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Chapter 10
Manipulating Selenium Metabolism in Plants: 
A Simple Twist of Metabolic Fate Can Alter 
Selenium Tolerance and Accumulation

Doug Van Hoewyk and Ozgur Çakir

Abstract  Selenium (Se) is a micronutrient for many organisms including humans. 
But like many trace elements, Se can be toxic at high concentrations and become a 
public health concern if it accumulates in soils or groundwater. Although higher 
plants don’t require Se, plants can still accumulate and metabolize Se via the sulfur 
assimilatory pathway. Genetic manipulation of plant selenium metabolism primar-
ily stems from two areas of interest: it has the potential to improve the phytoreme-
diation of Se in contaminated areas, and it may aid the development of Se-containing 
phytochemical compounds that possess health benefits. This review highlights stud-
ies that have successfully altered Se metabolism in plants, and concludes by focus-
ing on novel genes and pathways that might be targeted to manipulate Se metabolic 
processes.
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10.1  �Introduction

Selenium (Se) is an essential trace element for mammals, bacteria, and some green 
algae (Stadtman 1996). However, it is unlikely to be required by higher plants even 
though it can be beneficial (El Mehdawi and Pilon-Smits EAH 2012; Feng et al. 
2013). As a nutrient in humans, Se is an essential component of the 21st amino acid 
selenocysteine, which is used to make 25 selenoproteins (Papp et al. 2007). A daily 
intake of 55 micograms of Se is recommended (Institute of Medicine 2000).  
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A deficiency in dietary Se decreases the abundance of selenoproteins, and can lead 
to Kashin-Beck and Keshan disease, which alters bone and cardiac function,  
respectively. Additionally, numerous in vitro studies have reported the protective 
properties of Se compounds, particularly against cancer (Davis 2012). Due to its 
anticarcinogenic properties, Se supplementation or Se-fortified crops may be bene-
ficial, but this is still controversial.

While Se levels in most soils are between 0.01 and 2 Se/kg, Se naturally accumu-
lates in certain Cretaceous shale sediments. Such seleniferous soils can contain up 
to 100 mg/kg Se (Pilbeam et al. 2015). Anthropogenic activities, such as irrigation, 
can also result in Se accumulation in soil and potentially crops (Zhu et al. 2009). 
Selenium is chemically very similar to S, and its inadvertent accumulation in plants 
occurs primarily when selenate is transported into roots via sulfate transporters 
(White 2015). Selenate is readily translocated into shoot tissue, where is can be 
metabolized by chloroplastic enzymes involved in S assimilation.

Se decreases growth of most plants at concentrations exceeding 10–25 μM 
(Zhang et  al. 2006). In non-hyperaccumulating plants- including most crops- Se 
toxicity occurs if its foliar accumulation exceeds 10–100 μg, as recently reviewed 
(White 2015). Selenium toxicity stems from two separate processes (Van Hoewyk 
2013). Inorganic Se, particularly selenite, can redox cycle with thiols and generate 
reactive oxygen species (Spallholz 1994), including hydrogen peroxide (Tamaoki 
et  al. 2008) and mitochondrial superoxide that alters respiration (Dimkovikj and 
Van Hoewyk 2014). Additionally, Se is likely toxic when it replaces S in protein. 
This hypothesis originated by the discovery that Se-tolerant Astragalus species 
were found to have nearly tenfold lower concentration of Se in protein compared 
with non-tolerant Astragalus species (Brown and Shrift 1981). In particular, the 
substitution of cysteine with selenocysteine (Sec) is believed to cause protein mis-
folding (Stadtman 1990). Several lines of evidence bolster the hypothesis that Se 
causes protein misfolding. Selenocysteine causes severe toxicity in Arabidopsis 
plants with a mutation in Bip2 (Sabbagh and Van Hoewyk 2012), an endoplasmic 
reticulum protein that participates in the unfolded protein response and renders 
mutant plants sensitive to agents that cause protein misfolding. Arabidopsis plants 
with mutations in ER protein quality control are also sensitive when treated with 
selenate (Van Hoewyk 2016). Additional support for the malformed selenoprotein 
hypothesis comes from the observation that selenoproteins can be removed by  
the ubiquitin-proteasome pathway in a variety of plants, including the 
Se-hyperaccumulator Stanleya pinnata (Sabbagh and Van Hoewyk 2012), canola 
(Dimkovikj et  al. 2015), and the green algae Chlamydomonas (Vallentine et  al. 
2014).

Averting Se toxicity may potentially improve efforts to clean polluted soils and 
water via phytoremediation (Pilon-Smits 2005). Additionally, the development of 
crops with fortified levels of Se is appealing, as a source of both nutrition and 
Se-based therapeutics. Therefore, in some circumstances it may be desirable to use 
plants more efficiently for phytoremediation or as Se-fortified foods. To meet this 
aim, several different plant genetic engineering strategies have been designed and 
used successfully to further enhance plant Se metabolism, including its uptake and 
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accumulation, volatilization, and tolerance (Pilon-Smits and LeDuc 2009). Most 
genetic engineering approaches have targeted enzymes participating in S uptake or 
assimilation. However, a few studies have manipulated Se metabolism by focusing 
on genes unrelated to S metabolism, and there is compelling evidence that other 
unidentified pathways may also control plant Se tolerance and accumulation. These 
strategies are discussed below and summarized in Fig. 10.1.

10.2  �Targeting Sulfur Transporters Alters Selenium 
Accumulation in Plants

In terrestrial ecosystems, selenate is the most bioavailable form of Se in soil (Terry 
et al. 2000). Although a selenate-specific transporter in plants remains elusive, it can 
be transported into roots via sulfate transporters. Mutation of sulfate transporter 
SULTR1;2 in Arabidopsis improved selenate tolerance by restricting selenate entry 
into the plant, and therefore decreased Se accumulation; mutations in ten other sul-
fate transporters did not affect selenate tolerance (El Kassis et al. 2007). Although it 
remains to be confirmed, overexpression of SULTR1;2 would likely increase Se 
accumulation in crops, but comes with the caveat that that increased Se content may 
also potentially decrease Se tolerance.

In aquatic ecosystems or flooding conditions that promote anaerobia, selenite is 
likely to be the predominant Se metabolite available for plant uptake. Similar to 
selenate, a selenite-specific transporter has yet to be identified. However, overex-
pression of phosphate transporter (OsPT2) in rice increased selenite uptake and Se 
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Fig. 10.1  Schematic diagram highlighting transgenic approaches that have altered selenium 
metabolism in plants. Black: Se metabolites; Red: manipulated enzymes and their impacts on sele-
nium metabolism
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accumulation in rice grains (Zhang et al. 2014). Additionally, a silicon transporter 
in rice (OsNiP2;1) appears to assist in selenite transport under acidic conditions 
(Zhao et al. 2010). Lastly, in addition to transporters, exogenous glutathione (GSH) 
can increase selenite transport in rice (Zhang 2015), indicating that perhaps GSH 
content in roots can control selenite uptake. Whether or not genetic engineering of 
GSH content in roots can augment selenite transport and accumulation remains to 
be determined.

10.3  �Manipulation of the Sulfate Reduction Pathway Alters 
Metabolism

The sulfate reduction pathway controls the flux of the assimilation of sulfate into 
cysteine, as extensively reviewed (Çakır et al. 2012; Hawkesford and De Kok 2006; 
Pilon-Smits 2015; White 2015). Given that Se and S behave similarly, initial 
attempts aimed at manipulating Se metabolism have targeted enzymes involved in 
sulfate assimilation. The reduction of sulfate to sulfide occurs in plastids and 
involves the concerted actions of ATP sulfurylase (ATPS), adenosine 
5-phosphoreductase (APR), and sulf﻿ite reductase (SiR). The reduction of selenate to 
selenite is likely a rate-limiting step for the assimilation of selenate into organic Se. 
This conclusion is based on studies reporting that plants treated with selenate accu-
mulated mainly selenate, while plants that were fed selenite accumulated mainly 
organic Se (de Souza et al. 1998; Zayed et al. 1998). To overcome this apparent rate 
limitation in Se metabolism, Arabidopsis APTS- which activates sulfate- was over-
expressed in Brassica juncea (Pilon-Smits et al. 1999). When treated with selenate, 
these transgenic plants accumulated an organic form of Se, in contrast to wild-type 
plants that accumulated selenate. Although Se volatilization was unaltered, the 
ATPS transgenics were more tolerant to selenate and accumulated threefold to five-
fold more Se than wild type in both laboratory and in the field (Bañuelos et  al. 
2005); this phenotype was explained by their ability to quickly metabolize inorganic 
Se into organic forms. However, an alternative explanation to their improved Se 
tolerance may also be envisioned. When ATPS was overexpressed in Arabidopsis, it 
also resulted in increased Se accumulation and assimilation of organic Se, but was 
also accompanied by increased levels of cysteine and GSH (Sors et  al. 2005). 
Elevated levels of GSH can maintain redox poise during oxidative stress (Noctor 
et  al. 2012), and is associated with improved Se tolerance (Grant et  al. 2011). 
Therefore, it is possible that improved Se tolerance in ATPS transgenics could have 
at least partially stemmed from an elevated GSH status.

APR catalyzes the reaction of activated sulfate to sulfite. When APR from 
Pseudomonas aeruginosa was overexpressed in Arabidopsis, it also increased the 
proportion of organic Se and improved tolerance when treated with selenate (Sors 
et  al. 2005). Although an Arabidopsis APR isoform has not been overexpressed, 
knockout of APR in Arabidopsis was associated with decreased Se accumulation 
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and tolerance, which was explained by the observed decrease in glutathione and 
superoxide accumulation (Grant et al. 2011). Taken together, these data indicate that 
APR also controls the flux of selenate into organic forms, similar to ATPS.

Sulfite is converted into sulfide via sulfite reductase (SiR), but it is doubtful that 
the enzyme also has selenite reductase activity (Ng and Anderson 1979). Rather, 
GSH likely non-enzymatically reduces selenite to selenide, and in doing so gener-
ates superoxide (Seko et  al. 1989; Kessi and Hanselmann 2004). Additionally, 
Arabidopsis plants with decreased levels of SiR do not display altered tolerance 
when stressed with selenite (Fisher et al. 2016), suggesting that knockdown of SiR 
does not play an important role in determining Se tolerance or accumulation.

10.4  �Minimizing Se-Cysteine Incorporation in Protein 
Improves Se Tolerance in Plants

Astragalus bisulcatus’ tolerance to Se is attributable to the presence of a chloroplas-
tic enzyme with selenocysteine methyltransferase (SMT) activity (Neuhierl and 
Bock 1996). This enzyme methylates Sec and prevents its incorporation into pro-
tein; therefore, the formation of malformed selenoproteins is avoided. Methyl-Sec 
is the predominant Se-containing metabolite in Se hyperaccumulators (Whanger 
2002). SMT has been cloned and characterized from different plant species  
(Cakir and Ari 2013; Lyi et al. 2005; Neuhierl and Bock 1996; Sors et al. 2009; Zhu 
et  al. 2008), and it is widely believed that this enzyme confers Se tolerance in 
Se-hyperaccumulating plants. Methyl-Sec can be further metabolized to non-toxic 
dimethyl-diselenide, a volatile molecule that is emitted into the atmosphere (de 
Souza et al. 1998). The A. bisulcatus SMT enzyme has been overexpressed in A. 
thaliana and B. juncea (Ellis et al. 2004; LeDuc et al. 2004). In both species, sele-
nite-treated SMT-transgenic plants converted Sec to methyl-Sec. The ability to con-
vert Sec to methyl-Sec was associated with increased total Se accumulation, 
improved Se tolerance, and enhanced volatilization of dimethyl-diselenide. The 
non-hyperaccumulator Astragalus drummondii also possesses an SMT-like gene 
(Sors et al. 2009). Despite its homology to the gene from A. bisulcatus, biochemical 
studies revealed that the enzyme from A. drummondii lacks SMT activity, thus 
likely rendering the plant intolerant to Se. Mutagenesis of the A. drummondii gene 
to make it more similar to the one from A. bisulcatus provided some SMT activity, 
but still the mutated enzyme was not as active as its homologue in A. bisulcatus 
(Sors et  al. 2009). Additionaly, B. juncea over-expressing both APS and SMT 
increased Se accumulation up to ninefold compated to WT plants (LeDuc et  al. 
2006). Collectively, these experimental studies reveal that SMT activity plays a vital 
role in Se hyperaccumulation, and A. bisulcatus SMT provides both increased Se 
tolerance and accumulation when genetically engineered in non-hyperaccumula-
tors. This may ultimately prove useful for the environmental cleanup of seleniferous 
soils or to fulfill the human dietary needs of Se.
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Cystathionine gamma synthase (CgS) can also prevent the formation of non-
specific selenoproteins by catalyzing the reaction of Sec to seleno-cystathionine, a 
precursor metabolite of Se-methionine. Overexpression of Arabidopsis CgS in B. 
juncea improved Se tolerance, which was explained by a twofold to threefold 
increase in Se volatilization (Van Huysen et al. 2003). As a result of enhanced vola-
tilization, the CgS transgenics accumulated 40% less Se compared to wild-type 
plants. These results indicate that CgS is involved and rate limiting in Se 
volatilization.

In another approach to divert Sec from being incorporated into proteins, genetic 
engineering approaches have also targeted Sec-lyases, which catabolize Sec into 
alanine and elemental Se. Initially, a mouse Sec-lyase was over-expressed in 
Arabidopsis, which decreased the amount of Se in protein, yet increased Se accu-
mulation (Pilon et al. 2003). Overexpression of Sec-lyase in the cytosol improved 
Se tolerance, but intriguingly, targeting of this enzyme to the chloroplast increased 
sensitivity to Se. This could potentially be explained by the ability of elemental Se 
to replace S in chloroplastic Fe-S proteins. Fe-Se clusters are known to be unstable 
and their incorporation into proteins can decrease activity (Hallenbeck et al. 2009). 
Sequencing of the Arabidopsis genome revealed a chloroplastic Sec-lyase called 
CpNifS. Overexpression of CpNifS in Arabidopsis increased Se accumulation and 
selenate tolerance almost twofold, and this phenotype was associated with a 33% 
decrease of Se in protein and increased S levels (Van Hoewyk et  al. 2005). 
Additionally, B. juncea over-expressing a Sec-lyase also accumulated Se twofold 
when grown in soil polluted with Se (Bañuelos et al. 2007). In summary, these data 
indicate that overexpression of CpNifS prevents the formation of selenoproteins in 
plants, which likely explains their improved tolerance to selenate.

10.5  �Manipulation of Oxidative Stress Response Genes 
Alters Se Metabolism

As mentioned above, Se is known to induce oxidative stress in plants. Thus, antioxi-
dant systems may contribute to plant Se tolerance. Indeed, several studies have indi-
cated that overexpression of genes associated with an oxidative stress response 
improve Se tolerance and alter plants’ ability to accumulate Se.

Arabidopsis selenium-binding protein (SBP1) was the first gene unrelated to sul-
fur metabolism whose overexpression improved Se (Agalou et al. 2005). Expression 
of this gene is tightly linked to oxidative stress, and is also induced during sulfur 
starvation. Although its biological function remains unknown, SBP1 has been spec-
ulated to have antioxidant properties (Hugouvieux et al. 2009), as its overexpression 
in Arabidopsis also improves tolerance to cadmium and hydrogen. However, 
recently it was discovered that SPB1 can bind to a variety of heavy metals; addition-
ally, it can bind to and reduce selenite, but not selenate (Schild et al. 2014). Therefore, 
increased tolerance in SBP1 transgenics may also be attributed to its capacity to 
prevent selenite-induced oxidative stress that can impair mitochondrial function 
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(Dimkovikj and Van Hoewyk 2014). In agreement with this conclusion, human cells 
with mutant SBP1 are sensitive to selenite and suffer from mitochondrial damage 
(Ying et al. 2015).

The story of a broccoli methyltransferase (BoCOQ5–2) expressed in Arabidopsis 
further demonstrates that manipulating Se metabolism can be achieved by targeting 
pathways independent of sulfur metabolism (Zhou et  al. 2009). BoCOQ5–2 is 
involved in the biosynthesis of ubiquinone, which has a role in respiration; addition-
ally, it is an antioxidant in plants (Ohara et al. 2004) and likely protects mitochon-
dria during stress (Bergamini et al. 2012). Transgenic COQ5–2 plants had improved 
Se tolerance, which was associated with decreased levels of hydrogen peroxide and 
increased dimethyl diselenide volatilization. Ubiquinone levels were not elevated in 
these plants. The authors conclude that increased volatilization was unlikely to be a 
direct consequence of manipulating the ubiquinone pathway. Rather, increased 
dimethyl diselenide volatilization likely stemmed from an improved antioxidant 
status in the COQ5–2 plants. If that is the case, then it is possible that increased 
levels of other antioxidants- such as vitamin C and vitamin E- may also alter Se 
metabolism in plants (Zhou and Li 2010). In line with the hypothesis that improved 
oxidative stress tolerance can alter Se metabolism in plants, overexpression of GSH 
synthetase also increases Se tolerance and accumulation in B. juncea (Bañuelos 
et  al. 2005). In Arabidopsis, tolerance to selenite correlates tightly with internal 
GSH concentrations (Grant et al. 2011). More recently, overexpression of a peroxi-
dase implicated in drought and salt stress also protected Arabidopsis plants against 
Se (Jiang et al. 2015). In summary, Se metabolism can be altered by genetic engi-
neering approaches aimed at improving oxidative stress tolerance.

10.6  �Transcriptomics Reveal Additional Genes That May 
Alter Se Metabolism and Tolerance

The advent of high-throughput sequencing has allowed researchers to identify genes 
and pathways responsive to stress conditions. For example, the transcriptome of 
selenate-treated Arabidopsis revealed an upregulation of many transcripts involved 
in ethylene and abscisic acid synthesis and signaling (Van Hoewyk et  al. 2008). 
Indeed, further genetic analysis demonstrated that decreased levels of these two 
hormones increase both selenate and selenite sensitivity (Tamaoki et  al. 2008), 
likely by mediating an oxidative stress response. A more recent transcriptome study 
used RNA-seq to determine the effects of selenate in Astragalus chrysochlorus, a 
secondary Se accumulator (Çakır et al. 2015). This study revealed an upregulation 
of genes involved in ABC transport, plant pathogen interactions, and biosynthesis of 
secondary metabolites. Additionally, many putative transcription factors were 
upregulated, including: TCP13-like, bZIP, bHLH041-like, heat stress A-3-like, tri-
helix GT-3b-like, and WRKY32. Additional experimentation is needed to elucidate 
if manipulation of these identified genes play a role in Se tolerance and 
accumulation.
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Increased GSH concentration in plants is associated with improved tolerance to 
agents that induce oxidative stress, including Se (Noctor et al. 2012; Grant et al. 
2011). Optimal glutamate and glutathione metabolism in Arabidopsis plants is 
maintained by glutamyl cyclotransferase (GGCT2; 1); this enzyme participates in 
the glutamyl cycle by recycling glutamate from GSH-conjugates, which can subse-
quently be used to make new GSH. Overexpression of GGCT2;1  in Arabidopsis 
improved arsenate tolerance; this phenotype was explained by the increased cyto-
solic breakdown of GSH conjugated to arsenic and decreased demand of de novo 
glutamate generated by the TCA cycle (Paulose et al. 2013). Selenate-treatment has 
been reported to decrease glutamate concentration in Arabidopsis (Van Hoewyk 
et al. 2008; Grant et al. 2011). It is possible that GGCT2;1 transgenics also confer 
Se tolerance, as suggested by a transcriptome study (Van Hoewyk et  al. 2008). 
GGCT2;1 mRNA increased almost 100-fold in selenate-treated Arabidopsis (Van 
Hoewyk et al. 2008). Additionally, GGCT2;1 protein increases in B. napus treated 
with selenite (Dimkovikj and Van Hoewyk 2014), further implicating its involve-
ment in a Se-stress response. Future studies may reveal that GGCT2;1 overexpres-
sion alleviates Se toxicity.

MicroRNAs (miRNAs) have also been recently implicated in mediating a Se 
response, as depicted in Fig. 10.2. Noncoding miRNAs post-transcriptionally regu-
late gene expression by participating in the degradation of target mRNAs (Bartel 
2004), thereby inhibiting translation. miRNAs are known to function in many devel-
opmental and physiological processes (Zhang and Wang 2015). Two recent studies 
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have explored how Se affects miRNA expression in plants. In one study, Se-induced 
miRNAs were identified in A. chrysochlorus using next generation sequencing anal-
ysis (Çakir et al. 2016). Computational studies revealed that Se induced miRNAs 
that target mRNAs controlling hormone signaling, plant-pathogen interactions, and 
sulfur metabolic pathways. The most significantly affected miRNAs were miR1507a, 
miR1869 and miR2867-3p, miR1507-5p and miR8781b; however, it is unknown 
what these miRNAs target or how they might mediate Se tolerance and accumula-
tion. In another study performed in rice, Se increased expression of miR171, 
miR399 and miR1433, but decreased expression of miR395 (Pandey et al. 2015). 
miR395 targets ATP sulfurylases ATPS1 and ATPS4 and the sulfate transporter 
SULTR2;1 (Kawashima et al. 2009; Huang et al. 2010). These genes control sulfate 
accumulation and assimilation, and their expression was inversely correlated with 
decreased miR395 expression in rice. This result nicely coincides with transcrip-
tome studies in Arabidopsis demonstrating that selenate induces genes involved in 
sulfur transport and assimilation (Van Hoewyk et al. 2008). In summary, manipulat-
ing miRNAs may also provide new approaches to alter Se metabolism.
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