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Abstract. Nowadays, FPGA technology offers a tremendous number
of logic cells on a single chip. Digital design for such huge hardware
resources under time-to-market constraint urged the evolution of High
Level Synthesis (HLS) tools. In this work, we will explore several HLS
optimization steps in order to improve the system performance. Dif-
ferent design choices are obtained from our exploration such that an
efficient implementation is selected based on given system constraints
(resource utilization, power consumption, execution time, ...). Our explo-
ration methodology is illustrated through a case study considering a
Multi-Window Sum of Absolute Difference stereo matching algorithm.
We implemented our design using Xilinx Zynq ZC706 FPGA evaluation
board for gray images of size 640 × 480.
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1 Introduction

FPGA circuits have emerged as a privileged target platforms to implement
intensive signal processing applications [3]. For this reason several academic
and industrial efforts have been devoted in order to increase the productivity
of FPGA-based designs by means of using High Level Synthesis (HLS) tools.
HLS approach in Electronic Design Automation (EDA) is a step in the design
flow aiming at moving the design effort to higher abstraction levels [6]. This
evolution towards HLS-based methodologies can be easily traced along the his-
tory of hardware system design [2]. Although the first generations of HLS tools
failed to produce efficient hardware designs, different reasons have motivated
researchers to continue improving these tools. We can mention among these rea-
sons: the huge growth in the silicon capacity, the emergence of IP-based design
approaches, trends towards using hardware accelerators on heterogeneous SoCs,
the time-to-market constraint which usually presses to reduce the design time,
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etc [1]. Today several existing HLS tools have shown their efficiency for producing
acceptable design performances and shortening time-to-market [6,8].

For a given design, defining the priority of constraints could vary from one
application to another. For example, power consumption is a key factor for
battery-based systems while hardware resources matter if several functionalities
would be embedded on the same chip. In some other cases, timing is crucial for
safety critical applications while Quality-of-Service is important for interactive
or multimedia applications. During the design phase, it is the role of the designer
to define the priorities of system constraints then to explore the design space
for the implementation that could efficiently satisfy them. In this research work,
the design space was built by applying a set of high level synthesis optimiza-
tion steps. The obtained designs have different trade-offs in terms of hardware
resources (FF, LUT or BRAM), power consumption, timing and operating fre-
quency. Our objective is to explore the possible hardware designs then choose
the one that most fit with our requirements. As a case study, we focus on the
development of an FPGA-based system dedicated to streaming stereo matching
applications. Our application considers Multi-Window Sum of Absolute Differ-
ence (Multi-Window SAD) algorithm [4] performed on input gray images of size
640 × 480 with maximum disparity = 64.

As a similar work targeting stereo matching domain, authors in [9] examined
five stereo matching algorithms for their HLS implementation. Five optimization
steps were applied to the SW code: baseline implementation, code restructuring,
bit-width reduction, pipelining and parallelization via resource duplication. Our
work differs from that presented in [9] as follows: (i) Baseline implementation
is considered as step zero in our work because our input code is HLS-friendly.
(ii) Dividing an image into strips can be achieved in three different ways with
vast difference in terms of execution time and resource utilization (Optimization
#1). (iii) Parallelism was exploited in both work at different levels. In our work,
data-independent loops are executed in parallel by duplicating the input data
stream (Optimization #3). We also increased the number of processed dispar-
ity lines at the same time either by enlarging the size of strip (Optimization
#7) or by duplicating the top-level function (Optimization #8). While authors
in [9] applied parallelism only by duplicating the disparity computation pipeline.
Authors in [7] purposed an optimized C-code for Sobel filter in three steps.
Although the design run on Zynq platform; no details were mentioned on how
the HLS-based Sobel filter was interfaced and connected to the system. In this
work, we will detail this point in Sect. 4. In addition to that two more optimiza-
tion steps related to Zynq platforms are presented in Sect. 3 (Optimization #5
and #6).

The rest of this paper is organized as follows: Sect. 2 describes our case study
related to Multi-Window SAD stereo matching algorithm. Section 3 represents
our main contribution that explores high level optimization steps for an efficient
implementation for our case study. System architecture and experimental results
are presented in Sect. 4.



170 K.M.A. Ali et al.

2 Multi-window SAD Matching Algorithm

Stereo matching is a correspondence problem where for every pixel XR in the
right image, we try to find its best matching pixel XL in the left image at
the same scanline. Figure 1a shows how the depth of objects is calculated in
stereo matching problem. Assuming two cameras of focal length (f ) at the same
horizontal level, separated from each other by a distance baseline (b). Pixel (P)
in the space will be located at point (XR) and point (XL) in the right and left
image respectively. The difference between the two points on the image plane is
defined as disparity (d). Therefore; the depth of pixel (P) from the two camera
can be calculated from the following equation:

depth =
baseline ∗ focal length

disparity
=

b ∗ f

(XR − XL)
(1)

Several methods in the literature were proposed to find the best match-
ing [10]. In Multi-Window SAD [4], the absolute difference between pixels from
the right and left images are aggregated within a window. The window of min-
imum aggregation is considered as the best matching among its candidates. In
order to overcome the error that appears at the regions of depth discontinuity,
the correlation window can be divided into smaller windows and only non-errored
parts are considered in calculations. Figure 1b shows 5-window SAD configura-
tion: pixel (P) lies in the middle of window (E) while it is surrounded by another
four windows named (A, B, C and D). The four windows are partially overlapped
at the border pixel (P). The score of any window is equal to the aggregation of its
pixels. In 5-window SAD, the correlation score at pixel (P) is equal to the score
value of window (E) in addition to the best minimum two score values of the
other four windows (A, B, C and D). The minimum score among the candidates
is considered as the best matching. Occluded objects are common to happen
in stereo matching problem where sometimes the objects are only captured by

Fig. 1. (a) Calculating the depth of an object in stereo matching problem (b) 5-window
SAD configuration
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one camera. For example, pixel (M) in Fig. 1a was only captured by the right
camera. Therefore, Left/Right consistency check is done in order to get rid of
occluded objects from the final disparity image.

3 High-level Synthesis Optimizations

In this section, we are going to explore the possible optimization steps that could
be done in order to achieve an efficient hardware implementation. The C code was
written in HLS-friendly syntax with neither file read/write, nor dynamic memory
allocation nor system calls. The optimization steps are incrementally applied
to the design as listed in Table 1. From our point of view, a fair comparison
between designs is valid only for adjacent rows in order to observe the impact of
adding this optimization to the overall design performance. The SW code was
synthesized by Vivado HLS to obtain the first synthesizable design (Design #1).
Table 1 shows that Design #1 had an overuse for BRAM (BRAM 18K=7392)
while using Xilinx Zynq ZC706 platform of maximum BRAM 18K=1090. This
will lead to the first optimization step which is dividing an image into strips
during processing in order to reduce the required memory usage.

Optimization #1: Dividing an image into strips. In strip processing, the
code will be repetitively executed until one frame is completely processed. The
pixels can be summed in three different ways: (i) Design #2 aggregates the
pixels in the horizontal direction along the scanline then in the vertical one.
(ii) While aggregation is done vertically along the column length then horizon-
tally along the scanline for Design #3. (iii) However in Design #4, the pixels are
aggregated within one window then box-filtering technique [5] is applied to get
the summation of other windows along the horizontal direction. Table 1 reports
the estimated hardware utilization for the three designs. By comparing, we can
observe that Design #4 is more efficient in terms of BRAM usage as well as exe-
cution time (it was improved by 73% of that reported for Design #2). Therefore;
we will consider Design #4 as a base for the next optimization steps.

Optimization #2: Using arbitrary precision data types. Vivado HLS
supports arbitrary precision data types to define variables with smaller bit width.
Using this optimization will produce systems of the same accuracy but with less
area utilization. A complete analysis was done to know exactly the required
number of bits for each variable. In Table 1, Design #5 showed around 31%
reduction for LUT and 40% reduction for FF after applying optimization #2.

Optimization #3: Executing data-independent loops in parallel. Along
the same scanline, the score for window (B) is used after (winH+1) pixel shift
as a score for a new window (A). It is also the same case for windows (C) and
(D). Therefore, only three score calculation loops are needed for windows (A/B,
C/D and E). By duplicating the input data stream, the three loops can run in
parallel. In Table 1, Design #6 reported the effect of optimization #3.

Optimization #4: Using HLS optimization directives. Using HLS opti-
mization directives to tune the design performance is one of the fundamental
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Table 1. Synthesis results reported by Vivado HLS for each optimization step

Design Slice FF LUT BRAM 18K SRL Freq.
(MHz)

Exec. time
(ms)

% change
in Perf.

SW version 380 ms on core i7@ 2.7 GHz and 16 GB of RAM

#1 X 2637 5918 7392 0 100 X X

#2 898 1743 2735 155 0 100 30080 0

#3 859 1758 2659 113 0 100 22410 25.4

#4 1400 2552 3738 75 0 100 8163 72.8

#5 983 1525 2567 47 0 100 5786 29.1

#6 985 1713 2768 65 0 100 2679 53.7

#7 2695 6088 7611 57 0 100 328 87.7

#8 2688 6134 7661 59 0 100 331 −9.1

#9 2822 6365 8116 59 0 100 307 7.2

#10 7989 20256 24433 112 0 100 76 75.2

#11 7995 18765 24945 112 39 150 51 32.8

#12 8038 21250 26483 112 121 200 38 25.5

optimization steps. We examined three types of directives that gave a crucial
improvement in performance: (i) Arrays were partitioned either into smaller
arrays (partial) or as individual registers (complete) in order to boost the system
throughput by increasing the number of available read/write ports. (ii) Loops
were unrolled by factor = 2 to make profit from the existed physical dual-port for
arrays implemented as BRAMs. (iii) Loops were pipelined with Initiation Inter-
val (II) = 1 to enhance the system performance. In Table 1, Design #7 listed the
estimated hardware resources and execution time after using optimization #4.

Optimization #5: Choosing I/O interface protocol for the top-level
function. HLS SAD core is synthesized for Zynq platform where pixels flow
through DMA-based connections as shown in Fig. 2. We chose AXI-Stream
for I/O ports while AXI-Lite was chosen for controlling the hardware core.
AXI-Stream defined by Vivado HLS comes only with the fundamental signals
(TDATA, TREADY, TVALID) but for DMA communications, TLAST signal is
also needed. Therefore, Design #8 was modified such that the output port also
includes a TLAST signal with 9% decrease in performance as listed in Table 1.

Optimization #6: Grouping pixels at I/O ports for DMA-based
communication. Zynq platform has four High Performance bus (HP bus)
between Processing System (PS) and Programmable Logic (PL) of 64-bit data
width. The designer can benefit from this data width by merging pixels at I/O
ports. In our design, the input pixel is 32-bit width while the output disparity
pixel is only 8-bit. Thus we can merge up to 2 pixels at the input port and up to
8 pixels at the output port. This data merging requires an additional attention
from the designer while separating the pixels at the input or merging them at
the output. Design #9 showed 7% improvement in the execution time.
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Fig. 2. System architecture block diagram

Optimization #7: Enlarging the size of strip. During strip process-
ing, there is only one scanline difference between two strips when process-
ing two adjacent disparity lines. From Fig. 1b, one disparity line needs a
strip of size = 2 *win V + 1 while four adjacent disparity lines need a strip of
size = 2 *win V + 4. In Design #10, four disparity lines are calculated using the
same pipeline such that the execution time is reduced to the quarter (Table 1).

Optimization #8: Duplicating the top-level function. In this optimization
step, we run multiple instances of Design #10 in parallel. Simply, we defined a
new top-level function that contains multiple instances of the function defined
in Design #10. In the experimental results, we will explore designs of 5, 6, 7 or
8 instances running in parallel at frequencies of 100, 150 or 200 MHz.

4 Experimental Results

The generated HLS SAD IP was tested experimentally to validate both its
proper functioning and the estimated results. During our experiments, we used
Vivado 2015.2 design suite to implement our system over Zynq ZC706 FPGA
evaluation board (XC7Z045-FFG900) with input grey images of size 640 × 480.
The system was configured for 5-window SAD with the following parameters:
winH = 23, winV = 7, cwinH = 7, cwinV = 3 and maximum disparity = 64.

Figure 2 illustrates the connection of HLS SAD core to the other cores in
the system. Pixels were transferred between the processing system (PS ) and
HLS SAD block through two AXI DMA cores. AXI VDMA and HDMI cores
were used to display the obtained disparity image on the output screen.

We obtained different design choices by exploring the effect of optimiza-
tion #8 at different operating frequencies of 100, 150 or 200 MHz as listed in
Table 2. During the experiments, we increased the level of parallelism up to 8
instances operating at the same time. We stopped at that level due to the limited
LUT resources (design #23 consumed 95.37% of LUT). Default synthesis and
implementation strategies were used by default for all designs. For design #18,
Flow Perf Optimized High and Performance Explore were used as synthesis and
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Table 2. Synthesis results for designs at different levels of parallelism

Design Level of
paral-
lelism

Slice
(54650)

FF
(437200)

LUT
(218600)

BRAM
18K
(1090)

Freq.
(MHz)

Frame
exec.
time
(ms)

Power
(W)

Energy
(mJ)

#10 1 10534 28903 31163 131 100 83.91 0.852 71.49

#11 1 10111 27410 31140 131 150 57.74 0.949 54.80

#12 1 9642 29895 31184 131 200 45.02 1.043 46.96

#13 5 40326 109624 130262 579 100 20.56 1.512 31.09

#14 5 41208 102174 130571 579 150 14.37 1.795 25.79

#15 5 38980 114617 130917 579 200 11.44 2.109 24.13

#16 6 46337 129822 155728 691 100 17.83 1.612 28.74

#17 6 48752 120873 155822 691 150 12.5 1.943 24.29

#18 6 52670 141335 195408 691 200 9.98 2.519 25.14

#19 7 51022 150015 182108 803 100 15.75 1.667 26.26

#20 7 50592 139557 184409 803 150 11.08 2.047 22.68

#21 7 Timing constraints are not met @ 200 MHz

#22 8 54470 170195 206273 915 100 14.42 1.794 25.87

#23 8 54636 158259 208993 915 150 10.17 2.115 21.51

#24 8 Timing constraints are not met @ 200 MHz

implementation strategies respectively to meet the time constraints. For designs
#21 and #24, although we tried several strategies, the tool failed to meet the
time constraints for an operating frequency of 200 MHz.

The frame execution time was firstly estimated by Vivado HLS as shown in
Table 1 then it was measured experimentally as listed in Table 2. For all designs,
we could notice that Vivado HLS underestimated the frame execution time with
an error range between 10–30%. The reason for this underestimation is that
Vivado HLS did not consider the time spent for DMA communication while
pixels are transferred from/to HLS SAD core. Table 2 lists the required hardware
resources to realize the system architecture depicted in Fig. 2. We could notice
that at the same level of parallelism, changing the operating frequency led to
different numbers for FF and LUT in order to satisfy the timing constraints. For
example, in comparison with design #16, FF decreased by 6.9% and increased
by 8.9% for designs #17 and #18 respectively while LUT was almost unchanged
in design #17 and increased by 25% for design #18.

The power consumption was measured experimentally through UCD90120A
power controller mounted on Zynq ZC706 FPGA board. Two factors mainly con-
tribute to the power consumption: the used hardware resources and the operating
frequency. Design #18 showed the maximum power consumption of 2.52 W at
200 MHz. Although design #23 utilized more hardware resources, it showed 16%
less in power consumption (2.12 W) since it operates at 150 MHz. Calculating
energy consumption showed that some design points were more energy efficient
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FFBRAM18K

Execution
time

Power Frequency

Fig. 3. Radar chart for designs #15 , #16 , #17 , #18 , #23 and system
constraints . (Color figure online)

than others even if they consumed more power. For example, design #23 had the
lowest energy consumption of 21.51 mJ although it recorded one of the highest
power consumption (2.12 W).

All design variations listed in Table 2 could be accepted as a solution but
the applied system constraints will direct our final decision to choose one design
among the others. Figure 3 depicts some of the candidate designs (#15, #16,
#17, #18 and #23) along with the system constraints to guide the designer
towards the efficient solution. The orange shaded area represents the system
constraints defined by the designer which are: power consumption ≤ 2 W, exe-
cution time ≤ 15 ms, LUT ≤ 180000, FF ≤ 140000, BRAM ≤ 700 and frequency
≤ 150 MHz. From Fig. 3, we could deduce that design #17 succeeded to satisfy
all the system constraints. Design #15 had relatively less hardware utilization
and acceptable execution time in compare with design #17; however, it failed to
meet two design constraints (power consumption and frequency).

5 Conclusion

Using HLS tools for complex system design becomes mandatory to increase the
design productivity and to shorten the time-to-market. As a future work, we will
automatically explore designs at higher level of parallelism. In addition to that
we will build a model to predict if that design is feasible or not for a given set
of system constraints.
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