
FPGA Implementation of a Short Read
Mapping Accelerator

Mostafa Morshedi and Hamid Noori(&)

Faculty of Engineering, Electrical Engineering Department,
Ferdowsi University of Mashhad, Mashhad, Iran

morstafa@yahoo.com, hnoori@um.ac.ir

Abstract. Recently, due to drastically reducing costs of sequencing a human
DNA molecule, the demands for next generation DNA sequencing (NGS) has
increased significantly. DNA sequencers deliver millions of small fragments
(short reads) from random positions of a very large DNA stream. To align these
short-reads such that the original DNA sequence is determined, various software
tools called short read mappers, such as Burrows BWA, are available. Ana-
lyzing the massive quantities of sequenced data produced using these software
tools, requires a very long run-time on general-purpose computing systems due
to a great computational power it needs. This work proposes some methods to
accelerate short read alignment being prototyped on an FPGA. We use a seed
and compare architecture based on FM-index method. Also pre-calculated data
are used for more performance improvement. A multi-core accelerator based on
the proposed methods is implemented on a Xilinx Virtex-6. Our design performs
alignment of short reads with length of 75 and up to two mismatches. The
proposed parallel architecture performs the short-read mapping up to 41 and 19
times faster than parallel programmed BWA run on eight-core AMD FX9590
and 6-cores Intel Extreme Core i7-5820 k CPUs using 8 and 12 threads.

1 Introduction

Recently, processing massive data generated by NGS (Next Generation Sequencing)
methods [1] has become the main bottleneck in genetic researches. Based on the
moore’s law [2] the available data that needs to be processed in genetic researches,
massively exceeds the computational power of the modern processors.

Using the NGS methods, millions of small DNA fragments of length 20 to 100 base
pairs (bp) named short read, are generated in each run. In short read mapping, short
reads have to be aligned according to a larger DNA stream, named reference genome.
Older alignment approaches such as Smith-Waterman (SW) [3] and BLAST [4] are not
suitable for short read mapping due to searching the whole reference for each short
read. Recent methods like BWT [5] and soap3 [6], make short read mapping a lot more
faster compared to the previous approaches, by generating an index from the reference
genome before alignment. These approaches mainly use two major methods including
FM-index [7] and Hash-table [8]. Between these two methods, FM-index is more
popular due to lower memory footprint and being independent of the length of refer-
ence genome during the search operation.

© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 289–296, 2017.
DOI: 10.1007/978-3-319-56258-2_25

Despite all the progress and improvements, due to massive amount of data that need
to be processed, still short read mapping is a time consuming process on modern
computers. To solve this problem many recent works try to accelerate short read
mapping on other platforms like FPGAs due to the high parallelism and customization
they provide. Researches such as [8–13] accelerate short read mapping using FPGAs.
In this work an FPGA-based fully pipelined accelerator for short read mapping is
proposed. The proposed hardware supports up to two mismatches in short read with 75
base-pairs (up to 100 bp). Our design uses the FM-index and the seed and compare
methods. The main concepts of our design are:

• Pre-calculated data along using one memory controller for top and bot pointers.
• Extracting three identical and non overlapping seeds from each short read in the

inexact match unit and comparing them with the reference.
• Through smart implementation, searching one of the three extracted seeds from

each short read is done in the exact match unit.
• A multi-core system is presented to maximize the efficiency of the design.

2 Related Works

In the following subsection we briefly discuss the FM-index approach and after that
review some recent short read mapping accelerators.

2.1 FM-index

To use FM-index method, the borrows-wheeler transform (BWT) [14] has to be
generated from the reference genome (Fig. 1a). The suffix array (SA) values show the
position of each suffix in the original reference stream (Fig. 1b). Using BWT stream,
the occurrence array O(x,i) and the characters count C(x) are generated from the BWT
(Fig. 1c). Then, searching any short read in the reference genome is done using Eqs. 1
and 2 with n steps, where n is the length of the short read.

The search operation uses two pointers named top and bot (bottom). These pointers
needs to be updated n times. To find the location of a short read in the reference
genome, top pointer is used as the address to read the SA values (Fig. 1d is an example
of searching GA in ACTGA). This is very important to note that finding SA values
using the top and bot values is not done in the FPGA accelerators and it is assumed that
this step is done in software. Also to reduce the memory size required to store the O(x,
i), the rows of O(x,i) are sampled with a factor of (d) and the rest of values (d−1 values)
are calculated online using the sampled values and the BWT.

topnew ¼ O x; topoldð ÞþCðxÞ ð1Þ

botnew ¼ O x; botoldð ÞþCðxÞ ð2Þ

290 M. Morshedi and H. Noori

1

Reference Genome: ACTGA

ACTGA$ $ACTGA
CTGA$A A$ACTG
TGA$AC ACTGA$
GA$ACT CTGA$A
A$ACTG GA$ACT
$ACTGA TGA$AC
Borrows Wheeler transform:

AG$ATC

Rota ons: Sorted Rota ons:

Reference Genome: ACTGA

0 $

1 A$

2 ACTGA$

3 CTGA$

4 GA$

5 TGA$

i Suffixes:

5

4

0

1

3

2

SA

0

1

2

3

4

5

6

i

A

G

$

A

T

C

total

BWT

0

1

1

1

2

2

2

A

0

0 0

0

0

0

0

1

0

C

1

1

G

0

0

0

0

1

T

Occurrence Array: O(x,i)

1 0

1 1

1 4

G

5

T

Character Count: C(x)

3

A C

(a) (c)(b)

Short Read = GA
Ini al values: top = 0, Bot = 6

1st step (A)
Top = 0 + 1 = 1
Bot = 2 + 1 = 3

2nd step (G)
Top = 0 + 4 = 4
Bot = 1 + 4 = 5

Result
i = 4

SA = 3

(d)

Fig. 1. An example of generating the BWT, SA values, O(x,i) and C(x) from a reference
genome and finding GA in the reference.

2.2 Recent FPGA Accelerators

While searching a short read in the reference genome (A = 00, C = 01, G = 10,
T = 00) two cases can happen including: (1) exact match and (2) inexact match. Also it
is known that more than 70% of the short reads can be exactly matched to the reference
genome [12]. Among the FPGA implementations using FM-index, [9] is the first
implementation which only supports exact matching. Actually, the FM-index method
can only support exact matching which is the drawback of this method.

To support inexact matching with FM-index, software tools such as BWA [5] and
FPGA implementations such as [11–13] mainly use the backtrack version of FM-index
to support mismatches. Another method to support mismatches is the seed and extend
method. The original seed and extend method was presented by [4] and its combination
with FM-index was implemented on FPGA by [10]. Also, there is another version of
BWA [5] which uses this method. In [10] smaller streams named seeds are extracted
from each short read. These seeds are searched in the reference genome using FM-index
and the SA values extracted from the seeds present the candidate locations. In the final
step the short read is compared to the reference genome (in the candidate location) using
SW algorithm and the results are streamed to output. In [12] a seed and compare module
is used which directly compares some short reads to the reference genome.

3 Proposed Architecture

In this section the proposed architecture to implement short read mapping on FPGA is
discussed in details. The fully pipelined design consists of two main modules: the exact
match unit and the inexact match unit. Short reads enter the exact match unit and the

FPGA Implementation of a Short Read Mapping Accelerator 291

short reads that cannot be aligned in the exact match unit, are transferred to the inexact
match unit. The proposed inexact match unit does not use backtrack version of
FM-index. Instead, it extracts seeds from each short read and searches them in the
reference genome using simple FM-index. This section consists of four major
sub-sections: (1) Exact match unit architecture. (2) Pre-calculated values. (3) Inexact
match unit architecture. (4) Multi-core implementation of the design.

3.1 Exact Match Unit

To begin short read mapping operation, short reads are streamed to the exact match unit
and searched in the reference genome using FM-index (Fig. 2a). The current top and
bot for a short read are used as addresses to read O(x,i) values. The sampled O(x,i) is
stored in BRAMs with d = 64 and C(x) values are stored in FPGA registers.

Our design needs nine clock cycles to update a single top and bot (due to memory
latency, generating O(x,i) values and adding O(x,i) to C(x)). To hide the nine clock
cycles latency [10], we search nine short reads concurrently in the exact match unit.
While other short reads are waiting for new data (topnew & botnew), new short reads
generate and send their requests for their corresponding tops and bots. As a result,
searching any short read with the length of n can be done in n clock cycles in average.

Another important consideration is the memory interface. Basically, to implement
Eqs. 1 and 2, two connections to two separate memories are needed, one for top (Eq. 1)
and one for bot (Eq. 2), respectively. If only one memory is used for both top and bot,
two memory accesses are needed to read O x; topoldð Þ (Eq. 1) and O x; botoldð Þ (Eq. 2)
values (and their BWTs). Therefore, the required memory size is decreased to the half
but the delay for reading O(x,i) becomes doubled and the speedup decreases by half. In
FM-index, top and bot have the maximum distance at the beginning. The distance

Compare
module

Seed align
module

Seed align
module

Inexact match unit
Exact match unit

Exact match unit

Exact match unit

Exact match unit

Pre
calculated
BRAM and

decoder

Sampled
O(x,i) and

BWT string
BRAM

Pipeline
O(x,i)

calculator

Top and bot

Short read
aligner

With 9 slots

Original
O(x,i) values

Short
Reads Results

Short reads
with their
seeds top
and botsSeed

extractor

Short Reads
From exact
match unit

Seed aligner module

ResultsSA values
and

reference
BRAM

Compare module

(Exact match unit)

Exact
match unit

(b)

(c)

(a)

comparator

Fig. 2. Top view of exact match unit, inexact match unit and the quad-core design

292 M. Morshedi and H. Noori

decreases in each search step. Hence, in many cases the top and bot will hit at the same
sampled O(x,i) and the original O(x,i) can be calculated for both top and bot, in one
clock cycle by reading one memory address.

Our design uses one memory for both top and bot instead of two to reduce the
number of memory interfaces. Through doing experiments for 10 K short reads we
learn that after first seven steps (in average) the top and bot can be calculated using the
same sampled O(x,i) which requires one memory access (around 13 steps when the
reference is the whole human genome [12]). With this method (using one memory for
top and bot instead of two), the number of memory controllers is reduced to one for
each exact match unit. However, the speedup for each exact match unit with one
memory controller decreases at most by 0.15x for short reads with the length of 75
compared to the exact match unit with two memory controllers.

3.2 Pre-calculated Data

Every DNA string, similar to short reads of length n, has 4n different combinations.
Therefore, if the top and bot for all combinations of length m (where m < n) are
pre-calculated before the short read mapping operation, the m initial search steps can be
skipped for all of the short reads by replacing this data with the initial values for top
and bot. Also, when only one memory connection is used for both top and bot, the
initial steps need two memory accesses to read O x; topoldð Þ (Eq. 1) and O x; botoldð Þ
(Eq. 2), because their distance is more than d = 64. Therefore, the speedup obtained by
using pre-calculated data would be more, when one memory connection is used.

Pre-calculated values are stored in FPGA embedded RAMs (BRAMs). Obviously,
there is a limitation for available BRAM memories in any FPGA. According to the
limitation of BRAM modules in Virtex 6 LX240T FPGA, we assume m = 9 for our
design. Pre-calculated data are compressed more than 5 times in our design. As a result
pre-calculated data with m = 9 can are used in our FPGA but another pipeline stage is
needed to obtain the original pre-calculated data from compressed data. The speedup for
searching short reads with 75 base pairs using pre-calculated data for m = 9 is 1.28x.

3.3 Inexact Match Unit

The proposed inexact match unit (Fig. 2c) is fed by the exact match unit. In this unit three
identical seeds (25 bp each) are extracted from each short read and they are searched in
the reference genome by an exact match unit. If a seed successfully aligns to the reference
genome, the SA values are obtained which specify the locations where the seed exactly
matches to the reference genome. These locations are called candidate locations. After
reading the candidate locations from the reference genome these locations are compared
to the short read which the corresponding seed was extracted from. This comparison is
performed using a pipelined comparator and the outputs are the number and the locations
of mismatches between the short read and the candidate location.

The pre-calculated data is also used in this module. Because of the smaller length of
seeds (25) comparing to the short reads (75) the effect of using pre-calculated data is

FPGA Implementation of a Short Read Mapping Accelerator 293

much more than its effect in the exact match unit in terms of speedup. For the seeds
with 25 base pairs, the speed-up while using pre-calculated data is 2x (m = 9).

Another enhancement used in our design, is that the seed aligner needs to search
only two seeds instead of three seeds. In our design, additional counters and registers
are added to the exact match unit so that when the search steps reach to the one third of
the short read, the related top and bot are stored in a register. These data is sent to the
inexact match unit. The seed aligner in inexact match unit reuses these data and
therefore, does not need to search one of the seeds again. Using this technique and
pre-calculated data, searching the seeds in the seed aligner module becomes 3x faster,
which is always the slowest module in the inexact match unit pipeline stages.

3.4 Multi-core Version

In order to achieve higher performance, a multi-core accelerator is designed and
implemented on the FPGA (Fig. 2b). By considering two changes and applying them
to the design we could fit a quad-core design on the target FPGA. (1) Due to lower
percentage of short reads with mismatch, two exact match units are connected to a
single seed aligner. (2) The seed aligner is the slowest part in our design therefore two
seed aligners are connected to a single compare module in the inexact match unit and
design works exactly like two separated simple inexact match units. As a result the final
design works exactly like four separated simple cores.

4 Implementation and Experimental Results

4.1 Experimental Setup

The aim of this section is to evaluate the proposed methods discussed in Sect. 3.
A reference genome with the length of 128 k base pairs is used as the reference genome
which is extracted from chromosome 22 (available in [15]). Our design is implemented
on the ML605 development board including a Xilinx Virtex-6 LX240T FPGA. Each
module is modeled and developed in VHDL language in ISE design suite. The BWT,
SA values, O(x,i) and pre-calculated data are generated offline from the reference
genome. In our experiment, 10 K short reads with 75 base pairs are extracted directly
from the reference genome and 1–3 mismatches are injected randomly into 30% of
short reads. Our experiments are done for one million short reads by saving these 10 K
short reads in the BRAMs and processing them 100 times.

4.2 Evaluating the Performance

Our design speed is limited to the exact match units. The information about area,
number of BRAMs and the run time for processing one million short reads is reported
in Table 1. The quality of alignment in FPGA is exactly similar to software and both
versions of BWA are tested and the faster result is chosen to be compared with FPGA
results.

294 M. Morshedi and H. Noori

According to the recent works discussed in Sect. 2, searching the smaller per-
centage of the short reads which contains mismatches is the most time consuming part
in short read mapping. Using the optimization techniques proposed in our design,
searching the short reads with mismatches has become much faster than searching the
short reads in the exact match unit.

4.3 Comparing the Results with Software

To compare the results with software implementation, short reads are searched in the
reference genome by the BWA tool on the following two platforms: (1) AMD FX9590
(an eight cores processor) and (2) Intel Extreme Core i7-5820 k (a six cores processor
that can handle 12 threads). In this experiment, 100 K short reads are processed by both
software and FPGA (using the same reference). The results are compared to the parallel
programmed version of the software that supports 8 and 12 threads against the four
cores design on the FPGA. The results are shown in Table 2. For a fair comparison the
run time for the BWA software is measured only for the align step which only cal-
culates the top and bot values and the number of mismatches.

4.4 Comparing with Other Designs

Our design is compared with [14] which also use a small reference genome. Similar to
this paper, [14] uses FPGA memory to store values such as O(x,i), but it uses the
backtrack version of FM-index. In [14] one million short reads with 72 bp are searched
in the reference with one million base pair and our quad core design is 126 times faster
than the six core design in [14] ([14] supports one open gap).

5 Conclusion

In this paper an FPGA implementation of an accelerator with parallel architecture is
proposed to solve the long run-time of short read mapping algorithm. The accelerator
has been designed based on FM-index algorithm and considers multiple optimizations
to enhance the short read alignment speedup such as multi-core structure,

Table 1. Area and BRAM usage and the run time for searching one million short reads.

LUT Register 32 Kb BRAM Run time (sec)

Quad core design 29554 (19%) 31091 (10%) 361 (87%) 0.095

Table 2. Comparing software and FPGA run time for searching 100 thousand short reads.

Number of threads Clock freq. (MHZ) Run time (sec) Speed up

AMD FX9590 8 4600 0.39 41
Intel core-i7 5820 k 12 3300 0.18 19

FPGA Implementation of a Short Read Mapping Accelerator 295

multithreading, pipelining and using pre-calculated data. Our paper uses a modified
seed and compare version of FM-index to align short reads with 75 bp (up to two
mismatches) which does not use the backtrack version of FM-index which is more
complex.

References

1. Mardis, E.R.: The impact of next-generation sequencing technology on genetics. Trends
Genet. 24(3), 133–141 (2008)

2. Wetterstrand, K.: DNA sequencing costs, data from the NHGRI Genome Sequencing
Program (GSP) (2014). http://www.genome.gov/sequencingcosts

3. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol.
Biol. 147(1), 195–197 (1970)

4. Altschul, S.F., et al.: Basic local alignment search tool. J. Mol. Biol. 215(3), 403–410 (1990)
5. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows-Wheeler transform.

Bioinformatics 25(14), 1754–1760 (2009)
6. Liu, C., et al.: SOAP3: ultra-fast GPU-based parallel alignment tool for short reads.

Bioinformatics 28(6), 878–879 (2012)
7. Ferrragina, P., Manzini, G.: An experimental study of an opportunistic index. In: Proceeding

of 12th ACM-SIAM Symposium on Discrete Algorithms, pp. 269–278 (2001)
8. Olson, C.B., et al.: Hardware acceleration of short read mapping. In: 2012 IEEE 20th Annual

International Symposium on Field-Programmable Custom Computing Machines (FCCM),
pp. 161–168. IEEE (2012)

9. Fernandez, E., Najjar, W., Lonardi, S.: String matching in hardware using FM-index. In:
2011 IEEE 19th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 218–225. IEEE (2011)

10. Arram, J., Tsoi, K.H., Luk, W., Jiang, P.: Reconfigurable acceleration of short read mapping.
In: 2013 IEEE 21st Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pp. 210–217. IEEE (2013)

11. Arram, J., Luk, W., Jiang, P.: Ramethy: reconfigurable acceleration of bisulfite sequence
alignment. In: Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 250–259. ACM (2015)

12. Arram, J., et al.: Leveraging FPGAs for accelerating short read alignment. IEEE/ACM
Trans. Comput. Biol. Bioinform. (2016). http://ieeexplore.ieee.org/document/7422003/

13. Xin, Y., et al.: Parallel architecture for DNA sequence inexact matching with
Burrows-Wheeler Transform. Microelectron. J. 44(8), 670–682 (2013)

14. Burrows, M., Wheeler, D.: A block-sorting lossless data compression algorithm. Digital
Equipment Corporation. Technical report (1994)

15. UCSC Genome Bioinformatics. http://hgdownload.cse.ucsc.edu

296 M. Morshedi and H. Noori

http://www.genome.gov/sequencingcosts
http://ieeexplore.ieee.org/document/7422003/
http://hgdownload.cse.ucsc.edu

	FPGA Implementation of a Short Read Mapping Accelerator
	Abstract
	1 Introduction
	2 Related Works
	2.1 FM-index
	2.2 Recent FPGA Accelerators

	3 Proposed Architecture
	3.1 Exact Match Unit
	3.2 Pre-calculated Data
	3.3 Inexact Match Unit
	3.4 Multi-core Version

	4 Implementation and Experimental Results
	4.1 Experimental Setup
	4.2 Evaluating the Performance
	4.3 Comparing the Results with Software
	4.4 Comparing with Other Designs

	5 Conclusion
	References

