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Abstract. Highly-tuned FPGA implementations can achieve signifi-
cant performance and power efficiency gains over general purpose hard-
ware. However the limited development productivity has prevented main-
stream adoption of FPGAs in many areas such as High Performance
Computing. High level standard development libraries are increasingly
adopted in improving productivity. We propose an approach for perfor-
mance critical applications including standard library modules, bench-
marking facilities and application benchmarks to support a variety of use-
cases. We implement the proposed approach as an open-source library
for a commercially available FPGA system and highlight applications
and productivity gains.

1 Introduction

Highly tuned FPGA implementations can achieve performance and power effi-
ciency gains for many problems [1]. However, development productivity is lim-
ited compared to other acceleration alternatives such as GPUs or Xeon Phi
processors [2].

Recently, higher-level programming facilities based on High Level Synthe-
sis [3,4] or domain specific languages [5–7] have improved productivity of
FPGA development significantly. High-quality standard development libraries
are becoming essential to improve productivity further. However, FPGA devel-
opment environments may not provide standard development libraries. Funda-
mental operations such as floating point reductions may not be supported, and
depending on the available resources and desired performance are nontrivial to
implement, as we show in Sect. 2.

It is therefore necessary to provide well-designed component libraries to facil-
itate the development of applications and tools. However, in addition to these
facilities, and as a point of departure from conventional approaches, given the
performance-critical nature of the FPGA environment, component and applica-
tion benchmarks should also be part of the library to facilitate the development
of high-performance designs. To increase developer productivity for FPGA accel-
erators at all levels, libraries might provide: (1) library components which serve
as the building blocks for developing real-world applications. These library com-
ponents should be efficient in terms of latency, throughput and resource usage,
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and provide a useful and customisable interface; (2) benchmarking utilities which
aid in tasks such as determining system performance and resource utilisation.
These utilities are essential for rapid prototyping, and assessing the scalability
and feasibility of FPGA designs; (3) applications which can be used as bench-
marks, or case studies for framework and tool development. These applications
can also be adapted to accelerate closely related problems, considerably reducing
development time.

In this work we present dfesnippets,1 the first community driven open-
source library for Maxeler DataFlow Engines (DFEs). The library is available
under the MIT License. Table 1 provides an overview of the components:

1. A library component which contains useful reusable cores such as reduction,
sorting and I/O circuits; these cores are tested and optimised, and have been
used in several published designs [8–11].

2. A benchmarking component which facilitates quantitative evaluation and sim-
plifies the process of modelling and estimating resource and performance prop-
erties, speeding up the design process.

3. An application component which provides a collection of full applications
to be used as case-studies for the development of frameworks and tools for
FPGA based programming. These applications have been used in several
research projects and publications [12–16].

Table 1. Overview of components in dfesnippets

Component Block Refs

Library Input/output – ALBP, Inter-FPGA [8]

Linear algebra – SpMV, power iteration [17,18]

Reductions – tree, PCBT, LogAdder [9]

Sorting – bitonic sorter [13]

Benchmarks Infiniband/PCIe throughput –

Custom memory controller throughput –

Default memory controller throughput –

Component resource utilisation –

Applications Quantitative phase imaging [19]

Genetic sequence alignment [16,20]

Monte carlo finite difference option pricing [13]

Software utilities Build tool (python) –

Project template tool (python) –

Results extraction (python) –

Sparse matrix utilities (C++) –

Scheduling utilities (C++) –

1 https://github.com/custom-computing-ic/dfe-snippets.

https://github.com/custom-computing-ic/dfe-snippets
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Although we will not cover this in greater detail due to lack of space,
the library also contains: (1) header only C++ libraries implementing useful
functionality for managing and benchmarking DFE projects ranging from timing
utilities to APIs for reordering sparse matrix data in preparation for FPGA exe-
cution; (2) tools for creating and managing projects such as to compile, generate
and manage multiprocess and multi-node hardware compilation, and automati-
cally extract and tabulate resource usage and generate reports; (3) comprehen-
sive, automated test suite, testing each design to ensure it is functionally correct
and it meets timing and resource usage constraints.

A community driven library of open-source implementations, component and
application benchmarks can increase the productivity of researchers and profes-
sional programmers. It can also improve the quality of results, and pave the way
for broader FPGA adoption in areas where productivity has been a key limiting
factor, such as High Performance Computing.

2 Library Components

Library components are the building blocks for developing more complex real
world applications. dfesnippets includes a range of components such as generic
reduction, I/O blocks, linear algebra blocks (sparse product, matrix vector and
matrix-matrix-multiply, power iteration kernels, sparse matrix vector multipli-
cation for banded matrices), and generic configuration and connectivity utilities
such as inter-FPGA communication blocks. Despite being fundamental compo-
nents, they are challenging to implement on FPGAs due to the resource con-
strained nature and high emphasis on performance and resource efficiency.

To be used effectively in large scale designs, library components must be para-
metric, provide a useful interface, and be efficient in terms of latency, throughput,
and resource utilisation. Pure encapsulation, in software terminology, is difficult
to achieve, therefore the internals of many cores may have to be customised in
order to fit into the resource and performance constraints of a particular appli-
cation. This makes source code availability important for component reuse.

We implement dfesnippets for the Maxeler FPGA platform [21]. The plat-
form constitutes of a hardware implementation, a compiler from a high-level
dataflow language, MaxJ, to FPGA bitstream, and a runtime environment.
MaxJ [22] provides explicit control of the design of the hardware architecture
itself, which is critical in delivering good performance and effectively exploit-
ing customisation opportunities available for FPGA designers. It is conceptu-
ally close to Verilog, but with increased productivity due to the abstraction
of low-level vendor IPs; MaxJ provides good support for software-only simula-
tion and interfacing with many available programming languages. These features
make MaxJ a good choice for implementing an open-source library: it provides
a high level of control and flexibility without being verbose while the similarity
to other hardware description languages simplifies porting components to other
languages. In the rest of this Section we provide a more in-depth look at certain
components of dfesnippets. For a full list please see the project page2.
2 https://github.com/custom-computing-ic/dfe-snippets.

https://github.com/custom-computing-ic/dfe-snippets
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2.1 Reductions

A reduction is the application of an associative binary operator to an initial
value and a list of values in order to collapse the list to a single value. The
deeply pipelined nature of the arithmetic units on FPGAs, such as those for
floating point, make reduction operators non-trivial to implement, and much
research has gone into efficient reduction circuits [23–25].

Reduction implementations must balance throughput, resource usage and
latency. From this perspective, we can define at least three types of reduction
circuits. First, a fully parallel reduction tree which can reduce k values per clock
cycle, assuming fully pipelined operators. Trees have the highest throughput,
but also the largest resource usage of O(k). To reduce large data streams of
size n, reduction trees of size n are required. This is fast but not practical
from a resource utilisation standpoint. Second, a C-slowed accumulator may
reduce one value per clock cycle, with a latency depending on the latency L of
the reduction operator. This is a resource efficient approach requiring a single
reduction operator, but the throughput is limited: one value per clock cycle may
make the reduction circuit a performance bottleneck of the entire design. For
example a modern FPGA architecture may read 48 double precision values from
DRAM per clock cycle. Also, the C-slowed accumulator does not fully compute
the reduction, as L partial sums are left to be reduced in the pipeline. Third, more
complex reduction circuits have been proposed such as the partially compacted
binary reduction tree, PCBT [26]. These blocks are more complex to implement
but can achieve good resource efficiency when high throughput is not a concern.
Circuits such as the PCBT solve the issue of only partially reducing the data
set, and they typically require more resources than a C-slowed implementation
but fewer resources than a tree.

Many designs, such as implementations of sparse matrix vector circuits [8],
iterative solvers [10] and power iteration kernels [17] may require a combination
of all three circuits to achieve maximum performance: (1) a full tree performs
the initial reduction at high throughput reducing k values per cycle, (2) each
output of the reduction tree is fed and accumulated in a C-slowed accumulator
and finally (3) each output of the C-slowed accumulator may be reduced using
a PCBT.

Our implementation of the PCBT is shown in Fig. 1. It consists of a chain of
blocks, each implementing its own level of a binary reduction tree using a state
machine, a buffer and an adder. The state machine has two states: no arguments
and one argument. When one argument is present in the buffer and the second
argument is an enabled input, the adder produces their sum as the output signal
with the valid signal high, then flushes the internal state to no arguments. At
the transition to the one argument state the output valid is low, whilst the
output is a sum of a stored argument with zero. The valid signal of a block is
connected to the enable signal of the next block so that each level of the PCBT
is waiting for the complete accumulation at the previous level. It also enables
the PCBT to stall but preserve its internal state if necessary (when enable is
low). The external reset signal forces all state machines to produce the valid
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signal high regardless of their internal state, thus finalising the reduction with
whatever number of inputs are internally present in our PCBT circuit. This
enables accumulating an arbitrary number of terms in a reduction set.
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Fig. 1. PCBT based on state machines

To conclude the reduction case study, we note that, in principle, the reduc-
tion operation is probably one of the most fundamental building blocks required
for implementing more complex applications. However, due to the broad range
of design choices with varying throughput, resource utilisation and functionality,
this operation is not trivial to implement. Having easy access to multiple vari-
ants of reduction circuit, as provided by dfesnippets, can therefore improve
productivity.

2.2 Input and Output Blocks

I/O blocks are commonly used to manage the connection between the compu-
tational kernel implemented on the FPGA accelerator and off-chip components
such as DRAM, the host CPU (PCIe, Infiniband), or other FPGA devices.

In the case of DRAM and CPU communication, the I/O blocks may be
required to convert the fixed width output interface of the communication chan-
nel to a different input width of the computational kernel. This is a common
requirement, particularly for applications which process an irregular, runtime
dependent input size at each cycle such as a sparse matrix vector multiplication
kernel [8]. The I/O blocks are required to be efficient from a resource utilisation
perspective but the logic they implement is often complex and the control heavy
nature does not map well to dataflow style accelerators and languages. If unop-
timised, these blocks can use substantial on-chip resources, particularly memory
resources such as BRAMs.

Blocks such as the Arbitrary Length Burst Proxy (ALBP) included in
dfesnippets and used in previous work [8] can help address these issues. The
ALBP architecture contains k FIFOs to store bursts retrieved from off-chip mem-
ory. Once a burst is retrieved, data are pushed in the FIFOs such that the i-th
element of a burst is assigned to FIFO o+i mod k. o is the position after process-
ing the previous burst. mt < k data items may be simultaneously requested from
the ALBP by the compute kernel, where mt is runtime-determined. If fewer than
k items are requested, the output is zero-padded to the fixed width k to match
with the fixed, regular k width of the compute kernel’s input interface.
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Other I/O blocks may be required for inter-device communication. In com-
puting clusters with multiple FPGAs, light-weight and easy-to-use communica-
tion modules for inter-FPGA data transfer help to reduce the latency and over-
head of the whole system. In a number of HPC systems, such as the Maxeler
system used in this work, direct built-in inter-FPGA links are used for trans-
ferring large amounts of data with low latency. dfesnippets builds on top of
these inter-FPGA links to implement an interchangeable communication kernel
which creates a one-dimensional systolic array, unrolled across multiple FPGAs.
The kernel uses counters to keep track of the amount of data sent and received,
which are used to control input and output switches, allowing data to be rapidly
transferred among the FPGAs. dfesnippets implements an all-to-all broad-
casting protocol using this systolic array by alternating the direction of the data
transfer in successive turns. Interchangeable inter-FPGA communication mod-
ules provide greater flexibility in distributing workload among the accelerators,
hence such a library of modules is extremely useful for applications requiring
large-scale multi-FPGA systems.

2.3 Other Blocks

In addition to the components presented in this section, dfesnippets includes a
range of components such as sorting and linear algebra blocks, more generic con-
figuration and connectivity utilities and a substantial number of CPU based func-
tionalities, to handle pre-processing and integration of the accelerator designs
within larger application frameworks. Leveraging these blocks, there are many
possibilities for developing, optimising and including more library components
within the proposed approach, which will further increase the productivity and
applicability.

3 Benchmarking

Benchmarking utilities are especially helpful for the research community. They
help establish a baseline for the system performance or resource efficiency, facil-
itate quick estimation and prototyping (for example to assess the scalability of
various designs with respect to memory bandwidth, resources etc.), provide san-
ity checks and highlight empirically the impact of some optimisations which may
not be entirely transparent to the end user. Two types of benchmarks are particu-
larly important for FPGA development: (1) performance benchmarks which can
be used to measure the throughput and latency of FPGA designs and memory
and interconnect subsystems (2) resource utilisation benchmarks which demon-
strate the resource efficiency of particular cores and are essential for assessing
the scalability and feasibility of FPGA designs.

Performance. dfesnippets provides three system level performance bench-
marks which can be used to measure the achievable throughput of various links.
The Default DRAM Benchmark instantiates a default memory controller, with
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customisable clock frequency which reads and writes data in a linear access fash-
ion. This can be used to determine the peak memory bandwidth performance
of a given device, which can serve as a baseline for measuring the achieved
performance of user applications. The Custom DRAM Benchmark instantiates
a more complex design with a custom memory command generator and asso-
ciated host code to drive the benchmarking. This can be used for evaluating
the memory access speed using custom memory commands and linear access
patterns. It fetches parallel data streams from DRAM and then routes them to
DRAM and/or host, behaviour which is configurable by the user. The major con-
figuration options are parameterised so users can change the number of bursts
per command, size of memory to access, width of memory interface and number
of parallel DRAM streams to match existing properties in their own designs.
This enables rapid experimentation with application specific data placement
and access scheduling techniques to improve DRAM performance. The Infini-
band/PCIe DRAM Benchmark instantiates a simple pass through design which
matches the PCIe input width (128 bits). Together with the associated software
to run on the CPU, the design can be used to measure throughput over the CPU
to FPGA interconnect.

The library allows users to easily adjust the number of measurements, data
size, memory controller frequency, on-chip frequency, and architecture for each
benchmark. This reduces the possibility for error and promotes good practices.

Resource Utilisation. dfesnippets includes a synthetic resource utilisation
benchmark to measure the resource usage of various blocks using the MaxCom-
piler builtin resource usage annotations. These reports are openly available as
part of the library and can provide the basis for rapid resource usage estimation
models without the need to sit through long compilation times. This can greatly
reduce the time to prototype designs. The benchmarks are provided for both
the Xilinx Virtex 6 based Vectis boards and the Stratix V Maia boards. This
provides a quick method to highlight differences between the two (such as dif-
ferent resource usage profile of DSPs) or provide insight into hidden properties,
which can probably only be discovered by significant empirical exploration, such
as the considerable resource savings achieved by reducing pipelining factors on
the Stratix V Maia boards.

4 Applications

dfesnippets also includes a set of full applications which can be used as reusable
components in other applications or as benchmarks and case studies for frame-
work and tool development. The broader availability of such applications can
help researchers and developers focus more on their area of expertise and avoid
typical pitfalls stemming from the complexity of designing FPGA based appli-
cations. These applications themselves contain reusable blocks which can be
adapted in other designs, or can be reused directly in other applications, per-
haps as one stage of a complex pipeline or multi FPGA design. Overall, the
availability of these larger designs can increase the productivity of researchers
and tool developers.
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Genomic Data Analysis. dfesnippets includes an FM-index [27] design
which can be used to accelerate a variety of genomic data analysis applications
such as sequence alignment [28], sequence assembly [29], and reference-based
compression [30]. Several works which make use of the FM-index design have
been published [15,16]. The FM-index is a full-text compressed index which
supports substring searching in time proportional to the search string length.
The FM-index is built upon the Burrows-Wheeler transform [31], a permutation
of a text generated from its Suffix Array [32].

A single FPGA outperforms the fully-optimised software version running on
dual Intel Xeon CPUs with 16 threads. The largest performance improvement
is for the hg38 data set where the FPGA is 3.7 times faster than the software
version. With the performance gains presented, the FM-index design has great
potential for integration into many genomic data analysis applications or to be
used as a reference benchmark application for tool development.

Monte Carlo Finite Difference Option Pricing. dfesnippets includes a
multi-FPGA dynamic Monte Carlo design for bond options pricing. This design
is particularly useful as a case study for resource management frameworks or
environments for FPGAs [13,14] as it demonstrates good scalability and per-
formance. To accelerate the payoff evaluation for the bond option, the Monte
Carlo paths and the payoff evaluation functions are implemented on the FPGA
accelerator. The finite difference method [33] is applied to solve the resulting
equations and estimate the payoff of the bond at some time in the future.

The design operates in a map-reduce fashion, using OpenMP to parallelise
the calls to the Maxeler API which load and execute the Monte Carlo evaluation
over a configurable number of FPGAs. A final reduction step is implemented on
the CPU to aggregate the results of the computation corresponding to different
Monte Carlo paths. On the FPGA accelerator, an optimised random number
generator [34] is used to generate the random numbers required for the Monte
Carlo computation. A baseline design with 4 parallel processing elements, uses
less than 20% of the resources on the Virtex 6 chip of the Maxeler Vectis DFE.
This makes the design easy to place and route, and therefore ideal for exper-
imental workloads where a short iteration time is essential, for example when
developing tests and benchmarks for more complex tools. The design achieves
linear scalability [13] and can therefore be used to benchmark load distribu-
tion tools, scheduling strategies and cloud-like environments for heterogeneous
systems, such as FPGAs.

Quantitative Phase Imaging (QPI) on FPGAs. dfesnippets also includes
a block for image processing based on the newly developed quantitative
asymmetric-detection time-stretch optical microscopy (Q-ATOM) which offers
ultrafast and high-sensitivity quantitative phase cellular imaging. Retrieved
phase images provide essential information of cells and potentially benefits med-
ical diagnostics. However, performing backend phase retrieval and cell image
classification is extremely computationally intensive. With the aid of FPGAs
researchers can push QPI phase retrieval and cell image classification to near
real-time speed [19].
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The QPI phase retrieval and cell image classification design is composed
of a spatial domain module, a frequency domain module and a linear SVM
classifier. The spatial domain module performs background subtraction, intensity
normalization and complex phase shift extraction. The frequency domain module
performs low-pass filtering to reduce noises and retrieves final phase images. The
Winograd 16-point algorithm is used in the frequency domain module to perform
forward and inverse 2D fast Fourier transform (FFT). The sequential Winograd
algorithm has low resource consumption and is suitable for a wide range of
applications involving frequency spectrum analysis.

The QPI application has a throughput of 32.08 GOPS when running on a
single Altera Stratix V GS 5SGSD8 FPGA [19], which is equivalent to retriev-
ing and classifying around 2497 phase images of 256 × 256 size. Classification
accuracy of unstained and live human chondrocytes (OAC), human osteoblasts
(OST) and mouse fibroblasts (3T3) increases when using retrieved phase images.

5 Evaluation

dfesnippets totals approximately 6000 lines of CPU utilities and tests and 7000
lines of MaxJ in the library and benchmarking components and 4000 lines of CPU
and MaxJ code in the applications components. We estimate the development
time of each library component to be of the order of one to two weeks while
the development effort for applications is on the order of 1–2 months. Both
library and application development usually involve two developers, of which
one is typically experienced (more than two years) in the MaxJ programming
language.

Even in a relatively high level language such as MaxJ, approximately 600
lines of library code including comments are required to implement the three
alternative reduction strategies described in Sect. 2.1 plus an additional 700
lines for setting up the CPU test bench that is vital to verify the correctness
of these implementations, particularly for the more complex designs. By using
dfesnippets almost 1300 lines of code can be replaced by several lines to instan-
tiate the required reduction circuits directly in the user design. Therefore the
productivity gains resulting from the proposed library component of our app-
roach are substantial, particularly since reduction circuits are generic blocks,
commonly used in many applications. Table 2 shows several applications where
we have used dfesnippets and observed a substantial reduction in source lines
of code (SLOC) for the hardware design.

To illustrate the productivity gains achievable by the applications compo-
nents we note that recent software frameworks such as experimental compil-
ers [12] and resource management frameworks [13] for FPGA based systems can
utilise these applications directly as benchmarks. Prototypes for these projects
require 4123 and 3880 lines of code respectively, while the benchmarks require
2050 and 2924 lines of code respectively. Therefore a substantial productivity
gain comes from the ability to directly reuse these benchmarks and avoid spend-
ing substantial time on redeveloping complex designs. We estimate the develop-
ment time of application components in dfesnippets to be between 1–2 months
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Table 2. Examples of projects using dfesnippets and estimated productivity improve-
ment measured in a reduction in source lines of code (SLOC), including only the hard-
ware components and thus excluding comments, test code, CPU interfaces etc.

Application Components used SLOC reduction

SpMV tuning framework [8] Reductions, I/O, configuration 710

Biomedical acceleration [15] Bitwise operation, FM index 361

FEM accelerator [11] Reductions, I/O 490

Elastic cloud framework [13] Option pricing app benchmark 590

Linear solver [10] Benes network, reductions 250

SpMV accelerator [18] Reductions, I/O 490

each for an experienced MaxJ developer. These applications often require com-
plex, specialised and state of the art blocks such as high throughput random
number generators, Fast-Fourier Transforms, and custom memory controllers.
Such blocks are not only complex and non-trivial to optimise for FPGA imple-
mentation, they are also difficult to develop and debug. It is clear that from a
tool developer perspective, it is not productive to spend as much time developing
the benchmark as developing the tool itself.

Not only is the development time reduced substantially by avoiding the need
to redevelop benchmarks, but the parametric design supports customisation
effectively, leading to additional productivity gains. All applications can be built
with minimal configurations to verify correctness or with full replication and
optimisations to verify performance and energy efficiency. This approach simpli-
fies debugging and testing in the early stages of project development by reducing
the compilation time.

6 Conclusion

We present dfesnippets, an open source library of reusable components: cores,
benchmarks, applications and tools. It improves the productivity of FPGA devel-
opment by providing fundamental blocks for any real world application as well
as system, component and application benchmarks. By providing dfesnippets
directly as open source software to the research community, we hope that a
substantial improvement in productivity can be achieved. This may pave the
way for supporting exciting and sophisticated research and applications, while
enhancing the adoption of FPGAs in High Performance Computing, embedded
systems and other domains.
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