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Introduction

Probably the most important function of business is forecasting, which is a starting
point for planning and budgeting. Traditionally, budgeting is regarded as one of the
most important financial and accounting functions (Ekholm and Wallin 2000; Tanlu
2007). In recent years, rapidly changing market conditions have made financial
planning tools of increasing importance both for managers and practitioners.
However, the use of traditional budgets has been criticized as a management control
tool (Hope and Fraser 2003). In the relevant literature, a number of new tools have
been proposed as a replacement to traditional budgets, such as rolling forecasts and
beyond budgeting (Bergstrand 2009; Bogsnes 2009). The purpose of rolling fore-
cast is to use the most frequent data in order to make more flexible and adaptable
organizations that are able to cope with changing environments (Lorain 2010).
There is an increased number of companies adopting rolling forecasts as a part of
the Beyond Budgeting model (Bogsnes 2009), and the main reason is to become
more adaptive and hence can better support company planning and control pro-
cesses (Hope and Fraser 2003).

Management, typically operates under conditions of uncertainty or risk and one
of the fundamental objectives of forecasting is to reduce risk and uncertainty of
financial decisions. A variety of forecasting techniques is available for the analyst to
choose the most appropriate one. However, in real business life, the number of time
series to be forecasted is enormous and the forecasts have to be updated frequently
making forecasting modeling an almost impossible procedure. Therefore, automatic
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forecasts of large numbers of univariate time series are often needed in business
(Leonard 2002).

When multiple forecasts are available for a target variable, forecast combination
methods provide a simple and effective way to improve the forecasting performance
of individual forecasting models. Further, they provide a simple procedure to
manage misspecified and unstable forecasters, small sample sizes, and structural
breaks in the data (Huang and Lee 2010; Mandel and Sani 2016). Usually, forecast
combination methods outperform the best individual forecaster. For example,
combination of forecasts has been applied with success, most of the time, in
forecasting interest rates (Guidolin and Timmermann 2009), equity premium pre-
diction (Rapach et al. 2010), realized volatility (Patton and Sheppard 2009), stock
market return prediction (Nikolopoulos and Papakyriazis 2004), etc. However, most
of the existing combination models focus on environments that ignore the com-
plexity of real-world data. Several studies propose combination models capable of
adapting to various environments and system instabilities (Aiolfi and Timmermann
2006; Nikolopoulos and Papakyriazis 2002; Smith and Wallis 2009; Tian and
Anderson 2014).

In this paper, we apply, in the not trivial problem of forecasting monthly sales
and cost of goods sold (COGS) for a manufacturing company, a combination
scheme of automatic forecasts, based on a state-space representation where the
combination weights are estimated online by means of the Kalman Filter.

Combining Automatic Forecasts

An automatic forecasting system can be used to automatically fit various models
(i.e., exponential smoothing models, ARIMA, and dynamic regression models).
Automatic forecasts may be used in cases where there is not an experienced
forecaster; the number of the forecasts to be generated is large; the frequency of
forecasting updates is high; the real model in not known or it is difficult to be
identified (Leonard 2002). Combining a number of automatic forecasting models
may produce superior forecasts especially out-of-sample. The forecast package
(Hyndman 2016) for the R system for statistical computing, implements various
automatic forecasting models. In the current work, two general automatic fore-
casting models are utilized. That is an exponential smoothing state-space model
(ETS) and an autoregressive integrated moving average (ARIMA) model
(Hyndman and Khandakar 2008; Hyndman et al. 2002). In particular, the ETS
model offers 15 methods, such as simple exponential smoothing (N, N), Holt’s
linear method (Ad, N), etc. (Hyndman 2016; Hyndman and Khandakar 2008;
Hyndman et al. 2002).

The automatic ARIMA model identifies a seasonal ARIMA model in the fol-
lowing form ARIMA (p, d, q)(P, D, Q)m. The three components (p, d, q) are the
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AR order, the degree of differencing, and the MA order. The other three compo-
nents are a specification of the seasonal part of the ARIMA model, plus the number
of periods per season m. The automatic function in R in order to estimate the (p, d,
q, P, D, Q) uses a variation of the Hyndman and Khandakar algorithm, (Hyndman
and Khandakar 2008) which combines unit root tests, minimization of the AICc and
MLE to obtain an ARIMA model.

For the combination of the forecasts, we propose a state-space representation
where a dynamic linear model combines in real time the automatic forecasts.
A State-Space model, is composed of an unobservable state: x0, x1, x2, . . . , xt, . . .
which forms a Markov Chain, and an observable variable: y0, y1, y2, . . . , yt, . . .
which are conditionally independent given the state. A very important class of
state-space models is the dynamic linear model, which is specified by three equa-
tions. Equation (1), is a normal prior distribution for the p-dimensional state vector
at time t = 0, Eq. (2) is called the observation equation and Eq. (3) the state
equation or system equation.

θ∼N p m0,C0ð Þ ð1Þ

Yt =Ftθt + υt υt ∼N m 0,Vtð Þ ð2Þ

θt =Gtθt− 1 +wt wt ∼N p 0,Wtð Þ ð3Þ

where Gt and Ft are known matrices (of order p× p and m× p respectively) and
ðυtÞt and ðwtÞt are two independent sequences of independent Gaussian random
vectors with mean zero and known variance matrices ðVtÞt ≥ 1 and ðWtÞt ≥ 1,
respectively. Furthermore, it is assumed that θ0 is independent of ðυtÞ and ðwtÞ
(Petris et al. 2009).

In this form, one can model nonlinear relationships between x and y, structural
changes in the process under study, as well as the omission of some variables. For
the optimal properties of the algorithm, the interested reader is referred to the
following work (Kalman 1960; Gelb 1974; Hamilton 1994; Nikolopoulos and
Papakyriazis 2002).

In our work, the dynamic linear regression model that is used to combine the
automatic forecasts is described by

Yt = x
0
tθt + υt υt ∼N 0, σ2t

� � ð4Þ

θt =Gtθt− 1 +wt wt ∼N p 0,Wtð Þ ð5Þ

where x′t = ⌊x1, t . . . x
p
t ⌋ are the values of the p explanatory variables at time t.

Setting Gt as the identity matrix and W diagonal, correspond to modeling the
regression coefficients as independent random walks (Petris et al. 2009).
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Application

In this section, we implement the automatic models presented in Sect. 2 and then
we combine the forecasts with a simple average model, an unrestricted linear
regression model, and our proposed Dynamic Linear Model. In our experiments, we
utilize the data of a Greek manufacturing company that belongs to the chemical
sector. In particular, we use monthly sales from January 2008 to December 2010
that is 36 observations, for “in sample” model estimation. The monthly sales of
2011 are used for “out of sample” forecast, combination and forecast evaluation.
The estimated automatic models for the sales are ARIMA(0, 0, 0)(1, 1, 0)[12] with
drift and ETS(M, N, M), while the respective models for the COGS are ARIMA
(1, 1, 0) and ETS(M, A, N). The triplet (E, T, S) refers to the three components:
error, trend, and seasonality. Thus, the model ETS(M, A, M) has multiplicative
error, additive trend, and multiplicative seasonality, while the model ETS(M, N, M)
has multiplicative error, no trend and multiplicative seasonality. More information
for model description and measures of forecast accuracy can be found in Hyndman
(2016) and Hyndman and Koehler (2006) respectively (Figs. 1 and 2).

Fig. 1 Actual and forecasted monthly sales
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Conclusions

A dynamic linear model was applied for the combination of monthly sales and
COGS forecasts. The combination of forecasts greatly reduced the model selection
risk, while the out-of-sample performance of the proposed combination model was
better than any other single or combined forecasting model applied in this work. It
is noticeable that in terms of RMSE the forecast improves from 1 to 55% points
with regard to any other forecasting model (see Tables 1 and 2). We expect the

Fig. 2 Actual and forecasted COGS

Table 1 Out of sample accuracy measures for monthly sales forecasts

ME RMSE MAE MPE MAPE ACF1 Theil’s U

ARIMA −0.262 0.344 0.315 −16.678 19.508 −0.133 1.147
ETS −0.110 0.261 0.216 −6.990 12.857 −0.031 0.855
Average combination −0.186 0.291 0.256 −11.834 15.444 −0.109 0.966
Linear combination −0.287 0.389 0.327 −17.697 19.730 −0.080 1.315
Dynamic combination −0.033 0.251 0.192 −2.949 11.497 −0.009 0.809

Dynamic Combination of Automatic Forecasts … 101



dynamic combination benefits to be higher when we combine more automatic
forecasts, and this experiment is left for a future work.
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