
ArPALib: A Big Number Arithmetic Library
for Hardware and Software Implementations.

A Case Study for the Miller-Rabin
Primality Test

Jan Macheta, Agnieszka D ↪abrowska-Boruch, Pawe�l Russek(B),
and Kazimierz Wiatr

AGH University of Science and Technology, Mickiewicza Av. 30,
30-059 Krakow, Poland

{macheta,adabrow,russek,wiatr}@agh.edu.pl

Abstract. In this paper, we present the Arbitrary Precision Arithmetic
Library - ArPALib, suitable for algorithms that require integer data rep-
resentation with an arbitrary bit-width (up to 4096-bit in this study).
The unique feature of the library is suitability to be synthesized by HLS
(High Level Synthesis) tools, while maintaining full compatibility with
C99 standard. To validate the applicability of ArPALib for the FPGA-
enhanced SoCs, the Miller-Rabin primality test algorithm is considered
as a case study. Also, we provide the performance analysis of our library
in the software and hardware applications. The presented results show
the speedup of 1.5 of the hardware co-processor over its software coun-
terpart when ApPALib is used.

Keywords: Big numbers · Primality tests · High-Level Synthesis ·
FPGA

1 Motivation

The big numbers - the integer numbers in computer data representation that
comprise of hundreds of bits, are a foundation for security solutions of today’s
computer systems. Although, some of the modern programming languages allow
programmers to choose an arbitrary variable size, the majority of modern C
language compilers, supports the maximum integer size of 64-bits only. There-
fore, it is necessary to define the custom big data types and create functions for
arithmetic operations from scratch. Alternatively, a developer can benefit from
one of the ready-to-use big number libraries that are offered either commercially
or as open sources [1,2].

The FPGAs have been used for security enhancement algorithms before [3–
6]. Meanwhile, the role of the Programmable SoC (PSoC) solutions, that incor-
porate a CPU subsystem and an FPGA structure in a single chip, is rapidly
growing. Soon, such CPU-FPGA hybrid solutions will become ubiquitous, not
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 323–330, 2017.
DOI: 10.1007/978-3-319-56258-2 28

324 J. Macheta et al.

only for embedded systems but in server solutions as well. The major obsta-
cle in deploying such systems is a cost of hardware development. Designing of
hardware is time-consuming, cost-intensive, and requires extra developer skills.
However, a shift towards high-level programming can be noticed in design tools
today. Thanks to the High-Level Synthesis, C and C++ codes of the algorithms
can be translated to their Register Transfer Level (RTL) representations and the
process can be controlled by means of inserting pragmas into the source files.
The HLS tools significantly speed up the FPGA system development and lead
the way to CPU-FPGA systems spreading. Unfortunately, some of the software
techniques (i.e. dynamic allocation or recursion) are prohibited by HLS. Thus,
preparing the hardware synthesizable C code still requires some effort and care.

The main goal of this paper is to introduce the Arbitrary Precision Arithmetic
Library (ArPALib) that was developed by the authors. Its main advantage over
other available arithmetic libraries is that it can be implemented both in software
and HLS synthesized hardware, allowing the developer to swiftly create CPU-
FPGA based solutions. It is worth highlighting that the source code of ArPALib
is available online in the repository provided by the authors [7].

2 The Big Number Libraries

For a proper background we will first overview the three big number libraries
that are available for C programmers. We will refer to the GMP [1] and BigDigits
[2] libraries, ap cint.h - built-in library from Xilinx’s Vivado HLS.

GMP library is considered to be one of the fastest big number library
available today. It covers an arbitrary bit-width for signed and unsigned integers
and fixed-point numbers. Its extraordinary performance comes from a variety of
implemented algorithms that are selected according to the actual size of the used
numbers. Additionally, the GMP’s algorithms exploit aggressive optimizations
for selected processor architectures (e.g. AMD K5/K10, Intel Sandy Bridge,
ARM family).

The individual number is represented by the mpz t structure that comprises
the memory pointer to a dynamically-allocated array that stores the value of the
number, and its current size. That kind of representation reduces the memory
read/write operations, and induces basic pointer arithmetic to perform calcula-
tions. Unfortunately, the mentioned coding techniques exclude using GMP from
a HLS design flow.

BigDigits library is an open source arithmetic library that conforms to
ANSI C standard. The authors of BigDigit implemented mainly paper-and-pencil
methods arithmetic algorithms, where arguments must be the same lengths. If
the allocated space is bigger than the actual number length, zero-padding oper-
ation is performed to ensure the result correctness. BigDigits simplicity made
this library a good candidate for HLS, however, some of its algorithms use a
recursion, which is not supported by HLS tools.

In our experiments we used Xilinx’s Vivado HLS environment, that pro-
vides built-in arbitrary precision integer library, included in ap cint.h header.

ArPALib: A Big Number Arithmetic Library for Hardware and Software 325

It defines the [u]int <precision> type exclusively recognized by the Vivado’s C
compiler and HLS tool, that makes bit-accurate simulations possible.

The [u]int <precision> is implemented in hardware as a bit vector, which
means that the width of hardware registers and functional elements fit the width
of the number. That provides a one clock cycle for a single operation, but also
leads to a limited clock frequency and the fast exhaustion of FPGA resources for
large bit-widths (even a single multiplication of two 4096-bit numbers exceeds
the capacity of Xilinx Artix-7 family of FPGAs). Therefore, the maximum pre-
cision of [u]int is restricted (by default) to 1024. Unfortunately, the Vivado HLS
does not provide sequential processing of big numbers and the trade-off between
performance and resources cannot be controlled.

3 ArPALib Introduction

To overcome problems mentioned in Sect. 2, we created ArPALib, which is fully
synthesizable (by Vivado HLS 2015.4) and C99 compatible library for soft-
ware and hardware implementations. Our goal was to propose a solution that
enables sequential processing of big numbers in blocks of bits of a selected width
to reduce. The code of ArPALib is publicly available under the GNU GPLv3
license [7].

The library can be parametrized to redefine the base integer type (named
uint t), which is used as an elementary computational block of the big number,
and processed in sequential algorithm steps. The base type allows programmers
to force such a bit-width of the co-processor architecture that fits the size of the
selected FPGA device. Furthermore, it can be defined as [u]int for the Vivado
HLS compiler, thus enabling optimization for speed or resources footprint.

A type for the unsigned integer big number is called uintBig t in ArPALib.
It contains an array of uint t elements, and the length of the array is defined at
compile time. Optionally, the uintBig t can hold a variable that keeps the current
size of the stored big number. Thanks to that, the number of read/write opera-
tions is reduced by excluding not used segments from computations, instead of
zero padding operation. For example, the number of memory accesses is limited
to the size of the smaller argument in the add operation. The bigger the difference
of the arguments’ length is, the more significant is the speed-up. Our approach
requires tracking the arguments’ size, so it introduces some extra operations.
However, even if the arguments are of similar size, the overhead that ArPALib
produces is small (e.g. only one comparison operation more for the addition
than the algorithm without modification). The library supports dynamic data
allocation for software implementations to prevent stack overflow problems.

Algorithms implemented in ArPALib are summarized in Table 1. The library
implements all elementary binary operations, comparison and assignment oper-
ations. It also provides input/output tools that include conversion of binary
strings of different formats to big number values and vice versa in the soft-
ware version. Unfortunately, all the performed operations are integer-based only,
therefore, the Schoenhage-Strassen algorithm or Barett reduction are not avail-
able. On the other hand, hardware implementations are modest thanks to that.

326 J. Macheta et al.

Table 1. Algorithms implemented in ArPALib

Addition • Schoolbook addition with carry algorithm

Subtraction • Schoolbook subtraction with borrow algorithm

Multiplication • Karatsuba alg. (for the uint t type)

• Schoolbook long multiplication algorithm

Division • Knuth’s D algorithm ref

Exponentiation • Exponentiation by squaring algorithm

Exponentiation modulo • Right-to-left binary shift algorithm

4 Tests of ArPALib as Software

We compared the software efficiency of ArPALib (using uint32 t as a base type)
to the GMP(v.6.1.1) and BigDigits(v.2.6) for numbers up to 4096-bit long. Tests
were conducted on the AMD FX-6100@4 GHz, 32GB RAM DDR3-2400 machine
(and compiled by MinGWv5.0RC2 with −O2 flag). To cope with a very short
single computation time, and to mitigate the influence of the OS, the measure-
ments were performed in 100,000 repeats. The average processing time for a
single addition is given in Fig. 1. The multiplication and division are given in
Figs. 2 and 3 respectively.

500 1000 1500 2000 2500 3000 3500 4000
n [b]

0

0.5

1

1.5

2

2.5

3

3.5

t(n
) [

m
s]

10-4

ArPALib 32b
BigDigits 2.6
GMP 6.1.1

Fig. 1. A comparison of n × n unsigned integers addition/subtraction

5 A Case Study of ArPALib as Hardware

To present synthesizability and efficiency of ArPALib for FPGA hardware imple-
mentation, we will provide metrics of a custom co-processor for the Miller-Rabin

ArPALib: A Big Number Arithmetic Library for Hardware and Software 327

500 1000 1500 2000 2500 3000 3500 4000
n [b]

0

0.005

0.01

0.015

0.02

0.025

0.03

t(n
) [

m
s]

ArPALib 32b
BigDigits 2.6
GMP 6.1.1

Fig. 2. A comparison of n × n unsigned integers multiplication

500 1000 1500 2000 2500 3000 3500 4000
n [b]

0

1

2

3

4

t(n
) [

m
s]

10-3

GMP 6.1.1
BigDigits 2.6
ArPALib 32b

Fig. 3. A comparison of n × n unsigned integers division

algorithm that was created in the experiment, which is a well-known and widely-
used number primality test that is used in security applications.

The implementation and experiments were performed on Xilinx’s PSoC of
Zynq-7000 family XC7Z020. The chip was a part of the Zedboard platform.
Zynq combines the Cortex-A8 CPU of the ARM family and the small pro-
grammable logic of the Xilinx’s 7 series FPGA. The HLS synthesis and design
flow from Vivado 2015.4 development tool were used. In HLS, the architecture
of the co-processor is formed according to the algorithm coded in the C pro-
gramming language that is accompanied by special directives to steer the hard-
ware synthesis (e.g. control parallelism or select IO interfaces). The coproces-
sor communication interface was built around the AXI4-Lite bus. The through-
put of AXI-Lite is very modest, but it does not influence the performance of

328 J. Macheta et al.

the system for the computational intensiveness of the Rabin-Miller algorithm.
The goal was to implement the Rabin-Miller algorithm for the set of ten bases
a ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}, which guarantees the deterministic
approach for the numbers up to 263, and the probabilistic test with less uncer-
tainty than 4−10 ≈ 9.5 · 10−7 for larger numbers. The code for the implemented
coprocessor is presented in Algorithm 1.

Algorithm 1. The algorithm implemented in the Miller-Rabin co-processor
Input: n ∈ N/ {1} is the tested number

procedure ProcPrimalityTest(n)
K ← {2, 3, 5, 7, 11, 13, 17, 19, 23, 29} � The constant set of primality witnesses
if d | 2 then � Check if n is odd

return COMPOSITE
end if
s ← 0
d ← BinaryShiftRight(n) � n is odd, so d = (n − 1)/2
while LSB(d)=0 do � LSB() gets the least significant bit

s ← s + 1
d ← d/2

end while
for i ← 1, 10 do

a ← K(i) � Get next element of K
result ← IsStrongPseudoprime(a, n, s, d)
if result = COMPOSITE then

return COMPOSITE
end if

end for
return PROBABLY PRIME

end procedure

We created three versions of the 4096-bit coprocessor, differing in the bit-
width of the ArPALib base type uint t (8, 16 and 32 bits). Figure 4 shows the
corresponding resource usage of tested versions after FPGA implementation.
Expectedly, as the uint t size doubles, the resources requirement doubles as well.
Unfortunately, any attempts to synthesize the coprocessor for the wider uint t
failed due to the FPGA resource shortage.

We also performed speed tests of co-processors. For the set of prime numbers
in the range 225 to 24096, the execution time of the Miller-Rabin coprocessor
was measured against ARM Cortex-A9 running the software algorithm for the
matching size of uint t. Results are given in Fig. 5. The 32-bit version of hardware
coprocessor runs 50% faster than its software counterpart. The speedup was
even higher for the 8 and 16-bit versions, but results cannot be demonstrative
as the CPU did not use its native data representation in those cases. It should
be mentioned, that when the uint t size doubles, the speed doubles as well.
This scaling comes with the sequential behavior of the implemented big number
operators.

ArPALib: A Big Number Arithmetic Library for Hardware and Software 329

LUT FF BRAM DSP48
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70

ArPALib 8b
ArPALib 16b
ArPALib 32b

Fig. 4. Utilization of FPGA resources for Miller-Rabin co-processors in Zynq XC7Z020
FPGA. The size of the base type uint t defined as 8, 16, and 32 bits

0 1000 2000 3000 4000
log2n [b]

100

102

104

106

t(n
) [

m
s]

8b (FPGA)
16b (FPGA)
32b (FPGA)
32b (CPU)
16b (CPU)
8b (CPU)

Fig. 5. ArPALib performance of the Miller-Rabin test in the hardware and software
for n-bit numbers. The 8, 16, and 32-bits base type was tested and ARM Cortex-A8
(667 MHz) was used for the software version

6 Conclusions

The presented experiment proved that the hardware-software design symmetry
come true thanks to HLS tools available today. At present, software routines can
be positioned more easily in hardware to gain better performance. Although it
requires the cautious coding style of the program, that drawback can be miti-
gated by the use of hardware and software compatible libraries like ArPALib.

Acknowledgements. This work was performed thanks to the funds for AGH statu-
tory activity 11.11.230.017.

330 J. Macheta et al.

References

1. Granlund, T.: GNU MP 6.0 Multiple Precision Arithmetic Library. Samurai Media
Limited, Hong Kong (2015)

2. Ireland, D.: BigDigits multiple-precision arithmetic source code. http://www.
di-mgt.com.au/bigdigits.html. Accessed 29 Sept 2016

3. Gielata, A., Russek, P., Wiatr, K.: AES hardware implementation in FPGA for
algorithm acceleration purpose. In: International Conference on Signals and Elec-
tronic Systems, pp. 137–140 (2008)

4. Kryjak, T., Gorgon, M.: Pipeline implementation of the 128-bit block cipher CLE-
FIA in FPGA. In: International Conference on Field Programmable Logic and
Applications, FPL 2009, pp. 373–378 (2009)

5. D ↪abrowska-Boruch, A., Gancarczyk, G., Wiatr, K.: Implementation of a RANLUX
based pseudo-random number generator in FPGA using VHDL and impulse C.
Comput. Inf. 32(6), 1272–1292 (2014)

6. Jamro, E., Russek, P., D ↪abrowska-Boruch, A., Wielgosz, M., Wiatr, K.: The imple-
mentation of the customized, parallel architecture for a fast word-match program.
Int. J. Comput. Syst. Sci. Eng. 26(4), 285–292 (2011)

7. Macheta, J., et al.: ARPALib repository. https://git.plgrid.pl/projects/ARPALIB/
repos/arpalib. Accessed 29 Sept 2016

8. Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Syst. Sci.
13(3), 300–317 (1976)

9. Pommerening, K.: Cryptology. Part III. Primality Tests: RSA and Pseudoprimes
28 May 2000. Accessed 21 Feb 2016

10. Pomerance, C., Selfridge, J.L., Wagstaff, S.S.: The pseudoprimes to 25 ·109. Math.
Comput. 35(151), 1003–1026 (1980)

11. Walter, C.D.: Right-to-left or left-to-right exponentiation? International Workshop
on Constructive Side-Channel Analysis and Secure Design, pp. 40–46 (2010)

12. Conrad, K.: FERMAT’S TEST. http://www.math.uconn.edu/kconrad/blurbs/
ugradnumthy/fermattest.pdf

13. Solovay, R., Strassen, V.: A fast Monte-Carlo test for primality. SIAM J. Comput.
6(1), 84–85 (1977)

14. Bach, E.: Number-theoretic algorithms. Annu. Rev. Comput. Sci. 4(1), 119–172
(1990)

http://www.di-mgt.com.au/bigdigits.html
http://www.di-mgt.com.au/bigdigits.html
https://git.plgrid.pl/projects/ARPALIB/repos/arpalib
https://git.plgrid.pl/projects/ARPALIB/repos/arpalib
http://www.math.uconn.edu/kconrad/blurbs/ugradnumthy/fermattest.pdf
http://www.math.uconn.edu/kconrad/blurbs/ugradnumthy/fermattest.pdf

	ArPALib: A Big Number Arithmetic Library for Hardware and Software Implementations. A Case Study for the Miller-Rabin Primality Test
	1 Motivation
	2 The Big Number Libraries
	3 ArPALib Introduction
	4 Tests of ArPALib as Software
	5 A Case Study of ArPALib as Hardware
	6 Conclusions
	References

