 3, aj D exp(˛j), ˛j�N(0, 1)

estimate parameters with little bias. When sample size increases, the RMSEs for
the discrimination parameter and difficulty parameter tend to decrease with both
Gibbs sampling and NUTS. This pattern, however, is observed with bias only
for the discrimination parameter. When test length increases, the RMSEs for the
discrimination parameter and difficulty parameter appear to decrease using either
algorithm when N � 500. This pattern, however, is not directly observed with bias.
RMSDs between Gibbs sampling and NUTS are approximately zero for nearly all
conditions except for the lognormal prior and small sample size (N D 100) condition
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where the maximum value is 0.428. Low RMSDs suggest that when estimation
errors are made, the direction of these errors is consistent across algorithms.
With Gibbs sampling, the truncated normal prior for the discrimination parameter
recovers better than the other two prior specifications across all test length and
sample size conditions especially when N D 100 and K D 20 (see Table 1).
However, with NUTS, the lognormal prior for the discrimination parameter results
in a better estimation than the other two approaches when sample size is small (i.e.,
N D 100) (see Table 1).

4 Conclusions

Overall, both algorithms recover true item parameters in a consistent manner.
Also, estimation error and bias reduce as samples size and test format conditions
(e.g., sample sizes are not extremely small or too big) are sufficient for IRT
estimation. More importantly for this study, the two algorithms produce nearly
identical estimates across most conditions except for the lognormal condition. Given
the results, it is suggested that when dealing with sample sizes such as N < 100,
NUTS should be adopted when a lognormal prior is assumed for the discrimination
parameter for the 2PL IRT model. The results also provide some sense of assurance
that decisions about which algorithm to use should be made on considerations other
than accuracy in estimation (e.g., budget, user-friendliness, institutional availability,
need for customization). It is, however, noted that results of this study were based
on ten replications due to the computational expense of the MCMC algorithm. For
example, the computation time of implementing Gibbs sampling in JAGS to data
with N D 1000 and K D 20 was about 72 min to complete four chains with 5000
iterations on a computer with 2.5 GHz Core i5 and 8G memory. For the same data
size and number of iterations, NUTS via the use of Stan took about 41 min for
each replication. Given the small number of iterations, and given that Harwell et al.
(1996) suggested a minimum of 25 replications for Monte Carlo studies in typical
IRT-based research, bias, RMSE, and RMSD values presented in Tables 1 and 2 need
to be verified with further studies before one can generalize the results to similar
conditions.

Simulation studies often demonstrate performance under ideal situations. In this
case, the true IRT model was known, and fit can be assumed nearly perfectly.
Future studies may use these IRT programs to fit the 2PL IRT model to real
data. Other test format conditions should be also explored. This would include
expanding current simulation conditions to compare other MCMC algorithms (e.g.,
Metropolis-Hastings and Hastings-within-Gibbs) or other estimation methods (e.g.,
marginal maximum likelihood) and compare the two algorithms on models that have
more latent dimensions (e.g., multidimensional IRT models), item parameters (e.g.,
three-parameter logistic IRT model), or response categories (e.g., polytomous IRT
models). Other prior specifications for model parameters aj, bj, and � i should be
also considered.
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Similar DIFs: Differential Item Functioning
and Factorial Invariance for Scales with Seven
(“Plus or Minus Two”) Response Alternatives

David Thissen

Abstract Measurement invariance in the factor analytic tradition and a lack of
differential item functioning (DIF) in item response theory (IRT) are essentially the
same. However, the two types of analysis have rarely been cast in exactly parallel
form. Either categorical (IRT) or continuous linear/confirmatory factor analysis
(CFA) models may usefully be applied to item response data with seven (or so)
response alternatives. This chapter is intended to clarify some of issues involved
in the application of CFA to DIF detection, by using the CFA procedures slightly
differently than they are used in the analysis of factorial invariance. Summaries are
provided of DIF detection using parametric IRT models and the conventional eval-
uation of factorial invariance. The evaluation of factorial invariance is reformulated
to make it more like DIF detection, for the context of item analysis. An empirical
illustration is provided using both parametric IRT DIF detection procedures and a
parallel version of the evaluation of factorial invariance using CFA models.

Keywords Item response theory • Measurement invariance • DIF

1 Introduction

It has long been established that measurement invariance, as it is known in the
factor analytic tradition, and a lack of differential item functioning (DIF), as
described in the item response theory (IRT) literature, are essentially the same
conceptually (Meredith and Millsap 1992; Meredith 1993). However, due to the
different questions that gave rise to the ideas of DIF and factorial invariance, the two
types of analysis have rarely been cast in parallel form. DIF analysis originated in
educational measurement, with the goal of detecting and removing “biased” items,
to reduce the overall bias against some demographic group(s) (Lord 1977, 1980). It
has become standard practice to include DIF detection in item analysis for any kind

D. Thissen (�)
Department of Psychology and Neuroscience, The University of North Carolina at Chapel Hill,
235 E. Cameron Avenue, Chapel Hill, NC 27599, USA
e-mail: dthissen@email.unc.edu

© Springer International Publishing AG 2017
L.A. van der Ark et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 196, DOI 10.1007/978-3-319-56294-0_8

81

mailto:dthissen@email.unc.edu


82 D. Thissen

of test construction (Edwards and Edelen 2009). The origins of factorial invariance
involved the theoretical question of whether sampling a subgroup from a population
would affect the factor structure (Meredith 1954).

Meredith and Millsap (1992) and Meredith (1993) drew together ideas of
factorial invariance, measurement invariance, and “item bias” (now DIF), but still
with the factor analytic style of a division into weak, strong, and strict factorial
invariance, without the concentration on item-by-item analysis that is the hallmark
of DIF detection in test theory. CFA is conventionally used to provide the parameter
estimation and statistical tests upon which the analysis of factorial invariance is
based.

For tests or scales using Likert-type response scales with seven (plus or minus a
couple) alternatives, cases can be made for the use of either IRT-based (categorical)
or CFA-based (linear, continuous) models (Rhemtulla et al. 2012). If the goal is
item analysis, and specifically DIF detection, modifications of conventional factor
analytic approaches are useful to make the analysis more like what is usually done
in test theory. The procedures involved are closely related in many respects to those
suggested by Raykov et al. (2013) in a recent article on factorial invariance, which
borrows from methods commonly used in DIF analysis. But that work by Raykov
et al. is not focused on DIF analysis. This chapter is intended to clarify some of the
issues involved in the use of linear factor models in DIF detection.

2 Conventional IRT and DIF

2.1 The Graded Response IRT Model

The graded response IRT model (Samejima 1969, 1997) describes the probability
of each item response as a function of a set of item parameters and � , the latent
variable measured by the scale, as follows: The conditional probability, or trace
line, of graded response u D 1; 2; : : : ;m as a function of the latent variable being
measured (� ) is

Tui.�/ D T�
ui.�/ � T�

uC1i.�/ (1)

in which T�
ui.�/ is a curve tracing the probability of a response in category u or

higher: T�
1 .�/ D 1, T�

mC1.�/ D 0, and for u D 2; 3; : : : ;m

T�
ui.�/ D

1

1C exp.�Œai� C cui�/
D

1

1C exp.�aiŒ� � bui�/
: (2)

For computational convenience, the graded response model is usually fitted in the
slope-intercept form in the center of Eq. (2), with ai as the slope or discrimination
parameter and cui as an intercept parameter for each response u to item i. A more
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interpretable form [rightmost in Eq. (2)] has threshold parameters bui D �cui=ai.
The thresholds are the values on the � scale at which a respondent has a 50% chance
of responding in category u or higher.

2.2 DIF Analysis with the Graded Response IRT Model

DIF analysis rests on the idea, most succinctly stated by Lord (1980, p. 212), “If
. . . an item has a different item response function for one group than for another,
it is clear that the item is biased.” In parametric IRT, there is a one-to-one relation
between an item response function and the item’s parameters, so the question of
whether “an item has a different item response function for one group than for
another” is answered with a statistical test of the equality of the item’s parameters
for one group and those for the other. Such a statistical test has two elements: One is
some mechanism to determine, and “correct for,” whatever overall differences exist
between the groups in the latent variable measured by the test or scale. That is
usually done by designating some set of items as the anchor, by analogy with the
anchor in test linking designs. While the best way to designate the anchor is on some
theoretical grounds (Thissen et al. 1993), most often as a practical matter the anchor
comprises all of the other items on the test or scale.

The second element is the statistical test itself; in this chapter, we use the
likelihood ratio (L.R.) test; the L.R. G2

i test for item i is computed as

G2
i D.�2loglikelihoodŒModel W item i parametersequal�/

� .�2loglikelihoodŒModel W item i parametersfree�/ :
(3)

The loglikelihood in the first term in Eq. (3) is for an IRT model in which all of the
item parameters are constrained to be equal for the two groups, and the second term
is the loglikelihood for a model in which the item parameter estimates for the studied
item are free to differ between the two groups, but the item parameters for the anchor
items (usually, all of the other items) are still constrained equal between the two
groups. The latter constraint provides the basis for the estimation of the parameters
of the population distribution, usually the mean and variance, for the focal group
relative to a standard normal distribution for the reference group that defines the
scale of the latent variable (Thissen et al. 1988, 1993). Under the null hypothesis of
no DIF, G2

i is distributed as �2 with degrees of freedom equal to the difference in the
number of free parameters between the two models, which is equal to the number
of parameters for the item in one group. The procedure can be extended to provide
separate statistical tests for the equality of subsets of parameters, like the slope (a)
parameters and separately the thresholds (b) (or the intercept (c) parameters given
equal slope parameters).

Because there are many statistical tests performed when all items on a scale are
checked for DIF, some multiple comparisons procedure is useful to provide pro-
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tection against excessive Type I errors. In the analyses in subsequent sections, we
use the Benjamini–Hochberg procedure (Benjamini and Hochberg 1995) to set the
false discovery rate (FDR) at 0.05 across I overall DIF tests. The FDR is defined as
“the expected proportion of errors among the rejected hypotheses” (Benjamini and
Hochberg 1995, p. 290); this is a less-stringent criterion than the older standard,
the family-wise error rate, that required control of “the probability of committing
any type I error in families of comparisons under simultaneous consideration”
(Benjamini and Hochberg 1995, p. 289). The sequential testing algorithm used
here to control FDR involves sorting the p-values (in this case, for the I overall DIF
tests) in decreasing order. Then the smallest p-value is compared to the Bonferroni
standard, ˛=I; the largest p-value is compared to ˛, and intermediate p-values
in the sort order are compared to a linearly interpolated sequence between ˛=I
and ˛. The hypotheses for the largest obtained p-value that exceeds its comparison
value, and those with all smaller p-values, are significant. Williams et al. (1999)
provide a detailed introduction to the use of the Benjamini–Hochberg procedure in
educational measurement, where it is commonly used (e.g., as the standard multiple
comparisons procedure for the National Assessment of Educational Progress).
Edwards and Edelen (2009) illustrate the use of the Benjamini–Hochberg procedure
in DIF analysis, and Thissen et al. (2002) provide a tutorial on the quick and easy
computation of the required values.

In our application of the Benjamini–Hochberg procedure in DIF analysis, we
apply the multiple comparisons procedure to the I overall DIF tests for I items.
Then for items for which the overall test shows significant DIF, we test parameter
subsets at standard ˛ levels.

2.2.1 An Example: Eight Items from the Bem Femininity Scale

The illustration makes use of responses to eight items from the femininity scale of
the Bem Sex-Role Inventory (Bem 1974). The data are from the 1985–1988 entries
for a test battery that included the scale, archived by the UNC Dataverse (2009).
The original femininity scale comprised 20 items; subsequently, a ten-item short
form was developed (Bem 1981). Neither the original nor the short form provides a
good illustration of the concepts discussed here. To create the example used in this
chapter, six items were extracted from the short form, and two items that exhibit
strong DIF were added, to make a compact eight-item scale within which DIF can be
detected. The response scale was 1–7, with only the endpoints labeled as “never or
almost never true” for 1 and “always or almost always true” for 7. The respondents
were 199 men and 200 women who were undergraduate students. We investigate
DIF between men and women.

As is usually the case with as many as seven response alternatives, and a sample
size (within each group) around 200, there are no responses in some of the seven
categories for some items. To test the hypothesis that an item’s parameters are
the same in two groups, the item must have the same set of parameters in each
group. The graded response model’s intercept or threshold parameters can only be
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Table 1 IRT DIF detection results; significant tests with the p-values evaluated using the
Benjamini–Hochberg procedure are bold

Item Item stem L.R. G2 df p

2 Yielding 29:0 6 <0.001
11 Affectionate 5:0 6 0.537

20 Feminine 345:1 5 <0.001
23 Sympathetic 17:8 7 0.013
29 Understanding 9:4 5 0.093

32 Compassionate 7:0 6 0.322

35 Eager to soothe hurt feelings 2:2 7 0.945

56 Loves children 1:4 7 0.986

estimated between response categories for which there are observed responses. For
that reason, categories must be collapsed in one or both groups until the item has
non-zero response counts in all of the (collapsed) responses in both groups. For this
example, three items have responses (in both groups) in all seven categories; three
items (2, 11, and 32) had categories 1–2 collapsed to yield six response categories,
item 20 had both categories 1–2 and 6–7 combined, and item 29 had categories
1-2-3 collapsed into one.

We test each item for DIF with all other items as the anchor. Estimation of
the IRT parameters and computation of the loglikelihood for the L.R. tests were
done using the IRTPRO software (Cai et al. 2011). A summary of the results is
in Table 1. Three items exhibit significant DIF (with the p-values evaluated using
the Benjamini–Hochberg procedure): “Yielding,” “Feminine,” and “Sympathetic.”
Partitioning the DIF statistics into components attributable to differences between
groups in slopes and differences between sets of intercepts given that the slopes are
equal, we find that “Yielding” exhibits both slope (sometimes called nonuniform)
DIF (G2.1/ D 10:7, p D 0:001) and intercept/threshold (sometimes called uniform)
DIF (G2.5/ D 18:3, p D 0:003) . The same is true for “Feminine” (for a:
G2.1/ D 9:6, p D 0:002; for cja: G2.4/ D 335:5, p < 0:001). For “Sympathetic,”
only the test for the intercepts / thresholds is significant (G2.6/ D 16:7, p D 0:002).
All of these results are easier to understand with graphical displays, as suggested by
Steinberg and Thissen (2006). We will examine graphical displays of these results
jointly with the CFA results in a subsequent section.

3 The Factor Analysis Model and DIF

3.1 The Linear Model

When applied to Likert-type item response data, linear factor analysis models the
responses u D 1; 2; : : : ;m for item i as a linear function of the latent factor score f ,
the factor-analytic equivalent of � in IRT models:
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ui D ˛i C �if C �i : (4)

The latent variable f is usually defined to be N.0; 1/, so ˛i is the intercept (and
the mean of the observed responses); �i is the factor loading, or the regression
coefficient of ui on f ; and �i is random error, defined by its distribution, N.0; �2i /; �

2
i

is a third parameter for each item. While it cannot be strictly true that the discrete
categorical responses u D 1; 2; : : : ;m are linearly dependent on a continuous latent
variable, simulation studies have shown that for about seven (or more) response
categories, the linear model can yield results as useful as categorical models
(Rhemtulla et al. 2012).

3.2 Measurement Invariance and DIF

Measurement invariance is nearly certainly implied by factorial invariance (Mered-
ith 1993). So to elucidate the similarities and differences between IRT and factor
analytic approaches to DIF/measurement invariance, we consider the analysis of
factorial invariance between groups.

The starting point for the analysis of factorial invariance is a test of configural
or pattern invariance: Do the two groups have the same general factor structure?
In the absence of configural invariance, further tests of parameter equality usually
make little sense. For some data, configural invariance is a real question. However,
in the context of DIF analysis, the variables are usually the items on a single
measurement instrument that is assumed to be essentially unidimensional, so
configural invariance is the assumed unidimensional model.

Given configural invariance, factorial invariance analysis proceeds in steps based
on categories of model parameters first and variables (items) within those categories
second. First comes the test of weak or metric invariance, testing the equality of
factor loadings between groups. There can be partial weak (or metric) invariance,
if only some of the factor loadings differ between groups. Second, for variables
(items) for which the loadings are constrained equal, strong or scalar invariance is
tested by constraining the intercept parameters to be equal; partial scalar invariance
is also a possibility. Finally, strict or residual variance invariance can be tested by
constraining the unique variances to be equal for the two groups (Meredith 1993).

In contrast, in the DIF literature, the focus is on the items (variables) first and
the parameters of the model second. The items are divided into an anchor set (items
that are assumed to have no DIF) and a studied item (or items). DIF is tested one
item at a time, with between-group differences for all of its parameters evaluated
simultaneously, then perhaps separately (by classes of parameters) within each item.

Figure 1 illustrates the difference between DIF and factorial invariance analyses.
The important thing to notice is that DIF analysis works with items as the
superordinate classification and then parameters within items, while the analysis
of factorial invariance examines classes of model parameters first and then items
within parameter sets.
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Fig. 1 Left panel: Schematic depiction of IRT DIF analysis, checking the equality of the
parameters for a single item (orange) between groups using the other items (cyan) as the anchor.
Right panel: Schematic depiction of analysis of factorial invariance, checking first equality of factor
loadings between groups, then constraining intercepts equal, and then making specific variances
equal

Figure 2 shows a schematic depiction of IRT DIF analysis, checking the equality
of the parameters for a single item between groups using the other items as the
anchor, translated (in the right panel) into the parallel procedure using the CFA
model. We use this idea to repeat the analysis of the eight-item subset of the Bem
femininity scale with a linear model.

3.2.1 The Example Continued: Eight Items from the Bem
Femininity Scale

We make use of the same responses to eight items that were used previously to
illustrate IRT DIF analysis, now with the linear model and maximum likelihood
estimation as implemented in the lavaan software (Rosseel 2012). We again use
L.R. G2 tests for each item with all other items as anchor. These statistical tests are
based on the difference between the values of the loglikelihood for two models for
each item, with and without equality constraints for all three-item parameters (�i,
˛i, �2i ) for each item.

A summary of the results is in Table 2. In parallel with the IRT analyses, the same
three items exhibit significant DIF: “Yielding,” “Feminine,” and “Sympathetic.”



88 D. Thissen

a b

It
em

s
It

em
s

Group 2

IRT DIF CFA DIF

Group 1
Parameters Parameters

a b

=? =?

It
em

s
It

em
s

Fig. 2 Left panel: Schematic depiction of IRT DIF analysis, checking the equality of the
parameters for a single item (orange) between groups using the other items (cyan) as the anchor.
Right panel: Parallel depiction of CFA DIF analysis, checking equality of each item’s parameter
set

Table 2 Linear CFA DIF detection results; significant tests with the p-values evaluated using the
Benjamini–Hochberg procedure are bold

All other items as anchor

Item Item stem L.R. G2 df p

2 Yielding 15:1 3 0.002
11 Affectionate 0:6 3 0.899

20 Feminine 478:0 3 <0.001
23 Sympathetic 10:1 3 0.018
29 Understanding 6:8 3 0.079

32 Compassionate 6:9 3 0.074

35 Eager to soothe hurt feelings 5:2 3 0.159

56 Loves children 0:9 3 0.836

Partitioning the DIF statistics into components attributable to differences
between the three parameters separately for the two groups for items with significant
DIF, we find: “Yielding” exhibits a significant difference between groups only in
�i (G2.1/ D 9:7, p D 0:002). “Feminine” has significant differences for all three
parameters (for �i: G2.1/ D 12:2, p < 0:001; for ˛i: G2.1/ D 447:3, p < 0:001;
for �2i : G2.1/ D 18:5, p < 0:001). For “Sympathetic,” only the test for the intercept
is significant (G2.1/ D 10:2, p D 0:002).

Figure 3 shows the expected score curves as functions of the latent variable, and
the modeled conditional distributions of the responses at f or � values of �2, 0,
and 2, for the three items that exhibit DIF with the linear (CFA) results on the left
and the IRT DIF results on the right.

For “Yielding,” the results from both analyses can be stated succinctly: The slope
differs between men (blue lines) and women (magenta lines); “Yielding” is a “good”
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Fig. 3 Linear CFA models (left) and IRT models (right) for the three DIF items. Each graphic
shows the expected score curve (a straight line for the linear models) on the 1–7 response scale as
a function of the latent variable measured by the other items, with modeled response distributions
at f or � values of �2, 0, and 2. The models for the men are shown in blue and those for the women
in magenta
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item for measuring femininity for men, but it is unrelated to the latent variable for
women. The IRT analysis also has differences between men and women in the
thresholds (or intercepts, conditional on the slope) but that appears to have been
a side effect of the slope difference.

For “Feminine,” the point-mass discrete conditional distributions make the
most important feature of the data clear: Nearly all the men say it is “never or almost
never true” that “Feminine” describes them, regardless of their level on the latent
construct. So the slope for men is near zero. For women, there is a relationship
between endorsement of “Feminine” and the construct, so there is a significant
difference in the slope between men and women. There are also significant, and
large, differences in the intercept and the conditional variance.

“Sympathetic” provides an illustration of classic DIF: a subtle effect that is barely
detectable as statistically significant. Responses from the men are a uniform 0.4
higher on the 1–7 response scale.

4 Conclusion

This chapter has illustrated the use of the linear CFA model for DIF detection for
items with seven alternative Likert-type response scales. Essentially the same results
were obtained with IRT and CFA analyses. For items with seven (plus or minus a
couple) alternative Likert-type response scales, whether it is preferable to use IRT
(categorical, nonlinear) or CFA (continuous, linear) models probably depends on
a number of features of the data at hand. The IRT analysis may be preferable for
samples larger than a few hundred and items with very skewed observed response
distributions. The IRT model’s discrete representation of the error distribution is in
some obvious senses more correct than the normal approximation.

On the other hand, for smaller samples, the use of the linear CFA model avoids
the need to collapse categories. And the CFA model has only three parameters
per item where the IRT graded response model has seven for that many response
categories; it is not clear that the additional four parameters for the IRT model are
worth their cost in estimation precision. Those parameters basically “adjust for”
differential spacing among the responses, but the Likert-type responses may “act as
if” they were nearly equally spaced numbers.

Ultimately the data analyst must choose. We have shown that basically the same
results can be obtained either way, if the use of the linear model tests hypotheses
in the same order as has been used in IRT approaches to DIF detection. As we
noted earlier, the procedures involved are closely related in many respects to those
suggested by Raykov et al. (2013) in a recent article on factorial invariance, which
borrows from methods commonly used in DIF analysis, including the use of the
Benjamini–Hochberg procedure to adjust for multiple comparisons among groups
for many items. However, the work by Raykov et al. was not focused on DIF
analysis; this chapter has intended to present the use of the linear CFA model from
the perspective of IRT.
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Finally! A Valid Test of Configural Invariance
Using Permutation in Multigroup CFA

Terrence D. Jorgensen, Benjamin A. Kite, Po-Yi Chen, and Stephen D. Short

Abstract In multigroup factor analysis, configural measurement invariance is
accepted as tenable when researchers either (a) fail to reject the null hypothesis
of exact fit using a ¦2 test or (b) conclude that a model fits approximately well
enough, according to one or more alternative fit indices (AFIs). These criteria
fail for two reasons. First, the test of perfect fit confounds model fit with group
equivalence, so rejecting the null hypothesis of perfect fit does not imply that the null
hypothesis of configural invariance should be rejected. Second, treating common
rules of thumb as critical values for judging approximate fit yields inconsistent
results across conditions because fixed cutoffs ignore sampling variability of AFIs.
As a solution, we propose replacing ¦2 and fixed AFI cutoffs with permutation tests.
Iterative permutation of group assignment yields an empirical distribution of any fit
measure under the null hypothesis of invariance. Simulations show the permutation
test of configural invariance controls Type I error rates better than ¦2 or AFIs when a
model has parsimony error (i.e., negligible misspecification) but the factor structure
is equivalent across groups (i.e., the null hypothesis is true).

Keywords Measurement equivalence • Configural invariance • Permutation •
Multiple group confirmatory factor analysis

1 Introduction

The assumption of measurement equivalence/invariance (ME/I) is required to
draw inferences about how latent constructs might differ across different contexts,
such as different occasions or populations. Configural ME/I, in particular, must
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be implicitly assumed before measurement parameters can be compared across
contexts, whose equality is required before comparing common-factor parameters
across contexts. Multigroup confirmatory factor analysis (CFA) is one of the most
common frameworks used to test ME/I across groups (Vandenberg and Lance 2000),
and multigroup models provided the only avenue for testing whether factor structure
is configured equivalently across groups.

We first describe the current recommended best practices for testing configural
invariance, as well as their limitations. We then propose a permutation randomiza-
tion test of configural invariance across groups. We present Monte Carlo simulation
studies to compare the power and Type I error rates of the permutation method to
other methods.

1.1 Assessing Configural Invariance

To test for configural invariance (i.e., the same form), researchers fit a model with
identical factor structure across groups, but allow all freely estimated measurement-
model parameters (factor loadings, intercepts, and residual variances) to differ
between groups (except scale-identification constraints). The likelihood ratio test
(LRT or ¦2 statistic of exact fit) is used to judge whether the configural invariance
model is an acceptable baseline model before constraining measurement parameters
(Byrne et al. 1989). If the test is not significant at the specified ’ level, the analyst
fails to reject the null hypothesis (H0) that the configural model fits well and
proceeds to test equality of item parameters (e.g., factor loadings, intercepts or
thresholds, residual variances) across groups.

The LRT confounds two sources of model misfit (Cudeck and Henly 1991;
MacCallum 2003): estimation discrepancy (due to sampling error) and approxi-
mation discrepancy (due to a lack of correspondence between the population and
analysis models). Because configural ME/I is assessed by testing the absolute
fit of the configural model, an LRT for a multigroup model further confounds
two sources of approximation discrepancy. The overall lack of correspondence
between the population and analysis models could theoretically be partitioned into
(a) differences among the groups’ true population models and (b) discrepancies
between each group’s population and analysis models. It is possible (perhaps even
probable) that an analysis model corresponds only approximately to the groups’
population models (Byrne et al. 1989), yet the analysis model may be equally
(in)appropriate for each group. Although overall model fit is certainly important to
assess in conjunction with tests of ME/I, the H0 of configural invariance is only
concerned with group equivalence, so the LRT does not truly provide a test of
configural invariance.

Large sample sizes make the LRT sensitive even to minute differences in model
form, which would have little or no practical consequence on parameter estimates.
Many researchers would prefer to use an alternative fit index (AFI) to assess the
approximate fit of the configural model. Putnick and Bornstein (2016) found that
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only 17% of ME/I tests are decided by the LRT alone, whereas 46% also involve
at least one AFI, and 34% are decided using AFIs alone. The comparative fit index
(CFI) (Bentler 1990) was reported for 73.2% of ME/I tests, making it the most
popular AFI in this context. This chapter will focus mainly on CFI, but the root
mean square error of approximation (RMSEA) (Steiger and Lind 1980) is also very
popular. AFIs are functions of overall discrepancies between observed and model-
implied sample moments, so using them to assess configural invariance would
confound group equivalence with overall misfit, just like the LRT. However, we
discuss their additional limitations below.

Most AFIs do not have known sampling distributions,1 so evaluating the fit of a
configural model involves some subjective decisions (e.g., which fit indices to use,
what values indicate acceptable fit). Sometimes there are conflicting recommenda-
tions based on different criteria. For example, Bentler and Bonett (1980) suggested
CFI > 0.90 indicates good fit, yet Hu and Bentler (1999) recommended CFI > 0.95 as
a stricter criterion. Browne and Cudeck (1992) suggested RMSEA < 0.05 indicates
close fit, RMSEA < 0.08 indicates reasonable fit, and RMSEA > 0.10 indices poor
fit (RMSEA between 0.08 and 0.10 indicates mediocre fit) (MacCallum et al. 1996),
yet Hu and Bentler recommended RMSEA < 0.06 as a stricter criterion. According
to an October 2016 Google Scholar search, Hu and Bentler’s criteria seem to be
more widely applied (35,474 citations) than Bentler and Bonett’s (13,815 citations)
or Browne and Cudeck’s (2843 citations).

The problem with using fixed cutoffs, even as mere rules of thumb, is that they
ignore conditions specific to the study, such as sample size (and by implication,
sampling error), number of groups, sample size ratios, number (and pattern) of
indicators and factors, etc. Fixed cutoffs can also lead to the apparent paradox that
larger samples yield lower power, which occurs when the AFI cutoff is more extreme
than the population-level AFI2 (Marsh et al. 2004).

1.2 A Permutation Randomization Test of Configural
Invariance

When a theoretical distribution of a statistic is unavailable for null-hypothesis
significance testing, it is possible for researchers to use a resampling method to
create an empirical sampling distribution from their observed data. Rodgers (1999)
provided a useful taxonomy of resampling methods. One flexible method that
can be used to create an empirical approximation of a sampling distribution is
the permutation randomization test. If a method of resampling the data can be
conceived such that a H0 is known to be true (in the permutation distribution),

1A notable exception is RMSEA. See an excellent discussion by Kenny et al. (2015).
2Population-level AFIs can be obtained by fitting the analysis model to the population moments or
can be estimated from the average AFI across Monte Carlo samples.
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then reference distributions can be empirically approximated for statistics whose
sampling distributions are unknown or intractable.

The logic of the permutation test is related to the use of random assignment
in experimental designs. Random assignment of subjects to two (or more) groups
will average out any between-group differences, so that on average, group mean
differences would be zero, resulting in two (or more) comparable groups before
administering different treatments. Due to sampling fluctuation, observed differ-
ences will not be exactly zero after any single random assignment, but differences
will be zero on average across replications of random assignment. Capitalizing on
this effect of randomization, when a set of observed outcome scores (Y) is randomly
(re)assigned to the two different observed groups (natural3 or experimental), any
existing between-group differences would be zero, on average.

A simple example of a permutation test is to compare two group means. The
grouping variable (G) can be resampled without replacement and paired with values
on the dependent variable (Y). The resulting randomization is a single permutation
(reordering) of the data. Because H0: �1–�2 D 0 is true (i.e., the groups do not
systematically differ in a permuted data set), the calculated t value is one observation
from a theoretically infinite population of t statistics that could be calculated under
the H0 of no group mean difference. Repeating this process 100 times results in
a distribution of 100 t statistics under H0, one t value from each permutation of
the data. As the number of permutations increases, the shape of the empirical
distribution of the t values will become a closer approximation of the true, but
unknown, sampling distribution. Using the empirical approximation of the sampling
distribution under H0, a researcher can calculate a good approximate p value by
determining the proportion of the permutation distribution that is more extreme than
the t value calculated from the original, unpermuted data.

We propose a permutation method for testing configural invariance. Randomly
permuting group assignment yields resampled data for which the H0 of group
equivalence in model fit is true, even if the model does not fit perfectly. The steps to
test configural ME/I are:

1. Fit the hypothesized multiple-group model to the original data, and save the fit
measure(s) of interest.

2. Sample N values without replacement from the observed grouping-variable
vector G. The new vector Gperm(i) contains the same values as G, but in a new
randomly determined order (i.e., Gperm(i) is a permutation of G).

3. Assign the nth row of original data to the nth permuted value from Gperm(i). On
average, group differences are removed from this ith permuted data set.

4. Fit the same multiple-group model from step 1 to the permuted data, and save
the same fit measure(s).

3The exchangeability assumption might be violated for natural groups (Hayes 1996), which we
bring up in the Discussion.
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5. Repeat steps 2–4 I times, resulting in a vector of length I for each fit measure.
6. Make an inference about the observed fit measure by comparing it to the vector

of permuted fit measures.

Step 6 can test H0 in either of two ways, yielding the same decision:

• Calculate the proportion of the vector of permuted fit measures that is more
extreme (i.e., worse fit) than the observed fit measure. This is a one-tailed p value
that approximates the probability of obtaining a fit measure at least as poor as the
observed one, if the H0 of ME/I for all groups holds true. Reject H0 if p < ’.

• Sort the vector of permuted fit measures in ascending order for badness of fit
measures like ¦2 or RMSEA or sort in descending order for goodness of fit
indices like CFI. Use the [100 � (1 � ’)]th percentile as a critical value, and
reject H0 if the observed fit measure is more extreme than the critical value.

Because permutation removes group differences (on average) without altering
the structure among the variables in any other way, this method provides a simple
framework to test configural ME/I separately from overall model fit. Furthermore,
permutation provides empirical sampling distributions of AFIs, which generally
have unknown sampling distributions. Researchers using permutation methods
would not need to rely on fixed cutoff criteria based on intuition or studies whose
simulated conditions might not closely resemble their own data and model(s), such
as CFI > 0.90 (Bentler and Bonett 1980) or CFI > 0.95 (Hu and Bentler 1999). As
we demonstrate using simulation studies, none of these fixed rules-of-thumb con-
sistently control Type I error rates. In contrast, permutation distributions implicitly
take into account the unique qualities of the data and model under consideration.

2 Monte Carlo Simulations

To evaluate the permutation methods proposed in the previous section, we present
results from two simulation studies. The first evaluated Type I error rates when H0

is true and second evaluated power when H0 is false. In each study, we compared H0

rejection rates between permutation methods and currently recommended practices
under a variety of sample-size and model-size conditions.

We chose conditions based on Meade et al. (2008) ME/I study, which included
approximation error in the form of near-zero cross-loadings in the population
models that were fixed to zero in the analysis models (i.e., simple structure was only
approximately true; see Table 1). When fitting simple structure CFA models to the
model-implied population moments, AFIs indicated good model fit using standard
conventions (e.g., CFI > 0.98, RMSEA < 0.03).

Based on Meade et al. (2008), we varied sample size (N) in each of two groups
across five levels, 100, 200, 400, 800, and 1600 per group. We varied model
complexity via number of factors (2 or 4) and number of items per factor (4 or
8), using the same population values for factor loadings as Meade et al. (2008) (see
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Table 1 Population factor loadings (ƒ matrix)

Item Factor 1 Factor 2 Factor 3 Factor 4

1 0.68 (0.54) �0.03 �0.02 �0.11
2 0.76 (0.62) 0.02 �0.03 �0.03
3 0.74 (0.60) �0.04 �0.03 0.00
4 0.75 (0.61) 0.00 �0.01 0.08
5 0.04 0.76 (0.61) 0.07 0.00
6 �0.06 0.56 (0.41) �0.03 0.04
7 �0.08 0.75 (0.60) 0.07 0.06
8 �0.02 0.72 (0.57) 0.05 �0.03
9 0.07 �0.01 0.80 (0.65) 0.00
10 �0.01 �0.03 0.58 (0.43) �0.02
11 �0.04 0.06 0.80 (0.65) 0.03
12 0.04 0.00 0.39 (0.24) 0.05
13 �0.02 �0.02 �0.01 0.65 (0.51)
14 0.00 �0.13 �0.03 0.67 (0.53)
15 0.00 0.03 �0.01 0.59 (0.45)
16 0.00 0.03 0.02 0.67 (0.53)

Note. For conditions with eight indicators per factor, œs in parentheses were used as population
parameters, and œs for items 17–32 were identical to œs for items 1–16. Cells with only one value
(near zero) are minor discrepancies from simple structure (approximation error)

Table 1). In the population models, we fixed all intercepts to zero, discussed next),
factor means to zero, factor variances to one, factor correlations to 0.3, and residual
variances to values that would set total item variances to one (i.e., standard normal
variables). We simulated 2000 replications in each condition and used I D 200
permutations to calculate p values associated with fit measures.

Whereas Meade et al. (2008) simulated configural lack of invariance (LOI) by
adding additional factors to group two’s population model (resulting in dozens of
different population models), we simply changed one, two, three, or four of the
zero (or nonsalient) parameters in group two’s population model. The first level of
configural LOI was to change factor loading œ51 from 0.04 to 0.7. The second level
was to make the same change to œ51 and to add a residual covariance (™72 D 0.2).
The third level made the same additions and changed œ12 from �0.03 to 0.7, and
the fourth level also added another residual covariance (™84 D 0.2). These arbitrary
levels of configural LOI served to compare the power of different methods to detect
the same lack of correspondence between the groups’ population models.

We used R (R Core Team 2016) to generate multivariate normal data and the
R package lavaan (version 0.5–20; Rosseel 2012) to fit models to simulated data.
Using lavaan’s default settings, the scales of the latent factors were identified by
fixing the first factor loading to one, and the latent means were fixed to zero.
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3 Results

We first used a 5 (N) � 2 (2 or 4 factors) � 2 (4 or 8 items per factor) design, holding
LOI constant at zero. Because the population models included minor approximation
discrepancy in the form of near-zero cross-loadings, we expected Type I error rates
to exceed 5% and for these rates to increase with N. Because fixed cutoffs do not
take sampling variability or model complexity into account, we expected results to
vary across Ns and model sizes. We expected permutation to yield nominal Type I
error rates in all conditions for all fit measures, which would indicate a valid test of
configural invariance.

As expected, using the traditional LRT resulted in extremely high Type I error
rates. Figure 1 confirms that even in the condition with the smallest N and model,
Type I errors were almost 20%, approaching 100% as N increased. For larger Ns,
rejection rates matched the expected power using the Satorra and Saris (1985)
method, but rejection rates were inflated at smaller N, especially in larger models,
due to the small-sample bias of the LRT (Nevitt and Hancock 2004). In contrast,
permutation provided nominal Type I error rates across conditions.

Fig. 1 Observed Type I error rates for LRT, CFI rules of thumb, and permutation tests of configural
invariance, as well as expected power of LRT using the Satorra and Saris (1985) method
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Using AFIs to assess approximate fit of the configural model only appeared to
yield inflated Type I errors under small-N conditions, but that depended heavily
on the size of the model and on which rule of thumb was used. Figure 1 shows
that larger models yielded more errors at smaller N. Similar results were found for
RMSEA guidelines. In contrast, permuting CFI (or any AFI) maintained nominal
Type I error rates across all conditions.

We next used a 5 (N) � 4 (LOI) design, holding model complexity constant
(4 items for each of 2 factors, the condition in which fixed cutoffs for CFI showed
�5% Type I errors). We expected permutation to have lower power than the LRT,
which already had high rejection rates when H0 was true. Given that Type I error
rates for AFI cutoffs were typically close to zero for this particular population
model, we had no specific hypotheses about how their power would compare to
power using permutation, but we did expect lower power with increasing N in
conditions where population AFIs met guidelines for acceptable fit.

Figure 2 confirms our expectation that the LRT had the highest power to detect
LOI, particularly at the lowest level of LOI and the smallest N. But as Fig. 1 shows,
the greater power came at the expense of high Type I errors because the LRT tests
overall model fit rather than configural invariance alone. Hu and Bentler’s (1999)
more stringent criterion (CFI > 0.95) yielded power almost as high as the LRT,

Fig. 2 Power for LRT (gray lines) and CFI (black lines) using theoretical (or fixed) vs.
permutation-based critical values. The dotted gray line indicates 80% power
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whereas Bentler and Bonett’s (1980) less stringent criterion (CFI > 0.90) yielded
lower power that decreased as N increased in conditions where only one or two
salient population parameters differed between groups. We found the same pattern
of results for RMSEA.

Permutation yielded inadequate power when only a single parameter differed
between populations, unless N � 800 per group. Adequate power to detect greater
LOI was achieved at smaller N. The permuted LRT tended to have greater power
than permuted CFI, but the discrepancy was small when N and LOI were large.
Permuted RMSEA had power similar to the permuted LRT.

4 Discussion

We proposed a permutation randomization framework for using multigroup CFA
to test ME/I. We proposed this framework to address some limitations of current
best practices. First, the LRT of exact (or equal) fit does not test the correct H0 of
group equivalence for the configural model. Assessing overall model fit confounds
any group differences with overall model misspecification. Irrespective of how well
a model only approximates a population process, the model may be equally well
specified for both groups, in which case the H0 of group equivalence should not
be rejected. Our simulation studies showed that current best practices can lead to
highly inflated Type I error rates, even for models with very good approximate fit.
Permutation, on the other hand, yields well-controlled Type I error rates even when
the model does not fit perfectly, providing the only valid test of configural invariance
across groups that we are currently aware of.

Second, most researchers prefer AFIs over the LRT (Putnick and Bornstein 2016)
because of the latter’s sensitivity to differences that are negligible in practice, which
could be thought of as inflated Type I error rates when assessing approximate fit
in large samples. However, lack of known distributions for �AFIs leads to reliance
on rule-of-thumb cutoffs that, as we have shown, lead to inflated Type I error rates
in smaller (albeit still large) samples, especially in larger models. Our simulations
showed that regardless of which fit measure is preferred, permutation provides well
controlled Type I error rates, with power to detect true differences that is comparable
to the LRT.

We recommend that applied researchers interested in testing configural invari-
ance use the permutation method, which is implemented in a function called
“permuteMeasEq()” in the R package semTools (semTools Contributors
2016). If the overall fit of the configural model is satisfactory, the permutation
method provides a valid test of the H0 of group equivalence in model form and
is currently the only method to do so. Permutation may be particularly valuable
in conditions with inflated error rates, such as missing or categorical data, but its
utility may be limited by the exchangeability assumption. We encourage further
investigation of permutation methods for testing group equivalence, particularly



102 T.D. Jorgensen et al.

for developing guidelines for modifying individual group models (when configural
invariance does not hold) versus making modifications to poorly fitting models
simultaneously across groups (when configural invariance does hold).
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Outcries of Dual Scaling: The Key Is Duality

Shizuhiko Nishisato

Abstract There are a number of points in the development of dual scaling which
have escaped our attention. In my Beijing paper, problems with joint graphical
display were discussed to fill the gap of understanding, and the current paper deals
with some other points. These two papers can be regarded as a sequel to my paper,
entitled “Gleaning in the field of dual scaling,” written 20 years ago. Noting that the
basic premise of dual scaling lies in duality of exhaustive analysis, we will look at a
few more points in this paper. Outcry one is on linear and nonlinear analysis. As is
well known, dual scaling is a method for simultaneous regressions of row variates
and column variates on data, capturing all linear and nonlinear relations contained
in the data. From this point of view, Likert scores, used as scores for data analysis,
are far from satisfactory, for it is a strictly linear and data-independent procedure.
Outcry two is on our definition of multidimensional quantification space, because
the traditional framework needs to be modified so as to satisfy our objective, that is,
describing both row and column structure of data in a symmetric comprehensive
way. Outcry three is on a logical alternative to problem-plagued joint graphical
display, and a recommended alternative is cluster analysis. Finally, outcry four is
on the distinction between dual space and total space, leading to the suggestion that
simple correspondence analysis fails to provide exhaustive analysis of information
in data.

Keywords Coordinates for data • Simultaneous symmetric analysis • Joint
graphical display • Doubled space • Cluster analysis • Dual space versus total
space

1 Introduction

In 1996, Nishisato presented his presidential address, entitled “Gleaning in the field
of dual scaling,” in which he identified a number of hidden or unsolved aspects
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of dual scaling (Nishisato 1996). It is 20 years since then, and one wonders if
dual scaling is well understood and if some of the problems raised then have
been solved to our satisfaction. Some major problems were discussed in the paper,
entitled “Multidimensional joint graphical display of symmetric analysis: Back to
the fundamentals” (Nishisato 2016a). The current paper supplements it with further
discussion of the problems in quantification theory. Current concerns are with the
nature of multidimensional space used in quantification, in particular about the
point that we must at least double the dimensionality of the space to accommodate
quantified variates, which makes us wonder if we should still pursue joint graphical
display or consider an alternative to graphical display. Simple correspondence
analysis is known as one of the main realms of quantification theory, and it is dual
scaling of the contingency table. The current paper, however, will take us to the
point at which we may have to say “farewell” to it. Let us discuss these problems as
outcries.

1.1 Outcry 1: Linear and Nonlinear Analysis

This is a well-known aspect of quantification theory, but it seems that the point needs
to be reemphasized. Suppose that we collect data on preference of tea under different
water temperatures. Each subject is given ten cups of tea, ranging from freezing cold
to boiling hot, and is asked to rate the preference of ten cups of tea on the 10-point
scale, ranging from the worst to the best. If we use 10-point Likert scales for the
temperature and for the preference ratings, the data can be presented as a 10-by-10
contingency table of choice frequencies. Typical analysis of the table using Likert
scores without transformation, however, would not capture such a nonlinear relation
as might be expected, namely, the preference being at the lowest (least liked) when
the tea temperature is boiling hot, followed by freezing cold, then lukewarm, then
ordinary cold ice tea, and finally optimally hot tea at the highest (most preferred).
There are at least two distinct approaches to this kind of nonlinear relation. The first
approach is to predict the preference Likert scores as a nonlinear function of the
temperature of tea, indicated by Likert scores. Should we use a quadratic term, a
cubic term, interaction terms, or higher order terms? The choice of these is not easy,
but we must seek the best possible nonlinear function, and this is, however, not
what most investigators would normally do—they do not consider any nonlinear
function. Furthermore, what can we do to deal with multidimensional aspects of the
data in this nonlinear regression approach? This is not a simple problem. The second
approach is via correlation of the Likert scores of the two variables. In this approach,
it is well known that Pearsonian correlation captures only linear relations; thus this
is not an appropriate way to analyze nonlinear relations. One should realize then that
Likert scores are predetermined quantities, independently of the data structure, and
without additional operations of nonlinear transformations, one cannot generally
expect exhaustive analysis of information in data through Likert scores. In contrast
to these two approaches, dual scaling (correspondence analysis, homogeneity
analysis, optimal scaling) is a method to find optimal scores for both the temperature
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and the preference ratings as regressions on the data. In other words, dual scaling
is used to transform Likert scores typically nonlinearly so as to make the regression
of rows (ten cups of tea) on preference ratings and the regression of columns (ten
preference values) on tea simultaneously linear (Hirschfeld 1935). Thus, this is a
data-dependent method of scaling row values and column values in the optimal way,
the reason why it is also called optimal scaling (Bock 1960), and multidimensional
aspects of the data can be handled without problems. In this context, dual scaling
is a method of projecting row values to the column values and column values to
row values in the symmetric way. The common projection operators are known as
singular values, which are also Hirschfeld’s simultaneous regression coefficients
and Guttman’s maximal correlation coefficients between row quantification and
column quantification. In terms of multidimensional decomposition, Nishisato
(2006) has shown that dual scaling maximizes the Cramér’s coefficient (Cramér
1946) and that this coefficient is the sum of the squared nonlinear correlation
coefficients of principal components. This indicates how dual scaling deals with
multidimensional nonlinear relations in the data.

In summary, Likert scores are predetermined scores, independently of the data,
and should be used only for the purpose of data collection. Once data are collected,
Likert scores should be subjected to transformation, typically nonlinear, so as to best
describe the information in data.

There is a caution on the use of order constraints in analysis. Because the
response categories are ordered (e.g., never < sometimes < often < always), one may
wish to derive scores for these categories under the order constraint. This may sound
reasonable, but one should not even be tempted to impose such an order constraint
if the study aims to explore the information in the data, that is, if the research is
exploratory. The reason is clear. The order constraint permanently wipes out the
possibility of ever finding nonlinear relations in the data (e.g., one’s ability to lift a
heavy object increases as one gets older to a certain point and then decreases beyond
a certain age). Thus, a general advice is not to use the order constraint in exploratory
research. Note that there are many studies on ordered categories in quantification
theory, but that the above advice should be kept in mind.

1.2 Outcry 2: Nature of Multidimensional Space
for Symmetric Analysis

Dual scaling is based on the mathematical decomposition of data, called dual
relations:

Pm
i fijyik

f:j
D 	kxkjI

Pn
j fijyki

fi:
D 	kyik
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where fij is the frequency of cell (i, j) of a contingency table, yik and xkj are
weights for row i and column j, called standard coordinates, of component k, 	kxkj

and 	kyik are the corresponding principal coordinates, and ¡k is the singular value
of component k. This is nothing but Hirschfeld’s simultaneous linear regressions
with the singular value as the regression coefficient, and the singular value is
also Guttman’s maximal correlation between the rows and the columns and also
Nishisato’s projection operator for rows onto columns and vice versa. From the last
point, we can conclude that the row axis and the column axis for each component are
separated by the angle � k D cos�1	k (Nishisato and Clavel 2003, 2008). This space
discrepancy indicates that if we analyze a two-by-two contingency table, we obtain
a single component, but the fact of the matter is that dual scaling of this contingency
table requires a two-dimensional graph, one for row variables and the other for
column variables with the two axes separated by the angle � . This means that one
component of dual scaling outcome requires two dimensions and two components
four dimensions. From this point of view, the currently most popular graphical
methods used in quantification studies are all problematic. The first two (symmetric
and nonsymmetric graphs) are traditional quantification approaches to graphical
display (see, e.g., Benzécri et al. 1973; Nishisato 1980, 1994, 2007; Greenacre
1984; Lebart et al. 1984; Gifi 1990; Le Roux and Rouanet 2004; Beh and Lombardo
2014), and the third one (biplot) is a more general and mathematical invention with
a variety of graphical choices (see, e.g., Gabriel 1971; Gower and Hand 1996).

1. Symmetric display or French plot: The two sets of principal coordinates, 	kxkj

and 	kyik, are plotted in the same space (i.e., without taking the space discrepancy
� k into consideration). In other words, a two-dimensional configuration of
data points is plotted in a unidimensional graph; similarly, a four-dimensional
configuration is plotted in a two-dimensional graph. Thus, unless the singular
value ¡ is very close to 1, the symmetric display does not offer a usable graph
(see, for example, the warning by Lebart et al. 1977). Generally speaking,
symmetric display is an illogical and obviously wrong graph for the data, but
for its simplicity, it has unfortunately become a routine method for graphing
quantification results. This practice should immediately be discarded.

2. Nonsymmetric display: This method plots the principal coordinates of one
variable and the standard coordinate of the other variable, for example, 	kxkj

and yik. This is the projection of x onto the standard space of y. But, the standard
coordinates are not the coordinates of the data, but artificially adjusted for the
common variance, independently of the data at hand. Thus, projecting data
onto these coordinates is not a logical way to describe data, thus making the
joint graph not usable. See the demonstration (Nishisato 1996) that the standard
coordinates associated with a small singular value are much further from the
origin than those associated with a large singular value because the standard
coordinates reciprocally compensate the frequencies of data points. One can
consider the problem of principal component analysis, in which we start with
a linear combination of variables, then find the principal axis, which is defined as
the axis on which projections of data have the largest variance. Those projections
of data on the principal axis are called principal coordinates. Therefore, principal
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coordinates are the coordinates of data in the most informative way. Standard
coordinates, on the other hand, do not represent projections of data points unless
the singular value is 1.

3. Biplot: Consider the singular-value decomposition of a two-way data,
Y�a�1 � aX, where Y and X are, respectively, matrices of left and right singular
vectors of the data matrix, � is the diagonal matrix of singular values, and ’ is
bounded by 0 and 1. In biplot, graphical display of both variates are considered
for various values of ’. Notice, however, that only when ’ is either 0 or 1, it
offers a plot comparable to the above two traditional plots, that is, nonsymmetric
display of (2). In introducing coordinate systems for a set of variables, one of the
most popular methods is through principal component analysis, where principal
coordinates are the projections of data on principal axes. In this regard, principal
coordinates represent data structure. It is true that the principal coordinate
system is only one way of representing data, and there are an infinite number
of coordinates systems, which, however, should be orthogonal transformations
of the principal coordinates so long as we want to represent the data structure.
Those variates used in biplots are not related to principal coordinates in any
imaginable ways, except for one set of variates, Y or X, when ’ is 0 or 1. From
the view of the graphical display in Euclidean space, therefore, it is the current
author’s personal view that a question mark has to be placed on the use of biplots
for exploring data structure.

Considering that each of these popular methods for joint graphical display leaves
a serious concern from the viewpoint that we wish to represent data in Euclidean
multidimensional space, there seems to be an urgent problem of either finding a
better method of graphical display or to give up a graphical display completely and
look for a non-graphical way of summarizing the outcome of quantification.

1.3 Outcry 3: From “Graphing Is Believing”
to Cluster Analysis

“Graphing is believing” (Nishisato 1997) was an attempt to legitimize joint
graphical display of quantification results in Euclidean space. Since then, the author
realized that a complete description of data requires a large number of dimensions,
more precisely at least twice the dimensions that the traditional joint graphical
display deals with. To clarify why we must at least double the dimensionality of
space, Nishisato and Clavel (2010) proposed a framework for comprehensive dual
scaling with doubled dimensions, and noting this aspect of expanded (doubled)
dimensionality for graphical display, the authors proposed the use of cluster analysis
as an alternative to the traditional graphical displays.

To illustrate their procedure, let us use an example from Stebbins (1950): 500
seeds of six varieties of barley were planted at six agricultural stations in the United
States, and at the harvest time, 500 seeds at each station were randomly chosen
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Table 1 Varieties of barley seeds after a number of years at different locations (from Stebbins
1950)

Locations
Arlington Ithaca St. Paul Moccasin Moro Davis

Barley (Virginia) (New York) (Minnesota) (Montana) (Oregon) (California)

CTa 446 57 83 87 6 362
Ha 4 34 305 19 4 34
WS 4 0 4 241 480 65
Ma 1 343 2 21 0 0
Ga 13 9 15 58 0 1
Me 4 0 0 4 0 27

aBarley: CT Coast & Trebi, Ha Hanchen, WS White Smyrna, Ma Manchuria, Ga Gatemi, Me
Meloy

and sorted into six varieties of barley, and those seeds were again planted in the
following year, and at the harvest time, 500 randomly chosen seeds were again
classified into six varieties, and so on. This experiment was repeated over a number
of years to see if certain varieties of barley will become dominant at particular
locations. The numbers of years of these experiments are not uniform but different
from station to station. The final counts reported in Stebbins (1950) are summarized
in the 6 � 6 contingency table (Table 1).

A complete dual scaling analysis of this data set is reported in Nishisato
(1994), which shows the percentage contributions of the five components are, in
the descending order, 38, 33, 25, 3, and 1%, showing the dominance of three
components. Following Nishisato and Clavel (2003), the 12 � 12 super-distance
matrix, consisting of the within-set distances of stations (between-station distances),
the between-set distances (those between stations and barley varieties), and the
within-set distances of barley varieties (between barley varieties), was calculated
as given in Table 2.

This 12 � 12 matrix contains the distance information of all the variables in
Euclidean space. Clavel and Nishisato (2008) and Nishisato and Clavel (2008)
thoroughly analyzed this table by the hierarchical clustering method and the k-
means clustering (see the results in their papers). Nishisato (2012) argued, however,
that the investigators would typically be interested in the relations between row
variables (stations) and column variables (varieties of barley), not relations within
stations or within barley varieties, and therefore proposed that we should analyze
only the between-set distance matrix, that is, the “barley varieties”-by-“locations”
distance matrix. Although the current example of the between-set distance matrix is
6 � 6, the number of rows and the number of columns are not always equal; hence
the between-set distance matrix is typically rectangular, as opposed to square. In
order to deal with a rectangular distance matrix for clustering, Nishisato (2012)
proposed a very simple and intuitive method of clustering, called clustering with the
p-percentile filter. This method is very simple and does not require a complicated
algorithm: calculate the p-percentile distance (the criterion distance) out of the
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Table 2 Within-set and between-set distances in five-dimensional space (from Clavel and
Nishisato 2008)

CT 0.0 (Symmetric upper portion is omitted)
Ha 2.1 0.0
WS 1.9 2.5 0.0
Ma 2.6 2.9 2.8 0.0
Ga 1.7 2.1 1.7 2.6 0.0
Me 1.3 2.6 2.2 3.0 2.2 0.0
Ara 0.6 2.3 2.1 2.7 1.8 1.5 0.0
It 2.3 2.7 2.6 0.9 2.4 2.8 2.5 0.0
SP 2.0 0.9 2.5 2.9 2.1 2.5 2.3 2.7 0.0
Mo 1.5 2.2 0.9 2.5 1.2 1.9 1.7 2.3 2.2 0.0
Mo 2.1 2.6 0.7 2.9 1.9 2.4 2.4 2.8 2.7 1.1 0.0
Da 0.6 2.1 1.8 2.6 1.7 1.3 0.6 2.4 2.1 1.4 2.0 0.0

aLocations: Ar Arlington, It Ithaca, SP St. Paul, Mo Mocasin, Mo Moro, Da Davis

Table 3 The 6 � 6 filtered
between-set distance matrix,
using 22-percentile criterion
point

CTa Ha WS Ma Ga Me

Arb 0.6 – – – – –
It – – – 0.9 – –
SP – 0.9 – – – –
Moc – – 0.9 – 1.2 –
Mor – – 0.7 – – –
Da 0.6 – – – – 1.3

aCT Coast & Trebi, Ha Hanchen, WS White
Smyrna, Ma Manchuria, Ga Gatemi, Me
Meloy
bAr Arlington, It Ithaca, SP St. Paul, Mo
Mocasin, Mo Moro, Da Davis

elements of the between-set distance matrix, discard all distances which are larger
than the criterion distance (i.e., variables which are widely separated do not belong
to the same cluster), and see what clusters one can see among the remaining
distances. The underlying idea is that we are interested only in those variables which
are close to one another, thus we might as well discard all irrelevant distances from
clustering. This method is simple and depending the value of p one chooses, the
cluster can be tight or loose, and two clusters may or may not overlap. See its
application in Nishisato (2014).

Let us apply the clustering with the p-percentile filter to the 6 � 6 matrix of the
between-set distances, that is, the distance matrix between the six barley varieties
and the six locations (see the 6 � 6 part of the left-bottom of the distance matrix). At
the current stage of development, the choice of p is arbitrary, and for this example,
p D 22 percentile was chosen, that is, all distances greater than this were discarded
from the original 6 � 6 distance matrix, as shown in Table 3.
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From this choice of the cutting point, we can identify the following clusters
(Coast & Trebi at Arlington and Davis), (Hanchen at St. Paul), (White Smyrna at
Mocasin and Moro), (Manchuria at Ithaca), (Gatemi at Mocasin), and (Meloy at
Davis). As we can see, some clusters are overlapping. We can also guess that the
overlapping can be eliminated by reducing the percentile point, although this may
result in discarding some variables from analysis.

This filtering method is still at its infancy, and there are many studies needed
before it can compete with other existing clustering methods, for example, how
to determine the optimal p value for a given data set and how to calculate the
distance between clusters. Its advantages over other methods are, among others,
easiness or simplicity and capability to deal with rectangular matrices unlike some
other existing methods. As for the traditional analysis through graphical display,
see Nishisato (1994), noting that we must sacrifice much information in graphical
display.

1.4 Outcry 4: Limitation of Simple Correspondence Analysis?

Traditionally, the French correspondence analysis identifies simple correspondence
analysis and multiple correspondence analysis as two distinct forms of quantifi-
cation. These “simple” and “multiple” methods correspond to dual scaling of the
contingency table and that of multiple-choice data, respectively.

As was described in Nishisato (1980, 2016b), however, the two types of analysis
are closely related to each other. Let us reproduce the example from Nishisato
(2016b)— in response to the two multiple-choice questions:

Q1: Do you smoke? (yes, no)
Q2: Do you prefer coffee to tea? (yes, not always, no)

The data can be represented in three forms as shown in Table 4.

Table 4 Three forms for
representing the information
in the contingency table

C D

"
3 2 1

1 2 4

#
Fa D

2
6666666666666666666666664

1 0 1 0 0

1 0 1 0 0

1 0 1 0 0

1 0 0 1 0

1 0 0 1 0

1 0 0 0 1

0 1 1 0 0

0 1 0 1 0

0 1 0 1 0

0 1 0 0 1

0 1 0 0 1

0 1 0 0 1

0 1 0 0 1

3
7777777777777777777777775

Fb D

2
666666664

3 0 3 0 0

2 0 0 2 0

1 0 0 0 1

0 1 1 0 0

0 2 0 2 0

0 4 0 0 4

3
777777775
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If we are given one of the three forms, the other two forms can be generated
from it. In this regard, the three formats are “equivalent” in some sense. Since the
latter two forms yield identical singular values, let us eliminate the second format Fa

from our discussion. The remaining formats are data forms respectively for simple
correspondence analysis and multiple-correspondence analysis. But, as Nishisato
(1980) has shown, the two formats yield different numbers of components. An m � n
table of C yields the “smaller number of m and n minus 1” components, while the
corresponding Fb provides “m C n � 2” components. Nishisato (2016b) calls twice
of the space of C as “dual space” and the space for Fb as “total space.” As is clear,
when m D n, dual space and total space have the same number of dimensions, but
when m ¤ n, the dimensionality of total space is greater than that of dual space.
What is the nature of these extra components in total space when m ¤ n?

The implication of this discrepancy is that simple correspondence analysis, which
deals with the format of C, fails to capture the total information in Fb when m ¤ n,
which is the format for multiple correspondence analysis. Thus, if we are to analyze
the data information exhaustively, the conclusion is that we should always use
multiple correspondence analysis, that is, dual scaling of multiple-choice data Fb,
rather than simple correspondence analysis or dual scaling of contingency tables C.
Does this mean “Limitation of simple correspondence analysis”?

We can stretch our imagination to the quantification of multimode contingency
tables. For example, consider a three-mode data, which can be described as a
trilinear decomposition of frequency fijk. The contingency table format will again
restrict the total number of dimensions to the smallest number of categories of the
variables minus 1. In this case, one can always represent the data in the response-
pattern format with frequencies (e.g., Fb), which will most typically yield more
components than the corresponding analysis of the three-way contingency table.
Can we then abandon simple correspondence analysis completely and always use
multiple correspondence analysis? The author’s view is “yes, we can.”

2 Concluding Remarks

Dual scaling quantifies categorical data in such a way that variates for the rows
and those for the columns are determined as simultaneous regressions of them on
the data in hand. As such, dual scaling provides the optimal way to explain the
data. As is clear from such phrases as simultaneous linear regressions (Hirschfeld
1935), reciprocal averaging (Horst 1935), and dual scaling (Nishisato 1980), the
basic premise of dual scaling lies in symmetric analysis of rows and columns of
a data matrix. It was clarified in the current paper as well as my Beijing paper
that we need to expand the multidimensional space to accommodate both variates.
This awareness of expanded space has led to the criticism of the current methods
of joint graphical display, leading to the suggestion for an alternative method of
graphical display, that is, cluster analysis. In the same context, we were brought
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back to Nishisato (1980) on the analytical comparisons between the contingency
table format and its response-pattern format of the same data. When the number
of rows is not equal to the number of columns of the data matrix, the response-
pattern format of the same data yields more components than the contingency
table format. If we are to pursue exhaustive analysis in the data, therefore, it is
recommended that we should analyze the data represented in the response-pattern
format rather than the contingency format. Data-dependent quantification, analysis
in expanded multidimensional space, and exhaustive analysis using the response-
pattern representation of the data are three major messages of the current paper.
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The Most Predictable Criterion
with Fallible Data

Seock-Ho Kim

Abstract Hotelling’s canonical correlation is the Pearson product moment
correlation between two weighted linear composites from two sets of variables.
The two composites constitute a set of canonical variates, namely, a criterion variate
and a predictor variate. Many statistical analyses in psychometrics deal with fallible
data that contain measurement errors. A method of obtaining canonical correlations
from the true-score covariance matrix is presented and contrasted with Meredith’s
method for which the disattenuated canonical correlations are obtained from the
correlation matrix of fallible data. Illustrations are presented with modified data
from two seminal papers.

Keywords Canonical correlation • Disattenuated canonical correlation • Fallible
data

1 Introduction

According to Bock (1975), Harold Hotelling (1935, 1936) derived the canonical
correlation as a response to a query by Truman Kelley. The query is finding the
variate as a linear combination of criterion variables that has the greatest multiple
correlation with the variate of a linear combination of predictor variables.

It can be noticed that in fact the canonical correlation derived by Hotelling (1935,
1936) might not be the true answer to the Kelley’s original query. Hotelling seemed
to have modified the original query to the one he could find the solution. The solution
is, of course, the canonical correlation, and the overall procedure to obtain such a
correlation is called canonical correlation analysis. Today, virtually every textbook
on multivariate statistics includes a chapter on canonical correlation analysis (e.g.,
Bock 1975; Johnson and Wichern 2007).

Almost all textbooks and reportings of empirical studies (e.g., Cooley and Lohnes
1976) present only Hotelling’s (1936) method of canonical correlation analysis.
It took about 40 years until Meredith (1964) proposed a viable solution to Kelley’s
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original query. It should be noted that Kelly’s data analyzed in Hotelling (1936)
are the so-called measurement data for which the concept of attenuated reliability
in classical test theory has an important role. The solution to the disattenuated
canonical correlation might have not been of any interest to Hotelling, even though
the attenuation problem was clearly mentioned in one of the Hotelling’s work on the
canonical correlation (Hotelling 1936, p. 377).

A summary of canonical correlation analysis is presented subsequently. Basic
algebra, computational methods, sampling properties, and statistical testing proce-
dures are included. Canonical correlation analysis with fallible data in the form of
the true-score covariance is presented together with examples. Summary remarks
and discussion follow in the concluding section.

2 Canonical Correlations

2.1 Population Canonical Correlations

Let the population covariance matrix ˙ of the p criterion variables y and q predictor
variables x with full rank be partitioned into four submatrices,

˙ D

�
˙ yy ˙ yx

˙ xy ˙ xx

�
: (1)

Assume linear combinations having unit variances provide simple summary mea-
sures of a set of variables, and let the variate � D ˛0y be a linear combination of
criterion variables and the variate � D ˇ0x be a linear combination of predictor
variables. Then the correlation between the linear combinations is given by

	 D
˛0˙ yxˇp

˛0˙ yy˛
p

ˇ0˙ xxˇ
: (2)

Canonical correlation analysis sets forth to find coefficient vectors ˛ and ˇ so as
to maximize the absolute value of 	. The weights ˛ and ˇ that maximize the abso-
lute value of the correlation can be determined only up to proportionality constants.
The proportional constants can be chosen to yield ˛0˙ yy˛ D ˇ0˙ xxˇ D 1. Using
Lagrange multipliers in the constrained maximization with partial derivatives and
solving for ˛ and ˇ, we obtain

.˙ yx˙
�1
xx ˙ xy � 	2˙ yy/˛ D 0 (3)

and

.˙ xy˙
�1
yy ˙ yx � 	2˙ xx/ˇ D 0: (4)
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It can be recognized that each of Eqs. (3) and (4) as the eigenvalue-eigenvector
problem (Johnson and Wichern 2007, pp. 97–98). The nontrivial solutions of the
equations are eigenvectors associated with the eigenvalues of 	2 that satisfy

j˙ yx˙
�1
xx ˙ xy � 	2˙ yyj D 0 (5)

and

j˙ xy˙
�1
yy ˙ yx � 	2˙ xxj D 0: (6)

The number of nonzero roots (i.e., eigenvalues) of Eqs. (5) and (6) is determined
by rank.˙ yx/. Assuming that ˙ of the two sets of variables y and x has full rank,
the number of nonzero roots s equals to min.p; q/. The jth canonical correlation 	j

is attained by the pair of canonical variates,

�j D ˛0
jy D e0

j˙
�1=2
yy y (7)

and

�j D ˇ0
jx D f0

j˙
�1=2
xx x; (8)

where 	2j is the jth largest eigenvalue of ˙ �1=2
yy ˙ yx˙

�1
xx ˙ xy˙

�1=2
yy , ej is the

associated normalized eigenvector, 	2j is also the jth largest eigenvalue of

˙ �1=2
xx ˙ xy˙

�1
yy ˙ yx˙

�1=2
xx , and fj is the associated normalized eigenvector (Johnson

and Wichern 2002, pp. 546–547).

2.2 Sample Canonical Correlations

A random sample of N observations on each of the p criterion variables y and the q
predictor variables x can be assembled to have the sample covariance matrix

S D

�
Syy Syx

Sxy Sxx

�
: (9)

The linear combinations O� D a0y and O� D b0x have the sample correlation given by

r D
a0Syxbp

a0Syya
p

b0Sxxb
: (10)

Assume that Syx has a full rank, there are s D min.p; q/ canonical correlations
exist. The jth sample canonical correlation is attained by the pair of sample
canonical variates,

O�j D a0
jy D Oe0

jS
�1=2
yy y (11)
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and

O�j D b0
jx D Of0

jS
�1=2
xx x: (12)

The squared canonical correlation r2j is the jth largest eigenvalue of S�1=2
yy SyxS�1

xx �

SxyS�1=2
yy , and Oej is the associated normalized eigenvector. The squared canonical

correlation r2j is also the jth largest eigenvalue of S�1=2
xx SxyS�1

yy SyxS�1=2
xx , and Ofj is the

associated normalized eigenvector.

2.3 Statistical Testing of Canonical Correlations

When ˙ yx D 0, then ˛0y and ˇ0x have covariance ˛0˙ yxˇ D 0 for all vectors
˛ and ˇ. There are several ways of testing ˙ yx D 0 or equivalently all 	j D 0

for large samples. Many textbooks and statistical software contain Bartlett’s (1947)
chi-square test or Rao’s (1951) F test.

The likelihood ratio test of the null hypothesis ˙ yx D 0 versus the alter-
native hypothesis ˙ yx ¤ 0 rejects the null for a large value of �2 loge� D

�N loge

Qs
jD1.1 � r2j / which is distributed as a chi-square random variable with

the degrees of freedom of pq, that is, �2.pq/. Bartlett (1941) suggests replacing the
multiplicative factor N in the likelihood ratio test with the factor .N � 1/ � .p C

q C 1/=2 to improve the chi-square approximation. Note that the composite test of
no association can be modified to test the dimensionality of significant relationships
between the two sets of variables (Bartlett 1947).

An F test based on Rao’s approximation to the distribution of likelihood ratio
(Rao 1973, p. 556; Rao 1951) can be used to perform sequentially for the nil of
each canonical correlation. The test statistic is

R D
1 ��1=n

�1=n

�
mn � 2l

pq

�
; (13)

where m D t � .p C q C 1/=2, n D Œ.p2q2 � 4/=.p2 C q2 � 5/�1=2, l D .pq � 2/=4,
and t D N � 1 in the current context following Bartlett (1941). The statistic R is
distributed as F with �1 D pq and �2 D mn � 2l. For cases where n cannot be
defined (e.g., p D 1 and q D 2), the likelihood ratio test of Bartlett (1941) can
be employed. There are other statistical methods to the null hypothesis testing of
the canonical correlations (see Bock 1975, pp. 377–378).
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3 Canonical Correlations from Fallible Data

When fallible data are used, we can view variables as the observed scores that
consist of the true scores and the error scores. Hence, a criterion variable can be
expressed as Y D Ty C Ey, and a predictor variable as X D Tx C Ex. Based on the
assumption of the classical test theory model (Gulliksen 1950/1987, pp. 4–11; Lord
and Novick 1968, p. 36), the covariance matrix of the p criterion variables y and q
predictor variables x can be written as

˙ D ˙ T C ˙ E (14)

or

�
˙ yy ˙ yx

˙ xy ˙ xx

�
D

�
˙ Tyy ˙ yx

˙ xy ˙ Txx

�
C

�
˙ Eyy 0

0 ˙ Exx

�
; (15)

where subscripts T and E designate the terms are obtained from the respective true
and error scores.

If reliabilities or errors of measurement of the fallible data are known, it is pos-
sible to obtain disattenuated canonical correlations. The disattenuated correlation
between the linear combinations of the respective criterion and predictor variables
is given by

	T D
˛0

T˙ yxˇTp
˛0

T˙ Tyy˛T

p
ˇ0

T˙ TxxˇT

(16)

with the subscript T that denotes the terms are obtained from the true scores (cf.
Meredith 1964, p.57). In Meredith (1964) the observed correlation was decomposed
into two parts, one from the true score and the other from the error score.

The disattenuated canonical correlations can be attained by finding and taking
square root of the s largest eigenvalues of either ˙

�1=2
Tyy ˙ yx˙

�1
Txx˙ xy˙

�1=2
Tyy or

˙
�1=2
Txx ˙ xy˙

�1
Tyy˙ yx˙

�1=2
Txx . The associated normalized eigenvectors and the coef-

ficient vectors ˛ and ˇ can also be obtained.
When data from simple random sampling are used, the Greek letters can be

replaced with the corresponding Latin or Roman letters to express respective statis-
tics. Estimates needed to perform canonical correlation analysis can be obtained
from the statistics. Note again that the subscript T can be used to emphasize that the
terms are from the true score. The equations based on the true and error scores can
be easily constructed and are not repeated here.
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4 Illustrations

4.1 Hotelling’s Data

Hotelling (1936, p. 342) performed canonical correlation analysis of correlation
data from 140 seventh-grade schoolchildren who took four tests on reading speed
Y1, reading power Y2, arithmetic speed X1, and arithmetic power X2. The two sample
canonical correlations are 0.3945 and 0.0688. Pairs of canonical variates in terms of
the standardized variables can be obtained.

Kelley (1928, p. 100) reported means, standard deviations, and reliability
coefficients for the four tests analyzed in Hotelling (1936). Portions that contain
information about the four tests are presented in Table 1. The sample covariance
matrix can be constructed as

S D

�
Syy Syx

Sxy Sxx

�
D

2
664

421:0704 409:9382 158:6290 20:1655

409:9382 996:6649 �55:9536 34:6776

158:6290 �55:9536 1027:2025 228:3209

20:1655 34:6776 228:3209 281:2329

3
775 : (17)

When covariance matrices are used, canonical variates with coefficients on the
scales of the respective criterion and predictor variables can be found.

The two sample canonical correlations are, of course, 0.3945 and 0.0688. For r1,
the pair of canonical variates are O�1 D 0:0612Y1 � 0:0325Y2 and O�1 D 0:0345X1 �

0:0270X2. For r2, the pair of canonical variates are O�2 D 0:0145Y1 C 0:0249Y2 and
O�2 D �0:0006X1 C 0:0601X2.

As noted in Hotelling (1936, p. 342, footnote), the original book by Kelley
(1928, p. 100) contains not only the raw correlations analyzed by Hotelling but
also the correlations corrected for attenuation and other summary statistics. Utilizing
information on Table 1 the sample true-score covariance matrix of the four variables
can be expressed as

ST D

�
STyy Syx

Sxy STxx

�
D

2
664

387:2584 409:9382 158:6290 20:1655

409:9382 891:2178 �55:9536 34:6776

158:6290 �55:9536 933:0080 228:3209

20:1655 34:6776 228:3209 158:5872

3
775 : (18)

We want to inquire the disattenuated relationship between reading ability and
arithmetic ability indicated by the four fallible tests.

The two sample canonical correlations are 0.5344 and 0.0952. For rT1, the
pair of disattenuated canonical variates are O�T1 D �0:0683TY1 C 0:0405TY2 and
O�T1 D �0:0407TX1 C 0:0589TX2. For rT2, the pair of canonical variates are O�T2 D

0:0192TY1 C 0:0234TY2 and O�T2 D 0:0002TX1 C 0:0792TX2.
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Table 1 Correlations, means, and standard deviations of four tests for 140 seventh-grade
children

Reading Arithmetic Standard

Test Speed Power Speed Power Mean Deviation

Reading speed Y1 0.9197 93.06 20.52

Reading power Y2 0.6328 0.8942 194.53 31.57

Arithmetic speed X1 0.2412 �0.0553 0.9083 147.39 32.05

Arithmetic power X2 0.0586 0.0655 0.4248 0.5639 136.11 16.77

Note. Values along the main diagonal are reliability coefficients

Following Meredith (1964, p. 56) and assuming that all variables are standardized
to have the means of zero and the standard deviations of unity, canonical correlation
analysis could be performed with the matrix of covariances where the standardized
error variances have been removed. The two sample canonical correlations are
0.5344 and 0.0952. Pairs of canonical variates on the scale of the standardized
variables can also be obtained (cf. Darlington et al. 1973).

4.2 Meredith’s Data

Meredith (1964, pp. 63–65) reported results from canonical correlation analysis
based on the disattenuated intercorrelations of the 12 subtests of the Wechsler Intel-
ligence Scale for Children (WISC) from 100 boys and 100 girls of years of age 7.5
(Wechsler 1949, p. 10). Both results from the matrix of the usual correlations and
from the matrix of the correlations modified to account for the effect of attenuation
are reported with the sets of weights (i.e., canonical correlation coefficients) for
canonical variates of the WISC. Because Meredith (1964, pp. 63–64) presented
the canonical correlation coefficient vectors aj and bj from the ordinary canonical
correlation analysis and the canonical correlation coefficient vectors aTj and bTj

for j D 1; : : : ; 5 (although s D 6) from the disattenuated canonical correlation
analysis, the results need not be repeated here. Table 2 presents the sample true-
score covariance matrix and other related summary statistics of the 12 subtests
of the WISC from 100 boys and 100 girls of age 7.5 (cf. Wechsler 1949, pp.
10–13). Canonical correlation analysis was performed with the sample true-score
covariance matrix in Table 2. The six criterion variables are arbitrarily chosen to be
the subtests in the verbal subgroup. The six predictor variables are the subtests in
the performance subgroup.

Table 3 contains the canonical correlation coefficient vectors aTj and bTj for j D

1; : : : ; 6 from the sample true-score covariance matrix. The canonical correlations
obtained from the disattenuated covariance matrix are 0.971, 0.466, 0.351, 0.297,
0.239, and 0.097. Rao’s test statistic was R D 26:909; for testing the null hypothesis
of all population, canonical correlations are nil. The test statistic is distributed as
F with �1 D 36 and �2 D 828:327 and is statistically significant at the nominal
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Table 3 Canonical correlation coefficient vectors of 12 subtests of the WISC to produce the
canonical variates corresponding to the six disattenuated canonical correlations

Coefficient vector of verbal subgroup

Test aT1 aT2 aT3 aT4 aT5 aT6

Information 0.1268 �0.7092 �0.1929 0.5093 �0.1869 �0.1460

Comprehension 0.3730 �0.1102 �0.1544 �0.2266 �0.3876 0.3927

Arithmetic 0.0401 0.3420 0.7139 �0.0308 �0.0189 0.2982

Similarities �0.0920 0.4249 �0.2777 0.1540 0.3489 0.2537

Vocabulary �0.2712 0.5716 0.0482 �0.0737 �0.1074 �0.6282

Digit span 0.3493 �0.3340 �0.1260 �0.2150 0.3919 �0.1819

Coefficient vector of performance subgroup

Test bT1 bT2 bT3 bT4 bT5 bT6

Picture completion 0.2148 0.2364 �0.0014 �0.3553 �0.2579 0.0797

Picture arrangement 0.3280 �0.1833 �0.2095 0.0149 0.4197 �0.0727

Block design 0.1222 �0.2104 �0.2502 0.1853 �0.2715 �0.3453

Object assembly �0.3840 0.6493 0.3403 0.2016 0.1204 �0.0999

Coding A 0.1970 �0.2273 0.3548 0.0161 �0.0936 0.0713

Mazes 0.0407 �0.1006 �0.1410 0.0775 �0.0835 0.4826

Canonical correlation 0.9711 0.4660 0.3506 0.2971 0.2388 0.0969

P <.0001 <0.0001 <0.0001 0.0003 0.0107 0.1778

Note. P is the observed level of significance

level of 0.01. Subsequent Rao’s tests for the second (n.b., actually the testing of the
second to the last canonical correlations), third, and fourth canonical correlations are
statistically significant at the nominal level of 0.01. The fifth canonical correlation
is significant at the nominal level of 0.05. The last Rao’s test for the sixth canonical
correlation was not statistically significant at the nominal level of 0.05. The observed
level of significance for each sequential testing is reported in Table 3.

The usual method of the canonical correlation analysis yielded canonical cor-
relations of 0.680, 0.197, 0.163, 0.116, 0.107, and 0.045. Rao’s test statistic was
R D 4:066; for testing the null hypothesis of all population, canonical correlations
are nil. The test statistic is distributed as F with �1 D 36 and �2 D 828:327

and is statistically significant at the nominal level of 0.01. Except for the first
canonical correlation, all the remaining tests of the five canonical correlations are
not statistically significant at the nominal level of 0.05.

5 Summary and Discussion

In this paper, a summary of canonical correlation analysis is presented, and the
solutions by Hotelling (1936) and Meredith (1964) were reconsidered. A modified
solution over Meredith (1964) is proposed with examples.
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Although some monographs and journal articles (e.g., Darlington et al. 1973;
Thompson (1984)) briefly mentioned the disattenuated canonical correlation by
Meredith (1964), the usual textbooks on multivariate statistics do not contain any
presentation of canonical correlation analysis in conjunction with fallible data
consisted with variables that contain measurement errors.

Van de Geer (1971) presented a rather lucid connection between canonical cor-
relation analysis and latent variable modeling using path diagrams and illustrations.
A brief discussion was presented about canonical correlation analysis for fallible
data using the correlation matrix of true scores but without mentioning Meredith’s
(1964) solution (see Van de Geer 1971, pp. 168–169). Kenny (1979) also contained
a discussion about canonical correlation analysis, factor analysis, and causal models
with unmeasured variables using path diagrams and examples. The discussion did
not consider either canonical correlation analysis for fallible data or Meredith’s
(1964) solution.

Canonical correlation analysis is truly an inclusive multivariate statistical method
that subsumes nearly all other well-known linear models and procedures including
simple and multiple regression analysis, analysis of variance, discriminant analysis,
and chi-square test of independence as special cases. These standard techniques
are usually applied without considering measurement errors or fallibility of data.
Although several works exist that specifically addressed the effect of measurement
errors (e.g., Cochran 1968; Pedhazur 1997, pp. 292–294), finding satisfactory
procedures for coping with fallible data seems to be a difficult task. It will be
interesting to present illustrations of obtaining canonical correlations from fallible
data for these special cases employing the methods presented in this paper because
the methods may provide a unified framework for analyzing fallible data.
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Asymmetric Multidimensional Scaling
of Subjective Similarities Among
Occupational Categories

Akinori Okada and Takuya Hayashi

Abstract The subjective similarity among ten occupational categories is analyzed
by the asymmetric multidimensional scaling based on singular value decomposition.
The similarity among occupational categories is obtained by a procedure where the
similarity from occupational categories j to k is judged by respondents engaged in
occupational category j, and the similarity from occupational categories k to j is
judged by respondents engaged in occupational category k. These two similarities
are not necessarily equal. This makes it possible to analyze asymmetric relationships
of the subjective similarity. The three-dimensional solution disclosed two kinds of
asymmetry between two occupational categories which are caused by the difference
of the status between two occupational categories.

Keywords Asymmetry • Multidimensional scaling • Occupational category •
Similarity • Status of occupation

1 Introduction

The similarity among occupations has been studied as social relations perspective,
where the distance or the similarity is implicitly assumed to be symmetric, i.e., the
similarity from occupations j to k is equal to that from k to j. While some researchers
(Laumann and Guttman 1966; Prandy 1990; Rytina 1992; Chan and Goldthorpe
2004) say that the similarity between the occupation of oneself and the occupation of
one’s parents, relatives, or friends should be treated as asymmetric, the asymmetry
of similarities is ignored in their analyses. Some studies derived two configurations
separately to represent asymmetric relationships such as husband-wife and father-
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son (Bakker 1993; Kondo 2006), but they did not succeed in representing the
asymmetry, because derived two configurations were almost identical.

Aside from the similarity in social relations abovementioned, the subjective
similarity is also important in studying social psychological effects or consequences
of social relations among social groups. It seems that the status of an occupation
of a respondent plays an important role in judging the subjective similarity among
occupations (Ikeda 1973; Wegener 1992). We can consider two subjective similar-
ities between two occupations of higher and lower status: (a) one is the subjective
similarity from a higher-status occupation to a lower-status one judged by people
engaged in a higher-status occupation, and (b) the other is the subjective similarity
from a lower-status occupation to a higher-status one judged by people engaged in
a lower-status occupation. The difference of the status of two occupations brings
about two different effects on the asymmetry of the subjective similarity between
higher- and lower-status occupations as described below, i.e., (a) > (b) or (a) < (b).

When people of one group feel a barrier to those of the other group but people
of the latter group do not feel the barrier (feel a lower barrier) to those of the
former group, this causes the asymmetry of the subjective similarity between two
groups. For a person engaged in lower-status occupations, the subjective similarity
from lower-status occupations to higher-status ones is small, while for a person
engaged in higher-status occupations, the subjective similarity from higher-status
occupations to lower-status ones is large (Ikeda 1973, pp. 46–49). It might reflect the
situation that only people engaged in the lower-status occupations feel difficulty in
getting higher-status occupations, as in a study on aspiration of status attainment that
showed ambitions shifted downward over time in lower-status-background people
(Hanson 1994). This causes (a) > (b).

On the contrary, people engaged in higher-status occupations have more discrim-
inatory feeling to those engaged in lower-status occupations, and people engaged
in lower-status occupations have less discriminatory feeling to those engaged
in higher-status occupations (Wegener 1992). People engaged in higher-status
occupations exaggerate the difference of higher- and lower-status occupations,
which suggests smaller similarity from the higher- to the lower-status occupations.
People engaged in lower-status occupations undervalue the difference of higher-
and lower-status occupations, which suggests large similarity from the lower- to the
higher-status occupations. This causes (a)< (b). Thus, the difference of the status of
two occupations brings two contradictory effects on the asymmetry of the subjective
similarity between higher- and lower-status occupations.

Laumann (1965), Ikeda (1973), and Laumann and Senter (1976) investigated
subjective similarity among occupations, but they have flaws in common. Firstly,
the obtained similarity does not represent the asymmetry among occupational
categories. Secondly, they regard the similarity as unidimensional, while the
similarity in social relations has a multidimensional structure (Chan and Goldthorpe
2004; Laumann and Guttman 1966; Okada and Imaizumi 1997). These studies
were not able to represent two contradictory effects on the asymmetry of the
subjective similarity and to represent a multidimensional structure. In the present
study we analyze subjective similarities among occupational categories, where the
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similarity from occupational categories j to k was judged by respondents engaged in
occupational category j, and the similarity from occupational categories k to j was
judged by respondents engaged in occupational category k. These two similarities
are not necessarily equal, and the relationship between occupational categories j
and k can be asymmetric. The purpose of the present study is to investigate two
contradictory effects of the status of occupations on the asymmetry of the subjective
similarity and the multidimensional structure of asymmetric relationships among
occupations.

2 Data

The data were collected from a survey conducted in 2013. Each respondent judged
the similarity from the occupation in which a respondent oneself is engaged to each
of the other occupations by a 5-point rating scale (5: Most similar, � � � , 1: Least
similar). There were 36 occupations in the survey which were classified into ten
occupational categories which correspond to meso classes of micro-class scheme
(Jonsson et al. 2009). While 2069 respondents judged the similarities from one’s
occupation to 36 occupations, 2017 responses gave the valid response to their own
occupations. The analysis in the present study was done based on ten occupational
categories shown in the leftmost column of Table 1, where (a) to (f) are nonmanual
and (g) to (j) are manual occupational categories.

The mean of obtained similarities from occupational categories j to k were
derived, which resulted in a 10 � 10 matrix whose .j; k/ element represents the
mean of obtained similarity from occupational categories j to k. Then the mean of all
elements of the matrix was subtracted from each element to normalize the similarity
matrix. The normalization gives positive and negative elements of the resulting
matrix. This suggests that occupational categories represented in a configuration
along Dimension 1 derived by the singular value decomposition (Eckart and Young
1936) can be represented in all four quadrants, which can represent more subtle
aspects of relationships among occupational categories along Dimension 1. The
similarity matrix shown in Table 1 is asymmetric, because the similarity from
occupational categories j to k judged by respondents engaged in occupational
category j is not necessarily equal to the similarity from occupational categories
k to j judged by respondents engaged in occupational category k.

3 Method and Analysis

In the present study, the asymmetric multidimensional scaling (Okada and Tsurumi
2012) based on singular value decomposition was used to analyze the subjective
similarity among ten occupational categories. The asymmetric multidimensional
scaling represents asymmetries along each dimension by two terms: the closeness
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from an occupational category to the other occupational categories which is called
the outward tendency of an occupational category and the closeness from the other
occupational categories to an occupational category which is called the inward
tendency of an occupational category.

The procedure of the asymmetric multidimensional scaling is briefly described.
Let A be an n�n matrix of asymmetric similarities among n occupational categories.
The .j; k/ element of A represents the similarity from occupational categories j to k,
which is not necessarily equal to the .k; j/ element. Based on r (< n) largest singular
values and corresponding left and right singular vectors, A is approximated by

A ' XDY0; (1)

where D is the r � r diagonal matrix of r largest singular values in descending
order at its diagonal elements, X is the n � r matrix whose ith column is the left
singular vector corresponding to the ith singular value (normalized so that the length
is unity), and Y is the n � r matrix whose ith column is the right singular vector
corresponding to ith singular value (normalized so that the length is unity).

The jth element of the ith column of X, xji, represents the closeness from
occupational category j to the other occupational categories along Dimension i,
because rows of A correspond to occupational categories from which similarities
to the others were judged. xji is the outward tendency of occupational category
j along Dimension i. The kth element of the ith column of Y, yki, represents
the closeness from the other occupational categories to occupational category k
along Dimension i, because columns of A correspond to occupational categories
to which similarities from other occupational categories were judged. yki is the
inward tendency of occupational category k along Dimension i. The .j; k/ element
of Eq. (1) is represented as ajk'

Pr
iD1 dixjiyki, where di is the ith largest singular

value. This equation shows that the similarity from occupational categories j to k
is approximated by the algebraic sum of the product of the outward tendency of
occupational category j (xji) and the inward tendency of occupational category k
along Dimension i (yki) multiplied by di.

As shown in Figs. 1, 2, and 3, the result of the present asymmetric multidimen-
sional scaling is shown by r planar configurations each of which represents the
similarity along each of r dimensions. In the planar configuration along Dimension
i, the abscissa represents the outward tendency which corresponds to the ith left
singular vector, and the ordinate represents the inward tendency which corresponds
to the ith right singular vector. In the configuration, xjiyki means an area (or the
area with a negative sign) of a rectangle made by two sides: xji and yki, in a plane
spanned by the ith left and right singular vectors. xji and yki can be negative, and
xjiyki can be negative. Let two points representing occupational categories j and k be
in the same quadrant or in two neighboring quadrants. When occupational category
k is ahead of the counterclockwise direction than occupational category j is, xjiyki is
larger than xkiyji, suggesting occupational category j is more similar to occupational
category k than k is to j. The similarity between two occupational categories along
the counterclockwise direction is larger than that along the clockwise direction.
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When two points are in the first and the third quadrants, respectively, xjiyki

and xkiyji are negative, because either xji or yki is negative and either xki or yji is
negative. This tells that two occupational categories represented in the first and the
third quadrants are not similar. When two points are in the second and the fourth
quadrants, respectively, xjiyki and xkiyji are positive, because xji and yki have the same
sign and xki and yji have the same sign. This tells that two occupational categories
represented in the second and the fourth quadrants are similar.

The analysis was done by using a software which was published in association
with Okada and Imaizumi (1994). Ten singular values of A are 2.940, 2.504, 1.629,
1.311, 0.826, 0.718, 0.467, 0.270, 0.084, and 0.032. The three-dimensional result
was chosen as the solution, because the three-dimensional result is easy to interpret
but the four-dimensional result is difficult.

4 Results and Discussions

Figure 1 shows the configuration along Dimension 1. The horizontal axis represents
the outward tendency of ten occupational categories along Dimension 1, and
the vertical axis represents the inward tendency of ten occupational categories
along Dimension 1. The asymmetry of similarities among occupational categories
represented in Fig. 1 is not large, because points are close to the 45-degree line
from the lower left to the upper right direction passing the origin and they are
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Table 2 The mean score of four questions along with the rate of female and the index of prestige
of occupational categories

Occupational category Female rate Prestige Specialized Autonomous Authority Discretion

(a) Classical professions 0.43 68.6 3.83 2.87 2.96 2.67

(b) Managers and officials 0.16 63.7 3.33 2.88 3.08 2.77

(c) Other professions 0.57 62.8 3.60 2.72 2.84 2.39

(d) Proprietors 0.29 48.6 3.33 3.39 3.39 3.30

(e) Sales 0.48 44.7 2.66 2.37 2.35 2.06

(f) Clerical 0.71 51.5 2.82 2.57 2.48 2.19

(g) Craft 0.25 47.9 3.09 2.39 2.46 1.91

(h) Lower manual 0.45 42.9 2.35 2.17 2.17 1.79

(i) Service workers 0.60 40.9 2.52 2.25 2.25 1.76

(j) Primary sector 0.38 45.6 3.17 3.02 3.02 2.96

either in the first or the third quadrants. In the first quadrant, the similarity to
sales from the others is larger than that of the other way around. The configuration
along Dimension 1 differentiates primary sector from the others. All four manual
occupational categories are in the first quadrant, and four of six nonmanual
occupational categories are in the third quadrant.

To interpret the result, we use answers of respondents to four questions and two
characteristics (female rate and prestige) shown in Table 2. Four questions are:

• The job I am engaged in needs specialized knowledge or skill.
• I can decide the content or pace of my own job autonomously.
• I have the authority to reflect my opinions on work assignment in workplace as

a whole.
• I can decide the time I begin and end work at my discretion.

Respondents answered by a 4-point rating scale (4: True, � � � , 1: Not true). The
emboldened word is used to represent each question henceforth.

The female rate of each occupational category is obtained by using the data of
the Japanese Population Census conducted in 2010 (Ministry of Internal Affairs
and Communications, Statistics Bureau. 2015). The prestige reflects the hierarchy
of individual social position (Wegener 1992, p. 273), which is based on peoples’
evaluation on occupations in a society. The prestige score of each occupation in
the present study is assigned according to those measured in the Japanese National
Survey of Social Stratification and Mobility (SSM) which was conducted in 1995
(Tsuzuki 1998, Appendix, pp. 231–236).

The mean prestige scores of occupational categories in the first and the third
quadrants are 44.8 and 59.0. The mean scores of autonomous, authority, and discre-
tion of those in the first and the third quadrants are 2.48 and 2.69, 2.49 and 2.73,
and 2.14 and 2.39, respectively. These figures suggest that the configuration along
Dimension 1 classify occupational categories into two groups: one having lower
prestige, autonomous, authority, and discretion scores and the other having higher
prestige and scores.
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Table 3 Mean of female rate and mean scores of autonomous, authority, and discretion for
occupational categories in the first, the third, and the fourth quadrants in the configuration along
Dimension 2

Female rate Autonomous Authority Discretion

Q2: – Q1: 0.62 Q2: – Q1: 2.44 Q2: – Q1: 2.40 Q2: – Q1: 2.06

Q3: 0.38 Q4: 0.41 Q3: 3.02 Q4: 2.69 Q3: 3.02 Q4: 2.77 Q3: 2.96 Q4: 2.40

Figure 2 shows the configuration along Dimension 2. The horizontal and the
vertical axes represent the outward tendency and the inward tendency of ten occu-
pational categories along Dimension 2, respectively. The appreciable asymmetry
of similarities among occupational categories is represented in Fig. 2, because
ten occupational categories are represented in the first, the third, and the fourth
quadrants. The similarity from six occupational categories in the fourth quadrant to
those in the first quadrant is larger than that of the other way around. The similarity
from primary sector in the third quadrant to the six occupational categories is larger
than that of the other way around. The similarity between primary sector in the third
quadrant and occupational categories in the first quadrant is small.

Table 3 shows the mean of female rate and mean scores of autonomous, authority,
and discretion for occupational categories in each of the first (Q1), the third (Q3),
and the fourth quadrants (Q4) in the configuration along Dimension 2. Table 3 tells
that the female rate increases along the counterclockwise direction from the third
to the first quadrants, while mean scores of autonomous, authority, and discretion
decrease along the counterclockwise direction from the third to the first quadrants.
This is compatible with the fact that occupational categories with higher prestige
would have the lower female rate and have higher autonomous, authority, and
discretion scores.

Figure 3 shows the configuration along Dimension 3. The horizontal and the
vertical axes represent the outward tendency and inward tendency of ten occu-
pational categories along Dimension 3, respectively. The appreciable asymmetry
of similarities among occupational categories is represented in Fig. 3, because
occupational categories are distributed over all four quadrants. Four occupational
categories in the first quadrant and three manual occupational categories in the third
quadrant are not similar along Dimension 3. The similarity from four occupational
categories in the first quadrant to sales in the second quadrant is larger than that
of the other way around. The similarity from sales to three manual occupational
categories in the third quadrant is larger than that of the other way around.

Table 4 shows the mean scores of autonomous, authority, and discretion for
occupational categories in each of the four quadrants in the configuration along
Dimension 3. In Table 4, mean scores of autonomous and authority increase along
the counterclockwise direction from the second to the first quadrants. And the mean
score of discretion increases along the counterclockwise direction from the third
to the first quadrants. On the contrary, these mean scores decrease along the coun-
terclockwise direction in the configuration along Dimension 2. The relationships
between these mean scores and the direction (clockwise or counterclockwise) in the
configurations along Dimensions 2 and 3 are opposite.
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Table 4 Mean scores of autonomous, authority, and discretion for occupational categories in four
quadrants in the configuration along Dimension 3

Autonomous Authority Discretion

Q2: 2.37 Q1: 3.04 Q2: 2.35 Q1: 3.12 Q2: 2.06 Q1: 2.91

Q3: 2.40 Q4: 2.72 Q3: 2.38 Q4: 2.84 Q3: 1.99 Q4: 2.39

5 Conclusions

Subjective similarities among occupational categories, where the similarity from
occupational categories j to k was judged by respondents engaged in occupational
category j and the similarity from occupational categories k to j was judged by
respondents engaged in occupational category k (thus, two similarities are not
necessarily equal), were analyzed by the asymmetric multidimensional scaling.
The three-dimensional solution disclosed three different aspects of relationships
among occupational categories which represent the multidimensional structure of
asymmetric relationships among occupational categories. Dimension 1 represented
almost symmetric relationships among occupational categories and showed two
groups of occupational categories; one consists of (four nonmanual) occupational
categories having higher prestige as well as higher autonomous, authority, and
discretion scores, and the other consists of (four manual and two nonmanual)
occupational categories having lower prestige and lower scores.

Dimensions 2 and 3 represent asymmetric relationships among occupational cat-
egories. They represent different aspects of asymmetric relationships, respectively,
and demonstrate that the difference of the status, especially denoted by autonomous,
authority, and discretion, between two occupational categories simultaneously have
two different effects on the asymmetry of the subjective similarity. Dimension 2
showed that the subjective similarity from the higher-status to the lower-status
occupational categories is larger than that from the lower-status to the higher-status
occupational categories. This represents the effect of the status suggested by Ikeda
(1973). On the contrary, Dimension 3 showed that the subjective similarity from the
lower-status to the higher-status occupational categories is larger than that from the
higher-status to the lower-status occupational categories. This represents the effect
of the status suggested by Wegener (1992).
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On the Relationship Between Squared Canonical
Correlation and Matrix Norm

Kentaro Hayashi, Ke-Hai Yuan, and Lu Liang

Abstract In research on approximating factor analysis (FA) by principal compo-
nent analysis (PCA), FA loadings and PCA loadings are typically compared using
some measure of closeness or distance. Previous studies have used the average
squared canonical correlation (ASCC) between the two loading matrices as a
measure of closeness. This measure has the advantages of being invariant with
respect to sign and column changes, and most conveniently, it is not affected by
rotations. However, the drawback of ASCC is that it is hard to intuitively perceive
the size of the distance between the (elements of) two loading matrices. Therefore,
other measures of difference between matrices such as the Frobenius norm are
sometimes preferred. However, then complexities might occur such as the sign
changes and the column alignment of the corresponding factors/components as well
as rotational indeterminacy. The current study aims to characterize the relationship
between the ASCC and a direct measure derived from matrix norms (e.g., Frobenius
norm), which facilitates the understanding of the closeness between PCA and FA.
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1 Introduction

Principal component analysis (PCA) and factor analysis (FA) are frequently used
multivariate statistical methods for data reduction (Anderson 1963; Anderson
2003; Lawley and Maxwell 1971). Oftentimes, PCA is used to approximate FA,
and an important research question is under what condition PCA gives a good
approximation of FA (Guttman 1956; Bentler and Kano 1990; Krijnen 2006;
Schneeweiss and Mathes 1995; Schneeweiss 1997).

Let ƒ� be the matrix of principal component loadings and ƒ be the matrix of
factor loadings, both with dimension p � m, where p > m. Then the difference
� between the two loading matrices can be expressed as � D ƒ� � ƒ or
equivalently ƒ� D ƒ C �. Here, we use the “original” principal components
so that they are uncorrelated, and likewise we assume that the factors are also
uncorrelated (orthogonal). Related with the column alignment, we arrange the
factors/components in the descending order of the column sum of squares of the
loading matrices.

Practically speaking, for the estimates bƒ�
and bƒ, we need to try every different

sign change and column alignment that makes b� the smallest in terms of, e.g., the
squared matrix norm (Ichikawa and Konishi 1995)—to be discussed below. If we
know the true population loading matrices as in a simulation, we can alternatively
try every different sign change and column alignment that makes the difference
measured by, e.g., the squared matrix norm between the estimated loading matrix
and the true population loading matrix the smallest. The sign and column alignments

have made the computation of the direct measure of the difference between bƒ�

and bƒ substantially more complicated and thus less popular. In particular, for each
column, there are two sign changes (C or –). With m factors (m columns), there
are 2m different combinations of sign changes. For column alignments, there are m!
kinds of different alignments. Therefore, we must examine a total of 2m�m! different
possibilities as for which one leads to the smallest sum of squared differences. Thus,
even with a small number of factors and components, the number of comparisons is
relatively large, e.g., for m D 3, there are a total of 2m�m! D 23�3! D 48 combinations,
and as the number of factors and components increases, the number of combinations
of different signs and column alignments rapidly increases. For simplicity, we
assumed that the issues with sign changes and column alignments between ƒ� and

ƒ or bƒ�
and bƒ have been resolved beforehand.

The squared matrix (Frobenius) norm (see, e.g., p. 291 of (Horn and Johnson
1985); p. 165 of (Schott 2005)) of the difference between matrices ƒ�.p � m/ and
ƒ.p � m/ is given by

jj ƒ� � ƒ jj 2 D tr
n�

ƒ� � ƒ
�0 �

ƒ� � ƒ
�o

D tr
�
�0�

�
; (1)

where tr(A) is the trace (sum of the diagonal elements) of a square matrix A.
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If we want to avoid examining all the combinations of different sign changes and
column alignments, one recommended treatment would be to employ the squared
canonical correlations (SCCs) between the two loading matrices ƒ� and ƒ, instead
of an ordinary matrix norm as a measure of closeness/difference between them (see,
e.g., (Schneeweiss and Mathes 1995; Schneeweiss 1997)). The SCCs between ƒ�

and ƒ are given by the eigenvalues of .ƒ0ƒ/�1.ƒ0ƒ�/.ƒ�0ƒ�/�1.ƒ�0ƒ/ and are
known to be invariant with respect to sign changes and column alignments. Thus,
the average squared canonical correlation (ASCC) between matrices ƒ� and ƒ is
given by 	2.ƒ;ƒ�/ D .1=m/trf.ƒ0ƒ/�1.ƒ0ƒ�/.ƒ�0ƒ�/�1.ƒ�0ƒ/g:

2 Squared Canonical Correlations and Matrix Norms

Our objective is to find the relationship between the matrix of differences � or
the squared matrix norm jj�jj2 D tr(�

0

�) and the ASCC 	2(ƒ, ƒ� ). Concretely
speaking, we aim to express (ƒ0ƒ)�1(ƒ

0

ƒ� )(ƒ�0ƒ�)�1(ƒ�0ƒ) in terms of ƒ and
� D ƒ� �ƒ and then further examine the properties of ASCC. For such a purpose,
first, we express ƒ�0ƒ� as

ƒ�0ƒ� D .ƒ C �/0 .ƒ C �/ D ƒ0ƒ C …; (2)

where … D ƒ
0

� C �
0

ƒ C �
0

� is the residual matrix of order O(�) and

�
ƒ�0ƒ�

��1
D
˚
ƒ0ƒ C …

	�1
: (3)

Now, using the matrix identity (A C B)�1 D A�1(I C BA�1)�1 and letting
A D ƒ

0

ƒ, B D …, and A C B D ƒ�0ƒ�, we can rewrite Eq. (3) as

�
ƒ�0ƒ�

��1
D
�
ƒ0ƒ

��1n
Im C …

�
ƒ0ƒ

��1o�1

: (4)

Let H D …(ƒ 0 ƒ)�1 and U D � H. According to Eq. (5) of (Strang 1988), p.
270, if the absolute value of every eigenvalue of the matrix U is strictly less than
1, the right-hand side of (I � U)�1 D I C U C U2 C U3 C . . .converges. (Note: For
I � U to be invertible, we assume that every eigenvalue of U is less than 1. We write
this as I � U > 0 or I > U.) Thus, if the absolute value of every eigenvalue of H is
strictly less than 1, we can further rewrite Eq. (4) as

�
ƒ�0ƒ�

��1
D
�
ƒ0ƒ

��1
(

Im C

1X
kD1

.�1/k
h
…
�
ƒ0ƒ

��1ik
)
:

That is,

�
ƒ�0ƒ�

��1
D
�
ƒ0ƒ

��1
C �; (5)
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where

� D
�
ƒ0ƒ

��1 1X
kD1

.�1/k
h
…
�
ƒ0ƒ

��1ik
(6)

is the remainder term. (See Appendix 2 for an alternative expression of the
remainder term.) By keeping the two leading terms, Eq. (6) becomes

� D �
�
ƒ0ƒ

��1
…
�
ƒ0ƒ

��1
C
�
ƒ0ƒ

��1 �
ƒ0� C �0ƒ

� �
ƒ0ƒ

��1
�
ƒ0� C �0ƒ

� �
ƒ0ƒ

��1
C o

�
�2
�
: (7)

Here, to guarantee the convergence of the series in (6), we need to examine
whether (or when) the absolute value of every eigenvalue of

H D …
�
ƒ0ƒ

��1
D
�
ƒ0� C �0ƒ C �0�

� �
ƒ0ƒ

��1

is less than 1. An easy algebra shows that the answer is when 0 < ƒ�0ƒ� < 2ƒ0ƒ.
Thus, Eq. (6) converges if 0 < ƒ�0ƒ� < 2ƒ0ƒ.

We next turn to ASCC, which contains the terms ƒ0ƒ� and ƒ�0ƒ. It follows
from ƒ� D ƒ C � that

ƒ0ƒ� D ƒ0 .ƒ C �/ D ƒ0ƒ C ƒ0� (8)

and

ƒ�0ƒ D .ƒ C �/0ƒ D ƒ0ƒ C �0ƒ: (9)

By additional algebraic computation, together with Eqs. (5), (7), (8), and (9), we
obtain

�
ƒ0ƒ

��1 �
ƒ0ƒ�

� �
ƒ�0ƒ�

��1 �
ƒ�0ƒ

�
D Im C R; (10)

where

R D �
�
ƒ0ƒ

��1
�0
n
Ip � ƒ

�
ƒ0ƒ

��1
ƒ0
o

� C o
�
�2
�

(11)

is the remainder term.
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3 The Dominant Term in the Remainder Term

We have just shown that the dominant term in R in Eq. (11) is

R
�
�2
�

D �
�
ƒ0ƒ

��1
�0
n
Ip � ƒ

�
ƒ0ƒ

��1
ƒ0
o

�: (12)

Here, note that the terms of order O(�) cancel out and the dominant term
is of order O(�2), which is nonpositive definite since Ip � ƒ(ƒ 0 ƒ)�1ƒ

0

is a
projection matrix and thus semi-positive definite (i.e., Ip � ƒ(ƒ 0 ƒ)�1ƒ

0

� 0),
which is guaranteed from the fact that every projection matrix is an idempotent
matrix (Theorem 12.3.4 (6) of (Harville 1997)) and that every idempotent matrix
is semi-positive definite, with the eigenvalues being either 1 or 0 (Theorem 10.2 of
(Schott 2005)). Also, because � D ƒ� � ƒ appears twice in the dominant term,
defining � as ƒ� � ƒ or ƒ � ƒ� does not change the value of R(�2). Thus, in
short, the ASCC 	2.ƒ;ƒ�/ D .1=m/trf.ƒ�ƒ/�1.ƒ0ƒ�/.ƒ�0ƒ�/�1.ƒ�0ƒ/g can
approximately be expressed as

	2
�
ƒ;ƒ�

�
D 1C .1=m/ tr

˚
R
�
�2
�	

C o
�
�2
�

D 1 � .1=m/ tr
n�

ƒ0ƒ
��1

�0
h
Ip � ƒ

�
ƒ0ƒ

��1
ƒ0
i

�
o

C o
�
�2
�

D 1 � .1=m/ tr
nh

Ip � ƒ
�
ƒ0ƒ

��1
ƒ0
i h

�
�
ƒ0ƒ

��1
�0
io

C o
�
�2
� (13)

if 0 < ƒ�0ƒ� < 2ƒ0ƒ. Now, applying Claim 13 and Corollary 14 of (Harvey
2011) (see Appendix 1) to trf[Ip � ƒ(ƒ 0 ƒ)�1ƒ

0

][�(ƒ 0 ƒ)�1�
0

]g in Eq. (13), we
can show that

tr
nh

Ip � ƒ
�
ƒ0ƒ

��1
ƒ0
i

�
�
ƒ0ƒ

��1
�0
o

� tr
n
Ip � ƒ

�
ƒ0ƒ

��1
ƒ0
o

� jj �
�
ƒ0ƒ

��1
�0 jj : (14)

Here, using the well-known formula regarding the trace of an idempotent matrix
(Theorem 10.1(d) of (Schott 2005)), tr(Ip � ƒ(ƒ 0 ƒ)�1ƒ

0

) D p � m, it follows that

	2
�
ƒ;ƒ�

�
� 1 �

� p

m
� 1

�
jj �

�
ƒ0ƒ

��1
�0 jj C o

�
�2
�

D 1 �
� p

m
� 1

�s
tr

�h�
ƒ0ƒ

��1
�0�

i2�
C o

�
�2
�
:

(15)

This equation connects � (the difference between the matrix of PC loadings ƒ�

and the matrix of factor loadings ƒ) and 	2.ƒ;ƒ�/ (the squared CC between the
two matrices).
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Now, let us further assume ƒ
0

ƒ D O(p) and equivalently, (ƒ 0 ƒ)�1 D O(p�1).
This is a natural extension of the same assumption introduced in, e.g., (Bentler
and Kano 1990) under the one-factor model. Then, we can show the order of
� p

m � 1
�
s

tr

�h�
ƒ0ƒ

��1
�0�

i2�
to be

O

 � p

m
� 1

�s
tr

�h
.ƒ0ƒ/�1�0�

i2�!
D O

 � p

m
� 1

�
p�1

r
tr
n


�0�
2o
!

D O

��
1

m
�
1

p

�
jj�0�jj

�
:

(16)

In addition, with the common assumption of m/p D o(1) (Guttman 1956), we can
further rewrite Eq. (16) as O(m�1j j �

0

�j j ). Therefore,

	2
�
ƒ;ƒ�

�
� 1 � .1=m/R

�
ƒ;ƒ�

�
with R

�
ƒ;ƒ�

�
D O

�
jj�0�jj

�
: (17)

Because jj�
0

�jj � jj�jj2 (see Appendix A.3), we can also show that

	2
�
ƒ;ƒ�

�
� 1 � .1=m/R2

�
ƒ;ƒ�

�
with R2

�
ƒ;ƒ�

�
D O

�
jj�2

�
: (18)

Obviously, the lower bound in Eq. (17) is sharper than that in Eq. (18). However,
Eq. (18) connects the SCC and the matrix norm more directly.

4 Example

The sample correlation matrix in Table 1 was reproduced from (Emmett 1949). It is
computed from a sample of 211 observations with 9 observed variables (p D 9).
Only the first two eigenvalues of the sample correlation matrix are above 1, so
we employed a two-factor/component model (m D 2). The FA and PCA loading
matrices are listed in Table 2. For this example, the matrix norm (without squaring)

was jj ƒ� � ƒ jj D jj � jj D
q

tr
�
�0�

�
D 0.439, the squared matrix norm was

jjƒ� � ƒjj2 D 0:193, and ASCC was 	2.ƒ;ƒ�/ D 0:982. When we took the trace
of the dominant term R(�2) (given in Eq. (12)) of the remainder terms, divide it by
m to take the average, and add 1 (as in Eq. (13) ignoring the terms with o(�2)), the
value was 1 C (1/m)trfR(�2)g D 0.976, which was very close to the value of ASCC.
The value of the lower bound given in Eq. (17) when O(j j �

0

�j j ) was replaced by
jj�

0

�jj was 1 � (1/m)jj�
0

�jj D 0.922, which was not as close to ASCC as the
value created from Eq. (13); however, it still gave a relatively good approximation
to the ASCC value as a lower bound. The value of the lower bound given in Eq.
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Table 1 Sample covariance matrix (Emmett, 1949) with the FA (maximum likelihood) and PCA
loading matrices

1.000
0.523 1.000
0.395 0.479 1.000
0.471 0.506 0.355 1.000
0.346 0.418 0.270 0.691 1.000
0.426 0.462 0.254 0.791 0.679 1.000
0.576 0.547 0.452 0.443 0.383 0.372 1.000
0.434 0.283 0.219 0.285 0.149 0.314 0.385 1.000
0.639 0.645 0.504 0.505 0.409 0.472 0.680 0.470 1.000

Table 2 Estimated FA and
PCA loading matrices (two
factors/components)

Factor analysis Principal component analysis

F1 F2 PC1 PC2
0.668 0.303 0.749 0.265
0.692 0.237 0.762 0.125
0.500 0.286 0.596 0.303
0.840 �0.322 0.792 �0.453
0.701 �0.318 0.680 �0.565
0.800 �0.372 0.747 �0.512
0.670 0.384 0.754 0.305
0.442 0.245 0.521 0.355
0.775 0 .425 0.832 0.285

(18) when O(j j �2) was replaced by jj�jj2 was 1 � (1/m)jj�jj2 D 0.904, which
was slightly lower than when jj�

0

�jj was used instead of jj�jj2.

5 Concluding Remarks

In this work, we obtained some inequalities connecting the SCC and the matrix
norm, under the assumption that the column sum(s) of squares of the FA loading
matrix are of order p. An obvious concern in any efforts to connect between the
SCC and the matrix norm is that the SCC ranges between 0 and 1, while the matrix
norm can be any non-negative value. More specifically, as the number of variables
p increases, the lower bound for the SCC given in terms of the matrix norm in Eq.
(18) becomes pessimistically low. A way to improve the situation would be to define
the matrix norm as, for example,

jj � jj 2� D

�
1

pm

�
tr
�
�0�

�
(19)

instead of jj�jj2 D tr(�
0

�).
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Appendix 1: Claim 13 and Corollary 14 by Professor Nick
Harvey (University of British Columbia)

Claim 13: Let A, B, and C be Symmetric d � d Matrices
Satisfying A � 0 and B � C. Then tr(AB) � tr(AC)

Proof First consider the case that A is rank one, i.e., A D ��
0

for some vector �.
Then

tr .AB/ D tr
�
��0B

�
D tr

�
�0B�

�
D �0B� � �0C� D tr

�
�0C�

�

D tr
�
��0C

�
D tr .AC/ :

Now we consider the case where A has arbitrary rank. Let A D
dP

iD1
�iuiui

0. Since

we assume that A � 0 we can set �i D
p
�iui and write A D

dP
iD1

�i�i
0. Then

tr .AB/ D tr

 
dX

iD1

�i�i
0B

!
D

dX
iD1

tr
�
�i�i

0B
�

�

dX
iD1

tr
�
�i�i

0C
�

D tr

 
dX

iD1

�i�i
0C

!
D tr .AC/ :

Here the second and third equalities are by linearity of trace, and the inequality
follows from the rank one case.

Corollary 14: If A � 0; Then tr .AB/ � jjBjj � tr .A/

Proof Apply Claim 13 with C D jjBjj � I. We get tr(AB) � tr(A�j j Bj j �I) � jjBjj �

tr(A � I), by linearity of trace since jjBjj is a scalar.

Proof for jj�0�jj � jj�jj2

By applying Corollary (A.2), jj�
0

�jj D ftr(�
0

��
0

�)g1/2 � ftr(� 0 �)g1/2

jj�
0

�jj1/2. Because jj�
0

�jj � 0, the same inequality holds when each side is
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squared. Thus, jj�
0

�jj2 � ftr(�
0

�)gjj�
0

�jj. If jj�
0

�jj > 0, because the inequality
still holds after both sides are divided by the same positive number jj�

0

�jj,
it follows that jj�

0

�jj � ftr(�
0

�)g. Finally, by definition, jj�jj2 D tr(�
0

�).
Therefore, jj�

0

�jj � jj�jj2. If jj�
0

�jj D 0, then � D 0, and there exists
jj�

0

�jj D jj�jj2.

Appendix 2: Alternative Formula for Equation (6)

Alternatively, we can use another well-known identity (A C B)�1 D A�1 � A�1

(B�1 C A�1)�1A�1 (e.g., Corollary 1.7.1 of (Harvey 2011–2012)). This identity
holds as long as the matrices A, B, and A C B are all square, non-singular matrices
so that the inverses exist. In our context, A D ƒ

0

ƒ, B D … D ƒ
0

� C �
0

ƒ C �
0

�,
and A C B D ƒ�0ƒ�, so that

�
ƒ�0ƒ�

��1
D
�
ƒ0ƒ

��1
�
�
ƒ0ƒ

��1n
…�1 C

�
ƒ0ƒ

��1o�1�
ƒ0ƒ

��1
:

That is,

�
ƒ�0ƒ�

��1
D
�
ƒ0ƒ

��1
C �A; (20)

where �A D � f(ƒ 0 ƒ)…�1(ƒ 0 ƒ) C (ƒ 0 ƒ)g�1.
The Eq. (20) connects (ƒ 0 ƒ)�1 and .ƒ�0ƒ�/�1 in an alternative way. The only

requirement for Eq. (20) is the existence of the inverse of … D ƒ
0

� C �
0

ƒ C �
0

�.
If we express … as … D (ƒ

0

ƒ C ƒ
0

� C �
0

ƒ C �
0

�) � ƒ
0

ƒ D ƒ�0 ƒ� � ƒ
0

ƒ > 0,
we can easily see that the inverse of … exists if ƒ0ƒ < ƒ�0ƒ�. Unfortunately, this
condition may be harder to satisfy in practice than Eq. (6).
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Breaking Through the Sum Scoring Barrier

James O. Ramsay and Marie Wiberg

Abstract The aim of this paper is to reflect around what would be needed in order
to replace sum scoring, including technical advances, communication with both test
constructors and examinees, and organizational strategy. Sum scoring are proposed
to be replaced by smart scoring and a brief description, and some theoretical support
for smart scoring and methods for achieving it are given together with an example
from a large-scale assessment test.

Keywords Smart scoring • Technical advances • Item impact function

1 Introduction

Test scoring by counting the number of correct answers is still, after more than
half a century of psychometric effort, the most common method for estimating
ability. However, this practice, which we call “sum scoring,” is inefficient because
it ignores variation in the amount of information the response to an item provides
over both items and examinees. “Smart scoring,” on the other hand, allows for an
interaction between ability and item effectiveness in a way that we detail in Sect. 2.
For example, Ramsay and Wiberg (2017) demonstrate improvements in root mean
squared error (RMSE) for ability estimation of 6% for a 36-item carefully designed
National Assessment of Educational Progress (NAEP) history test and 13% for a
100-item university classroom test.

Although these improvements in the score accuracy may not impress an individ-
ual examinee, when aggregated over the many millions of students assessed each
spring in a country such as the USA, these would be an invaluable improvement
in educational technology and one that is available for practically no cost. Similar
progress in, say, breast cancer mortality would merit a Nobel Prize, and an

J.O. Ramsay (�)
Department of Psychology, McGill University, Montreal, QC, Canada
e-mail: james.ramsay@mcgill.ca; ramsay@psych.mcgill.ca

M. Wiberg
Department of Statistics, USBE, Umeå University, Umeå, Sweden
e-mail: marie.wiberg@umu.se

© Springer International Publishing AG 2017
L.A. van der Ark et al. (eds.), Quantitative Psychology, Springer Proceedings
in Mathematics & Statistics 196, DOI 10.1007/978-3-319-56294-0_14

151

mailto:james.ramsay@mcgill.ca
mailto:ramsay@psych.mcgill.ca
mailto:marie.wiberg@umu.se


152 J.O. Ramsay and M. Wiberg

investment firm achieving this amount of increase in return would astonish Wall
Street. Moreover, they show that the improvement in RMSE for high-end examinees
scoring at 90% or more would be even greater, promising an invaluable benefit for
the college admission process.

But sum scoring is simple to understand, is easy to execute, and has the image
of being “fair” in some sense. Its supporters would argue that it works well enough
to have adequately served the needs of schools and colleges and that the percentage
improvements possible for more sophisticated approaches are too trivial to be worth
the effort involved or could be achieved more simply by adding a few more items
to the test. In short, replacing sum scoring by what we call “smart scoring” is apt to
be a large challenge in statistical and social engineering, and the task must not be
underestimated.

We first reflect on what would be needed in order to replace sum scoring,
including technical advances, communication strategies for both test constructors
and examinees, and organizational issues. The final part of the paper contains a
brief description and some theoretical support for smart scoring and methods for
achieving it.

2 What Replacing Sum Scoring Would Require

We need to work on a scale that is already familiar in order to sidestep the problem
of interpreting numbers on the whole real line that are employed in most variants of
item response theory. The percentage interval [0,100] is easy to use, to understand,
and to interpret both for test takers and for the test constructors.

The score distribution is a central issue. Sum scoring offers no control over the
score distribution, but we often need the capacity to define the score distribution,
such as one which approaches a preassigned distribution target set by an educational
institution or which preserves the score distribution of previous test administrations
in multi-administration testing contexts. We consider some theoretical issues around
manipulating score distribution in Sect. 3.

To spread the use of smart scoring, we need to develop application programs that
any teacher, administrator, or test taker can use to analyze test data. An application
must have a version for handheld platforms such as smartphones, as well as for
tablets and laptops, and be web based as well. A test scoring application needs to be
fast enough that it can score 1000 test takers in tens of seconds. Covariates such as
gender, language groups, age, and so on should be potentially a part of the analysis
in order to detect, in the usual case, undesirable contributors to differential item
functioning (DIF).

Test designers and administrators will want to see graphical displays of the
performance of test items, and, where appropriate, examinees should have access
to displays of confidence intervals as well as best estimates for their performance,
along with indications of what each response contributed to their result. Storage and
printing of these displays should be seamless.
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Applications would need to access exam data in standard data formats, including
ASCII, Microsoft Excel, and Apple Numbers, as well as formats used by automatic
answer sheet processing hardware. The test administrator would want extensive
editing capacity so as to add or delete items, score subsets of items, and modify
text in the examination itself. Test composition utilities should be a part of such a
package. Application displays should be easily portable to various types of printing,
storage, and display resources.

The application must be accompanied by a manual that is comprehensible to
the widest possible range of users, with extensive illustrations and user templates.
The manual would need to be published in all of the world’s major languages since
testing is a multinational industry. The scientific community would undoubtedly be
challenged to replace some of its more arcane jargon by friendlier options. Folks on
the street do not use “item” to refer to an exam question, for example, and “item
characteristic curve” would surely not survive this editing process.

Data simulation would play a large role in using this software. Someone
considering the use of smart smoothing would want to see its benefits for a
prospective or existing exam. A simulation tool would enable the simulation and
analysis of up to a thousand replicates of simulated exams which match its design
and examinee characteristics. The simulation application should give a variety of
accuracy assessment displays as well as show the implications of such data design
elements as number of examinees and items. A portfolio of previous successful
and credible applications must be assembled and be readily available to prospective
users of smart scoring.

These exam scoring resources would have to be available at a cost sufficient to
support the expenditures required for distribution, possible research and develop-
ment, risk protection, etc. Ideally, the distributor would be an entity acting in the
public interest and might be involved, for example, in a partnership with an existing
nonprofit testing agency and the Psychometric Society. Test scoring services might
be an outlet for these exam processing utilities.

3 The Smart Scoring Equation

Smart scoring is briefly summarized here but is given in more detail in Ramsay
and Wiberg (2017). Using i; i D 1; : : : ; n to index items and j D 1; : : : ;N to
index examinees, let Pi.�/; i D 1; : : : ; n; be the proportion test takers with ability �
who answer item i correctly, which we might call the item’s “profile.” Let the item
function Wi.�/ be the corresponding log-odds ratio

Wi.�/ D log

�
Pi.�/

1 � Pi.�/

�
; (1)

perhaps called the “performance” of the item.
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Fig. 1 The item performance curves, Wi D ln Pi=.1� Pi/ for the NAEP history test. The vertical
dashed lines are the 5%, 25%, 50%, 75%, and 95% quantiles of the empirical distribution of the
sum scores

The item performance curve Wi is rather more convenient than the profile curve
Pi for both theory and computation. The 36 performance curves for the NAEP
history test are shown in Fig. 1. We notice that they increase with only mild
curvature and that they are unbounded. In fact, curves that were strictly increasing
with common slopes would correspond to sum scoring, in which linear curves with
unrestricted slopes would correspond to the two-parameter logistic model.

The need for a representation of the profile and performance functions, which
is both flexible and justified by the data and is also easy to work with from
a computational perspective and smooth and defined over a closed interval like
Œ0; 100�, strongly suggests a basis function expansion of performance W in terms
of splines. Ramsay and Wiberg (2017) discuss these issues in depth, and there are
a spectrum of strategies for estimating the Wi’s ranging from the quick and dirty to
ones that can meet the more exacting demands of large sample statistical theory.

The maximum likelihood estimate O� for binary-scored items with answer Uij for
test taker j to item i and conditional on knowing each item’s performance curve has
a simple expression in terms of the item performance function values Wji D Wi.�j/.
The negative log likelihood for the estimation of examinee j’s ability is
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� log L D �
X

i

ŒUjiWji � log.1C eWji/

and taking its partial derivative with respect to � leads the smart scoring equation

nX
i

ŒUij � Pi.�/�
dWi

d�
D 0: (2)

Notice that this is also the stationary equation for a continuum of nonlinear
weighted least squares problems indexed by � , where the optimal value makes the
residuals Uij � Pi.�/ orthogonal to the predictor values dWi=d� . We might refer to
this � -derivative as the “item impact function.” Some impact functions estimated in
Ramsay and Wiberg (2017) can be viewed in Fig. 2 for a NAEP history test. We
see that the test has a number of easy items whose impacts are high on the left and
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Fig. 2 The item impact curves, dWi=d� , that provide the optimal weighting of item scores for the
NAEP history test. The vertical dashed lines are the 5%, 25%, 50%, 75%, and 95% quantiles of
the empirical distribution of the sum scores
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therefore informative for the weaker of the examinees. Items for which the impact
peaks near the median score of 20 inform estimation for middle-rank examinees,
and difficult items high on the right provide response up-weighting for the high-end
examinees.

A promising new estimation strategy is parameter cascading which combined
with flexible function representation allows us to estimate the curves in Eq. (1)
as accurately as the data support. The idea in parameter cascading is to represent
nuisance parameters �j as smooth function �j. / of the structural parameters  that
define the log-odds functions. The largest advantage of using parameter cascading
is that it speeds up the computation and thus allows test data to be analyzed in a few
seconds.

4 The Smart Score Distribution

A latent trait such as � is not observed and therefore can be transformed in ways that
make sense. We think of ability as ordered, so that any order-preserving transforma-
tion is permissible, although the smart scoring equation also require differentiable
transformations. This fact tended to be hidden from view when psychometricians
employed only simple parametric curves for the Pi’s since the algebraic structure of
the model implicitly determined the distribution of � -estimates. But, in fact, even
for models as simple as the Rasch model, transforming � is always an option.

This lack of identifiability of � is an asset for item response theory rather than
a liability because it means that one can control the distribution of smart scores as
a part of the analysis of test data. This is a great advantage for test equating, as we
noted, but also to educational institutions who want to limit the grade inflation by
imposing a preassigned distribution on score categories such as the letter grades or
the one to four integer scale. Consequently, a test scoring toolbox will require some
utilities for describing score distributions. We suggest a simple four-parameter score
density family that may serve in many situations.

It is known that correct proportions tend to resemble the two-parameter beta
distribution, B.pj˛; ˇ/, in the central region for some optimal choice of parameters
˛ and ˇ. The beta density can easily be modified to cover Œ0; 100� instead of Œ0; 1�.
But the fact that beta density is zero at the interval boundaries makes it unrealistic
as these data can take extreme values, so that we must also model the height of the
density at 0 and 100, respectively. Adding two more parameters, h0 and hn, solves
this problem and defines the tilted scale beta distribution (TSˇ):

p.S/ D
h0.1 � S=n/C h1.S=n/C .S=n/˛�1.1 � S=n/ˇ�1

n.h0 C hn/=2C B.˛; ˇ/
; (3)

where S is the sum scores. Maximum likelihood estimation of the parameters
˛; ˇ; h0 and hn can be obtained smoothly and reliably, given either score information
from another test administration or a histogram of desired score percentages.
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Fig. 3 The distribution of the sum scores for the 36-item NAEP, where the smooth curve is the
density of the TSˇ distribution

In Fig. 3 the fits of TSˇ distribution to the sum scores of NAEP are given. The
prior density function can be used by class teachers and test constructors to define
a target for their test score distribution. But if this density does not provide an
adequate picture, for example, of evident multimodality, there are many options
for more flexible nonparametric representations, such as those in Silverman (1985)
and Ramsay and Silverman (2005).

5 Concluding Remarks

In this paper, we have argued for replacing sum scoring with smart scoring. A major
reason for using smart scoring is that weighted scores are more accurate than sum
scores especially for high achievers in terms of RMSE. As many educational tests
are used with the aim of selecting high achievers to colleges or to order examinees
into specific grades, it is a matter of fairness that we use estimation tools for ability
that are as precise as possible.

It is well known that the ability distribution is arbitrary; thus, it is possible to
use different transformations of it. In line with this, we have argued that we can
use this more intelligently than before. The needed theory in terms of the statistics
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tools already exists and was briefly discussed together with an example from the
large-scale assessment NAEP.

What is essential to focus on in further research is the building of easy-to-use
and accessible applications. As the theory behind smart scoring is computationally
effective, the focus is more on what parts would make it attracting for the users,
such as graphical interface, confidence intervals, and prediction features.
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Abstract For methods using statistical optimization to estimate lower bounds to
test-score reliability, we investigated the degree to which they overestimate true
reliability. Optimization methods do not only exploit real relationships between
items but also tend to capitalize on sampling error and do this more strongly
as sample size is smaller and tests are longer. The optimization methods were
Guttman’s �4, �5, and �6 and the greatest lower bound to the reliability (GLB).
Method �2 was used as benchmark. We used a simulation study to investigate the
relation of the methods’ discrepancy, bias, and sampling error with the proportion of
simulated data sets in which each method overestimated true test-score reliability.
Method �4 and the GLB often overestimated test-score reliability. When sample
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1 Introduction

Reliability quantifies the degree to which test scores can be repeated under identical
test administration conditions, in which neither the examinee (with respect to the
measured attribute) nor the test (with respect to content) has changed. Perfect
repeatability is hampered by random influences beyond the test administrator’s
control affecting test scores, causing test scores obtained in different administrations
to be different. Reliability is the correlation between two test scores, denoted X and
X0, obtained independently in a group of examinees (Lord and Novick 1968, p.
46), and is denoted 	XX0 . Researchers usually collect item scores based on one test
administration and use methods to approximate 	XX0 based on this single data set.
These methods usually produce lower bounds to 	XX0 .

Some of the approximation methods optimize a criterion based on the data in an
effort to approximate 	XX0 as close as possible. However, because they capitalize on
sample characteristics, smaller samples cause methods to overestimate 	XX0 more
often and to a greater extent. Increasing the number of items also invites more
chance capitalization. Overestimation is undesirable, because test users must be able
to rely on the reported reliability estimate within the limits of statistical uncertainty,
hence not providing values that are systematically too high.

Reliability overestimation has received little attention thus far. We study the
degree to which four reliability methods using optimization overestimate 	XX0 .
The methods are �4, �5, and �6 (Guttman 1945) and the greatest lower bound to
the reliability (GLB; Bentler and Woodward 1980). We recommend which method
to use for reliability estimation.

2 Test-Score Reliability

Of the methods using one data set to estimate reliability, coefficient ˛ (Cronbach
1951) is the most popular but not the best (Sijtsma 2009). Usually, these methods
determine reliability based on the variance-covariance matrix of the items con-
stituting the test. Many methods alternative to coefficient ˛ have been proposed
(e.g., Bentler and Woodward 1980; Guttman 1945; Jackson and Agunwamba 1977;
Kuder and Richardson 1937; Ten Berge and Zegers 1978). Sijtsma and Van der Ark
(2015) also discuss methods based on factor analysis and generalizability theory.
Guttman’s �4, �5, and �6 and the GLB employ a series of consecutive steps to
optimize a method-dependent formal criterion defined on the sample data, resulting
in an optimal value when the criterion is satisfied. Optimization methods are known
to capitalize on chance, the more so when samples are smaller and tests are longer,
hence producing more and greater overestimation effects. Such effects are unknown
for Guttman’s �4, �5, and �6 and the GLB.
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2.1 Classical Reliability Definition

Test score X is the sum of J item scores, denoted Xj, with j D 1; : : : ; J, such that
X D

PJ
jD1 Xj. CTT assumes that test score X can be decomposed in an unobserv-

able, true-score part, denoted T , and an unobservable, random measurement error,
denoted E, such that

X D T C E: (1)

The score decomposition can be applied to any measurement value, for example, an
individual item score; then, Xj D Tj C Ej, and Eq. (1) equals

JX
jD1

Xj D

JX
jD1

Tj C

JX
jD1

Ej: (2)

Because measurement error E is random, error correlates 0 with other variables,
and it follows that (a) the group variance of the test score equals

�2X D �2T C �2E; (3)

and (b) error variance for the test score equals the sum of the item error variances;
that is,

�2E D

JX
jD1

�2Ej
: (4)

Measurements X and X0 are parallel if (1) for each examinee, Ti D T 0
i ; hence, at the

group level, �2T D �2T0 , and (2) at the group level, �2X D �2X0 . Lord and Novick (1968,
p. 61) showed that 	XX0 can be written as

	XX0 D
�2T
�2X

D 1 �
�2E
�2X
: (5)

Using Eq. (4), we can write the right-hand side of Eq. (5) as

	XX0 D 1 �

PJ
jD1 �

2
Ej

�2X
: (6)

Because, in practice, parallel measures usually are unavailable and because
Eqs. (5) and (6) contain too many unknowns, 	XX0 is estimated using the data from
one test administration. Methods �4, �5, and �6 and the GLB each seek a unique
upper bound for the numerator in Eq. (6),

PJ
jD1 �

2
Ej

, and thus find a lower bound
for 	XX0 .
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We use the following notation. Let �jk be the inter-item covariance. One can
derive that �TjTk D �jk, and by definition �EjEk D 0, j ¤ k. If Eq. (3) is rewritten for
individual items, we have

�2Xj
D �2Tj

C �2Ej
: (7)

Covariance matrices †X and †T are symmetrical and have order J � J, and †E is
diagonal and has order J � J, so that

†X D †T C †E: (8)

Matrix †X is positive definite (pd); that is, for any vector u of size J, we have
u0†Xu > 0 (i.e., †X has a positive determinant); †T and †E are positive semi-
definite (psd), so that u0†Xu � 0 (i.e., determinants are nonnegative).

The derivation of the methods �4, �5, and �6 and also benchmark �2 can be found
with Guttman (1945) and Jackson and Agunwamba (1977), and for the GLB we
refer the reader to Bentler and Woodward (1980). Because derivations are known,
we only provide results.

2.2 Methods �4, �5, and �6, GLB, and Benchmark �2

2.2.1 Method œ4

Method �4 is based on splitting the J-item test in two parts, not necessarily of equal
length, and finds the split that minimizes an appropriate upper bound for

PJ
jD1 �

2
Ej

in Eq. (6) and consequently a lower bound for 	XX0 . Here, we define the upper bound
for

PJ
jD1 �

2
Ej

typical of method �4. Let u only have elements equal to either C1 or
�1 so that u selects items in either of the two test parts of a particular test split. It
can be shown that

u0†Xu D u0†Tu C u0†Eu; (9)

from which it follows that

u0†Eu D

JX
jD1

�2Ej
� u0†Xu: (10)

The right-hand side of Eq. (10) provides an upper bound for
PJ

jD1 �
2
Ej

, and method
�4 finds the vector u that minimizes u0†Xu, so that

�4 D max
u

�
1 �

u0†Xu

�2X

�
: (11)
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Because u and �u provide the same value for u0†Xu, and because vectors u
containing only C1s or only �1s do not refer to a test split, 2J�1 � 2 vectors and
corresponding products u0†Xu remain to find �4. For test length J < 20, one can
try all vectors u within reasonable computing time, and for test length J � 20, we
refer to a procedure proposed by Benton (2015).

2.2.2 Method œ5

From †T being psd, it follows that every principal submatrix of †T also has a
nonnegative determinant, so that, for example, �2Tj

�2Tk
� �2jk, all j ¤ k. One can use

this result to derive for a fixed column k of †T containing J � 1 covariances �jk

(k ¤ j) and ignoring �2Xk
that (noticing that

P
k¤j produces summation across index

k, k ¤ j)

JX
jD1

�2Tj
� 2

0
@X

k¤j

�2jk

1
A
1
2

: (12)

From Eq. (7) it follows that

JX
jD1

�2Xj
D

JX
jD1

�2Tj
C

JX
jD1

�2Ej
; (13)

which implies

JX
jD1

�2Ej
�

JX
jD1

�2Xj
� 2

0
@X

k¤j

�2jk

1
A
1
2

: (14)

The right-hand side of Eq. (14) provides another upper bound for
PJ

jD1 �
2
Ej

, and one
is free to choose the column k that minimizes this upper bound, hence finds a lower
bound for 	XX0 . To find �5, let k vary across each of the J columns of †T and define

�5 D 1 �

PJ
jD1 �

2
Xj

� maxk

�
2
�P

k¤j �
2
jk

� 1
2

�

�2X
: (15)

2.2.3 Method œ6

Method �6 is based on the multiple regression of each of the J item scores Xj on the
other J � 1 item scores. By minimizing the residual variance of the model, multiple
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regression finds the regression weights for each of the J � 1 items. The residual
variance of item j, �2�j

, is an upper bound to the measurement error variance for item

j, �2Ej
; that is, �2Ej

� �2�j
, and adding across the J items, we obtain

JX
jD1

�2Ej
�

JX
jD1

�2�j
(16)

(Jackson and Agunwamba 1977). Thus, the right-hand side of Eq. (16) provides yet
another upper bound for the numerator in Eq. (6), which is

PJ
jD1 �

2
Ej

. Replacing the
numerator in Eq. (6) by the right-hand side of Eq. (16), produces a lower bound to
the reliability,

�6 D 1 �

PJ
jD1 �

2
�j

�2X
: (17)

For estimation of �6 using covariance matrix †X , see Jackson and Agunwamba
(1977) and Oosterwijk et al. (2016).

2.2.4 Greatest Lower Bound

Numerous pairs of different matrices †T and †E produce the same †X; see Eq. (8).
Let tr.†E/ D

PJ
jD1 �

2
Ej

, and let e†E be the matrix of error variances for which the

trace is maximized, provided that e†E is psd, and e†T is the corresponding covariance
matrix of the item true scores, such that †X D e†T C e†E. Reliability [Eq. (5)] can
be written as

	XX0 D 1 �
tr.†E/

�2X
; (18)

and the GLB is obtained by replacing tr.†E/ with tr.e†E/, so that

GLB D 1 �
tr.e†E/

�2X
: (19)

The GLB algorithm used in this chapter is due to Bentler and Woodward (1980).
If the J items or the test parts in which the test is divided are essential tau-equivalent
(Lord and Novick 1968, p. 90), then GLB D 	XX0 . When essential tau-equivalence
does not hold, the GLB provides the lowest possible reliability given the data, and
GLB < 	XX0 , but other methods provide lower values, hence, smaller lower bounds,
and the GLB thus is the greatest lower bound (Jackson and Agunwamba 1977).
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2.2.5 Benchmark Method œ2

Guttman (1945) derived three methods, denoted �1, �2, and �3 (equal to coefficient
˛), which all use the inter-item covariances but do not optimize a statistical criterion
and thus are not expected to capitalize on chance. Hence, in principle, each could
serve as a benchmark for the methods �4, �5, and �6 and GLB. The relationship
between the three methods and the reliability is

�1 < �3.D ˛/ � �2 � 	XX0 : (20)

In general, �1 is considered practically useless, and Sijtsma (2009) and Oosterwijk
et al. (2016) have recommended using �2 rather than �3. Hence, we used �2 as
benchmark for methods �4, �5, and �6 and GLB. Method �2 equals

�2 D 1 �

PJ
jD1 �

2
Xj

�
�

J
J�1

PP
j¤k �

2
jk

� 1
2

�2X
: (21)

2.3 Knowledge About Reliability Methods in Samples

For N < 1000 and J > 10, the GLB is positively biased relative to 	XX0 (Shapiro
and Ten Berge 2000; Ten Berge and Sočan 2004). Under particular conditions,
method �4 has values similar to the GLB (Jackson and Agunwamba 1977; Ten Berge
and Sočan 2004). Hence, method �4 has almost the same bias relative to 	XX0 as the
GLB; Benton (2015) found that method �4 is biased when N < 3000. Samples this
size are common in the social and the behavioral sciences, and results with respect
to chance capitalization are needed for smaller samples, not only for method �4 and
the GLB but also for �5 and �6. We used a simulation study to assess this problem.

3 Method

3.1 Population Model

Data were simulated using the two-dimensional graded response model (De Ayala
2009, pp. 275–305). The two-dimensional graded response model expresses the
probability of scoring at least x on item j as a function of latent variable � , item
location parameters ˇjx, and item discrimination parameters ˛j, such that

P.Xj � xj�1; �2/ D
expŒ˛j1.�1 � ˇjx/C ˛j2.�2 � ˇjx/�

1C expŒ˛j1.�1 � ˇjx/C ˛j2.�2 � ˇjx/�
: (22)
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Latent variables �1 and �2 had 101 equidistant values (�5;�4:9;�4:8; : : : ; 5) and
were approximately bivariate normally distributed with mean 0, variance 1, and
correlation 	�1�2 . Joint probability is denoted P.�1; �2/. We assumed that the test
consisted of J items with five ordered item scores, x D 0; : : : ; 4.

Item location parameters ˇjx consisted of an item-specific part �j and a category-
specific part 
x, such that ˇjx D �j C
x. We chose �j D .j�1/=.J�1/�0:5 and 
x D

�0:75C 0:5x and computed the item location parameters ˇjx for j D 1; : : : ; 5I x D

1; : : : ; 4. For five items, this resulted in � D .�0:5;�0:25; 0; 0:25; 0:5/, 
 D

.�0:75;�0:25; 0:25; 0:75/, and 20 ˇ values, which are readily computed.
Discrimination parameters ˛j differed across latent variables. For �1, ˛j1 D 1:6

for the odd-numbered items and ˛j1 D 0 for the even-numbered items. For �2,
˛j2 D 1:6 for the even-numbered items and ˛j2 D 0 for the odd-numbered items. For
10 and 15 items, each next 5-tuple of items had the same discrimination parameters
as the first 5-tuple; that is, using math operation modulo, for k D j mod 5, for
j > 5, one finds ˛j1 D ˛k1 and ˛j2 D ˛k2.

Equation (22) was used to compute covariance matrix †T , so as to obtain the
numerator of 	XX0 [Eq. (5)]. Because �TjTk D �jk, we only require the item true-
score variances, �2Tj

. It also may be noted that E.Tj/ D E.Xj/. First, for fixed values
of �1 and �2, the true score of item j equals

Tjj�1; �2 D
X

x

P.Xj � xj�1; �2/: (23)

Second, the true-score variance of item j then equals

�2Tj
D
X
�1

X
�2

P.�1; �2/


Tjj�1; �2 � E.Tj/

2
: (24)

The conditional probability of obtaining item score x on item j equals

P.Xj D xj�1; �2/ D P.Xj � xj�1; �2/ � P.Xj � x C 1j�1; �2/: (25)

Equation (25) was used to compute covariance matrix †X , so as to obtain the
denominator of 	XX0 [Eq. (5)], methods �4, �5, and �6, the GLB, and benchmark
method �2. First, given discrete values for the latent variables, manifest marginal
probabilities P.Xj D x/ and joint probabilities P.Xj D x;Xk D y/ were computed
using

P.Xj D x/ D
X
�1

X
�2

P.�1; �2/P.Xj D xj�1; �2/ (26)

and

P.Xj D x;Xk D y/ D
X
�1

X
�2

P.�1; �2/P.Xj D xj�1; �2/P.Xk D yj�1; �2/; (27)



Overestimation of Reliability by Guttman’s �4, �5, and �6 and the Greatest. . . 167

respectively. Second, the following expected values were computed using Eqs. (26)
and (27): E.Xj/ D

P
x xP.Xj D x/, E.X2j / D

P
x

P
y xyP.Xj D x;Xj D y/, and

E.XjXk/ D
P

x

P
y xyP.Xj D x;Xk D y/. Finally, �2Xj

= E.X2j / � Œ�.X/�2, and �jk D

E.XjXk/ � E.Xj/E.Xk/.

3.2 Data Generation

Samples of N pairs of latent variable values �1 and �2 were drawn from a bivariate
normal distribution. The score for person i on item j was computed as follows. First,
using Eq. (22), P.Xj � xj�1i; �2i/ was computed for x D 1; : : : ; 4. Second, let I
be an indicator function, and let wji be a random number between 0 and 1; then
Xji D

P
x IŒ.P.Xj � xj�1i; �2i/ > w/�. The resulting item scores are discrete and

follow a multinomial distribution.

3.3 Design

The between-subject factors were (1) correlation 	�1�2 (values 0.30, 0.65, and 1),
(2) number of items J (values 5, 10, and 15), and (3) sample size N (values 50, 250,
500, 750, and 1000). The full factorial design had 3 � 3 � 5 D 45 cells. Each cell
was replicated 5000 times. Note that the item scores are unidimensional if 	�1�2 D 1

and two-dimensional if 	�1�2 < 1. For each sample, the �s were estimated, and the
GLB was estimated using function glb.algebraic from the psych r-package (Revelle
2015).

The dependent variables were (1) discrepancy (the difference between the
population value of the reliability method and the population reliability (e.g.,
�4 � 	XX0 )), (2) bias (the difference between the mean of the sample estimates

(e.g., sample estimate denoted O�4, mean denoted NO�4) and the population value (e.g.,

�4) (bias equals NO�4 � �4)), (3) standard deviation of the coefficients (e.g., SD. O�4/),
and (4) reliability overestimation (in each design cell, the proportion out of 5000
replicated sample values exceeding 	XX0 [e.g., P. O�4 > 	XX0/]).

4 Results

4.1 Discrepancy

Table 1 provides the positive discrepancies for the lower bounds. The GLB had
negligible discrepancy. Second best methods were �2 and �4. Methods �5 and
�6 had the largest discrepancy. Except for the GLB, as test length increased, dis-
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Table 1 Discrepancy of
�4,�5, �6, GLB, and �2, as a
function of correlation
between latent variables and
test length

	�1�2 J 	XX0 �4 �5 �6 GLB �2

1 5 0.761 �26 �29 �45 �2

10 0.865 �34 �14 �1

15 0.906 �2 �30 �7 �1

0.65 5 0.725 �30 �58 �79 �2 �38

10 0.841 �49 �26 �18

15 0.889 �4 �41 �14 �13

0.30 5 0.678 �36 �87 �106 �4 �72

10 0.809 �66 �35 �36

15 0.864 �4 �53 �17 �24

Entries for �4,�5, �6, GLB, and �2 in thousandths; for
example, read �26 as �0:026. Read a blank as 0

crepancy decreased, and as correlation between the two latent variables increased,
discrepancy increased. Based on discrepancy alone, methods �5 and �6 probably
will overestimate reliability not as often as the other methods.

4.2 Bias and Standard Deviation

Bias is interesting when it is positive, discrepancy is small, and SD is large. This
combination of quantities produces large proportions of reliability overestimates.
Tables 2, 3, and 4 show that sample size, more than test length and dimensionality,
affects bias and SD; both decrease as N increases. The five lower bounds differ little
with respect to SD, so that we will concentrate on bias.

Method �5 and benchmark method �2 had small negative bias, ranging across
the design from 0:000 to �0:016 (�5) and from �0:007 to �0:018 (�2). Method �6
had bias ranging from positive when N D 50 (0:001 to 0:033) to negative when
N � 250 (�0:002 to �0:020). Given that method �6 had large discrepancy, we
expect the proportion of reliability overestimates to be large for N D 50 and small
for larger N. Bias for methods �4 and GLB was largest and almost always positive,
in particular when J D 10; 15. In combination with discrepancy that was almost
always near 0 or equal to 0, for �4 and the GLB, one may expect large proportions
of reliability overestimates.

4.3 Reliability Overestimation

For method �5, except when J D 5 and N D 50, overestimation was negligible
(Table 5). For method �6, overestimation was always problematic for N D 50 but
not for larger N. For benchmark �2, for unidimensionality and N D 50, proportions
were approximately 0:4 but decreased as N increased and also decreased to 0 as
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Table 2 Bias and SD of �4, �5, �6, GLB, and �2, for correlation 	�1�2 D 1, as a function of
test length and sample size

Bias SD

J Method 50 250 500 750 1000 50 250 500 750 1000

5 �4 51 13 4 �2 49 25 18 15 13

�5 �9 �11 �12 �13 54 25 17 14 12

�6 1 �15 �16 �16 �17 62 29 20 16 14

GLB 40 7 �3 �5 49 25 18 15 13

�2 �16 �17 �16 �16 �16 57 26 18 14 13

10 �4 51 19 11 7 5 20 12 9 8 7

�5 �5 �7 �7 �8 29 13 9 7 6

�6 17 �5 �8 �9 �9 29 14 10 8 7

GLB 58 22 13 8 6 19 11 9 7 6

�2 �9 �10 �10 �10 �10 30 13 9 8 7

15 �4 50 21 13 9 7 11 7 6 5 4

�5 �2 �4 �5 �5 �6 20 9 6 5 4

�6 23 �2 �5 �6 �6 17 9 7 5 5

GLB 55 23 15 11 8 10 7 6 5 4

�2 �7 �7 �7 �7 �7 20 9 6 5 4

Entries in thousandths; for example, read �9 as �0:009. Read a blank as 0

Table 3 Bias and SD of �4, �5, �6, GLB, and �2, for correlation 	�1�2 D 0:65, as a function of
test length and sample size

Bias SD

J Method 50 250 500 750 1000 50 250 500 750 1000

5 �4 47 9 �4 �5 60 31 22 18 16

�5 �2 �13 �14 �15 �15 68 31 21 18 16

�6 1 �16 �17 �18 �18 76 35 24 19 17

GLB 33 �6 �9 �10 60 30 21 17 15

�2 �16 �18 �17 �17 �17 71 33 22 18 16

10 �4 54 19 10 6 3 25 15 11 9 8

�5 �2 �7 �9 �9 �10 38 17 12 10 8

�6 21 �6 �10 �11 �11 36 18 13 10 9

GLB 63 22 12 7 5 23 14 10 9 8

�2 �9 �11 �11 �11 �12 39 17 12 10 8

15 �4 57 23 13 9 7 13 09 7 6 5

�5 �3 �6 �7 �7 �7 26 11 8 7 6

�6 28 �2 �6 �7 �8 21 11 8 7 6

GLB 63 26 16 11 9 12 9 7 6 5

�2 �8 �8 �9 �9 �9 26 12 8 7 6

Entries in thousandths; for example, read �7 as �0:007. Read a blank as 0
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Table 4 Bias and SD of �4, �5, �6, GLB, and �2, for correlation 	�1�2 D 0:30, as a function of
test length and sample size

Bias SD

J Method 50 250 500 750 1000 50 250 500 750 1000

5 �4 52 11 2 �3 �5 73 36 25 21 19

�5 �4 �14 �15 �16 �16 82 38 26 22 19

�6 2 �17 �18 �19 �20 91 41 28 23 20

GLB 36 1 �5 �8 �10 72 36 25 21 18

�2 �13 �18 �17 �17 �18 84 39 26 22 19

10 �4 63 22 12 7 4 31 18 13 11 9

�5 �3 �9 �10 �11 �11 48 21 15 12 11

�6 25 �7 �11 �13 �13 45 21 15 13 11

GLB 75 26 14 9 6 29 17 13 11 9

�2 �9 �12 �13 �13 �13 48 21 15 12 10

15 �4 68 28 17 12 8 17 11 8 7 6

�5 �5 �7 �8 �8 �9 34 15 10 9 7

�6 33 �2 �7 �8 �9 26 14 10 8 7

GLB 76 31 19 14 10 15 10 8 7 6

�2 �8 �9 �10 �10 �10 33 15 10 8 7

Entries in thousandths; for example, read �16 as �0:016. Read a blank as 0

Table 5 Proportions of estimates of �4, �5, �6, GLB, and �2 overestimating 	XX0 , for correlation
	�1;�2 D 1, as function of test length and sample size

	�1;�2 D 1 	�1;�2 D 0:65 	�1;�2 D 0:30

J Method 50 250 500 750 1000 50 250 500 750 1000 50 250 500 750 1000

5 �4 74 32 12 4 2 66 25 7 2 1 63 26 9 3 1

�5 31 5 18 1 12

�6 24 1 14 10

GLB 82 64 52 44 37 74 49 37 28 22 71 49 39 28 23

�2 41 25 16 11 8 23 3 14

10 �4 98 94 89 83 78 97 89 83 75 68 96 89 83 74 68

�5 9 6 5

�6 59 8 100 49 2 45 1

GLB 99 97 93 87 84 99 94 88 81 75 98 93 87 80 74

�2 42 22 12 8 5 25 3 1 16

15 �4 100 99 96 91 84 100 98 92 84 71 100 98 93 86 76

�5 2 2 2

�6 85 19 4 1 77 7 76 7

GLB 100 100 99 99 98 100 100 99 97 95 100 100 99 98 95

�2 39 20 10 6 3 22 2 15

Entries in hundredths; for example, read 31 as 0.31. Read a blank as 0
Note. The reliability was (left to right, top to bottom) 0.761, 0.725, 0.678, 0.865, 0.841, 0.809,
0.906, 0.889, and 0.864
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	�1�2 decreased. For method �4 and the GLB, irrespective of N, when J D 10; 15,
proportions varied between 0:78 and 1:00. Dimensionality only had little effect on
proportions; they were invariably high.

5 Discussion

Discrepancy, bias, and standard deviation together determine proportion of overes-
timation, but exact numerical results had to be computed using a simulation study.
Table 6 provides qualifications of the results based on Tables 1, 2, 3, 4, and 5 and
enables us to summarize each of the methods’ results and draw conclusions with
respect to their practical usefulness.

For method �4, discrepancy is small, but bias is substantial to large, and,
moreover, it is positive, thus driving estimates of �4 to overestimate 	XX0 ; this
happens often, and proportion of overestimation is large. The GLB is closer to
	XX0 and has the same statistical properties as �4, hence producing many gross
overestimates of 	XX0 . Method �4 and GLB both suffer greatly from their tendency
to capitalize on chance. This renders their application to moderate sample sizes
questionable.

Methods �5 and �6 have a large discrepancy, whereas the former method has
small bias irrespective of sample size N, and the latter method has substantial bias
(small N) to small bias (moderate N). Combined with a standard deviation that
is small enough to have little effect on overestimation if N > 250, this combination
of properties causes methods �5 and �6 to rarely overestimate 	XX0 . Their large
discrepancy speaks to their disadvantage as practical estimates of 	XX0 .

For benchmark method �2, Table 6 suggests that discrepancy is small, bias is
small irrespective of sample size, and variance did not differ notably between �2
and other reliability estimation methods. The magnitude of overestimation usually
is small, but for unidimensional data, overestimation may be larger due to �2 having
small discrepancy.

Compared to method �2, methods �4, �5, and �6 and the GLB all seem to
underperform. We only studied small samples; hence, a study of the large-sample
performance of the methods may be useful. Chance capitalization caused by realistic
numbers of items seems to be a principled problem and not easily fixed. Given that

Table 6 Summary of discrepancy, bias, variance, and reliability overestimation

Discrepancy Bias N D 50 Bias N > 250 Variance Overestimation

�2 Small Small Small No effect Variable

�4 Small Large Substantial No effect Large

�5 Large Small Small No effect Small

�6 Large Substantial Small No effect Small

GLB Negligible Large Substantial No effect Large
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one does not want to report a reliability boosted by chance, reporting a lower bound
that does not capitalize on chance, such as �2, may be recommendable. Even method
�3 (coefficient ˛), not studied here, may be considered. Such recommendations
require further study. In addition, future studies are required to investigate the degree
to which the results in this study generalize to continuous item scores. It can be
expected that the degree of discrepancy, bias, and precision is slightly different for
continuous item scores and for the discrete item scores considered in this study.
Methods from the factor analysis approach (Bollen 1989; McDonald 1999) probably
also suffer from chance capitalization and require the same kind of evaluation as the
methods studied in this article.
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The Performance of Five Reliability Estimates
in Multidimensional Test Situations

Shuying Sha and Terry Ackerman

Abstract This paper investigates the estimation biases of five reliability indices,
Cronbach’s ’, Guttman’s œ2 and œ4, glb, and McDonald’s ¨. The factors included
are test dimensionality, population ability distribution, sample size, test length,
and test discrimination. It was found that estimation biases of Alpha, œ4, and
glb were correlated with the test’s true reliability, whereas œ2 and ¨ were not.
Estimation biases were larger in two-dimensional tests than in unidimensional tests.
Alpha overall had the largest estimation bias, but glb displayed similar bias in
unidimensional tests. In light of the findings in the simulation study, we recommend
McDonald’s ¨ because it had the smallest estimation bias in most test condition.

Keywords Reliability • Lower bounds to reliability • ¨ • œ2, Cronbach’s ’ • œ4

1 Introduction

Measurement precision, referred to as reliability, is a major issue in educational
assessment and psychological research. Spearman (1904) defined reliability to be
the correlation between observed total scores of two parallel tests or between test
scores on two repeated administrations. However, it is rare to have either parallel
tests or repeated testing. Instead, reliability is usually based on single administration
and is defined as the proportion of observed score variance explained by true score
variance. Therefore, based on the contribution of Spearman (1904) to classical test
theory, the reliability of a test is also defined as the ratio of true score variance and
observed score variance.
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Since Spearman’s (1904) definition of reliability, many reliability indices have
been developed by researchers, such as Guttman’s (1945) six œs œ1�œ6 that were
developed by bounding the estimation of true score variance or error variance of
the test score to derive the estimates of reliability, McDonald’s ¨ (McDonald 1970,
1999), and the greatest lower bound (glb; Jackson and Agunwamba 1977; Bentler
1972; Woodhouse and Jackson 1977; Bentler and Woodward 1980). Guttman’s
(1945) œ3 is actually Cronbach’s ’.

Among all the reliability estimates, Cronbach’s ’ is the mostly widely used since
its publication (Cronbach 1951; Raykov 2001; Sijtsma 2009). Cronbach (1951)
proved that alpha is the mean of all possible Flanagan-Rulon split-half reliabilities
under a strong assumption that all items are equally loaded and unidimensional.
In reality, the assumption of equal discrimination power for all test components
is rarely met. Plus, many tests measure more than one dimension. Sijtsma (2009)
proved that alpha does not change while dimensionality increases, whereas glb
decreases dramatically.

The purpose of this study is to investigate the performance of Cronbach’s ’,
in comparison to four other alternative reliability estimates: Guttman’s œ2, œ4,
McDonald’s ¨, and glb in estimating the reliability of a multidimensional test.

2 Background

2.1 Guttman’s �2, �3, and �4

Guttman’s œ2 is defined as

�2 D �1 C

q
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; (1)

where i and j are the ith and jth item; �2i and �2j are the variances of item score xj and
item score xj, respectively; and � ij is the covariance between item scores xi and xj.

Guttman’s œ3, commonly known as Cronbach’s ’, is defined as
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where �2t is the total score variance.
Guttman (1945) proved that œ2 is always larger or equal to œ3. Therefore, œ2

should be a better estimate than œ3.
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Another lower bound œ4 was originally proposed as any split-half reliability
(Guttman 1945). It is often taken as the split-half that maximizes the reliability
coefficient,

�4 D
4r12

�21 C �22 C 2r12�1�2
(3)

where �21 is the variance of the first part of the test, �22 is the variance of second
part, and r12 is the correlation of the two. The statistic œ4 does not assume
unidimensionality or tau-equivalence (Guttman 1945) and varies according to how
the test is split.

Guttman proposed œ4 but didn’t develop an algorithm to compute its value.
Several algorithms have been developed by other researchers. In the “psych”
package (Revelle 2014) of the R programming software, the calculation of œ4 is
approached by combining the output from three different approaches, and �4 is
reported as the max of these three algorithms.

Ten Berge and Socan (2004) suggested that �4 is a better lower bound than alpha,
with an exception when the number of items is odd. Ten Berge and Socan (2004)
also found that when the sample size was small and the item number was large, �4

was severely positively biased. However, Benton (2015) found that when sample
size is 1000 and reliability over 0.85, positive bias of �4 is not an issue.

2.2 Greatest Lower Bound

The greatest lower bound (glb) was originally proposed by Bentler (1972), in which
the covariance matrix Cx is decomposed to be Cx D CT C CE. Here Cx is the inter-
item covariance matrix, CT is the true score covariance matrix, and CE is the error
inter-item covariance matrix. It was shown that glb can be found by maximizing
the trace of inter-item error covariance matrix (CE) while keeping both true score
variance and error variance to be positive semi-definite (Woodhouse and Jackson
1977; Bentler and Woodward 1980),

glb D 1 �
tr .CE/

S2x
(4)

There are three ways in the “psych” package (Revelle 2014) to calculate glb:
“glb,” “glb.algebraic,” and “glb.fa.” This study used “glb.fa” to find the glb. “glb.fa”
estimates the communalities of the variables from a factor model in which the
number of factors is the number of positive eigenvalues. Then reliability is found
by the equation

glb D 1 �

Pk
iD1 e2

�2t
D 1 �

Pk
iD1 1 � h2

�2t
(5)
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where e represents error variance, and h represents the communality. Revelle
(2014) indicated that “glb.fa” has larger positive bias when the sample size is large
(n >1000).

2.3 McDonald’s !

McDonald (1970, 1999) proposed a factor analytical approach to estimate reliability.
He called his formulation of reliability omega (¨),

! D 1 �

PJ
jD1

�
1 � h2j

�

�2t
D 1 �
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jD1 �

2
j

�2t
(6)

where h is the communality and � is the unique variance of the item, which is
considered to be the error variance of the item.

A few studies have compared the performance of different lower bounds
of reliability. Sijtsma (2009) and Bendermacher (2010) considered glb the best
reliability estimate because it is the largest among all the lower bounds. However,
Revelle and Zinbarg (2009) showed that glb is systematically smaller than ¨ and
thus recommended using omega rather than glb in reporting test reliability. Tang
and Cui (2012) evaluated three lower bounds including œ2, Cronbach’s ’, and
the glb under different simulation conditions where sample size, test length, and
dimensionality were manipulated. Among them, œ2 showed the least bias in most
of the conditions. However, most of the tests in the abovementioned studies have
extremely low true reliabilities (<0.70). The problem is that when true reliability is
below 0.80, the difference between reliability estimators probably does not matter.
Because the test has severely low measurement precision, large modifications to the
test should be made in order to improve its quality.

Shorter tests, depending on the examinees, often yield lower reliability. In
most studies (Sijtsma 2009; Tang and Cui 2012), test length was very small
with maximum number of items on a test equal to 12. However, in educational
measurement, tests with this length are not common. In addition, though not
discussed and systematically investigated, the results in some studies (Benton 2015;
Tang and Cui 2012) suggested that estimation bias may vary according to the test’s
true reliability. For the results to be more generalizable, studies need to investigate
relative performance of lower bounds in tests with more items and higher reliability.
It is the purpose of this study to investigate how the five reliability estimates perform
in unidimensional tests and two-dimensional tests with the test’s true reliability
being manipulated.
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3 Methodology

This study investigated the estimation of reliability in unidimensional tests and two-
dimensional (2D) tests by manipulating three factors: (1) the correlation between
different dimensions of ability in two-dimensional tests (r D 0, 0.5, 0.8); (2) the
dispersion of ability that has three levels, N (0, 0.8), N (0, 1), and N (0, 1.5); and (3)
sample size (N D 500, 1000). Hence, there are 3 (correlation) � 3 (variance) � 2
(sample size) D 18 conditions for two-dimensional tests and 3 (variance) � 2
(sample size) D 6 conditions for unidimensional tests.

P
�
xij D 1ja1; a2;dj;�1; �2

�
D

exp


1:7

�
a1�1 C a2�2 C dj

�

1C exp


1:7

�
a1�1 C a2�2 C dj

� (7)

The 2PL multidimensional IRT model (Eq. (7)) and unidimensional 2PL IRT
model were used to generate the two-dimensional item responses and unidimen-
sional items, respectively. A total of 30 items were generated in all conditions, and
for each condition, there were 30 replications.

Both bias and root mean square error of estimation (RMSE) were calculated for
the five reliability estimates. Bias was calculated by subtracting true reliability from
reliability estimates, and RMSE is defined as

RMSE D

vuutP30
1

�_
Ri � 	i

�2

30
(8)

where
_

Ri is the estimated reliability and 	i is the true reliability.

4 Results

Tables 1 and 2 provide the five reliability estimates and their RMSEs with respect
to the correlation of abilities, population variance, and sample size. As can be
observed from Table 1, unidimensional tests overall had higher reliability than the
two-dimensional tests; Cronbach’s ’ had the smallest value, followed by œ2, ¨, and
œ4; glb had the largest value in almost all conditions. This is different from what’s
found in Revelle and Zinbarg (2009) which showed that glb was systematically
smaller than ¨. By comparing estimated reliabilities with true reliabilities, it can
be seen that Cronbach’s ’, œ2, and ¨ tended to underestimate the true reliability,
whereas glb and œ4 overestimated the true reliability in most two-dimensional test
conditions.

RMSEs (Table 2) tell the relative bias size of the five reliability estimates. As can
be observed, in unidimensional tests, ¨ showed the smallest bias, while Cronbach’s
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Table 1 Average true reliability and reliability estimates with respect to correlation, variance, and
sample size (replication D 30)

Correlation Variance N True Omega œ2 Alpha œ4 glb

Two dimensional
0 0.64 1000 0.905 0.900 0.894 0.891 0.913 0.918
0.5 0.64 1000 0.923 0.925 0.920 0.917 0.934 0.937
0.8 0.64 1000 0.942 0.934 0.929 0.926 0.942 0.944
0 1 1000 0.928 0.924 0.918 0.915 0.934 0.935
0.5 1 1000 0.950 0.943 0.938 0.936 0.950 0.951
0.8 1 1000 0.952 0.950 0.945 0.943 0.957 0.957
0 1.25 1000 0.949 0.942 0.936 0.934 0.950 0.950
0.5 1.25 1000 0.963 0.958 0.954 0.952 0.964 0.964
0.8 1.25 1000 0.968 0.963 0.959 0.958 0.968 0.968
0 0.64 500 0.898 0.905 0.905 0.900 0.911 0.925
0.5 0.64 500 0.931 0.922 0.922 0.917 0.927 0.939
0.8 0.64 500 0.941 0.939 0.938 0.934 0.943 0.951
0 1 500 0.934 0.920 0.920 0.915 0.926 0.937
0.5 1 500 0.954 0.945 0.943 0.940 0.948 0.956
0.8 1 500 0.954 0.950 0.949 0.946 0.953 0.960
0 1.25 500 0.942 0.944 0.943 0.939 0.948 0.955
0.5 1.25 500 0.959 0.959 0.957 0.954 0.962 0.966
0.8 1.25 500 0.966 0.964 0.962 0.960 0.966 0.971
Unidimensional

0.64 1000 0.928 0.903 0.904 0.899 0.907 0.921
1 1000 0.940 0.932 0.932 0.928 0.937 0.944
1.25 1000 0.959 0.945 0.944 0.940 0.947 0.953
0.64 500 0.923 0.903 0.898 0.895 0.916 0.920
1 500 0.943 0.932 0.927 0.925 0.941 0.944
1.25 500 0.960 0.945 0.940 0.938 0.952 0.953

Note: N D sample size

’ and glb have similar bias. In two-dimensional tests, one of ¨, glb, and œ4 has
smallest bias depending on the conditions. Cronbach’s ˛ had the largest RMSE,
followed by œ2.

The correlations between the true reliability and the five estimation biases were
calculated to examine if there is a relationship between reliability estimation bias
and the true reliability. As we can observe in Table 3, the correlation between
Cronbach’s ’ and true reliability was positive and significant, suggesting that
higher reliability comes with larger estimation bias of Cronbach’s ’. There were
significant negative correlations between the true reliabilities and biases of œ4 and
glb, suggesting the higher the true reliability, the smaller the bias. No significant
correlation was found between the true reliability and the bias of ¨ and œ2. This
is consistent with the findings in Tables 1 and 2. For the test with the lowest true
reliability, Cronbach’s a has the smallest bias and glb has the largest bias.
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Table 2 RMSEs of five reliability estimators with respect to correlation, variance, and sample size
(replication D 30)

r ¢2 N True Omega œ2 Alpha œ4 glb

Two dimensional
0 0.64 1000 0.905 0.017 0.020 0.022 0.018 0.020
0.5 0.64 1000 0.923 0.015 0.015 0.016 0.019 0.021
0.8 0.64 1000 0.942 0.015 0.018 0.020 0.012 0.012
0 1 1000 0.928 0.018 0.020 0.022 0.018 0.019
0.5 1 1000 0.95 0.013 0.016 0.018 0.011 0.011
0.8 1 1000 0.952 0.010 0.012 0.013 0.010 0.010
0 1.25 1000 0.949 0.013 0.017 0.019 0.011 0.011
0.5 1.25 1000 0.963 0.011 0.014 0.015 0.010 0.010
0.8 1.25 1000 0.968 0.009 0.012 0.013 0.008 0.008
0 0.64 500 0.898 0.028 0.028 0.027 0.031 0.039
0.5 0.64 500 0.931 0.019 0.019 0.022 0.019 0.019
0.8 0.64 500 0.941 0.017 0.017 0.018 0.018 0.020
0 1 500 0.934 0.024 0.024 0.027 0.021 0.019
0.5 1 500 0.954 0.017 0.018 0.020 0.017 0.015
0.8 1 500 0.954 0.012 0.013 0.014 0.012 0.013
0 1.25 500 0.942 0.016 0.016 0.017 0.019 0.020
0.5 1.25 500 0.959 0.012 0.012 0.012 0.013 0.013
0.8 1.25 500 0.966 0.014 0.015 0.016 0.014 0.014
Unidimensional

0.64 1000 0.928 0.017 0.017 0.018 0.017 0.023
1 1000 0.94 0.015 0.015 0.016 0.016 0.017
1.25 1000 0.959 0.010 0.011 0.012 0.010 0.012
0.64 500 0.923 0.019 0.021 0.023 0.021 0.022
1 500 0.943 0.012 0.013 0.015 0.014 0.015
1.25 500 0.96 0.012 0.013 0.014 0.014 0.014

Table 3 Correlation between estimators and true reliability

True Omega œ2 Alpha œ4

True 1.000
Omega �0.061
œ2 0.049 0.953***
Alpha 0.164*** 0.882*** 0.965***
œ4 �0.380*** 0.770*** 0.607*** 0.464***
glb �0.626*** 0.523*** 0.360*** 0.166*** 0.829***

Note: ***p < 0.001
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5 Discussion and Conclusion

For test reliability reporting, some researchers (Green and Yang 2009; Sijtsma 2009;
Ten Berge and Socan 2004) recommended the use of glb along with coefficient ’,
and some (Tang and Cui 2012) recommended œ2. We recommend the use of ¨ as
well as œ2 because we found the performance of ¨ and œ2 is similar in most of the
situations examined in this study, and their biases are the smallest.

Although Sijtsma (2009) showed that Cronbach’s ’ does not reflect multidi-
mensionality of the tests, in the two-dimensional tests of this study, Cronbach’s
’ showed the largest bias, whereas in unidimensional test, the estimation bias of ’
was quite close to that of glb and œ4. This suggests that we should consider reporting
other reliability estimates for two-dimensional tests.

Another major finding of this study is that when reliability increased, estimation
bias became smaller for all five estimates. However, in most of the simulated tests,
reliabilities are above 0.90 and biases are very small. Therefore, one should be
careful with generalizing the results to tests with lower reliabilities.
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Weighted Guttman Errors: Handling Ties
and Two-Level Data

Letty Koopman, Bonne J. H. Zijlstra, and L. Andries van der Ark

Abstract We provide an introduction to weighted Guttman errors and discuss two
problems in computing weighted Guttman errors that are currently not handled cor-
rectly by all software: Handling ties—that is, computing weighted Guttman errors
when two items have the same estimated popularity—and computing weighted
Guttman errors when the data have a two-level structure. Handling ties can be
incorporated easily in existing software. For computing weighted Guttman errors
for two-level data, we provide an R function.

Keywords Guttman errors • Item ordering • Mokken scale analysis • Multilevel
test data • Nonparametric item response theory

1 Introduction

For a pair of dichotomous items in descending order of popularity, a Guttman error
(Guttman 1950) occurs if a respondent answers negatively to the first (more popular
or easier) item and positively to the second (less popular or more difficult) item.
Hence, if item 1 is more popular than item 2, the item-score vector (0, 1) constitutes
a Guttman error, whereas (0, 0), (1, 0), and (1, 1) are admissible item-score vectors.
Guttman errors are violations of the deterministic Guttman (1950) scale. Guttman
errors are used for detecting outliers (e.g., Zijlstra et al. 2007) and aberrant response
patterns (e.g., Meijer 1994 Karabatsos 2003) and for computing Mokken’s (1971)
scalability coefficients in Mokken scale analysis (Sijtsma and Molenaar 2002; also
see Sijtsma and Van der Ark 2017; Snijders 2001a). For a pair of polytomous
items, multiple item-score vectors can constitute a Guttman error, making both the
calculation and the interpretation of Guttman errors more complicated. Molenaar
(1991) proposed to weight the Guttman errors to acknowledge that the degree
in which item-score vectors are aberrant may differ. For example, consider two
polytomous items, each having ordered answer categories 0, 1, 2, 3, 4. Suppose item
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1 is more popular than item 2, then item-score vector (0, 4) is more aberrant than
item-score vector (0, 1).

In recent work on deriving standard errors for two-level scalability coefficients
(Koopman 2016), we encountered two problems in estimating the weights of
Guttman errors: Estimated weights depend on the value of a random seed when two
or more estimated item popularities are equal, and estimated weights may be biased
for two-level data. In this chapter, we first introduce weighted Guttman errors, then
we discuss the two problems and offer a solution for each problem, and finally we
discuss some additional features of (two-level) weight computations.

2 Weighted Guttman Errors

2.1 Theory

Let a test consist of J items with m C 1 ordered response categories indexed
by x (x D 0, 1, : : : , m). Let Xj denote the item score of item j. Each item
score consists of m item steps (Molenaar 1983), binary variables denoted Zjx

(j D 1, : : : , J; x D 1, : : : , m). Zjx D 1 if Xj � x (the item step was passed) and
Zjx D 0 if Xj < x (the item step was failed). It follows that Zj , x � 1 � Zjx and
Xj D

P
xZjx. For example, if Xj D 1 and m D 3, then Zj1 D 1, Zj2 D 0, and Zj3 D 0.

Let the popularity of item step Zjx be the probability of having a score of at least x
on item j: P(Zjx) 
 P(Xj � x). Note that by definition, P(Xj � 0) D 1. Let znjx denote
the realization of Zjx for person n, then, in a sample of N respondents, P(Xj � x) is
estimated by

bP �Xj � x
�

D
1

N

NX
nD1

znjx: (1)

Item pair (i, j) has 2m item steps: Zi1, : : : , Zim, Zj1, : : : , Zjm. For the purpose of
determining weighted Guttman errors, the 2m item steps are put in descending order
of their popularity. For example, Table 1 shows J D 2 items with m C 1 D 3 ordered
response categories, for which P(Zi1) > P(Zj1) > P(Zi2) > P(Zj2). Hence, the order of
the item steps is

Zi1;Zj1;Zi2;Zj2: (2)

Table 1 Probabilities of item
scores Xi and Xj, with
m C 1 D 3 ordered answer
categories

Xj

Xi 0 1 2 P .Xi D x/ P
�
Xj � x

�

0 0.08 0.16 0.00 0.24 1.00
1 0.04 0.04 0.24 0.32 0.76
2 0.36 0.08 0.00 0.44 0.44
P .Xi D x/ 0.48 0.028 0.24
P
�
Xj � x

�
1.00 0.52 0.24
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For notational convenience the subscripts jx in the item steps may be replaced by
subscripts (1), (2), : : : , (2m) indicating the order of the item steps in an item pair. In
this notation, Eq. (2) equals Z(1), Z(2), Z(3), Z(4). For each item pair, item-score pattern
(x, y) corresponds a specific realization of the ordered item steps. For example, for
Eq. (2), item-score pattern (0, 2) corresponds to Zi1 D 0, Zj1 D 1, Zi2 D 0, Zj2 D 1. In
a Guttman scale, the ordered item steps are strictly nonincreasing: Once a more pop-
ular item step is failed, a less popular item step cannot be passed. For example, in a
Guttman scale, admissible values for Eq. (2) are 0,0,0,0; 1,0,0,0; 1,1,0,0; 1,1,1,0; and
1,1,1,1, which correspond to item-score patterns (0, 0), (1, 0), (1, 1), (2, 1), and (2, 2),
respectively. A Guttman error occurs if a less popular item step is passed while a
more popular item step is failed. For Eq. (2), realizations 0,1,0,0; 0,1,0,1; 1,1,0,1;
and 1,0,1,0 which correspond to item-score patterns (0, 1), (0, 2), (1, 2), and (2, 0),
respectively—are Guttman errors.

The weight of a Guttman error, denoted wxy
ij , indicates the degree of deviation

from the perfect Guttman scale (Molenaar 1991). Let zxy
.h/ denote the realization of

the hth (1 � h � 2m) item step corresponding to the item-score pattern (x, y). The
weight is computed as

wxy
ij D

2mX
hD2

8<
:zxy

.h/

2
4

h�1X
gD1

�
1 � zxy

.g/

�35
9=
; (3)

(see, e.g., Kuijpers et al. 2013). Note that Eq. (3) counts the number of times a more
difficult item step was passed, while an easier item step was failed. For admissible
item-score patterns, the corresponding weights are zero, whereas for Guttman
errors, the weights are positive. For example, assuming the order of the item steps
in Eq. (2) is correct, for item-score pattern (0, 2), z02.1/ D 0, z02.2/ D 1, z02.3/ D 0, and

z02.4/ D 1. Hence, following Eq. (3), w02ij D 1�Œ1�C0�Œ1C 0�C1�Œ1C 0C 1� D 3.
Also note that for dichotomous items, the only item-score pattern that constitutes a
Guttman error (i.e., either (0, 1) or (1, 0)) receives a weight 1 by definition. Hence,
for dichotomous items weighting the Guttman errors has no effect.

In samples, weights wxy
ij are estimated from the order of the item steps in the

sample with Eq. (1) and denotedbwxy
ij . Typically, wxy

ij andbwxy
ij are the same, but when

the sample is small or when the popularities of two item steps are close, wxy
ij andbwxy

ij
may differ (for more information on this topic, we refer to Kuijpers et al. 2016).

2.2 Applications

Weighted Guttman errors are used to compute scalability coefficients in Mokken
scale analysis. Mokken (1971) discussed scalability coefficients for dichotomous
items, Molenaar (1983, 1991, 1997) generalized the scalability coefficients to
polytomous items, and Snijders (2001a, also, see Crisan et al. 2016) general-
ized the scalability coefficients to two-level data. The scalability coefficients are
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implemented in several software packages, including the stand-alone package MSP
(Molenaar and Sijtsma 2000) and the R package mokken (Van der Ark 2012).
Mokken’s (1971) item-pair scalability coefficient Hij can be written as a function
of the Guttman weights and the univariate and bivariate item probabilities:

Hij D 1 �

P
x

P
ywxy

ij P
�
Xi D x;Xj D y

�
P

x

P
ywxy

ij P .Xi D x/P
�
Xj D y

� : (4)

Note that if unweighted Guttman errors were used, weights wxy
ij only take on

the values 0 and 1. By using weighted Guttman errors, Hij equals the ratio of the
inter-item correlation and the maximum inter-item correlation given the marginal
distributions of the two items (Molenaar 1991).

In a sample of size N, the item-pair scalability coefficient is estimated by
replacing the weights in Eq. (4) by the estimated weights and replacing the
probabilities by the sample proportions, that is,

bHij D 1 �

P
x

P
ybwxy

ij
bP �Xi D x;Xj D y

�
P

x

P
ybwxy

ij
bP .Xi D x/bP �Xj D y

� D 1 �
Fij

Eij
: (5)

Fij D N
P

x

P
ybwxy

ij
bP �Xi D x;Xj D y

�
expresses the weighted sum of observed

Guttman errors, and Eij D N
P

x

P
ybwxy

ij
bP .Xi D x/bP �Xj D y

�
the weighted sum of

Guttman errors expected when the two items are marginally independent.
Weighted Guttman errors are also used as an index to detect outliers and as a

person-fit statistic. In these applications, the total of estimated Guttman weights
within a response pattern is used. Let xni denote the observed score of person n on
item i, and let ynj denote the observed score of person n on item j. Using the notation
of Zijlstra et al. (2007), index GC for respondent n equals

GnC D
XX

i<j
bwxniynj

ij : (6)

The function check.errors() in the R package mokken provides weighted
Guttman errors for each observation.

3 Computational Problems

3.1 Problem 1: Ties

Estimating Guttman weights can be problematic if two estimated item steps have the
same popularity. If the estimated item steps pertain to the same item,bP �Xj � x

�
D

bP �Xj � x C 1
�
, it means that no one in the sample had score x on item j. The

ordering of the estimated item steps is not affected because item steps have a fixed
order within an item, and estimating Guttman errors is not problematic. However, if
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Table 2 Cross-classification
of item scores Xi and Xj, with
m C 1 D 3 ordered answer
categories, for N D 15
respondents

Xj

Xi 0 1 2 Total bP .Xi � x/

0 2 4 0 6 1.00
1 1 1 0 2 0.60
2 3 2 2 7 0.47
Total 6 7 2 15
bP �Xj � y

�
1.00 0.60 0.13

Table 3 Observed and expected frequencies, Guttman weights under two possible item-step
orderings, and their mean, for each response pattern in Table 2

Item-score vector
00 01 02 10 11 12 20 21 22

N �bP �Xi D x;Xj D y
�

2 4 0 1 1 0 3 2 2
N �bP .Xi D x/bP �Xj D y

�
2.40 2.80 0.80 0.80 0.93 0.27 2.80 3.27 0.93

wxy
ij 1 0 1 3 0 0 1 1 0 0

wxy
ij 2 0 0 2 1 0 1 2 0 0

Nwxy
ij 0 0.5 2.5 0.5 0 1 1.5 0 0

For details, see text

the equally popular estimated item steps pertain to two different items,bP .Xi � x/ D
bP �Xj � y

�
, the item-step ordering cannot be determined. As an example, Table

2 shows the frequencies of the response patterns of N D 15 respondents, for two
polytomous items with three response categories. For these data, bP .Xi � 1/ D
bP �Xj � 1

�
D 0:6, so the order of the item steps is either Zi1, Zj1, Zi2, Zj2 or

Zj1, Zi1, Zi2, Zj2.
Currently, the software program mokken (Van der Ark 2012) adds a small

random value to the estimated popularities to avoid equal item steps. There are two
downsides to this approach. First, one item step is randomly assigned to be more
popular than the other item step without theoretical justification. Second, analyzing
the same data twice may result in different weights and, thus, different scalability
coefficients.

Molenaar (1991) suggested computing the weights for all combinations of
equivalent item-step orderings. For each item-score vector in Table 2, Table 3
shows the observed frequencies (N �bP �Xi D x;Xj D y

�
), the expected frequencies

under marginal independence (N � bP .Xi D x/bP �Xj D y
�
), the resulting weights

given item-step ordering Zi1, Zj1, Zi2, Zj2 (bwxy
ij 1), the resulting weights given item-

step ordering Zj1, Zi1, Zi2, Zj2 (bwxy
ij 2), and the average of the two weights. For both

item-step orderings, the weighted sum of Guttman errors results in Fij D 7 and
Eij D 8.27 (yieldingbHij � 0:15). Therefore, for scalability coefficients, the item-step
order does not affect the outcome (Molenaar 1991). However, for individual-level
statistics, such as the person-fit index GC (Eq. (6)), the item-step order matters. For
example, a person with item-score vector (0,2) has value GC D 3 for the first item-
step ordering and GC D 2 for the second item-step ordering. Because both item-step
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orderings are equally likely in the population, the average weight (Table 3, last row)
is considered more appropriate as opposed to randomly favouring one ordering over
the other, and results in a value of GC D 2.5.

3.2 Problem 2: Estimating the Item Ordering for Two-Level
Test Data

In Mokken scale analysis for two-level data, Xsrj denotes the response of subject s
(s D 1, : : : , S) to item j (j D 1, : : : J) scored by rater (r D 1, : : : , Rs). As with one-
level data, item step Zjx D 1 if X � x, and Zjx D 0, otherwise. The problem is that the
order of the item steps, and hence the value of the Guttman weights, depends on the
estimation method for P(Xj � x). P(Xj � x) can be estimated in two ways (Snijders
2001a), possibly yielding different estimates. Let Zsrjx, with realization zsrjx, be a
binary variable that takes on the value one if Xsrj � x, and zero otherwise. First,
P(Xj � x) can be estimated by averaging the relative frequencies for all subjects,
that is,

bP �Xj � x
�

D
1

S

SX
sD1

1

Rs

RsX
rD1

zsrjx; (7)

and, second, P(Xj � 1) can be estimated by averaging the absolute frequencies for
all subjects, that is,

bP �Xj � x
�

D
1PS

sD1 Rs

SX
sD1

RsX
rD1

zsrjx: (8)

The example in Table 4 (last two rows) shows that the estimation methods do
not only result in different estimates but also in different ordering of item steps.
When averaging the relative frequencies of all subjects in Eq. (7), the ordering of
the item steps is Zi1, Zj1, Zi2, Zj2, and when averaging the absolute frequencies of

Table 4 Values of
PRs

rD1zsrjx for J D 2 items, each having three ordered response categories,
S D 3 subjects who are rated by Rs D 10, 3, 10 raters, respectively, and the values of bP �Xj � x

�
using Eqs. (7) and (8), respectively

Xi Xj

s x � 0 x � 1 x � 2 x � 0 x � 1 x � 2 Rs

1 10 4 2 10 3 3 10
2 3 2 2 3 3 2 3
3 10 4 2 10 3 3 10
Equation (7) 1.00 0.49 0.36 1.00 0.43 0.26
Equation (8) 1.00 0.53 0.42 1.00 0.39 0.35
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all subjects in Eq. (8), the ordering of the item steps is Zi1, Zi2, Zj1, Zj2. Snijders
(2001a) argued that averaging the relative frequencies in Eq. (7) is the preferred
method, as averaging the absolute frequencies is biased under certain conditions.

4 Discussion

Two problems with the weighted Guttman errors have been addressed and described
in this chapter. The solution to the problem of ties can be incorporated in the
software easily. The software program MSP prints a warning when ties are present.
As far as we know, the DOS program TWOMOK (Snijders 2001b) is the only
software for two-level scalability coefficients. Because it pertains to dichotomous
items only, weighted Guttman errors are not an issue. A new R function to
compute weighted Guttman errors for dichotomous and polytomous two-level item
scores is called MLweight().The function is described in Koopman (2016). The
main goal of MLweight() is to allow the computation of Mokken’s scalability
coefficients for two-level data in the function MLcoefH(). Both functions have
been implemented in the R package mokken.
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Measuring Cognitive Processing Capabilities
in Solving Mathematical Problems

Susan Embretson

Abstract Understanding the sources of processing complexity in mathematical
problem solving items is an important aspect of test validity. The sources of
cognitive complexity may be either construct relevant or construct irrelevant.
Studies have shown that the levels and sources of cognitive complexity predict
item difficulty (e.g., S.E. Embretson, R.C. Daniel, Understanding and quantifying
cognitive complexity level in mathematical problem solving items. Psychol. Sci. 50,
328–344 (2008)) and, further, that items can be selected or designed for difficulty in
different sources of cognitive complexity. Although these results are relevant to the
response processes aspect of construct validity, potential impact on the other aspects
of validity was not addressed. That is, the modeling procedures did not include
multidimensional measurement of individual differences in processing capabilities.
In the current study, the multicomponent latent trait model for diagnosis (MLTM-
D; S.E. Embretson, X. Yang, A multicomponent latent trait model for diagnosis.
Psychometrika 78, 14–36 (2013)) was applied to measure cognitive processing
capabilities in processing mathematical items. Individual differences in patterns of
processing capabilities were significantly related to examinee background variables,
thus indicating potential impact on the consequential aspect of validity. Implications
of the findings for item design and test development are discussed.

Keywords Cognitive processes • Item difficulty modeling • Multicomponent
latent trait model

1 Measuring Cognitive Processing Capabilities in Solving
Mathematical Problems

Cognitive complexity in mathematical problem solving items is recognized as
an important aspect of test design. For achievement tests, for example, multiple
levels of cognitive complexity are often explicit in the test blueprints. For eighth
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grade mathematical achievement, the specifications for the National Assessment
of Educational Progress (NAEP) include five content areas and three levels of
cognitive complexity (see National Assessment Governing Board (NAGB) 2015).
The cognitive complexity levels, low complexity, moderate complexity, and high
complexity, are defined globally. For example, “high complexity items make heavy
demands on students, because they are expected to use reasoning, planning, analysis,
judgment and creative thought” (NAGB 2015, p. 46).

Cognitive complexity is also included under one of the five aspects of construct
validity, namely, the response processes aspect (Standards for Educational and
Psychological Testing 2014). Studying the impact of varying sources of cognitive
complexity on item difficulty and response times is a major method for understand-
ing the cognitive processes applied by examinees. If evidence on response processes
is available, construct-relevancy can be evaluated. Further, the response processes
involved in responding to items can impact other aspects of test validity, such as
internal structural, relationship to external variables, and test consequences for
different groups of examinees (Embretson 2007, 2016).

Yet, despite the importance of cognitive complexity in items, Leighton and Gierl
(2007) note that it is rarely studied empirically. That is, according to Leighton and
Gierl (2007), typically it is assumed that examinees apply the intended processes.
But, without empirical support, the intended cognitive processes may not represent
the actual thinking processes applied by examinees.

Studying cognitive processes requires a theoretical perspective. For mathematical
problem solving items, prior studies have supported a multistage theory of cognitive
processing (Mayer 2003). In the processing theory, originally developed by Mayer et
al. (1984), two major stages of processing are postulated, with two substages each.
Mayer (2003) notes that empirical support has been obtained for each substage.
Mayer’s theory has also been applied to mathematical items on a high-stakes
aptitude test (e.g., Embretson and Daniel 2008; Daniel and Embretson 2010). The
sources of cognitive complexity associated with the stages significantly predicted
item difficulty. Further, items could be selected or designed for involving different
sources of cognitive complexity. These results are relevant to the response processes
aspect of construct validity for the aptitude test. However, potential impact on the
other aspects of validity was not addressed in these studies. That is, the modeling
procedure did not include measurement of individual differences in processing
capabilities.

In the current study, the response processes aspect of validity is examined
for high-stakes mathematical achievement tests using the Mayer (2003) theory.
Then, by applying an item response theory (IRT) model appropriate for measuring
processing, the impact of response processes on other aspects of validity—internal
structure, relationship to external variables, and the consequential aspects—is
examined. Prior to presenting the study, some background on cognitive processing
in mathematical problem solving items and IRT models for measuring processing is
presented.
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2 Background

2.1 Multistage Theory of Mathematical Problem Solving

Mayer’s et al. (1984) theory of processing includes two global stages, Problem
Representation and Problem Execution. Each global stage is further divided into
substages. For Problem Representation, the substages are Translation, converting
item content into a meaningful form in short-term memory, and Integration,
producing the equation(s) to be solved. For Problem Execution, the substages are
Solution Planning, developing a procedure to solve the equation(s), and Solution
Execution, computing a solution to the problem. According to the theory, the stages
are processed sequentially, as follows:

Translation ! Integration ! Solution Planning ! Solution Execution.
As noted by Mayer (2003), several studies in the context of teaching and learning

strategies have supported the plausibility of each stage.
The plausibility of the Mayer (2003) processing model for mathematical problem

solving on test items can be examined by item difficulty modeling. That is, variables
that represent content features that are postulated to impact processing difficulty are
scored on the items. For the Solution Execution stage in the Mayer (2003) theory,
for example, items can be scored for the number and the knowledge level of the
computations required for solution.

Embretson and Daniel (2008) modeled the difficulty of Graduate Record Exam-
ination (GRE) quantitative items from a set of variables associated with the
substages. To apply the Mayer (2003) theory to solving mathematical test items,
Embretson and Daniel (2008) added a fifth stage, Decision. That is, some multiple
choice test items that cannot be solved in a top-down fashion from the information
in the stem. That is, the response options must be compared and evaluated. Using the
linear logistic test model (LLTM; Fischer 1973), as described below, a moderately
strong relationship was found. That is, a likelihood ratio fit statistic (�) was equal
to 0.724, which is similar in magnitude to a multiple correlation coefficient. Thus,
the Mayer (2003) theory was supported for mathematical test items.

In a second study, Daniel and Embretson (2010) examined the impact of
designing items for cognitive complexity source on item difficulty. A subset of
GRE items was selected to be redesigned by varying either Solution Execution
difficulty (i.e., the number of subgoals) or Integration difficultly (i.e., the equation
source). Strong effects on item difficulty and item response time were observed for
both design changes. The overall predictability of item difficulty was strong, as the
likelihood ratio fit (�) was 0.941.
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2.2 Psychometric Models for Cognitive Processing

Some item response theory (IRT) models can be used to estimate parameters
to represent item differences in cognitive processing complexity or individual
differences in processing capabilities. To apply these models, items are scored on
variables that represent the existence or complexity of the postulated cognitive
processes in the items. In some models, parameters are estimated for the impact
of the cognitive complexity variables on item psychometric properties, such as
difficulty or discrimination. Other IRT models can estimate individual differences
in processing capabilities.

A unidimensional model that can be applied to model item difficulty is the linear
logistic test model (LLTM; Fischer 1973). LLTM can be applied to binary items for
which a plausible theory of cognitive processes exists and stimulus features (i.e.,
qim) can be scored to represent processing difficulty. LLTM is a generalization of
the Rasch model and can be written in two parts to show the Rasch model and the
prediction model as follows:

P .Xis D 1/ D
e�s�ˇ

0

i

1C e�s�ˇ
0

i
(1a)

and

ˇ0
i D

X
m

�mqim C �0 (1b)

where ™s is the trait level for person s, “i’ is predicted item difficulty from scored
item features, qim is the score on predictor m for item i, ˜m is the weight of feature m,
and ˜0 is a normalization constant. It should be noted that “i

’ in Eq. (1a) is obtained
from the weights and scores in Eq. (1b) and is not estimated directly. Parameters
may be estimated for LLTM by conditional maximum likelihood (CML) or marginal
maximum likelihood (MML).

Fit of the model to the data supports the plausibility of the cognitive model. Item
fit can be evaluated in multiple methods, including chi-square tests, standardized
residuals, and plots. Overall fit indices that are based on the likelihood of the data
also can be used to assess the plausibility of the cognitive model compared to other
models. Nested models, in which the predictors in one model are a subset of the
other model, can be compared statistically with likelihood ratio chi-square tests.
Non-nested models can be compared with other fit statistics, such as the Akaike
Information Criterion. An overall fit statistic for IRT models that is similar to the fit
indices in structural equation modeling also can be used. The � index (Embretson
1997), which ranges from 0 to 1, is based on the ratio of the likelihood of alternative
models of item difficulty: (1) a null model, in which items have equal difficulties;
(2) a saturated model, in which each item has uniquely estimated parameters; and
(3) the target cognitive model. The statistic is written as follows:
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� D
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�

.�2 ln Lnull/ � .�2 ln Lsaturated/
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The � statistic in Eq. (2) is analogous to a multiple correlation coefficient and
often has the same magnitude.

If examinees’ response processes involve two or more processing stages, each of
which involves a separate trait, a multidimensional model is appropriate. If correct
responses from each stage are needed to solve items, as in the cognitive model
for mathematical problem solving, a conjunctive model is appropriate. That is, the
overall probability of item solution is the product of the probabilities of the various
stages.

Conjunctive models can be applied in two different situations. First, the subtask
response modeling is appropriate if responses to the various substages are available.
Although this type of model is most direct, in practice test items typically are not
administered as subtasks. Second, the total item response method is appropriate if
items are heterogeneous with respect to which processing outcomes are needed for
solution. In this method, items must be scored for process involvement.

Table 1 presents three items that vary in the Problem Representation and Problem
Solution global stages of the cognitive model for mathematics. Solving Item 3
involves both Problem Representation and Problem Solution. However, solving Item
1 and Item 2 involves only one global process, Problem Representation and Problem
Solution, respectively.

The multicomponent latent trait model for diagnosis (MLTM-D; Embretson and
Yang 2013) is an example of a conjunctive multidimensional model that does not
require subtasks responses. Two types of scores are required for the full MLTM-D,
cik, the involvement of component k in item i, and qimk, a score for stimulus feature m
in component k for item i. Thus, matrix Cixk is scored to represent the involvement of
the components in each item and within components; matrices Qixm(k) are scored to
represent stimulus features that impact difficulty in the various components. MLTM-
D may be written as follows, given that XisT is the response to the total item and Xisk

is the (possibly unobserved) response to component k:

Table 1 Three items with different involvement of global processing components

Item 1Kyle will travel 100 miles in 2 unequal segments. The second segment is 40 miles
shorter than the first segment. Which equation could be used to find the length of the first
segment (m)?
(A) m C m C 40 D 100 (B) m C m D 100 (C) m � 40 D 100 (D) X m C (m � 40) D 100
Item 2What is the value of m in the equation m C (m � 40) D 100?
(A) X 30 (B) 35 (C) 40 (D) 60
Item 3Kyle will travel 100 miles in 2 unequal segments. The second segment is 40 miles
shorter than the first segment. What is the length of the first segment?
(A) X 30 (B) 35 (C) 40 (D) 60
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P .XisT D 1/ D …kP.Xisk D 1/cik (3a)

and

P .Xisk D 1/ D
e�sk�

P
m.k/ �mkqimkC�0k

1C e�sk�
P

m.k/ �mkqimkC�0k
(3b)

where ™sk is the competency of examinee s on component k, qimk is a score for
stimulus feature m in component k, ˜mk is the weight of feature m in item difficulty
on component k, and ˜0k is the normalization constant for component k. In Eq. (3a),
it can be seen that cik defines whether or not a particular component is involved in
an item. Equation (3b) is an LLTM at the component level. If the qimk are dummy
variables, scored uniquely for each item, then Eq. (3b) is a Rasch model at the
component level.

Standard MML estimation is possible for the MLTM-D item parameters, using
a standard normal scale (i.e., ™ MVN(0,

P
)). Either uncorrelated or correlated

traits may be specified. Trait levels for the components can be estimated with a
multidimensional expected a posteriori (EAP) algorithm. MLTM-D was developed
in the context of diagnosis, which can be obtained by developing cutlines, ”k, on
the trait level estimates, ™sk. A criterion for the diagnosis must be specified as a
probability of item solving, y. Then the cutline on trait level, ”k, is established such
that if � sk � � k, then P(X.sk) � y.

3 Study: Cognitive Processing on Mathematical Achievement
Items

This study had several goals: (1) to examine the cognitive complexity of mathemati-
cal achievement items, (2) to estimate individual differences in cognitive processing
on mathematical achievement test items, (3) to examine the internal structure of
these estimates, and (4) to examine relationships to external variables, particularly
group membership to assess the potential consequential aspect of validity.

3.1 Method

3.1.1 Test

The test was a year-end mathematical achievement test for eighth grade students.
The test was a standards-based test used for accountability purposes by the
cooperating state. The test consisted of 86 operational items was administered in
three parts, in separate sessions. As typical for year-end achievement tests, the items
on the test have survived multiple levels of review, including a mathematics editor,
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a panel of educators, and empirical tryout and review by the state department of
education.

3.1.2 Examinees

The examinees were students taking the operational test at the end of the school
year. A sample of 4000 Grade 8 students, randomly selected from the participating
state, was available for this study.

3.1.3 Cognitive Scores

The cognitive variables used in the study were originated by Embretson and Daniel
(2008) for use on the GRE. For the current study, it became apparent that some
adaptation of the system was required, as some variables were not relevant or were
defined at a level too high for items on an eighth grade mathematics achievement
items. Thus, a redefined set of cognitive variables was developed and scored on
each item for use with the current test. Definitions of the variables are presented on
Table 2. Items also were scored for the involvement of components at the global
level, Problem Representation and Problem Execution.

The cognitive variables were scored for each item by a team of three raters
with expertise in cognitive psychology. For the binary cognitive variables, Cohen’s
(1960) kappa statistic was computed between each pair of raters to identify patterns
of consistency. The Fleiss index was computed for overall rater consistency. For the
continuous cognitive variables, correlations were computed between each pair of
raters and then averaged across raters. The mean Fleiss index was 0.787 for the nine
binary variables. The mean rater correlation, across forms, for the six continuous
variables, was 0.825. The final scores used in the analysis represent the consensus
scoring of each of the items on the cognitive variables.

3.2 Results

3.2.1 Descriptive Statistics

Table 3 presents descriptive statistics on the scored variables in the 86 items. It
can be seen that variability of the cognitive complexity variables was found in
each substage. Also shown on Table 3 are descriptive statistics on component
involvement in items. It can be seen that Problem Representation was involved in a
larger percentage of the items than Problem Execution. A cross-tabulation of process
involvement showed 41.8% of the items involved both components.
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Table 2 Definitions of cognitive attributes

Attribute Definition

Translation

Mathematical The total number of mathematical terms in the stem and all answer
options. This includes numerals, variables (e.g., x, y, m, etc.), axis labels,
comparators (e.g., <, >, D), and implicit and explicit operators

Context The total number of words, excluding variables, in the stem and all
answer options

Encode diagram Indicator of presence of a diagram, graph, or other figure, excluding
tables, in the stem or answer options

Integration

Equation given in
symbols

Indicator of whether a mathematical equation is provided in the stem of
an item

Equation given in
words

Indicator of whether the examinee needs to interpret an equation given in
word (context) form

Generate equations
or plausible values

Indicator of whether equations or plausible values for variables must be
generated to answer the item

Recall equa-
tions/knowledge

Indicator of whether the examinee must recall known equations (e.g.,
formula for slope of a line, the Pythagorean theorem, etc.) or definitions

Translate diagram Indicator for whether presented diagram or figure is necessary for
problem solution

Visualization Indicator for whether a diagram or figure must be visualized or drawn to
understand or answer the item

Solution planning

Number of
subgoals

The total number of sub-steps necessary for answering an item (e.g.,
finding a slope for the equation of a line)

Relative definition
of variables

Indicator of whether one variable is defined only in terms of another

Solution execution

Procedural
knowledge

The maximum procedural knowledge necessary in solving the item (1)
integers, (2) fractions, (3) proportions, (4) decimals, (5) negative
numbers, and (6) squares/square roots, as outlined below

Number of
procedures

The total number of unique procedures necessary for solving the item

Number of
computations

The total number of computations necessary for solving the item,
including computations necessary in evaluating distractors and stem

Decision

Decision
processing

Indicator for whether information found in distractors is necessary to
eliminate options or answer item

3.2.2 Item Cognitive Complexity

LLTM was applied to the item response data for examinees. The scored variables
on Table 2 were used to represent cognitive complexity. The cognitive model was
estimated with an intercept, weights for each of the variables on Table 3 and a
constant item discrimination parameter. Two comparison models were estimated
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for the likelihood ratio fit statistic �. The saturated model was a 1PL model with
86 item difficulties and a constant discrimination, and the null model was a 1PL
model with a constant item discrimination parameter. Parameters for three models
were estimated by MML, using a one parameter logistic (1PL) variant of LLTM
in the normal metric, with a constant item discrimination value, ’, and the trait
distribution specified as N(0,1). The cognitive model (�2lnL D 341,543, AIC D

341,577, #parameters D 17) had moderately strong prediction as indicated by the
likelihood ratio statistic (� D 0.606).

Table 3 presents the weights for the cognitive complexity variables from the
LLTM cognitive model. It can be seen that the most strongly significant variable
(t-statistic) was procedural knowledge, with a positive weight. However, significant
weights were found for all cognitive complexity variables, thus supporting the

Table 3 Descriptive statistics and parameter estimates for cognitive complexity and component
model

Descriptives Item parameter estimates

Variables Mean
Standard
deviation Estimate

Standard
error tobs

Cognitive complexity model
(intercept)

�2.104 0.026 �82.26*

Translation

Mathematical encoding 20.17 15.351 0.012 0.001 20.25*
Contextual encoding 35.05 20.275 0.010 0.001 31.92*
Encode diagram 0.29 0.457 0.679 0.020 33.17*
Integration

Given equation: words 0.20 0.457 �1.287 0.036 �36.23*
Given equation: symbols 0.23 0.401 �0.441 0.024 �18.69*
Generate equation 0.35 0.479 0.151 0.023 6.52*
Recall/access equations 0.30 0.462 0.396 0.021 18.48*
Translate diagram 0.27 0.445 �0.304 0.019 �15.43*
Visualization 0.07 0.256 0.818 0.026 32.03*
Solution planning

Number of subgoals 0.24 0.588 0.618 0.011 53.77*
Relative definition 0.01 0.108 1.413 0.049 28.70*
Solution execution

Procedural knowledge 1.85 1.979 0.429 0.001 65.98*
Number of procedures 1.09 0.953 �0.869 0.015 �56.83*
Computations 1.98 2.666 �0.066 0.003 �21.92*
Decision processing 0.30 0.462 �0.682 0.027 �25.26*
˛ 0.762 0.006 129.48*
Cognitive component model
Problem representation 0.87 0.336 �1.8328 0.024 �76.86*
Problem execution 0.55 0.497 �2.1325 0.033 �63.93*

*p<.01
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Fig. 1 Scatterplot of processing component difficulty in items

importance of each processing substages. Some weights are negative. For example,
given equation: words and given equation: symbols were associated with less
difficult items, as expected.

Figure 1 presents a scatterplot of the predicted item difficulty from the cognitive
complexity model for Problem Execution and Problem Representation. That is, the
weights on Table 3 were applied to the scored variables for items to predict the
cognitive complexity within each global. On Fig. 1, the mean predicted value for
each global stage is shown by the lines within the plot. It can be seen that item
difficulties are widely scattered and that items with different primary sources of
difficulty are shown. That is, items with difficulty primarily dependent on Problem
Execution or Problem Representation can be identified.

3.2.3 Individual Differences in Cognitive Processing

Similar to the LLTM analysis, parameters for three variants of MLTM-D were esti-
mated by MML. All models contain two trait dimensions (Problem Representation
and Problem Execution); hence, the trait distribution specified as N(0,†) where †
is a covariance matrix of theta with 1’s on the diagonal. All MLTM-D models were
1PL variants with constant item discriminations and the normal metric.

As in the LLTM analysis, the three models include varying parameters for
item difficulty, including a null model, a cognitive complexity model, and a
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Table 4 Descriptive statistics for processing component competencies

Component Mean Standard deviation Mean standard error Empirical reliability

Problem representation 0.0464 1.107 0.36 0.901
Problem execution 0.5660 1.003 0.50 0.800

saturated model. That is, the full MLTM-D was estimated the cognitive model using
the scored cognitive complexity variables as predictors of item difficulty within
components. The cognitive model (�2lnL D 341,543, AIC D 341,577, #parameters
D 17) yielded moderate prediction of item difficulty within components as indicated
by the likelihood ratio statistic (� D 0.487), which was lower than LLTM.

The constant item difficulty estimates for the null model are shown on Table 3.
It can be seen that the item difficulty for the Problem Representation component is
somewhat higher than for the Problem Execution component.

The theta estimates for MLTM-D were estimated by expected a posteriori (EAP)
method using the item parameters from the saturated model. The Table 4 presents
descriptive statistics on the theta estimates for processing component competencies.
Problem Execution had a statistically significant (t D 41.84, df D 3999, p < 0.001)
and substantially higher mean than Problem Representation. Empirical reliabilities
were relatively strong (>0.80) for both components but Problem Representation
somewhat higher. The correlation between the two thetas was 0.701, which is typical
for cognitive abilities.

Multivariate analyses of variance using Wilks’ lambda were conducted on the
relationship of processing component competencies to other variables. Overall
proficiency on the test, with examinees placed in one of five categories, was related
to processing component individual differences. Significant effects were observed
for component type (F1,3995 D 1683.19, p < 0.001, ˜2 D 0.296) and for the
interaction of component type with proficiency category (F4,3995 D 125.96, p <
0.001, ˜2 D 0.112). Figure 2 shows that Problem Execution is generally higher
than Problem Representation but that the differences decrease with increasing
proficiency.

Special learning status (emotionally disabled, learning disabled, special learning
disability, other disability, gifted, and none) was also available for all examinees.
The categories differed significantly overall (F5,3994 D 92.90, p < 0.001), with
highest scores for the gifted category and lower scores for all disabilities, as
expected. The interaction of component type with special learning status was
also statistically significant (F5,3994 D 31.27, p < 0.001). For gifted students,
somewhat higher scores for Problem Representation than for Problem Execution
were observed. For all other categories, Problem Execution was higher.

Background variables were available for 3851 examinees. Main effects for
English language status, racial-ethnic background, and gender were as expected.
That is, statistically significant overall effects were observed for English language
status (F1,3849 D 81.54, p < 0.001), with higher overall scores for native English
speakers than for English language learners. Similarly, a statistically significant
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Fig. 2 Cognitive component
competencies by overall
proficiency categories

effect was also observed for racial ethnic background (F4,3846 D 64.22, p <
0.001), with Asian and Caucasian students scoring higher than African-American
and Hispanic students, as expected. For gender, the overall scores did not differ
significantly (F1,3849 D 0.003, p D 0.954).

More pertinent to the goals of the study were the interactions of component
type with the background variables. Several statistically significant interactions of
component type with background variables were observed. For English language
status, the interaction was statistically significant (F1,3849 D 11.42, p < 0.001),
with Problem Execution higher than Problem Representation for both groups.
However, the difference was greater for English language learners. For racial ethnic
background, the interaction was also statistically significant (F4,3846 D 10.50, p <
0.001), with Problem Execution higher than Problem Representation for all groups,
but the difference was greater for African-American students. Finally, for gender,
a statistically significant crossover interaction was observed (F1,3849 D 29.65, p <
0.001). Figure 3 shows that h female students score relatively higher on Problem
Execution than male students, whereas male students are relatively higher on
Problem Representation.

3.3 Discussion

Several aspects of validity for a test used to assess mathematical achievement
in middle school were examined in this study. The response processes aspect
was examined by modeling item difficulty from a multistage theory of cognitive
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Fig. 3 Gender differences in
the processing components

processing in solving mathematical items. The stimulus features of items that were
postulated to impact processing in the substages in the Mayer (2003) model were
statistically significant in predicting item difficulty. That is, an LLTM analysis
of item responses found moderately strong overall prediction and statistically
significant weights for variables from each of the substages. Thus, the multistage
theory of cognitive processing in solving mathematical items was supported.

The relative impact of the global stages of processing, Problem Representation
and Problem Execution, was also examined. Many items were primarily difficult in
one stage. These findings imply that items can be selected or designed to emphasize
primarily one aspect of cognitive processing.

A primary goal of the study was to examining the impact of individual differences
in processing on performance. Estimates from the multivariate conjunctive MLTM-
D (Embretson and Yang 2013) were obtained for the two global stages of processing,
Problem Representation and Problem Execution. Adequate empirical reliability
was found for the estimates of trait levels on each dimension. The results also
indicated that the mean was substantially higher on Problem Execution than on
Problem Representation. Interestingly, the mean difference between the trait levels
for the processing stages was related to overall proficiency levels. That is, Problem
Execution competency was higher than Problem Representation for all proficiency
levels except at the highest level of proficiency, where the differences were minimal.
Future research is needed to determine if the differences in the highest category are
a ceiling effect or true differences in trait levels.

Finally, the relationship of processing competencies in Problem Representation
and Problem Execution to student background variables was examined. These
variables included special education status, English language status, race/ethnicity,
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and gender. The multivariate analyses found expected overall effects for the back-
ground variables on the two processing component competencies, with significant
differences for all background variables except gender. However, interactions with
component processing type were also found, which have potential impact on the
potential consequential aspect of validity. For example, the relatively higher trait lev-
els on Problem Execution than on Problem Representation was greater for English
language learners and African-American students. Because Problem Representation
involves the Translation substage, reduced levels of cognitive complexity due to
language may boost performance of these groups. Also, the crossover interaction
of gender is small but interesting. That is, female students are relatively higher
on Problem Execution than male students, whereas the reverse effect is found for
Problem Representation. Again, the relative emphasis of the skills involved in these
two stages in a particular test could lead to gender differences.

In summary, individual differences in cognitive processing capabilities have
potential implications for performance levels and test consequences. Items can be
designed to emphasize either of the two processes that were examined in this study.
Thus, the relative impact of background variables on item responses will depend on
item and test design.
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Parameter Constraints of the Logit Form
of the Reduced RUM

Hans-Friedrich Köhn

Abstract The Reduced Reparameterized Unified Model (Reduced RUM) has
received considerable attention among educational researchers. Markov chain
Monte Carlo (MCMC) or Expectation Maximization (EM) is typically used for
estimating the Reduced RUM. Implementations of the EM algorithm are available
in the latent class analysis (LCA) routines of commercial software packages (e.g.,
Latent GOLD, Mplus). Using a commercial LCA routine as a vehicle for fitting
the Reduced RUM with the EM algorithm requires that it be reparameterized as
a logit model, with complex constraints imposed on the parameters. This article
summarizes the general parameterization of the Reduced RUM as a logit model and
the associated parameter constraints.

Keywords Cognitive diagnosis • Reduced RUM • EM algorithm

1 Introduction

In the past decade, cognitive diagnosis (CD) has emerged as a new paradigm of
educational measurement that seeks to combine rigorous psychometric standards
with the goals of formative assessment (DiBello et al. 2007; Haberman and von
Davier 2007; Leighton and Gierl 2007; Rupp et al. 2010). Cognitively diagnostic
tests target mastery of the instructional content and provide immediate feedback
on students’ strengths and weaknesses in a knowledge domain in terms of skills
learned and skills needing study. The Reduced Reparameterized Unified Model
(Reduced RUM Hartz 2002; Hartz and Roussos 2008) is one of the CD models—
or “Diagnostic Classification Models” (DCMs), as they are called here—that has
received considerable attention among educational researchers (e.g., Feng et al.
2014; Henson and Douglas 2005; Henson and Templin 2007; Henson et al. 2008,
2007; Kim 2011; Liu et al. 2009; Templin et al. 2008). Compared with a simple
conjunctive DCM like the DINA model (Junker and Sijtsma 2001; Macready
and Dayton 1977), the Reduced RUM offers greater flexibility in modeling the
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probability of correct item responses for different skill profiles. Concretely, the
DINA model cannot distinguish between examinees who master none and those
who master a subset of the skills required for an item. Only if all required skills are
mastered can an examinee realize a high probability of answering the item correctly.
This restriction has been relaxed in case of the Reduced RUM, as it allows for
incremental probabilities of a correct response along with an increasing number
of required skills mastered.

However, this flexibility of the Reduced RUM comes at the cost of a significant
increase in the complexity of the model estimation process. In fact, with the excep-
tion of Feng et al. (2014), the studies referenced above all use Markov chain Monte
Carlo (MCMC) techniques for fitting the model. But MCMC requires advanced
technical skills so that its usefulness is likely restricted to researchers with a solid
background in statistics. Alternatively, marginal maximum likelihood estimation
relying on the EM algorithm (MMLE-EM) can be used for fitting the Reduced
RUM. Commercial packages like Latent GOLD [Vermunt and Magidson 2005
and Mplus (Muthén and Muthén 1998–2015)] provide implementations of the
EM algorithm for fitting (constrained) latent class models. Using a latent class
analysis routine as a vehicle for MMLE-EM, however, requires that the Reduced
RUM be reexpressed as a logit model with rather complex constraints imposed on
the parameters of the logistic function (Chiu and Köhn 2016; Henson et al. 2009;
Rupp et al. 2010). This article provides a summary of the constraints on the model
parameters if the Reduced RUM is expressed as a logit model.

2 The Reduced RUM as a Logit Model

Within the CD framework, ability is perceived as a composite of “attributes,” a
collective term for knowledge, aptitude, and specific skills—any cognitive char-
acteristic required to perform tasks—that an examinee may or may not possess.
Attributes are denoted by ˛k, k D 1; 2; : : : ;K; distinct profiles of attributes,
˛ D .˛1; ˛2; : : : ; ˛K/

0, define classes of proficiency to which examinees are to be
assigned based on their test performance.

The item response function (IRF) of the Reduced RUM is

P.Yij D 1 j ˛i/ D �
j

KY
kD1

r
� qjk.1�˛ik/

jk

with Yij denoting the response of examinee i, i D 1; 2; : : : ; n, to item j, j D

1; 2; : : : ; J, ˛ik D 1 if examinee i possesses attribute k, 0 otherwise; qjk D 1 if
attribute k is required for item j, 0 otherwise. In this “traditional” parameterization
of the Reduced RUM, 0 < r�

jk < 1 is a penalty parameter for lacking attribute
k required for item j, and 0 < �

j < 1 is the probability of a correct response
if an examinee has mastered all the attributes required for item j because thenQK

kD1 r
� qjk.1�˛ik/

jk D 1.
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For two attributes, ˛1 and ˛2, the IRF of the Reduced RUM as a logit model can
be found in Henson et al. (2009) (in omitting the examinee index i for succinctness):

P.Yj D 1 j ˛/ D
eˇj0Cˇj1qj1˛1Cˇj2qj2˛2Cˇj12qj1qj2˛1˛2

1C eˇj0Cˇj1qj1˛1Cˇj2qj2˛2Cˇj12qj1qj2˛1˛2
(1)

where qjk D 0; 1 indicates whether attribute ˛k is required for item j. Verbally stated,
the probability of a correct response to item j is modeled as a linear combination
of the attribute main effects and their interaction ˛1˛2. (Including the interaction
term allows for modeling a possibly nonadditive effect of the two attributes on the
probability of a correct item response.)

2.1 Parameter Constraints

The IRF given in Eq. (1) is subject to these constraints:

ˇjk > 0 k D 1; 2 (to ensure monotonicity)

ˇj12 D ln
� 1C eˇj0

1C eˇj0Cˇj1 C eˇj0Cˇj2 � eˇj0Cˇj1Cˇj2

�

The first constraint on the ˇjk is mathematically not required, because 0 < �
j ;

r�
jk < 1 but ˇjk > 0 is necessary to guarantee monotonicity. (Monotonicity means

that the probability of a correct response for an examinee who masters certain
attributes must be equal to or higher than the probability of a correct response
if these attributes are not mastered.) Second, the coefficient of the interaction
term, ˇj12, is constrained to be a function of the main-effect coefficients; hence,
the traditional and the logit parameterization of the Reduced RUM have the same
number of parameters. Third, as 1C eˇj0 > 0, the denominator of

ˇj12 D ln
� 1C eˇj0

1C eˇj0Cˇj1 C eˇj0Cˇj2 � eˇj0Cˇj1Cˇj2

�

must be strictly positive:

1C eˇj0Cˇj1 C eˇj0Cˇj2 � eˇj0Cˇj1Cˇj2 > 0

Otherwise, ln.�/ is not defined. [This constraint was not explicitly listed in Henson
et al. (2009).]

The (strict) inequality format of the constraint

1C eˇj0Cˇj1 C eˇj0Cˇj2 � eˇj0Cˇj1Cˇj2 > 0
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as a function of one or several model parameters is not supported, for example, by
Mplus. But rephrasing the constraint as an upper bound (UB) on one of the model
parameters is supported:

ˇj2 < ln
�
1C eˇj0Cˇj1

�
� ln

�
eˇj1 � 1

�
� ˇj0

The convention adopted here is to rephrase the inequality constraint as a UB on the
last coefficient with the largest index k D K.

3 The Reduced RUM as a Logit Model: The General Case

The reparameterization of the Reduced RUM as a logit model for K > 2 attributes
was derived in Chiu and Köhn (2016).

3.1 The Case of K D 3 Attributes

Consider an item having the vector of required attributes q D .111/. Then, as was
proven in Chiu and Köhn (2016), the logit form of the IRF of the Reduced RUM
must contain the three main effects, the three two-way interactions, and the three-
way interaction:

P.Yj D 1 j ˛/ D
eˇj0C

P3
kD1 ˇjk˛kC

P3
k0

DkC1

P2
kD1 ˇjkk0˛k˛k0 Cˇj123˛1˛2˛3

1C eˇj0C
P3

kD1 ˇjk˛kC
P3

k0
DkC1

P2
kD1 ˇjkk0˛k˛k0 Cˇj123˛1˛2˛3

where the coefficients of the main effects must be strictly positive, ˇjk > 0. Like in
the case of K D 2 attributes, the coefficients of the interaction terms are constrained
to be functions of the related main-effect coefficients. Hence, for all k and k0, the
coefficients of the two-way interactions, ˇjkk0 , must be functions of ˇjk and ˇjk0 :

ˇjkk0 D ln
� .1C eˇj0 /2�1

.1C eˇj0Cˇjk/.1C eˇj0Cˇjk0 / � .1C eˇj0 /2�1eˇj0CˇjkCˇjk0

�

In the same manner, the coefficient of the three-way interaction, ˇj123, must equal

ˇj123 D ln
� .1C eˇj0 /3�1

.1C eˇj0Cˇj1 /.1C eˇj0Cˇj2 /.1C eˇj0Cˇj3 / � .1C eˇj0 /3�1eˇj0Cˇj1Cˇj2Cˇj3

�

�ˇj12 � ˇj13 � ˇj23
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Thus, besides the K constraints ˇjk > 0, there are
�
3
2

�
C
�
3
3

�
D 4 additional

constraints if K D 3.
Like for the model with K D 2, the interaction coefficients are mathematically

legitimate only if the argument of the log function is strictly positive. Hence, the
denominators must be strictly positive. Therefore, for all three two-way interactions
involving k and k0,

.1C eˇj0Cˇjk/.1C eˇj0Cˇjk0 / � .1C eˇj0 /eˇj0CˇjkCˇjk0 > 0

must hold. However, recall that this specific format of (strict) inequality constraints
is not supported, for example, by Mplus. Thus, the inequality constraint on the
denominator is rephrased as a UB on the coefficient with index k0 > k:

ˇjk0 < ln
�
1C eˇj0Cˇjk

�
� ln

�
eˇjk � 1

�
� ˇj0

The constraint on the denominator of the log expression of ˇj123 is

.1C eˇj0Cˇj1 /.1C eˇj0Cˇj2 /.1C eˇj0Cˇj3 / � .1C eˇj0 /2eˇj0Cˇj1Cˇj2Cˇj3 > 0

which must also be rephrased as a UB on one of the main-effect coefficients. In
following the earlier convention, this (strict) inequality constraint is rephrased as a
UB on the last main-effect coefficient—that is, with index k D K: ˇj3:

ˇj3 < ln
�
.1C eˇj0Cˇj1 /.1C eˇj0Cˇj2 /

�
� ln

�
eˇj1Cˇj2 .1C eˇj0 /2 (2)

�.1C eˇj0Cˇj1 /.1C eˇj0Cˇj2 /
�

� ˇj0

However, there are two additional UBs on ˇj3 that can be derived from ˇj13 and ˇj23:

ˇj3 < ln.1C eˇj0Cˇj1 / � ln.eˇj1 � 1/ � ˇj0 from ˇj13

ˇj3 < ln.1C eˇj0Cˇj2 / � ln.eˇj2 � 1/ � ˇj0 from ˇj23

Are all three UBs on ˇj3 needed? And if not, then which one(s) should be used?
Recall that the UB on ˇj3 was derived from

.1C eˇj0Cˇj1 /.1C eˇj0Cˇj2 /.1C eˇj0Cˇj3 / � .1C eˇj0 /2eˇj0Cˇj1Cˇj2Cˇj3 > 0

Because this expression can also be manipulated into a UB for ˇj1 or ˇj2, the form
of a UB on ˇj3 implies UBs on ˇj1 and ˇj2. Chiu and Köhn (2016) showed that the
UB on ˇj3 in Eq. (2) that was derived from the highest-order interaction term is the
least UB and, therefore, is the only one required and to be used.
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3.2 The Case of K > 3 Attributes

The complexity of the constraint structure of the logit form of the Reduced
RUM increases with the number of attributes K. The following guidelines can be
formulated:

1. All main-effect coefficients ˇjk, k D 1; 2; : : : ;K, must be strictly positive.
2. The coefficients of the interaction terms are constrained to be functions of the

main-effect coefficients:

ˇj1:::K0 D ln

0
@

�
1C eˇj0

�K0
�1

QK0

kD1

�
1C eˇj0Cˇjk

�
�
�
1C eˇj0

�K0
�1

eˇj0C

PK
kD1 ˇjk

1
A�

K0X
k0

DkC1

K0
�1X

kD1

ˇjkk0 � � � �

�

K0X
kK0

�1DkK0
�2C1

� � �

3X
k2Dk1C1

2X
k1D1

ˇjk1:::kK0
�1

1 < K0 � K

3. Some software packages require that the inequality constraints on the denomina-
tors of the log expressions are defined as a UB on one of the model parameters.
By convention, the coefficient of the last main effect, the one with index k D K,
is chosen.

4. The UB should be derived from the highest-order interaction coefficient because
it is the least UB:

ˇjK <

K�1X
kD1

ln
�
1C eˇj0Cˇjk

�
� ln

� K�1Y
kD1

�
eˇjk C eˇj0Cˇjk

�
�

K�1Y
kD1

�
1C eˇj0Cˇjk

��
� ˇj0

4 Conclusion

A summary of the general parameterization of the Reduced RUM as a logit model
and the associated parameter constraints was presented. This allows a potential
user to fit the Reduced RUM with MMLE-EM relying on the implementation
of the EM algorithm in the LCA routines of commercial software packages like
Latent GOLD and Mplus. Chiu et al. (2016) provide a tutorial on how to use
Mplus for fitting the Reduced RUM as a logit model to educational data. This
tutorial also includes a detailed description of how to retrieve the estimates of the
traditional parameters of the Reduced RUM from the logit model-based estimates.
The traditional parameterization of the Reduced RUM has two immediate practical
advantages. First, the parameters, �

j and r�
jk, are bounded by 0 and 1. They are well

defined and have a direct and meaningful interpretation as probabilities (as opposed
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to the parameters of the Reduced RUM as a logit model that are on a logit scale).
Second, the clear and intuitive meaning of the traditional parameters of the Reduced
RUM allows for the immediate detection of low-quality items.
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Hypothesis Testing for Item Consistency Index
in Cognitive Diagnosis

Lihong Song and Wenyi Wang

Abstract Conjunctive and disjunctive condensation rules are cognitive assump-
tions about how attributes interact with each other on specific items. The existing
item consistency index (ICI) in cognitive diagnostic assessment is developed under
the conjunctive condensation rule. This study introduced two item consistency
indices combining hypothesis testing (SICI and MICI) for the conjunctive and
disjunctive rules to help identify the underlying condensation rules and to assist in
screening items with attribute misspecification. A simulation study was conducted
to assess the performance of the SICI, MICI, and ICI. Results showed that (a)
given a Q-matrix, the ICI and SICI precisely identified the correct condensation
rule and (b) the item consistency indices, especially the SICI, were successfully
applied in evaluating the misspecification of a Q-matrix as well as identifying
items with attribute misspecification. The promising results indicate that the item
consistency indices can also help provide more information for practitioners in
model determination.

Keywords Hypothesis testing • Condensation rules • Item consistency index •
Cognitive diagnosis

1 Introduction

Cognitive diagnostic assessment (CDA) is a new paradigm for educational and
psychological testing aiming to provide more specific and individualized feedback
on attribute mastery for later on instruction and learning. The latent attributes
in the domain of interest were usually specified by a cognitive model of task
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performance (Leighton et al. 2004). For clearly describing the relationship between
the latent attributes and response variables, two interesting condensation rules,
the conjunctive and disjunctive condensation rules, were formally defined for
dichotomous item response variables (Maris 1995, 1999). In a popular diagnostic
model, the deterministic inputs, noisy “AND” gate (DINA) model (Haertel 1989;
Junker and Sijtsma 2001), latent response variables are defined as conjunctive.
Another diagnostic model, the deterministic inputs, noisy “OR” gate (DINO) model
(Templin and Henson 2006), follows the disjunctive rule.

The choice of condensation rules clearly depends on the diagnostic setting,
including the purpose of the assessment, and how the skills or attributes are defined.
The conjunctive rule holds that a respondent has to master all the attributes required
by an item to give a correct answer, which means that lacking one attribute cannot
be compensated by a preponderance of another attribute. This rule frequently
appears in educational testing (Chen et al. 2013; Maris 1999), such as the fraction
subtraction test (Tatsuoka 1990). However, the disjunctive model assumes that
having satisfied either of the required attributes can lead to a positive response. This
hypothesis is well suited to applications of diagnosis in psychological disorders,
such as diagnosis of pathological gambling. Individuals are diagnosed as being
pathological if a set of dichotomous criteria or latent attributes has been satisfied
(Templin and Henson 2006).

Cognitive diagnostic models should be carefully chosen for different testing
situations by examining its appropriateness both theoretically and empirically.
Understanding of the type of condensation rules within tasks is important because it
will help determine which psychometric model is most appropriate and interpretable
for the intended diagnostic assessment. From an empirical perspective, indices that
meet the need of evaluating a model-data fit can aid the selection of a model. The
hierarchy consistency index (HCI) (Cui 2007; Cui and Leighton 2009) has already
been successfully used to evaluate fit. However, the HCI is an index designed only
for the conjunctive rule (Crawford 2014). Therefore, indices that can be used for the
disjunctive rule need further exploration (Cui and Roberts 2013).

The HCI, which is designed for the conjunctive rule, cannot directly generalize
to the disjunctive rule. It is because, on the one side, essential differences exist
between the underlying assumptions of the two condensation rules. On the other
side, the HCI itself has deficiencies. When student i correctly answered an item,
say item j, that is, Xij D 1, the HCI only assumes that student i has mastered all
the attributes required by item j, and the incorrect responses he/she made to items
that measure the subset of attributes of item j are misfits. However, when student
i answered item j incorrectly, that is, Xij D 0, there also exist misfits when student
i have correctly answered items including the set of attributes measured by item
j. Hence, some researchers proposed the new HCI (NHCI) (Ding et al. 2012; Mao
2011) and item consistency index (ICI) (Lai et al. 2012) by considering both aspects.
In fact, because the behavior of item response is sometimes stochastic with slip,
guessing, and even cheating, it is still hard to infer that he/she really mastered
the required attributes when a correct answer on a specific item was given by an
examinee. Instead, it will be more reliable to make use of information from other
associated items based on statistical inferences.
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The purposes of this study were (a) to introduce two modified item consistency
indices combining hypothesis testing for the conjunctive and disjunctive rules,
respectively, and (b) to conduct a simulation study to assess the performance of
the item consistency indices by comparison. The paper is organized as follows: the
modified ICI combining hypothesis testing is introduced for the conjunctive and
disjunctive rules, respectively, in Sect. 2 after a brief review to the HCI and NHCI; a
simulation study designed to assess the performance of the item consistency indices
is described, and its results are shown in Sect. 3; and the final section gives a
summary on this study.

2 Methods

2.1 A Review to the HCI and NHCI

2.1.1 The Hierarchy Consistency Index

The HCI for the conjunctive model is designed to detect the number of misfits
between students’ item response vectors and the expected response associated with
a Q-matrix (Cui 2007; Cui and Leighton 2009). Cui and Leighton (2009) defined
the rate of misfit for student i as follows:

ri D
X
j2Ci

X
g2Sj

Xij
�
1 � Xig

�
=Ni; (1)

where Ni is the total number of comparisons for all the items that are correctly
answered by student i; Ci is an index set that includes items correctly answered by
student i; Sj is an index set that includes items requiring the subset of attributes
measured by item j; Xij is student i’s score (1 or 0) to item j, where item j belongs to
Ci; and Xig is student i’s score (1 or 0) to item g, where item g belongs to Sj.

The numerator of Formula (1) represents the number of misfit between student
i’s item responses and expected responses, and the denominator is the member of
all possible comparisons of the items correctly answered by student i. Then, Cui and
Leighton (2009) gave the following HCI for student i by converting misfits to fits
and restricted the value of the HCI to the range of [�1, 1]:

HCIi D 1 � 2ri: (2)

Here, the assumption behind the HCI is that when student i gives correct responses
to item j, it is possible to infer that he/she has mastered all the attributes measured
by item j and he/she will answer correctly on the items requiring the subset of
attributes measured by item j. A test-level HCI can be calculated by averaging the
HCI of all students. A model-data fit is regarded as good when the value of the HCI
is larger than 0.6 and as excellent when it reaches 0.8 (Cui 2007). The HCI has



218 L. Song and W. Wang

been widely applied to model determination, evaluating and verifying hierarchical
attributes structures (Gierl et al. 2008; Wang and Gierl 2011). Researches on
exploring approaches that synthesize verbal reports and the HCI to validate student
score inferences also have been reported (Cui and Roberts 2013).

2.1.2 The NHCI

Some researchers stated that the HCI has weaknesses (Ding et al. 2012). Ding et
al. (2012) pointed out that misfits also exist when students give incorrect answers
on item j but correct answers on other items that include the set of attributes
measured by item j. Therefore, they present the NHCI based on the HCI as follows
(Mao 2011):

NHCIi D 1 �

2
64
X
j2Ci

X
g2Sj

xij
�
1 � xig

�
=Ni C

X

j2C�

j

X

h2S�

j

xih
�
1 � xij

�
=N�

i

3
75 ; (3)

where C�
i is an index set that includes items answered incorrectly by student i,

including item j; S�
j is an index set that includes items requiring the set of attributes

measured by item j, including item j; N�
i is the total number of comparisons for all

the items that are wrongly answered by student i; and other notations are the same as
above. The NHCI was applied to analyze a Chinese vocabulary test of colors taken
by non-Chinese speaking oversea students (Liu and Bian 2014).

2.1.3 The Item Consistency Index (ICI)

The development of ICI was inspired by the idea that an item can have an item-fit
index just like a test taker can have a person-fit statistic. Enlightened by the HCI,
researches introduced the following item-fit index to evaluate item-model fit for
cognitive diagnostic assessment (Lai et al. 2012):

ICIj D 1-2
X

i

2
64
X
g2Sj

xij
�
1 � xig

�
C
X

h2S�

j

xih
�
1 � xij

�
3
75 =Mj; (4)

where Mj is the number of comparisons for item across all students and other
notations have the same meaning in the formulas mentioned above.

The HCI, NHCI, and ICI are used to detect aberrant examinees or items. Both
the NHCI and ICI include misfits derived from inconsistent responses on item j
and Sj as well as misfits resulted from inconsistent response on item j and S�

j
. A

small difference exists between the two that the former computes a total number of
misfits, while the latter calculates the ratio of misfits to all possible comparisons of
the items.
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2.2 ICI Combining Hypothesis Testing

Because randomness exists in the process of item response, it is not sound to make
decisions solely based on the limited information provided by one item that a
student had really mastered the attributes required by the item when he/she gives
a correct response to the item. Actually, there is a certain probability for a test
taker to show a correct answer when he/she has not really mastered the attributes
required, and vice versa. Because statistical inferences are generally more precise
than everyday inferences, it will be more reasonable to make statistical inferences
firstly on whether the examinee answered each question by his/her own knowledge
or just by chance. Then we can continue to make more reliable classification on the
student’s attribute mastery from his/her response behaviors. We, therefore, introduce
a revision of item consistency index (SICI and MICI) combining hypothesis testing
to evaluate item-data fit for the two different condensation rules.

2.2.1 ICI for the Conjunctive Rule

This study introduced a hypothesis testing of proportion pij, that is, the probability
of examinee i giving a correct response to item j. According to the results of related
research (Cui and Leighton 2009; Templin and Henson 2006), the lower bound of
the probability p1 of correct item response for mastery students in this study was
set to 0.75, and the upper bound of the probability p0 of correct item response for
nonmastery students was set to 0.25. Inferences then can be made based on the
rationale below: If examinee i really masters all the attributes required by item j
and gives a correct response to item j (Xij D 1), then he will give correct responses
to the majority of items that measure the subset of attributes of item j. Similarly,
if examinee i in fact does not master all the attributes required by item j and gives
a wrong answer on item j (Xij D 0), then he will give incorrect responses to the
majority of items that include the set of attributes measured by item j. Based on the
two assumptions, hypothesis testing on item j can be carried out under these two
situations, respectively: a right answer is observed (Xij D 1), and a wrong answer is
observed (Xij D 0).

(1) When Xij D 1, one-sided null and alternative hypotheses are of the form:

H0 W pij � p1 vs H1 W pij < p1:

If the null hypothesis H0 cannot be rejected, we can infer that examinee i has
mastered all the attributes required by item j. Let examinee i’s score on an arbitrary
item j be a variable; let � denote the total score examinee i achieved on the nj items,
Sj, which measure the subset of attributes of item j, and � is also a random variable.
According to local independency assumption, item responses on Sj for examinee
i can be regarded as nj independent experiments with same probability p1. Here,
variable � is from a binomial distribution with parameters (nj, p1). Then a p-value
can be calculated based on the observed total score (�D tij) on the items Sj on the
basis of the null hypothesis:



220 L. Song and W. Wang

p D P
�
� � tij

�
D

tijX
kD0

Ck
nj

p1
k.1 � p1/

nj�k: (5)

We can make inferences then by comparing the p-value with a chosen significant
level ˛, such as ˛D 0.1. The null hypothesis would not be rejected when p >˛,
indicating there is an item-data misfit, and

P
g2Sj

xij
�
1 � xig

�
takes part in the

computation of the ICI. Otherwise, the null hypothesis should be rejected andP
g2Sj

xij
�
1 � xig

�
doesn’t take part in the computation of the ICI.

(2) When Xij D 0, the following hypotheses are to be tested:

H0 W pij � p0 vs H1 W pij > p0:

A p-value can be computed for the specific test and the observed score (�� D t�ij )
on the nj

* items S�
j :

p D P
�
�� � t�ij

�
D 1 �

tijX
kD0

Ck
n�

j
p0

k.1 � p0/
nj�k: (6)

The null hypothesis would not be rejected when p >˛, indicating that there is an
item-data misfit, and

P
h2S�

j
xih
�
1 � xij

�
takes part in the computation of the ICI.

Otherwise, the null hypothesis should be rejected and
P

h2S�

j
xih
�
1 � xij

�
doesn’t

take part in the computation of the ICI.

2.2.2 ICI for the Disjunctive Rule

The disjunctive condensation rule assumes that examinees that have not mastered
any of the required attributes will have high probabilities to give incorrect responses,
while examinees that have mastered any one or more of the required attributes will
have high probabilities to give correct responses (DiBello et al. 2007). According to
this assumption, we can make inferences based on the rationale below: If examinee
i really masters the attributes required by item j and gives a correct response to item
j (Xij D 1), he will give correct responses to the majority of the items that include
the set of attributes measured by item j. Similarly, if examinee i actually does not
master any of the attributes required by item j and gives an incorrect answer on item j
(Xij D 0), then he will give incorrect responses to the majority of items that measure
the subset of attributes of item j. We here adapt the HCI and ICI to the disjunctive
rule, and for reading convenience, we do not change the original abbreviate terms
and notations:

HCIi D 1-2
X

j2C�

i

X
g2Sj

xig
�
1 � xij

�
=Ni; (7)
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NHCIi D 1-
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ICIj D 1-2
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xij .1 � xih/

3
75 =Mj: (9)

According to the rationale described above, hypothesis testing can be carried out
for Xij D 0 and Xij D 1 as follows:

(1) When Xij D 0, and given that the total score of all the nj items that measure
the subset of attributes of item j is tij, one-sided hypothesis is tested:

H0 W pij � p0 vs H1 W pij > p0:

A misfit exists when
Ptij

kD0 Ck
nj

p0k.1 � p0/
nj�k � 1 � ˛, and

P
g2Sj

xig
�
1 � xij

�

takes part in the computation of the ICI. Otherwise,
P

g2Sj
xig
�
1 � xij

�
doesn’t take

part in the computation.
(2) When Xij D 1, and suppose that the total score of all the nj

* items that include
the set of attributes of item j is tij*, the hypotheses are:

H0 W pij � p1 vs H1 W pij < p1:

P
h2S�

j
xij .1 � xih/ takes part in the computation of the ICI when

Pt�ij
kD0 Ck

n�

j
p1k

.1 � p1/
nj�k � ˛; otherwise, it doesn’t take part in the computation.

If examinee i responds to item j incorrectly and gives incorrect answers on the
majority of the items that measure the subset of attributes of item j, we can infer that
he/she has not mastered any of the attributes required by item j, and the correctly
answered items are misfit items. If examinee i responds to item j correctly and gives
correct answers on the majority of items that include the set of attributes measured
by item j, we can infer that he/she has mastered a part of or all the attributes required
by item j, and the wrongly answered items are misfit items.

3 Simulation Study

3.1 Study Design

The purposes of this study were (a) to verify whether the item consistency indices
could help identify condensation rules, especially when the Q-matrix of the test is
misspecified, and (b) to check whether the item consistency indices could be used
to evaluate the misspecification of a Q-matrix and to distinguish wrongly specified
items from correctly specified items.
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3.1.1 Four Factors

There are four factors manipulated in this study: sample size (N D 500, 1000),
cognitive diagnostic model (the DINA model and the DINO model), quality of item
parameters (high and low quality), and percentage of misspecified q-entries (0.1,
0.2, 0.3, and 0.4).

3.1.2 Data Generation

The number of attributes was set to five in this study. The correct Q-matrix with
31 rows includes all possible combinations of five independent attributes, and
the universal set of attribute patterns (Tatsuoka 2009) contains 32 rows. A total
sample size of 500 and 1000 were generated, respectively, from a discrete uniform
distribution of attribute patterns. The DINA model was selected for the conjunctive
rule, and the DINO model was adopted for the disjunctive rule. The quality of item
parameters was represented by different values of parameters. For both models, the
distributions of item parameters of high and low quality were U(0.05, 0.25) and
U(0.05, 0.40), respectively. Using these two diagnostic models, the study generated
a total number of 800 response matrices across 8 (2 � 2 � 2) conditions (100
replications per condition). In order to study the effect of the misspecification of
Q-matrix, Q-matrices with four percentages of misspecified q-entries (0.1, 0.2, 0.3,
and 0.4) are simulated.

3.1.3 Item Consistency Indices

For both the conjunctive and disjunctive models, the following indices are compared
in this study: (a) ICI calculated by Formula (4) or (9) without hypothesis testing, (b)
SICI calculated by Formula (4) or (9) combining hypothesis testing only for Xij D 1,
and (c) MICI calculated by Formula (4) or (9) combining hypothesis testing for
Xij D 1 and Xij D 0. Note that p1 D . 75 and p0 D . 25 were used in the hypothesis
testing when calculating the SICI and MICI. The notations in the formulas did not
distinguish between the conjunction and disjunction rules, and the condensation
rules were represented by the psychometric models used in data analyzing (the
DINA model for conjunctive and the DINO model for disjunctive).

3.1.4 Evaluation Criteria

The average overall accuracy, type I and type II errors of 100 replications were
reported to assess the performance of the three indices.
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3.2 Results

Due to similar results, the following only presents results with sample size of 500.
Table 1 presents the thresholds (i.e., the lower 10 percentile) of the item consistency
indices obtained under a correct Q-matrix and correct condensation rules. A higher
threshold indicates a better item-fit when the quality of item parameters is high, and
a lower threshold indicates a worse item-fit when the quality of item parameters is
low. As can be seen in Table 1, an average difference of about 0.15 existed between
the thresholds of items with high and low quality under the same model. When
observing the thresholds under different conditions, it was found that the ICI was
remarkably lower than the SICI and MICI. It is because without doing a hypothesis
testing, examinees’ responses on all items took part in the computation of the ICI
and resulted in a larger misfit and a smaller ICI. When examining the items with
high quality and low quality, respectively, the data showed that the thresholds of
these three indices under the DINA model and the DINO model were quite similar,
and the SICI and MICI were especially in the case.

Tables 2 and 3 show the average values of the item consistency indices with 100
replications for the DINA model and the DINO model, respectively. An apparent
difference emerged when the indices were compared between the correct and incor-
rect condensation rules. The values of indices obtained from a correct condensation
rule were remarkably larger than the values obtained from an incorrect condensation
rule, especially for the ICI and SICI. For example, when the Q-matrix was correctly

Table 1 The thresholds of
ICI, SICI, and MICI with
sample size of 500

Model Parameter ICI SICI MICI

DINA U(0.05, 0.25) 0.09 0.62 0.68
U(0.05, 0.40) �0.09 0.43 0.53

DINO U(0.05, 0.25) 0.00 0.62 0.64
U(0.05, 0.40) �0.06 0.46 0.50

Table 2 Averages of the item consistency indices with 100 repetitions under the DINA model

Conjunctive Disjunctive
Parameter Q ICI SICI MICI ICI SICI MICI

U(0.05, 0.25) 0.0 0.50 0.68 0.73 �0.01 0.08 0.58
0.1 0.41 0.60 0.68 0.05 0.15 0.57
0.2 0.35 0.55 0.64 0.08 0.17 0.57
0.3 0.28 0.50 0.62 0.12 0.20 0.59
0.4 0.23 0.47 0.60 0.15 0.23 0.59

U(0.05, 0.40) 0.0 0.36 0.54 0.62 �0.01 0.09 0.52
0.1 0.30 0.49 0.59 0.03 0.13 0.51
0.2 0.26 0.45 0.58 0.05 0.15 0.53
0.3 0.20 0.41 0.55 0.09 0.18 0.53
0.4 0.17 0.39 0.55 0.10 0.19 0.53
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Table 3 Averages of the item consistency indices with 100 repetitions under the DINO model

Conjunctive Disjunctive
Parameter Q ICI SICI MICI ICI SICI MICI

U(0.05, 0.25) 0.0 0.03 0.09 0.47 0.46 0.67 0.69
0.1 0.08 0.13 0.49 0.39 0.62 0.65
0.2 0.11 0.16 0.51 0.33 0.58 0.61
0.3 0.14 0.19 0.54 0.27 0.54 0.59
0.4 0.15 0.20 0.54 0.24 0.51 0.57

U(0.05, 0.40) 0.0 �0.04 0.04 0.41 0.34 0.54 0.57
0.1 0.00 0.07 0.41 0.28 0.50 0.54
0.2 0.03 0.09 0.43 0.23 0.47 0.52
0.3 0.06 0.12 0.44 0.18 0.43 0.49
0.4 0.08 0.13 0.46 0.15 0.40 0.48

Table 4 The accuracy of the ICI, SICI, and MICI with 100 repetitions under the DINA model

Ac I II
Parameter Q ICI SICI MICI ICI SICI MICI ICI SICI MICI

U(0.05, 0.25) 0.0 0.94 0.94 0.94 0.06 0.06 0.06 0.00 0.00 0.00
0.1 0.57 0.54 0.53 0.10 0.57 0.50 0.88 0.30 0.42
0.2 0.40 0.63 0.58 0.10 0.86 0.72 0.84 0.13 0.27
0.3 0.33 0.77 0.70 0.11 0.92 0.78 0.78 0.09 0.20
0.4 0.32 0.87 0.77 0.17 0.95 0.82 0.73 0.06 0.18

U(0.05, 0.40) 0.0 0.94 0.94 0.94 0.06 0.06 0.06 0.00 0.00 0.00
0.1 0.55 0.57 0.55 0.09 0.24 0.23 0.94 0.68 0.73
0.2 0.35 0.50 0.46 0.09 0.36 0.30 0.92 0.57 0.66
0.3 0.26 0.59 0.47 0.10 0.52 0.38 0.86 0.38 0.56
0.4 0.20 0.66 0.48 0.13 0.54 0.35 0.85 0.33 0.53

specified, the ICI and SICI under the DINA model were 0.5 and 0.68 for the conjunc-
tive rule that were much larger than their values of �0.01 and 0.08 for the disjunctive
rule. The data in Table 2 also showed that the misspecification rate of the Q-matrix
exerted a positive impact on the values of the indices. An obvious decrease was
observed when the misspecification rate of the Q-matrix increased. Interestingly, the
ICI and SICI obtained from the correct condensation rule even under the highest Q-
matrix misspecification rate were still larger than the values obtained from a wrong
condensation rule. This result indicates that the ICI and SICI can identify the correct
condensation rule even though the Q-matrix is partially misspecified.

Tables 4 and 5 present the averaged overall accuracy and type I and type II errors
of the ICI, SICI, and MICI with 100 repetitions. As can be seen in these two tables,
the three indices showed an obvious decrease tendency when the misspecification
rate of the Q-matrix increased. Among them, the SICI had the highest average
classification accuracy and smallest type II error, while the ICI had the smallest
type I error. This finding suggests that combining these indices will be helpful to
evaluate the misspecification of a Q-matrix.
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Table 5 The accuracy of the ICI, SICI, and MICI with 100 repetitions under the DINO model

Ac I II
Parameter Q ICI SICI MICI ICI SICI MICI ICI SICI MICI

U(0.05, 0.25) 0.0 0.94 0.94 0.94 0.06 0.06 0.06 0.00 0.00 0.00
0.1 0.55 0.55 0.54 0.10 0.49 0.44 0.92 0.40 0.48
0.2 0.37 0.62 0.61 0.09 0.72 0.66 0.88 0.22 0.27
0.3 0.29 0.74 0.72 0.12 0.85 0.82 0.83 0.14 0.17
0.4 0.25 0.82 0.79 0.14 0.86 0.83 0.8 0.11 0.14

U(0.05, 0.40) 0.0 0.94 0.94 0.94 0.06 0.06 0.06 0.00 0.00 0.00
0.1 0.55 0.57 0.56 0.10 0.26 0.21 0.92 0.65 0.75
0.2 0.36 0.51 0.47 0.09 0.44 0.34 0.89 0.51 0.61
0.3 0.27 0.61 0.54 0.12 0.63 0.52 0.84 0.35 0.45
0.4 0.25 0.70 0.63 0.12 0.69 0.60 0.81 0.26 0.35

4 Conclusion

In this study, we introduced the modified item consistency indices combining
hypothesis testing, SICI and MICI, for both the conjunctive and disjunctive models
in cognitive diagnostic assessment. This paper also conducted a simulation study to
evaluate the performance of the indices by comparing with the existing index ICI
under different situations.

Results of the study showed that given a Q-matrix, the ICI and SICI precisely
identified the underlying correct condensation rule. As we know, the idea response
patterns are dependent on condensation rules, and correctly identifying the con-
densation rule is crucial to model determination and thus to the classification
accuracy. This result helps to find a way to make correct decision on the underlying
condensation rule and to choose a proper psychometric model or a nonparametric
classification method (Chiu and Douglas 2013). Our results also showed that the
item consistency indices were successfully used in evaluating the misspecification
of a Q-matrix, and they were also applied to identify items with attribute misspec-
ification. The SICI was especially in the case with a higher overall accuracy and a
lower type II error. This result suggests that the item consistency indices can be used
to assess the amount of random error in response data and can be used to evaluate
systematic error existing in the specification of a Q-matrix.

There are some limitations to this research that are worth noting. Firstly, the
hypothesis testing cannot be achieved under some circumstances. For the disjunctive
rule, hypothesis testing cannot be conducted for Xij D 1 when there is no other
item including the set of attributes required by item j. It also cannot be conducted
for Xij D 0 when there is no other item measuring the subset of attributes of item
j. On the contrary, for the conjunctive rules, hypothesis testing cannot be carried
out for Xij D 1 when there is no other item measuring the subset of attributes of
item j and for Xij D 0 when there is no other item including the set of attributes
measured by item j. Secondly, the revised item consistency indices introduced in
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this paper were successfully used to screen the problematic attribute specification
in a Q-matrix. However, it still needs more studies to explore how to modify the Q-
matrix based on the ICI. In addition, the ICI can only provide an empirical evidence
for the quality of Q-matrix, and other approaches, especially theoretical methods,
such as the theoretical construct validity (Ding et al. 2012) should be combined to
help design and modify a Q-matrix. Factor analysis may be used to determine the
number of constructs (or factors) that a set of test items really measures (Cui 2016),
developing or selecting an appropriate method of determining the number of latent
attributes is deserved further study.

Because the real probability for examinees correctly answering an item is
unknown, this study assumed that the probability of correct responding to item j
was the same with that to the items measuring the subset of attributes of item j.
The correct responding probability was restricted to a lower bound of 0.75, and
the incorrect responding probability was restricted to an upper bound of 0.25.
With these assumptions, a Bernoulli test based on a binomial distribution could be
easily carried out. Tatsuoka (1987) also adopted a binomial distribution in building
the distribution of errors in the Rule Space Method. In testing practice, the ICI
introduced in this paper can be obtained by the hypothesis testing of proportion
based on a compound binomial distribution (Tatsuoka 1987) provided examinees’
correct responding probabilities. Other methods (Cui and Li 2015) can be used to
accomplish this purpose as well.
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Irreplaceability of a Reachability Matrix

Shuliang Ding, Wenyi Wang, Fen Luo, Jianhua Xiong, and Yaru Meng

Abstract Q-matrix is a critical concept for cognitive diagnosis. Reachability matrix
R is special in its two important properties: (1) any column in the Q-matrix can be
expressed by a linear combination of R’s columns; (2) there is a one-to-one mapping
from the set of knowledge states to the set of ideal response patterns if R is a sub-
matrix of the test Q-matrix. It is proved that these properties are irreplaceable, i.e.,
no other upper triangular Q-matrices have these properties.

Keywords Cognitive diagnosis • Reachability matrix (R) • Irreplaceability •
Sufficient Q-matrix • Necessary Q-matrix

1 Introduction

Diagnostic test design is critical for cognitive diagnosis. There are some related
studies addressing this (e.g., Chiu et al. 2009; Henson and Douglas 2005; Madison
and Bradshaw 2015), and two shared features characterize these researches: (1) The
test design is based on the independent attribute hierarchical structure; (2) identity
matrix plays an important role in test design. However, there are also some other
attribute hierarchical structures (Leighton et al. 2004) whose optimal test design
may not be the same as that of the independent structure. The proposed solution
by Chiu et al. (2009) may not suffice here, but the reachability matrix R developed
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by Ding et al. (2010) can make a big difference under a certain condition. It is a
generalized version of Chiu et al. (2009). This paper discusses the properties of the
reachability matrix R in detail.

Suppose there are only K attributes in the domain of interest and the attribute
hierarchy among these K attributes is given. Let R, Qp, Qs, and Qt be the reachability
matrix, the potential Q-matrix (coinciding with the reduced Q-matrix defined by
Tatsuoka (2009)), the student Q-matrix, and the test Q-matrix, respectively. Each
column of Qp is a latent item attribute vector, and each column of Qs is a knowledge
state.

The Augment algorithm (Ding et al. 2008) establishes the relationship between
matrix R and Qp. In the Augment algorithm, the Boolean addition for some 0–1 vec-
tors is element-wise Boolean addition, i.e., 0 C 0 D 0; 0 C 1 D 1 C 0 D 1 C 1 D 1.

The Augment algorithm (Ding et al. 2008) to derive the potential Q-matrix from
R is described in detail as follows:

Step 1. Partition R according to its columns.
Step 2. Let Q D R.
Step 3. Let j D 1.
Step 4. Add (Boolean addition) rj to every column from (j C 1)th column to

the last column of Q, and if a new column is produced, put the new column to the
far-right side of Q, i.e., augment Q.

Step 5. j :Dj C 1, if j � K, then go to step 4; stop otherwise.
It has been proved from the Augment algorithm that an arbitrary column in

Q, say x, can be represented by a linear combination of the columns in R with
combinational coefficients being 0 or 1 (Yang and Ding 2011). Any column of R, if
it is the linear combination corresponding to x, is called a combination component
of x. It is found that for a column of Q, the combination of the columns of R is often
not unique.

2 Main Results

Given that x and y are two K-dimension vectors, x is called greater than y, denoting
as y � x, if all elements of x–y difference is nonnegative.

If x is an item attribute vector of item i and y is a knowledge state of examinee j,
yıx denotes the ideal response of j on item i without guessing or slipping.

2.1 Properties of Combination Components

Proposition 1 If r is a combination component of x, then x is greater than r.
Suppose it’s a 0–1 scoring rubric and its attributes are non-compensatory, then x ı

r D 1, and for any arbitrary column vector of R, say r0, not being in the combination
component of x, then x ı r0 D 0.
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Fig. 1 Divergent A1

A5A2

A4A3

Suppose that x is a knowledge state, let Sx D frj(r is a column of R) and (r � x)g
be a set of combination components of x.

Definition of a redundant expression of x. The Boolean union of all r in the set
Sx is called a redundant expression of x.

Definition of a concise expression of x. Let S’x be a subset of Sx and if any two
different elements are not comparable in S’x, then the Boolean union of the elements
in S’x is a concise expression of x.

Example (see Fig. 1).

R D

2
666664

1 1 1 1 1

0 1 1 1 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

3
777775

D[r1r2r3r4r5.]

Qp D

2
666664

1 1 1 1 1 1 1 1 1 1

0 1 1 1 0 1 1 1 1 1

0 0 1 0 0 0 1 1 0 1

0 0 0 1 00 1 0 1 1

0 0 0 0 1 1 0 1 1 1

3
777775

D Œr1r2r3r4r5q6q7q8q9q10�

q6 D r2
W

r4 (concise expression of q6) D r1
W

r2
W

r4 (redundant expression of q6).
In fact, there must be a both redundant and concise expression of a knowledge

state x, because the sets Sx and S’x are not empty. It can be proved that if the
redundant expression of x equals to the concise expression of x, then there is only
one combination component in the redundant expression, and x is a column of the
identity matrix.

A possible use of the redundant expression and concise expression of a knowl-
edge state, say x, is that they exhibit some different paths from some status of
knowledge state to x in remedy course.

Proposition 2 In the redundant expression of knowledge state, say x, the length of
x is longer than that of any of its combination component.
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2.2 Irreplaceability of Reachability Matrix

Suppose matrix R is an upper triangular 0–1 matrix without the loss of generality
because R is a partial relation matrix. The Augment algorithm gives the fact that the
columns of R are representative of attribute vectors in a cognitive diagnostic test.
Here the first question emerges: is there another K-order upper triangular matrix in
the potential Q-matrix and can it represent any other column in the Q-matrix besides
the matrix R? The answer is negative.

Theorem 1 Suppose Q0 is a K-order upper triangular sub-matrix of Qp, then
any column of Qs can be represented linearly by the columns of Q0 if and only
if Q0 D R.

Proof Because any column of Qs can be represented by the columns of Q0, so does
any column of R.

“(” It is validity from the Augment algorithm (Ding et al. 2008).
“)” Its contrapositive is: If Q0 is not equal to R, then there is at least one column

of Qs, say q, not being able to be represented linearly by the columns of Q0.
Firstly, any column of R can’t be represented by other columns of R. If Q0 is not

equal to R, then at least one column of R, say rj, is not in Q0. Note that rjjD1 and
for all t > j, rtjD0. If for Q0, there is no column with j-th element being 1 and for all
t, t > j, then t-th element being 0, and rj can’t be represented by the columns of Q0.

Take one column, say q, out from all columns of R with the j-th element being 1,
and for all t, t > j, qt D 0, because q is a column augmented by R, the length of q is
longer than that of rj, and rj can’t be represented by the columns of Q0.

Matrix R’s important role is demonstrated in cognitive diagnosis that follows.

Theorem 2 (Ding et al. 2010) Suppose a 0–1 scoring rubric is adopted and the
attributes are non-compensatory. Given a test matrix Q, let ’ıQ be the expected
response vector of knowledge state (attribute mastery pattern) ’ on the matrix Q.
If R is the test Q-matrix, then for any knowledge state ˛, ’ıR D ’T. Otherwise, if
R is a sub-matrix of the test matrix Q, and ’, “ are different knowledge states, then
’ıQ ¤ “ıQ.

Proof

(a) If ’ contains h positive elements, then the redundant expression of ’ contains
h and only h columns of R (Yang and Ding 2011). From Proposition 1, in the
ideal response pattern ’ıR, the ideal response of ’ on each of these h columns
of R is 1, otherwise it is 0. So ’ıR D ’T.

(b) If ’ ¤ “, then ’ıR D ’T ¤ “T D “ıR, because R is a sub-matrix of Q, based
on the definition of equality of two vectors, then ’ıQ ¤ “ıQ.

Remarks The part (a) of the Theorem 2 has been proved by Ding et al. (2010)
through several lemmas. The present new form of proof is comparatively clear and
concise.

The second problem emerges: is there another square sub-matrix Q1 of Qp,

Q1 ¤ R, and Q1 that satisfies the property listed in Theorem 2? The answer is
negative, too.
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Theorem 3 Under the conditions that the 0–1 scoring rubric is adopted and there
is no compensation among the attributes, suppose Q1 is a K-order upper triangular
sub-matrix of Qp and ’ is an arbitrary column vector of Qs, i.e., ’ is a knowledge
state, then ’ıQ1 D ’T () Q1 D R.

Proof Let ’ D (’1, : : : ,’K)T, “ D (“1, : : : ,“K)T be K-dimension 0–1 vectors.

“(” Suppose that ’ıQ1 D “T.
It must be proved that for all i D 1, 2, : : : , K, ’i D 1 () “i D 1, and

’i D 0 () “i D 0.
Because that ’ and “ are 0–1 vectors, then the contrapositive of ’i D 1 ()

“i D 1 is ’i D 0 () “i D 0, so it is enough to prove that ’i D 1 () “i D 1.
Let Q1 D (q1,...,qK) D (r1, : : : rK), “i D 1 () ’ıri D ’ıqi D 1 ()

ri D qi � ’ () ri is a combination component of ’, and because rii D 1)’i D 1.
Because ’i D 1 implies that ri is a combination component of ’)ri � ’, so

“i D 1.
So for all ’–Qs, ’ıR D ’T.
“)” If there is a K-order matrix Q1, and Q1 satisfies that for arbitrary ’–Qs,

’ıQ1 D ’, it must be proved that Q1 D R. Let ’ıQ1 D “T.
Suppose that Q1 ¤ R,

1. Q1 is an upper triangular matrix and if any of its diagonal elements is 1,
Q1 D (q1, : : : ,qk), then there is a column of Q1, say qj, qj ¤ rj, the fact that
qjj D rjj D 1, and qj ¤ rj implies that rj is a combination component of qj,
then based on Proposition 2, rj

Trj < qj
Tqj, so rjıqj D 0. It is said that the j-th

element of rjıQ1, “j D (rjıQ1)j D 0 ¤ rjj D 1. So when Q1 ¤ R, Q1 is an upper
triangular matrix, and all of its diagonal elements are 1, it is impossible that for
arbitrary column ’ of Qs satisfies ’ıQ1 D ’T, i.e., the j-th element of rjıQ1,
“j D (rjıQ1)j D 0 ¤ rjj D 1.

2. Q1 can’t be rearranged as an upper triangular matrix with all diagonal elements
being 1, which implies that there is a column, say (j C 1)-th column of Q1, say
qjC1, qj,jC1 D 1 and for all t, when t > j, qt,jC1 D 0. Under this condition, the
problem could fall into two parts: the first part is that if there is a column of
Q1 equal to qjC1, it can be supposed that the j-th column of Q1 is equal to qjC1

without the loss of generality because exchanging columns of Q1 does not change
the result; the second part is that if no column of Q1 is equal to qjC1.

If qj D qjC1, the ideal response pattern of qj on the test Q-matrix Q1 is considered.
Because
“jC1bD(qjıQ1)jC1 D qjıqjC1 D 1 > qjC1,jC1 D 0, let ’D qjC1, so there is a column

’–Qs, and ’ıQ1 ¤ ’T.
(b) If qj ¤ qjC1, because that qj, jC1 D 1, and for any t and t > j, then qt,jC1 D 0,

so or (qjC1 D rj) or (rj � qjC1) and (rj ¤ q jC1).
When qjC1 D rj, consider the ideal response pattern of rj on the test matrix Q1.

It can be obtained that rjıqjC1 D 1 D “jC1 > rjC1 D 0, so rjıQ1 ¤ rj
T. When

(rj < DqjC1) and (rj ¤ qjC1), consider the ideal response pattern of qjC1 on the test
matrix Q1. It is obtained that “jC1 D (qjC1ıQ1)jC1 D 1 > qjC1,jC1 D 0, let’ D qjC1,
then there is a column ’, ’–Qs, and ’ıQ1 ¤ ’T. The proof is complete.
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2.3 Sufficient Q-Matrix and Necessary Q-Matrix

Definition of a necessary Q-matrix. If a reachability matrix R is a sub-matrix of
the Q-matrix (Ding et al. 2016), it is called a necessary Q-matrix.

Definition of R-equivalent class (REC). The reachability matrix R and all of
the permutations of the columns of R are called R-equivalent class (REC).

Any matrix in the R-equivalent class could be correct provided the modification
of the above results is offered to the irreplaceability of a reachability matrix R.

Definition of a sufficient Q-matrix. (Tatsuoka 2009). Suppose K attributes have
a prerequisite relation with a reachability matrix R, and their involvement with n
items are expressed by a Q-matrix. If the pairwise comparison of attribute vectors
in the Q-matrix with respect to the inclusion relation yields the reachability matrix
R, then the Q-matrix is said to be sufficient for representing the cognitive model of
the domain of interest.

Tatsuoka (2009) pointed out “it is important to note that a sufficient Q matrix is
the core of a knowledge structure.” A necessary Q-matrix is a sufficient Q-matrix;
however, a sufficient Q-matrix may not be a necessary Q-matrix. If a sufficient
Q-matrix is augmented, some knowledge states may be lost. At this time, the
knowledge structure is not integral. Sometimes, a test Q-matrix is a sufficient Q-
matrix, but it does not work well for improving the classification accuracy. To
illustrate these and to probe the differences between the necessary and the sufficient
Q-matrix, Monte Carlo simulation is conducted to find a good cognitive diagnostic
test design and to investigate the loss of the accuracy of the estimated knowledge
states if the reachability matrix R is not used.

3 Simulation Study

3.1 Purpose

A simulation study consisting of various conditions was conducted to investigate
the impact of three kinds of test Q-matrices on correct classification rate of attribute
patterns (CCRAPs). The three kinds of test Q-matrices are a sufficient Q-matrix
(Tatsuoka 2009), a necessary Q-matrix, and a Q-matrix that is insufficient (neither
the sufficient nor the necessary).

3.2 Experiment Design

Five factors were considered:

a. The number of attributes (K): K D 4, 5, 6, and 7.
b. The length of test (L): L D 1K, 3K, and 5K.
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Table 1 Eighteen conditions of the simulation study

Conditions
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I 0.05 0.15 0.25
N 500 1000 500 1000 500 1000
L 1K 3K 5K 1K 3K 5K 1K 3K 5K 1K 3K 5K 1K 3K 5K 1K 3K 5K

Note: I D the values of slip and guessing parameters; L D test length; N D sample size

Table 2 Three types of test
Q-matrices

Qt (sufficient) Qt (insufficient) Qt (necessary)
I1 I2 I3 I4 I1 I2 I3 I4 I1 I2 I3 I4

A1 1 0 0 1 1 0 0 0 1 0 0 0
A2 1 1 0 0 0 1 0 0 0 1 0 0
A3 0 1 1 0 0 0 1 1 0 0 1 0
A4 0 0 1 1 0 0 0 1 0 0 0 1

Table 3 Numbers of
equivalent classes resulted
from three types of test
Q-matrices

K D 4 K D 5 K D 6 K D 7

Qt (sufficient) 9 C 1 16 C 1 28 C 1 50 C 1
Qt (insufficient) 11 C 1 23 C 1 47 C 1 95 C 1
Qt (necessary) 16 32 64 128

c. The quality of items or the item parameters in the deterministic inputs, noisy
“AND” gate (DINA; Junker and Sijtsma 2001) model (I): I D 0.05, 0.15, and
0.25.

d. The sample size (N): N D 500 and 1000.
e. The types of test Q-matrix: sufficient, insufficient, and necessary Q-matrix.

Eighteen conditions of simulation study arising from these factors were showed
in Table 1.

Suppose that the attribute hierarchical structure is independent. When K D 4,
the representatives of the three types of Q-matrices are listed in Table 2. Using the
Augment algorithm (Ding et al. 2008), all of the knowledge states (i.e., the student
Q-matrix) are obtained; based on the student Q-matrix, the test Q-matrix, and the
relationship among the attributes (compensatory or not), the equivalent classes of
knowledge state (Tatsuoka 2009) are obtained and listed in Table 3. Table 4 gives
equivalent classes of attribute patterns for three Q-matrices shown in Table 2.

3.3 Results

Table 5 shows the CCRAPs for the three types of test Q-matrices when K D 4, and
the CCRAPs from the sufficient Q-matrix is significantly lower than the results from
both the insufficient Q-matrix and the necessary Q-matrix. The results for K D 5,
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Table 4 Equivalent classes
of attribute patterns

Qt (sufficient) Qt (insufficient) Qt (necessary)

AP EC/IRP AP EC/IRP AP EC/IRP
0000 0000 0000 0000 0000 0000
0001 0001 0001 0001
0010 0100 0100 0010 0010
0100 0101 0101 0100
1000 1000 1000 1000 1000
1010 1001 1001 1010
0101 1100 1100 0101 0101
1100 1000 1101 1100 1100
0110 0100 0010 0010 0110 0110
0011 0010 1010 1010 0011 0011
1001 0001 0110 0110 1001 1001
1110 1100 0011 0011 1110 1110
0111 0110 1110 1110 0111 0111
1101 1001 0111 0111 1101 1101
1011 0011 1011 1011 1011 1011
1111 1111 1111 1111 1111 1111

Note: AP attribute pattern, EC equivalent classes, IRP
ideal response pattern. The number of attributes equals
to 4

6, and 7 are not given here due to limited space. The results from these three types
of test Q-matrices had the similar trends as is showed in Table 5. Interestingly, the
differences of performance between any two types of test Q-matrices became more
significant as the number of attributes increased from 4 to 7.

4 Conclusion and Discussion

Reachability matrix R plays an important role in test design for cognitive diagnostic
purposes. Each item attribute vector can be expressed as a linear combination of the
columns of R, and when the test Q-matrix includes R as a sub-matrix, R exhibits
some optimality, and its role is irreplaceable.

For Tables 3 and 4, let N1 be the number of equivalent classes, and N2 be the
number of the knowledge states. Consider the ratio N1/N2, and this ratio is called
the theoretical construct validity (TCV) by Ding et al. (2012). The TCV is dependent
on the relationship among the attributes, i.e., whether compensatory or not, and N1

and N2 are defined as above. For K D 4, in the sufficient, the insufficient, and the
necessary Q-matrix, the TCVs are 0.625, 0.75, and 1.00, respectively. Note that
the highest mean (M) in Table 4, the CCRAPs for the three matrices, are 0.63,
0.75, 1.00, respectively. It implies that the highest CCRAP is no larger than the
corresponding TCV. This is also true for K D 5, 6, and 7. Under some conditions,
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the optimality in terms of CCRAPs in the test Q-matrix design can be predicted
using the index of TCV.

The conclusion is that each column of the student Q-matrix can be represented
by a combination of matrix R columns, whether the attributes are compensatory or
not. Even for a polytomous Q-matrix, there are analogical results (Ding et al. 2016).

For a 0–1 rubric scoring and non-compensatory cognitive models, the optimal
design of cognitive diagnostic test has also been explored. However, how to
construct an optimal design of cognitive diagnostic test for compensatory cogni-
tive models, polytomous rubric scoring, testlet situation, and even a polytomous
Q-matrix (e.g., Ding et al. 2016) is still a demanding but exciting challenge for us.
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Ensuring Test Quality over Time by Monitoring
the Equating Transformations

Marie Wiberg

Abstract One important part of ensuring test quality over consecutive test admin-
istrations is to make sure that the equating procedure works as intended, especially
when the composition of the test taker groups might change over the administra-
tions. The aim of this study was to examine the equating transformations obtained
using one or two previous administrations of a college admissions test that is given
twice a year. The test has an external anchor, and thus a nonequivalent group with
anchor test design is typically used to equate the test, although other data collection
designs are possible. This study examined the use of different equating methods
with different data collection designs and different braiding plans. The methods
included traditional equating methods and (item response theory) kernel equating
methods. We found that different equating methods and different braiding strategies
gave somewhat different results, and some reflections on how to proceed in the
future are given.

Keywords Kernel equating • IRT kernel equating • NEAT design • NEC
design • Braiding plan
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1 Introduction

When a standardized achievement test is administered consecutively over several
years, it is important to examine the quality of the test over time in terms of validity
and reliability (Wiberg and von Davier 2017). Several aspects of reliability and
validity can be examined, and in this paper the focus is on the equatings performed
over time. In order to examine this, the test used in this study included an anchor test
that was administered over several administrations, and because the anchor test was
identical over time, the nonequivalent groups with anchor test (NEAT) design could
be used when performing equating. In this paper, traditional equating methods were
compared with kernel equating methods under two different braiding plans. The
examined test is a college admissions test; thus, the labor market tends to affect
how many people take the test. If unemployment is low, fewer persons take the test;
thus, the groups of test takers are not necessarily homogenous in terms of their
background over the years. To determine if this has an impact on the equating,
a kernel equating with the nonequivalent groups with covariates (NEC) design
(Wiberg and Bränberg 2015) was also included in the comparison. In the past, this
test has used an equivalent groups (EG) design, so this was included even though
it has been shown that the EG assumption is questionable (Lyrén and Hambleton
2011). The aim of this study was to examine the equating transformations of a
college admissions test with an external anchor using different equating methods
with different data collection designs and two different braiding plans.

In previous research, Livingston et al. (1990) examined which combinations
of sampling and equating methods work best by comparing the Tucker, Levine
equally reliable, chained equipercentile, frequency estimation, and item response
theory (IRT) equating methods using the three-parameter logistic IRT model with
either representative samples or matched samples. In their study, the IRT and
Levine methods showed agreement with each other, and the chained equipercentile
method had low bias in the representative samples. Mao et al. (2006) found
only trivial differences when comparing the results of traditional equipercentile
equating with those of kernel equating in the EG design and with poststratification
equating results using a NEAT design with real data. Liu and Low (2008) compared
the use of traditional and kernel equating methods in two scenarios—equating
to a very different population and equating to a similar population. The overall
conclusions were that traditional and kernel equating methods were comparable
and that they gave similar results when the populations were similar on the anchor
score distribution even though they rest on different assumptions. If the test group
changed, the equating methods gave different results.

This study is different from these previous studies in several important aspects.
First, it used the whole group who took the anchor test to perform the equating.
Second, it compares not only common kernel equating methods with traditional
methods but also with equating with covariates under a NEC design. Third, it
includes IRT observed-score kernel equating instead of the more studied IRT
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observed-score equating. Fourth, because the same anchor test was used for a large
number of administrations, comparisons could be made over several administrations
using different braiding plans.

The rest of the paper is structured as follows. In Sect. 2, the college admissions
test is described. Section 3 contains brief descriptions of the examined equating
methods. In Sect. 4, the empirical study is described followed by the results in Sect.
5. Section 6 contains some concluding remarks.

2 The College Admissions Test

The Swedish Scholastic Assessment Test (SweSAT) is a college admissions test that
is given twice a year (A D spring and B D Fall). The SweSAT is a paper-and-pencil
multiple-choice test with binary responses with 160 items divided into two equally
sized subsections—quantitative and verbal. The two sections are equated separately.
In this paper we used the quantitative section, which consists of items covering data
sufficiency, mathematics, quantitative comparisons, diagrams, tables, and maps.

Each time the SweSAT is administered, a subsample of the test groups is given
a 40-item quantitative anchor test the rest of the test takers get tryout items. All test
takers fill out a background questionnaire, which includes questions about their age,
gender, and educational background. The test scores are assumed to be independent
between test administrations. Test takers are allowed to repeat the test as many
times as they like, and only the highest score is used for admissions to university.
A test score can be used for 5 years. Although test takers can repeat the test, it
is unlikely that there are any repeaters in the sample who took the anchor test
because the anchor test is administered in different cities at each administration.
Table 1 gives some descriptive statistics for the examined anchor test and total test
for the quantitative section of the SweSAT. It is evident that the anchor test score
distributions are not identical over time, and this might affect the equating. In the
later subsequent empirical study, the focus was on administrations 1 (11B), 7 (14B),
and 9 (15B), which are marked in bold in Table 1.

3 Equating Methods

The equating methods used in this study are all equipercentile equating methods and
are described briefly below for the NEAT design, including frequency estimation,
chained equipercentile equating, chained kernel equating, poststratification kernel
equating, IRT observed-score poststratification kernel equating, and IRT observed-
score chained kernel equating. In addition, a NEC design with raw covariates is
described, and the EG design was used for both traditional and kernel equating.
Details for conducting the described methods in practice are described in González
and Wiberg (2017).



242 M. Wiberg

Table 1 Means and standard deviations of the anchor scores and the total scores of the quantitative
section of the SweSAT

Anchor quant Total quant
Adm Test season M SD N M SD N

1 11 B Fall 18.40 6.55 5263 37.91 13.43 40,431
2 12 A Spring 18.46 5.98 6465 37.05 12.10 56,358
3 12 B Fall 19.25 6.68 1175 38.07 12.35 43,957
4 13 A Spring 17.97 6.76 6664 37.66 12.28 59,475
5 13 B Fall 16.88 6.28 1997 36.83 12.29 54,033
6 14 A Spring 16.37 6.32 2016 38.28 12.72 76,094
7 14 B Fall 16.64 6.62 2783 42.52 13.31 58,840
8 15 A Spring 16.71 6.44 2826 43.00 12.35 74,437
9 15 B Fall 17.37 6.11 1052 42.90 12.54 60,008

Adm D Administration, N D Number of test takers, M D Mean, SD D Standard deviation,
Quant D Quantitative section of the SweSAT

3.1 Frequency Estimation

In frequency estimation (Angoff 1971), one estimates the score distributions of the
test forms X and Y in populations P and Q, respectively, for a target population
T when a common anchor test A is administered. The necessary assumption is
that for both test forms X and Y, the conditional distribution of the total score
given each anchor score is the same in both populations. Let x be the scores
on X, let y be the scores on Y, and let a be the scores on A. The cumulative
distribution functions (CDFs) can then be defined as FXT (x) D

R
FP(xj a)dFAT (a)

and FYT (y) D
R

FQ(yj a)dFAT (a). Percentile ranks are obtained from the CDFs, and
the equipercentile equating is defined as

'Y.x/ D F�1
YT .FXT.x// : (1)

Frequency estimation should only be conducted if the two populations are
reasonably similar because it tends to give biased results when group differences
are large (Powers and Kolen 2014; Wang et al. 2008). If the populations differ
considerably, it is better to use other methods (Kolen and Brennan 2014, p. 146).
However, an advantage of frequency estimation under a NEAT design is that the
standard errors of equating are somewhat lower than for chained equipercentile
equating (Wang et al. 2008).
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3.2 Chained Equipercentile Equating

The chained equipercentile equating (Dorans 1990; Livingston et al. 1990) connects
the CDF of test form X, FP, to the CDF of test form Y, FQ, through the CDFs of the
anchor test forms HP and HQ in populations P and Q, respectively, as follows:

'Y.x/ D F�1
Q

�
HQ

�
H�1

P .FP.x//
��
: (2)

Chained equipercentile equating does not require a joint distribution of total
scores and anchor item scores, and it is less computationally intensive than
frequency estimation. A drawback is that it equates a long (total) test with
a short (anchor) test, and in general one typically avoids equating tests with
large differences because the obtained scores are not necessarily interchangeable.
However, von Davier et al. (2004b) have shown that the results obtained from
chained equipercentile equating and equipercentile frequency estimation methods
are similar if the two populations are equivalent and if the scores on the anchor test
and the total test are perfectly correlated. An advantage with chained equipercentile
equating is that it tends to give more accurate results in terms of smaller bias than
frequency estimation if the two groups of test takers differ substantially (Wang et al.
2008).

3.3 Poststratification Kernel Equating and Chained Kernel
Equating

Kernel equating (von Davier et al. 2004a) consists of the following five steps:

1. Presmoothing. The observed score distributions are fitted to a feasible model.
Log-linear models have typically been used, although it is also possible to fit IRT
models instead (Andersson and Wiberg 2016).

2. Estimation of score probabilities. The estimates of the score probabilities are
obtained from the models in step one.

3. Continuization. The discrete distributions obtained in step two are made continu-
ous. In traditional equating, linear interpolation is used, while in kernel equating,
Gaussian kernel continuization is typically used to estimate a continuous CDF
of X, i.e., FhX .x/, and likewise for Y, FhY .y/, where hX and hY are bandwidths.
Gaussian kernel continuization involves selecting bandwidths to control the
smoothness of the curves, and a penalty function has traditionally been used to
select the bandwidths (von Davier et al. 2004a), although other alternatives exist
that give similar results (Häggström and Wiberg 2014).

4. Equating. The actual equating is performed. The poststratification kernel equat-
ing (KEP) can be defined as
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'Y.x/ D F�1
hY
.FhX .x// ; (3)

and the chained kernel equating (KEC) can be defined as

'Y.x/ D F�1
hY

�
HhY

�
H�1

hX
.FhX .x//

��
; (4)

where HhY and HhX represent the continuized score CDFs for the anchor test
taken by either the group who took test form X or the group who took test
form Y.

5. Calculating standard errors of equating (SEE). Accuracy measures are obtained,
including SEE, percent relative error, and mean squared errors. For more details
on how to assess an equating transformation, refer to Wiberg and González
(2016). An advantage of using either KEP or KEC over the traditional equating
method is that one uses a comprehensive framework with easy access to the SEE
and other accuracy measures such as the percent relative error.

3.4 IRT Observed-Score Kernel Equating

IRT observed-score kernel equating (Andersson and Wiberg 2016) uses an IRT
model in the presmoothing step instead of a log-linear model in the kernel
equating framework. If unidimensional IRT models are used, it is important that
the assumptions of unidimensionality and local independence are fulfilled when
modeling the items. In this study we used the two-parameter logistic IRT model

pji D
exp

�
ai


�j � bi

�

1C exp
�
ai


�j � bi

� ; (5)

where � j is the ability of test taker j, ai is the item discrimination, and bi is the item
difficulty for item i. In the empirical study, both IRT observed-score kernel equating
with poststratification (KEPIRT) and with chained equating (KECIRT) were used.
A clear advantage with IRT kernel equating as opposed to kernel equating with
log-linear models in the presmoothing step is the possibility to presmooth the data
with the same IRT model as is used in the item analysis of the test. A potential
disadvantage could be if some of the items do not fit reasonably well the chosen
IRT model.

3.5 Kernel Equating with the NEC Design

In kernel equating with raw covariates with a NEC design, one categorizes the test
takers into different groups depending on the values on the available covariates.
Here, the method proposed by Wiberg and Bränberg (2015) was used. In their
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method, a poststratification kernel equating with covariates is used, which means
that the categorized covariates are used instead of an anchor test in Eq. (3). The
assumption is that we can adjust the nonequivalent groups through the test takers’
covariates and thus obtain equivalent test takers. A clear advantage with this method
is the direct use of covariates to adjust for differences between test taker groups in
situations where we know that the groups are nonequivalent and we do not have
access to an anchor test. A disadvantage is that the number of categories tends to
grow quickly if there are many covariates of interest. A solution to this problem,
although not used here, is to use propensity scores in the NEC design instead of the
covariates directly, as proposed by Wallin and Wiberg (2017a, b). From the SweSAT
administration, we had access to the covariates of gender, age, and educational
background, which have previously been shown to have an impact on the SweSAT
results (Bränberg et al. 1990). The test takers’ gender was coded as 0 for women
and 1 for men. Age was divided into five categories (<21, 21–24, 25–29, 30–39, and
�40 years). Educational background was categorized into six categories where the
lower levels represent high school programs categorized in the order of the amount
of theory in the core subjects of mathematics and language and the higher levels
represent education after high school.

4 Empirical Study

The examined equating designs were EG, NEAT, and NEC designs, and the equated
methods were frequency estimation with the EG design (FEG), frequency estimation
with the NEAT design (FEN), chained equipercentile equating (CE), kernel equating
with an EG design (KEG), KEP, KEC, KEPIRT, KECIRT, and NEC with raw
covariates (NEC).

Two different braiding plans were examined, including equating from test form
15B directly to test form 11B and equating from test form 15B to test form 11B
via test form 14B, indicated by a “v” in the names in Fig. 2 and Table 3. When
examining the two different braiding plans, the following equating methods were
examined: FEG, KEG, KEP, KEC, and NEC. Because we had access to nine test
administrations, a large number of possible braiding plans could have been used,
but in this study we chose to focus more closely on these two possible braiding
plans. When comparing the equated values, we used the difference that matters
(DTM) criterion, which means that score differences larger than j0.5j are of concern.
The R package equate (Albano 2016) was used to perform the traditional equating
methods, and the R package kequate (Andersson et al. 2013) was used to perform
the kernel equating methods.
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5 Results

The CDFs of the three considered tests are given in the upper left corner of Fig. 1,
from which it is noticeable that test forms 15B and 14B are similar, while test form
11B is different. In the rest of Fig. 1, the equating transformations from using the
nine examined equating methods are shown for the case of equating test form 15B
to 14B, equating test form 14B to 11B, and equating test form 15B to 11B. Details
of every tenth equated value are given in Table 2 for equating test form 15B directly
to 11B. The excluded values follow the same pattern and can be obtained upon
request. It is evident that there is a difference in equated scores between different
methods and depending on which equating design is used. The equated values for
FEG were furthest away from the other methods, although they were somewhat
similar to when a NEC design was used. The two IRT kernel equating methods
(KEPIRT and KECIRT) gave similar results with almost no DTM between them.
The KEP and KEC showed several DTM when compared with their traditional
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Fig. 1 CDFs of the three administrations 15B, 14B, and 11B. (a) Equating transformations for
15B to 14B (b), 14B to 11B (c), and 15B to 11B (d) for FEG, FEN, CE, KEG, KEP, KEC, KEPIRT,
KECIRT, and NEC
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Table 2 Equated values for the different examined methods showing every tenth value for
equating from administration 15B to administration 11B

X FEG FEN CE KEG KEP KEC KEPIRT KECIRT NEC

0 �0.50 �0.50 �0.50 �1.24 �1.02 �1.02 �0.73 �0.65 �0.48
10 9.74 �0.50 �0.50 7.79 3.78 3.72 7.40 7.54 8.09
20 20.40 16.24 15.15 16.11 13.63 13.45 15.79 15.82 18.40
30 30.21 23.96 24.09 24.15 24.81 24.46 24.62 24.40 28.84
40 40.08 34.08 33.83 33.85 36.20 35.58 34.40 33.91 39.41
50 50.24 45.86 45.00 45.48 47.65 46.81 45.38 44.88 50.13
60 59.97 57.07 56.95 56.71 59.07 58.34 57.27 57.08 60.99
70 69.23 68.97 69.52 68.06 70.31 69.86 69.12 69.23 71.53
80 79.15 80.50 80.50 79.98 80.18 80.13 79.90 80.00 80.22

FEG D Frequency estimation in EG design, FEN D Frequency estimation in NEAT
design, CE D Chained equipercentile equating, KEG D kernel equating in EG
design, KEP D Poststratification kernel equating, KEC D Chained kernel equating,
KEPIRT D Poststratification IRT kernel equating, KECIRT D Chained IRT kernel equating,
NEC D kernel equating with raw covariates

equating counterparts FEN and CE, although not for all equated values. Note that
the equated values for X scores below seven are all zero because this is a multiple-
choice test and no test taker had such low test scores.

In Fig. 2 and Table 3, some of the previously described equating methods are
shown when using two different braiding plans. The overall observation is that we
obtained different results depending on the braiding plan that was used, although
all methods gave similar results for the highest score values. When comparing the
direct equating with the equating via test form 14B, all kernel equating methods
gave similar results for the higher score values—especially for score values of 60
and above. This is good news because this is an admission test and to have similar
results in the upper score scale is more important than to have similar values in the
lower score scale. The frequency estimation with an EG design gave very different
results if a direct equating was performed (FEG) as compared to an equating via test
form 14B (FEGv). Interestingly, this was not seen for the kernel equating with an
EG design (KEG and KEGv) that had similar values as the FEGv—which was the
braiding plan that equated test form 15B to 11B via test form 14B. NEC and NECv
had DTM for many values as well as in comparison to the NEAT design methods.

6 Concluding Remarks

One aspect of the quality over time of a college admission test is the consistency
of the equatings over time. This was examined here by comparing the results from
different equating methods using two different braiding plans. Because the same
common anchor test was administered on each administration, a NEAT design is
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Fig. 2 Different braiding plans when equating directly from test form 15B to 11B or equating
from 15B to 11B via 14B (designated by “v”) using NEAT, NEC, and EG designs with different
equating methods

Table 3 Every tenth equated value when two different braiding plans were used for equating
directly from test form 15B to 11B or from 15B to 11B via 14B

X FEG FEGv KEG KEGv KEP KEPv KEC KECv NEC NECv

0 �0.5 �0.5 �0.32 �0.31 �1.02 0.56 �1.02 0.39 �0.48 0.42
10 9.74 9.03 7.61 8.09 3.78 12.58 3.72 11.44 8.09 12.04
20 20.40 17.67 16.79 17.24 13.63 22.38 13.45 20.96 18.40 22.73
30 30.21 26.21 26.21 26.42 24.81 31.91 24.46 30.28 28.84 33.18
40 40.08 35.08 35.69 35.60 36.20 41.38 35.58 39.69 39.41 43.25
50 50.24 45.03 45.20 44.83 47.65 50.82 46.81 49.38 50.13 52.71
60 59.97 54.52 54.79 54.36 59.07 60.28 58.34 59.28 60.99 61.34
70 69.34 65.98 64.76 65.10 70.31 69.82 69.86 69.34 71.53 69.49
80 79.15 80.24 78.69 79.55 80.18 79.92 80.13 79.80 80.22 79.74

FEGDFrequency estimation with EG design, KEGDkernel equating with NEAT design,
KEPDPoststratification kernel equating, KECDChained kernel equating, NECDkernel equating
with raw covariates, v via test form 14B
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currently used when performing the equating. Also, because SweSAT in the past
has been equated with an EG design, such a comparison was also included here
even though the EG assumption has been shown to be questionable (Lyrén and
Hambleton 2011). Finally, a NEC design was included because the composition
of the test taker groups is known to change over administrations. Both traditional
equating and kernel equating were examined, and we found that different methods
gave different results. An EG design gave equated values furthest away from
the NEAT design results—although somewhat close to the NEC design results.
This could possibly be because the EG assumption is violated, something Lyrén
and Hambleton (2011) found when they examined other SweSAT test forms.
Interestingly, the IRT kernel equating methods had almost no DTM between each
other, and this should be explored in the future because the item analysis of this test
includes IRT analyses.

The use of different braiding plans gave different results for all methods, and this
is something that should be taken into consideration when equating test scores. A
way to handle this is to use more than one link (Kolen and Brennan 2014). However,
one should probably not use circular equating because Wang et al. (2000) showed
that such an approach cannot handle systematic errors very well. Interestingly
there were large differences in the kernel equating methods both when comparing
equating methods and when using different braiding plans. This is contrary to the
study of Mao et al. (2006) in which they only found trivial differences in a real data
example when comparing the equating results of traditional equipercentile equating
with those of kernel equating in the EG design and to poststratification equating
with a NEAT design. It is, however, possible that the examined groups are different,
and thus the result is in line with Liu and Low (2008) who compared the use of
traditional and kernel equating methods. They found that if the groups taking two
test forms are quite different from each other, then different equating methods tend
to give different results. Because neither of those two studies examined different
braiding plans, and because neither of them examined KEC, IRT observed-score
kernel equating, or a NEC design, it is important to examine this more closely in
the future—especially with a simulation study where one can keep different factors
under control and where one knows the true equated values. In addition, longer
equating chains and different braiding plans should be examined. One could also
examine the possibility of using more than one equating transformation and the
possibility of averaging them, in line with the proposal of Holland and Strawderman
(2011). Finally, one could examine other equating methods and other covariates in
the NEC design because that might be a good alternative if we do not have access
to an anchor test and the test groups cannot be assumed to be equivalent.
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An Illustration of the Epanechnikov and
Adaptive Continuization Methods in Kernel
Equating

Jorge González and Alina A. von Davier

Abstract Gaussian kernel continuization of the score distributions has been the
standard choice in kernel equating. In this paper we illustrate the use of both
the Epanechnikov and adaptive kernels in the actual equating step using the R
package SNSequate (González, J Stat Softw 59(7):1–30, 2014). The two new kernel
equating methods are compared with each other and with the Gaussian, logistic, and
uniform kernels.

Keywords Kernel equating • Epanechnikov kernel • Adaptive kernel •
Continuization

1 Introduction

Equating methods are commonly used to ensure the comparability of test scores
from different test forms (Kolen and Brennan 2014; von Davier 2011; González and
Wiberg 2017). Such comparability is obtained using a so-called equating function,
which maps the scores of one test form into the scale of the other. If X and Y
are the random variables representing the scores in test forms X and Y, then the
equipercentile equating function is defined as '.x/ D F�1

Y .FX.x//, where FX and FY

are the cumulative distribution functions (CDFs) of X and Y , respectively. Typically,
X and Y are number-correct scores whose possible values are consecutive integers,
yielding to discrete score distributions. In common practice, continuous approxi-
mations of FX and FY are used to obtain the equating function ' by continuizing
the discrete score random variables X and Y . Different continuization methods
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define different equating methods, each producing parametric, nonparametric, or
semiparametric statistical inference about ' (González and von Davier 2013).

A popular semiparametric approach is kernel equating (von Davier et al. 2004), in
which kernel smoothing techniques are used to obtain continuous approximations of
the test score distributions. Gaussian kernel continuization of the score distributions
has been the standard selection in kernel equating, although alternative kernels such
as the logistic and uniform have recently been proposed for continuization (Lee and
von Davier 2011). Cid and von Davier (2015) explored the use of the Epanechnikov
and adaptive kernels for the estimation of score densities, as potential alternative
approaches to reducing boundary bias.

Rather than exploring kernel density estimation of score distributions, in this
paper we propose the use of both the Epanechnikov (Epanechnikov 1969) and
adaptive kernels (Silverman 1986) as two new continuization methods for kernel
equating. In comparison with the Gaussian, the Epanechnikov kernel has bounded
support, and it is optimal in the sense that it minimizes the asymptotic mean
integrated squared error (e.g., Silverman 1986). On the other hand, adaptive kernels
are a more flexible alternative to fixed kernel density estimators as they allow the
smoothing parameter to vary across the data points in the distribution. It is of interest
to evaluate the performance of the Epanechnikov and adaptive continuization in the
context of kernel equating due to the fact that test scores are usually bounded above
and below and that sometimes the score distributions might show atypical scores,
such as gaps and spikes.

The rest of this paper is organized as follows. The first section gives a brief
overview of the kernel equating framework, including the details on the con-
tinuization step. Then, the Epanechnikov and adaptive kernels are introduced as
two alternatives for continuization in kernel equating. The two new continuization
methods are illustrated and compared in a subsequent section. The paper concludes
with final comments and discussion.

2 Kernel Equating and Continuization

In this section we briefly describe the steps involved in the kernel equating
framework, paying special attention to the continuization step.

2.1 A Quick Overview of Kernel Equating

In the kernel equating approach (Holland and Thayer 1989; von Davier et al.
2004), continuous approximations of the discrete score distributions FX and FY are
obtained using kernel smoothing techniques (Silverman 1986). Such approximation
is achieved by defining a continuized random variable which is a function of: (1)
the originally discrete score random variable, (2) a continuous random variable
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characterizing the kernel, and (3) a parameter controlling the degree of smoothness
for the continuization. The conversion of the scores is based on the estimated
equating transformation:

O'.xI r; s/ D F�1
hY
.FhX .xI Or/I Os/ D OF�1

hY
. OFhX .x//; (1)

where hX and hY are parameters which control the degree of smoothness in
the continuization and Or and Os are vectors of estimated score probabilities with
coordinates defined as rj D Pr.X D xj/ (j D 1; : : : ; J) and sk D Pr.Y D yk/ (k D

1; : : : ;K), respectively, with xj and yk being possible values of X and Y , respectively.
Both Or and Os are obtained using the so-called design functions (DF), which take
into account the chosen data collection design in the estimation. This process is
made after presmoothing the discrete (univariate and/or bivariate) observed score
frequency distributions by typically using log-linear models. The accuracy of the
estimated O'.x/ is assessed with different measures, particularly the standard error of
equating.

The main stages in the previous description of the kernel equating method
have been summarized in the following five steps (see e.g., von Davier et al.
2004): (1) presmoothing, (2) estimation of score probabilities, (3) continuization, (4)
computing the equating transformation, and (5) computation of accuracy measures.
In the following section, we give more details on the continuization step.

2.2 Continuization

The continuization step involves the use of a continuous random variable which
characterizes the kernel that will be used for equating. More precisely, a continuized
score X.hX/ is defined as a function of the originally discrete score X, a continuous
random variable V , and a parameter hX in the form X.hX/ D X C hXV . However,
in order to preserve the first two moments of X, the following definition is used in
practice:

X.hX/ D aX.X C hXV/C .1 � aX/�X ; (2)

where a2X D
�2X

�2XC�2V h2X
, �X D

P
j xjrj, and �2X D

P
j.xj � �X/

2rj (j D 1; : : : ; J). If

RjX.x/ D
x�aXxj�.1�ax/�X

aXhX
, then Theorem 4.2 in von Davier et al. (2004) establishes

that the kernel smoothing of FX; defined by

FhX .x/ D
X

j

rjK.RjX.x// ; (3)

is exactly the CDF of the continuized variable X.hX/. Here, K.�/ is the kernel
associated to the random variable V . Similar definitions are used to obtain FhY .y/,
the continuous approximation of FY .
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It should be noted that neither the presmoothing (step 1) nor the estimation of
score probabilities (step 2) depends on the kernel used in the continuization (step
3). The type of kernel used will only influence the computation of the equating
transformation and the calculation of the standard error of equating. The flexibility
and modularity of the kernel equating approach allow for the ability to easily extend
existing methods and implement new ones. In the following sections, two alternative
continuization methods are explored to be used in the kernel equating framework.

3 Epanechnikov and Adaptive Continuization

3.1 Epanechnikov Kernel

The Epanechnikov kernel is defined for a random variable V with density function

f .v/ D
3

4
.1 � v2/1jvj�1

and corresponding CDF

F.v/ D

8
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂:

0 v < �1

3v � v3 C 2

4
�1 � v � 1

1 v > 1

for which it is easily verified that E.V/ D 0 and Var.V/ D 1=5. The Epanechnikov
continuization thus becomes

FhX .x/ D
X
J

rj

�
3RjX.x/ � R3jX.x/C 2

�

4
C
X
K

rj (4)

where J is the set of all j such that �1 � RjX � 1 and K is the set of j such that
RjX > 1. Similar steps are followed for Y scores to obtain FhY .y/ so that one obtains
'.x/ D F�1

hY
.FhX .x//. Note that the derivative of FhX .x/ in (4) can easily be obtained

so that the penalty function method for the selection of the bandwidth parameter
applies straightforwardly.
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3.2 Adaptive Kernel

Adaptive kernels (e.g., Silverman 1986) allow the bandwidth parameter hX to vary
across the data points in the score distribution. The kernel continuization has the
form

FhjX .x/ D
X

j

rjK

�
x � ajXxj � .1 � ajX/�X

ajXhjX

�
;

where ajX D
�2X

�2XCh2jX
, hjX D �jhX , .j D 1; : : : ; J/, and �j are local bandwidth factors.

For illustrations, we will consider a Gaussian adaptive kernel so that K.�/ D ˚.�/.
Silverman (1986) suggested the following steps to obtain �j: first, find a pilot

estimate of the density,ef .t/, such thatef .Xj/ > 08j; second, define a local bandwidth
factor �j as

�j D

�ef .Xj/

g

��˛

;

where g is the geometric mean ofef .Xj/ and ˛ is a sensibility parameter satisfying
0 � ˛ � 1. Silverman’s recommendation is to use ˛ D 0:5. To obtain �j, we
propose as a pilot estimate

ef .x/ D
X

j

rj�

�
x � aXxj � .1 � aX/�X

aXhX

�
1

aXhX
; (5)

where hX can be obtained using any bandwidth selection method. In the illustrations
we use the penalty method to select the bandwidth parameters.

Following the strategy described above, we can also obtain FhjY , so that the
adaptive kernel equating transformation becomes '.x/ D F�1

hjY
.FhjX .x//.

4 Illustrations

4.1 Data Generation

To illustrate the use of the Epanechnikov and adaptive kernel equating functions,
data were simulated using the beta-binomial model (Keats and Lord 1962). The
simulated data came from five different score distributions that covered different
types of shapes in the score distributions including one symmetric, one positively
skewed, one negatively skewed, and two slightly negatively skewed distributions.
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Table 1 Information used to simulate the score distributions

Type of distribution Test form Number of items n Mean SD

Symmetric X 50 2000 25.82 7.28

Y 50 1800 25.82 7.28

Positively skewed X 30 1000 6.76 5.12

Y 30 1200 6.75 5.11

Negatively skewed X 30 1000 23.75 5.59

Y 30 1200 23.78 5.62

Slightly negatively skewed X 40 2354 27.06 8.19

Y 40 2000 27.06 8.19

Slightly negatively skewed X 50 6103 32.93 8.04

Y 50 6103 32.93 8.04

Table 1 shows the number of items, sample size (n), mean, and standard deviation
(SD) used to generate each of the five score distributions. Figure 1 shows the shape
of these score distributions.

4.2 Evaluation Criteria

The two proposed kernel equating methods were compared to each other and with
the Gaussian, logistic, and uniform kernels. Differences in equated values were
evaluated using equipercentile equating as criterion, and compared against the
difference that matters (DTM, Dorans and Feigenbaum 1994), originally defined
as the difference between equated scores and scale scores that are larger than half of
a reported score unit. The standard error of equating (SEE) was also evaluated for
each of the five methods and is defined as:

SEEY.x/ D O�Y.x/ D
p

Var. O'.x//; (6)

where O'.x/ is defined in Eq. (1); the delta method was used to calculate the variance.
The R package SNSequate (González 2014) was used in all calculations.

4.3 Results

The results are graphically summarized in Figs. 2, 3, 4, 5, 6 for the five score
distributions. In all cases, differences in equated values are practically identical for
all the kernel equating functions evaluated and for each of the score distributions,
except for some ranges of the score scale in the symmetric, positively and negatively
skewed case where the adaptive kernel shows to be slightly different from the others.
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Fig. 1 Distributions used in the simulations

The differences in equated values are larger at the extremes of the score scales, at the
upper part for the positively skewed distributions (Fig. 3) and at the lower part for
the negatively and slightly negatively skewed distributions (Figs. 4, 5, and 6). In all
cases these differences are larger than one score point, which could be problematic
according to DTM.

Regarding the SEE, it can be seen that in all cases for most of the score scale,
the adaptive kernel produced more accurate results than the other kernel equating
methods. The other four kernels yield to very similar results in terms of SEE, except
in the case of symmetric and positively skewed distribution when the Epanechnikov
kernel performs slightly better than the Gaussian, logistic, and uniform kernels at
the upper part of the score scale.
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symmetric distribution
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Fig. 3 Differences in equated values (left) and SEE (right) for score data coming from a positively
skewed distribution

5 Concluding Remarks

Cid and von Davier (2015) examined the used of the Epanechnikov and the adaptive
kernels for density estimation of score distributions. In this paper we have evaluated
the performance of five kernel equating functions in the actual equating step. In
all cases, all the continuization kernels lead to similar equated values, and when
comparing the Gaussian kernel with equipercentile equating, the results agree
with those in Cid and von Davier (2015). The adaptive kernel provided more
accurate equated values, especially when both positively and negatively skewed
score distributions are concerned. The Epanechnikov kernel performed slightly
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Fig. 5 Differences in equated values (left) and SEE (right) for score data coming from a slightly
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better than the Gaussian, logistic, and uniform kernels at the upper part of the
score scale for the case of symmetric and positively skewed distribution. The
Epanechnikov and adaptive continuization methods proposed seem to be a valid
and competitive alternative to current continuization methods.
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(The Potential for) Accumulated Linking Error
in Trend Measurement in Large-Scale
Assessments

Lauren Harrell

Abstract Trend measurement is one of the key priorities in large-scale survey
assessments such as the National Assessment of Educational Progress (NAEP);
however, minimal research has been conducted into the stability of the trend
comparisons over a long chain of links as new items are phased into the item
pool and older items are discontinued. The potential for linking error in trend
hypothesis tests in large-scale assessments is evaluated through a simulation study
across ten assessment cycles in which items are discontinued and replaced. The
data are generated based on the observed means of Grade 8 Reading and Grade 8
Mathematics over ten cycles. The estimated difference in means between two years
is compared to the true data-generating difference for 500 replications under each
condition. The mean squared error of trend comparisons tends to modestly increase
with the number of linkages. The bias of trend comparisons across a chain of links
appeared to be small yet proportional to the magnitude of the difference rather than
the length of the chain.

Keywords NAEP • Accumulated linking error • Trend measurement • IRT
linking

1 Introduction

One of the primary purposes of the National Assessment of Educational Progress
(NAEP) is to compare group and subgroup mean scale scores over time. The text
of the NAEP report card focuses on comparisons with the immediately preceding
year as well as the comparisons to the first year of the trend line. For example, the
headline of the results overview for the Grades 4 and 8 2015 Mathematics Report
Card stated, “Both fourth- and eighth- grade students score lower in mathematics
than in 2013; scores higher than in 1990” (U.S. Department of Education, National
Center for Education Statistics 2015c). In the graphics of the release, additional
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comparisons are made between the current assessment cycle and all preceding
assessment years for which there is data. Comparisons across all combinations of
years can be found in the NAEP Data Explorer (U.S. Department of Education,
National Center for Education Statistics 2015a).

This manuscript is intended to highlight the potential for increased uncertainty in
trend comparisons that the existing comparison procedures in NAEP do not adjust
for. Several research studies are underway within the NAEP program to evaluate
and develop methods for estimating linking error as NAEP transitions to digitally
based assessments in the future, and this manuscript is focused on highlighting some
of the challenges and potential issues for cross-year comparisons across a chain of
links. Specifically, a simulation study was conducted to evaluate whether there is
potential for accumulated linking error in NAEP trend comparisons. The guiding
question behind this line of research is: should longer-term comparisons have the
same degree of accuracy as comparisons between two consecutive years, or should
additional uncertainty over an increased number of links be expected?

1.1 NAEP Plausible Values

NAEP is designed to provide inferences on populations and subgroups, not indi-
vidual students. To limit the response burden on the test takers, NAEP utilizes a
balanced-incomplete-block (BIB) design in which each student receives only two
25-minute blocks, instead of up to ten operational blocks for a given grade level and
subject administered within a year. Information on the individual students is brevity
of the assessment, and individual score estimates, if produced, would be subject
to a high degree of measurement error. Plausible values (PVs) were introduced to
provide consistent estimates of population characteristics and associated standard
errors, which account for both sampling and measurement variability (Mislevy et al.
1992). Instead of an individual point estimate of a scale score, 20 PVs are drawn
from a posterior distribution of the latent trait � , which has the form

f .�ijxi; yi; ˇ; �;˙/ / �.�iI� xi; ˙/

niY
jD1

f .yijj�iIˇj/; (1)

where:

– yi are the responses of student i to the ni test items presented,
– xi are the responses of student i to the survey questionnaire,
– ˇj are the item response theory (IRT) parameters for item j,
– � is the matrix of the latent regression parameters,
– ˙ is the variance-covariance matrix (for multidimensional models, otherwise ˙

represents the scalar variance), and
– �.�iI� xi; ˙/ is a normal distribution with mean ˙ 0xi and variance ˙ .
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The posterior distribution and PVs incorporate information from the survey ques-
tionnaire and latent regression in addition to the likelihood function based on the
observed test item responses and estimated IRT parameters.

1.2 Comparing Means Across Years in NAEP

For any pair of years i and j, we compare the group means using an independent
sample t-test,

T D
Ai � Ajp

S.Ai/2 C S.Aj/2
; (2)

where Ai and Aj are the group mean (or quantity) for years i and j and S.Ai/
2

and S.Aj/
2 are the associated standard errors for the mean within each year (U.S.

Department of Education, National Center for Education Statistics 2015b). The
standard errors of any cross-sectional quantity in NAEP have two components due
to the PV imputation:

S.Ai/
2 D U�

i C

�
1C

1

M

�
Bi; (3)

where S.Ai/
2 is the total variance of the quantity Ai, U�

i is the average sampling
variance (generally estimated through jackknife procedures), M is the number of
PV imputations, and Bi is the between-imputation variance of the quantity estimate.
More details about the computation of standard errors in NAEP can be found in
Mislevy et al. (Mislevy et al. 1992), based on inferences from multiple imputation
(Little and Rubin 2002).

The standard error of the t-test assumes that there is no linking error in the
comparison across years. This may be a tenable assumption if measurement error
is small and the number of overlapping items between comparison years is large.
However, it is uncertain if there is additional bias (systematic error) or uncertainty
from random error across a chain of links inherent in a comparison. For reference,
the overall standard deviation (SD) within a year and grade level of the NAEP
Mathematics and Reading Assessments is approximately 37. For national-level
overall mean comparisons, differences of less than 1 scale score point (or less than
3% of a standard deviation) may be reported as a significant change.

1.3 Current NAEP Linking Procedure

The current procedure employed within NAEP for linking data from a new
assessment cycle involves concurrent IRT calibration with data from the previous



266 L. Harrell

Kth CycleK – 1th Cycle

Concurrent Calibration 
(CC) of Year K-1 with 

Year K-2
CC of Year K with Year K-1

Plausible Values 
(PVs) for Year K –1 
transformed onto 

reporting scale

PVs for Year K-1 
drawn from CC 
with Year K on 

theta scale

Calculate 
transformation 

constants A and B 
using Year K-1

PVs for Year K 
drawn from CC 

with Year K-1 on 
theta scale

PVs from Year K are transformed 
onto reporting scale using A and B

Fig. 1 Diagram of the NAEP linking and transformation procedure

assessment cycle. NAEP Grades 4 and 8 Mathematics and Reading assessments
have been administered every two years since 2002, with trends going back to 1990
and 1992, respectively, so the consecutive pair of year-to-year comparisons are two
years apart. For most operational assessments, there are approximately ten blocks of
10–15 items, and individual students are only presented two blocks. Additionally,
two blocks are typically new to that assessment cycle, replacing two blocks that
were retired and released to the public after the previous assessment year’s results
were released.

A concurrent calibration is performed with data from both year k and the previous
assessment year k � 1. The resulting item parameters are used to draw PVs,
separately, for both years on the calibration, or provisional, metric. To place the PVs
for year k on the reporting metric (i.e., the NAEP scale from either 0–500 or 0–300),
transformation constants are estimated using the two sets of PVs from year k � 1.
A diagram of the NAEP linking procedure is displayed in Fig. 1, and the procedure
is further described in the NAEP Technical Documentation (U.S. Department of
Education, National Center for Education Statistics 2015b).

1.4 Evaluating Linking Error NAEP: Challenges
and Opportunities

The purpose of linking and equating in large-scale survey assessments such as
NAEP is not same as traditional applications of linking and equating. In NAEP,
test forms or booklets are linked across assessment cycles (years) in NAEP in order
to compare the performances of populations and subgroups over time, not to ensure
consistent placement of individual scores over multiple forms. NAEP trend linking
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procedures must ensure distributions of scale scores can be compared over time
and provide stable, consistent, and unbiased contrasts of group performances over
specified time periods.

To that extent, traditional approaches for evaluating and addressing linking
error may not be appropriate for NAEP (Kolen and Brennan 2014). First, NAEP
does not produce estimates of scores for individual students. Up to 20 PVs per
student are drawn given their responses to both the assessment items and the survey
questionnaire items. Second, the same response patterns to the same assessment
items would not produce the same posterior distribution (and distribution of PVs)
for an individual student unless all survey responses are the same as well, which
is highly unlikely due to the large number of variables. Referring to the posterior
distribution from which PVs are drawn in Eq. (1), even though the IRT-based
likelihood functions would remain the same for the same set of assessment item
responses, the latent regression prior distribution would change in response to
different values of xi for different students. To perfectly equate the distributions
of PVs would be to ignore and underestimate meaningful differences in subgroup
performance distributions. Thus the traditional approaches to linking and estimating
the standard error of equating are not desirable for the purposes of large-scale survey
assessments.

Another concern is the issue of scale drift. In NAEP Mathematics and Reading
assessments, approximately two blocks (of ten) are released to the public and
discontinued in each operation cycle. Even with trend items, the performance of
students and thus the item measurement properties are expected to change over
time. Estimates of scale drift may be inherently confounded with changes in the
population characteristics and performance over time.

Past research of linking error in trend measurements in NAEP assessments
have focused on either (or both) the link between two consecutive assessment
cycles or the linking procedure employed in NAEP long-term trend, which is a
separate assessment dating back to the 1970s. NAEP long-term trend differs in a
number of important ways from the NAEP Mathematics and Reading assessments
administered every two years in Grades 4 and 8, including the stability of item pool
and trend estimation procedures; thus research published using NAEP long-term
trend may not be applicable to any other NAEP assessment. Hedges and Vevea
(Hedges and Vevea 1997) examined the equating error between two consecutive
cycles through a simulation study. While the results showed that the procedure
employed currently in NAEP minimizes the bias of trend comparisons, biases may
still be present of up to several scale score points, particularly at the tails of the
distribution. Donoghue and Mazzeo (Donoghue and Mazzeo 1992) conducted a
similar investigation in which the pairwise linking error was evaluated through
jackknife procedures. More recently, Xu and von Davier (Xu and Davier 2010)
examined the impact of common item sampling in pairwise linking through double
jackknife procedures. However, none of these studies examined the potential for
increased bias or random error across a chain of links for trend comparisons.

Accumulated linking error of an assessment is defined as the compounding
of linking error over a chain of links. Guo (2010) derived an approximation for
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the asymptotic accumulated standard error of equating from a series of links
in a nonequivalent groups with anchor test (NEAT) design and showed that the
accumulation of error may be non-negligible even when the standard error of
equating is small in a pairwise link. While the standard error of equating may not
be estimated using traditional approaches in NAEP, we can use this work as the
theoretical inspiration for the potential impact of accumulated linking error on trend
inferences.

2 Simulation Study Methods

2.1 Data-Generating Model

The simulation study was designed to mimic ten assessment cycles of an operational
NAEP assessment. Starting with 150 items (10 blocks of 15 items) presented in the
first cycle, 30 items (2 blocks) are discontinued and replaced with 30 new items
in the next cycle. If this procedure is repeated for each assessment cycle, year
5 would have only 30 items in common with year 1, and year 6 would have no
common items with year one. The resulting “item pool” over 10 assessment cycles
has 420 unique items. Two patterns for the overall means and standard deviations
were simulated. The first was based on ten cycles of the NAEP Grade 8 Mathematics
national average composite scale scores. In this pattern, the means are numerically
increasing each year, with minor fluctuations in the standard deviations. The second
pattern for the means were based loosely on the Grade 8 Reading national average
composite scale scores, in which the national average both decreases and increases
over a period of ten cycles. The ten cycles means and standard deviations were
transformed to start with a mean of 0 and standard deviation of 1 in the first cycle,
and the values for each cycle are listed in Table 1.

The simulation study is conducted under an ideal condition in which the data-
generating parameters for the 420 are constant across all years in which the item
is presented. The items are all generated under unidimensional two-parameter
logistic (2PL) IRT models. It should be noted that in practice the estimated item
parameters vary from year to year to detect differences in subgroup performance,
and some items are “split” (treated as separate items) due to differential performance
across years. The data-generating model for the individual item responses does

Table 1 Data-generating means and standard deviations

Year 1 2 3 4 5 6 7 8 9 10

Mathematics mean 0.000 0.162 0.220 0.293 0.417 0.452 0.522 0.565 0.591 0.612

Mathematics SD 1.000 1.007 1.041 1.057 1.006 1.008 1.001 1.010 1.005 1.013

Reading mean 0.000 �0.011 0.100 0.081 0.120 0.091 0.059 0.077 0.111 0.144

Reading SD 1.000 1.024 0.965 0.979 0.943 0.986 0.980 0.971 0.957 0.956



Accumulated Linking Error in Large Scale Assessment Trends 269

not include a population structure model, which is employed to generate PVs in
NAEP. Because we are interested in evaluating the overall mean comparisons, this
additional complexity was not introduced (yet).

The item responses were generated for n D 9000 students per year (given the
2PL IRT parameters), consistent with the minimum sample size for national-level-
only NAEP studies. It should be noted that for main NAEP Grades 4 and 8, sample
sizes may be as large as 250,000, which may decrease the magnitude and impact
of linking error. A balanced-incomplete-block design was imposed on the full set
of item responses to emulate the sparse matrix of item responses in practice, where
each student has observed responses to two out of ten blocks presented in a given
year for a total of thirty items per “student.”

2.2 Calibration, Transformation, and Scoring

Items were calibrated onto a unidimensional IRT scale for each simulation iteration
using the software flexMIRT 3.0 (Houts and Cai 2015). Concurrent calibration was
conducted for each pair of consecutive years, and scores were placed on the same
scale as the first year using the same operational transformation equation detailed in
Sect. 1.3.

The means for each year were estimated using expected a posteriori (EAP)
scoring for individuals rather than PVs. Since there was no population structure
model, there was no need to conduct latent conditioning (regressing the latent trait
onto the set of survey covariates). The data-generating model within each year is
a normal distribution, and the average of the PVs from the same posterior would
converge to the EAP; thus overall means are expected to converge to the same results
regardless of using EAP or PV scoring. In planned future work, population structure
models will be incorporated into the simulation, at which point PV scoring will be
conducted.

2.3 Evaluating Results

Let k D 1; : : : ;K index the simulation number, where in this study K D 500

replications were conducted. For a pair of years i and j, the true difference in
means is represented by �i � �j for all pairs i D 1; : : : ; 10 and j D 1; : : : ; 10.
Let O�i; k and O�j; k be the estimated means of years i and j, respectively, from
replication k, calculated from the EAP scores after linking. The magnitude of error
in trend comparisons was evaluated using the average bias, percent relative bias,
mean squared error (MSE), and root mean squared error (RMSE), given as follows:
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Bias D
1

500

500X
kD1


�
O�i;k � O�j;k

�
�
�
�i � �j

�
; (4)

PercentRelativeBias D
1

500

500X
kD1


�
O�i;k � O�j;k

�
�
�
�i � �j

�
�
�i � �j

� ; (5)

MSE D
1

500

500X
kD1


�
O�i;k � O�j;k

�
�
�
�i � �j

�2
; (6)

RMSE D

vuut 1

500

500X
kD1


�
O�i;k � O�j;k

�
�
�
�i � �j

�2
: (7)

3 Results

For both sets of data-generating means, all of the results converged to maximum
likelihood solutions during the IRT calibration. The estimated means for each
“year,” after linking and transformation, are plotted in Fig. 2 along with the data-
generating means and average means across all simulations for both Reading- and
Mathematics-based trend lines. The bias for the each iteration and the average bias
are plotted in Fig. 2 as well. For the Mathematics-based trend, almost all simulations
showed an overestimation of the means across years, and the magnitude of this bias
increased over the number of links. However, for the Reading-based simulations,
the estimates of the means tended to be highly variable over a number of links, but
relatively unbiased on average.

The estimation of all combinations of pairwise differences was also evaluated.
Figure 3 displays the matrices of the RMSE, bias, data-generating differences,
and percent relative bias (bias divided by the true difference) for each pairwise
comparison for both Mathematics- and Reading-based trends. The scales for bias,
RMSE, and data-generating mean differences are printed on a scale emulating the
NAEP reporting metric, which has a standard deviation of 37 rather than 1, due to
the constrained space. For example, biases and RMSEs of 3.7 in the matrix would
represent 10% of a standard deviation.

In the case of the Grade 8 Mathematics-based trend, both the RMSE and bias
of the comparisons tend to increase when the number of links between the two
years increases. However, this effect may be confounded with the magnitude and
direction of the trend. When examining the relative bias of the mean differences,
the bias tends to be approximately 5.6–9% of the true difference, and the relative
bias appears to be fairly constant across any number of links. The highest RMSE
occurs when comparing year 10 to year 1, with an estimated error of approximately
5.5% of a standard deviation. Because the true difference between years 1 and 10 is
61.2% of a standard deviation, this amount of error is unlikely to impact inferences.
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Fig. 2 Average scale scores and bias for 10 years/cycles across N = 500 simulations

The Reading-based pairwise comparisons (Fig. 3) typically showed increasing
RMSEs with the number of links, where the maximum magnitude of the errors was
approximately 3.2% of a standard deviation when comparing year 10 to year 1.
The bias of Reading pairwise comparisons was relatively small, and while that bias
appeared to increase with the number of links, the relative bias showed no pattern
with some outliers. The estimated difference between years 4 and 8 had a relative
bias of 32.3% of the true difference, which was only 0.5% of a standard deviation
and thus sensitive to even small magnitudes of bias. The pattern from the Reading-
based trend pairwise comparisons showed almost no bias, but the potential for
accumulated linking error through random variability still persisted, as evidenced
in the RMSE of the comparisons.

Not presented in the figures are the results when students receive all 150 items
per year instead of only 2 blocks. When IRT parameters are calibrated and the means
estimated using fully observed data for the Mathematics-based trend, the bias and
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Fig. 3 Average bias, RMSE, true values, and percent relative bias of mean differences across
N = 500 simulations under mathematics and reading data-generating models

MSEs are reduced to maximums of 0.5–0.8 on the NAEP reporting scale (under
1.5–2.2% of a standard deviation). Thus the linking error may also be related to the
rate of missing information from unobserved item responses on the full set of items.

4 Concluding Remarks and Future Extensions

The potential for accumulated linking error in NAEP trend estimates was evaluated
through simulation study under some idealized conditions. In trends similar to Grade
8 Mathematics from 1990 to 2011, where the means increase numerically each
cycle, both bias and RMSE increase over time with magnitudes of up to 5% of a
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standard deviation across ten links. In trends similar to NAEP Grade 8 Reading,
where the national average oscillates over time, RMSE also increases with the
number of links, up to 3% of a standard deviation. However, the bias does not appear
to consistently increase when the mean fluctuates over time. The percent relative
bias is generally between 5 and 10% of the true difference between means and in
general in the direction of the true difference (positive or negative). The observed
difference in means from the data may be inflated relative to the true difference by 5–
10%, regardless of the number of links. The magnitudes of the random linking errors
found could be diminished with an increased sample size and should be interpreted
with caution. Since results of the simulation study do seem to differ by the trend
patterns, other patterns should be investigated in future simulation studies.

As the design and analysis of NAEP data is more complicated than traditional
assessments, there are a number of additional conditions for simulation that were
not discussed in this manuscript. First, NAEP items in practice are a mixture of 2PL,
three-parameter logistic (3PL) IRT, and generalized partial credit items, not just 2PL
as assumed in this study. Next, this study assumed all 30 items per student measured
the same overall unidimensional scale. In practice, NAEP Mathematics has five
distinct subscales, and the IRT models and linking are conducted separately for
each subscale. Although the Mathematics subscales are highly correlated, students
may receive as few as 3–4 items per subscale. Given the impact of the BIB design
on the simulation results compared to fully observed item responses, the limited
information on the subscales may likely increase the impact of linking error on trend
comparisons. In future simulation studies, IRT parameters will not be held constant
across all years in the data-generating model; rather additional random fluctuations
over time will be incorporated.

As mentioned previously, there are no individual scale scores for NAEP, rather 20
PVs are drawn for each student given the responses to the survey questionnaires and
the assessment items. Future investigations into linking error for NAEP will incor-
porate complex population distributions similar to the latent conditioning model and
utilize PV imputation instead of EAP scoring. Finally, the number of replications for
this simulation study was relatively limited due to computational time and speeds;
future work will increase the number of replications for comparison.

The results of this study demonstrate that there may be additional uncertainty
in trend comparisons due to accumulated linking error. As the NAEP trend compar-
isons in subjects such as Grade 8 Mathematics and Reading continue forward across
an increasing number of links, the potential impact of linking error on inferences and
conclusions should be further investigated.
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IRT Observed-Score Equating
with the Nonequivalent Groups
with Covariates Design

Valentina Sansivieri and Marie Wiberg

Abstract Nonequivalent groups with anchor test (NEAT) design is typically
preferred in test score equating, but there are tests which do not administer an anchor
test. If the groups are nonequivalent, an equivalent groups (EG) design cannot be
recommended. Instead, one can use a nonequivalent groups with covariates (NEC)
design. The overall aim of this work was to propose the use of item response
theory (IRT) with a NEC design by incorporating the mixed-measurement IRT with
covariates model within IRT observed-score equating in order to model both test
scores and covariates. Both simulations and a real test example are used to examine
the proposed test equating method in comparison with traditional IRT observed-
score equating methods with an EG design and a NEAT design. The results show
that the proposed method can be used in practice, and the simulations show that the
standard errors of the equating are lower with the proposed method as compared
with traditional methods.

Keywords NEC design • Item response theory • Collateral information

1 Introduction

Test score equating is used to compare different test scores from different test forms
(Kolen and Brennan 2014; González and Wiberg 2017). If the test groups which
have taken the different test forms can be considered similar, the equivalent groups
(EG) design can be used. A problem is that test groups who get different test forms
might be nonequivalent (Lyrén and Hambleton 2011) and thus a nonequivalent
groups with anchor test (NEAT) design should be used if an anchor test is
distributed. There are however large-scale assessments that do not distribute an
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anchor test, e.g. Armed Services Vocational Aptitude Battery (Quenette et al. 2006),
the American College Testing (ACT 2007) and the previous version of the Swedish
Scholastic Aptitude Test (SweSAT). Wiberg and Bränberg (2015) proposed the
nonequivalent groups with covariates (NEC) design. Instead of an anchor test, they
used kernel equating with covariates which correlated high with the test scores.
A problem with their proposed method is that we may not always have covariates
which correlate high with the test scores but rather covariates which affect the test
scores—such as gender or educational background. For example, Differential item
functioning (DIF; Holland and Wainer 1993) is used to examine if an item does
not favour a specific group, e.g. gender. In the past, covariates have been included
differently in equating, for example, through propensity score matching (Longford
2015), in linear kernel equating (Bränberg and Wiberg 2011), for matching (e.g.
Wright and Dorans 1993), and used as surrogate variables (Liou et al. 2001).

Items in large-scale assessments are typically modelled with item response
theory (IRT), and IRT observed-score equating or the IRT true-score equating
appears as good choices. A problem with IRT true-score equating is that we do
not know what the true score is; instead observed scores are typically used as
estimates of the true scores. Also, Hsu et al. (2002) examined the use of collateral
information to improve IRT true-score equating. None of the previous cited studies
have incorporated covariates in IRT observed-score equating. Recently, Tay et al.
(2016) have proposed the inclusion of covariates in IRT models. The aim of this
paper is to propose IRT observed-score equating method with covariates, using a
NEC design. Further, it aims to compare the proposed method with the traditional
IRT observed-score equating in the EG and NEAT design using both simulations
and data from a real test.

2 IRT Observed-Score Equating

To find equivalent test scores between test forms X and Y with IRT observed-score
equating, the recursion formula described in Lord and Wingersky (1984) is typically
used although other alternatives exist (González et al. 2016). Let � j the ability of
examinee j, let x be a test score, and fr(xj � j) is the distribution of number-correct
scores over the first r items for examinees with ability � j. If we use the three-
parameter logistic (3PL) IRT model, the probability for answering item i correctly
is defined as

pji D ci C
1 � ci

1C exp
�
�ai



�j � bi

� ; (1)

where ai is the item discrimination, bi is the item difficulty and ci is a pseudo-
guessing parameter for item i. Setting ci D 0 yields the two-parameter logistic (2PL)
IRT model. The probability of earning a score of 1 on the first item can be defined
as f1(x D 1j � j) D pj1; likewise f1(x D 0j � j) D (1 � pj1) is the probability of earning a
score of 0 on the first item. For r > 1, the observed-score distribution for examinees
of a given ability is obtained from the recursion formula as follows:
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fr
�
x j�j

�
D fr�1

�
x j �j

� �
1 � pjr

�
; x D 0

D fr�1
�
xj�j

� �
1 � pjr

�
C fr�1

�
x � 1j�j

�
pjr; 0 < x < r

D fr�1
�
x � 1j�j

�
pjr; x D r: (2)

The observed-score distribution for examinees at each ability is found, and
then these are accumulated and if the ability distribution is continuous, then
f (x) D

R
f (xj� ) (� )d� , where  (� ) is the distribution of � . When performing IRT

observed-score equating, observed-score distributions are found for test forms X
and Y, and then equipercentile equating is used to find score equivalents.

3 IRT Observed-Score Equating with Covariates

The traditional IRT models observed-score equating methods do not use information
from covariates. Recently, Tay et al. (2016) proposed the IRT-C model which is an
IRT model which contains information about covariates by modelling uniform and
non-uniform DIF. The probability of answering an item correctly, given the ability
of an examinee � j and its vector of covariates zj, is defined

p
�
yjij�j; zj

�
D ci C

1 � ci

1C exp
�
�ai



�j C bi C dizj C eizj�j

� ; (3)

where ai, bi and ci represent the item discrimination, item location and the item
pseudo-guessing, respectively. dizjand eizj represent the direct and interaction effects
for modelling uniform and non-uniform DIF, respectively. Equation (3) implies that
we assume the presence of DIF in some of the items which compose the test.
Although it is true that one should not include DIF items in a test, it is also true
that DIF occurs in regular tests; for an example when DIF items were included in a
test, refer to Gnaldi and Bacci (2015).

We propose the following adjustment for the 2PL IRT model, which has not been
used for the IRT-C model before:

p
�
yjij�j; zj

�
D

1

1C exp
�
�ai



�j C bi C dizj C eizj�j

� : (4)

To perform IRT observed-score equating with the IRT-C models, simply use Eq.
(3) or (4) in Eq. (2), which yields the updated recursion formula for r > 1 as follows:

fr
�
xj�j; zj

�
D fr�1

�
xj�j; zj

� �
1 � pjr

�
; x D 0

D fr�1
�
xj�j; zj

� �
1 � pjr

�
C fr�1

�
x � 1j�j; zj

�
pjr; 0 < x < r

D fr�1
�
x � 1j�j; zj

�
pjr; x D r: (5)
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The accumulated observed-score distributions for various abilities are likewise
replaced with a distribution function which also includes the different covariate
values f .x/ D

P
j f
�
xj�; zj

�
 .�/ d� . Once these distributions are known for test

forms X and Y, equipercentile methods are used to conduct IRT observed-score
equating with covariates.

4 The Examined Test

The college admission test SweSAT consists of 160 multiple-choice binary-scored
items divided into an 80-item quantitative and an 80-item verbal section, which are
equated separately. The quantitative section was used here. SweSAT only recently
added an anchor test; previously an EG design was performed in different groups
with specific values on certain covariates including gender and education (see
Lyrén and Hambleton 2011). The fact that an anchor test is now administered
with the SweSAT to a small sample of examinees gives us a unique opportunity
to compare the results from the proposed method with a NEC design with the
results of both a NEAT design and an EG design. Table 1 shows the mean scores
of the subpopulations and proportions used in the simulations. Gender was coded
0 for males and 1 for females. Education categories used were EL, for elementary
education, HS for high school education and UNI for university education. Females
had lower mean test scores than males.

5 Simulation Study

The aim of the simulation study was to evaluate the performance of the proposed
method in comparison to traditional IRT observed-score equating using parametric
bootstrap (Efron and Tibshirani 1993) standard errors. The simulated data mimics

Table 1 Mean scores and
proportions within
parentheses for the different
subpopulations used in the
simulations and the real test
studies from the SweSAT test
2012 and 2013

Education Male Female

SweSAT 2012

EL 32.41 26.16
HS 39.08 33.19
UNI 35.38 35.91
SweSAT 2013

EL 35.00 (7.2) 27.34 (6.9)
HS 39.21 (81.8) 32.63 (83.2)
UNI 39.07 (11.0) 36.61 (9.9)

EL D Elementary school education, HS D
High school education, UNI D University
education
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the real SweSAT data. Let NX and NY be number of examinees taking test forms
X and Y and nX and nY number of items in test forms X and Y, respectively. The
simulation was conducted using the following steps:

1. For test forms X and Y, probabilities pji are generated from the IRT-C model (or
the traditional IRT models) with fixed values of the parameters.

2. Randomly select NX � nX and NY � nY probabilities from the models from step 1.
3. Conduct IRT observed-score equating without and with covariates as defined in

Eq. (1) for the 3PL IRT model (and Eq. (1) with ci D 0 for the 2PL IRT model)
and Eq. (3) for the 3PL IRT model (and Eq. (4) for the 2PL IRT model) using the
parametric bootstrap samples drawn in step 2.

4. Repeat steps 2 and 3 R times. The estimated standard error (SE) for the IRT
observed-score equating is defined as

SEboot Œb'Y .xi/� D

sP
r Œb'Yr .xi/ � b'Y: .xi/�

2

R � 1
; (6)

where b'Yr .xi/ indicate the r bootstrap estimate of the equated value and

b'Y: .xi/ D
X

r

b'Yr .xi/

R
: (7)

Both the simulation study and the real test example were carried out in R (R Core
Development Team 2016), and the code can be obtained upon request.

5.1 Data, Design and Ability Distributions
Used in the Simulation Study

In order to simulate relationships between the external covariates and the latent trait
that have high fidelity to test data, we used descriptive statistics from a sample of
2014 examinees taking the 2013 SweSAT test to predict the standardized SweSAT
scores (SS). These predicted scores were used as simulated ability estimates. To
predict the SS, an additive regression model was fit to the data with predictor
variables gender (GEN) and education using dummy coding:

SS D 0:315 � 0:496.GEN/ � 0:585.EL/C 0:442.HS/C e (8)

where e represents the error term. Only the coefficient of the UNI variable was not
significantly different from zero.

The proposed method using a NEC design was compared with the traditional
IRT observed-score equating using a NEAT and an EG design. To simulate a
� distribution that conforms to the estimated additive model, random normal



280 V. Sansivieri and M. Wiberg

distribution was simulated for each of the six cells (gender � education) shown
in Table 1 using the following model

� � mean D 0:315 � 0:496.GEN/ � 0:585.EL/C 0:442.HS/: (9)

The number of simulated examinees in each cell was based on the proportions in
Table 1.

5.2 Item Parameters Used in the Simulation Study

Following Tay et al. (2016), for a traditional 3PL IRT model, item discriminations ai

were sampled from a truncated normal (mean D 1.2, SD D 0.3) distribution with the
lowest and highest possible values set to 0.5 and 1.7, respectively; item difficulty bi

was sampled from a uniform (�2, 2) distribution, and ci was sampled from a logit-
normal (�1.1; 0.5) distribution. For a 2PL IRT model, the parameters were sampled
in the same manner.

5.3 Specified DIF Used Across Multiple Covariates

To simplify the simulation, we only examined the presence of uniform DIF; thus
we simulated DIF on the first 15 items shown through the design matrix in Eq.
(10), which specify the DIF coefficients di , i D 1 , . . . , 15. This matrix is used for
illustrative purpose and does not reflect how the real test is biased for or against
different groups of examinees. The same matrix was used for the two test forms,
although it does not have to be the same. For moderate DIF, we specified uniform
DIF of the magnitude 0.40 on items 1; 2; 3; 4; 5; 12 and 14; 15 biased against
females (Tay et al. 2016). Items 6; 7; 8; 9; 10; 11 and 14; 15 are biased in favour
of EL, and, finally, items 11 and 13; 14; 15 are biased against HS. In this last case,
uniform DIF of magnitude 0.20 was used. For large DIF, we specified uniform DIF
of the magnitude 0.60 in place of 0.40 and 0.30 in place of 0.20; for low DIF we
specified uniform DIF of the magnitude 0.20 in place of 0.40 and 0.10 in place of
0.20, and finally to use no DIF, one can place all values very close to zero in the
design matrix.

2
4

�:4 �:4 �:4 �:4 �:4 0 0 0 0 0 0 �:4 0 �:4 �:4

0 0 0 0 0 :4 :4 :4 :4 :4 :4 0 0 :4 :4

0 0 0 0 0 0 0 0 0 0 �:2 0 �:2 �:2 �:2

3
5

T 2
4

GEN
EL
HS

3
5 (10)
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5.4 Conditions in the Simulation Study

A simulated test length of 45 items was used where the first 15 items have DIF
of the form specified in the DIF matrix but the remaining items do not have DIF.
Our simulations focus on the boundary conditions with tests that have a large
proportion of DIF items (50%) and a moderately large proportion (30%) of DIF
items, respectively, in line with Tay et al. (2016). A simulated test length of 80 items
was also included to mimic the number of items of the real test used. The sample
size for the 3PL IRT model should be at least 1500 per form (Kolen and Brennan
2014, p. 304); thus we choose to use 2000 per form (as in effect we have to estimate
the three parameters of the 3PL IRT model and the DIF coefficient di). To evaluate
how the method works with small samples, a sample size of 600 per test form was
also included. Finally, to examine the impact of the item parameters, the cases of
less difficult items (by subtracting 0.5 to the item difficulty) and less discriminating
items (by dividing the item discrimination with 2) were examined.

6 Results from the Simulation Study

In general, most NEC designs had smaller standard errors than when an EG or a
NEAT design was used as seen in Figs. 1, 2 and 3. This was true, regardless of the
amount of DIF (low, moderate, high), and thus only a limited number of figures are
shown as the rest follows the displayed pattern and can be obtained upon request.
Figure 1 shows the standard errors when equating 45 items tests modelled with the
3PL IRT models when we have moderate DIF and either 2000 or 600 examinees.
Clearly all methods using different combinations of covariates with a NEC design
gave smaller standard errors than when EG design or NEAT design was used. The
right-hand plot of Fig. 1 shows the only exception, which was for moderate DIF
and 600 examinees. In that plot, the NEC with gender and high school education
had slightly higher standard errors around test score 30 although the standard errors
were still in general lower than the standard errors for the EG and NEAT designs for
the other scores.

In Fig. 2, standard errors for the equated values for low DIF when we have less
difficult items and less discriminating items are shown. Regardless of the amount
of DIF, almost identical plots were obtained for the case of less difficult and less
discriminating items; thus only two plots are shown. Notice the slightly different
scales on the y-axis.

The left-hand plot of Fig. 3 shows low DIF when 2PL IRT models are used
instead of 3PL IRT models. The case of moderate and high DIF was similar to the
low case scenario and thus excluded. Comparing this plot to Fig. 1, it is evident that
they give similar standard error patterns although the magnitude is in general higher.
The right-hand plot of Fig. 3 illustrates when we have an 80-item test with low DIF.
The moderate and high DIF cases were similar with the exception that for high DIF
the standard errors were slightly higher (0.002) for NEC with GEN and HS when
there was moderate DIF. Please be aware of the scale differences in the y-axis.
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Fig. 1 Standard errors for equated values of 45 items test modelled with the 3PL IRT models
when we have moderate DIF and either 2000 (left) or 600 examinees (right)

Fig. 2 Standard errors for equated values of 45 items test modelled with the 3PL IRT models with
low DIF for less difficult items (left) and less discriminating items (right)

7 Real Test Example

A real test example using SweSAT was used to examine how the method could be
used in practice. Two samples of size 1997 and 2014 examinees were used, with the
same covariates as in the simulation study. The equated values from the proposed
method were compared with traditional IRT observed-score equating using both
the EG design and the NEAT design with 3PL IRT models. Standard errors were
examined following the same steps as described in the simulation study with one
important difference. In the first two steps, the parameters of the IRT-C models
were not fixed; instead they were estimated from the real test data.
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Fig. 3 Standard errors for equated values with low DIF for a 45-item test modelled with the 2PL
IRT models (left) and an 80-item test modelled with the 3PL IRT models (right)

8 Results from the Real Test Example

For the sample of 1997 examinees used in the real example, the items have the
following mean DIF (calculated on the absolute values), 0.31, 0.34 and 0.36, for
the covariates GEN, EL and HS, respectively. For the sample of 2014 examinees,
the items have the following mean DIF (calculated on the absolute values), 0.31,
0.30 and 0.29, for the covariates GEN, EL and HS, respectively. Compared to the
thresholds used in the simulation study, we can say that the mean DIF across the
three covariates has medium-high magnitude for the two real test samples. Figure 4
shows the standard errors for the real data with the proposed method with different
combinations of covariates in the NEC design in comparison with the EG design
and the NEAT design using traditional IRT observed-score equating. It is evident
that if we do not have an anchor, it is much better to incorporate information from
the covariates than to use an EG design. If all covariates are used, the standard errors
are close to zero and thus smaller than if a NEAT design is used as well.

9 Concluding Remarks

The objective was to show that using a NEC design with IRT observed-score
equating and thus using the information in the covariates could increase the accuracy
of an equating. Both the simulation study and the real test study supported the
proposed method as they gave in general lower standard errors than using a NEAT
design or an EG design.

The results that we can increase the accuracy in the equatings with the help
of covariates are in line with Wiberg and Bränberg (2015) although they did
not examine IRT observed-score equating. As many large-scale assessments are
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Fig. 4 SE for the real test example with the NEC design with different covariates in comparison
with using an EG design and a NEAT design

modelled with IRT, the results have a clear practical implication, which was
supported from the results of the real test example. Throughout this paper, we have
compared the results with using an EG design and a NEAT design. As several
large-scale assessments lack an anchor test, they might only have an EG design
as a possibility. The fact that we can lower the standard errors by the inclusion of
covariates is promising. In this study, we had the unique opportunity to compare
with a NEAT design as well. Surprisingly, the standard errors were sometimes
smaller when a NEC design was used instead of a NEAT design. In the future one
should examine the proposed methods with respect to bias and other assessment
measures as proposed by Wiberg and González (2016). Other large-scale assessment
tests as well as other conditions including different DIF matrices should also be
included in further studies.

Acknowledgement The research in this paper by Marie Wiberg was funded by the Swedish
Research Council grant: 2014-578.
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Causal Inference with Observational Multilevel
Data: Investigating Selection and Outcome
Heterogeneity

Jee-Seon Kim, Wen-Chiang Lim, and Peter M. Steiner

Abstract Causal inference with observational data is challenging, as the assign-
ment to treatment is not random, and people may have different reasons to receive or
be assigned to the treatment. The multilevel structure adds complexity to the issue,
as the assignment to treatment can be determined by various sources across levels.
In multilevel analysis, it is critical to account for both the nested structure of the data
and potential heterogeneity in selection processes and treatment effects. This study
presents methodology for classifying level-1 and level-2 units into homogeneous
groups called “classes” with regard to class-specific selection and outcome models.
The classification into homogeneous groups can take place at a cluster level or at
the lowest level, depending on the main sources of heterogeneity in the selection
and outcome mechanisms. This chapter introduces the methods, examines their
properties, and provides recommendations for their proper use.

Keywords Propensity score analysis • Multilevel matching • Hierarchical linear
models • Latent class analysis • Mixture models • Selection bias • Quasi-
experimental design

1 Introduction

In the social sciences, randomized experiments are considered the canonical model
for estimating causal effects of treatments. Due to ethical or practical reasons,
however, random assignment of treatment cannot always be conducted. Instead,
quasi-experiments like regression discontinuity designs, interrupted time series
designs, instrumental variables, or nonequivalent control group designs are fre-
quently used as alternative methods (Shadish et al. 2002). In particular, propensity
score (PS) techniques for matching nonequivalent groups have become increasingly
popular during the past three decades across various disciplines (Guo and Fraser
2015). Although an extensive literature exists for PS design and analysis, most
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of the PS techniques deal with single-level data without any nested or clustered
structure, and corresponding strategies for matching nonequivalent control groups
in the context of multilevel data are still limited and underdeveloped (Hong and
Raudenbush 2006; Kim and Seltzer 2007; Thoemmes and West 2011; Steiner et al.
2012; Keele and Zubizarreta 2014; Kim and Steiner 2015; Kim et al. 2016). This is
problematic considering many large-scale surveys and assessment data are collected
in clustered settings.

This study concerns PS matching strategies for nonequivalent control group
designs to correct for bias due to confounding and make proper causal inferences
with observational multilevel data. Kim et al. (2016) investigated heterogeneity
in the treatment versus comparison condition assignment by implementing latent
class multilevel logit models as selection models. The current study furthers Kim
et al. (2016) by examining heterogeneity in the outcome process in addition to the
selection process and also investigating at different levels in multilevel data.

1.1 Potential Outcomes in Multilevel Settings

To formalize the treatment effects of interest, we use the Rubin causal model (Rubin
1974, 1978; Rosenbaum and Rubin 1983; Holland 1986) with its potential outcome
notation and its extension to multilevel settings by Hong and Raudenbush (2006). In
this framework, level-1 units (e.g., students) i D 1; : : : ;Nj within level-2 units (e.g.,
schools) j D 1; : : : ; J have a set of potential treatment and control outcomes that
can be denoted as Yij.Zij;Z�ij;S/. That is, the potential outcomes depend on three
factors: (1) unit i’s treatment assignment Zij, where Zij D 0 for the control condition
and Zij D 1 for the treatment condition; (2) the treatment assignments of the other
units within cluster j (e.g., peer assignments) to treatment Z�ij; and (3) a matrix S
that indicates the allocation of units across the clusters. The rows and columns of the
S matrix correspond to level-1 units and level-2 clusters, respectively, representing
unit i’s membership to cluster j.

As unit i’s potential outcomes depend both on Z�ij and S, the resulting set of
potential outcomes to be estimated is often very large. It is therefore common
to restrict the set of potential outcomes by using some form of stable-unit-
treatment-value assumption, SUTVA (Imbens and Rubin 2015), and by restricting
the generalizability of estimated treatment effects to the observed student allocation
to schools as in Hong and Raudenbush (2006) and Steiner et al. (2012), for example.
In the most restrictive case we get only two potential outcomes for each student: the
potential control outcome Yij.0/ D Yij.Zij D 0;S D s�) and the potential treatment
outcome Yij.1/ D Yij.Zij D 1;S D s�), where s� indicates the observed allocation
of unit i to cluster j. The assignment of the other units within the same cluster is
no longer considered under SUTVA, implying no interference among level-1 units.
This formulation is used in this paper to simplify the discussion of issues involved
in multilevel matching strategies.
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1.2 Causal Estimands

Given the two potential outcomes Yij.0/ and Yij.1/, we can define the average
treatment effect (ATE) for the entire population as the expected difference in
potential outcomes:

� D EŒYij.1/ � Yij.0/�: (1)

Frequently, of interest is not only the average across all clusters but also the average
treatment effect for each cluster, that is,

�j D EŒYij.1/ � Yij.0/jJ D j�; j 2 J: (2)

In addition to ATE, the average treatment effects for the treated (ATT) is another
causal quantity of interest. For example, ATT should be estimated as the causal
quantity of interest if we are interested in the retention effect on the actually retained
students as opposed to all students, both promoted and retained. The overall ATT
for the population is defined as

�T D EŒYij.1/ � Yij.0/jZij D 1� (3)

and the cluster-specific ATT is defined as

�Tj
D EŒYij.1/ � Yij.0/jZij D 1; J D j�; j 2 J: (4)

1.3 Strong Ignorability and Propensity Score Matching

As two potential outcomes Yij.0/ and Yij.1/ are never observed simultaneously,
the treatment effects cannot be directly estimated without further assumptions. In
general, we can estimate unbiased treatment effects only if the pair of potential
outcomes (Yij.0/;Yij.1/) is independent of treatment assignment Zij. Block random-
ized experiments or multisite randomized trials achieve this independence by the
randomization of treatment assignment within blocks or sites. For observational
multilevel data, we require conditional independence, also referred to as strong
ignorability in the causal inference literature (Rosenbaum and Rubin 1983; Rubin
1978), which implies that the potential outcomes are independent of treatment
assignment, given the observed vector of level-1 covariates X and level-2 covari-
ates W:

.Yij.0/;Yij.1// ? Zij j X;W: (5)
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The formulation of strong ignorability directly suggests an exact matching of
units on level-1 and level-2 covariates (Hong and Raudenbush 2006). However,
an (approximately) exact matching on a large set of covariates is frequently not
feasible, and we may switch to propensity score matching by matching units on the
conditional probability of being assigned to the treatment group given the observed
covariates, that is, the propensity score (PS), denoted as eij.X;W/, where

eij.X;W/ D
P.Zij D 1;X;W/

P.Zij D 0;X;W/C P.Zij D 1;X;W/
D P.Zij D 1jX;W/: (6)

If treatment selection is strongly ignorable given an observed set of covariates
.X;W/, then selection is also strongly ignorable with respect to the propensity score
eij.X;W/:

.Yij.0/;Yij.1// ? Zij j eij.X;W/; (7)

and

0 < eij.X;W/ < 1; (8)

and matching on the PS alone also identifies the average treatment effect (Rosen-
baum and Rubin 1983; Hong and Raudenbush 2006).

The true PS is rarely known in practice and needs to be estimated from observed
pretreatment covariates using a parametric binomial regression model (e.g., a
logit or probit model) or more flexible semi- or nonparametric approaches like
generalized additive models or statistical learning algorithms (McCaffrey et al.
2004; Berk 2008; Keller et al. 2015). It is important to note that conditioning on
covariates X and W (instead of the PS) in Eq. (5) implies a within-cluster matching
as long as cluster-level covariates W uniquely identify clusters (either via variations
in cluster characteristics or fixed effects dummies). This is no longer the case if
we condition on the PS as in Eq. (7), as level-1 units with identical PS, eij D ei0j0

(i ¤ i0, j ¤ j0), might actually come from different clusters (Steiner et al. 2012).
As discussed in Thoemmes and West (2011), a pair of PS-matched treatment and
control students might be very different with regard to student- and school-level
covariates (despite having the same PS). This led Thoemmes and West to the
conclusion that across-school matching should only be used if we can reasonably
assume that the selection mechanism is identical across schools. Similarly, Kim and
Seltzer (2007) argue that across-school matching makes an unbiased estimation of
school-specific treatment effects difficult or even impossible.

More recently, however, Steiner et al. (2012) showed that across-cluster matching
produces consistent estimates of both overall and cluster-specific treatment effects,
given a correctly specified joint PS model and sufficient overlap of treatment and
comparison cases within each cluster. When the overlap is lacking within clusters,
Kim and Steiner (2015) and Kim et al. (2016) used latent class approaches to
identify finite groups of clusters with similar selection processes and pooled the
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cases across clusters but within the homogeneous groups of clusters, referred to
as “classes.” Kim and Steiner (2015); Kim et al. (2016) also demonstrated that
these across-cluster within-class multilevel matching techniques can be effective
in examining the heterogeneity of treatment effects in observational multilevel data.
The current study furthers these recent advances by investigating heterogeneity in
both selection and outcome processes and classification of units at the cluster as
well as the individual levels.

Although the current study considers multilevel matching only in a two-level
structure where individuals are nested within clusters to simplify matters, the
principles of our matching strategies can be applied to any multilevel setting. These
settings include three- or higher-level data, longitudinal data where the lowest level
corresponds to repeated measures over time, and dyadic data, for example.

2 Multilevel Matching Strategies

2.1 The Levels of Treatment Implementation

In comparison to single-level data, treatment implementation can be at different
levels in multilevel data. In two-level data such as students nested within schools
or patients nested within clinics, treatments or interventions can be implemented at
the cluster level or the individual level. Implementation at the cluster level implies
that the treatment status only varies across clusters and that all individuals within
a cluster are assigned to either the treatment or control condition. By contrast, if a
treatment is implemented at the individual level, individuals are assigned or self-
select into the treatment or control conditions within each cluster and therefore
both treatment and control individuals are observed within clusters. Depending on
the level of treatment implementation and selection, the general matching strategy
differs (Steiner et al. 2012). If treatment is implemented at the cluster level, one
should match comparable treatment and control clusters, as selection takes place at
the cluster level (Stuart 2007). A cluster-level matching strategy mimics a cluster
randomized controlled trial where clusters are randomly assigned to treatment.
Mahalanobis-distance matching on observed cluster-level covariates or standard PS
techniques might be directly used since only clusters need to be matched.

However, if treatment is administered at the individual level, then individuals
should be matched within clusters since selection into treatment occurs at the
individual level. Matching students within schools mimics a randomized block
design or multisite randomized trial where individuals are randomly assigned
to the treatment condition within clusters (blocks/sites). Once individuals are
matched within clusters and cluster-specific treatment effects �j; j D 1; : : : ; J,
are estimated, we can compute the ATE across clusters by pooling cluster-specific
estimates using meta-analytic approaches (Cooper et al. 2009) through multilevel
modeling (Raudenbush and Bryk 2002). As before, standard matching methods like
Mahalanobis-distance matching or PS techniques might be used.



292 J.-S. Kim et al.

Although the within-cluster matching strategy is simple and theoretically sound,
it is not always applicable in practice for two reasons: First, if extreme selection
processes take place (e.g., retention of poorly performing students), we might lack
comparable treatment and control individuals within schools. Second, with small
sample sizes, we might not be able to find satisfactory matches for most individuals
within a cluster (Kelcey 2009; Kim and Seltzer 2007; Thoemmes and West 2011).
Considering that within-cluster matching strategies might fail in practice, across-
cluster matching strategies that also allow for borrowing individuals from other
clusters or pooling individuals across clusters might offer a practical solution. Given
that only standard matching techniques for single-level data are required whenever
treatment is implemented at the cluster level, we will exclusively focus in this study
on matching strategies where level-1 units select or are assigned to treatment within
clusters.

2.2 Within-Cluster Matching

Within-cluster matching approaches match individuals in the same cluster, and thus
the treatment and control conditions share the environment that might affect the
selection and outcome mechanisms. A separate PS model is fit for each cluster
using only level-1 covariates and is not affected by differences among clusters.
This leads to several important advantages in PS matching: First, within-cluster
matching requires a weaker identification assumption than across-cluster matching
for the estimation of treatment effects; that is, strong ignorability is more likely
to be met. Second, selection and outcome models for each cluster are single-level
regression models that do not include level-2 covariates, cross-level interactions,
or random slopes, and the risk of model misspecification will be lower than with
multilevel models. Third, we can investigate treatment effect heterogeneity by
estimating cluster-specific treatment effects. The ATE can be estimated by pooling
or averaging across cluster-specific treatment effects. Simulation studies in Kim and
Seltzer (2007) demonstrated the effectiveness of within-cluster matching when the
selection processes were different across clusters.

However, within-cluster matching is often infeasible in practice due to a lack of
overlap between treated and control units when cluster sizes are small or selection
processes are strong and only a small percentage of individuals receive treatments.
Even in large-scale data, some or many clusters may have small sample sizes or lack
sufficient overlap. Small sample sizes may result in unreliable estimates and finite
sample bias due to imperfect matches. Lack of overlap does not allow us to match
all treatment and control cases and, thus, requires us to delete nonoverlapping cases
which results in a lack of generalizability of results. If nonoverlapping cases are not
deleted, bias will result (essentially due to the violation of the positivity assumption,
0 < P.ZijjX/ < 1/. Moreover, some clusters may only have treatment or control
units, making it impossible to estimate treatment effects within these clusters.
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2.3 Across-Cluster Matching

If sample sizes are small and/or overlap is lacking within clusters, across-cluster
matching can be conducted in observational multilevel data by borrowing units
from other clusters. Across-cluster matching pools units across clusters and matches
units within and across clusters, such that one common multilevel model is fit as a
selection model for the entire data, as is the case in most multilevel analyses. Across-
cluster matching has contrasting advantages compared to within-cluster matching
such that it improves overlap between treatment and control conditions and can
be used when sample sizes are small for some or many clusters. As a result of
improved overlap, across-cluster matching can reduce bias and provide a reliable
estimate of ATE. Steiner et al. (2012) showed that across-cluster matching can
provide a consistent treatment effect even when the distributions of the covariates
and outcome are different across clusters, as long as the selection processes are
monotonic and the PS ranks of units are not reversed across the clusters.

Despite these advantages, across-cluster matching violates the idea of block
randomized experiments and multisite randomized trials and requires a stronger
identification assumption for estimating the ATE and ATT than within-cluster
matching. As one common multilevel model is fit to all units in the data, both
level-1 and level-2 covariates (X;W) are needed to establish strong ignorability in
the selection model as in Eq. (7), but the risk of model misspecification is higher
than for cluster-specific single-level models. When there exists heterogeneity in the
data and the selection processes differ substantially across clusters, we might fail
to correctly specify the multilevel selection model and across cluster matching may
result in large bias in the estimation of treatment effects.

2.4 Multilevel Matching Continuum

This chapter introduces a general framework for a multilevel matching continuum
that covers various multilevel matching approaches, consisting of within-cluster
matching and across-cluster matching as two opposite ends of the continuum. This
continuum includes the combination of within-cluster and across-cluster matching
as in Arpino and Cannas (2016), where units are matched within clusters first
and then across clusters additionally if needed. It also comprises the manifest
and latent class matching approaches by Kim et al. (2016) and Lim (2016) where
homogeneous groups of clusters (called “classes”) are identified first with respect
to the selection process, outcome process, or both, and then units are pooled across
clusters but within the homogeneous classes of clusters.

Although level-1 units and clusters belong to classes, classes do not constitute
a third level as the number of classes is generally small and classes do not follow
a continuous (e.g., normal) distribution like clusters in multilevel models, except
when each cluster corresponds to its own class as in within-cluster matching on
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the one end of the continuum. On the other end of the continuum, the number of
classes is one, and across-cluster within-class matching is equivalent to across-
cluster matching. Except for these extreme cases, differences among classes are
accounted for as multiple-group fixed effects in multilevel models. Specifically, the
across-cluster within-class selection model for two-level data is defined as follows:

logit.ijs/ D ˛s C X0
ijsˇjs C W0

js�s C XW0
ijsıjs C Tjs; (9)

and the outcome model is defined as:

Yijs D �s C �sZijs C X0
ijs	js C W0

js
s C XW0
ijs�js C Ujs C �ijs; (10)

where

– subscripts i D 1; : : : ; njs, j D 1; : : : ;Ms, s D 1; : : : ;K denote level-1 unit, cluster,
and class, respectively

– ijs is the probability of being assigned to the treatment condition for a level-1
unit i in cluster j in class s

– Yijs is the outcome for a level-1 unit i in cluster j in class s
– Zijs is the treatment assignment variable for a level-1 unit i in cluster j in class s,

Zijs 2 0; 1 (0 = untreated; 1 = treated) � Bernoulli(ijs).
– �s is the class-specific treatment effect
– Xijs, Wjs, and XWijs are level-1 covariates, level-2 covariates, and their cross-level

interactions, respectively
– Tjs and Ujs are random effects for cluster j,
– ˛s and �s are class-specific intercepts
– ˇjs, ıjs, 	js, and �js are level-1 regression coefficients and may vary across

clusters (i.e., random slopes).
– �s and 
s are level-2 regression coefficients for class s
– �ijs is the error term

Note that both the selection and outcome models are presented as two-level
univariate models for simplicity, but either can be generalized to higher-level
multivariate models. When the class membership is known (e.g., regions or districts,
participation in different policies, etc.), class memberships can be added directly
to the model, for example, using K � 1 fixed effect dummies. When the class
memberships are unknown, latent class memberships can be estimated by multilevel
latent class models.

As explained above, the selection and outcome models in Eqs. (9) (10) for
across-cluster within-class matching consist of within-cluster and across-cluster
matching as two special extreme cases. On the one hand, when sample sizes are
not small and overlap is sufficient for all clusters, each cluster can be considered
as its own class, j D s and Ms D K, resulting in within-cluster matching.
On the other hand, when clusters are homogeneous with regard to selection and
outcome mechanisms, the number of classes can be one (K D 1), and both
selection and outcome models are one-class models, and across-cluster within-
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class matching is identical to across-cluster matching. In practice, a finite number
of classes may be most appropriate by encompassing the advantage of within-
cluster matching and across-cluster matching. Therefore, the across-cluster and
within-class matching continuum provides a theoretical framework to examine the
heterogeneity of selection and outcome mechanisms as well as practical tools for
pooling compatible units from other clusters if needed.

We conducted simulation studies to examine the properties of across-cluster
and within-class matching strategies in various settings, and this chapter presents
two results of the investigation: (1) the consequences of classification of units
at the lowest level versus cluster level (i.e., level-1 vs. level-2 classifications)
and (2) findings related to the sequential classification of selection and outcome
processes (i.e., the estimations of class-specific selection models and then class-
specific outcome models).

3 Classification at the Cluster Level vs. Individual Level

In multilevel settings, selection and outcome processes may (1) simultaneously take
place at different levels, (2) differ from cluster to cluster, and (3) introduce biases of
different directions at different levels. An example would be a school retention pol-
icy where student retention is the “treatment,” with student academic performance
as the outcome. While some schools may adhere to state recommended policies
on retention, other schools may place more emphasis on teachers’ evaluations
to determine retention. In addition, students and their parents may also influence
retention decisions, if they are allowed to seek extra credit to gain promotion, for
example. Likewise, even in schools that practice similar retention policies, outcomes
may differ, as the implementation of academic support for retained students may
vary widely, depending on school resources and funding. Students’ motivation and
academic self-concept could also play a part in their own academic outcomes.

Therefore, we investigated selection and outcome heterogeneity at both the
cluster level and individual level in two-level data. The decision to determine the
suitability of classification at the cluster-level or individual-level would depend on
the theoretical benefits as to the level at which the effect is more likely to take place
as well as the hypothesis being researched. For example, if the main interest is in
investigating school-level effectiveness of school-determined retention policies, a
cluster-level classification would seem most appropriate.

3.1 Evaluation of Current Techniques and Programs

As multilevel latent class regression requires computationally intensive numerical
methods to find an optimal solution, we rely on software programs to estimate our
models. Existing software we can use for multilevel latent class models include
Mplus, Latent GOLD, and R packages such as FlexMix (Grün and Leisch 2008).
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Table 1 Comparison of software

Level-2 selection classification Level-1 selection classification
Software MGLMa fixed

effectsb only
MGLM with
random effects

MGLM fixed
effects only

MGLM with
random effects

FlexMix �
Latent GOLD � � � �
Mplus � �

Level-2 outcome classification Level-1 outcome classification
Software MLMc fixed

effects only
MLM with
random effects

MLM fixed
effects only

MLM with
random effects

FlexMix � �
Latent GOLD � � � �
Mplus � �

Note:
amultilevel generalized linear mixture
brestricting Var.Uj/ D 0
cmultilevel linear mixture

Table 1 shows a brief comparison of the three programs and their capacities to fit
various multilevel generalized linear mixture (MGLM) models and multilevel linear
mixture (MLM) models as selection and outcome models, respectively, at the cluster
and individual levels.

FlexMix performs classification at the cluster level but not at the individual level.
Random effects in multilevel models are limited to a continuous dependent variable
in FlexMix 2.3–13. Although Mplus and Latent GOLD allow the estimation of
nonlinear multilevel latent class models at both levels, we could not obtain stable
estimation for classification at the individual level and encountered difficulties using
either program for the investigation of level-1 classification.

3.2 Difficulties and Limitations of Classification at Individual
Level

3.2.1 Data Simulation

Two scenarios were simulated and analyzed to evaluate the correct proportion of
classification and parameter recovery of multilevel latent class models, varying in
the strength of selection. To generate the data with the selection mechanism at the
lowest level (i.e., level-1), a sample of 200 clusters (level-2) with varying cluster
sizes [the average of 300 and the SD of 50, Nj � N.300; 50/] was randomly drawn
from a population. Each unit in the first 120 clusters had a probability of between
0.6 and 0.8 for being assigned to the first selection mechanism and a probability
of between 0.2 and 0.4 to the second selection mechanism. In the remaining 80
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clusters, each unit had a probability of between 0.2 and 0.4 for being assigned to
the first selection mechanism and a probability of between 0.6 and 0.8 to the second
selection mechanism. The likelihood of being assigned to treatment would therefore
depend on the unit’s selection mechanism and its level-1 and level-2 covariates.

To investigate the characteristics of level-1 classification under different con-
ditions, two selection mechanisms were generated using random intercept models
with regression coefficients in opposite directions, reflecting two selection classes.
The first data-generating model reflects a strong selection process, which implies
little overlap between treated and control cases, and the second data-generating
model reflects a weaker selection process and provides a large overlap between
treated and control cases.

3.2.2 Classification and Parameter Recovery Results

We modified the settings of Latent GOLD to be able to use the problem for
conducting across-cluster within-class matching with level-1 classification that may
not be entirely intuitive. Although the data and model of interest both have two
levels, we had to use a three-level environment where “Case ID” and “Group
ID” correspond to level-2 and level-3 identification values, respectively (Vermunt
and Magidson 2010). To estimate multilevel latent class models with level-1
classification, “Case ID” and “Group ID” were instead used to indicate the level-
1 and level-2 identification values but with only level-1 unit in each level-2 unit,
forcing the software to identify the level-1 unit as level-2.1 Using Mplus and Latent
GOLD, we estimated the multilevel latent class logistic selection models with strong
and weak selection processes. The results of the individual level classification are
summarized in Table 2.

Even in a condition where two selection processes are strong and in opposite
directions, implying that the two selection processes are very different, the misclas-
sification of the individual level-1 units was not very small (Latent GOLD 12.3%,
Mplus 21.3%). When the selection mechanisms are weak yet in opposite directions,
i.e., the two selection processes are more similar than before, the misclassification
rises to as high as 45.3% (Latent GOLD) and 48.7% (Mplus). Table 2 also shows
that Mplus and Latent GOLD provide different classifications of the level-1 units,
where only 75.1% of the level-1 units were classified the same way for the
strong selection mechanisms scenario. This proportion drops to 66.2% for weak

1This caused some problems with the multilevel logistic model specification in the software as
random effects had to be modeled as a level-3 “GCFactor” and kept class-independent, so as to
keep the number of parameters estimated comparable to the model fitted in Mplus. This in turn
allowed the random effects of the intercept to vary between the classes, because Latent GOLD
automatically adds an estimation of random effects (“CFactor”) at the level of “Case ID.” This
effect should not have been estimated in a logistic regression. However, this was the only way to
obtain a comparable level-1 classification in Latent GOLD that was comparable to Mplus in terms
of the parameters estimated.
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Table 2 Model statistics for simulations of level-1 classification

Strong selection Weak selection

True proportion of units in class 1 49.8% 53.8%
Mplus Estimated proportion of units in class 1 59.2% 68.1%

Proportion classified correctly (overall) 78.7% 51.3%

Log likelihood �38,634.6 �38,992.6

AIC 77,295.3 78,011.2

BIC 77,412.2 78,128.1

Latent GOLD Estimated proportion of units in class 1 54.5% 73.2%

Proportion classified correctly (overall) 87.7% 55.7%

Log likelihood �38,123.3 �38,943.2

AIC 76,272.9 77,912.5

BIC 76,389.8 78,029.4

MPlus vs Proportion of units classified in
agreement for both software

75.1% 66.2%

Latent GOLD Proportion of units classified correctly 70.1% 36.1%

Common support Class 1 Class: 19.6% Class: 99.7%

Cluster: 5.1% Cluster: 90.9%

Class 2 Class: 19.7% Class: 99.9%

Cluster: 4.2% Cluster: 92.6%

Overall Overall: 20.4% Overall: 99.8%

Cluster: 5.7% Cluster: 99.8%

selection mechanisms, suggesting the classification at the individual level may not
be sufficiently robust for analysis.

We also examined the estimation of regression coefficients. The recovery of
parameters was not good for either program. Table 3 shows the regression coeffi-
cients recovered using multilevel latent class logistic models with Mplus and Latent
GOLD for the strong selection mechanism simulated data. The results showed that
neither recovered the true parameters closely and that the two programs provided
different estimates.

Therefore, although there is much value in investigating selection and outcome
classification at the individual level theoretically, the estimation of such models
faces a severe challenge in practice. Neither Latent GOLD or Mplus recovered
the model parameters nor classified units correctly even when the classes were
clearly separated. Kim and Steiner (2015); Kim et al. (2016) found that FlexMix
performed well in multilevel latent class outcome models, but the R package allows
for classification only at the cluster level, not for the individual level. It thus cannot
be used for level-1 classification.
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Table 3 Regression
coefficients recovered by
multilevel latent class logistic
regression

Class 1 True Mplus Latent GOLD

Intercept 4.0 �7.755 (2.265) �0.715 (0.139)

X1 1.5 1.052 (0.128) 0.189 (0.001)

X2 �1.5 �1.024 (0.122) �0.187 (0.001)

W1 0.3 2.090 (0.460) 0.357 (0.002)

W2 �0.3 �1.096 (0.268) �0.248 (0.002)

Class 2 True Mplus Latent GOLD

Intercept �4.0 0.122 (0.106) 0.988 (0.198)

X1 �1.5 �0.031 (0.002) �0.126 (0.001)

X2 1.5 0.027 (0.002) 0.209 (0.001)

W1 �0.3 �0.043 (0.012) �0.391 (0.002)

W2 0.3 0.031 (0.009) 0.252 (0.002)

X1, X2: Level-1 covariates; W1, W2: Level-2 covariates
Standard errors are reported in parentheses

4 Heterogeneity in Selection and Outcome Mechanisms

We conducted a series of simulation studies to investigate the effectiveness of mul-
tilevel latent class regression modeling for identifying heterogeneity in the outcome
processes. Because of the difficulties in estimating individual-level classification
models as explained in the previous section, we examined selection and outcome
process classification only at the cluster level in this section. As the selection process
would occur prior to the outcome process theoretically, our simulation reflects this
natural order and the selection and outcome models were considered sequentially
rather than simultaneously.

One important aspect of this sequential analysis is that the misclassification of
selection classes will carry over to the outcome process analysis when selection
classes are unknown and estimated. As the identification of unknown selection
classes requires the implementation of nonlinear multilevel latent class models with
binary outcomes, the separation of classes might not be perfect, and some units
can be misclassified to the wrong selection classes especially when the selection
mechanisms are not very distinctive across classes, some selection classes are small,
or the sample sizes are not sufficiently large for reliable estimation. Therefore, when
the selection classes can be determined, we recommend to use manifest selection
class models. It is important to note that the manifest selection class approach
does not imply known selection mechanisms but only known class memberships.
The specific selection processes can be estimated separately for different selection
classes (Kim and Steiner 2015; Kim et al. 2016).

We examined the heterogeneity of outcome processes and estimated class-
specific treatment effects by multilevel latent class models in various conditions.
Due to space limits, this section focuses on results of the simulation study where we
investigated properties of latent class outcome models in combination with manifest
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class and latent class selection models. For details of the simulation design and data-
generating processes, we refer to Lim (2016).

4.1 Detecting Outcome Heterogeneity with Multilevel Latent
Class Models

Initially, we generated two selection classes. For those two selection classes, we
generated two outcome classes for the first class and one outcome class for the
second class. This results in two selection classes and three-outcome classes in
total. These can also be viewed as three sets of selection and outcome classes (i.e.,
selection1outcome1, selection1outcome2, selection2outcome3). We examined the
properties of the latent class modeling approach in identifying the selection and
outcome classes and classifying units into the corresponding classes as well as the
consequences of misclassification in estimating treatment effects.

When selection classes were known and the correct number of latent outcome
classes was specified in the models, only four out of the total 300 simulations (100
each for the three selection strength conditions; strong, medium, and weak) had
outcome heterogeneity misclassification, suggesting that estimating heterogeneity
in outcome is fairly reliable for this study’s selected sample size.

Using the comparative model fit statistics of the Akaike information criterion
(AIC) and the Bayesian information criterion (BIC) for the first selection class
which contained two-outcome classes, one would favor the correct number of
outcome classes about three-fifths of the time, regardless of the selection strength
condition in Selection Class 1 (see Table 4), with the remaining favoring a three-
outcome-class solution. However, checks of the last Mplus output generated in
the simulation runs reveal that these three-class solutions favored were effectively
two-class solutions with the third class of size zero, implying two-class solutions
were recovered in most of the replications. For the second selection class which
contained one-outcome class, a one-class solution was favored 100% of the time.
Therefore, when the selection class memberships are known, the outcome classes
can be estimated quite reliably by multilevel latent class models.

This was not the case when selection classes had to be estimated. With unknown
and thus estimated latent selection classes, there is a need to account for mis-
classification occurring at the stage of multilevel latent class logistic regression to
detect selection heterogeneity. With a stronger selection mechanism, selection class
misclassification was expected to be low, whereas a weaker selection mechanism

Table 4 Proportion of
identified correct number of
outcome classes by AIC and
BIC when selection classes
are known

Selection AIC (%) BIC (%)

Strong 66 68

Medium 60 63

Weak 65 67
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Table 5 Proportions of misclassification when selection classes are unknown

Selection Proportion of misclassification (%) Average proportion of units misclassified (%)

Strong 8 1:05

Medium 32 1:21

Weak 88 5:04

Table 6 Proportion of
correct identification of
outcome classes and model fit
statistics in estimated
Selection Class 1

Selection Classification AIC (%) BIC (%)

Strong Correctly classified (92%) 65 67

Misclassified (8%) 75 75

Medium Correctly classified (68%) 60 65

Misclassified (32%) 56 56

Weak Correctly classified (12%) 58 58

Misclassified (88%) 66 68

was expected to provide a higher selection class misclassification. The simulation
results for the selection class misclassification and the average proportion of
units that are misclassified are shown below in Table 5, and the spread of the
misclassifications are shown in Fig. 1.

As selection misclassification resulted in the estimated selection classes possibly
having more outcome classes than they were supposed to have, it was difficult
to estimate misclassification for outcome classes. A request for a two-outcome-
class solution in Mplus appeared to require the solution to collapse two of the
three-outcome classes into one class, leading to potentially very low or very high
proportions of misclassification, depending on how the collapsing of the outcome
classes occurred. However, using the comparative model fit statistics of AIC and
BIC, one would still favor a two-outcome-class solution for the first estimated
selection class in the majority of the simulations, due to the small proportion of
misclassifications for each simulation (see Table 6). In contrast, for the second
estimated selection class, one would favor a two-outcome-class solution 100% of
the time if there was misclassification, and a one-outcome-class solution if there was
no misclassification. This suggests that it was much easier to detect heterogeneity
from one-outcome class to two-outcome classes, as compared to differentiating two-
outcome classes from three-outcome classes.

4.2 Estimating Treatment Effects with Multilevel Latent Class
Models

The unadjusted mean difference, referred to as the prima facie causal effect in
the causal inference literature, and across-cluster matching treatment effects were
estimated during the simulation. Both approaches performed very poorly in the
presence of selection processes and heterogeneity, replicating the results in Kim
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Fig. 1 Misclassification frequency distributions with strong, medium, and weak selection mecha-
nisms in estimated Selection Class 1
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et al. (2016). As such, in this section, the discussion will focus on the estimation
of average treatment effects using within-cluster matching (WC), and across-cluster
within-class matching (ACWC) and when to use the two techniques. Among other
findings, several important results of the simulations are summarized below:

High Within-Cluster Overlap versus Low Within-Cluster Overlap When the treat-
ment selection mechanism in the first selection class was weak (i.e., with high
within-cluster overlap), from the top part (row number “1”) of Table 7, one may
observe there was only minimal bias when using the within-cluster matching
technique. In contrast, large bias was observed using within-cluster matching
when the selection mechanism was strong with little within-cluster overlap. In our
simulation, cases lacking overlap were not deleted.

In addition, when the treatment selection mechanism was weak, while there was
minimal bias observed for known selection classes (rows 3–7 of Table 7), gross
bias was observed for estimated selection classes (rows 8–12 of Table 7). This was
expected due to the higher proportion of selection-class misclassification from using

Table 7 Bias of estimated treatment effect (known versus estimated selection classification)

The Strength of Selection
in Sel.Class 1a

Strong Medium Weak

Known selection classification
Within-cluster (WC)

1. PS.Adjb: known SelClass1 41.834 11.187 �0.149

2. PS.Adj: known SelClass2 �0.272 �0.321 �0.321

Across-cluster within-class (ACWC)—selection only

3. PS.Adj: known SelClass1 3.033 0.166 �1.118

4. PS.Adj: known SelClass2 �0.217 �0.271 �0.271

Across-cluster within-class (ACWC)—selection and outcome

5. Cov.Adjc: known SelClass1, estimated OutClass1 �0.299 �0.263 0.097

6. Cov.Adj: known SelClass1, estimated OutClass2 �0.263 0.164 �0.532

7. Cov.Adj: known SelClass2, estimated OutClass3 �0.281 �0.325 �0.325

Estimated selection classification
Across-cluster within-class (ACWC)—selection only

8. PS.Adj: estimated SelClass1 4.018 1.972 �4.180

9. PS.Adj: estimated SelClass2 0.011 0.002 �18.995

Across-cluster within-class (ACWC)—selection and outcome

10. Cov.Adj: estimated SelClass1, estimated OutClass1 �0.295 0.330 �2.705

11. Cov.Adj: estimated SelClass1, estimated OutClass2 �0.086 �0.157 �0.455

12. Cov.Adj: estimated SelClass2, estimated OutClass3 �0.046 �0.049 �20.029

Note:
a Selection Class 2 had random treatment assignment for all three selection conditions used in
Selection Class 1
bPS.Adj: propensity score adjustment (using inverse propensity score weighting)
cCov.Adj: covariate adjustment (using multilevel latent class linear regression)
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multilevel latent class logistic regression when the selection mechanism in Selection
Class 1 was weak and similar to the random selection mechanism in Selection
Class 2.

Known Selection Class versus Estimated Selection Class In general, one may
observe from Table 7 that for the strong selection and medium selection mechanisms
in Selection Class 1, bias was minimal and similar for both known selection class
and estimated selection class, since there was little misclassification. However, when
there is higher misclassification from the weak selection mechanism in Selection
Class 1, there is potential for gross bias resulting from misclassification using the
estimated selection classes.

Propensity Score Adjustment versus Covariate Adjustment From Table 7, in most
instances, the bias resulting from using propensity score adjustment and covariate
adjustment was actually similar when comparing within known selection classes
and estimated selection classes, respectively (see rows 4 versus 7, and rows 9 versus
12). However, one may observe from rows 3 and 8 of Tables 8 and 9, respectively,

Table 8 Mean square error (MSE) of estimated treatment effect (known versus estimated
selection classification)

The Strength of Selection
in Sel.Class 1a

Strong Medium Weak

Known selection classification
Within-cluster (WC)

1. PS.Adjb: known SelClass1 1; 787:741 147:841 3:884

2. PS.Adj: known SelClass2 5:780 5:796 5:796

Across-cluster within-class (ACWC)—selection only

3. PS.Adj: known SelClass1 1; 017:212 97:648 8:411

4. PS.Adj: known SelClass2 7:423 7:430 7:430

Across-cluster within-class (ACWC)—selection and outcome

5. Cov.Adjc: known SelClass1, estimated OutClass1 10:304 4:499 3:385

6. Cov.Adj: known SelClass1, estimated OutClass2 47:700 11:603 6:305

7. Cov.Adj: known SelClass2, estimated OutClass3 5:549 5:576 5:576

Estimated selection classification
Across-cluster within-class (ACWC)—selection only

8. PS.Adj: estimated SelClass1 1; 056:474 123:272 50:953

9. PS.Adj: estimated SelClass2 7:743 8:867 607:690

Across-cluster within-class (ACWC)—selection and outcome

10. Cov.Adj: estimated SelClass1, estimated OutClass1 10:413 5:228 27:315

11. Cov.Adj: estimated SelClass1, estimated OutClass2 45:358 29:523 7:658

12. Cov.Adj: estimated SelClass2, estimated OutClass3 6:097 7:034 654:455

Note:
a Selection Class 2 had random treatment assignment for all three selection conditions used in
Selection Class 1
bPS.Adj: propensity score adjustment (using inverse propensity score weighting)
cCov.Adj: covariate adjustment (using multilevel latent class linear regression)
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Table 9 Standard deviation of estimated treatment effect (known versus estimated selection
classification)

The Strength of Selection
in Sel.Class 1a

Strong Medium Weak

Known selection classification
Within-cluster (WC)

1. PS.Adjb: known SelClass1 6:165 4:786 1:975

2. PS.Adj: known SelClass2 2:401 2:398 2:398

Across-cluster within-class (ACWC)—selection only

3. PS.Adj: known SelClass1 31:909 9:930 2:690

4. PS.Adj: known SelClass2 2:729 2:726 2:726

Across-cluster within-class (ACWC)—selection and outcome

5. Cov.Adjc: known SelClass1, estimated OutClass1 3:212 2:115 1:847

6. Cov.Adj: known SelClass1, estimated OutClass2 6:936 3:419 2:466

7. Cov.Adj: known SelClass2, estimated OutClass3 2:351 2:351 2:351

Estimated selection classification
Across-cluster within-class (ACWC)—selection only

8. PS.Adj: estimated SelClass1 32:417 10:981 5:815

9. PS.Adj: estimated SelClass2 2:797 2:993 15:791

Across-cluster within-class (ACWC)—selection and outcome

10. Cov.Adj: estimated SelClass1, estimated OutClass1 3:230 2:274 4:495

11. Cov.Adj: estimated SelClass1, estimated OutClass2 6:768 5:459 2:743

12. Cov.Adj: estimated SelClass2, estimated OutClass3 2:481 2:665 15:996

Note:
a Selection Class 2 had random treatment assignment for all three selection conditions used in
Selection Class 1
bPS.Adj: propensity score adjustment (using inverse propensity score weighting)
cCov.Adj: covariate adjustment (using multilevel latent class linear regression)

that the mean square error and standard deviation for the estimated treatment effect
in Selection Class 1 are rather large when using propensity score adjustment,
indicating that estimation of the treatment effect was not very efficient. This was
a direct result from the use of the inverse propensity score weighting approach in
the simulations, where the strong selection mechanism led to propensity scores very
close to 0 or 1, thus resulting in very large inverse propensity weights. Therefore,
when the selection mechanism is strong and selection class membership is unknown,
covariate adjustment can be a viable alternative if one is willing to make the required
functional form and distributional assumptions.

Checking for Outcome Heterogeneity Directly Without Checking for Selection
Heterogeneity The excellent classification recovery for known selection classes as
discussed in Sect. 4.1 suggests that multilevel latent class linear regression was able
to detect outcome heterogeneity more reliably than multilevel latent class logistic
regression was able to detect selection heterogeneity and required a smaller sample
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size when doing so. As such, a small separate simulation study was done using
the same data generation as in the original simulation study, but performing only
multilevel latent class linear regression, with 20 simulations for each selection
strength condition in the first selection class. All 60 simulations recovered the
three-outcome classes perfectly and, as a result, had minimal bias in estimation of
treatment effects. This indicates the viability of using covariate adjustment when one
does not have information about selection heterogeneity. This approach can be used
as a sensitivity analysis in comparing the treatment effects recovered from estimated
selection classes to those obtained from multilevel latent class logistic regression.

5 Summary and Recommendations

There is a large and increasing number of observational datasets collected in social
science research, and many are multilevel in structure. Naturally, there has also
been increasing interest in understanding how to make causal inference involving
multilevel observational data. The goal of this study is to estimate valid treatment
effects with multilevel observational data by removing selection bias and also
accounting for potential heterogeneity in selection and outcome processes.

The simulation study in this paper suggests that when there exists strong or
moderate selection and the overlap between treatment and comparison groups are
not sufficient within clusters, the joint use of selection and outcome latent class
models outperforms the use of either alone. It also works substantially better than
more traditional multilevel matching approaches such as within-cluster or across-
cluster matching with respect to efficiency and bias reduction.

When the differences in selection processes are weak, however, it is difficult
to classify units correctly. The proportions of selection class misclassification are
likely to be greater than those of outcome class misspecification, as selection
processes require nonlinear models for binary treatment assignment. In this case,
the simulation results suggest the examination of outcome heterogeneity regardless
of selection classes (i.e., fitting outcome latent class models for the entire data) and
a comparison of the results to the outcome class models within each of the selection
classes.

Although it is not common in practice, it is conceivable that the sample size
will be large and the overlap sufficient for each of the clusters. In that case,
we recommend using within-cluster matching, as located at one extreme of the
multilevel matching continuum, and summarizing the cluster-specific treatment
effects. When the number of latent classes is found to be one for both selection
and outcome models, the one-class selection and outcome multilevel model are
identical to the standard multilevel models for across-cluster matching at the other
extreme of the multilevel matching continuum. Therefore, the across-cluster within-
class multilevel matching continuum presented in this study provides a flexible and
unifying framework for making causal inference with observational multilevel data.
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Nonequivalent Groups with Covariates Design
Using Propensity Scores for Kernel Equating

Gabriel Wallin and Marie Wiberg

Abstract In test score equating, the nonequivalent groups with covariates (NEC)
design use covariates with high correlation to the test scores as a substitute for
an anchor test when the latter is lacking. However, as the number of covariates
increases, the number of observations for each covariate combination decreases. We
suggest to use propensity scores instead, which we include in the kernel equating
framework using both post-stratification and chained equating. The two approaches
are illustrated with data from a large-scale assessment, and the results show an
increased precision in comparison with the equivalent groups design and great
similarities in comparison with the results when using an anchor test.

Keywords Collateral information • Nonequivalent groups • NEC design

1 Introduction

The goal of observed-score equating is to enable the comparison between test scores
from different test versions (González and Wiberg 2017). This can be done in many
ways, and it depends on how the data is collected and the nature of the test forms.
If we can assume that the two groups of test takers who take the different test
forms are only randomly different with respect to ability, we can use the equivalent
groups (EG) design. If we have the opportunity to distribute common items (i.e.,
an anchor test) to the test groups, we can adjust for group differences in ability
by using the nonequivalent groups with anchor test (NEAT) design. The NEAT
design is preferable in many situations as test groups cannot always be considered
equivalent, especially if the test is given over a longer period of time (Lyrén and
Hambleton 2011). A problem is that although we might have nonequivalent groups,
there is not always an anchor test administered. A way to handle these situations is
to use information from background covariates to improve the equating through a
nonequivalent groups with covariates (NEC) design (Wiberg and Bränberg 2015).
Instead of using an anchor test, categorized covariates that correlate highly with the
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test scores are used. A problem with this approach is that the number of covariate
categories increases rapidly with the number of covariates used, thus reducing the
number of observations within each category. To avoid this problem, one might
be able to use propensity scores instead in the NEC design. The aim of this paper
is to propose the use of propensity scores in the NEC design with both a post-
stratification equating (PSE) approach and a chained equating (CE) approach within
the kernel equating framework. The proposed approaches are compared with kernel
equating under the EG design and the NEAT design using data from a college
admission test.

Covariates have been suggested and used before in equating: as an extra
information in a matching procedure in order to take care of possible differences
between (sub)populations (e.g., Kolen 1990), as a surrogate for an anchor test
(Liou et al. 2001) to improve linear equating (Bränberg and Wiberg 2011), and
as collateral information in equating in comparison to item response theory (IRT)
true-score equating (Hsu et al. 2009). This paper differs from these previous studies
as we suggest propensity scores as a way to use covariates in order to improve the
precision of the equating.

Propensity scores (Rosenbaum and Rubin 1983, 1984) have been proposed
before in the test equating context (Livingston et al. 1990) and have been used
for matching samples (e.g., Paek et al. 2006), and also to improve the equating
results by reducing the bias of the traditional PSE method (Sungworn 2009).
Furthermore, propensity scores have been used to combine anchor test scores
for use in PSE (Moses et al. 2010), CE, frequency estimation, IRT true-score,
and IRT observed-score equating (Powers 2010). Recently, Haberman (2015)
used propensity scores to make the data resemble data from an EG design, and
Longford (2015) adopted a causal analysis approach for equating using both inverse
proportional weighting and matched pairs based on propensity scores. This study
differs from the abovementioned studies as it focuses on kernel equating instead of
IRT or traditional equating methods.

2 Propensity Scores Within the NEC Design

Under the NEC design, one sample from population P has size nP, and one sample
from population Q has size nQ. The sample from population P took test form X,
and the sample from population Q took test form Y, and the scores from each
respective test form are denoted X and Y. A set of common covariates collected
in D that are correlated with X and Y are measured on both samples. A propensity
score (Rosenbaum and Rubin 1983) is a scalar function of the covariates and is
used to separate the test groups with respect to ability. Formally, it is the conditional
probability for test taker i, i D 1 , . . . , nP C nQ, of being assigned a well-defined
active treatment, given the covariate vector D D (D1, ... , Dm)t, t denoting the
transpose. Let Zi be a binary random treatment variable which equals 1 if test form
X is given to test taker i. The propensity score is defined as
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e .Di/ D Pr .Zi D 1jDi/ D E .ZjD/ (1)

The propensity score is in general unknown and in this paper, logistic regression
is used to estimate it. When the vector of propensity scores has been estimated, it is
divided into subgroups based on the percentiles, in accordance with Rosenbaum and
Rubin (1984). Within the same propensity score category, the test takers are viewed
as equivalent with respect to ability.

3 Using Propensity Scores in Kernel Equating with the NEC
Design

There are five steps within the kernel equating framework: (1) presmoothing,
(2) estimation of the score probabilities, (3) continuization, (4) equating, and (5)
calculating the standard error of equating (von Davier et al. 2004, pp. 45–47).
In observed score equating, there is a target population T defined that specifies
the population upon which the equating is performed on. The target population
is defined differently depending on the data collection design: In the EG design,
the target population is either P or Q depending on what population the sample
was taken from. In the NEAT and NEC designs, the target population is defined
as a mixture between the two populations P and Q such that T D wP C (1 � w)Q,
0 � w � 1.

By viewing the test takers as random samples, the test scores X and Y are
regarded as random variables with realizations denoted by xj and yk, respectively,
j D 1 , . . . , J and k D 1 , . . . , K. The probability that a randomly selected test taker
in the target population T gets a specific test score on the test forms is denoted by
rj D Pr.X D xj

ˇ̌
T/ and sk D Pr.Y D yk

ˇ̌
T/, respectively. Let F.x/ D Pr.X � x

ˇ̌
T/

and G.y/ D Pr.Y � y
ˇ̌
T/ represent the cumulative distribution functions (CDFs) of

the test scores.
Typically, the equipercentile equating transformation is used to perform the

equating:

y D 'Y.x/ D G�1 .F.x// ; (2)

where 'Y.x/ represents the equating transformation from test form X to test
form Y. However, to be able to use this transformation, F(�) and G(�) need to
be monotonically increasing, continuous functions. Since test scores usually are
discrete, this problem will be addressed in Sect. 3.2.

To use propensity scores in kernel equating, we need to define how we use it. Let
e(DXl) and e(DYl) be categorized versions of the propensity score for each test form,
each containing L categories. The categorized propensity scores are used in the first
step of kernel equating as described in the next section.
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3.1 Presmoothing and Estimation of Score Probabilities

Log-linear models are used to model the empirical distributions for both samples.
Let nPjl denote the number of test takers from P with a test score equal to xj

and an observed propensity score equal to e(dXl), and let nQkl denote the number
of test takers from Q with a test score equal to yk and propensity score equal
to e(dYl). With the joint probabilities pjl D Pr.X D xj; e.DXl/ D e.dXl

ˇ̌
P// and

qkl D Pr.Y D yk; e.DYl/D e.dYl

ˇ̌
Q// for each respective population, we assume that

the vectors nP D (nP11, : : : , nPJL)t and nQ D (nQ11, : : : , nQKL)t are independent and
multinomially distributed.

Let PSE-NEC-PS indicate that propensity scores are used within the NEC design
using a PSE approach. Using PSE-NEC-PS, the following probabilities are needed:
rPj D Pr.X D xj

ˇ̌
P/; rQj D Pr.X D xj

ˇ̌
Q/; sPk D Pr.Y D yk

ˇ̌
P/; sQk D P.Y D yk

ˇ̌
Q/. From

the definition of the target population, it follows that the test score distributions in
population T are defined as

rj D Pr
�
X D xj j T

�
D wrPj C .1 � w/ rQj; and (3)

sk D Pr .Y D yk j T/ D wsPk C .1 � w/ sQk: (4)

rPj and sQk are estimated by means of

brPj D
X

l

bpjl andbsQk D
X

l

bqkl; (5)

wherebpjl is the sample proportion from P with X D xj and e(DXl) D e(dXl) andbqkl is
the corresponding sample proportion from Q. It is however impossible to estimate
rQj and sPk using only the observed data since, by design, the test takers from
population Q only have scores on test form Y and the test takers from population
P only have scores on test form X. It is therefore assumed that the conditional
distribution of X given e(D) and Y given e(D) does not differ in the P and Q
population. This assumption is closely related to the assumption made for PSE
under the NEAT design, where the conditional distributions of X and Y are assumed
independent conditional on the anchor test. In a NEC design where propensity
scores are used, it is also assumed that every test taker has a positive probability
of receiving either test form, given its observed value on D. As such, the propensity
score in the NEC design replaces the anchor test score in the NEAT design so that
rQj and sPk can be estimated by

brQj D
X

l

 
bpjlP

jbpjl
�
X

k

bqkl

!
and bsPk D

X
l

0
@ bqklP

kbqkl
�
X

j

bpjl

1
A ; (6)
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where the expressions in Eq. (6), given the assumption made, follow directly from
the law of total probability.

Let CE-NEC-PS indicate a NEC design in which propensity scores with a CE
approach are used. The equated scores are obtained by going from the original score
distributions through the propensity score distributions onto the target distributions
in T. In addition to rPj and sQk, the following probabilities are required to
obtain the equated scores: tPl D Pr .e .DXl/ D e .dXl/ j P/ D

P
j pjl and tQl D

Pr .e .DYl/ D e .dYl/ j Q/ D
P

k qkl

3.2 Continuization and Equating

A Gaussian kernel is used to approximate the estimated discrete CDFs by a
smooth, continuous distribution (von Davier et al. 2004, pp. 56–61). Let ˆ(�)
denote the distribution function of the standard normal distribution, �X D

P
jxjrj,

aX D
q
�2X=

�
�2X C h2X

�
where �2X denotes the X score variance in T, and let hX > 0

denote the bandwidth. The score CDF approximation for X and likewise for Y is
defined as

FhX .x/ D P .X .hX/ � x/ D
X

j

rjˆ

�
x � aXxj � .1 � aX/ �X

aXhX

�
: (7)

Although several options to select the bandwidths hX and hY exist (e.g., double
smoothing (Häggström and Wiberg 2014)), the most common was used here, which
is to minimize the penalty function given in von Davier et al. (2004, pp. 61–64).

For PSE-NEC-PS, the estimates of FhX .x/ and GhY .y/ are used to construct
the equating transformation using the equipercentile transformation. Thus, Eq. (2)
becomes

b'Y.PSE/.x/ D bG�1
hY

�bFhX .x/
�

(8)

The transformations needed to equate X onto Y in the target population T using
CE-NEC-PS are

b'e.dXl/ .xI rP; tP/ D bH�1
Phe.dXl/P

�bFPhXP .xI rP/ I tP

�
; and (9)

b'Y
�
e .dYl/ I tQ; sQ

�
D bG�1

QhYQ

�bHQhe.dYl/Q

�
e .dYl/ I tQ

�
I sQ

�
; (10)

where bHPhe.dXl/P
and bHQhe.dYl/Q

are the estimated continuized CDFs of the cat-

egorized propensity score for population P and Q, respectively, and bFPhXP and
bGQhYQ are the estimated continuized CDFs of X in P and Y in Q, respectively.
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rP and sQ denote the vectors of score probabilities for X in P and Y in Q, respectively,
and tP and tQ are the vectors of propensity score probabilities for each respective
population. The equating transformation using the CE-NEC-PS approach is then
defined as

b'Y.CE/
�
xI rP; tP; tQ; sQ

�
D b'Y

�b'e.dXl/ .xI rP; tP/ I tQ; sQ
�

D bG�1
QhYQ

�bHQhe.dYl/Q

�bH�1
Phe.dXl/P

�bFPhXP.x/
���

:
(11)

3.3 The Standard Error of Equating

In kernel equating, the standard error of equating (SEE) is the square root of
the asymptotical variance of the estimated equating transformation b' (von Davier
et al. 2004, p. 71). It is assumed that the estimator of the score probabilities is
asymptotically normally distributed, making large-sample approximations using the
delta method possible to calculate the variance of b'. The SEE is formed by the
Jacobian of the equated score,bJ'Y , the Jacobian of the design function (DF),bJDF,
and a matrix C which is used to define the covariance between P, the J � L matrix
with pjl as entries, and Q, the K � L matrix with qkl as entries. The SEE is obtained
from these three components as follows:

SEEY.x/ D
���bJ'Y

bJDFC
��� ; (12)

where k�k denotes the Euclidean distance. bJDF is used when moving from the
joint probabilities in P and Q to the marginal probabilities in r D (r1, : : : , rJ)t and
s D (s1, : : : , sK)t, and where the data collection design adapted determines the form
of the DF. The SEE expressions for the PSE-NEC-PS and CE-NEC-PS can be found
in Wallin and Wiberg (2017).

4 Empirical Example

To illustrate the NEC design with propensity scores in kernel equating, the Swedish
Scholastic Aptitude Test (SweSAT) was used. It is a college admission test with
160 binary-scored multiple-choice items. This paper and pencil test is given twice
a year and contains a quantitative section with 80 items and a verbal section with
80 items which are equated separately. SweSAT has a history of using covariates
in the equating process, and only in the last five years, an anchor test has been
added in order to facilitate the equating. More details about equating methods for
the SweSAT can be found in Lyrén and Hambleton (2011).
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We equated the test scores from two consecutive administrations from the
quantitative section of the SweSAT using the R package (R Core Development
Team 2016) kequate (Andersson et al. 2013). The R code used can be obtained upon
request from the corresponding author. The approaches being compared were PSE-
NEC-PS, CE-NEC-PS, PSE and CE using a NEAT design (abbreviated PSE NEAT
and CE NEAT, respectively), and equating using an EG design. A comparison was
also made against the equating transformation suggested in Wiberg and Bränberg
(2015), which here is abbreviated PSE-NEC-RAW-COV. An alternative to PSE-
NEC-PS, abbreviated ANCHOR-NEC-PS, is to include the anchor test scores as
a covariate in the estimation model of the propensity score. This is thus the same
as the PSE-NEC-PS method although anchor items are included in the propensity
scores.

To facilitate a comparison with the results when using a NEC design with
covariates directly, the same raw test score data was used as in the study by
Wiberg and Bränberg (2015). There were in total 14,644 test takers who took both
administrations. We divided this group into two halves, allowing for differences in
the covariate distribution in the groups, so that samples of 7,322 test takers for each
test form were used. A 24-item anchor test was constructed through the selection
of 12 items from both test administrations. Note, slightly different samples than in
Wiberg and Bränberg (2015) were used.

The covariates used were the same as in Wiberg and Bränberg (2015), that
is, criterion-referenced grades (Grade, range 0–320) and the test takers’ verbal
test scores (Vtest, range 0–80) which are known to correlate with the quantita-
tive section. The Grade covariate was categorized into the following categories:
Grade1 D 0–225, Grade2 D 226–255, Grade3 D 256–290, and Grade4 D 291–
320, and Vtest was categorized into the following categories: Vtest1 D 0–30,
Vtest2 D 31–40, Vtest3 D 41–50, and Vtest4 D 51–80.

The propensity score model was fitted using the uncategorized versions of the
covariates, and then different categorizations of the propensity score were investi-
gated. The final categorization yielded twenty categories based on equally spaced
percentiles. The estimated, categorized propensity scores showed a correlation to
the test scores almost as strong as that between the anchor test scores and the test
scores (0.71 and 0.81, respectively), with equated scores that were stable to a slight
change in the number of propensity score categories.

Log-linear models were fitted to the empirical score distributions of the two test
forms. For all scenarios, the best log-linear model was chosen using the Akaike
Information Criterion, taking on a parsimonious model selection approach. For PSE-
NEC-PS, Eqs. (5) and (6) were used to estimate the score probabilities. The weight
w was set to 0.5 in Eqs. (3) and (4). For CE-NEC-PS, the probabilities needed,
besides those given in Eq. (5), were estimated by marginalizing the test scores
in the estimated joint distributions of the propensity scores and the test scores in
the two populations. A Gaussian kernel was used to transform the discrete score
distributions of X and Y into continuous score distributions, as described by Eq. (7).
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4.1 Results

In Fig. 1, the difference between the equated score and the raw score is plotted for
every design in the study. The equated scores using PSE-NEC-PS and ANCHOR-
NEC-PS get close to the equated scores using PSE NEAT and CE NEAT. This is also
true for the equated scores using PSE-NEC-RAW-COV, but these results are not as
close to the NEAT design results as is the equated scores from PSE-NEC-PS and
ANCHOR-NEC-PS. Previous studies have shown that the assumption underlying
the EG design is problematic for the SweSAT (Lyrén and Hambleton 2011), making
a NEAT approach more suitable. The results of Fig. 1 thus display how covariates
successfully replace the anchor scores when the latter is lacking. CE-NEC-PS does
not show this similarity to the results of the two NEAT designs, and the EG approach
deviates substantially from the others.

In Fig. 2, the same approaches are compared but with respect to the SEE. PSE-
NEC-PS again shows a close resemblance with the results of the two NEAT designs,
with a smaller SEE for a majority of the scores in comparison with the SEE of the
EG design. The SEE of PSE-NEC-PS is slightly higher for almost every score in
comparison with ANCHOR-NEC-PS, but close to equivalent to the results of PSE-
NEC-RAW-COV. The SEE of CE-NEC-PS is in general higher in comparison with
the other methods.

Fig. 1 The difference between the equated score and the raw score for the EG, CE NEAT, PSE
NEAT, PSE-NEC-RAW-COV, CE-NEC-PS, PSE-NEC-PS, and ANCHOR-NEC-PS approach
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Fig. 2 The SEE for the EG, CE NEAT, PSE NEAT, PSE-NEC-RAW-COV, CE-NEC-PS, PSE-
NEC-PS, and ANCHOR-NEC-PS approach

5 Concluding Remarks

Propensity scores were incorporated within the kernel equating framework, and
differences were examined with this approach of handling nonequivalent groups
compared to using anchor test scores. From the results of the empirical example,
we concluded that the PSE-NEC-PS approach overall seems to be a more attractive
choice in comparison with the EG design when the test groups are nonequivalent.
The CE-NEC-PS approach was not as successful, with results relatively far from
the NEAT design results. In comparison with the NEAT designs, the PSE-NEC-PS
results get closer than the PSE-NEC-RAW-COV results in terms of equated scores
and with close to equivalent results in terms of SEE. This indicates that the PSE-
NEC-PS is a very strong alternative when there is no common items or test takers
available. The PSE-NEC-PS approach is further strengthened since the incentive
to use propensity scores increases with an increasing number of covariates, and
we only used two. Furthermore, propensity scores facilitate the use of continuous
covariates in comparison with equating using the covariates directly, meaning that
the covariates are very easy to implement in a propensity score.

Acknowledgment The research in this paper was funded by the Swedish Research Council grant:
2014-578.
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Appendix

Abbreviations of the Data Designs

ANCHOR-NEC-PS Post-stratification under the nonequivalent groups with
covariates design using propensity scores

CE NEAT Chained equating under the nonequivalent groups with anchor test
design

CE-NEC-PS Chained equating under the nonequivalent groups with covariates
design using propensity scores

EG Equivalent groups design
PSE NEAT Post-stratification equating under the nonequivalent groups with

anchor test design
PSE-NEC-PS Post-stratification equating under the nonequivalent groups with

covariates design using propensity scores
PSE-NEC-RAW-COV Post-stratification equating under the nonequivalent

groups with covariates design
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A Mixture Partial Credit Model Analysis Using
Language-Based Covariates

Seohyun Kim, Minho Kwak, and Allan S. Cohen

Abstract A mixture partial credit model (MixPCM) can be used to classify
examinees into discrete latent classes based on their performance on items scored in
multiple ordered categories. Characterizing the latent classes, however, is not always
straightforward, particularly when analyzing text from constructed responses. This
is because there may be information in the constructed responses that is not captured
by the scores. Latent Dirichlet allocation (LDA) is a statistical model that has been
used to detect latent topics in textual data. The topics can be used to characterize
documents, such as answers on a constructed-response test, as mixtures of the
topics. In this study, we used one of the topics from the LDA as a covariate in a
MixPCM to help characterize the different latent classes detected by the MixPCM.

Keywords Latent Dirichlet allocation • Mixture partial credit model • Text
analysis

1 Introduction

Mixture IRT (MixIRT) models classify examinees into a number of discrete latent
classes based on their performance on a test (Mislevy and Verhelst 1990). Latent
classes are different from manifest groups, such as groups classified by gender or
ethnicity, in that they cannot be observed directly. MixIRT models have been studied
in a variety of applications. Mislevy and Verhelst (1990) used the mixture Rasch
model to capture students’ use of strategies on mathematics problems. Rost (1990)
used the mixture Rasch model for dichotomous data and a mixture partial credit
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model for polytomous data (Rost 1991) to find subgroups of examinees that share
the same item difficulties. Cohen and Bolt (2005) used a mixture 3PL model to
detect differential item functioning.

Characterizing the latent classes, however, is not always straightforward. Mod-
eling latent class membership with covariates can be helpful in explaining why
examinees were classified in different latent classes (Cho et al. 2013; Smit et al.
1999). Dayton and Macready (1988) incorporated sex and the math score of a
standard achievement test as covariates to model latent class membership. Smit
et al. (1999) explored the use of covariates in a mixture Rasch model. Results
suggested that the accuracy of class membership assignment and the standard
errors of parameter estimates were improved by using covariates that were strongly
related to latent class membership. Choi et al. (2015) used internet access as a
covariate to explain students’ latent class membership on the Trends in International
Mathematics and Science Study (TIMSS, Mullis et al. 2005).

In this study, we used a text-based covariate to explain latent class membership in
a mixture partial credit model (MixPCM) for constructed-response (CR) item score
data. This information was obtained from the words students used in their written
response to the CR items. Students’ written response data were first analyzed using
latent Dirichlet allocation (LDA; Blei et al. 2003) to extract clusters of words, called
topics, that characterized students’ written responses. These topics are probability
distributions over words. In the present study, we first extracted topics based on
students’ written responses to the CR items and then used one of these topics as
a covariate in a MixPCM that was estimated from the scores students received for
their responses to the CR items.

2 Theoretical Framework

This paper has two parts, the LDA analysis and the analysis of mixture partial credit
modeling with a covariate (MixPCM-cov). First, latent topics from students’ written
response to the CR items were detected using LDA. Then, students’ use of words
from one of the topics was incorporated into a MixPCM with a covariate (MixPCM-
cov) model to help characterize the classifications into latent classes. The number
of latent classes for the MixPCM-cov was determined using two model fit indexes,
Akaike’s information criterion (AIC) and Bayesian information criterion (BIC).

2.1 The Partial Credit Model

The partial credit model is an IRT model that can handle polytomous data scored in
ordered categories (Masters 1982). The model is described as follows: Let the score
on item i be x, where x is one of li C 1 categories, 0; 1; : : : ; li, then the conditional
response probability for category x D 0; : : : ; li is
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P.Xij D xj�j; bi/ D
exp

Px
kD0Œ�j � bik�Pli

yD0 exp
Py

kD0Œ�j � bik�
; (1)

where �j is an ability parameter for person j and bik represents the ith item step
parameter for category k.

2.2 The Mixture Partial Credit Model

The MixPCM is based on the partial credit model and assumes that the partial
credit model holds for each latent class, but that each class may have a different
set of model parameters (Rost 1991). That is, given �j, the response patterns can be
different between latent classes. The probability for category x D 0; : : : ; li in the
MixPCM is described as follows:

P.Xij D xj�j; bi/ D

GX
gD1

g
exp

Px
kD0Œ�jg � bikg�Pli

yD0 exp
Py

kD0Œ�jg � bikg�
; (2)

where g is an index for the latent class and g is a mixing proportion that represents
the proportion of examinees in class g. The other parameters, �jg and bikg, indicate
the same parameters as in Eq. (1) but they are all unique to latent class g. In this
model, the latent classes are mutually exclusive and exhaustive.

2.3 The Mixture Partial Credit Model with Covariates

Including covariates for modeling the probability of latent class membership is
useful in that it helps explaining why individuals are classified into one of the G
different latent classes (Cho et al. 2013; Smit et al. 1999). A MixPCM can be
extended to a MixPCM-cov by incorporating covariates for modeling the mixing
proportion parameter, g for each person. In this case, the probability of person j
belonging in class g is modeled as follows:

jgjWj D
exp.ˇ0g C

PP
pD1 ˇpgWjp/PG

gD1 exp.ˇ0g C
PP

pD1 ˇpgWjp/
; (3)

where Wj D .Wj1;Wj2; : : : ;WjP/ is a vector of P covariates, and ˇpg.p D

0; 1; : : : ;P/ is the class-specific effect of covariates on group membership. This
equation is a multinomial logistic regression with the covariates Wjps.
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2.4 Latent Dirichlet Allocation (LDA)

The objective of LDA is to summarize a text corpus into latent topics using
statistical modeling. Texts have been analyzed in various fields using statistical
modeling. For example, Griffiths and Steyvers (2004) analyzed papers in a journal to
discover topics that were latent issues underlying research activity (e.g., hot topics)
compared to topics that were no longer actively being pursued (i.e., cold topics),
Phan et al. (2008) analyzed medical texts to verify hidden topics underlying the
texts, and Paul and Dredze (2011) analyzed Twitter messages to extract health-
related issues using an applied LDA model. To date, however, little research has
been reported on the detection of latent topics in responses to CR items. Extracting
latent topics underlying students’ responses has the potential to help understand the
major content structures underlying students’ answers.

In LDA, it is assumed that each document in a corpus of students’ written
responses is generated by a mixture of several topics. Each word in a document
is generated from a single topic. A topic in this framework is represented as
a multinomial distribution over the words in a corpus. Topics are not mutually
exclusive, so it is possible that the same word in a corpus can be generated from
different topics. The generative process of LDA is as follows (Heinrich 2009):

1. Choose �k � Dirichlet.ˇ/: �k is an V � 1 vector, and V is the total number
of unique words in corpus C. Each element of the vector �k D .�k1; : : : ; �kV/

indicates the probability that the corresponding word appears in a document
under topic k, and

PV
vD1 �kv D 1.

Each document d in corpus C is modeled as follows:

2. Choose �d � Dirichlet.˛/: �d is a K � 1 vector, and K is the number of topics
in the corpus. Each element of the vector �d D .�d1; �d2; : : : ; �dK/ indicates the
corresponding topic proportion for document d, and

PK
kD1 �dk D 1.

3. For each word (wd;n) in the document d:

(a) Choose a topic zd;n � Multinomial.�d/ and
(b) Choose a word wd;n � Multinomial.�zd;nDk/.

˛ is the parameter of the Dirichlet distribution of the topic proportions; ˇ is the
parameter of the Dirichlet distribution of word probabilities. In the LDA analysis,
these parameters are used for the priors, respectively, in the MCMC estimation of
these two distributions. zd;n indicates the topic for the nth word in a document d.D
1; 2; : : : ;D/, and �zd;nDk is the word distribution of topic zd;n D k.
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3 Method

3.1 Data

The data for this study were taken from a larger NSF-funded host study, Language-
Rich Inquiry Science for middle grades English Language Learners (LISELL).
The LISELL project focused on teaching the use of academic language for
understanding science inquiry practices.

3.1.1 Measures

The science assessment in the host study was designed to measure students’ use
of academic language and understanding of science practices. The assessment
consisted of six question scenarios each from two to four CR items and designed
to measure the use of independent and dependent variables, cause and effect,
and construction of hypotheses. There were 27 CR items considered on the test.
Students’ responses were written in separate answer documents handed out with
the test booklets. These responses were scored on four elements (science inquiry
practices, use of everyday language, use of academic language, and science content)
and were scored from two to three points. For the LDA analysis, the answer
documents for the students in the sample described below were transcribed into
text files.

3.1.2 Sample

The sample consisted of 138 middle school students. In the sample, 52 (37.68%)
students were in the 7th grade, and 86 (62.32%) students were in the 8th grade.
There were 79 (57.25%) female and 59 (42.75%) male students. The students used
404 unique words with an average document length of 98 words after removing
stop words. Stop words refer to types of functional words that do not provide any
information such as the, of, and etc. Words that were used less than three times were
also removed.

3.2 Estimation of LDA

The LDA model was fit to the CR data using the lda package in R (Chang 2015).
The lda package uses collapsed Gibbs sampling (Griffiths and Steyvers 2004;
Heinrich 2009), a Monte Carlo Markov chain (MCMC) method for estimating
model parameters. In this study, 60,000 iterations were conducted; the first 40,000
iterations were discarded as burn-in.
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The hyperparameters (˛ and ˇ) were assumed to be known, an assumption made
in previous studies (Griffiths and Steyvers 2004; Chang 2010). However, there is no
theoretically guaranteed approach for selecting optimal values for these parameters
(Chang 2010; Thomas et al. 2014). For this study, we used ˛ D 1

K (Chang 2010),
where K is the number of topics. The smaller the ˛ value is, the sparser the topic
proportions are. For example, in a testing situation, a small value for ˛ assumes that
students tended to use words from a small number of topics rather than using words
distributed evenly among all topics to construct their answers. With regard to ˇ, we
used 1

V , where V is the number of unique words. Many earlier studies (Arun et al.
2010; Bíró et al. 2009; Canini et al. 2009; Griffiths and Steyvers 2004; Griffiths
et al. 2007; Lu and Wolfram 2012; Porteous et al. 2008; Rosen-Zvi et al. 2010) used
either 0.01 or 0.1; however, in this study, 1

V appeared to provide better topic results
than either 0.01 or 0.1. Similar to ˛, a smaller ˇ leads to distinct topics (Griffiths
and Steyvers 2004; Heinrich 2009).

3.3 Estimation of the MixPCM-cov Model

Bayesian estimates of the MixPCM-cov model were obtained using MCMC as
implemented in the computer software WinBUGS (Lunn et al. 2000). This method
uses the Gibbs sampling technique, in which a sample of a parameter is drawn
from the parameter’s full conditional distribution up to that point over a large
number of iterations. In each iteration, the parameter estimates are sampled from
the corresponding posterior distribution, and the means of the parameter estimates
over the sampling iterations are used as the Bayesian posterior estimates of the
parameters. In order to obtain the Bayesian estimates, prior distributions of the
parameters need to be specified. The following prior distributions were used for
obtaining the Bayesian estimates of the MixPCM-cov.

bikg � Normal.0; 1/; i D 1; : : : ; I

�jg � Normal.�g; 1/; j D 1; : : : ; J

�1 D 0; �2 � Normal.0; 1/

ˇpg � Normal.0; 10/; p D 0; : : : ;P;

where I is the number of items, J is the number of students, and P is the number
of covariates. In this study, 20,000 iterations were run. The first 10,000 iterations
were discarded as burn-in. Convergence was determined by Heidelberger and Welch
(1981) convergence diagnostics using the R package, CODA (Plummer et al. 2006).
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4 Results

4.1 LDA

4.1.1 The Number of Topics in the LDA Model

The number of topics was determined by comparing log-likelihoods of candidate
LDA models having different numbers of topics. In addition, topics from the models
were examined with regard to interpretability. LDA models with two-, three-, four-,
and five-topics were considered. Table 1 shows the mean of the full log-likelihoods
over 20,000 post-burn-in iterations. The log-likelihood of the LDA model with three
topics was higher than that of the LDA models with two-, four-, and five-topics.
Interpretation of the topics also indicated that three topics were interpretable given
the instructional intervention. The characteristics of the topics are described below.

4.1.2 Topic Characteristics

Table 2 shows the 15 words that had the highest probabilities of occurring in each
topic. The three topics were named as follows based on the characteristics of the
words in each topic: preponderance of everyday language (Topic 1), preponderance
of general academic language (Topic 2), and preponderance of discipline specific
language (Topic 3).

4.1.3 Distribution of Students over the Three Topics

Figure 1 illustrates where students fell with respect to the three topics. The values
on the X and Y axes represent the values of �d for Topic 1 (�d1) and Topic 3 (�d3),
respectively, for each student in the sample. �d2 for Topic 2 is �d2 D 1 � �d1 �

�d3. The upper left, lower left, and lower right corners of the plot represent degree
of strength in the use of the words from the corresponding topic. As an example,
consider the following hypothetical situations. Student A is located in the upper left
corner (�d D .0; 0; 1/); this location means that this student almost always used the
words from Topic 3 when answering the CR items. Student B is located in the lower
right corner (�d D .1; 0; 0/), meaning that the student almost always used the words
from Topic 1. Finally, Student C is located in the lower left corner (�d D .0; 1; 0/)

Table 1 The log-likelihoods
of LDA models

The number of topics Log-likelihood

2 �72,751.20

3 �72,047.77

4 �72,112.40

5 �72,161.76
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Table 2 The 15 words having the highest probability of occurring in each topic

Topic 1 Topic 2 Topic 3

Rank
order

Preponderance of everyday
language

Preponderance of general
academic language

Preponderance of discipline
specific language

1 Water 0.069 Change 0.081 Energy 0.069

2 Salt 0.053 Variable 0.079 Fish 0.061

3 Fish 0.048 Move 0.052 Kinetic 0.036

4 Weight 0.040 Think 0.052 Weight 0.035

5 Because 0.038 Independent 0.038 Increase 0.035

6 More 0.035 Cause 0.035 Potential 0.033

7 Eat 0.028 Bigger 0.033 Amount 0.032

8 Boil 0.028 Dependent 0.031 Small 0.032

9 If 0.027 Effect 0.030 Population 0.029

10 Lift 0.025 Down 0.026 Decrease 0.029

11 Hold 0.023 Wide 0.026 Time 0.028

12 Small 0.022 Need 0.025 Temperature 0.027

13 Algae 0.020 Sun 0.023 Person 0.024

14 Shadow 0.020 Might 0.020 Disease 0.023

15 Bottle b 0.017 Fly 0.019 Same 0.021

ll

l

l
l

l

l

l

l

l

ll

l

l

l

l

l

l l l

l
l

l

l

l

l

l

l

l
l ll

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l
l

l

l l
l

l

l

l

l

l
l

l

l

l

l l

l

l

l

l

l

l

l

l

l

l
l

l

l

l
l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

l

l

l

l
l l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Topic 1

To
pi

c 
3

Fig. 1 Posterior distribution of students’ membership in the three topics. The X and Y axes
represent the proportions of words from Topic 1 (�d1) and Topic 3 (�d3) in a document, respectively.
The proportion of words from Topic 2 is �d2 D 1� �d1 � �d3
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indicating that the student almost always used the words from Topic 2. As can be
seen in Fig. 1, Topics 1 and 3 for most students were located between the two topics
(along the diagonal of the plot) and indicate that these students tended to use words
primarily from Topic 1 and Topic 3. There are fewer dots along the X axis, meaning
that fewer students wrote their answers to the CR items using words from Topics 1
and 2 only.

4.1.4 Topics and Deciding on a Covariate for the MixPCM

The lda package provides the number of words from each topic used by each
student based on his or her responses. Topic 1 appeared to have a positive but weak
relationship with total score (r D 0:24), Topic 2 had a negative relationship with
total score (r D �0:22), and Topic 3 had a moderate positive relationship with
total score (r D 0:70). There also was a stronger relationship between latent class
membership, as detected by the MixPCM and the number of words from Topic
3 than from the other two topics. Therefore, the use of words from Topic 3 was
selected as the covariate to help explain latent class membership in the MixPCM.

4.1.5 MixPCM-cov

Model Selection

The number of latent classes for the MixPCM was determined by comparing AIC
and BIC, for one-, two-, three-, and four-latent-class solutions. Table 3 shows AIC
and BIC values for each solution. Smaller AIC and BIC values indicate better
model fit. As can be seen in the table, AIC selected the three-class solution, and
BIC selected the two-latent-class solution. When the two indexes do not match, Li
et al. (2009) suggest the BIC results for determining the number of latent classes
for dichotomous variables. Kang et al. (2009) suggest BIC for the use in model
selection for polytomous IRT models. There does not yet appear to be research
on model selection specifically for mixture polytomous IRT models. In this paper,
we used BIC for model selection for the MixPCM. Thus, two latent classes were
assumed in the CR score data.

The covariate was created as the percentile of the number of words from Topic
3 and coded as follows: 1 = less than the 25th percentile, 2 = between the 25th

Table 3 Model comparison
for mixture partial credit
model solutions

Number of latent classes AIC BIC

1 5381 5507

2 5109 5367

3 5063 5450

4 5069 5584
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Table 4 Posterior means of coefficient estimates for the mixing proportion in MixPCM-cov

Class ˇ0 (SE) ˇ1 (SE) ˇ2 (SE) ˇ3 (SE)

1 0 0 0 0

2 1.776 (0.749) �2.229 (0.788) �3.210 (0.921) �3.022 (0.858)

Table 5 Descriptive statistics for latent classes from MixPCM-cov

Class Number of students Topic 3 (mean frequency) Ability estimate (mean)

Class 1 80 35 0.04

Class 2 58 19 �1.31

All 138 28 �0.53

and 50th percentiles, 3 = between the 50th and 75th percentiles, and 4 = above the
75th percentile. Each level of the new variable was dummy coded, and the baseline
was taken to be the first level (less than the 25th percentile). The coefficients for
the dummy variables are as follows: ˇ0g indicates the log odds of falling into Class
2 rather than Class 1 for those students who used words from Topic 3 less than
the 25th percentile (level 1). ˇ1g; ˇ2g, and ˇ3g indicate the amount of change in the
log odds for students in levels 2, 3, and 4, respectively, compared to the baseline
students (level 1). The coefficients for Class 1 were set to 0 for identification (Cho
et al. 2013; Choi et al. 2015).

Table 4 shows the posterior mean estimates for ˇ2 D .ˇ02; ˇ12; ˇ22; ˇ32/. If
students were in the first level, the log odds of falling into Class 2 rather than Class
1 increased by 1.776. If students were above the first level, the log odds decreased
of being in Class 2. The log odds decreased even more if students were in the third
level rather than in the second level. In essence, the more students use words from
Topic 3, the less likely that the students were to be classified into Class 2.

4.1.6 Characterizing the Latent Classes

The sample sizes for the two latent classes are shown in Table 5. More students
belonged to Class 1 (N = 80) than Class 2 (N = 58). Class 1 tended to include
more high-performing students on the test than Class 2 in that the average posterior
mean ability estimate for Class 1 was higher than that of Class 2. Also, as indicated
in Table 4, students in Class 1 tended to use more words from Topic 3 than did
students in Class 2.

Figure 2 illustrates the posterior item difficulty estimates from the two-class
MixPCM-cov. Here the item difficulty parameter for each item was defined as the
sum of all item step parameters bikg of the corresponding item in class g. This index
yields a general item difficulty for the item in class g (Rost 1991). The X-axis of
Fig. 2 refers to the CR subitem number (referred to in the sequel as items), and the
Y-axis refers to item difficulty estimates in each class. Overall, for the item difficulty
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Fig. 2 Item difficulty parameter estimates of the two latent classes from MixPCM-cov

parameter estimates from Item 1 to Item 17, members of Class 1 had slightly higher
item difficulty estimates than Class 2. The differences in item difficulty estimates
between Classes 1 and 2 increased for the Items 18–27. This suggests that students
in Class 1 and Class 2 generally responded similarly to these items. The two latent
classes responded differently, however, for the remaining items. Item 1 to Item 17
and Item 18 to Item 27 measure different kinds of science inquiry practices. Items 1–
17 ask about controlling variables and hypothesis, observation, and evidence. Items
18–27 ask about cause and effect relationships.

5 Discussion

Constructed-response items are becoming increasingly prominent in educational
and psychological research. The objective of this study was to investigate the utility
of students’ use of words in their responses to CR items as a covariate for a
MixPCM. This was done in order to examine whether students in different latent
classes used different clusters of words to construct their answers. Results showed
that students’ latent class memberships were related to their use of words from Topic
3. The more a student used the words from Topic 3, the more likely the student was
classified in latent Class 1.

The two models used in this study, MixPCM and LDA, used two sets of data.
The MixPCM was based on polytomous item scores, and the LDA was based on
the text of students’ responses to the items. Thus, the two models measure different
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aspects of students’ responses. This use of textual data as a covariate was based on
the assumption that there exists additional information in students’ responses that
is not captured in the rubric-based scores. For example, there were two students in
the sample who had similar ability estimates of 0.20 from the MixPCM but who
constructed their answers differently. One student’s answer for item 22 was “It will
decrease.” The other student’s answer for the same item was “It decreases because
their food source was small fish and most of them died.” Both students received the
same credit for the item; however, the first student used 41 words from Topic 3,
and the second student used 50 words from Topic 3. One thing this shows is that
the scores provided only a partial analysis of the information in students’ answers
in that they do not completely show how they constructed their responses. Students
with the same ability constructed their answers quite differently yet received the
same score.

Students’ use of words from Topic 3 did not guarantee that the students used
words that were directly related to discipline-specific language because some words,
such as fish and small, also occupy large portions of Topic 3. The words used
from Topic 3, however, do provide a clearer sense of the types of words used in
constructing their answers.
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Investigating Constraint-Weighted Item
Selection Procedures in Unfolding CAT

Ya-Hui Su

Abstract Computerized adaptive testing (CAT) cannot only enable efficient and
precise ability estimation but also increase security of testing materials. To meet
a large number of statistical and nonstatistical constraints in CAT, the maximum
priority index approaches can be used to handle these constraints simultaneously
and efficiently for the construction of assessments. Many previous CAT studies
were investigated for dominance items; however, only few CAT studies were
investigated for unfolding items. In practice, an attitude measurement or personality
test, such as the Minnesota Multiphasic Personality Inventory-2 or Cattell’s 16
Personality Factors Test, might fit better with the unfolding models than with
the dominance ones. Besides, these tests commonly have hundreds of items
from complex structures. Therefore, the purpose of this study was to investigate
constraint-weighted item selection procedures in unfolding CAT. It was found
that the maximum priority index was implemented with the Fisher information,
the interval information, and the posterior expected Kullback-Leibler information
successfully in unfolding CAT. These three item information criteria had similar
performance in terms of measurement precision, exposure control, and constraint
management. The generalized graded unfolding model and the two-parameter
logistic model had similar performance in item selection.

Keywords Item selection • Weighted • Unfolding model • Computerized
adaptive

1 Introduction

In addition to statistical optimization, the construction of assessments usually
involves fulfilling various statistical and nonstatistical constraints. Because items
are selected sequentially, it is challenging to meet many nonstatistical constraints
simultaneously in computerized adaptive testing (CAT). The maximum priority
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index approaches can be used to handle these constraints simultaneously and
efficiently in unidimensional CAT (Cheng and Chang 2009; Cheng et al. 2009) and
multidimensional CAT (Su 2015, 2016; Su and Huang 2015; Yao 2011, 2012, 2013).

In psychological inventory, it is common to have Likert-type items that subjects
specify their level of agreement or disagreement on a symmetric agree-disagree
scale for a series of statements. The generalized graded unfolding model (GGUM;
Roberts et al. 1996, Roberts et al. 1998, Roberts et al. 2000) and the two-parameter
logistic model (2PLM; Birnbaum 1968) are commonly employed to analyze Likert-
type items. The assumptions of the GGUM and 2PLM are quite different. The 2PLM
is a dominance model; that is, the probability of getting a correct answer is increased
with the ability level. In contrast, the GGUM is an unfolding model; that is, there
exits an idea point. A higher item score is expected when a person’s ability level
is close to a given item on a unidimensional latent continuum. Therefore, a higher
item indicates stronger levels of agreement or attraction (Andrich 1996; Roberts
1995; Roberts et al. 1999). When a person disagrees with an attitude item because
its content is either too negative or too positive relative to his/her own opinion. The
GGUM is available for dichotomous or polytomous items. Many CAT studies were
conducted for dominance items. However, only few CAT studies were conducted
for unfolding items (Roberts et al. 2001). In practice, an attitude measurement or
personality test fit better with the unfolding models than the dominance models.
Therefore, many issues in unfolding CAT still need further attention.

Besides, items with high discrimination parameters are the most informative and
useful in CATs. When ability estimation is not considerable certainty, these items are
not needed in the early stages. In a-stratified design, item selection begins with low
discriminating items and saves high discriminating ones to later stages of testing. In
this way, measurement efficiency and accuracy should be improved. Hence, when
a-stratification (Chang et al. 2001; Chang and van der Linden 2003; Chang and
Ying 1999) is implemented in the present study, it can obtain better precise ability
estimation and achieve better item usage in some degree. However, the constraint-
weighted item selection method hasn’t been implemented with a-stratification in
unfolding CAT. Therefore, the purpose of the study is to investigate the performance
of the constraint-weighted item selection procedures for dominance and unfolding
CAT through simulations.

1.1 The Maximum Priority Index (MPI) Method

Cheng and Chang (2009) proposed the maximum priority index (MPI) method to
monitor several statistical and nonstatistical constraints simultaneously. K is the
total number of constraints. cik D 1 represents constraint k relevant to item i and
cik D 0 otherwise. Each constraint k is given a weight wk to match its importance.
The priority index (PI) of item i can be computed as

PIi D Ii

KY
kD1

.wkfk/
cik ; (1)
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where Ii is the Fisher information of item i evaluated at the current b� , which is the
estimated ability. In fact, the Fisher information can be replaced with other item
information criteria, such as interval information (Veerkamp and Berger 1997) or
Kullback-Leibler information (Chang and Ying 1996). For a content constraint k,
the priority index can be considered in a certain content area. If Xk is the number
of items required from the content area, after xk items have been selected, fk is
defined as

fk D
.Xk � xk/

Xk
: (2)

For item exposure control constraint k, fk can be defined as

fk D
1

rmax

�
rmax �

n

N

�
; (3)

where rmax is the maximum item exposure rate, N is the number of examinees who
have taken the CAT, and n is the number of examinees have seen item i. An item
with the largest priority index will be administered. When flexible content balancing
constraints are considered, lk and uk are lower and upper bounds of content area k,
respectively. Let �k is the number of items to be selected from content area k. Then,

lk � �k � uk; (4)

and

KX
kD1

�k D L; (5)

where L is test length. To incorporate both upper and lower bounds for a one-phase
item selection strategy, Su and Huang (2015) suggested that fk can be replaced with
f1kf2k, which f1k and f2k are defined as

f1k D
1

uk
.uk � xk/ ; (6)

and

f2k D
.L � lk/ � .t � xk/

L � lk
; (7)

respectively. f1k represents the closeness to the upper bound whereas f2k represents
the closeness to the lower bound. t is the number of items that have already been
administered and t D

PK
kD1 xk. When f2k is equal to 0, the sum of items from

other constraints has reached its maximum; f1kf2k is defined as 1 to ensure that
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items from constraint k can be still included for item selection. Cheng et al. (2009)
indicated that item selection in a-stratification should be considered on the basis
of matching item difficulty parameter b to the current b� , rather than matching the
largest Fisher information to the b� . They modified the PI for one-phase and two-
phase item selection as

PIi D
1ˇ̌

ˇbi �b�
ˇ̌
ˇ

KY
kD1

.f1kf2k/
cik ; (8)

and

PIi D
1ˇ̌

ˇbi �b�
ˇ̌
ˇ

KY
kD1

.fk/
cik ; (9)

respectively. This version of a-stratification allows for inclusion of many constraints
on item type and format as well as constrains to ensure balanced item exposure.
It was found the weighted mechanism successfully addresses the constraints. This
method not only helps to a great extent balancing item exposure rates but also
improves measurement precision.

2 Method

2.1 Simulation Study

Both the GGUM and 2PLM are commonly used to analyze Likert-type scale, such as
attitude measurement or personality test. In the GGUM, the probability of obtaining
a score y to attitude statement i is defined as

P .Yi D yj�s/ D
exp

˚
ai


y .�s � bi/ �

Py
kD0 �ik

	
PM

wD0

˚
exp

˚
ai


y .�s � bi/ �

Pw
kD0 �ik

		 ; (10)

where
PM

kD0 �ik D 0. � s is the location of person s on the attitude continuum. bi is
the location of attitude statement i on the attitude continuum. ai is the discrimination
of attitude statement i. � ik is the location of kth threshold on the attitude continuum
relative to the location of the item i. In this study, the GGUM and the 2PLM were
investigated the performance of the constraint-weighted item selection procedures
in unfolding and dominance CAT through simulations, respectively.

A simulated item pool was constructed to mimic a real item pool consisting of
six content areas: 25%, 15%, 15%, 15%, 20%, and 10%. Item pool size is 500 items.
The fixed-length stopping rule was used. The test length was set at 30 items with
content areas distributed as follows: 7-9, 4-6, 3-5, 3-5, 4-7, and 2-4 items. Thus, the
distribution of the six content areas in a 30-item test was similar to that in the item
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Table 1 The weights, upper
bounds, and lower bounds of
the constraints in unfolding
CAT

Constraints Weight Lower bound Upper bound

Content 1 1 7 9
Content 2 1 4 6
Content 3 1 3 5
Content 4 1 3 5
Content 5 1 4 7
Content 6 1 2 4
Item exposure rate 1 0.2
Item information 1

pool. In the study, eight constraints were considered, including content balancing,
exposure control, and item information. The corresponding weights, upper bounds,
and lower bounds of the constraints in CAT list in Table 1. All 5000 simulated
examinees were drawn from a standard normal distribution. The expected a posterior
(EAP) estimate was used to estimate examinees’ ability.

Three independent variables were manipulated in this study: models (two levels),
item selection procedures (two levels), and item information criteria (three levels).
The GGUM and 2PLM were considered in this study. Two item selection procedures
were the MPI and a-stratified MPI. Three item information criteria were Fisher
information (FI; Dodd et al. 1995), interval information (II; van Rijn et al. 2002),
and posterior expected Kullback-Leibler information (PEKLI; Veldkamp and van
der Linden 2002). When the FI criterion was used, Fisher information function for
a single item i was defined as

Ii .�/D a2i

2
4

mX
kD1

k2Pik .�/ �

 
mX

kD1

kPik .�/

!23
5 ; (11)

where ai is the discrimination in Eq. (10). When the II criterion was used, the interval
information function (van Rijn et al. 2002) for a single item was defined as

Interval Information Function D

Z b�Cı

b�-ı
Ii .�/ d�; (12)

where ı was a small constant defining the width of the interval. When Kullback-
Leibler information criterion was used, Kullback-Leibler information for a single
item was defined as

Ki .�; �0/ 


mX
kD1

Pik .�0/ ln

�
Pik .�0/

Pik .�/

�
: (13)

Because the true ability of the examinee, �0, was unknown, the posterior
expected information of ability was used (van der Linden 1998). After (t�1) items
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were administered, the PEKLI criterion (Veldkamp and van der Linden 2002) was
defined as

KLi

�b� t�1
�




Z

�

Ki

�
�;b� t�1

�
f .� jui1; :::; uit�1 / d�; (14)

where .ui1; :::; uit�1 / was response vector after (t�1) items were administered.
When the MPI item selection procedure was used, one of the item information

criteria would be used to integrate with the MPI item selection procedure in Eq. (1).
When a-stratified MPI item selection procedure was used, item selection should
be considered on the basis on matching item difficulty parameter b to the current b� ,
rather than matching the largest Fisher information to theb� (Cheng et al. 2009). That
is, Eq. (8) would be used for item selection. Since there were more than one item dif-
ficulty parameters for the unfolding items, item selection would be considered on the
basis on matching the averaged item difficulty parameters of item i to the current b� .

2.2 Evaluation Criteria

The results of the simulation study were analyzed and discussed based on the follow-
ing criteria: measurement precision, exposure control, and constraint management.
With respect to measurement precision, latent trait recovery was evaluated with the
bias and root mean squared error of estimation (RMSE). The formulas for bias and
RMSE were given as follows:

bias D
1

N

NX
nD1

�b�n � �n

�
; (15)

and

RMSE D

vuut 1

N

NX
nD1

�b�n � �n

�2
; (16)

where b�n and �n are the estimated and true abilities, respectively. With respect to
exposure control, for each item information criterion, the maximum item exposure
rate and the number of unused items were reported. To measure the skewness of item
exposure rate distribution (Chang and Ying 1999), the �2 statistic was defined as

�2 D
1

L=Z

ZX
iD1

.ri � L=Z/2; (17)

where ri is the exposure rate of item i. L is the test length and Z is the number of
items in the pool. The higher the �2 statistic, the worse the item exposure control.
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With respect to constraint management, the number of violated constraints in each
test was obtained. For each item information criterion, the averaged numbers of
violated constraints were calculated over all examinees.

3 Results

The results of the simulations were summarized according to measurement preci-
sion, exposure control, and constraint management in Tables 2, 3, and 4, respec-
tively. With respect to measurement precision, the bias, RMSE, and relative
efficiency for different item selection methods list in Table 2. The MPI item selec-
tion method with the FI criterion was considered as the baseline while the GGUM
or the 2PLM was used. In general, the 2PLM yielded slightly better performance
than the GGUM in measurement precision. Three different item information criteria
obtained similar performance in terms of bias, RMSE, and relative efficiency. The
MPI item selection method yielded slightly better performance than the a-stratified
MPI method.

With respect to exposure control, the actual item exposure rates of each item were
recorded. The maximum item exposure rate, the number of overexposed items, the
number of unused items, and the chi-square statistic measuring the skewness of the
item exposure rate distribution were calculated. The results of exposure control for
different item selection methods list in Table 3. In general, two different IRT models
obtained similar performance in exposure control. Three different item information

Table 2 Measurement precision results for the item selection methods

Item selection methods Bias RMSE Relative efficiency

Unfolding-GGUM MPI

FI 0.019 0.322 1.000
II 0.021 0.356 0.904
PEKLI 0.018 0.301 1.070
a-stratified MPI

FI 0.031 0.437 0.737
II 0.029 0.444 0.725
PEKLI 0.027 0.412 0.782

Dominance-2PLM MPI

FI 0.002 0.213 1.000
II 0.003 0.215 0.991
PEKLI 0.009 0.198 1.076
a-stratified MPI

FI 0.011 0.225 0.947
II 0.013 0.231 0.922
PEKLI 0.012 0.221 0.964
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Table 3 Exposure control results for the item selection methods

Item selection methods
Maximum
exposure rate

Overexposured
items Unused items Chi-square

Unfolding-
GGUM

MPI

FI 0.158 0 40 21.531
II 0.161 0 56 22.133
PEKLI 0.163 0 38 14.146
a-stratified MPI

FI 0.075 0 6 0.195
II 0.089 0 8 0.215
PEKLI 0.112 0 12 0.201

Dominance-
2PLM

MPI

FI 0.141 0 39 20.098
II 0.112 0 50 19.563
PEKLI 0.139 0 42 18.114
a-stratified MPI

FI 0.081 0 7 0.278
II 0.075 0 7 0.232
PEKLI 0.086 0 11 0.155

Table 4 Constraint management results for the item selection methods

Item selection methods Number of violation
0 1 2 3 4 5 6 Averaged

Unfolding-GGUM MPI

FI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
II 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PEKLI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a-stratified MPI

FI 0.17 0.4 0.35 0.08 0.00 0.00 0.00 2.68
II 0.16 0.43 0.34 0.07 0.00 0.00 0.00 2.64
PEKLI 0.32 0.42 0.2 0.05 0.01 0.00 0.00 2.01

Dominance-2PLM MPI

FI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
II 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PEKLI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a-stratified MPI

FI 0.96 0.04 0.00 0.00 0.00 0.00 0.00 0.10
II 0.97 0.03 0.00 0.00 0.00 0.00 0.00 0.06
PEKLI 0.95 0.05 0.00 0.00 0.00 0.00 0.00 0.08
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criteria also obtained similar performance in exposure control. The a-stratified MPI
item selection method yielded much better performance than the MPI method in
terms of less unused items and smaller chi-square statistics.

Since the violation was considered at each examinee level, only the first six
constraints in Table 1 were included to evaluate the efficiency of the constraint
management. The proportions of assembled tests violating a certain number of
constraints and the average number of violated constraints for different item
selection methods list in Table 4. In general, the MPI item selection method with
two different IRT models obtained similar performance in constraint management.
However, the a-stratified MPI item selection with the 2PLM obtained slightly better
performance than that with the GGUM in managing constraints.

4 Discussion

Two item response models (unfolding-GGUM and dominance-2PLM), two item
selection procedures (MPI and a-stratified MPI) and three item information criteria
(FI, II, and PEKLI) were considered in this study. The algorithms of the MPI item
selection procedure with different item information criteria and a-stratification were
derived successfully in CAT. The a-stratified MPI item selection procedure yielded
better performance than the MPI method in controlling item exposure; however,
the a-stratified MPI item selection procedure yielded slightly worse performance
than the MPI method in measurement precision and constraint management. This
is because a-stratified MPI method begins with low discriminating items and
saves high discriminating ones to later stages of testing. Therefore, there is still
a trade-off between measurement precision and item exposure. Three different item
information criteria obtained similar performance. The 2PLM obtained slightly
better performance than the GGUM.

Today one of the main challenges in educational and psychological measurement
is to develop theories and methods for the new mode of large-scale implementation
of computerized assessment, especially in developing item selection methods for
CATs. The MPI method has great potential in operational CATs. The stopping rule is
used to stop a cyclical item selection process in CATs (Reckase 2009; Wainer 2000).
The stopping rule can be when a fixed number of test items have been administered
or when a desired precision level has been achieved. In this study, when a stopping
rule of fixed length is applied, the precisions are different at different examinee
levels. It results in a high misclassification rate, which might be costly. To achieve
the same level of precision, some examinees may need to take more items and
some may need to take fewer items. However, some research questions need to
be investigated when a stopping rule of precision is used. The administered tests
for certain examinees may be undesirably lengthy or short because the required
precision cannot be met or few items have improved the precision significantly.
Under the CAT framework, some research has been done on using different stopping
rules (Dodd et al. 1993), such as the minimum standard error stopping rule, the
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minimum information stopping rule (Dodd et al. 1989), and the predicted standard
error reduction stopping rule (Choi et al. 2011). It is important to investigate the
MPI method in variable-length condition for unfolding items in the future.

It is of great value to develop item selection procedures in the unfolding CATs
that facilitates efficient control over nonpsychometric constraints, item exposure,
and content balance. It is also important to develop quality control procedures
for integration of the item selection to identify potential problems in the item
pool structure design. This research has important implications for educational
intervention research. Research findings from this study would not only advance
our knowledge about unfolding CAT but also has great potential to be applied
to educational and psychological intervention research. Assessments for testing
particular research interventions can be delivered via computers. It improves
measurement accuracy and increases assessment security. As a consequence, this
kind of precise measurement has the potential for contributing to strengthening the
empirical base for evidence-based educational policy-making.
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Rating Scale Format and Item Sensitivity
to Response Style in Large-Scale Assessments

Sien Deng and Daniel M. Bolt

Abstract This study examines the relationship between rating scale format and
instrument sensitivity to response style (RS). A multidimensional nominal response
model (MNRM) that allows item discrimination to vary across items for both
substantive and RS dimensions can be used for this purpose. We first conduct a
set of simulations to examine the recovery of item slopes under the model. Then we
apply the model to PISA and PIRLS survey items to investigate the item sensitivity
to RS in relation to different rating scale types. Simulation results indicate good
recovery of item slopes on both substantive and RS traits, and different rating scale
formats (agreement-type versus frequency-type scales) from PISA and PIRLS are
found to have varying sensitivities to RS, such that frequency-type scales are less
affected.

Keywords Response style • Multidimensional nominal response model • Rating
scale types

1 Introduction

Self-report rating scales are widely used in behavioral and psychological research.
One disadvantage of this approach is that rating scales are often susceptible to
response styles (RS), stylistic tendencies in how a respondent uses a rating scale that
is independent of the item content (Baumgartner and Steenkamp 2001). Extreme
response style (ERS) is one frequently cited example and is the focus of this study.
ERS refers to a tendency to overuse the endpoints of a rating scale (e.g., over select
1 or 7 on a 7-point Likert scale). Other various RS types have also been discussed in
the literature (see Van Vaerenbergh and Thomas 2013 for a review). As response
styles tend to be stable within respondents across different constructs and over
time (Weijters et al. 2010), their biasing effects reflect a likely source of systematic
measurement error.
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The effects of RS can be consequential not only in introducing bias to individual
trait estimates or scale scores but also in estimates of the relationship between
scale scores and other variables (Moors 2012). ERS, for example, has been found
to associate with respondent characteristics such as gender (De Jong et al. 2008;
Weijters et al. 2010), and education (Meisenberg and Williams 2008), and also to
vary across cultures (Lu and Bolt 2015). However, the magnitude and implications
of the biasing effects have been the subject of some debate. Some studies suggested
that ERS effects are typically negligible (Wetzel et al. 2016; Plieninger 2016),
while others found that ERS is more substantially biases means, variances, and
correlations based on scale scores (Weijters et al. 2010).

The complex biasing effects of RS and inconsistencies across studies may be
due to RS not only correlating with person characteristics but also other aspects
of the instrument design (see Fowler 1995 for more details). For example, rating
scales and items can have varying numbers of rating anchors (e.g., 5-point, 7-point),
rating types (e.g., agreement- versus frequency- or likelihood-based ratings), and
wording strategies (e.g., positive, negative, or mixed value types). The sensitivity of
items to RS may vary in relation to these and other item characteristics, potentially
explaining why the results of RS are often not consistent.

Approaches to measuring RS based on item response theory (IRT) provide the
possibility to simultaneously estimate how both items and persons are affected by
RS. Among a variety of IRT-based models developed to measure and/or control for
RS, the multidimensional nominal response models (MNRM) and variants based on
the Bock (1972) nominal response model can be appealing, as separate traits are
introduced to model both the substantive constructs and RS traits (Bolt and Johnson
2009; Falk and Cai 2015).

The current work aims to use one such model to better understand how to
design rating scale instruments so as to minimize their susceptibility to ERS effects.
Specifically, a recently extended MNRM proposed by Falk and Cai (2015) includes
item-level discrimination parameters on both substantive and RS traits, allowing
items to be differentially influenced by RS, making it potentially ideal for this
purpose. We further study this model in two ways: (1) by conducting simulations
to examine the recovery of item slopes and (2) by applying the model to real survey
instruments to investigate the varying sensitivity of items to ERS in relation to rating
scale types.

In the next section, the extended MNRM is presented. Next, the recovery of
item slopes particularly on the ERS dimension is examined by a set of simulations.
The subsequent study considers application to large-scale assessment data including
agreement-type and frequency-type rating scales. Conclusions and future directions
are discussed in the final section.
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2 An Extended MNRM to the Study of Extreme
Response Style

While prior applications of the MNRM have been used to measure and control for
RS (Bolt and Newton 2011; Johnson and Bolt 2010), a simplifying assumption
was that RS had the same impact for all items (i.e., RS loadings are equal across
items). However, this may not be true, and it may be useful to test this assumption.
Another limitation of the model is that it can only model a limited number of latent
traits due to heavy computational demands. These models were usually estimated
using maximum likelihood estimation techniques based on numerical integration
using either Gaussian or Bayesian methods (Falk and Cai 2015). To overcome
these limitations, Falk and Cai (2015) proposed an extended MNRM with a novel
parameterization and efficient estimation via the Metropolis-Hastings Robbins-
Monro (MH-RM) algorithm (Cai 2010a,b).

Compared to previous applications of the MNRM, the Falk and Cai (2015) model
demonstrates flexibility in three main respects. First, the overall item slopes for
each latent trait (i.e., substantive and RS traits) are separated from the slopes for
individual categories, which allows for investigation of whether the effect of RS is
constant or varying across items. Second, the model allows users to accommodate
various types of RS, corresponding to over-selection of different categories. Third,
the MH-RM algorithm allows for larger numbers of continuous and correlated latent
traits to be estimated and is more efficient compared to the traditional algorithms
mentioned above (Cai 2010a,b).

Suppose there are i D 1; : : : ;N independent subjects who respond to j D 1; : : : ; J
items, and assume k D 1; : : : ;K are response options for each item, where Yij D k
represents selection of category k for subject i on item j, m is an index for item
category, and �i is a D � 1 vector representing subject i’s latent trait scores on
d D 1; : : : ;D latent dimensions, which are assumed multivariate normal, i.e., �i �

N.�; ˙/. Then the extended MNRM can be statistically formulated as:

P.Yi D kj�i; a;S; c/ D
exp.Œa ı sk�

0�i C ck/

KP
mD1

exp.Œa ı sm�0�i C cm/

: (1)

Note that the item subscript is dropped in (1), and item parameters and latent trait
scores may vary across items. Specifically, a is a vector of item slope (discrimi-
nation) parameters of length D, and c is a vector of item intercept parameters of
length K, where the element ck represents the intercept corresponding to category

k. The constraint
KP

kD1

ck D 0 is applied for identification purposes within each item.

Item categories with positive c parameters tend to be more frequently selected at
� D 0; items with negative c parameters are less frequently. S is a D � K matrix
where each column corresponds to a score category, and each row corresponds
to a different latent dimension. The scoring function values sk determine the kth
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column of S. The symbol ı denotes the entrywise product. In this model, the scoring
function S is separated from the overall item slopes a. This constraint allows the
order of categories for the dimension to be fixed, while the overall item slope
parameters for that dimension are estimated and may vary across items. Thus, we
can investigate the potential varying effects of RS across items in relation to certain
item characteristics, such as the type of rating scale as considered in this study. In the
current analysis, we focus on ERS, so one of the latent traits is defined to represent
an ERS trait by specifying the item category slopes. The ERS trait is defined by a
propensity toward selection of the rating scale endpoints.

3 Simulation Study

Before applying this model to real data, to examine the effectiveness of the model
in recovering item slope parameters for the ERS trait, we generated response data
from the three-dimensional NRM in (1), including two intended-to-be-measured
traits and one ERS trait. We consider designs of two sample sizes (N D 500 or
2000) and two test lengths (n D 10 or 20 items for each substantive latent trait
dimension). We chose these values both because they seemed to reflect realistic
test conditions and are also different enough to allow us to see the effects of the
manipulated factor. In each simulation, person parameters are generated from a
multivariate normal distribution with moderate positive correlations among traits,

i.e., �i � N.�;˙/, where ˙ D

2
4
1 0:5 0:3

0:5 1 0:3

0:3 0:3 1

3
5, implying that the correlation is

0.5 between the two substantive traits and 0.3 between each substantive trait and
the ERS trait. For item parameters, a four-point rating scale is assumed, as in our
real data analyses described shortly. The item slopes a and category intercepts c
are separately generated from uniform distributions, i.e., aj � Unif .0:5; 2/ and

cjk � Unif .�2:5; 2:5/ with constraint
KP

kD1

ck D 0. To define the latent trait, the

scoring functions for the substantive and ERS traits are fixed at prespecified values
as detailed below, while all aj and cjk are estimated. Specifically, we fix the scoring
function values of the two substantive traits at



1 2 3 4


and the ERS trait at


1 0 0 1

. The use of equal interval category slopes for the substantive traits is

consistent with the use of an equal interval rating scale and is a common constraint
that leads to the frequently used partial credit or generalized partial credit models
(Thissen and Steinberg 1986). With this fixed scoring function matrix, higher values
of �i for substantive traits imply a greater likelihood of higher scores on the rating
scales. Similarly, a more positive �ERS implies a greater likelihood of picking
categories 1 or 4 and a more negative �ERS implies avoiding 1 and 4. To examine the
recovery of parameters, the data-generating model is fit to the generated response
data using the “mirt” R package (Chalmers 2012) with the implementation of the
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Table 1 Mean and standard deviation of RMSE for item slope parameters across 15 replication
runs, simulation analyses

Mean RMSE (SD)

Slope of dimension 1 Slope of dimension 2 Slope of dimension ERS

n D 10 n D 20 n D 10 n D 20 n D 10 n D 20

N D 500 0.161 (0.056) 0.154 (0.032) 0.156 (0.065) 0.132 (0.035) 0.218 (0.056) 0.187 (0.033)

N D 2000 0.074 (0.028) 0.067 (0.015) 0.074 (0.019) 0.075 (0.013) 0.103 (0.022) 0.097 (0.012)

MH-RM algorithm. The recovery of parameters is evaluated by root mean square
error (RMSE), where lower RMSE indicates better recovery. Recovery results are
averaged over 15 replications under each simulation condition. Here we mainly
focus on the recovery of item discrimination parameters.

Table 1 displays the mean and standard deviation of the RMSEs over the 15
replications for the estimates of item slope parameters. From the table it can be
seen that the overall recovery of item slopes for both substantive and ERS traits
is quite good for both sample size and both test length conditions. Moreover, as
expected, increasing the sample size and the number of items helps reduce the
RMSE. Specifically, when the sample size is increased to 2000, the RMSEs are
found to be reduced to half and also yield a smaller standard deviation. RMSEs of
slope estimates for the ERS trait are not recovered as well as the item slopes for the
two substantive traits. This is as anticipated and still reflects overall good recovery
(0.218).

4 Empirical Data Application

To illustrate the extended MNRM (Falk and Cai 2015) and to study the variability
of item slope parameters on the ERS trait in relation to rating scale types, we
consider data from the Program for International Student Assessment (PISA) and
Progress in International Reading Literacy Study (PIRLS) student questionnaires
from different years, each assessment including both agreement-type and frequency-
type rating scales. All items are scored using four-point rating scales. For each
assessment, four scales measuring potentially correlated constructs were used. From
each assessment, we analyzed data from two agreement-type (e.g., 1 = strongly
disagree to 4 = strongly agree) and two frequency-type (e.g., 1 = very often to 4 =
never or hardly ever) rating scales. Item examples are given in Table 2 from both the
agreement-type and frequency-type rating scales.

Table 3 displays the assessment, scale type, construct, and test length for each
of the assessments considered. For each assessment, item responses from four
constructs are simultaneously analyzed using a five-dimensional extended MNRM
in (1), with one dimension for each of the substantive constructs, and a single ERS
factor measured by all of the items. This allows for a comparison of the estimates of
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Table 2 Examples of items from agreement- and frequency-type rating scales, 2006 PISA and
2006 PIRLS

Agreement-type
Item 1(2006 PISA): I generally have fun when I am learning <broad science> topics

1 = strongly agree 2 = agree 3 = disagree 4 = strongly disagree

Item 2 (2006 PIRLS): Like being in school

1 = agree a lot 2 = agree a little 3 = disagree a little 4 = disagree a lot

Frequency-type
Item 1(2006 PISA): Watch TV programmes about <broad science>

1 = very often 2 = regularly 3 = sometimes 4 = never or hardly ever

Item 2 (2006 PIRLS): Use internet/music

1 = every data or almost every day 2 = once or twice a week 3 = once or twice a month

4 = never or almost never

Table 3 Rating scales in PISA and PIRLS analyses

Assessment Scale type Trait name Trait description Number of items

PISA 2006 Agreement-type ENJ Science enjoyment 5

USE Science usefulness 4

Frequency-type SCI Science activity 5

ENV Environment activity 5

PISA 2012 Agreement-type CPT Math self-concept 5

AXT Math anxiety 5

Frequency-type BHV Math behavior 5

COG Math cognitive 8

PIRLS 2006 Agreement-type REN Reading enjoyment 5

SCH School feeling 5

Frequency-type ACTR Activity after reading 4

INTF Internet function 5

PIRLS 2011 Agreement-type RFUN Reading fun 4

RUSE Reading usefulness 5

Frequency-type PARC Parent caring 4

REDF Reading function 3

ERS slopes for the different rating scale types. We calculate the mean and standard
deviation (SD) of ERS slope estimates according to constructs and rating scale types
(shown in Tables 4 and 5) and compare the mean differences in ERS slopes between
rating scale types using t-tests.

Figure 1 presents the ERS slope estimates for each item. Items with higher
ERS slopes are more affected by ERS, while those with lower ERS slopes are less
affected. From Fig. 1 we see most items on the agreement-type scale have larger
ERS slope estimates than those on the frequency-type scale. However, the ERS
slope estimates within a construct are also varying, and the variances also appear



Rating Scale Format and Response Style 353

PISA2006 PISA2012

PIRLS2006 PIRLS2011

ENJ USE SCI ENV CPT AXT BHV COG

REN SCH ACTR INTF RFUN RUSE PARC REDF
0.5

1.0

1.5

2.0

2.5

0.5

1.0

1.5

2.0

2.5

Item Construct

E
st

im
at

es
 o

f E
R

S
 S

lo
pe

s

Type Agreement−type Frequency−type

Fig. 1 Estimates of ERS slopes by rating scales for PISA and PIRLS

to be heterogeneous across rating scale types. The variance is not surprising as the
sensitivity of items to ERS may also be impacted by other design factors such as
ambiguous wording and content.

Tables 4 and 5 show the summary statistics (mean, SD) of the item discrimination
estimates for ERS for each construct, the resulting p-value of associated t-tests, and
effect size (Cohen’s d) estimates. As seen in these two tables, the mean ERS slopes
of the agreement-type rating scales are all greater than those of the frequency-type
rating scales across assessments. In addition, most comparisons show statistically
significant differences between the two rating scale types. Most effect sizes are
greater than 0:8 (Cohen 1988) suggesting nontrivial differences between the two
rating scale types (agreement-type versus frequency-type) in terms of ERS slope
estimates. Such significant differences suggest that ERS has less effect on items of
frequency-type rating scales compared to those of agreement-type rating scales. In
other words, items rated on the agreement-type scales seem more prone to leading
ERS respondents to select the 1 or 4 categories than the frequency-type scales.
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Table 4 Summary of ERS item slope estimates, PISA 2006 and PISA 2012

Assessment Scale type Substantive traits Mean ERS slope (SD) p-value Effect size

PISA 2006 Agreement-type ENJ 2.299 (0.264)

USE 1.996 (0.211)

Frequency-type SCI 0.868 (0.217)

ENV 0.908 (0.174) <0.001 5.392
PISA 2012 Agreement-type CPT 1.514 (0.288)

AXT 1.810 (0.172)

Frequency-type BHV 1.090 (0.487)

COG 1.042 (0.132) <0.001 2.056

p D .05 will be the significance criterion for p-value. The smaller the more significant
Cohen’s d D .8 will be the criterion for Effect Size. The larger the more significant

Table 5 Summary of ERS item slope estimates, PIRLS 2006 and PIRLS 2011

Assessment Scale type Substantive traits Mean ERS slope (SD) p-value Effect size

PIRLS 2006 Agreement-type RENJ 1.078 (0.403)

SCHF 0.949 (0.440)

Frequency-type ACTR 0.859 (0.156)

INTF 0.840 (0.185) 0.256 0.537
PIRLS 2011 Agreement-type RFUN 1.284 (0.189)

RUSE 1.285 (0.307)

Frequency-type PARC 0.641 (0.139)

REDF 1.006 (0.171) 0.001 2.017

p D .05 will be the significance criterion for p-value. The smaller the more significant
Cohen’s d D .8 will be the criterion for Effect Size. The larger the more significant

5 Conclusion and Discussion

Item slope parameters for both the substantive and ERS traits appear to be recovered
well in the Falk and Cai (2015) extended MNRM for the measurement of response
style. Such findings suggest that item-level RS discrimination parameters have the
potential to inform the development of rating scales so as to reduce susceptibility
to RS effects. From the real data analysis, we find that frequency-type rating
scale items appear to yield less susceptibility to ERS than agreement-type items,
potentially resulting in more objective responses that are less subject to idiosyncratic
response style tendencies. Thus, rating scale type might be carefully considered in
terms of potentially varying sensitivities to RS when designing a new instrument.
This study also indicates that the ERS biasing effect may not be constant across
items, with varying item slopes of ERS traits potentially affecting the measurement
of ERS effects. Further work may focus on those aspects of item stems that might be
related to response style susceptibility. One theory is that more ambiguously worded
statements might be more susceptible to RS. Prior work (Lu 2012) has suggested
a link between external ratings of item ambiguity and the influence of response
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style. Indeed, this theory also provides a possible explanation for the current finding
regarding rating scale types. The use of frequency-based anchors may imply less
subjectivity than agreement-based anchors.

One limitation of this study is that other types of RS such as midpoint
response style, acquiescence, or social desirability have not been investigated. The
correlations between traits may also affect the recovery of item-level discrimination
parameters. The relationship between the number of rating scale anchor points
and RS effects is also worthy of study in the future. Another limitation concerns
our ability to attribute the effects we observe to rating scales specifically. It is
conceivable that the differences we observed are related to other aspects of the
survey content that is reflected by the types of rating scale used, but not directly
attributable to the rating scale type itself. The ideal test of a rating scale effect might
seek to administer the same scale using the two different rating scale formats and
compare results using the same analytic approach. Thus, there is much potential for
future work in this area.
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Mode Comparability Studies for a High-Stakes
Testing Program

Dongmei Li, Qing Yi, and Deborah J. Harris

Abstract Mode comparability between paper and online versions of a test cannot
be simply assumed. This paper presents the research designs, statistical analyses,
and major findings from a series of special studies intended to ensure score
comparability for a high-stakes testing program, including an online timing study
and two mode comparability studies as well as a general framework that guided the
design of these studies. The framework views score comparability as a matter of
degree and the evaluation of score comparability as a matter of score validation.
The high-stakes uses of the test scores required stringent score comparability
which was obtained by applying test-equating methodologies under a randomly
equivalent groups design. Meanwhile, score equivalency and construct equivalency
were examined through statistical analyses of test results and responses to survey
questions. The comparability framework and results from these studies may provide
guidance for other testing programs transitioning from paper to online or when
evaluating score comparability in general.

Keywords Mode comparability • Online testing • Score comparability

1 Introduction

When test scores are used to inform decision making, one important requirement
is that the scores are comparable. However, the test scores could be based on
different test questions, obtained under different administration conditions, or
derived based on different scoring methodologies. Therefore, score comparability
cannot be simply assumed but should be carefully examined before such claims are
made, especially for high-stakes decisions. Mroch et al. (2015) suggested a general
framework for the evaluation of score comparability.
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1.1 A General Framework for Score Comparability

The framework was developed based on a literature review of comparability studies,
earlier comparability frameworks (e.g., Kolen 1999; Lottridge et al. 2008; Wang
and Kolen 2001), and contemporary perspectives on score validation (e.g., Kane
2006). It proposes that, for scores to be comparable, the validity of test score
interpretation to be compared should be similar. Therefore, gathering evidence for
score comparability should follow a process similar to gathering validity evidence,
and the sufficiency of evidence is dictated by the particular interpretation and uses
of the test scores. Based on this overarching point of view, the framework suggested
some guiding principles in the evaluation of score comparability. A slightly modified
version of Fig. 1 from Mroch et al. (2015) is presented in Fig. 1 in this paper to
illustrate these principles.

The first principle, as illustrated at the bottom section of Fig. 1, emphasizes that
score comparability is a matter of degree, with the required stringency determined
by the intended purpose of score use. Higher-stakes uses of test scores require
more stringent score comparability, and lower-stakes uses require less stringent
score comparability. The second principle, as illustrated in the top left section of
the figure, suggests that score incomparability may be impacted by all relevant
factors throughout the process of testing, from test development, test administration,
to test scoring, and the linking/equating process, if applicable. Evaluation of score
comparability should examine and document differences in each step of the process
so that sources of score incomparability can be identified. Finally, the third principle,
as typified by the top right section of the figure, suggests that evaluation of
score comparability implies examination of both construct equivalency and metric
equivalency, with construct equivalency focusing on what is being measured and
metric equivalency focusing on how (e.g., scoring methods and score scales) and
how well (e.g., precision and consistency) it is being measured. These two aspects
may be intertwined with no clear boundary between them.

1.2 Mode Comparability in High-Stakes Testing

With the advances in technology, transitioning from paper test administration to
online administration is something that has been or will be considered for almost
all testing programs. Transferring test items from paper booklets to computer for
online delivery is more complicated than it might appear (Leeson 2006; Mutler
1996; Parshall et al. 2002; Pommerich 2004; Schroeders and Wilhelm 2011). If
score equivalence is sought between online and paper versions of a test, careful
decisions need to be made not only to optimize the presentation of items but also to
minimize mode effects, especially in situations where paper and online tests are both
administered. To best achieve both maximum comparability to the paper version and
optimal online interface and delivery, an iterative process may be needed. This paper
describes a series of studies that were conducted for a high-stakes testing program
to ensure the comparability of scores between paper and online administrations.
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Fig. 1 A general framework of score comparability, a slightly modified version of Fig. 1 from
Mroch et al. (2015)
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2 Studies

2.1 An Overview of the Studies

The ACT test is a college readiness assessment administered both nationally in the
United States and internationally. The ACT test has four multiple-choice subject
tests (English, mathematics, reading, and science) and an optional writing test. The
multiple-choice tests are all reported on scales with a minimum of 1 and a maximum
of 36. The number of items for the English, mathematics, reading, and science tests
is 75, 60, 40, and 40, respectively. Paper administration of the ACT test has been in
place since 1959. Starting in spring 2015, online versions of the ACT test were made
available alongside the paper administration. Though the ACT test has been used
for multiple purposes, the major use of the ACT test scores is for college admission
decisions for millions of students each year.

As suggested by the guiding principles discussed above, the high-stakes uses
of the ACT test scores require scores across online and paper to be stringently
comparable. Therefore, care was taken to minimize mode effects during all stages in
the development of the online delivery of the ACT test. For example, with the online
version being a linear administration of the paper test forms, test questions for the
online and paper versions of a test form were the same. Yet even with a deliberate
attempt to make the online presentation of the test questions comparable with the
paper booklets, differences may exist. Paper test booklets and the online versions
were compared in each study. Among the differences that were documented, the
online and paper versions had some differences in text font sizes, page layout, line
breaks, item rendering, etc. Another difference was that the online version required
significant amount of scrolling to view the whole passages or the whole sets of
figures or equations in some of the tests.

Prior to the official launch of the online administrations, a series of studies
was conducted to evaluate and to ensure the comparability of scores between
paper and online administrations. First, to investigate whether the online test would
require additional time than the paper test because of the amount of scrolling,
a timing study was conducted in fall 2013 to help inform decisions on the time
limits for online administration. Then mode comparability under the suggested time
limits was evaluated in a special study in spring 2014, which resulted in revised
timing decisions for the online test administration. Subsequently, a second mode
comparability study was conducted in spring 2015 to evaluate mode comparability
under the revised timing conditions. In both the spring 2014 and spring 2015 mode
comparability studies, due to the high-stakes nature of the score uses, mode effect
was evaluated through various procedures. If a mode effect was found, adjustments
to scores were made using test-equating methodologies to make sure that the
reported scores were stringently comparable between online and paper.

A randomly equivalent groups design (Kolen and Brennan 2014) was used in
all three studies. Students were randomly assigned to take the test under different
timing conditions in the online timing study and were randomly assigned to take
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the paper or online test in both mode studies. As part of each study, students were
provided with online tutorials so they could get familiar with the online testing
system before taking the test. After the test was taken, feedback from students and
test administrators was collected through survey questions. In addition to questions
on the sufficiency of testing time, students were also asked various questions
concerning their preparation for online testing, computer experience and typing
skills, ease of navigation, and their use of various features of the online test, use of
scratch paper, testing mode preference, and others. They were also asked to provide
any additional comments that they might have regarding their testing experience.
Test data and responses to the survey questions were analyzed to inform decisions
concerning online administration time and to evaluate mode comparability.

More details about each of the studies and the major findings from each study are
discussed next, focusing on results from the multiple-choice tests. The ACT writing
test had its own timing and comparability studies which are not included in this
paper. Below is a more detailed description of the specific data collection designs,
data analyses, and results for each of the studies.

2.2 Fall 2013 Timing Study

2.2.1 Purpose

The standard time limits for the paper administration of the ACT test are 45, 60, 35,
and 35 min for the English, mathematics, reading, and science tests, respectively.
Because of the potential differences in the online and paper testing experiences,
especially the amount of scrolling involved for the online testing, it was not
known whether slightly different administration times should be used for online.
Therefore, a special study was conducted to inform timing decisions for the online
administration of the ACT test.

2.2.2 Data Collection Design

Students participating in the study were randomly assigned to take the subject tests
under one of the three timing conditions: (1) the current paper time limit, (2) the
current time limit plus 5 min, and (3) the current time limit plus 10 min. The tests
under different timing conditions were augmented with survey questions of different
lengths (separately timed), so the total administration time was the same for all
participants who took the same subject test. One of the survey questions included
in all timing conditions asked to what extent the students agreed/disagreed that they
had enough time to finish the test.

Over 3000 examinees from 58 schools participated in the study, with each
examinee responding to one subject test. Previous performance of these schools
on the ACT test was examined to make sure that this group of schools was
representative of the national testing population in terms of achievement level. In
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this timing study, students did not receive college-reportable scores, so students’
motivation was likely lower than in operational testing. Therefore, data were cleaned
to eliminate records with signs of low motivation or nonstandard administration,
based on a review of the irregularity reports, the item response time data, the test
completion rates, etc. The final data set contained 2794 students.

2.2.3 Data Analyses

Students’ item and test level scores, item omission rates, item and test latency
information, and student survey results were compared across the different timing
conditions. Because the timing study had only online test administrations, a matched
sample with similar total score distributions was also extracted from operational
paper testing data of the same test form. Item mean scores and omission rates were
compared between the timing study sample and the matched sample.

2.2.4 Summary of Results

Results from various analyses suggested that the online reading and science tests
under the standard paper timing condition might be overly speeded. For example,
under the standard paper timing condition, the percentage of students omitting 3
or more items was 16% for English, 20% for mathematics, 36% for reading, and
27% for science; the percentage of students not reaching the last item was 20%
for English, 22% for mathematics, 40% for reading, and 29% for science; and the
percentage of students who disagree or strongly disagree with the statement that they
had enough time to complete the test was 23% for English, 21% for mathematics,
54% for reading, and 52% for science. In addition, compared with the matched
operational paper sample, the average number of items omitted was higher for the
timing study sample for all subject tests, under the standard paper testing timing
condition. The timing study sample also had lower item p-values for the last few
items than the matched sample, especially for reading and science.

Evidence from the timing study seemed to suggest that online scores on
the reading and science tests would be more likely to be comparable to paper
administration scores with an increase in testing time, given the specific online
delivery system at the time. However, the findings from the timing study might
have been confounded with issues of low motivation and unfamiliarity with the
online testing format. For example, even though an online tutorial was provided
for students to view prior to taking the tests, the post-test survey indicated that less
than half of the students made use of the resource, with an even lower percentage
for students who took the reading and the science tests. After evaluating results
from different analyses and considerations from different perspectives, a decision
was made to tentatively increase online testing time for the reading and science
tests by 5 min and continue to evaluate the timing issue in the subsequent mode
comparability studies.
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2.3 Spring 2014 Mode Comparability Study

2.3.1 Purpose

As in the fall 2013 timing study, test items for the online and the paper version of a
test form were the same in the mode comparability studies, though small differences
in the presentation of the items may have occurred (e.g., changes in line breaks).
In addition, improvements were made to the online test delivery system based on
experiences and feedback from the previous study.

In the spring 2014 study, the testing time for the online and paper administrations
was the same for the English and mathematics tests, but it was different for the
reading and science tests. Five additional minutes were added to the online versions
of the reading and science tests based on results from the fall 2013 timing study.

The purposes of the 2014 mode comparability study were to (1) investigate the
comparability of the ACT scores from the online and paper testing modes, (2) obtain
interchangeable scores across modes for operational score reporting, (3) reevaluate
the timing decisions for the online administration of the ACT, and (4) gain additional
insights about the online administration process.

2.3.2 Data Collection Design

Students participating in the spring 2014 mode comparability study were randomly
assigned to take one of the three test forms (two online and one paper). The second
online form was included to evaluate mode effect in light of form differences. After
the administration, survey questions were sent to students who participated in the
study to ask for their comments and feedback on their testing experience. This study
was conducted in an operational test setting. Students took all four subject tests and
received college-reportable scores.

Thousands of students from about 80 schools across the country participated in
this study. Data were cleaned based on reviews of the proctor comments, phone
logs, irregularity reports, item response time information, and an examination of
the random assignment. Students with invalid scores and test centers with large
discrepancies in form counts across modes were excluded from further analyses.
The final data set contained 5593 students.

2.3.3 Method

Analyses were conducted to investigate mode comparability at two levels: metric
and construct equivalency. Metric equivalency was first examined in terms of the
similarity of test score distributions between the two modes, such as means, standard
deviations, and relative cumulative frequency distributions. Then, the similarity of
item-level information, such as the item p-values, item discrimination, item response
distributions, and item omission rates, was compared. Test level and item-level



364 D. Li et al.

comparisons were also conducted using item response theory (IRT). In addition,
measurement precision (reliability and conditional standard errors of measurement)
was compared across modes, and the item response time information for the online
test items was also examined. Construct equivalency was examined by comparing
the dimensionality and factor loadings, correlations among the subject tests, and by
examining differential item functioning (DIF) between online and paper scores.

Because of the high-stakes uses of the ACT test scores, in addition to a thorough
evaluation of mode comparability, equating methodology was used to ensure that
the scores were comparable across modes. The equating methodology used for
adjusting for mode differences was the same as what is used to equate the ACT test
across different paper forms, that is, equipercentile equating based on a randomly
equivalent group data collection design (Kolen and Brennan 2014).

2.3.4 Summary of Results

The analyses showed little mode differences in test reliability, correlations among
the four subject tests, effective weights, or factor structures but some differences in
score distributions for some of the subject tests. Item scores and test scores tended
to be higher, and omission rates tended to be lower for the online group than for the
paper group, especially for the reading and science tests.

Test Score Distributions

Table 1 presents the scale score descriptive statistics and statistical test of the
differences across modes, with the online scale scores obtained by applying the
same raw to scale score conversions as the paper form. The online group tended
to have slightly higher mean scores than the paper group for all tests. Though not
shown in the table, the descriptive statistics were also compared with those of the
second online form. The magnitude of the mean differences between online and
paper was larger than the mean differences between the two online forms. Except
for the mathematics test, the between-mode mean differences were all statistically
significant with t-test p-values smaller than 0.0001. The reading test had the largest
mean difference (two scale score points) between online and paper. The plots of
the relative cumulative frequency distributions of scale scores are shown in Fig. 2a,
which also suggested the existence of mode differences especially for reading.

Table 1 Scale score mean differences across modes (online minus paper) for spring 2014

Online (N D 1801) Paper (N D 1987) Scale score comparison
Test Mean SD Mean SD Mean difference Effect size t-test p

English 21.39 5.95 20.47 6.12 0.93 0.15 <0.0001
Mathematics 21.30 5.26 21.02 5.15 0.28 0.05 0.0942
Reading 23.56 6.43 21.47 6.43 2.09 0.32 <0.0001
Science 22.12 5.23 21.14 5.03 0.98 0.19 <0.0001
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Fig. 2 Selected results of the spring 2014 mode comparability analyses: (a) scale score distribu-
tions, (b) p-value differences, (c) omission rate differences, (d) test characteristic curves

Item Scores and Item Omission Rates

Figure 2b presents the item p-value (i.e., the proportion of students answering the
item correctly) differences across modes, with positive differences indicating that
the item was easier for the online administration. Except for mathematics, the item
p-values tended to be higher for online than for paper, especially for items in the
latter half of the tests. For the reading test, almost all items had a higher p-value
for online than for paper, with about one half of the items having a difference larger
than 0.05 and about one fourth of the items having a difference larger than 0.10.

The omission rate (i.e., the proportion of missing responses) for each item was
also compared across modes. Figure 2c presents the proportion of students omitting
each item for online minus the proportion of students omitting the item for paper.



366 D. Li et al.

As shown in Fig. 2c, online items tended to have lower omission rates than paper
for all subject tests, except for the first third of the items on the tests. This might
be related to the fact that it is a little bit easier to click a choice for online than to
bubble in an answer choice for paper. The differences of omission rates, however,
were all below 0.10, with the majority of the differences below 0.05.

The higher p-values of the online test items might be related to the lower item
omission rate for online. Furthermore, it might be possible that the lower omission
rate for online than paper is, to a certain extent, due to a higher rate of random
guessing, simply because it might be easier for students to click an answer on
the computer than bubble in an answer choice on the paper answer sheet. If so,
the observed p-value differences in Fig. 2b might have been inflated by random
guessing. However, because the differences in omission rate were small compared
with the differences in item p-values, the assumption of more random guessing for
the online test cannot fully explain the observed p-value differences.

IRT Analyses

Mode comparability was examined using the three-parameter logistic IRT model
at both the test and item level by comparing the test characteristic curves (TCCs)
and item parameters across modes. Figure 2d contains plots of the TCCs across
modes for each subject. The across-mode TCC difference is the smallest for the
mathematics test, but largest for reading, which is consistent with the test score
distributions in Fig. 2a. Item parameters were compared across modes. As with the
comparison of item p-values, the b-parameter comparison showed that the online
items tended to be easier than the paper items, especially for the reading and science
tests. The c parameters tended to be higher for the online items, which indicated that
guessing might be higher for online than paper, as noted when evaluating the omit
rates. The a parameters did not show consistent mode differences.

Measurement Precision and Consistency

Score reliability was compared between paper and online, and little difference
was found. For both paper and online, Cronbach’s alpha reliability coefficient was
0.93, 0.92, 0.87, and 0.86, for the English, mathematics, reading, and science tests,
respectively. A multivariate generalizability analysis was also conducted for paper
and online, under a person-crossed-with-item design, treating the different content
categories within a subject test as different variables. Reliability indices from the
generalizability analyses were very similar across modes.
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Factor Analysis and DIF

Exploratory factor analysis was conducted. The online and paper eigenvalue scree
plots were similar for all four subject tests. A one-factor model showed sufficiently
good fit for both paper and online, and the factor loadings correlated highly between
modes (0.87 and 0.90). DIF was examined using the Mantel-Haenszel procedure
(Camilli and Shepard 1994; Mantel and Haenszel 1959), with just a few items identi-
fied. Further investigation did not reveal any concrete sources of DIF for these items.

Equating

Equating methodology was used for all four multiple-choice tests to adjust for
differences so that the college-reportable scores of students participating in the mode
comparability study were comparable to national test takers, regardless of the testing
mode. The adjustment resulted in no change or change within just one scale score
point for the majority of the score points (around 50% to nearly 100%) for English,
mathematics, and science. For reading, however, the adjustment was two scale score
points or more for over half of the score points.

Online Timing Decision

Findings from the above analyses showed that students performed slightly higher
for online than for paper, especially on the reading and science tests which had five
more minutes than paper administration. In addition, the percentage of students who
either agreed or strongly agreed that they had enough time to finish the test turned
out to be higher for the online group than for the paper group. Therefore, a decision
was made to eliminate the extra 5 min for the online reading and science tests in
the spring 2015 mode comparability study. Refinements in the delivery of the online
assessments may be one of the factors contributing to the different recommendations
of online test time limits in this study compared to the previous study.

2.4 Spring 2015 Mode Comparability Study

2.4.1 Purpose

The spring 2015 mode comparability study was conducted to examine mode
comparability under the revised online administration time for reading and science,
i.e., the same administration time for paper and online of all subject tests. Because
English and mathematics administration time did not change between the two mode
studies, the spring 2015 study was a replicate of the spring 2014 study for these two
subjects.
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2.4.2 Design, Data, and Method

The mode comparability study in spring 2015 used the same data collection design
as the spring 2014 study, with randomly equivalent groups of students taking one
paper form and two online forms in an operational testing environment where
students received college-reportable scores. The final data set contained 3192
students.

2.4.3 Summary of Results

With the revised online testing time, mode differences decreased for reading and
science. Similar to findings from the 2014 study, mode differences were mostly
observed in test and item scores, omission rates, and IRT statistics, but not in the
other analyses such as reliability, factor structure, etc. Equating methodology was
applied to ensure stringent score comparability. For the analyses that showed mode
differences, the results are presented in Table 2 and Fig. 3.

Table 2 presents the descriptive statistics of scale scores and differences across
modes. The plots of the relative cumulative frequency distributions of scale scores
are shown in Fig. 3a. Figure 3b presents item difficulty differences across modes,
and it shows that while later items tended to be harder compared to earlier items
for each test regardless of mode, the items tended to be easier for the online
administration, especially for items that appeared later in the test. Figure 3c shows
the omission rate difference between online and paper for each item. Figure 3d
contains plots of the TCCs across modes for each subject. The between-mode TCC
difference was the smallest for the mathematics and science tests. There were some
differences in TCC for the English and reading tests.

Results showed that students performed similarly across modes on the science
test but still higher on the online reading test even without the extra 5 min. Equating
methodology was used for all tests to ensure that the college-reportable scores of
students participating in this study were comparable to other examinees.

Table 2 Scale score mean differences across modes (online minus paper) for spring 2015

Online (N D 1092) Paper (N D 1056) Scale score comparison
Test Mean SD Mean SD Mean difference Effect size t-test p

English 20.79 5.98 19.79 6.03 1.00 0.17 0.0001
Mathematics 20.69 5.20 20.58 5.16 0.11 0.02 0.6199
Reading 21.99 6.24 20.91 6.08 1.08 0.18 <0.0001
Science 20.86 5.17 20.80 4.96 0.06 0.01 0.7717
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Fig. 3 Selected results of the spring 2015 mode comparability analyses: (a) scale score distribu-
tions, (b) p-value differences, (c) omission rate differences, (d) test characteristic curves

3 Summary and Discussion

This paper described a series of special studies conducted for a high-stakes testing
program prior to the introduction of online testing as an alternative to existing
paper testing. Guided by a general framework for score comparability, these special
studies were intended to ensure stringent comparability of scores between online
and paper testing due to the high-stakes uses of the scores, in terms of both construct
comparability and score comparability. These studies all used a strong research
design (Kingston 2009) involving random assignment of examinees to mode
conditions. The two mode comparability studies, one with initial timing decisions
and one with the final timing decisions for the online administration, were both
conducted in an operational testing environment where student motivation was high.
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Whereas the analyses showed no evidence of differences in the measurement
of the construct or in measurement precision, slight differences were found on
test level and item-level statistics and distributions. The largest effect size of the
mode difference under the final online timing condition was 0.18 for the reading
test favoring online, which was about one scale score point. Considering that the
standard error of measurement of the test is about two scale score points, the mode
difference is relatively small. However, due to the high-stakes uses of the test scores,
a systematic score difference of even one score point may have practical impact.
Therefore, test-equating methodology was used to ensure strict comparability of
scores between paper and online administrations.

As in previous research (Kingston 2009; Leeson 2006; Mazzeo and Harvey 1988;
Mead and Drasgow 1993), results from different mode comparability studies were
not consistent. Results from one study may not be generalized to other testing
programs or even to the same testing program under revised test administration
conditions. Results from this study and earlier research do suggest a need for
different testing programs to evaluate mode comparability because mode effects
may exist. Whether mode effects are small enough to ignore will depend on
the specific purpose and stakes of score use. For high-stakes testing programs,
when mode effects are identified, adjustments are needed to ensure comparability.
Furthermore, with ongoing changes in technology and improvements in the online
test delivery, mode effects should be continuously monitored.
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Power Analysis for t-Test with Non-normal Data
and Unequal Variances

Han Du, Zhiyong Zhang, and Ke-Hai Yuan

Abstract A Monte Carlo-based power analysis is proposed for t-test to deal with
non-normality and heterogeneity in real data. The step-by-step procedure of the
proposed method is introduced in the paper. For comparing the performance of
the Monte Carlo-based power analysis to that of conventional pooled-variance t-
test, a simulation study was conducted. The results indicate the Monte Carlo-based
power analysis provided well-controlled empirical Type I error rate, whereas the
conventional pooled-variance t-test failed to yield nominal-level Type I error rate.
Both an R package and its corresponding online interface are provided to implement
the proposed method.

Keywords Power analysis • Monte Carlo simulation • Non-normality • Hetero-
geneity

Power analysis is widely used for sample size determination (e.g., Cohen 1988).
With appropriate power analysis, an adequate but not “too large” sample size is
determined to detect an existing effect. The conventional method for power analysis
for the t-test is limited by two strict assumptions: normality and homogeneity
(two-sample pooled-variance t-test). The two-sample separated-variance t-test (also
known as the Welch’s t-test; Welch 1947) tolerates heterogeneity but still assumes
normally distributed data. Thus, the corresponding exact power solution for the
separated - variance t-test assumes normality with either numerical integration of
noncentral density function or approximation (Moser et al. 1989; Disantostefano
and Muller 1995).

Practical data in social, behavioral, and education research are rarely normal
or homogeneous (Blanca et al. 2013; Micceri 1989). This poses challenges on
statistical power analysis for the t-test (Cain et al. in press). To deal with the
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problems, we develop a general method to conduct power analysis for t-test through
Monte Carlo simulation. The method can flexibly take into account non-normality
in one-sample t-test, two-sample t-test, and paired t-test and unequal variances in
two-sample t-test. We provide an R package as well as an online interface for
implementing the proposed Monte Carlo-based power analysis procedure.

1 One-Sample t-Test

The one-sample t-test concerns whether the population mean � is different from a
specific target value �0 (usually �0 D 0). Thus, the null hypothesis is

H0 W � D �0:

The alternative hypothesis can be either two-sided (Ha1) or one-sided (Ha2 or
Ha3):

Ha1 W � ¤ �0;

Ha2 W � > �0;

or Ha3 W � < �0:

The statistic given sample size n, t D
�

y ��0

s
p

1
n

, follows a t distribution with degrees

of freedom n � 1 under the normality assumption, where s is the sample standard
deviation. When the normality assumption is violated, the t statistic does not follow
a t distribution any more. When sample size increases, the statistic approximately
follows a normal distribution. However, power analysis is less meaningful with a
huge sample size because the power would be always 1.

Non-normality can take many forms. In this study, we focus on continuous
variables with skewness and kurtosis different from a normal distribution (e.g.,
Cain et al. in press). With such non-normal data, it is extremely difficult to use
an analytical formula to calculate power as in traditional power analysis. Instead,
a Monte Carlo simulation method can be conveniently used (e.g., Muthén and
Muthén 2002; Zhang 2014). The basic procedure of the Monte Carlo method is
to first simulate the empirical null distribution of a chosen test statistic with the first
four moments under the null distribution to get the critical value for null hypothesis
testing and then simulate the distribution of the test statistic under the alternative
hypothesis. Finally, the power can be estimated using the empirical distribution
under the alternative hypothesis and the empirical critical value.

To use the Monte Carlo method, information regarding the first four moments is
needed. Specifically, we need the population mean (�) and standard deviation (� ).

In addition, we need the population skewness �1 D E
h� x��

�

�3i
D �3

�3
and kurtosis

�2 D E
h� x��

�

�4i
D �4

�4
. For testing the population mean, the means under the null
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and alternative hypotheses should be different, denoted by �0 and �1, respectively.
However, we assume that the shapes of distributions under the null and alternative
are the same with the same standard deviation, skewness, and kurtosis in this study
although they can be different. In practice, the population statistics are unknown,
but they can be decided based on meta-analysis or literature review (e.g., Schmidt
and Hunter 2014).

For the one-sample test, the following step-by-step procedure can be used to
obtain the power for a given sample size n for testing:

H0 W � D �0vs:H1 W � D �1:

1. Given the mean (�0), standard deviation (� ), skewness (�1), and kurtosis (�2),
generate R0 sets of non-normal data, each with the sample size n. R0 should be
sufficiently large, and we recommend a minimum value 100,000.

2. Calculate the mean and variance for each of the R0 datasets denoted as Ny0j and

s20j, j D 1, : : : , R0. Calculate the statistics t�0j D
Ny0j��0

s20j

p
1
n

. Obtain the critical value

c˛ according to the prespecified Type I error rate ˛, typically 0.05, and the
alternative hypothesis. For example, if the alternative hypothesis is Ha2, c˛ is
the 100(1 � ˛)th percentile of t�0j

0s.
3. Generate R1 sets of non-normal data, each with the sample size (n), mean (�1),

standard deviation (� ), skewness (�1), and kurtosis (�2). We recommend a
minimum value 1000 for R1.

4. Calculate the mean and variance for each dataset in Step (3) and denote them as
Nyai and s2ai; i D 1; : : : :;R1, and calculate the corresponding statistic t�ai D Nyai��0

s2ai

p
1
n

statistic.
5. The power is estimated as the proportion that t�ai is greater than the critical value

c˛:  D #
�
t�ai > c˛

�
=R1.

The Monte Carlo procedure works equally for the normal data, in which the data
in Steps (1) and (3) can be generated from normal distributions. The procedure
above also works for the paired samples where the population mean, standard
deviation, skewness, and kurtosis of the difference scores are used.

2 Two-Sample t-Test

The two-sample t-test is used to test whether two independent population means are
equal. The null hypothesis is

H0 W �1 � �2 D 0:

The alternative hypothesis can be either two-sided or one-sided:

Ha1 W �1 � �2 ¤ 0;
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Ha2 W �1 � �2 > 0;

or Ha3 W �1 � �2 < 0:

The pooled-variance t-test where the statistic tpooled D Ny1�Ny2r
.n1�1/s21C.n2�1/s22

n1Cn2

q
1

n1
C 1

n2

follows a t distribution with degrees of freedom n1 C n2 � 2, where n1 and n2 are
sample sizes for the two independent samples. Ny1 and Ny2 are the sample means
and s21 and s22 are the sample variances of the two groups, respectively. The
pooled t-test assumes homogeneity and normality. When the variances of the two
groups are not the same, the separated-variance t-test should be used where the
test statistic t D Ny1�Ny2r

s21
n1

C
s22
n2

follows a t distribution with the degrees of freedom

.s21=n1Cs22=n2/
2

.s21=n1/
2
=.n1�1/C.s22=n2/

2
=.n2�1/

. As for the one-sample t-test, when the normality

assumption is violated, the distribution of the statistic is not a t distribution.
Therefore, the Monte Carlo-based method could be used for power analysis.

As in one-sample t-test, we assume that the shapes of the data distribution for
each group under the null and alternative are the same with the same standard
deviation, skewness, and kurtosis, which can be estimated from meta-analysis or
based on literature review. The step-by-step procedure for the two-sample t-test
power calculation with given sample sizes n1 and n2 for the two groups is given
below:

1. Let �10 and �20 be the means of the two groups under the null hypothesis,
typically, �10 ��20 D 0. Given the population means (�10 and �20), standard
deviations (�1 and �2), skewness values (�11 and �12), and kurtosis values for
two groups (�21 and �22), generate R0 sets of non-normal data, one with sample
size n1 and another with sample size n2. We recommend a minimum value
100,000 for R1.

2. For the R0 sets of data from previously simulated data pool, calculate the mean
and variance of each group for each dataset denoted as Ny01j, Ny02j, s201j, and s202j,

j D 1, : : : , R0. Calculate the separated-variance test statistics t�0j D
Ny01j�Ny02jr
s201j
n1

C
s202j
n2

.

Obtain the critical value c˛ according to the prespecified Type I error rate ˛ and
the alternative hypothesis.

3. Let �11 and �21 be the means of the two groups under the alternative hypothesis.
Generate R1 sets of non-normal data, each with the sample sizes (n1 and n2),
means (�11 and �21), standard deviations (�1 and �2), skewness values (�11

and �12), and kurtosis values (�21 and �22) for the two groups separately. We
recommend a minimum value 1000 for R1.
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4. Calculate the means and variances for each group in each dataset in Step (3)
and denote them as Nya1j, Nya2j, s2a1j, and s2a2j; i D 1; : : : :;R1, and calculate the

corresponding t�ai D
Nya1j�Nya2jr
s2a1j
n1

C
s2a2j
n2

statistic.

5. The power is estimated as the proportion that t�ai is greater than the critical value
c˛:  D #

�
t�ai > c˛

�
=R1.

3 Implementation

The Monte Carlo procedure for power analysis for the one-sample, paired-sample,
and two-sample analysis is implemented in an R package WebPower. Specifically,
the function wp.mc.t() is utilized. The basic usage of the function wp.mc.t()
has the following form:

wp.mc.t(n, R0, R1, mu0, mu1, sd, skewness, kurtosis,
alpha, type, alternative).

In the function, n is the sample size; mu0, mu1, sd, skewness, and
kurtosis are the mean under the null hypothesis, mean under the alternative
hypothesis, standard deviation, skewness, and kurtosis, with the default values 0,
0, 1, 0, and 3, respectively. R0 and R1 specify the total number of replications
under null and alternative hypotheses with the default value 100,000 and 1000,
respectively. alpha is the significance level with the default value 0.05. type
specifies the type of analysis such as one-sample test or two-sample test, and
alternative specifies the direction of the alternative hypothesis.

We briefly illustrate the application of the wp.mc.t function via three examples.
First, in a one-sample t-test, we are interested in whether the population mean
is equal to 0 with a two-sided alternative hypothesis. The population distribution
follows a normal distribution with mean equal to 0.5 and standard deviation equal
to 1. To calculate the power with sample size equal to 20, the R input is as follows:

wp.mc.t(nD20 , mu0D0, mu1D0.5, sdD1, skewnessD0,
kurtosisD3, type D c(“one.sample”), alternative D

c(“two.sided”)).
The power is 0.557 in this example.
Second, in a paired t-test, we plan to test whether the matched pairs have

equal means with one-sided alternative hypothesis (Ha :�D > 0). The mean, standard
deviation, skewness, and kurtosis of the difference scores are 0.3, 1, 1, and 6,
respectively. To calculate the power with sample size equal to 40, the specification
of the R function is as follows:

wp.mc.t(nD40 , mu0D0, mu1D0.3, sdD1, skewnessD1,
kurtosisD6, type D c(“paired”), alternative D

c(“larger”)).
The power is 0.657 in this example.
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Third, in a two-sample independent t-test, we plan to examine whether two
independent population means are equal with one-sided alternative hypothesis
(Ha :�1 ��2 < 0). The means for two groups are 0.2 and 0.5, standard deviations
for two groups are 0.2 and 0.5, skewnesses for two groups are 1 and 2, and kurtoses
for two groups are 4 and 6, respectively. To calculate the power with sample size
equal to 15 per group, the specification of the R function is as follows:

wp.mc.t(nDc(15, 15), mu1Dc(0.2, 0.5), sdDc(0.2, 0.5),
skewnessDc(1, 2), kurtosisDc(4, 6), type D c(“two.
sample”), alternative D c(“less”)).

The power is 0.879 in this example.
For those who are not familiar with R, an online application is also created to

conduct the same power analysis using a simple interface on this webpage: http://w.
psychstat.org/tnonnormal.

4 A Simulation Study

We conducted a simulation study to examine the performance of the Monte
Carlo-based power analysis for the two-sample analysis under the null hypothesis
H0 :�1 ��2 D 0. This is to investigate whether the Type I error can be well
controlled. The performance of the Monte Carlo method (MC) is also compared
with conventional pooled-variance t-test (CP).

We varied the following four factors in the simulation: normality of data (either
normal or non-normal), ratio of variance of group 1 to that of group 2 with �22 D 50

( �
2
1

�22
D0.2, 1, 2, and 5), ratio of sample size of group 1 to that of group 2 ( n1

n2
D0.2,

1, and 2), and sample size of group 1 (n1D10, 50, and 100). The non-normal
data are generated from a Gamma distribution. Overall, a total of 72 conditions
(2 � 4 � 3 � 3) are evaluated.

The empirical Type I error rates are listed in Table 1. Clearly, the Monte Carlo-
based power analysis controlled the Type I error rates well around the nominal
level (˛D 0.05) regardless of the shape of distribution, the level of heterogeneity

( �
2
1

�22
), the ratio of sample size of group 1 to that of group 2 ( n1

n2
), and the sample

size of group 1 (n1). The conventional pooled-variance t-test only controlled the
Type I error rates at the nominal level under homogeneity and/or equal-sample-size
situations as expected. When two groups have different variance and sample sizes,
the conventional pooled-variance t-test yielded either too small rejection rate (e.g.,
0.002) or too large rejection rate (e.g., 0.242). Given that practical data are often
non-normal and heterogeneous, the Monte Carlo-based power analysis is therefore
recommended.

http://w.psychstat.org/tnonnormal
http://w.psychstat.org/tnonnormal
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Table 1 The empirical Type I error in Monte Carlo-based power analysis (MC) and conven-
tional pooled-variance t-test (CP) under the null hypothesis

�21
�22

D 0.2
�21
�22

D 1
�21
�22

D 2
�21
�22

D 5

n1
n2

n1 MC CP MC CP MC CP MC CP

Normal data
0.2 10 0.048 0.003 0.051 0.049 0.049 0.117 0.049 0.227
0.2 50 0.050 0.001 0.047 0.048 0.056 0.120 0.047 0.219
0.2 100 0.052 0.002 0.047 0.048 0.051 0.116 0.050 0.225
1 10 0.053 0.057 0.052 0.051 0.048 0.050 0.048 0.055
1 50 0.049 0.051 0.052 0.050 0.051 0.051 0.047 0.050
1 100 0.053 0.054 0.052 0.053 0.048 0.049 0.048 0.048
2 10 0.050 0.131 0.052 0.050 0.047 0.028 0.052 0.020
2 50 0.046 0.116 0.051 0.051 0.048 0.028 0.048 0.015
2 100 0.049 0.121 0.052 0.054 0.052 0.029 0.050 0.015
Non-normal data
0.2 10 0.050 0.005 0.047 0.048 0.049 0.109 0.050 0.234
0.2 50 0.051 0.003 0.046 0.046 0.053 0.119 0.051 0.242
0.2 100 0.050 0.002 0.047 0.050 0.049 0.119 0.047 0.224
1 10 0.050 0.065 0.052 0.047 0.053 0.056 0.052 0.103
1 50 0.047 0.055 0.049 0.049 0.049 0.049 0.049 0.067
1 100 0.052 0.052 0.048 0.048 0.044 0.048 0.048 0.062
2 10 0.047 0.131 0.053 0.047 0.048 0.038 0.045 0.072
2 50 0.049 0.122 0.049 0.048 0.051 0.032 0.050 0.034
2 100 0.050 0.120 0.050 0.050 0.046 0.029 0.050 0.027

5 Conclusion

To flexibly deal with non-normality and unequal variances in the real data, we
proposed a Monte Carlo-based power analysis procedure for one-sample t-test,
two-sample t-test, and paired t-test. Simulation results showed that the Monte Carlo-
based method achieved well-controlled Type I rate even when the assumptions
for the conventional power analysis do not hold. In contrast, when homogeneity
assumption does not hold and/or two groups have unequal sample size, the
conventional pooled-variance t-test could be either too liberal or too conservative.
Both an R package WebPower and an online application are provided for researchers
to easily carry out the Monte Carlo-based power analysis. The Monte Carlo-based
method can be generalized to power analysis for ANOVA, regression, structural
equation modeling, and multilevel modeling to handle non-normal data. Missing
data can also be considered in the Monte Carlo method.
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Statistical Power Analysis for Comparing
Means with Binary or Count Data Based
on Analogous ANOVA

Yujiao Mai and Zhiyong Zhang

Abstract Comparison of population means is essential in quantitative research. For
comparing means of three or more groups, analysis of variance (ANOVA) is the
most frequently used statistical approach. Typically, ANOVA is used for continuous
data, but discrete data are also common in practice. To compare means of binary
or count data, the classical ANOVA and the corresponding power analysis are
problematic, because the assumption of normality is violated. To address the issue,
this study introduces an analogous ANOVA approach for binary or count data, as
well as the corresponding methods for statistical power analysis. We first introduce
an analogous ANOVA table and a likelihood ratio test statistic for comparing means
with binary or count data. With the test statistic, we then define an effect size
and propose a method to calculate statistical power. Finally, we develop and show
software to conduct the proposed power analysis for both binary and count data.

Keywords Statistical power • Analogous ANOVA • Binary data • Count data

1 Introduction

Comparison of population means is one of the essential statistical analyses in quan-
titative research (Moore et al. 2013). For comparing means of three or more groups,
analysis of variance (ANOVA) is the most frequently used statistical approach in
psychological research (Howell 2012). Typically, it is used for continuous data and
produces an F-statistic as the ratio of the between-group variance to the within-
group variance that follows an F-distribution. To use the F-test for ANOVA, three
assumptions must be met. The first is the independence of observations, which
assumes that all samples are drawn independently of each other. The second is the
normality assumption that requires the distribution of the residuals to be normal. The
third is the equality of variances, which assumes that the variance of the data in all
groups should be the same. In practice, studies with even continuous data cannot
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always meet all three assumptions. For binary or count data, the assumption of
normality is apparently violated. Therefore, it is unreliable to use classical ANOVA
to compare means of binary or count data. Furthermore, the corresponding power
analysis is expected to be problematic.

Since discrete data are very common in practice, there have been discussions on
the statistical methods for mean comparison with binary or count data. The existing
approaches include k � 2 contingency tables and logistic regression to analyze the
mean (proportion) difference among groups of binary data (Cox and Snell 1989;
Collett 1991). Contingency tables are commonly used along with Pearson’s chi-
squared test (Pearson 1947; Larntz 1978), likelihood ratio test (Birch 1963; Grove
1984; Williams 1976), Freeman-Tukey chi-squared statistic (Bishop et al. 1975;
Freeman and Tukey 1950), and Fisher’s exact test (Fisher 1922; Agresti 1992).
Pearson’s chi-squared test is related to Goodman and Kruskal’s � (Goodman and
Kruskal 1954; Efron 1978). This test is less accurate with small sample size (less
than 10 for each cell) and is unreliable if more than 20% of cells have expected
values less than 5 (Yates et al. 1999). For likelihood ratio test and Freeman-Tukey
chi-squared test, simulation studies found that the Type I error rates became very
high when the sample size was small and there were cells with small observed
means and moderate expected values (Larntz 1978). Fisher’s exact test is related
to Goodman and Kruskal’s � (Turek and Suich 1989; Efron 1978). This test is more
accurate than the chi-squared tests with small sample size, but it becomes difficult
to calculate with large samples or unbalanced tables (Mehta et al. 1984). Although
none of these tests is perfect, in general, the likelihood ratio test is preferred by
many statisticians (Larntz 1978; Collett 1991), because it is based on the exact
Bernoulli distribution for binary data, and researches (Hoeffding 1965; Bahadur
1967) suggested that it has some asymptotically optimal properties.

Researchers have also used logistic regression to estimate and compare the group
means of binary data (Cox and Snell 1989; Collett 1991). This method utilizes the
likelihood ratio test, which performs well when there are enough observations to
justify the assumptions of the asymptotic chi-squared tests. However, the models
and procedures might be more complicated than necessary. First, the procedure
requires creating dummy variables since regression models are used with categorical
predictors. These dummy variables not only increase the complexity of the model
itself but also make the interpretation of the model more difficult for applied
researchers. Second, the procedure using logistic regression is more complex with
the current software. Third, researchers are interested in whether the groups are
from populations with different means using ANOVA, while logistic regression is
more efficient for parameter estimation (Cox and Snell 1989) and prediction of
proportions (Collett 1991). The meaning of parameters in logistic regression is not
easy to interpret for the purpose of mean comparison.

Although contingency tables and logistic regression are two different approaches,
it is not difficult to show that contingency table and logistic regression lead to
the same conclusions when using likelihood ratio tests. Then, is it possible to
provide the equivalent results for binary data by applying likelihood ratio test to
ANOVA? In fact, as suggested by Efron (1978), log-likelihood can be used as
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a general measure of variation. From the perspective of variation decomposition,
Efron (1978) constructed an ANOVA-like table for binary data with emphasis
on descriptive statistics. Based on the work by Efron (1978), we will introduce
an analogous ANOVA table with a closed-form likelihood ratio test statistic for
comparing means with binary data. Then we will define an effect size and provide a
corresponding power analysis method. Software to conduct the power analysis will
also be developed. After that, we will extend the method for binary data to count
data.

The rest of the chapter is organized as follows. Section 2 is a review of one-
way ANOVA with continuous data. Section 3 proposes the method for binary data.
Section 4 discusses the method for count data. Section 5 illustrates the developed
software through examples. Section 6 summarizes and concludes this study.

2 One-Way ANOVA with Continuous Data

Analysis of variance (ANOVA) is a collection of statistical models used to analyze
the differences among group means through variance decomposition (Maxwell and
Delaney 2004; Fisher 1921). The current study focuses on the use of one-way
ANOVA. We first review the basics of one-way ANOVA with continuous data. Let
Y be the outcome variable and A be a categorical variable of k levels; with A as the
grouping variable, we divide the population of Y into k groups. The null hypothesis
H0 states that different groups have equal population means, while the alternative
hypothesis H1 supposes that at least two groups have different population means.
Let �j be the population mean of the jth group, j D 1; 2; � � � ; k and �0 be the grand
population mean. The null and alternative hypotheses can be specified as follows:

H0 W �1 D �2 D : : : D �k D �0;

H1 W 9 �g ¤ �j; where g ¤ j and g; j 2 Œ1; 2; � � � ; k�.

Consider the corresponding models with H0 and H1. The null model M0 is

EfYjA D jg D �0; (1)

where Yj.A D j/ � N.�0; �20 /. The alternative model M1 is

EfYjA D jg D �j; (2)

where Yj.A D j/ � N.�j; �
2
1 /.

In one-way ANOVA, the observed variance in the outcome variable is partitioned
into between-group variance and within-group variance. If the between-group
variance is greater than the within-group variance, the group means are considered
to be different. For continuous data, “squared error” is deployed as a measure of
variation between an observed data point and corresponding expectation (“explana-
tory point”, see Efron 1978). Its function is defined as

S.y; �/ D .y � �/2 (3)
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Table 1 ANOVA table for continuous data

Source Sum of squares
Degree of
freedom Test statistic P-value

Between-
group

SSB D
Pk

jD1.Nyj � Ny/2 k � 1 F D
SSB=.k�1/

SSW=.n�k/ PrfF.k � 1; n � k/ � Fg

Within-
group

SSW D
Pk

jD1

Pnj

iD1.yij � Nyj/
2 n � k

Total SST D
Pk

jD1

Pnj

iD1.yij � Ny/2 n � 1

Note: F.k � 1; n � k/ is the F-distribution with df1 D k � 1 and df2 D n � k

with y denoting a data point and � denoting the expectation. Given a sample of data
Y D .yj/ D fyijg, i D 1; 2; � � � ; nj; j D 1; 2; � � � ; k, with nj denoting the sample
size of the jth group, the test statistic is equal to the ratio of between-group sample
variance and within-group sample variance and follows an F-distribution under H0:

F D O�2between= O�2within � F.k � 1; n � k/; (4)

where O�2between D
Pk

jD1.Nyj � Ny/2=.k �1/, and O�2within D
Pk

jD1

Pnj

iD1.yij � Nyj/
2=.n � k/

with Nyj denoting the sample mean of the jth group and Ny denoting the grand mean of
data. ANOVA is often conducted by constructing the source of variance table shown
in Table 1.

3 One-Way Analogous ANOVA with Binary Data

3.1 Model and Test Statistic for Binary Data

For comparison of group means, often called proportions, for binary data, the
hypotheses are the same as one-way ANOVA with continuous data. But the models
are different since the distribution of the outcome variable is not normal.

Let Y be a zero-one outcome variable and A be a categorical variable of k levels,
with A as the grouping variable we can divide the population of Y into k groups.
Let �0 denote the grand probability of the outcome 1, and �j denote the jth group
probability of observing 1, j D 1; 2; � � � ; k. Then the null and alternative hypotheses
are

H0 W �1 D �2 D : : : D �k D �0;

H1 W 9 �g ¤ �j; where g ¤ j and g; j 2 Œ1; 2; � � � ; k�.

The null model M0 is

EfYjA D jg D �0; (5)
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where Yj.A D j/ � Bernoulli.�0/, and the alternative model M1 is

EfYjA D jg D �j; (6)

where Yj.A D j/ � Bernoulli.�j/. Given a sample of data Y D .yj/ D fyijg,
i D 1; 2; � � � ; nj, j D 1; 2; � � � ; k, with nj denoting the sample size of the jth group,
we define minus twice the log-likelihood ratio of M0 to M1 as a statistic:

D D �2 ln
L .�0jY/

L .�1; �2; : : : ; �kjY/

D �2Œ` .�0jY/ � ` .�1; �2; : : : ; �kjY/�

D �2.`M0 � `M1 /;

(7)

where L .�jY/ denotes the likelihood function of � given data Y. Under the null
hypothesis H0, this statistic follows a chi-squared distribution D��2.df / with the
degrees of freedom df D k � 1 if the sample size tends to infinity (Wilks 1938).

Let the observed grand mean Ny D
Pk

j

Pnj

i yij=n be the estimate of �0 and the

observed group mean Nyj D
Pnj

i yij=nj be the estimate of �j. For a given sample of
data, we calculate the test statistic as QD as follows. We first calculate minus twice
the log-likelihood for M0 and M1:

�2 Ò
M0 D �2` .NyjY/

D �2

kX
jD1

njX
iD1



yij ln Ny C .1 � yij/ ln.1 � Ny/


;

(8)

�2 Ò
M1 D �2` .Ny1; Ny2; : : : ; NykjY/

D �2

kX
jD1

njX
iD1



yij ln Nyj C .1 � yij/ ln.1 � Nyj/


I

(9)

and then QD as their difference:

QD D �2. Ò
M0 � Ò

M1 /

D �2

kX
jD1

nj
˚
Nyj.ln Ny � ln Nyj/C .1 � Nyj/



ln.1 � Ny/ � ln.1 � Nyj/

	
:

(10)

It can be proven that the observed grand mean Ny is the maximum likelihood estimate
of �0, and the observed group mean Nyj is the estimate of �j (Efron 1978). Other than
the “squared error” used by standard analysis of variance, if we use minus twice the
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Table 2 Analogous ANOVA table for binary data

Source Sum of variance
Degree of
freedom Test statistic P-value

Between-
group

SSB D �2. ÒM0 � ÒM1 / k � 1 QD D �2. ÒM0 � ÒM1 / Prf�2.k � 1/ � QDg

Within-
group

SSW D �2 ÒM1 n � k

Total SST D �2 ÒM0 n � 1

Note: �2.k � 1/ is the chi-squared distribution with df D .k � 1/

log-likelihood as a measure of variation, the variation function for binary data is as
follows:

S1.y; �/ D

(
�2ln.�/ if y D 1

�2ln.1 � �/ if y D 0
(11)

with y denoting a data point and � the expectation. Then the sum of variation SS1 DP
S1.Y; �/ D �2lnL .�jY/ with Y denoting a sample of data (Efron 1978). With

these functions, we can obtain the analogous total variance, within-group variance,
and between-group variance as follows:

SST D �2 Ò
M0

SSW D �2 Ò
M1

SSB D �2. Ò
M0 � Ò

M1 /:

(12)

Now with these statistics, we can create an analogous ANOVA table in Table 2 for
binary data similar to that for continuous data.

From the analogous ANOVA table, we see that the likelihood ratio test statistic
here equals the between-group variation. The ratio of between-group variation to
total variation is exactly the R2 coefficient for model M1 (see Efron 1978), which is
also used by Goodman (1971) for contingency tables.

3.2 Measure of Effect Size for Binary Data

Standardized effect-size measures facilitate comparison of findings across studies
and disciplines, while unstandardized effect-size measures (simple effect size)
with “immediate meanings” may be preferable for reporting purposes (Ellis 2010;
Baguley 2009). The r-family and the d-family effect-size measures are standardized
(Rosenthal 1994), while R2-family effect-size measures such as f 2 and �2 are
unstandardized and immediately meaningful (Cameron and Windmeijer 1997). Both
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types of effect-size measures could be defined. But not all types of effect-size
measures can be used for power analysis with a specific test statistic. For the purpose
of power analysis, in this study, we use a standardized effect-size measure like
Cramer’s V , which is a member of the r family (Ellis 2010). It is also an adjusted
version of phi coefficient � that is frequently reported as the measure of effect size
for a chi-squared test (Cohen 1988; Ellis 2010; Fleiss 1994). It can be viewed as
the association between two variables as a percentage of their maximum possible
variation. In the case of one-way analogous ANOVA, the two variables are the
outcome variable and the grouping variable.

For one-way analogous ANOVA with binary data, we define the effect size V:

V D

vuuut�2

kX
jD1

wj
˚
�j.ln�0 � ln�j/C .1 � �j/



ln.1 � �0/ � ln.1 � �j/

	
=.k � 1/; (13)

where wj D nj=n is the weight of the jth group, and n D
Pk

j nj is the total sample
size. The small, medium, and large effect size can be defined as 0.10, 0.30, and 0.50,
borrowed from Cohen’s effect-size benchmarks (Cohen 1988; Ellis 2010).

For a given sample of data, the sample effect size can be calculated as

OV D

q
QD=n.k � 1/

D

vuut�2

kX
jD1

wj
˚
Nyj.ln Ny � ln Nyj/C .1 � Nyj/



ln.1 � Ny/ � ln.1 � Nyj/

	
=.k � 1/:

(14)

3.3 Statistical Power Analysis with Binary Data

Power analysis is often applied in the context of ANOVA in order to assess the
probability of successfully rejecting the null hypothesis if we assume a certain
ANOVA design, effect size in the population, sample size, and significance level.
Power analysis can assist in study design by determining what sample size would
be required in order to have a reasonable chance of rejecting the null hypothesis
when the alternative hypothesis is true (Strickland 2014).

For one-way analogous ANOVA with binary data, when the null hypothesis H0

is true, the test statistic D follows a central chi-squared distribution �2.df /, where
df D k � 1 is the degree of freedom. If QD is larger than the critical value C D

�21�˛.df /, one would reject the null hypothesis H0. When the alternative hypothesis
H1 is true, the test statistic D follows a noncentral chi-squared distribution �2.df ; �/,
where df D k�1 is the degree of freedom and � D D D n.k�1/V2 is the noncentral
parameter. Let ˚�2.df ;�/.x/ be the cumulative distribution function of the noncentral
chi-squared distribution; then the statistical power of the test is
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power D PrfD � CjH1g

D Prf�2.df ; �/ � Cg

D 1 � ˚�2.df ;�/.C/

D 1 � ˚�2Œk�1;n.k�1/V2�



�21�˛.k � 1/


:

(15)

With this formula, the power, minimum detectable effect size V , minimum required
sample size n, or significance level ˛ can be calculated given the other parameters.

4 One-Way Analogous ANOVA with Count Data

For comparison of group means with count data, the statistical inference is similar to
that for binary data. The main difference lies in that the distribution of the outcome
variable in the model is Poisson instead of Bernoulli.

4.1 Model and Test Statistic for Count Data

To construct the models for count data, let Y be the outcome variable, which can
take only the nonnegative integer values, and A be a categorical variable of k levels.
The null and alternative hypotheses are

H0 W �1 D �2 D : : : D �k D �0;

H1 W 9 �g ¤ �j; where g ¤ j and g; j 2 Œ1; 2; � � � ; k�.

The null model M0 is

EfYjA D jg D �0; (16)

where Yj.A D j/ � Poisson.�0/, and the alternative model M1 is

EfYjA D jg D �j; (17)

where Yj.A D j/ � Poisson.�j/, j D 1; 2; � � � ; k. Given a sample of data, Y D

.yj/ D fyijg, i D 1; 2; � � � ; nj; j D 1; 2; � � � ; k, with nj denoting the sample size of the
jth group, minus twice the log-likelihood ratio of model M0 to M1 is

D D �2 ln
L .�0jY/

L .�1; �2; : : : ; �kjY/

D �2Œ` .�0jY/ � ` .�1; �2; : : : ; �kjY/�

D �2.`M0 � `M1 /

(18)
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Under null hypothesis H0, this statistic follows a chi-squared distribution D��2.df /
with the degrees of freedom df D k � 1 if the sample size tends to infinity (Wilks
1938). Let the grant mean Ny D

Pk
j

Pnj

i yij=n be the estimate of �0, and the group

mean Nyj D
Pnj

i yij=nj be the estimate of �j. For a given sample of data, we can
calculate the test statistic as QD as follows. We first calculate minus twice the log-
likelihood for M0 and M1:

SST D �2 Ò
M0 D �2

kX
jD1

njX
iD1

�
Nyij ln Ny � Ny

�
; (19)

SSW D �2 Ò
M1 D �2

kX
jD1

njX
iD1

�
Nyij ln Nyj � Nyj

�
I (20)

and then QD as their difference:

SSB D QD D �2. Ò
M0 � Ò

M1 / D �2

kX
jD1

nj


Nyj.ln Ny � ln Nyj/ � .Ny � Nyj/


: (21)

For count data, we can also create an analogous ANOVA table like Table 2.

4.2 Effect Size and Power Analysis for Count Data

For one-way analogous ANOVA with count data, the effect size is also defined as
V D

p
D=n.k � 1/. The sample effect size can be calculated as

OV D

q
QD=n.k � 1/

D

vuut�2

kX
jD1

wj


Nyj.ln Ny � ln Nyj/C .Nyj � Ny/


=.k � 1/;

(22)

where wj D nj=n is the weight of the jth group, and n D
Pk

j nj is the total sample
size. The power analysis of one-way analogous ANOVA with count data is the same
as that with binary data.
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5 Software

To carry out the power analysis for analogous ANOVA with binary or count data,
we have developed online applications that can be used within a Web browser. The
link for the binary analogous ANOVA is http://psychstat.org/anovabinary and for the
count analogous ANOVA is http://psychstat.org/anovacount. The software interface
of power analysis for analogous ANOVA with binary data is shown in Fig. 1. Among
number of groups, sample size, effect size, significance level, and power, any of
them can be calculated given the rest of the information. The following examples
illustrate the usage of the interface.

Suppose a student researcher hypothesizes that freshman, sophomore, junior, and
senior college students have different rates of passing a reading exam. Based on
his prior knowledge, he expects that the effect size is about 0.15. Based on the
information, he wants to know (1) the power for him to find the significant difference
among the four groups if he plans to collect data from 25 students in each of the four
groups and (2) the minimum required sample size for him to find the significant
difference among the four groups with power 0.8.

For the calculation of power, the number of group k D 4, the total sample size
n D 25�4 D 100, and the effect size V D 0:15. Let the significance level ˛ D 0:05,
then we can use formula (15) to calculate the power as

power D 1 � ˚�2Œk�1;n.k�1/V2�



�21�˛.k � 1/



D 1 � ˚�2.3;100�3�0:152/


�20:95.3/



D 1 � ˚�2.3;6:75/.7:8147/

D 0:572:

We can also use the online interface to estimate the power (see Fig. 1a). Given
four groups, sample size 100, effect size 0.15, and significance level 0.05, the output
indicates the power for this design is again 0.572.

With the required power D 0:8, k D 4, V D 0:15, and ˛ D 0:05, we solve the
following equation:

power D 1 � ˚�2Œk�1;n.k�1/V2�



�21�˛.k � 1/



0:8 D 1 � ˚�2.3;n�3�0:152/



�20:95.3/



0:8 D 1 � ˚�2.3;n�0:0675/.7:8147/

n D 161:520:

So, the minimum required sample size is 162.
Figure 1b shows how to use the interface to calculate the minimum required

sample size. Given four groups, effect size 0.15, significance level 0.05, and the
desired power 0.8, the output showed that a sample size 162, the near integer of

http://psychstat.org/anovabinary
http://psychstat.org/anovacount
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a b

Fig. 1 Examples of power analysis for analogous ANOVA with binary data. (a) Given sample
size, calculate power. (b) Given power, calculate sample size

161.5, is needed. A power curve can also be plotted by providing multiple sample
sizes in the Sample size field. The interface for analogous ANOVA with count data
is the same.

6 Discussion

In this chapter, an analogous ANOVA table and the closed-form likelihood ratio
test statistic were introduced for comparing mean differences among groups of
binary and count data, respectively. Based on the analogous ANOVA table and
test statistic, the effect size V statistic, an adjusted phi coefficient, was defined.
The power analysis involved four parameters, number of groups, total sample size,
statistical significance level, and effect size. In addition, corresponding free online
software were developed.

We recommend the application of these methods in binary and count data
analysis. First, these methods are analogous to procedures in classical ANOVA
as they decompose variation in observed outcomes for binary and count data.
Specifically, the analogous ANOVA tables can help the researchers intuitively
understand the exact meanings of the likelihood ratio test statistics used to compare
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means of binary or count data. Second, by using raw data and closed-form statistics,
these methods are easier to use and more efficient than logistic regression or
Poisson regression. Third, through the analogous ANOVA tables, we provide a
unified solution for both binary and count data, while contingency tables cannot
deal with count data. Future studies can investigate how to conduct power analysis
for multiple comparisons and extend the methods to two-way ANOVA.
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Robust Bayesian Estimation in Causal
Two-Stage Least Squares Modeling
with Instrumental Variables

Dingjing Shi and Xin Tong

Abstract In causal randomized experiments or psychological trials, the two-stage
least squares (2SLS) model with instrument variables (IVs) is a widely used
approach to address the issue of treatment endogeneity. The IVs are used to estimate
a part of the causal effect whose estimation is not affected by the violation of the
linearity assumption in the causal model, and the causal effect of interest in the 2SLS
model becomes the local average treatment effect (LATE). Because practical data
usually violate the normality assumption, the LATE estimate from the traditional
normal-distribution-based method may be inefficient or even biased. This study
proposes a robust Bayesian estimation method using Student’s t distributions to
model data with heavy tails or containing outliers and compares the performance
of the proposed robust method to that of the traditional normal-distribution-based
method. A Monte Carlo simulation study is conducted and shows that the proposed
robust method outperforms the traditional method when data are contaminated.
The robust method provides more accurate and efficient LATE estimates and better
model fits and thus is recommended to be used in general in the 2SLS modeling
with IVs.

Keywords Robust Bayesian method • Causal two-stage least squares modeling •
LATE • Instrumental variable

1 Introduction

In randomized experiments or psychological trials, the average treatment effect
(ATE) is often the center of the causal research interests. Researchers measure the
ATE by studying the outcome difference between participants who are assigned to
the treatment and those who are assigned to the control. Regression models with
ordinary least squares (OLS) estimation are commonly used to estimate the ATE.
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Traditional OLS regression in causal analysis assumes that there is no correlation
between the regressors and the errors. However, in the presence of endogenous
regressors that are correlated with the errors, the linearity assumption may be
violated, leading to a biased estimate of the ATE (Angrist and Krueger 1990). To
eliminate the bias caused by the correlation between the regressors and the errors, a
commonly applied strategy is to include instrumental variables (IVs) in the causal
model (Angrist and Pischke 2008, 2014).

The idea of incorporating IVs is to use some variables as instruments to estimate
a part of the causal effect whose estimation is not contaminated by the violation of
the linearity assumption in the causal OLS model. Specifically, when the linearity
assumption is violated, exogenous factors that cause some of the variations in the
treatment status and that are uncorrelated with the errors are selected and treated as
IVs. The exogenous portion of variations in the treatment that has been partialled out
by the IVs is used to estimate the corresponding treatment effect. For example, in
the study of the effect of schooling on educational returns (e.g., earnings), because
there is likely omitted variable bias such as unobserved personal ability, researchers
choose the proximity to college as a candidate IV. Particularly, people whose homes
are far away from the college are less likely to attend college. The college proximity
has some effect on schoolings, but has no direct effect on the outcome variable
earnings. It was argued that people who live a long way from a college are more
likely to be in a low-wage labor market (Card 1995). Because the ATE for only
a subset of observations is studied, the generalizability of the ATE (i.e., external
validity) for the whole sample is traded for the improvement of the estimation
performance (i.e., internal validity), and the ATE for the subset of participants is
called the local average treatment effect (LATE) (Angrist et al. 1996; Imbens and
Rubin 1997). Angrist and Imbens (1995) proposed a two-stage least squares (2SLS)
model to estimate the LATE, and this model is widely used in causal inference. In
particular, there are two modeling stages in the framework. In the first stage, IVs are
used to predict the partial treatment effect that can be explained by the variations of
IVs, and in the second stage, the fitted treatment values are used to predict the study
outcome and to estimate the LATE. LATE is the ATE for a small group of subjects
whose variations are explained by the IVs. The 2SLS model provides reliable LATE
estimates as long as valid IVs are used (Angrist and Imbens 1995; Angrist et al.
1996). There are two selection criteria for valid IVs: the instruments are related
to the treatment in some way, so that some variations of the outcome could be
explained by the instruments; and the instruments are not correlated with other
determinants, so that the instruments only affect the outcome through the treatment
(Angrist et al. 1996; Imbens and Rubin 1997).

Given valid IVs, the traditional causal 2SLS modeling assumes that the measure-
ment errors at both stages are normally distributed. However, data in psychological
or behavioral research usually violate the normality assumption and may have heavy
tails or contain outliers. Fitting the heavy-tailed data as if they were normally
distributed can result in inflated type I error rates, biased and inefficient parameter
estimates (Yuan et al. 2004; Zimmerman 1994, 1998; Zu and Yuan 2010), which
may eventually lead to incorrect statistical inferences. Therefore, various robust
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procedures have been developed to provide more accurate and precise parameter
estimates and been used in complex modeling frameworks, such as linear and
generalized linear mixed-effects modeling (e.g., Pinheiro et al. 2001; Song et al.
2007), structural equation modeling (e.g., Lee and Xia 2006; Yuan and Bentler
1998), and hierarchical linear and nonlinear modeling (e.g., Rachman-Moore and
Wolfe 1984; Wang et al. 2015).

In the last decades, robust methods based on Student’s t distributions have been
developed and advanced to model heavy-tailed data and outliers (e.g., Yuan and
Zhang 2012). Student’s t distributions have been applied to many complex data
analyses. For example, Lee and Xia (2006) discussed the use of the t distributions
in structural equation modeling; Shoham (2002) and Wang et al. (2004) applied
the t distributions in robust mixture models; Seltzer and Choi (2003) conducted a
sensitivity analysis using Student’s t distributions in robust multilevel models; and
in longitudinal data, Tong and Zhang (2012) made use of the t distributions for
robust growth curve modeling. The complex data structure is not uncommon in
causal inference for observational studies. Although the robust methods based on
Student’s t distributions have been studied to provide reliable parameter estimates
and confidence intervals in the preceding complex data analyses, few have been
examined under the causal inference modeling framework.

The purpose of this study is to propose a robust Bayesian estimation method
based on Student’s t distributions for the causal 2SLS modeling with IVs, and to
evaluate the performance of the robust Bayesian method in estimating the LATE,
the causal effect of interest. In the following section, the 2SLS models with IVs
and the associated LATE estimate in causal inference are reviewed. The robust
method based on Student’s t distributions is also introduced. Next, a Monte Carlo
simulation study is conducted to evaluate the performance of the robust method in
the 2SLS modeling with IVs. In the end, the results are summarized and discussions
are provided.

2 Robust Method for 2SLS Modeling with IVs

2.1 Two-Stage Least Squares Modeling (2SLS) with
Instrumental Variables (IVs)

Let Di and yi be the treatment and the outcome for individual i, respectively,
and Zi D .Zi1; : : : ;ZiJ/

0 be a vector of instrumental variables for individual i
(i D 1; : : : ;N). Here N is the sample size and J is the total number of instrumental
variables. In the first stage of the 2SLS model, the IVs Z are used to predict the
treatment D. In other words, the portion of variations in the treatment D is identified
and estimated by the IVs Z; and then the second stage relies on the estimated
exogenous portion of treatment variations in the form of the predicted treatment
values to estimate the treatment effect on the outcome y. A typical form of the 2SLS
model with IVs can be expressed as
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Di D 10 C �11Zi C e1i; (1)

yi D 20 C 21 ODi C e2i; (2)

where 10 and �11 D .11; : : : ; 1J/
0 are the intercept and regression coefficients

for the linear model where the treatment D is regressed on the IVs Z, respectively;
and 20 and 21 are the intercept and slope for the linear model where the outcome
y is regressed on the predicted treatment values of OD, respectively. �11 is the causal
effect of the IVs Z on the treatment D; and 21 is the treatment effect on the outcome
y for a subset of participants whose treatment effect has been partialled out and
explained by the IVs Z. Traditional causal 2SLS model with IVs is commonly
estimated using OLS methods. The measurement errors at both stages, e1i and e2i,
are assumed to be normally distributed as e1i � N.0; �2e1 / and e2i � N.0; �2e2 /.

2.2 Instrumental Variables (IVs)

There are two crucial assumptions for selecting valid IVs. One is the instrument
exogeneity assumption: the instruments are related to the treatment in some way,
so that some variations of the outcome could be explained by the instruments,
and the assumption is expressed as cov.D;Zj/ ¤ 0; j D 1; : : : ; J. The other is
the exclusion restriction assumption: the instruments are not correlated with other
determinants, so that the instruments only affect the outcome through the treatment,
and the assumption is expressed as cov.Zj; other determinants/ D 0; j D 1; : : : ; J.
The instrument exogeneity assumption guarantees that the predicted value ODi is
related to the treatment Di; and the exclusion restriction assumption ensures that
the predicted value ODi is uncorrelated with the second stage error e2i.

Finding proper IVs is always a practical challenge, and different approaches
have been used to help find IVs. First, in general, the selection of IVs relies
on the previous substantive theory. When researchers suspect there are potential
important factors being omitted in a causal effect model, they may use their
previous knowledge to find variables that are related with the treatment but do
not affect the outcome except through the treatment and use these variables as
instruments to study the partial treatment effect. Statistically, we can test whether
the selected instruments are strong or weak, through the incremental F test (Staiger
and Stock 1997). Second, there are noncompliance situations, where some people
are treatment always-takers or never-takers regardless of whether they have been
assigned to the treatment group or not, so that the errors in the causal model may
correlate with the treatment. Only the treatment effect on the treated is, or the
participants who have been assigned to the treatment and who have actually take
the treatment are, studied. For example, Steel et al. (2010) studied the effect of
using Governor’s Teaching Fellowship (GTF) as an incentive to attract talented
teachers to and retain them in low-performing schools. Because only teachers that
meet certain criteria are eligible to apply for the GTF, it is infeasible to estimate the
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ATE of GTF for all teachers. The article used the eligibility status as the instrument
to study the effect of GTF on the outcome to GTF-eligible-only teachers. In all,
using IVs to study the effect of treatment on the treated has been found effective
and been introduced to other science fields such as epidemiology (e.g., Greenland
2000). Third, in situations where potential IVs are supported by a strong previous
theory but are difficult to locate, researchers were suggested to refer to different
data sources for the treatment, outcome, or instrument variables. Duncan et al.
(1968) studied the causal effect of adolescents’ educational aspirations on their
peers. As the previous theory assumes that a person’s family background affects
its own educational aspirations but not its peer’s, the authors used each child’s
family background as the instrument and found the information source different
from the sample data. Similar to this idea, Angrist and Krueger (1992) and Angrist
and Imbens (1995) proposed a two-sample instrumental variable technique to locate
IV information from different sources. Using the two sample IV technique, Currie
and Yelowitz (2000) studied the effect of a public housing voucher program on
housing quality and educational attainment. Because the previous theory supports
that a household having extra number of kids is entitled to a larger housing unit,
whether there are extra kids in the household is chosen as the IV. In the study, the
outcome data comes from the Survey of Income and Program Participation, the
endogenous treatment data comes from the March Current Population Survey, and
both sources contain the IV data.

2.3 Local Average Treatment Effect (LATE)

Despite the use of IVs, the treatment effect is still the causal effect of interest.
IVs initiate a causal chain, where the causal effect of IVs on the treatment is first
estimated, and in the second causal chain, the partial causal effect of the treatment
on the outcome is estimated. When IVs are used in the presence of endogenous
regressors, the causal effect of interest becomes the local average treatment effect
(LATE). For example, Angrist and Krueger (1990) studied the effect of military
service on the labor market earnings during the Vietnam era. Young men were
drafted for military service to serve in Vietnam, and later a draft lottery was
introduced because of some fairness concerns about the military conscription policy.
The draft-eligible men were not necessarily drafted if they had a high lottery number
(i.e., above the cutoff lottery number which means they don’t need to be drafted).
In this study, it was almost impossible to estimate the ATE of the military service
for all the draft-eligible men. Instead, the author estimated the LATE of the military
service for those who were draft-eligible and who had a low lottery number that
actually participated in the service.

Under the 2SLS model, O21 is the estimated LATE, or the estimated ATE for a
subset of participants whose variations are explained by Z. In other words, the LATE
is the causal effect of interest for the 2SLS model. Although LATE can be estimated
through the Wald estimator method or from the reduced form equation (e.g., Angrist
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and Pischke 2008), there are several advantages in using 2SLS modeling to estimate
LATE. First, 2SLS models provide a standard error estimate of the LATE, whereas
the Wald estimator only provides a point estimate. Second, by using 2SLS models,
covariates could be controlled simultaneously at both stages of the 2SLS model
when the effect of Z on D and the effect of OD on y are estimated. The estimated
LATE O21 in 2SLS can be derived as

O21 D
cov.yi; ODi/

var. ODi/
D

cov.yi; O10 C O11Zi1 C � � � C O1JZiJ/

var. O10 C O11Zi1 C � � � C O1JZiJ/

D
O11cov.yi;Zi1/C � � � C O1Jcov.yi;ZiJ/

O211var.Zi1/C � � � C O21Jvar.ZiJ/
(3)

Mathematically, when the instrument Z is the same as the treatment D, the
LATE equals the ATE. In other words, when Z has perfect predictions on D, the
second stage slope estimate O21 is the standard OLS regression slope estimate.
From a practical perspective, the instruments Z rarely replace the treatment D, as
the treatment is usually the research interest of the causal inference.

2.4 Robust Method Based on Student’s t Distributions

In a 2SLS model, although we assume that the measurement errors at both stages
are normally distributed, practical data usually violate the normality assumption.
Routine methods to accommodate nonnormality, such as data transformation or
data truncation, can be problematic. For example, transformed data can be difficult
to interpret when the raw scores have meaningful scales; and the exclusion of
outliers may result in reduced efficiency (e.g., Yuan et al. 2002). Recently, different
robust methods have been developed as alternative approaches to provide reliable
parameter estimates, the associated standard errors and statistical tests in the
presence of nonnormal data. The fundamental idea of the robust procedure is to
either model the nonnormality using certain types of nonnormal distributions or
assign a weight to each case and properly downweight the cases that are far from
the center of the majority of the data (Hampel et al. 1986; Tong and Zhang 2012;
Huber 1981).

Robust methods based on Student’s t distributions were developed by Lange
et al. (1989) and have been applied to complex models such as structural equation
modeling, multilevel modeling and growth curve modeling. The shape of a t
distribution is controlled by its degrees of freedom. When the degrees of freedom
are small, the distribution is flatter and captures more heavy-tailed data. When the
degrees of freedom are large, a t distribution approaches a normal distribution.
In addition, because methods based on t distributions can be considered as a
natural extension of normal-distribution-based methods for heavy-tailed data and
t distributions have a parametric form, these methods are relatively straightforward
to understand.
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For the 2SLS modeling, the equation in the second stage is used to estimate the
LATE. In the traditional model estimation, the measurement error is assumed to
follow a normal distribution, as e2i � N.0; �2e2 /. To deal with heavy-tailed data or
outliers, we use a robust method and model the measurement error with a Student’s
t distribution, so that e2i � T.0; �2e2 ; k/, where k is the degrees of freedom of the
t distribution, and can be set a priori or estimated from the model. Under certain
conditions, the degrees of freedom have been recommended setting a priori. Lange
et al. (1989) and Zhang et al. (2013) suggested fixing the value for the degrees of
freedom of the t distributions when sample size is small, as small sample sizes could
lead to a biased degrees of freedom estimate. Moreover, Tong and Zhang (2012)
argued that by fixing the degrees of freedom, more accurate parameter estimates
and credible intervals can be obtained when model specification is built on solid
substantive theories. In contrast, estimating the degrees of freedom can make the
model more flexible. When the degrees of freedom k are freely estimated, the
Student’s t distributions have an additional parameter k, compared with the normal
distributions. As the degrees of freedom k increase, the Student’s t distribution
approaches the normal distribution, and therefore the robust 2SLS model becomes
the normal 2SLS model.

3 A Monte Carlo Simulation Study

3.1 Study Design

In this section, the performance of the robust method based on Student’s t distribu-
tions is evaluated and compared to that of the traditional method in estimating the
LATE in the 2SLS model with an IV through a Monte Carlo simulation study. Data
are generated from the general causal inference model

yi D 3C 0:5xi C ei;

where yi is the causal outcome, xi is the causal treatment, and ei is the measurement
error following a standard normal distribution in general. Three potential influential
factors are considered. First, sample size (N) is either 200 or 600. Second, correla-
tion between xi and ei (�) is manipulated to be either 0:3 or 0:7, reflecting relatively
weak or strong linear relationship between the treatment and the measurement
error. Third, we manipulate a proportion of observations to contain outliers. For
these observations, the measurement error ei is generated from a different normal
distribution with the mean being 8 standard deviations away from the mean of the
original normal distribution. The proportion of outliers (OP) is considered to be
0%, 5%, or 10%. When the OP is 0%, data contain no outliers and are normally
distributed.
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The 2SLS model presented in Eqs. (1) and (2) is used to fit the data. We use
one IV in this simulation study for illustration purposes. The IV is generated from
a normal distribution and is correlated to the treatment xi with the correlation
coefficient being 0:6. In the first stage, the IV is used to predict the endogenous
treatment, and the estimated treatment is then used in the second stage to estimate
the LATE. From Eq. (3), the theoretical LATE estimate is 5=6. Both the traditional
2SLS modeling and the robust 2SLS modeling are applied, and the LATEs are
estimated using Bayesian methods. The bias and standard errors (SE) of the
LATE estimates for both traditional and robust methods are assessed. The deviance
information criterion (DIC) for each condition is also examined to study the model
fit. A lower value of DIC indicates a better model fit.

3.2 Results

The bias and SEs of the LATE estimates, and DICs from the traditional method and
the robust method when � D 0:3 are given in Table 1. When data are normally
distributed (i.e., OP D 0%), the traditional method and the robust method perform
almost equally well as they provide similar bias, SEs, and DICs. However, in the
presence of outliers, the robust method outperforms the traditional method in terms
of the accuracy and efficiency of the LATE estimates and the model fits across all
conditions. Overall, the robust method produces smaller bias and SE of the LATE
estimate than the traditional method does. Additionally, the DIC from the robust
method is much smaller, indicating a better model fit than the traditional method.
For example, in the condition N D 200 and OP D 10%, the bias and SE from
the traditional method are 0:392 and 0:367, respectively, whereas the bias and SE
decrease sharply to �0:069 and 0:159, respectively, in the robust method. Also
the DIC from the robust method is 175 less than that from the traditional method,
suggesting the strong evidence of better model fit when the robust method is applied.

As the proportions of outliers increase, the better performance of the robust
method becomes more salient. For example, when N D 600 and OP D 5%, the bias
in the traditional and robust methods are 0:199 and �0:029, respectively, a 0:228

Table 1 Bias, SEs of the LATE estimates and DICs for all the conditions when � D 0:3

Traditional method Robust method

N OP Bias SE DIC Bias SE DIC

200 0% 0.023 0.147 1141.558 0.021 0.147 1142.157

5% 0.213 0.288 1381.255 �0.028 0.152 1242.425

10% 0.392 0.367 1487.053 �0.069 0.159 1312.132

600 0% 0.007 0.078 3417.444 0.004 0.078 3418.617

5% 0.199 0.155 4123.277 �0.029 0.083 3705.855

10% 0.384 0.199 4446.370 �0.056 0.087 3916.545
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Table 2 Bias, SEs of the LATE estimates and DICs for all the conditions when � D 0:7

Traditional method Robust method

N OP Bias SE DIC Bias SE DIC

200 0% 0.044 0.097 1167.509 0.041 0.098 1168.137

5% 0.509 0.226 1388.200 �0.068 0.137 1262.594

10% 0.921 0.321 1490.574 �0.139 0.150 1334.795

600 0% 0.017 0.057 3493.816 0.013 0.057 3495.078

5% 0.485 0.115 4151.484 �0.039 0.073 3777.674

10% 0.872 0.160 4455.258 �0.122 0.079 3984.497

difference in magnitude; when OP becomes 10%, the bias in the robust method
is �0:056, while the bias in the traditional method increases to 0:384, a 0:440
difference in magnitude. This suggests that the robust method produces a much
less biased LATE estimate. The SE and DIC follow similar patterns, namely, when
OP increases, the robust method is preferred to the traditional method in terms of
SE and DIC. Similarly, given different sample sizes, the robust method provides
less biased LATE estimates and smaller SEs and DICs. The advantage of the robust
method is more apparent under small sample conditions.

Table 2 presents results from the traditional and robust methods for all the
conditions when � D 0:7. Consistent with the results from previous conditions
when � D 0:3, when data contain outliers, the robust method produces more
accurate and efficient LATE estimates and better model fits than the traditional
method does. The advantage of the robust method is clearer when sample size is
small and the proportion of outliers is large.

Furthermore, comparing Tables 1 with 2, it is shown that the strength of
the covariance between the endogenous treatment and the error term affects the
performances of the two methods in estimating the LATE. When the endogenous
correlation between the treatment and the corresponding error is high (i.e., � D 0:7),
the LATE estimates are more biased. In addition, the robust method is better at
providing more accurate LATE estimates when the endogenous correlation is high.
For example, in the conditions where N D 200 and OP D 5%, when � D 0:3, the
robust method has 0:185 less bias than the traditional method; when � D 0:7, the
robust method has 0:441 less bias.

4 Concluding Comments

In sum, the 2SLS model with IVs is a widely used approach to address the issue
of treatment endogeneity in causal inference research. In 2SLS modeling with IVs,
LATE becomes the causal effect of interest. Because practical data usually violate
the normality assumption, the LATE estimate from the traditional method may be
inefficient or even biased. This study proposed a robust Bayesian method using
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Student’s t distributions to model data that are contaminated. The Monte Carlo
simulation study shows that the proposed robust Bayesian method outperforms
the traditional method when data contain outliers. The robust method is especially
preferred when sample size is small and the proportion of outliers is large as it
produces more accurate and efficient LATE estimates and better model fits. When
data are normally distributed, the performance of the robust methods is about the
same as the traditional method. Consequently, we recommend using the robust
method in general in the 2SLS modeling with IVs.

Note that we need to be cautious when using Student’s t distributions to
accommodate the effects of outliers because Student’s t distributions are sensitive
to the skewness. If data are highly skewed, some alternative robust methods might
be considered, such as robust methods based on skewed-t distributions (Azzalini
and Genton 2008). We also want to note that we consider the nonnormality only
in the second stage of the 2SLS modeling; however, nonnormality may also come
from the first stage. A future study could extend the robust procedure to model the
nonnormality at both stages.
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Measuring Grit Among First-Generation
College Students: A Psychometric Analysis

Brooke Midkiff, Michelle Langer, Cynthia Demetriou, and A. T. Panter

Abstract The concept of grit is of interest in the field of education, particularly as it
pertains to persistence to a 4-year college degree. This study offers an IRT analysis
of the Grit Scale when used among first-generation college students (FGCSs) as well
as recent first-generation college graduates and non-FGCS recent graduates. The
Grit Scale was included in surveys administered as part of an array of other research
projects within The Finish Line Project—a US Department of Education First in the
World grant-funded project that seeks to improve FGCS access to, persistence in,
and completion of postsecondary education through rigorous research into various
programs and supports for FGCSs. The reliability and validity of the Grit Scale have
not yet been analyzed for use with FGCS or overall with students at large, research
universities. By comparing enrolled students and recent graduates, the psychometric
analysis in this study offers insight into the measurement of student grit for use
in program development and policy-making to improve student retention. Item
response theory (IRT) analyses, analysis of differential item functioning (DIF),
reliability analyses, convergent and discriminant validity analyses, and known
groups validity analyses were used to examine the Grit Scale.

Keywords Grit • First-generation college students • Item response theory
• Differential item functioning

1 Factor Structure and Uses of the Grit Scale

The latent construct of grit is reported to be comprised of two elements—
perseverance of effort and consistency of interest in the original research into grit
(Duckworth et al. 2007). Grit has been shown to be an effective predictor of success
and retention in a variety of contexts such as the national spelling bee, military,
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workplace, school, and marriage (Duckworth et al. 2011; Eskreis-Winkler et al.
2014; Strayhorn 2014). At the same time, first-generation college students (FGCSs)
experience lower likelihoods of completing a 4-year degree when compared to
their continuing-generation peers (Chen and Carroll 2005; D’Amico and Dika
2013; Engle and Tinto 2008; Vaughan et al. 2014). Therefore, the measurement
of grit among this population has the potential to uncover underlying issues that
impact FCGS retention, which could lead to improved interventions and supports.
Additionally, within the extant literature on grit, a recent meta-analytic study states
that “the grit literature may benefit from a refinement of the Grit Scale using
methods based on Item Response Theory (IRT)” (Credé et al. 2016). In this chapter,
we examine the Grit Scale (Duckworth et al. 2007; Duckworth and Quinn 2009)
when used among FGCSs, a population as yet unstudied in conjunction with grit,
compared to non-FGCSs, and offer an IRT analysis useful for the emergent area of
research into refinements of the Grit Scale.

1.1 Predictive Validity of Grit in the Extant Literature

Previous research has provided evidence of the predictive validity of the Grit
Scale on metacognition (Arslan et al. 2013), the retention of first-year military
cadets (Maddi et al. 2012), educational attainment among adults, and grade point
average (GPA) among Ivy League undergraduates (studied by Duckworth et al.
2007). However, these populations and scenarios differ in important ways from
FGCSs pursuing a baccalaureate degree at a large, public research university. For
example, the distribution and variance of undergraduate GPAs among students
at Ivy League universities are likely to differ from those of FGCSs at a public
university, as students in the research conducted by Duckworth et al. (2007) are
positioned in the most advantageous university settings, with student populations,
largely derived from the most advantaged high school students in the United States.
Similarly, research done by Arslan et al. (2013) studied grit and metacognition
among college students, yet is contextually different in that it focuses on Turkish
university students—a group likely to have nontrivially different cultural norms than
the average FGCS at a public university in the United States. Other studies of grit,
such as those around the retention of military cadets and spelling bee champions,
present radically different contexts from that of FGCSs completing a baccalaureate
degree. Further, while the previous studies mentioned here demonstrate successful
use of the Grit Scale, none offer an IRT analysis that can more deeply examine the
psychometric properties of the scale.
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1.2 Factor Structure of the Grit Scale

In line with research by Credé et al. (2016) which calls for IRT analyses of grit, the
research presented here offers insight into the existing scholarly disagreement over
grit as a latent construct—whether it is substantively different from conscientious-
ness, its incremental validity, and even its factor structure. For example, Duckworth
and Quinn (2009) used confirmatory factor analysis (CFA) to determine that grit
has a higher-order structure with two first-order factors and one second-order factor.
Yet this finding is tempered by the fact that, using CFA, a higher-order model would
exhibit identical fit to a model using two correlated first-order factors and no higher-
order factor, making the analysis of limited utility (Credé et al. 2016). In fact, such a
factor structure was examined by Duckworth et al. (2007) and found to have poor fit
based on comparative fit index (0.83) and root mean square error of approximation
(RMSEA) (0.11). Credé et al. (2016) suggest that a more meaningful way to assess
the factor structure would be to examine the correlation between the two theoretical
components of grit—perseverance of effort and consistency of interest. However,
empirical estimates of this correlation summarized in the meta-analysis by Credé
et al. (2016) find that the strength of the correlation has wide variation, with the
correlation dropping as low as zero in some empirical studies (Chang 2014; Datu
et al. 2016; Jordan et al. 2015). IRT analysis offers insights into the factor structure
of the scale to shed light on the contradictory findings from previous CFA analyses.

1.3 Grit and FGCSs

Despite substantial debate over grit as an important noncognitive factor related to
student success, grit has become an important buzzword in education as both an
explanation for student achievement and as an intervention (Anderson et al. 2016).
As the role of grit in education gains popular attention, it is important to understand
if the measurement of grit is both reliable and valid among populations whose
retention has historically been at greater risk. This research seeks to assess the
validity and reliability of the Grit Scale among one such group—FGCSs—and to
answer the overarching research question: What are the psychometric properties
of the Grit Scale when used among FGCSs? To answer this question, we examine
the reliability and factor structure of the scale and test for local dependence and
differential item functioning.

2 Methods

IRT analysis was used to examine the psychometric properties of the items on the
Grit Scale. IRT also allows for the assessment of local dependence between items.
Analysis of DIF through logistic regression was used to test the validity of the scale
for FGCSs and non-FGCSs, as well as by race/ethnicity and gender.
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2.1 Data

A total of 648 participants completed a version of the Grit Scale. The sample
consisted of 190 undergraduates who completed a survey at the end of their first
year of college that contained the 12-item Grit Scale (Duckworth et al. 2007) in
Spring 2015. An additional 458 recent graduates completed a survey in Fall 2015
that contained 9 items taken from the 12-item Grit Scale.

2.1.1 Differences in Scale Administration

The 9-item scale is a subset of the 12 items from the published 12-item scale
(Duckworth et al. 2007). However, the 9-item scale used response options “very
much like me” (1) to “not like me at all” (5), while the 12-item scale used response
options “strongly disagree” (1) to “strongly agree” (5). In addition to the different
response wording, responses also differed in direction. The 12-item scale contained
a neutral option “neither disagree nor agree,” although the 9-item scale did not.
Lastly, different prompts were used between the two administrations. The 9-item
scale was preceded by the following prompt: “Please indicate how true the following
statements are for you. Rate each statement.” The 12-item scale was preceded by the
following prompt: “Here are a number of statements that may or may not apply to
you. For the most accurate score, when responding think of how you compare to
most people—not just the people you know well, but most people in the world.
There are no right or wrong answers, so just answer honestly!” Relevant items were
reverse coded so that higher scores reflect more grit across both administrations.

2.1.2 Descriptive Statistics

Of those who answered at least one Grit Scale item, <1% (four students) skipped
one or more items. For the IRT analyses, only participants who did not respond to
any Grit Scale item were removed from the analyses. For DIF analyses, participants
with any missingness on the Grit Scale were listwise deleted. The scale items, along
with associated sample size and mean scores, are given in Table 1. Differences in
sample sizes are due to the combination of different surveys as explained previously.

2.1.3 Demographics

Of the sample who completed at least one Grit Scale item, 155 FGCSs completed
the 12-item scale, 182 FGCS recent graduates completed the 9-item scale, and 254
non-FGCS recent graduates completed the 9-item scale. Participants included 189
men and 402 women. There were 361 non-Hispanic, White participants compared
to 234 other races and ethnicities. When disaggregated by FGCS status, there were
333 FGCSs compared to 268 non-FGCSs.
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Table 1 Combined scale sample item means

Item N Mean Std. Dev. Minimum Maximum

I have overcome setbacks to conquer an
important challenge

609 4.05 0.90 1 5

New ideas and projects sometimes
distract me from previous ones

610 2.74 0.98 1 5

My interests change from year to year 174 2.73 1.16 1 5
Setbacks do not discourage me 609 3.15 1.01 1 5
I have been obsessed with a certain idea
or project for a short time but later lost
interest

610 2.98 1.03 1 5

I am a hard worker 608 4.45 0.75 1 5
I often set a goal but later choose to
pursue a different one

610 3.23 0.96 1 5

I have difficulty maintaining my focus on
projects that take more than a few
months to complete

174 3.01 1.11 1 5

I finish whatever I begin 610 3.82 0.89 1 5
I have achieved a goal that took years of
work

609 4.10 1.03 1 5

I become interested in new pursuits every
few months

609 2.85 1.01 1 5

I am diligent 174 4.25 0.77 1 5

2.2 Analytic Strategy

2.2.1 IRT

Structural validity was evaluated with a factor analytic approach using IRT,
implemented using the software IRTPRO (Cai et al. 2011). Each subscale of the
Grit Scale was examined in a unidimensional confirmatory factor analysis (CFA)
with the graded response IRT model (Samejima 2010) as well as within a bifactor
graded response IRT model to examine if one underlying factor explained most
of the variability in the two subscales. For the bifactor model, the explained
common variance (ECV) of the general factor was examined and unidimensionality
considered for values greater than 0.85. In addition to inspection of item content
to assess local independence, the LD �2 proposed by Chen and Thissen (1997)
wherein values larger than 10 are considered evidence of local dependence and
values between 5 and 10 may indicate either local dependence or sparseness in the
underlying table of frequencies was used as the statistical criteria for determining
local dependence.

Item fit was assessed based on the SS-�2 fit statistics proposed by Orlando
and Thissen (2000, 2003), for which a nonsignificant result (p > 0.05, adjusted
for multiple comparisons) was an indicator of adequate model fit. Model fit was
determined piecemeal through item fit, as well as the M2 statistic proposed by
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Maydeu-Olivares and Joe (2005, 2006) and its associated RMSEA. Additionally,
the �2 log likelihood, the Akaike information criteria (AIC) (Akaike 1974), and the
Bayesian information criterion (BIC) (Schwarz 1978) were also examined.

2.2.2 DIF

Analysis of potential DIF by FGCS status, gender, and race/ethnicity was conducted
using ordinal logistic regression (OLR) of summed scores. For each item within
a domain, an OLR model was used to examine whether item responses were
significantly associated with group membership after controlling for students’
summed score on the measure. Uniform DIF was detected by a likelihood ratio test
comparing an OLR model with one predictor, summed score, to an OLR model
with an additional predictor, group membership, representing a shift in the use
of the response options due to group membership. Nonuniform DIF was detected
by a likelihood ratio test comparing the OLR model with two predictors, summed
score and group membership, to an OLR model with an additional interaction term,
representing a difference in how strongly the item is related to the underlying
construct due to group membership. With each paired-group analysis, an initial
OLR model was run to identify a clean anchor group of items without DIF. For each
sequential OLR model, any items previously identified as having DIF were removed
from the summed score computation. The final OLR model used a summed score
computed with only the DIF-free anchor items to test for DIF. Subsequent OLR
models used a summed score computed with only the clean anchor items to test for
DIF. The Benjamini-Hochberg procedure was used to make inferential decisions in
the context of the multiple comparisons. In addition to examining the significance
(p < 0.05), magnitude of DIF was further evaluated by examining the expected item
scores and estimating the effect sizes (�R2 > 0.02 indicative of salient DIF).

2.2.3 Reliability

Internal consistency was evaluated by Cronbach’s ’ for both versions of the scale,
as well as for both subscales within each version using the software Mplus (Muthén
and Muthén 1998). Alpha values of 0.70 or greater are an acceptable minimum for
group-level assessment.

2.2.4 Convergent and Discriminant Validity

Participants who completed the Grit Scale also completed the Growth Mindset Scale
(Dweck 2008) and the 5-item Guilt Proneness Scale (Cohen et al. 2011; Cohen
et al. 2014). To assess convergent validity, for both grit subscales, the correlation
between the mean item score and the mean item score of the Growth Mindset Scale
was computed. To assess divergent validity, for both grit subscales, the correlation
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between the mean item score and the mean item score of the Guilt Proneness Scale
was computed. Growth Mindset response items ranged from “strongly disagree” (1)
to “strongly agree” (5) and were scored such that higher mean scores reflect more
growth mindset. Guilt Proneness response items ranged from “extremely unlikely”
(1) to “extremely likely” (5) and were scored such that higher mean scores reflect
more guilt proneness.

2.2.5 Known Groups Validity

The validity of the Grit Scale was examined by assessing the extent to which it could
discriminate between several known groups that should, in theory, differ. These
groups included FGCSs who were current students, FGCS recent graduates, non-
FGCS recent graduates, race and ethnicity, race and ethnicity interacted with gender,
and participants grouped by their reported use of university resources. The use of
university resources was measured by a list of resources and the frequency with
which students used them while in college, with responses ranging from “never” (1)
to “ten or more times” (6). We compared means across all groups using a one-way
analysis of analysis of variance (ANOVA). Statistical significance was defined at
the 0.05 alpha level for evaluation of convergent, discriminant, and known groups
validity.

3 Results

3.1 Item Response Theory

Two items on the perseverance of effort subscale had low cell counts in the extreme
categories, and thus for those two items, categories were collapsed for IRT analysis.
The factor structure was further examined by estimating the graded response model
(Samejima 2010), on the item scores for each grit subscale, and then modeling all
scores using a bifactor model. Table 2 shows the fit of the graded response IRT
models fit to the Grit Scale. The bifactor model fit well, although one item had
a high factor loading (0.73) on the overall factor and a low loading (0.25) on the
perseverance of effort subscale. The ECVs for this model were 0.45 for consistency
of interest and 0.63 for perseverance of effort, suggesting these two subscales do
not support one underlying factor. Therefore, unidimensional IRT models were fit
to each of the Grit Scale subscales, including both a 5-item and 4-item (dropping
the problematic item identified in the bifactor model) version of the perseverance of
effort subscale. As Table 2 indicates, these models also fit the data well.

The IRT parameters of the bifactor model as well as the final two unidimensional
models for the Grit Scale subscales are presented in Table 3. For the consistency
of interest subscale, all items have high IRT a parameters; the item “I have been
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obsessed with a certain idea or project for a short time but later lost interest” has the
strongest relationship with the underlying construct. For the perseverance of effort
subscale, the items also have strong IRT a parameters. However, the item “I am a
hard worker” has a slightly weaker relationship to the underlying construct, although
it also measures the lower end of the Grit Scale (b1 D �5.16).

3.1.1 Overall Test Information Curves

Figure 1 shows the overall test information curve and standard error for the
consistency of interest subscale. This figure indicates that test information is high
across the range of consistency of interest, providing adequate measurement from
�3 to 3 SDs below and above the mean. Figure 2 shows the same information for
the 4-item version of the perseverance of effort subscale, after dropping the poorly
fitting item “I finish whatever I begin.” However, test information is only high for
the perseverance of effort subscale at the lower end of the scale, indicating that the
Grit Scale measures perseverance of effort well for those with levels at 1 SD above
the mean and below.

3.2 Differential Item Functioning

Analysis of potential DIF resulted in only one item being flagged. The item, “I have
overcome setbacks to conquer an important challenge,” had significant uniform DIF
(p.03) with a large effect size for FGCSs (n D 333) and non-FGCSs (n D 268).
Figure 3 displays the item means by summed score for each of these groups. FGCSs
have slightly higher item means across the score range, indicating they are slightly
more likely to endorse this item than non-FGCSs, resulting in a higher overall score
on the Grit Scale.

3.3 Reliability

Cronbach’s alphas are adequate for both administered versions of the scale: 0.72 for
the 12-item scale and 0.65 for the 9-item scale. The perseverance of effort subscale
had lower alphas (0.60, 0.57) in both versions of the scale administered than did the
consistency of interest subscale (0.69 in both versions).
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3.4 Convergent and Discriminant Validity

The mean item score on growth mindset was 3.55 (s.d. 0.84). It was significantly
correlated with perseverance of effort (r D 0.20, p D 0.001), but not with
consistency of interest (r D 0.01, p D 0.73). This indicates grit and growth mindset
are moderately related; however, it also provides evidence of the difference between
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the two Grit Scale subscales. The mean item score on guilt proneness was 4.12 (s.d.
0.74) and was significantly correlated with both subscales. Perseverance of effort
correlated at r D 0.19 (p < 0.001) and consistency of interest correlated at r D 0.12
(p D 0.002).

3.5 Known Groups Validity

The results from the known groups analysis are given in Table 4. Of the groups
analyzed (see Sect. 2.2.5), only two were statistically significantly different from
one another. On the perseverance of effort subscale, men showed less perseverance
of effort than females (mean D 3.85 vs. 3.97). In consistency of interest, the
interaction of gender, race/ethnicity, and FGCS status resulted in statistically
significant differences. Women who were White, non-Hispanic, and not FGCSs
scored the highest in consistency of interest (mean D 3.13), while men who
were non-White and FGCSs scored the lowest (mean D 2.80). Across all gender,
race/ethnicity, and FGCS groupings, non-FGCSs (means range from 3.13 to 2.94)
scored the highest in consistency of interest than FGCS (means range from 2.92 to
2.80).
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Table 4 ANOVA results of known groups

Groups DF Sum of squares Mean square F Pr > F

Perseverance of effort subscale

Male, White, non-Hispanic, FGCS 7 8.25 1.18 2.29 0.0261
Consistency of interest subscale

Gender 1 1.64 1.64 4.16 0.0418

Notes: Benjamini-Hochberg procedure used to control for Type I error rate in multiple com-
parisons. Only statistically significant differences after correction are provided; no other group
differences were significant after the use of Benjamini-Hochberg procedure

4 Discussion

The IRT analysis suggests that the 4-item consistency of interest subscale fits well
with no local dependence, as does the 4-item perseverance of effort subscale, after
dropping the poorly fitting item “I finish whatever I begin.” The item “I have
overcome setbacks to conquer an important challenge” exhibits uniform DIF among
FGCS and non-FGCS with a large effect size. Consistent with previous literature
(see Credé et al. 2016 for a comprehensive overview), our findings indicate that
the higher-order factor structure suggested by Duckworth and Quinn (2009) is
not supported. IRT analysis provided here demonstrates that two unidimensional
subscales fit better than the bifactor model. Factor loadings from the IRT analysis
suggest that there is little evidence of a higher-order construct, when using the data
analyzed in this research. Given the discrepancies in previous research about the
factor structure of the Grit Scale, along with the recent notation that IRT analysis is
needed, this research contributes the important finding that IRT analysis, conducted
using these data, does not support a factor structure wherein consistency of interest
and perseverance of effort load onto the higher-order construct grit.
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A Comparison of Item Parameter and Standard
Error Recovery Across Different R Packages
for Popular Unidimensional IRT Models

Taeyoung Kim and Insu Paek

Abstract With the advent of the free statistical language R, several item response
theory (IRT) programs have been introduced as psychometric packages in R. These
R programs have an advantage of a free open source over commercial software.
However, in research and practical settings, the quality of results produced by
free programs may be called into questions. The aim of this study is to provide
information regarding the performance of those free R IRT software for the
recovery item parameters and their standard errors. The study conducts a series of
comparisons via simulations for popular unidimensional IRT models: the Rasch,
2-parameter logistic, 3-parameter logistic, generalized partial credit, and graded
response models. The R IRT programs included in the present study are “eRm,”
“ltm,” “mirt,” “sirt,” and “TAM.” This study also reports convergence rates reported
by both “eRm” and “ltm” and the elapsed times for the estimation of the models
under different simulation conditions.

Keywords R IRT packages • eRm • ltm • mirt • TAM • sirt • Item parameter
recovery

Many item response theory (IRT) estimation programs have been developed for the
past years. Some commercial IRT programs are very widely used. For instance,
PARSCALE (Muraki and Bock 1997) and MULTILOG (Thissen 1991) have fre-
quently been used for research and in practice (Tao et al. 2014). Most notably, a free
statistical language, R (R Core Team 2015), has provided several packages which
have enabled researchers to conduct psychometric analyses. Rusch et al. (2013)
outline the ongoing development of R packages in psychometrics, particularly in
terms of breadth and depth in IRT.
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As several IRT software have been introduced, comparisons among them for
various model estimations have been studied. However, most studies have been lim-
ited to comparisons among commercial IRT packages. The earliest of these studies
(e.g., Ree 1979) compared PARSCALE and MULTILOG under different population
distributions for binary items. Later studies (e.g., DeMars 2002) encompassed a
broad range of evaluations of these programs to polytomous items with Samejima’s
(1969) graded response model (GRM) and Masters’ (1982) partial credit model
(PCM).

Though previous studies have compared commercial and free IRT software (e.g.,
Pan and Zhang 2014), the IRT programs in R have not been rigorously evaluated
in a systematic manner. Furthermore, most of the software evaluation studies have
only investigated the recovery of item parameters in a variety of settings, and not of
standard errors of item parameters. In this study, a comparison study was conducted
via a series of simulations with popular unidimensional IRT models using five IRT
programs in R, which are the Rasch model, the 2-parameter logistic (2-PL) and
the 3-parameter logistic (3-PL) models, Muraki’s (1992) generalized partial credit
model (GPCM), and GRM, with respect to the recovery of item parameters and their
standard errors.

The R IRT programs, at the time of the study, included the most updated versions1

of “eRm” (extended Rasch modeling; Mair et al. 2015), “ltm” (latent trait models
under IRT; Rizopoulos 2006), “mirt” (multidimensional item response theory;
Chalmers 2012), “sirt” (supplementary item response theory models; Robitzsch
2015), and “TAM” (Test Analysis Modules; Kiefer et al. 2015). Except “ltm,” the
rest of the IRT programs in R were recently released.

1 Method

1.1 Conditions

We evaluated item parameter and standard error (SE) recovery under the following
conditions for the dichotomous item response models: 2 (test forms) � 2 (sample
sizes). Four conditions for the Rasch and 2-PL models were constructed by two
test forms (test lengths of 25 and 50) and two different sample sizes (500 and 1000
examinees). For 3-PL model, the two test lengths were kept the same as those in the
Rasch and 2-PL models, but sample sizes were increased to 2000 and 4000 based
on preliminary analyses which have suggested a large sample size to avoid non-
convergence issues. For the two polytomous models (GPCM and GRM), a single
condition was considered: a large sample size of 5000 and a test length of six with
each item having five categories. The purpose of using the large sample size was
to avoid the zero frequency in some of the option(s), which presents challenges

1Note that this study used the latest version of each package available at the time of study: “eRm”
(0.15–6; November 12, 2015), “ltm” (1.0–0; December 20, 2013), “TAM” (1.15–0; December 15,
2015), “sirt” (1.8–9; June 28, 2015), and “mirt” (1.15; January 21, 2016).



A Comparison of Item Parameter and Standard Error Recovery Across. . . 423

Table 1 Simulation design

Models Test length (n) Number of examinees (p) Package(s) used

Rasch 25, 50 500, 1000 eRm, ltm
2-PL 25, 50 500, 1000 ltm, sirt, TAM, mirt
3-PL 25, 50 2000, 4000 ltm
GPCM/GRM 6 5000 ltm, mirt

in terms of evaluating the recovery of item parameters in reference to the true item
parameters in the polytomous item response modeling. Also, the currently employed
R IRT polytomous item response models do not provide a procedure to deal with
this problem. While one package (“ltm”) was evaluated for the 3-PL model, two
packages (“eRm” and “ltm”) and four packages (“ltm,” “sirt,” “TAM,” and “mirt”)
were assessed for the Rasch model and the 2-PL model, respectively. For GPCM
and GRM, “ltm” and “mirt” were evaluated. Table 1 encapsulates the simulation
design in this study.

2 Data Generation

Item response data were generated following the standard IRT procedure. One
thousand replications were made for each condition. Across all models, examinee
ability (� ) was drawn from N(0, 1). True values of item parameters of dichotomous
models were randomly drawn from logN(0, 0.52) for item discrimination or
slope (a) parameters, N(0, 1) for item difficulty (b) parameters, and beta(5, 17)
for the (pseudo) guessing (g) parameters. For the simulated tests, the true item
difficulties ranged from 1.748 to 2.017 (mean D 0.088, SD D 1.024), the true
discrimination ranged from 0.468 to 1.553 (mean D 1.000, SD D 1.72), while
the true guessing ranged from 0.054 to 0.286 (mean D 0.185, SD D 0.056).
For GRM, the same underlying distributions (i.e., logN(0, 0.52), N(0, 1)) were
used again to generate true values of item discrimination parameters and step
difficulty parameters, respectively. (It should be mentioned that the step difficulties
(bs) were generated from N(0,1) and transformed into intercept parameters (d)
by d D ab.) However, a simple item parameter set, which is not based on a
random draw from the above distributions, was used for the GPCM data generation.
This is because the current version of “mirt” does not use a popular GPCM
parameterization, adopting a different parametrization from “ltm” with respect to
the slope-intercept form in GPCM. (The current “mirt” GPCM parameterization
is a� � k2, where k is defined as a difference of adjacent intercept parameters,
which is not conventionally used in the popular GPCM parameterization.) In this

2Note that “mirt” uses actually “C intercept” but for consistency with the “ltm” expression,
“–intercept” was used in this article.
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regard, to make the metric transformation from “mirt” GPCM parametrization to
the other usual slope-intercept form efficient, as for GPCM were either 1 or 2, and
bs were �1, �0.5, 0.5, and 1 for the “mirt” GPCM calibration. Of note is that for
the polytomous models, the recovery of the a� � d parameterization was examined,
while in the dichotomous models, the recovery of the a(� � b) parameterization was
investigated.

2.1 Recovery of Item Parameters and Their Standard Errors

The recovery of item parameters and their standard errors was examined after
checking convergence of the model estimation. The evaluation criteria were absolute
bias and root-mean-square errors (RMSEs). For the standard error recovery, the
standard deviation of the parameter estimates was used as the (approximate) true
value. With respect to standard error estimation, default methods provided by R IRT
packages were used. “ltm” and “mirt” clearly delineated what the default standard
error estimation method was. “ltm” reported standard errors using delta method
under the usual IRT parameterization (i.e., a(� � b) form). In “mirt” package, a
variety of options for standard error computations, including “crossprod” which is
the default, were available.

2.2 Convergence Check and Elapsed Time

This study reported estimation run times for all packages and convergence rates for
“eRm” and “ltm” which provided a convergence indicator as part of the program
run. Non-convergence rates and average elapsed estimation time per one data set
are summarized in Table 2. Non-convergence rates shown in Table 2 represent the
percentage of replication diagnosed by the program convergence indicator. Notably,
the issue of convergence was critical in 3-PL model using “ltm.” For the 3-PL model
with “ltm,” unreasonable estimates (e.g., very large unreasonable estimates) were
sometimes observed despite the program reporting that there was no flag in the
converge check.

3 Results

The results of this study, which excludes non-convergence replications, are summa-
rized in Figs. 1, 2, 3 and 4: Rasch, 2-PL, 3-PL, and GRM, respectively. The summary
measures (i.e., absolute bias, RMSE) in each of the figures represent averages across
items. Our results suggest that absolute bias, and RMSE of item parameter estimates
and their standard errors in “eRm,” and “ltm” for the Rasch model, was nearly the
same (see Fig. 1). We used a metric transformation to obtain equivalent parameter
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Table 2 Average running time in minutes, average running time per iteration in seconds, and
percentage of analyses that did not converge

Model Sample size Test length Package Time Time/iter Non-conv.

Rasch 500 25 eRm 17 1.02 0
ltm 13 0.78 0

50 eRm 41 2.46 0
ltm 30 1.80 0

1000 25 eRm 27 1.62 0
ltm 20 1.20 0

50 eRm 70 4.20 0
ltm 56 3.36 0

2-PL 500 25 ltm 28 1.68 0
sirt 16 0.96 NA
TAM 27 1.62 NA
mirt 16 0.96 NA

50 ltm 56 3.36 0
sirt 34 2.04 NA
TAM 25 1.50 NA
mirt 20 1.20 NA

1000 25 ltm 36 2.16 0
sirt 19 1.14 NA
TAM 28 1.68 NA
mirt 14 0.84 NA

50 ltm 119 7.14 0
sirt 41 2.46 NA
TAM 44 2.64 NA
mirt 33 1.98 NA

3-PL 2000 25 ltm 192 11.52 18.8
50 365 21.90 19.3

4000 25 480 28.80 22.8
50 990 59.40 33.7

Note: Time D Average running time in minutes; Time/iter D Average running time per iteration
in seconds; Non-conv. D Percentage of analyses that did not converge; and NA in Non-conv.
represents convergence flag that was not available for those packages

estimates for the Rasch model, as “eRm” is based upon Rasch framework and uses
sum-to-zero constraints for item difficulty estimates while this is not the case for
“ltm” where a common item discrimination parameter is estimated.

Unlike the Rasch model, the 2-PL parameter recovery showed different per-
formances across “ltm,” “TAM,” “sirt,” and “mirt.” Specifically, “TAM” showed
relatively poor performance on point estimate recovery compared to other programs.
For the SE recovery, “sirt” indicated poor performance as compared to the other
programs. In general, “ltm” and “mirt” provided better results than the other two
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Fig. 1 Rasch result in case of n D 1000, p D 50

Fig. 2 2-PLM result in case of nD1000, p D 50

packages (see Fig. 2). For example, while the average RMSE of “ltm,” “TAM,”
“sirt,” and “mirt” for discrimination parameter was 0.1021, 0.1025, 0.1024, and
0.1025, those for difficulty parameter were 0.1281, 0.2378, 0.1276, and 0.1275,
respectively. “TAM” exhibited about twice average RMSE than the others. As well,



A Comparison of Item Parameter and Standard Error Recovery Across. . . 427

Fig. 3 3-PLM result

Fig. 4 GRM result

the average RMSE of “sirt” for the standard error of difficulty parameter was 0.0464,
which was higher than those of “ltm,” “TAM,” and “mirt” (0.0206, 0.0142, and
0.0284, respectively).

In terms of the 3-PL model, only one package, “ltm,” was used. As mentioned
previously, the non-convergence rate was high in the estimation of the 3-PL model
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by “ltm,” which seems to be due to the lack of no item prior provision, especially
for the low asymptote in the current “ltm” program. In addition, we observed that
the convergence rate did not increase as the sample size increased (see Table 2). The
RMSE values in the 3-PL model estimated by “ltm” were relatively high compared
to the 2-PL model in general (see Fig. 3). In particular, while the average RMSE
across four packages for discrimination parameter in the 2-PL model was 0.1024,
that of the “ltm” 3-PL model was 0.1968 across different simulation conditions.
This same pattern was also observed for difficulty parameter and standard error
estimations of a and b parameters.

Both “ltm” and “mirt” provided either slope-intercept (i.e., a� � d form) or
conventional IRT parametrization (i.e., a(� � b) form) for the polytomous item
response models. However, as previously indicated, the intercept parameter in both
programs for GPCM was not defined in the same manner. In “ltm,” the intercept
is the usual intercept parameter itself (again, d in a� � d), while in “mirt,” it
is defined sequentially (k in a� � k, which is the difference between adjacent
intercepts). This different parameterization in both program made the comparison
of SE challenging, although one may use a delta method. The current “mirt”
program does not provide built-in standard error computation for a� � d or a(� � b).
For this reason, only the evaluation of item parameter recovery was attempted in
GPCM, and this study had more emphasis on GRM in terms of comparison of
parameter and SE recovery for a polytomous model. The detailed results for GPCM
are not presented here, but, overall, both “ltm” and “mirt” performed similarly in
terms of the recovery of item parameters of GPCM. The RMSE values of all item
parameters for both packages were very comparable (mean D 0.0425, SD D 0.0049
for “ltm”, and mean D 0.0421, SD D 0.0053 for “mirt”), while the absolute bias
values were slightly smaller for “mirt” (mean D 0.0016, SD D 0.0005) than “ltm”
(mean D 0.0036, SD D 0.0018), with respect to absolute bias. For the recovery of
GRM, both “ltm” and “mirt” showed, again, comparable RMSE and absolute bias
for the item parameter recovery, while the recovery of SEs noticeably differed across
the two packages. In contrast to “ltm,” “mirt” exhibited stable performance with
respect to the SE recovery. As illustrated in Fig. 4, while average RMSE of SE across
item parameters (i.e., a slope and four intercept parameters) for “ltm” was 0.1945
(SD D 0.057), the corresponding quantity for “mirt” was 0.0017 (SD < 0.001).
Finally, in terms of the program running time of the dichotomous response models
(please see Table 2), “ltm” was faster than “eRm” in the Rasch model. For the 2-PL
model, “mirt” was the fastest of the four packages. As expected, the elapsed time
per replication for the 3-PL model by “ltm” was longest. With a sample size of 4000
and a test length of 50, it took nearly a minute for a single replication.

4 Discussion

This study evaluated the performance of free IRT programs in R regarding item
parameter and its SE recovery. Because the programs are free, practitioners and
researchers may consider those programs for classroom instruction, research, or
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other practical uses. In this regard, the results of this study provide a substantial
amount of insight into the performance of five R IRT programs for popular
unidimensional IRT models.

The ongoing continued development/update of some IRT programs in R and
several limitations in this study warrant further research. The inclusion of currently
popular commercial IRT software in the comparisons of these R IRT programs
could provide even more insights, which would allow researchers and practitioners
to recognize availability and potential utility of these R IRT packages. Of the current
R IRT programs, the 3-PL model estimation by “mirt” requires further investigation.
The high non-convergence rate and relatively weak performance of the 3-PL model
estimation may be improved by employing item prior distributions, which are
available in the “mirt” package. Finally, we suggest that users pay attention to
the model parameterization used by each program, especially for the polytomous
item response models. From the point of view of the consumer, R IRT program
developers might consider providing more commonly used IRT parameterizations,
as well as align the SEs of those parameters with common IRT parametrizations.
This would prevent users being left to calculate SEs of those parameters manually
(e.g., using the delta method by users).
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