
Parameter Sensitivity in Virtual FPGA
Architectures

Peter Figuli1(B), Weiqiao Ding1, Shalina Figuli1, Kostas Siozios2,
Dimitrios Soudris3, and Jürgen Becker1

1 Institute for Information Processing Technology, Karlsruhe Institute of Technology,
Karlsruhe, Germany

{peter.figuli,shalina.ford,becker}@kit.edu, weiqiao.ding@student.kit.edu
2 Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece

ksiop@auth.gr
3 School of Electrical and Computer Engineering,

National Technical University of Athens, Athens, Greece
dsoudris@microlab.ntua.gr

Abstract. Virtual FPGAs add the benefits of increased flexibility and
application portability on bitstream level across any underlying com-
mercial off-the-shelf FPGAs at the expense of additional area and delay
overhead. Hence it becomes a priority to tune the architecture para-
meters of the virtual layer. Thereby, the adoption of parameter recom-
mendations intended for physical FPGAs can be misleading, as they are
based on transistor level models. This paper presents an extensive study
of architectural parameters and their effects on area and performance
by introducing an extended parameterizable virtual FPGA architecture
and deriving suitable area and delay models. Furthermore, a design space
exploration methodology based on these models is carried out. An analy-
sis of over 1400 benchmark-runs with various combinations of cluster and
LUT size reveals high parameter sensitivity with variances up to ±95.9%
in area and ±78.1% in performance and a discrepancy to the studies on
physical FPGAs.

Keywords: FPGA · Virtualization · Cluster size · LUT size · Efficiency

1 Introduction

During the last three decades, Field Programmable Gate Arrays (FPGAs) have
evolved from less competitive and prototyping devices with as little as 64 logic
cells towards complex System on Chip (SoC) and massive parallel digital sig-
nal processing architectures. The functional density alone, however, is not the
unique selling point and there is still a considerable gap to ASICs in this regard.
Moreover, it is the flexibility and the comparably short design times along with
low NRE costs and low risks that make FPGAs so attractive. Currently, we are
witnessing a new movement towards general purpose computing. The signs are
conspicious considering the facts that (1) there is a trend towards heterogeneous
c© Springer International Publishing AG 2017
S. Wong et al. (Eds.): ARC 2017, LNCS 10216, pp. 141–153, 2017.
DOI: 10.1007/978-3-319-56258-2 13

142 P. Figuli et al.

reconfigurable SoCs, (2) recently Intel as a major General-Purpose Processor
(GPP) company acquired Altera and (3) there are serious efforts to employ
FPGAs in data centers and cloud services, e.g. Intel Xeon+FPGA Integrated
Platform [8] or the Microsoft Catapult project [13]. At this rate, FPGAs will
become mainstream in the future and indispensable in our day-to-day systems
and applications such as entertainment, communication, assistance, automation,
cyber-physical systems, cloud services, monitoring, controlling, and many more.
There will be the situation that FPGA based devices and applications change
more often than how it is today, thereby making it necessary to loosen the bond
between application and the execution platform.

Virtualization can be a key for instant portability and migration of appli-
cations even on bitstream level without redesigning or recompiling. Thereby, an
optimized reconfigurable architecture as a virtual layer can be mapped onto an
existing Commercial Off-The-Shelf (COTS) FPGA, while the application itself
will be executed on the virtual layer, thus being independent of the underlying
physical platform. We call this technique virtual FPGA. The eminent advantage
is that the specification of the virtual architecture can persist, while the host-
ing physical platform can be exchanged by another one. Furthermore, virtual
FPGAs can be utilized to (1) enable independent reconfiguration mechanisms,
(2) prototype novel FPGA architectures without physical implementation and
(3) emulate custom reconfigurable architectures. Despite a few related works
[5,6,9,10,12], the field of virtual FPGAs is still considered unexplored. The
design space gets extended by a new dimension as the virtual FPGA has the
added flexibility to alter not only the application circuit but also the executing
architecture. In this regard, the mapping efficiency of applications which is highly
related to architectural parameters, is getting very important, especially as the
additional layer adds a considerable overhead to the underlying platform. The
practice of adopting parameter recommendations intended for physical FPGAs
to the virtual domain is questionable as explained in this paper. Yet, due to lack
of separate and detailed studies, they have been predominantly followed more
or less blindly, accepting that it might not be the optimum solution.

The scope of this paper is to close these gaps and to examine the impact
of main architectural parameters of virtual FPGAs on area and performance.
Therefore, we propose a suitable design space exploration methodology with
area and delay models representing the virtual layer and its realization, which
can differ from platform to platform. The contributions of this paper are:

– introduction of an extended highly parameterizable version of V-FPGA
– analytical area and delay models for virtual FPGA architectures
– parametric design space exploration
– analysis of parameter tuning and resulting area and performance variance

The rest of the paper is organized as follows: Sect. 2 summarizes the related
works. In Sect. 3 we introduce the extended V-FPGA architecture. Section 4
derives the area and delay models while the methodology for parametric design
space exploration is presented in Sect. 5. Experimental results are presented in
Sect. 6 and the conclusions are summarized in Sect. 7.

Parameter Sensitivity in Virtual FPGA Architectures 143

2 Related Works

2.1 Virtual FPGA Architectures

In [10] Lagadec et al. present a toolset for generic implementation of virtual
architectures. The main focus of their work lies on the generic tool flow for
architectural representation and place & route of application netlists onto var-
ious abstract virtual architectures. The virtualization aspects from hardware
perspective, the mapping onto the underlying platform, the programming mech-
anisms and configuration management remain predominantly unaddressed.

Lysecky et al. introduced in [12] a simple fine grain virtual FPGA that is
specifically designed for fast place and route. The architecture has a mesh struc-
ture with fixed-size Configurable Logic Blocks (CLBs) being connected to Switch
Matrixes (SMs) as opposed to architectures where logic blocks are connected
directly to the routing channels. The V-FPGA architecture used in this paper
has a similar granularity and architecture class as the work of Lysecky et al.
but is generic and highly flexibile, thus it can take over different shapes and be
tailored towards the application needs.

In [6,9] we introduced a scalable island style virtual FPGA architecture with
the primary focus on adding new features to an underlying FPGA, that are not
supported natively. More specifically, we achieved to enable partial and dynamic
reconfiguration on a flash based Actel ProASIC3 device. The V-FPGA architec-
ture presented in this paper builds upon this preliminary work, yet offering a
higher flexibility with a rich parameter set.

The ZUMA architecture by Brant and Lemieux [5] is a clustered LUT based
FPGA with island style topology and targets to reduce the area overhead of the
virtualization layer by utilizing LUTRAMs of the underlying platform. V-FPGA
follows a different ideology as it concentrates on portability and easy mapping
even onto ASIC processes, thus renouncing platform exclusive element usage of
ZUMA approach.

The major drawbacks of all virtual FPGA architectures, including the one
used in this paper, are higher chip area and larger path delays compared to
physical FPGAs. This is due to the fact that each virtual logic cell is realized
by a multitude of programmable logic cells of the underlying physical platform.
The area overhead of virtual FPGA mainly depends on the granularity of the
underlying platform as well as how well the virtual resources can be matched
by the physical resources. Thus, the same Virtual FPGA has a different area
efficiency on one underlying platform than on another and a change in its design
parameters can turn the game.

2.2 Effects of Architectural Parameters on Area and Performance

With respect to architectural parameter choice in physical FPGAs, [3,14] indi-
cate that a LUT size K between 3 and 4 provides the best area efficiency, while
K = 6 gives the best performance. [7] shows similar results through a theoret-
ical model, while [15] indicates that K = 6 is the best choice for area, delay

144 P. Figuli et al.

and area-delay product in nanometer technology. However, those results are an
average and in virtual architectures the area efficiency and performance depend
also on how efficient a K-input LUT can be realized by the underlying platform,
thereby making their recommendations not highly applicable.

Betz and Rose studied in [4] the relationship between cluster size and required
number of inputs per CLB and also the optimal cluster size for 4-input LUTs.
Later, Ahmed and Rose extended this study in [3] by varying both LUT size
K and cluster size N in the range of K = 2..7 and N = 1..10 and concluded
that K = 4..6 and N = 3..10 provide the best trade-off between area and delay.
The findings in [3] have become a widely accepted reference and guideline in
parameter choice for many academic FPGA architectures. While the experiments
mentioned above rely on area and delay models on transistor-level, and thus scale
smoothly, virtual FPGAs are mostly platform independent and the base units
are multiplexers and flip-flops realized by underlying logic blocks. Consequently,
these differences can lead to unmatched proportions in logic area, local routing
area and global routing area as well as in path delays.

3 The Generic V-FPGA Architecture

The V-FPGA is a generic LUT-based FPGA architecture that can be mapped
onto existing commercial off-the-shelf (COTS) FPGAs, such as Xilinx, Altera,
Microsemi, etc. This extensively scalable and parameterizable architecture is
implemented in a fully synthesizeable HDL code, utilizing hierarchy, modular-
ity and generics. As illustrated in Fig. 1, the applications will be mapped and
executed on the virtual layer rather than on the logic layer of the underlying
COTS FPGA. The merit of this approach is that the specification of the virtual
FPGA stays unchanged independent to the underlying hardware and adds new
features such as dynamic reconfigurability which is for example not available
with all COTS FPGAs. It also entitles the re-use of hardware blocks on other
physical FPGA devices and enables portability of unaltered bitstreams among
different FPGA manufacturers and device families, e.g. in order to overcome the
problem of device discontinuation. In the following subsections the structure of
the architecture and its tuneable parameters are presented.

Host FPGA physical layer

Host FPGA architecture layer

Host FPGA application/implementation layer

V-FPGA application layer

V-FPGA platform technology mapping

V-FPGA virtual architecture layer

Fig. 1. Layer model of the V-FPGA approach

Parameter Sensitivity in Virtual FPGA Architectures 145

3.1 General Topology

The V-FPGA follows an island-style topology as depicted in Fig. 2(a), where
CLBs are surrounded by routing channels that can be accessed through con-
nection boxes. Programmable Switch Matrices (PSMs) at the intersections of
routing channels control the global routing. I/O Blocks (IOBs) on the perimeter
of the logic array enable interfacing with other (sub-)systems.

Input/Output Blocks Logic Blocks

Routing Channel Programmable Interconnect Routing Track

(a) General topology

BL
E_
ou

t_
in
te
rn

inputVector

configuration unit
InMux

(N*K-1)

InMux
(N*K-

K)

InMux
(2*K-1)... OutMux

(0)
OutMux

(O_CLB-1)
InMux

(0)
InMux
(K-1)

InMux
(K)...

inMuxConfig

...

...
0

N-1

...

0

N-1

...

0

N
-1

...

0

N
-1

...

0

N
-1

...

0

N
-1

...

0

N-1

...

0

N-1

.. .

BLE_out_intern(N-1)...

0

I+N-1

I-1
I

...
...

0

I+N-1

I-1
I

...
...

D Q

nRST
clk

configuration unit
lutK_reg

(2^K-1)
ffenlutK_reg

(2^K-2)
lutK_reg

(0)
lutK_reg

(1)
lutK_reg

(...)

MOSI_out

MOSInSS

BLE_N-1

LUT

0

1

.

.

.

K-1

SCLK

BLE_out_intern(1)...

0

I+N-1

I-1
I

...
...

0

I+N-1

I-1
I

...
...

D Q

nRST
clk

configuration unit
lutK_reg

(2^K-1)
ffenlutK_reg

(2^K-2)
lutK_reg

(0)
lutK_reg

(1)
lutK_reg

(...)

MOSI_out

MOSInSS

BLE_1

LUT

0

1

.

.

.

K-1

SCLK

BLE_out_intern(0)...

0

I+N-1

I-1
I

...
...

0

I+N-1

I-1
I

...
...

D Q

nRST
clk

configuration unit
lutK_reg

(2^K-1)
ffenlutK_reg

(2^K-2)
lutK_reg

(0)
lutK_reg

(1)
lutK_reg

(...)

MOSI_out

MOSInSS

BLE_0

LUT

0

1

.

.

.

K-1

SCLK

(b) Clustering of BLEs within CLBs

Fig. 2. Structure of the V-FPGA

3.2 Clustered Logic Cells

The generic clustering architecture of V-FPGA is parameterizable with cluster
size N and LUT size K as shown in Fig. 2 (b). The union of a K-input LUT,
a flip-flop and a bypass MUX forms a Basic Logic Element (BLE). A CLB con-
tains N BLEs. Each BLE also holds a configuration unit that sets the bits of
the LUT and controls the bypass MUX. As proposed in [3], a CLB with N
BLEs of K-input LUTs contains I = K/2 · (N + 1) inputs and O = N outputs.
The location pattern of in- and outputs of a CLB aims an equal distribution
to improve routability. Input multiplexers for each BLE input can select signals
either by using fully-connected multiplexers (all CLB inputs and all BLE out-
puts are selectable) or partially-connected multiplexers (only a fraction of 1/K
CLB inputs and all BLE outputs are selectable). The latter version is more area
efficient but is also dependant on outer routing. The multiplexers at the out-
puts of a CLB are optional as they can slightly ease the outer routing but cost
additional area. It is recommended to use direct wiring of BLE outputs to CLB
outputs, whereby the outer routing can be facilitated by reordering of BLEs.

146 P. Figuli et al.

3.3 Routing Infrastructure

Connection boxes around the CLBs consist mainly of multiplexers and their
select signals are controlled by configuration registers. At the same time only
one routing track can be connected to the input through CBr, whereas several
tracks can be connected to the same output through CBw. PSMs realize the
global routing of the signal paths by connecting tracks from different channels
at the intersections. Therefore a 4:1 MUX is located at each output of a PSM as
shown in Fig. 3(a). A PSM has on each side W in- and outputs, whereby W is the
channel width. On the left and bottom sides, the first position of the MUX is the
logic level ‘1’, which is the defined idle value of the routing infrastructure, i.e. if
there is no routing intended in this direction. The three remaining positions are
each associated with an input from one of the three adjacent sides. The two select
lines of the MUX are controlled by configuration registers set by the configuration
unit during programming. On the top and right sides of the PSM, the inputs
can be fed back to the outputs of the same sides by selecting the first position of
the respective multiplexers. This technique, which we call loopback propagation
enables emulation of bi-directional tracks using uni-directional tracks.

Fig. 3. Interconnects in V-FPGA

3.4 I/O Blocks

IOBs on the perimeter of the array have exactly one in- and one output and work
in a similar way like the connection boxes of the CLBs. As shown in Fig. 3 (b),
a MUX connects one of the tracks from the routing channel to the output pad.
When an output is not assigned, logic ‘0’ is issued by an AND gate connected
between the MUX and the configuration register bit ren. In favour of higher
routability, the input pad can be connected to several tracks in parallel through
respective 2:1 MUXs. All the MUXs are controlled by configuration registers.

Parameter Sensitivity in Virtual FPGA Architectures 147

4 Area and Delay Models

Typically, the overall area requirement and performance of an application
mapped onto a virtual FPGA is revealed after the synthesis, place and route
(P&R) steps of both, the application and the virtual FPGA. Since the P&R
steps are area and timing driven, area and delay models are required in order to
find an optimized solution. For instance, our initial V-FPGA [9] used the physical
parameters of the architecture file templates contained in MEANDER toolflow
[1], which are based on 180 nm technology. Similarly, the technology parameters
of ZUMA architecture in [2] are almost the same as that of the ones used in
the 90 nm architecture templates of the VTR toolflow package [11]. While the
application mapping will be still valid and the circuits operable, this practice
might be deceitful for the purpose of design space exploration and optimization
as the ratios of e.g. logic area to routing area or local routing to global rout-
ing will suffer accuracy. This might lead to non-optimal parameter choices and
reduced mapping efficiency. To overcome this situation, area and delay models
for the V-FPGA are derived based on the utilized resource types of the under-
lying platform. The idea is to decompose the V-FPGA into basic elements of
minimum size, characterize these elements and in a bottom up approach derive
area and delay models that are dependent on the parameters K, N, W, I, and
O described in Sect. 3. The programmable units of V-FPGA are BLEs, CLBs
(including connection boxes), PSMs and IOBs. A BLE is composed of 2K :1 MUX
(for the LUT), 2:1 MUX (for the bypass) and flip-flops (2K for the configura-
tion unit and one for bypass at the LUT output). The remaining CLB circuitry
requires (N +�I/K�):1 MUXs for BLE inputs, optionally N:1 MUXs at the out-
puts and D-FFs for the configuration unit. Additionally, the connection boxes
require 2:1 MUXs for CBw and W:1 MUXs for CBr. Each PSM is composed
of 4:1 MUXs for routing and D-FFs for configuration. An IOB needs a W:1
MUX and an AND gate for the output, 2:1 MUXs for the input and D-FFs
for the configuration unit. Hence the Minimum Size Basic Elements (MSBEs)
are 2:1 MUX, 2-input AND gate and D-FF with their corresponding areas and
delays as AMUX2, AAND2, AFF TMUX2, TAND2, TFF setup, TFF clock to Q and
Tnet respectively. All the other elements are composed of these MSBEs and are
derived as follows:

ABLE =
(
2K + 1

) · AFF +
((

2K − 1
)

+ 1
) · AMUX2 (1)

ABLE inMUX =
(
N +

⌈
I

K

⌉
− 1

)
· AMUX2 +

⌈
log2

(
N +

⌈
I

K

⌉)⌉
· AFF (2)

ABLE outMUX = (N − 1) · AMUX2 + �log2 (N)� · AFF (3)
ACLB = N · K · ABLE inMux + N · ABLE + O · ABLE outMUX (4)

ACBr = (W − 1) · AMUX2 + �log2(W)� · AFF (5)
ACBw = W · (AMUX2 + AFF) (6)

APSM = 4 · W · (3 · AMUX2 + 2 · AFF) (7)
AIOB = (2W − 1) · AMUX2 + AAND2 + (W + �log2(W)� + 1) · AFF (8)

148 P. Figuli et al.

The delays are obtained through characterizations of the MSBEs in a placed
and routed design with the help of the timing analyzing tool. In addition to the
MSBEs, the average delay of the short nets is also needed. The relevant delays
of the other elements are estimated as follows:

TMUX4 = 2 · TMUX2 + Tnet (9)
TLUT = Tnet + K · (TMUX2 + Tnet) (10)

TBLE outMUX = �log2(O)� · (TMUX2 + Tnet) (11)

TBLE inMUX =
⌈
log2

(
N +

⌈
I

K

⌉)⌉
· (TMUX2 + Tnet) (12)

TIOB in = TMUX2 + Tnet (13)
TIOB out = (�log2(W)� − 1) · (TMUX2 + Tnet) + TAND2 + Tnet (14)

These models target a fine grained underlying platform (e.g. the 3-input Versa-
Tiles in Actel ProASIC3) and need to be slightly modified when the underlying
platform changes. For instance, for an underlying platform with 6-input LUTs,
a 4:1 MUX becomes an MSBE as it will have the same area and timing as a
2:1 MUX (both can be realized by 1 LUT). Note that the additive MSBE based
models are pessimistic as they don’t reflect possible LUT sharing techniques.

5 Methodology of Parametric Design Space Exploration

The architecture level design space exploration is performed with combinations
of varying cluster size N and LUT size K. Parts of the VTR toolset [11] are used
for this purpose and are complemented by our custom scripts and architecture
file generators. However Fig. 4 illustrates a more general view of the CAD flow
independent from the actual tools. Starting with the smallest K = 2, technology
independent netlists of presynthesized benchmark circuits are translated into
netlists of K-input LUTs. Proceeding this is the packing process, where N LUTs
are clustered into one CLB with an initial value of N = 1. The hypergraph
nodes of the resulting netlist are placed onto an array of CLBs, whose size is
not known at the beginning. One of the optimization goals of this placing step
is to determine the required number of CLB columns and rows with minimum
area consumption. The placed nodes are then swapped to achieve timing driven
optimizations, aiming for minimum distance between connected nodes. The next
step is to route the signal paths between the placed nodes by considering the
routing capabilities of the architecture (PSMs, connection boxes, in- and out-
put multiplexers). The channel width W is estimated beforehand based on the
parameters K and N . This is not an accurate estimation since the minimum W
depends also on the application. However, this is good enough to start an initial
routing attempt, followed by iterative bisection of the estimated W to converge
towards the minimum channel width with a reduced number of routing attempts.
Once the minimum channel width is found, the usual timing driven optimizations

Parameter Sensitivity in Virtual FPGA Architectures 149

follow. The steps of packing, placement and routing require information about
the target virtual FPGA architecture and the parameters and constants related
to area and delay models, which are provided through architecture files. Some
of the area and delay model equations in Sect. 4 are dependent on W , which is
known only after the routing process. Thus initially the estimated W is used.
For an improved accuracy, a feedback is needed to update the architecture file
with the actual channel width W and to re-run the area- and/or timing-driven
P&R processes. The results in terms of array size, channel width, area, critical
path delay are stored in a data base for assessing the figure of merit (FOM).
Then the process is repeated with other combinations of N and K in a nested
loop to span the design space of interest.

Bench-
marks

Technology
MappingK=2

N=1 Packing Placement Routing

Estimate
channel width

W_est

adjust area and
delay models

arch.file

W_min=
W_est?

adjust W_est

no

N=N_max?
no

K=K_max?

yes

no
START

Arch. Files

Assessment
Database
(FOM)

yes

END
yes

N=N+1

K=K+1

Fig. 4. Concept of parametric DSE Flow.

6 Experimental Results and Analysis

Design space explorations with the 20 largest MCNC benchmarks were per-
formed to observe the parameter sensitivity. The effects of LUT size variation
alone were examined in an unclustered architecture, followed by experiments
with combinations of LUT size and cluster size. The analysis required 1400
benchmark-runs with the steps logic optimization, LUT mapping, packing, plac-
ing and routing. The first two steps were eased by reusing the pre-mapped ver-
sions of the MCNC benchmarks within the VTR package [11] and the latter steps
were done with VPR (part of VTR) and with architecture files, that reflect the
V-FPGA hosted by an Actel ProASIC3 device, including area and delay models
from Sect. 4. The result graphs (Figs. 5, 6 and 7) are drawn according to the
following scheme: For each benchmark, the variance is displayed with relative
distances from the median centred between its best and worst result. This allows
to compare the parameter sensitivity among all benchmarks, irrespective of their
sizes and scales. The dotted curve represents the average over all benchmarks.

150 P. Figuli et al.

-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

K=2 K=3 K=4 K=5 K=6 K=7 K=8
-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

K=2 K=3 K=4 K=5 K=6 K=7 K=8
-100.00%

-80.00%

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

K=2 K=3 K=4 K=5 K=6 K=7 K=8

Rel. area variance from median Rel. performance variance from .leRnaidem variance in area-delay product from median
alu4

apex2

apex4

bigkey

clma

des

di eq

dsip

ellipAc

ex5p

ex1010

frisc

misex3

pdc

s298

s38417

s38584.1

seq

spla

tseng

AVG

Fig. 5. Effects of LUT size K on (a) area (b) performance (c) area-delay product.

6.1 The Effects of LUT Size Tuning on Area and Performance in
Unclustered Architectures

Figure 5 shows the variance of area, performance and area-delay product with
different LUT sizes in the range of K = 2..8. The average curve (dotted line)
of area variance has a smooth bathtub characteristic with a wide optimum for
K = 3..6 and a degradation in area efficiency outside this range. Hence a LUT
size of K = 3..6 will yield in average the best area efficiency for general purpose
cases. However, the different benchmarks differ greatly in area variance over LUT
size K and parameter sensitivity. This manifests not only by the variance range
and the steepness but also by the smoothness of the curves. Some of the bench-
marks are trending a higher area efficiency with rising K, while some show the
opposite trend and others follow a bathtub characteristic. This shows that there
is plenty of room for optimization through application specific customization
and parameter tuning. Regarding performance variation, all benchmarks show
an ascending performance trendline for increasing K with the average curve
being almost linear from K = 2 to K = 8. Some of the benchmarks show rel-
atively smooth curves that are oriented around the average curve, while others
show a disturbed and inconsistent curve with alternating change of trend and
few show a nearly exponential shape. Around 5% of the benchmarks have a per-
formance maximum at K = 5, 10% at K = 6, 40% at K = 7 and 45% at K = 8,
which indicates that K = 7..8 are in average the recommended choices for per-
formance optimization in general purpose cases. LUT sizes between 5 and 7 show
the best trade-off between area and performance with regard to area-delay prod-
uct. These results differ from [3,7,14,15] and show that their findings based on
transistor-level modelling are not certainly transferable to virtual architectures.

6.2 The Effects of Combined Cluster Size N and LUT Size K
Tuning on Area and Performance

Clustering can have a significant effect on area and performance depending on
how well it is tuned in conjunction with the LUT size. For adequate parameter
tuning, the 20 largest MCNC benchmarks are re-evaluated for all combinations

Parameter Sensitivity in Virtual FPGA Architectures 151

of cluster sizes with N = 1..10 and LUT inputs with K = 2..8. Figures 6, 7
present the resulting variances in area and performance. Interestingly, quite a
few area curves have a sawtooth characteristic with minima at N = 1 for all K
indicating that clustering is harmful for the respective benchmarks if area effi-
ciency is the objective. For the average case starting with N = 4 and K = 2, N
should decrease with increasing K for better area efficiency. On the whole, the
performance increases with rising K and N . The evaluation also shows a strong
parameter sensitivity with variances up to ±95.9% in area and ±78.1% in perfor-
mance. Furthermore, the fluctuating benchmark curves confirm that application
specific customization can yield high optimizations, rather than relying on aver-
age values for parameterization of the architecture.

Fig. 6. Effects of LUT size K and cluster size N on area variance.

Fig. 7. Effects of LUT size K and cluster size N on performance variance.

152 P. Figuli et al.

7 Conclusions

In this paper an extended version of the V-FPGA has been introduced and the
area and delay models suitable for vitualization have been derived by decompos-
ing the architecture into MSBEs. In contrast to the existing models which are
based on transistor-level, the new models adopt the characterization of MSBEs
that are mapped onto the desired underlying COTS FPGA. Thus they represent
a more realistic view to the new design space exploration methodology and also
to the CAD tools for application mapping. The analysis of over 1400 benchmark-
runs with various combinations of LUT size and cluster size reveals a high para-
meter sensitivity with individual variances up to ±95.9% in area and ±78.1%
in performance. This proves a remarkable potential for application specific opti-
mizations through parameter tuning. For general purpose cases, an averaging of
area-delay products over the examined benchmarks leads to recommendations
of K = 5..7 for unclustered logic CLBs and combinations of K = 4..7 with
N = 2..5 for clustered CLBs. However if the target application field is narrow,
it is not recommended to rely on averaging as the individual benchmarks differ
tremendously from the average values. Furthermore, our results show some dis-
crepancy in the parameter recommendations of physical FPGAs and discourage
a 1:1 adoption to virtual FPGAs.

Acknowledgments. This work was partially supported by the German Academic
Exchange Service (DAAD).

References

1. MEANDER Design Framework (2016). http://proteas.microlab.ntua.gr/meander/
download/index.htm. Accessed 25 Nov 2016

2. ZUMA Repository 2016. https://github.com/adbrant/zuma-fpga/tree/master/
source/templates. Accessed 25 Nov 2016

3. Ahmed, E., Rose, J.: The effect of LUT and cluster size on deep-submicron FPGA
performance and density. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(3),
288–298 (2004)

4. Betz, V., Rose, J.: Cluster-based logic blocks for FPGAs: area-efficiency vs. input
sharing and size. In: Custom Integrated Circuits Conference, Proceedings of the
IEEE 1997, pp. 551–554 (1997)

5. Brant, A., Lemieux, G.G.F.: ZUMA: an open FPGA overlay architecture. In: Field-
Programmable Custom Computing Machines (FCCM), April 2012

6. Figuli, P., Huebner, M., et al.: A heterogeneous SoC architecture with embedded
virtual FPGA cores and runtime core fusion. In: NASA/ESA 6th Conference on
Adaptive Hardware and Systems (AHS 2011), June 2011

7. Gao, H., Yang, Y., Ma, X., Dong, G.: Analysis of the effect of LUT size on FPGA
area and delay using theoretical derivations. In: Sixth International Symposium on
Quality Electronic Design (ISQED 2005), pp. 370–374, March 2005

8. Gupta, P.K.: Accelerating datacenter workloads. In: 26th International Conference
on Field Programmable Logic and Applications (FPL), August 2016

http://proteas.microlab.ntua.gr/meander/download/index.htm
http://proteas.microlab.ntua.gr/meander/download/index.htm
https://github.com/adbrant/zuma-fpga/tree/master/source/templates
https://github.com/adbrant/zuma-fpga/tree/master/source/templates

Parameter Sensitivity in Virtual FPGA Architectures 153

9. Huebner, M., Figuli, P., Girardey, R., Soudris, D., Siozos, K., Becker, J.: A het-
erogeneous multicore system on chip with run-time reconfigurable virtual FPGA
architecture. In: 18th Reconfigurable Architectures Workshop, May 2011

10. Lagadec, L., Lavenier, D., Fabiani, E., Pottier, B.: Placing, routing, and editing
virtual FPGAs. In: Brebner, G., Woods, R. (eds.) FPL 2001. LNCS, vol. 2147,
pp. 357–366. Springer, Heidelberg (2001). doi:10.1007/3-540-44687-7 37

11. Luu, J., Goeders, J., et al.: VTR 7.0: next generation architecture and CAD system
for FPGAs. ACM Trans. Reconfigurable Technol. Syst. 7(2), 6:1–6:30 (2014)

12. Lysecky, R., Miller, K., Vahid, F., Vissers, K.: Firm-core virtual FPGA for just-
in-time FPGA compilation. In: Proceedings of the 2005 ACM/SIGDA 13th Inter-
national Symposium on Field-programmable Gate Arrays, p. 271 (2005)

13. Putnam, A.: Large-scale reconfigurable computing in a Microsoft datacenter. In:
Proceedings of the 26th IEEE Symposium on High-Performance Chips (2014)

14. Rose, J., Francis, R.J., Lewis, D., Chow, P.: Architecture of field-programmable
gate arrays: the effect of logic block functionality on area efficiency. IEEE J. Solid-
State Circ. 25(5), 1217–1225 (1990)

15. Tang, X., Wang, L.: The effect of LUT size on nanometer FPGA architecture. In:
2012 IEEE 11th International Conference on Solid-State and Integrated Circuit
Technology (ICSICT), pp. 1–4, October 2012

http://dx.doi.org/10.1007/3-540-44687-7_37

	Parameter Sensitivity in Virtual FPGA Architectures
	1 Introduction
	2 Related Works
	2.1 Virtual FPGA Architectures
	2.2 Effects of Architectural Parameters on Area and Performance

	3 The Generic V-FPGA Architecture
	3.1 General Topology
	3.2 Clustered Logic Cells
	3.3 Routing Infrastructure
	3.4 I/O Blocks

	4 Area and Delay Models
	5 Methodology of Parametric Design Space Exploration
	6 Experimental Results and Analysis
	6.1 The Effects of LUT Size Tuning on Area and Performance in Unclustered Architectures
	6.2 The Effects of Combined Cluster Size N and LUT Size K Tuning on Area and Performance

	7 Conclusions
	References

