
Chapter 9

Predicting Mixture Toxicity with Models

of Additivity

Cynthia V. Rider, Gregg E. Dinse, David M. Umbach, Jane Ellen Simmons,

and Richard C. Hertzberg

Abstract Researchers in numerous fields (e.g., pharmacology, entomology, toxi-

cology, and epidemiology) have attempted to model the joint action of chemicals

using simple formulas based only on knowledge of individual chemical toxicity or

pharmacological effect (i.e., dose-response relationships). Collectively, these for-

mulas are referred to as “additivity models,” and they are based on concepts of

additivity that include dose addition, independent action, integrated addition, and

effect summation. In toxicology, additivity-based predictions are often compared to

observed mixture data to assess the presence and magnitude of interactions

(greater-than-additive or less-than-additive) among chemicals. These models can

also be used to estimate the toxicity of a defined mixture for comparison to the

observed toxicity of a related, but more complex, mixture. Alternatively, additivity

models have been used to explore mechanisms of joint action. In general, the steps

for investigating joint toxicity using additivity models include (1) deciding on

which additivity model(s) to apply (e.g., dose addition, independent action, or

Disclaimer The views expressed in this chapter are those of the authors and do not necessarily

represent the views or policies of the U.S. Environmental Protection Agency. Mention of trade

names or commercial products does not constitute endorsement or recommendation for use.

C. V. Rider (*)

National Toxicology Program, National Institute of Environmental Health Sciences, Research

Triangle Park, NC, USA

e-mail: cynthia.rider@nih.gov

G. E. Dinse

Public Health Sciences, Social & Scientific Systems, Inc., Durham, NC, USA

D. M. Umbach

Biostatistics and Computational Biology Branch, National Institute of Environmental Health

Sciences, National Institutes of Health, Research Triangle Park, NC, USA

J. E. Simmons

National Health and Environmental Effects Research Laboratory, Office of Research and

Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA

R. C. Hertzberg

Emory University, Atlanta, GA, USA

© Springer International Publishing AG 2018

C. V. Rider, J. E. Simmons (eds.), Chemical Mixtures and Combined Chemical
and Nonchemical Stressors, https://doi.org/10.1007/978-3-319-56234-6_9

235

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-56234-6_9&domain=pdf
mailto:cynthia.rider@nih.gov
https://doi.org/10.1007/978-3-319-56234-6_9


both), (2) collecting dose-response data on individual chemicals and the mixture,

(3) incorporating individual chemical data in an additivity model to generate pre-

dictions, and (4) comparing predicted to observed mixture responses. Many of the

additivity models have a long and sometimes controversial history. This chapter

provides background on several of the common additivity models, illustrates their

application with examples, and discusses their advantages and limitations.

Keywords Joint action · Dose addition · Loewe additivity · Independent action

· Response addition · Bliss independence · Integrated addition · Effect summation

· Component-based approaches

9.1 Introduction

The toxicity of a mixture can be evaluated by treating the whole mixture as a single

chemical or by investigating how components in the mixture contribute to the

mixture’s toxicity. Each approach has advantages and disadvantages. While

whole mixture testing can offer a straightforward experimental design (e.g., one

test article), the major impediment lies in relating the toxicity results to real-world

exposures or to other mixtures of interest. Specifically, challenges include selecting

the whole mixture for study, generating the test article in concentrated form in a

volume sufficient for testing, and relating findings to the vast number of potentially

similar whole mixtures. Since the actual toxicological evaluation of the whole

mixture is the same as for single chemicals, the whole mixture approach will not

be discussed in this chapter. Challenges in whole mixture research relating to test

article selection and generation of test material can be found in the literature

(Simmons et al. 2008; Pressman et al. 2010), and approaches for comparing across

whole mixtures are discussed in a risk assessment context in Chap. 15. The focus of

this chapter is on understanding mixture toxicity through evaluation of the compo-

nents of the mixture. This chapter discusses approaches for using individual

chemical data in simple mathematical models to predict mixture effects.

The first step in understanding the joint action of two or more chemicals (i.e.,

how they behave when they co-occur in an organism) is to formulate a testable null

hypothesis based on what is known about the individual chemicals and to evaluate it

empirically. In studying additivity, this hypothesis typically involves a key assump-

tion that the chemicals will abide by a defined model of joint action (e.g., dose

addition, independent action) and do not interact (pharmacokinetically or pharma-

codynamically) to alter the response expected under the model. In other words, the

null hypothesis of additivity describes the “no-interaction,” “zero-interaction,” or

“baseline” situation.

Empirical evaluation of a null hypothesis of additivity requires data. For the

additivity models considered here, the required data usually consist of dose-

response data for each individual chemical in the mixture as well as dose-response

data for one or more mixtures, each defined by specified proportions of the

individual chemicals. Also, the null hypothesis of additivity is generally evaluated
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for a single specified response; or, when several specific responses are of simulta-

neous interest, additivity is evaluated for each response separately.

Of course, the totality of an organism’s responses to a tested mixture might

include characteristics that are biologically distinct from those seen with any of the

component chemicals. Such qualitatively different responses could be caused when

the components combine chemically to form a new chemical that differs from all of

the components, for example, the potent carcinogen N-nitrosomorpholine can be

formed from coadministration of nitrogen dioxide and morpholine (Van Stee et al.

1995). Alternatively, qualitatively different responses can occur when a pharma-

cokinetic interaction among chemicals leads to the formation of a toxic metabolite

that would not otherwise be formed by any of the components (Dobrev et al. 2002).

Toxicodynamic interactions could also alter physiological behavior or histological

structure so that new effects become prominent. Although the absence of dose-

response data on these responses for the individual chemicals makes formal eval-

uation of the additivity null hypothesis problematic, the appearance of those novel

responses only with exposure to the mixture and not to the individual chemicals

would provide prima facie evidence of departure from additivity.

In general, evaluation of the null hypothesis of additivity proceeds by (1) using

the individual component chemical dose-response data together with a specific

additivity model to predict the expected response at various doses of the mixture

and (2) comparing those predictions under additivity to observed dose-response

data for the mixture. At least four kinds of outcomes are possible (Fig. 9.1):

• The responses of the tested mixture are close enough to predictions under

additivity that they support the stated additivity hypothesis.

• The responses of the tested mixture occur at lower doses than predicted under

additivity, contradict the stated additivity hypothesis, and indicate a potential

greater-than-additive interaction among the component chemicals.

Dose of mixture

R
es

po
ns

e

Fig. 9.1 Comparison of predicted and observed mixture responses. The solid black line represents

predicted effects based on an assumption of additivity (a.k.a. “no-interaction” scenario). The

dotted line represents observed mixture data that conform to additivity-based predictions. The

long-dashed line represents mixture data that deviate from additivity, displaying greater-than-

additive toxicity. The dash-dot line represents mixture data that deviate from additivity, displaying

less-than-additive toxicity. Finally, the short-dashed line represents mixture data that deviate from

additivity, displaying greater-than-additive toxicity in the low-dose range and less-than-additive

toxicity in the high-dose range
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• The responses of the tested mixture occur at higher doses than predicted under

additivity, contradict the stated additivity hypothesis, and indicate a potential

less-than-additive interaction among the component chemicals.

• The responses of the tested mixture occur at lower doses than predicted under

additivity at some dose levels and higher doses than predicted under additivity at

other dose levels, contradict the stated additivity hypothesis, and indicate poten-

tial interactions that are either greater-than-additive or less-than-additive,

depending on the dose level.

Selection of an appropriate model is complicated by the fact that there are

multiple additivity models, often with numerous versions, available in the mixture

literature. Furthermore, it is important to note that deviation from an additivity

prediction is not enough to confirm the presence of an interaction among mixture

constituents. For example, an inappropriate additivity model may have been applied

– a dose-addition model was used when the chemicals displayed independence.

Conversely, consistency with model predictions does not necessarily rule out the

presence of greater-than-additive or less-than-additive interactions. One can ima-

gine, for example, that the presence of greater-than-additive interactions among

some mixture components and less-than-additive interactions among others could

counteract each other in some sense and result in responses that approximate

additivity. Also, as determination of consistency with or deviation from a model

is based on statistical comparisons between the predicted and observed responses,

some real deviations from additivity may not be detected due to inadequacy of

experimental design, including insufficient power (See Chap. 13), and some

detected deviations may represent statistical false positives.

As suggested above, no definition of additivity is universally accepted. Instead,

there are multiple definitions of additivity that can be separated into two basic

categories: (1) additivity defined through formulas involving dose levels (e.g., dose

additivity) and (2) additivity defined through formulas involving response levels

(e.g., independent action and effect summation). There are also integrated-addition

models, which combine the concepts of dose addition and independent action. For

dose addition, multiple mathematical approaches are available for calculating the

predicted response of the mixture from dose-response data on individual chemical

constituents. This chapter will focus on the different concepts of additivity and the

varied methods that have been used to predict mixture toxicity under an assumption

of additivity. It will present the history, assumptions, current applications, and

relevance of four general types of additivity (viz., dose addition, independent

action, effect summation, and integrated addition).

Many factors must be considered when tested mixtures result in responses that

deviate from those predicted under additivity. The first set of factors involves the

series of decisions made in the modeling process. Typical examples include the

quality of the individual chemical data, the dose-response modeling of the individ-

ual chemical data (Chap. 8), and the selection of the additivity model (e.g., was

independent action applied, when a dose-addition model would have been more

appropriate). The second group of factors relates to the simplicity of the models
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versus the complexity of biology. The models described in this chapter are simple

mathematical models, whereas the biological responses that are being evaluated

often involve complex, interdependent signaling networks. The additivity models

represent a reductionist approach that may provide different results depending on

the model system and endpoints being evaluated. Additionally, chemicals can

interact with biological systems in complex ways that are not captured by the

models (e.g., a single chemical can activate multiple adverse outcome pathways).

Despite these complications, the models of additivity discussed in this chapter

offer a starting place for understanding the joint action of chemicals. They can be

used to address important issues in toxicology ranging from limiting the potential

toxicity of combination therapies to informing the process of cumulative risk

assessment. Sometimes, simple models of additivity will be adequate for describing

mixture responses and will support continued application of the models for

predicting the toxicological consequences of exposure to mixtures. Other times,

information gained from applying different additivity models, such as patterns of

deviation from the model(s), could inform the development of more sophisticated

models of mixture toxicity that would better integrate component chemical dose-

response data. Regardless, targeted mechanistic studies can be designed based on

results from comparing observed mixture responses to predictions under additivity

to further characterize and understand the joint action of chemical mixtures.

Displaying dose-response relationships for mixtures graphically can be useful

for visualizing some key mixture concepts (Greco et al. 1995). For a single

chemical, a dose-response relationship is typically depicted graphically as a curve

with responses on the vertical axis and dose levels on the horizontal axis. With

binary mixtures, graphs of the dose-response relationship that depict the responses

and the dose levels of both chemicals are called response surfaces and require three

dimensions, a vertical axis for response and two perpendicular “horizontal” axes for

the dose levels (dose plane). (This idea generalizes mathematically to higher-order

mixtures, but visualization is inconvenient at best.) Two-dimensional representa-

tions of features of response surfaces are often used. For binary mixtures with a

fixed ratio of the two constituent chemicals, increasing doses of the mixture extend

along a ray that lies in the dose plane and starts at the origin (zero dose of the

mixture). A plane that is perpendicular to the dose plane and that contains the fixed-

ratio ray cuts through the response surface; the set of points at the intersection of

that perpendicular plane and the response surface is the dose-response curve for that

fixed-ratio mixture. Treating the mixture as a single “chemical,” the mixture’s dose-
response curve can be displayed in two dimensions just like any dose-response

curve for a single chemical. One can also cut the dose-response surface with a plane

parallel to the dose plane at any selected response level; this parallel plane also has

the dose levels as its axes. The intersection of such a parallel plane with the dose-

response surface is called an isobole: a line or curve that connects equi-effective

doses on a graph whose axes are the dose levels of each component chemical. Thus,

an isobole is always associated with a specified response level. A graph of isoboles

is called an isobologram. See Greco et al. (1995) for a more thorough explanation

and illustration of these ideas. As described later, isobolograms have been used

widely for evaluating the additivity of binary mixtures.
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9.2 Toxicological Similarity and Additivity Model

Selection

The degree of similarity in toxicological responses to chemicals has generally

served as the basis for selection of an appropriate additivity model, with dose

additivity traditionally being applied to chemicals that elicit “similar” responses

and independent action being applied to chemicals that elicit “dissimilar”

responses. However, the terms “similar” and “dissimilar” have had varied interpre-

tations. The spectrum of toxicological similarity among chemicals, along with

examples of chemicals that correspond to each level, is presented in Fig. 9.2. As

chemicals move down the spectrum of similarity, scientific support for applying the

concept of dose addition to predict combined effects becomes more tenuous.

As noted in Fig. 9.2, chemicals with the highest degree of similarity share a

common active metabolite (assuming that the parent compounds require metabolic

activation). In this case, the metabolite responsible for initiating the cascade of

responses is identical among chemicals. It follows that the sequence of biochemical

steps resulting from the molecular initiating event is identical between all

chemicals that share the active metabolite. Any difference in potency among

chemicals could be attributed to differences in the rate and extent to which the

chemicals are converted to the active metabolite and would be reflected in the

individual chemical dose-response relationships.

The next level of similarity involves chemicals that elicit toxicity through a

common molecular initiating event. There are many classes of chemicals that meet

this criterion, for example, organophosphate pesticides that share inhibition of

acetylcholinesterase as the molecular initiating event that leads to downstream

adverse nervous system effects (Mileson et al. 1998). Toxicological similarity at

the level of shared molecular initiating event has provided the conceptual basis for

dose addition. The concept holds that chemicals displaying similarity at the molec-

ular initiating event level act as dilutions or concentrations of each other, thus

Common active metabolite

Molecular initiating event

Adverse outcome pathway

Target tissue

Disease 

Most similar Chemicals share a…

Least similar

Examples

Benzyl butyl phthalate and dibutyl phthalate share the 
active metabolite monobutyl phthalate

Parathion and chlorpyrifosboth inhibit acetylcholinesterase
and elicit the same downstream key events

Perchlorates decreases synthesis of thyroid hormone, while
dioxin increases elimination of thyroid hormone

Ephedrine and caffeine are both cardiotoxic

DES and tobacco smoke cause cancer in different tissues

Fig. 9.2 Continuum of toxicological similarity
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eliciting the same toxic effects by the same toxicological pathways, once dose is

scaled for that “dilution” or potency factor (Cedergreen 2014; Hertzberg et al. 2013;

Loewe and Muischnek 1926). The dilution concept, first described by Bliss (1939),

can be empirically tested by determining whether the chemical components and the

mixture share a common dose-response model, except for scaling the dose

(Meadows et al. 2002), and in the most complete dilution concept, by determining

whether the response variances depend only on the response mean and otherwise

are the same across all chemical components and the mixture (Hertzberg et al.

2013).

It is at the level of adverse outcome pathway that the concepts of toxicological

similarity and independence begin to blur. Chemicals can have different molecular

initiating events that converge at any of a number of key events in their adverse

outcome pathways (Chap. 7). Moving one step further, chemicals can act through

different signaling pathways that intersect at the target tissue. Although a common

target tissue among chemicals can be one of a number of factors used to build a

“weight of evidence” case for toxicological similarity, there is continued debate on

using shared target tissue alone as the basis for applying dose addition. Many

chemicals have notably different adverse outcome pathways yet display toxicity

at the same tissue (see Sect. 3.3). Determining how the degree of toxicological

similarity of chemicals in a mixture relates to predicted mixture toxicity from

available additivity models is an active area of research and has important impli-

cations for cumulative risk assessment (Chap. 14).

Regarding the concept of toxicological similarity, it is important to note that

evidence for a concept is not the same as the lack of evidence against a concept.

Evidence supporting independent action has often involved demonstration of dif-

fering adverse outcome pathways for the most important effects. Evidence

supporting similar adverse outcome pathways has usually been interpreted as

support for toxicological similarity in general and thus for the dose additivity

model. For weakly studied mechanisms, a similar conclusion has been drawn

based on the lack of evidence for multiple differing adverse outcome pathways,

i.e., inability to reject toxicological similarity. Similarly shaped dose-response

curves (generalized parallelism) have also been interpreted as indicating similar

adverse outcome pathways, and thus dose addition, yet counterexamples exist

(Hertzberg et al. 2013). Specifically, a “lack of a different slope cannot be taken

as a proof for a similar mode of action” (Altenburger et al. 2005). The decision

about sufficient toxicological similarity for inclusion in a similarity group is a

judgment and thus requires involvement of experts in toxicology and data analysis.

Finally, evaluating the evidence for toxicological similarity necessarily involves

consideration of data quality. Different evidence streams can support determination

of similarity, including structural similarity among chemicals, consistency of tox-

icological profile, and similar findings in mechanistic studies used to build adverse

outcome pathways. For risk assessment purposes, frameworks have been developed

to make decisions on including chemicals into a toxicological similarity group

(U.S. EPA 1999). Structural comparisons (e.g., quantitative structure activity rela-

tionships) have been used for a long time, but many counterexamples exist
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regarding toxic effect, so structure alone is insufficient for defining a similarity

group. For any chemical’s toxicological profile, key elements include the target

organ(s), adverse effects/apical outcome(s), and pharmacokinetic properties,

including whether the parent or metabolite is the toxic form. The preferred infor-

mation on a toxicological profile involves effects related to specific molecular

targets (e.g., particular enzyme or other protein, hormone) or target tissues (e.g.,

thyroid, blood) as similar specific effects (e.g., receptor-mediated effects) are more

likely to follow a common toxicity pathway than nonspecific toxicity (e.g., narco-

sis). Knowledge of the adverse outcome pathway and related pharmacokinetics is

the best information for judging toxicological similarity; however, these data are

often unavailable or incomplete.

In contrast to toxicological similarity and dose addition, most of the classical

literature that presents component-based formulas for joint toxicity includes min-

imal biological justification for independent-action models. The most common

justification is evidence of important differences in toxicological mode of action

or mechanism; in some cases, that evidence is only of effects occurring in different

organs. In a review comparing concentration-addition (CA) and independent-action

(IA) formulas, the conclusion was that little biological clarity has been proposed:

“The CA model has some theoretical underpinnings and some experimental data

supporting its use for mixtures of chemicals with the same site of action. In contrast,

IA is not as well grounded in theory, nor is it unambiguously supported by data”

(Cedergreen et al. 2008).

The mechanistic or functional argument for independence should be based on

data and concepts showing that an individual chemical’s toxic function, dose-

response relationship, and adverse outcome pathway are not altered by

co-exposure to the other chemical(s) in the mixture. Because toxicological interac-

tions are known to involve one or more key event(s) from exposure to apical

(adverse) effect, an evaluation of independence should include as many of those

steps as possible. For chemicals, the following processes have been identified as

involved in toxicological interaction: contact, uptake, in vivo chemical reactions,

absorption, distribution, excretion, metabolism, receptor site (antagonism), receptor

function (antagonism), and DNA binding (Mumtaz and Hertzberg 1993; Mumtaz

et al. 1993). Evidence only of a difference in toxicodynamics, i.e., in toxicological

mode of action, thus provides fairly weak support for toxicological independence.

For example, independence might not be plausible when adverse outcome pathways

overlap for secondary effects: “commonality of biological/biochemical events that

may not be part of the recognized toxic mode or mechanism of action of one

mixture component can lead to unanticipated interactions and consequences”

(Lambert and Lipscomb 2007). Such information is not commonly available.

Usually independence and the independent-action formula are assumed when

there is insufficient evidence to establish toxicological similarity.

Finally, the experimental endpoint that is selected in a mixture evaluation (i.e.,

measured response) can also influence the determination of similarity versus

independence. The specificity of the endpoint measured could increase the likeli-

hood of classifying chemicals as toxicologically independent. Consider the

242 C. V. Rider et al.



difference between an in vitro assay measuring binding to a hormone receptor and a

downstream functional measure of the system in which the hormone operates as a

signaling molecule. In the case of the in vitro binding assay, there is a limited

capacity for interactions between the chemicals and the system. Instead, there is a

focus on a single, clearly defined mechanism. In contrast, the functional measure

incorporates multiple mechanisms and potential avenues for interaction among

chemicals and complex biological systems.

9.3 Dose Addition

The phrases “dose addition” and “concentration addition” represent the same

concept, with “dose addition” used more frequently in mammalian toxicology

and “concentration addition” commonly associated with ecotoxicology. For sim-

plicity, the term “dose” will be used throughout this chapter. As indicated by its

name, dose addition is a concept that defines or predicts the additive joint action of

chemical mixtures by imposing a constraint on a weighted sum of the component-

specific dose levels (see below). Dose addition is a single concept, but it has

numerous mathematical representations. A general description of the history of

dose addition is presented below, followed by highlights of recent advances to dose-

addition modeling. For a more thorough review of work mentioned in the historical

section and other methods developed prior to 1995, see the review by Greco

et al. (1995).

9.3.1 Background

The first scientific publications on the effects of chemical combinations come from

the field of pharmacology and its consideration of the joint action of drugs.

Although often cited as providing the first description of the concept of dose

additivity, Loewe and Muischnek (1926) refer to earlier work by Emil Bürgi and
interpret the “Bürgi rule” as a reference to joint chemical effects described by an

isobole (Bürgi 1912). Loewe and Muischnek also point out the inconsistent use of

mixture-related terminology including synergism, antagonism, addition, and poten-

tiation in the literature of the time; disagreement regarding these terms continues

today (Kodell and Pounds 1991; Hertzberg and MacDonell 2002; Greco et al. 1992;

Simmons 2013). In their seminal paper, Loewe and Muischnek (1926) present a

spectrum of possible effects of a binary combination of chemicals through the use

of isobolograms; in particular, they illustrate what we now call dose addition (then

referred to as non-varying joint effects). This classic work presents a conceptual

framework for addressing chemical combinations, but it does not describe applica-

tions of these concepts to experimental data.
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The isobologram is a simple but effective graph for illustrating the concept of

dose addition. Suppose that the horizontal and vertical axes of a graph represent the

component doses of a binary mixture. Loewe and Muischnek proposed that the two

chemicals are dose-additive if the isobole for a given response level is a diagonal

line (with a negative slope) connecting the dose levels on the two axes that elicit

that given response. For example, if chemical A elicits a 50% response at dose a,
chemical B elicits a 50% response at dose b, and the straight line connecting points
(a, 0) and (0, b) covers every dose combination of chemicals A and B that elicit a

50% response, then A and B are dose-additive at the 50% response level (Fig. 9.3).

Loewe and Muischnek compared dose addition to other concepts: (1) deviation

from dose additivity (e.g., greater than dose-additive, less than dose-additive);

(2) independence of the mechanism that results in the same measured effect, i.e.,

exposure to each chemical results in the same apical outcome (e.g., death), but in

each case, the outcome is achieved by a different underlying causative series of

events (see Sect. 4.1); and (3) joint effects that are not elicited by either chemical

alone but only by the combination (Fig. 9.3). Throughout their manuscript, Loewe

and Muischnek described many key issues that continue to plague the field of

mixture toxicology. They touched on the difficulty in distinguishing independent

action of chemicals from “antagonism” (less than dose-additive interaction). They

Dose of chemical A

D
os

e 
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 c
he

m
ic

al
 B

b

a

Fig. 9.3 Isobologram illustrating possible effects of a binary combination of chemicals (adapted

from Loewe and Muischnek (1926)). Points a and b (with coordinates (a,0) and (0,b)) represent
doses of chemicals A and B, respectively, that elicit equivalent effect levels (e.g., doses that elicit

an effect that is 50% of the maximum response or the ED50). Each line/curve in the figure is an

isobole, meaning that any combination of the concentrations of the two chemicals on that curve

will result in the same effect level. The straight (black) diagonal line connecting points a and b is

an isobole for two chemicals that are dose-additive. The dotted (red) curve represents a scenario

where the combination of chemicals A and B results in effects that are greater-than dose-additive,

and the two dashed (green) curves provide examples of less-than dose-additive scenarios. The

dash-dot (purple) curve is an example of a combination of chemicals A and B eliciting effects not

produced by any dose of either chemical alone. The angular isobole (perpendicular gray line

segments) corresponds to a mixture where chemicals A and B act independently, and susceptibility

to A is perfectly positively correlated with susceptibility to B (see Sect. 4.1)
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also highlighted the difficulties in describing complex biological processes using

simple mathematics, stating eloquently that “Biology does not know such simple

and constant relationships.” Furthermore, they acknowledged the need to incorpo-

rate experimental variability into evaluations of mixtures. Finally, Loewe and

Muischnek suggested ways to quantify deviations from additivity. It is not surpris-

ing that this early, insightful work on mixtures has been so influential in shaping our

current understanding and practice of mixture toxicology.

Bliss (1939), emerging from the fields of entomology and statistics and focusing

on pesticide efficacy, provided another significant contribution to the field. Bliss

described three possible joint action scenarios: “independent joint action” (a.k.a.,

independent action or response addition), “similar joint action” (dose addition), and

“synergistic action” (encompassing greater-than- or less-than-additive scenarios).

Although Bliss was primarily cited in reference to the origins of independent action

(discussed in greater detail later in this chapter), his discussion of the joint action of

chemicals was wide-ranging with many important observations. Regarding dose

addition, he articulated more specific requirements for chemicals expected to

exhibit dose-additive toxicity. In particular, Bliss argued that they should have

the same mechanism of action (“act upon the same system of receptors” in

producing the outcome of interest), identical susceptibilities (in a population

context) to each chemical, and parallel dose-response curves, so that the only

difference between chemicals would be in their potencies. Bliss noted that mixtures

that are dose-additive “have a greater expected potency than those” that are

response-additive. In other words, the dose-addition model predicts greater mixture

toxicity than the independent-action model for the same component doses. In

studies that compare results from dose-addition and independent-action models,

there is a general trend of dose addition providing a higher predicted toxicity than

independent action (Belden et al. 2007; Altenburger et al. 1996). However, there are

exceptions to this observed trend (Cedergreen et al. 2008), and it has been demon-

strated that the shapes of the individual chemical dose-response curves are critical

in determining whether dose addition or independent action results in greater

predicted toxicity (Christensen and Chen 1985; Drescher and Boedeker; 1995).

To facilitate visualization of combination effects, Bliss proposed linearizing the

dose-response data using a log-dose probit function and provided an example using

data from experiments measuring mortality in house flies exposed to combinations

of rotenone and pyrethrin (Bliss 1939). In that paper, Bliss focused on the “dosage-

mortality curve” and thus defined toxic response only as the fraction of the exposed

population dying. Other types of toxic response, such as continuous measurements

of physiological function, are considered in later sections of this chapter.

Finney (1942) further developed many of the concepts proposed by Bliss (1939).

In his work, Finney sought to more clearly define statistical methods for analyzing

mixture data to obtain predictions based on an assumption of either independent

action or dose addition. Finney demonstrated that the proposed methods can be

applied to mixtures which contain more than two chemicals (Finney 1942). Draw-

ing notable distinctions from Bliss (1939) and Finney (1942), Hewlett and Plackett

published a body of work on models to describe joint action (Hewlett and Plackett
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1957, 1959; Plackett and Hewlett 1952, 1963). In particular, they pointed out that

individual chemicals need not have parallel dose-response relationships to be

consistent with dose addition (Hewlett and Plackett 1959).

The next major contribution to the dose-addition literature was offered by Chou

and Talalay in a series of highly cited papers (Chou and Talalay 1977, 1981, 1983,

1984). Their approach is based on the median effect principle, which was derived

from the mass action law and has been applied mechanistically in biochemistry and

pharmacology. For any given dose and corresponding fraction responding, the

median effect principle focuses on two ratios: the ratio of the fraction responding

to the fraction not responding and the ratio of the specified dose to the median

effective dose (i.e., the ED50 or dose that elicits a 50% response). The first ratio is

assumed to equal the second ratio raised to some power, where that power reflects

the shape of the dose-response curve. The method relies on calculation of a

combination index (CI), where CI ¼ 1 indicates dose-additive effects, CI < 1

indicates greater-than-additive effects, and CI > 1 indicates less-than-additive

effects. The CI is calculated by first fitting data from each chemical alone and a

fixed ratio combination of the chemicals to the “median-effect equation” derived by

Chou (1976), which is a rearrangement of the Hill equation, of which the Michaelis-

Menten equation is a special case (Chou 2010). The CI value is then calculated from

the resulting parameter estimates. Software was developed to facilitate the use of

the approach, with the currently available CompuSyn (http://www.combosyn.com/

index.html) representing the third generation of the software (Chou 2010). Greco

et al. (1995) provide a thorough review and critique of the CI of Chou and Talalay,

while Chou has more recently (2010) provided a review with recommendations for

successful application of the method.

Contemporaneously with Chou and Talalay, Berenbaum presented another

model for dose additivity (Berenbaum 1977, 1985, 1989). Berenbaum employed

hypothetical “sham combinations” – combining a chemical with dilutions of itself –

to articulate the dose-addition concept (Berenbaum 1989). In contrast to work by

Loewe and Muischnek (1926) and Bliss (1939) described above, Berenbaum

proposed that dose addition should be used as a general empirical method to

describe the joint action of noninteracting chemicals, without requiring toxicolog-

ical similarity among mixture constituents. Notably, Berenbaum stated that the only

requirement is that the dose-response relationships for the individual chemicals are

known over an “adequate range.” The functions describing those relationships are

unconstrained and are not required to be consistent across mixture constituents. On

the topic of non-monotonic dose-response curves, Berenbaum posited that the

proposed method can be used in cases of non-monotonicity observed in individual

chemical dose-response curves while acknowledging that additional uncertainty

may be associated with the analysis (Berenbaum 1985). He claimed that the

proposed “general solution” put forth in his 1985 paper is a major departure from

alternative models for describing combination effects, which require that “all the

agents in the combination show similar dose-effect relations of the appropriate

type” in the sense of similar functions and/or similarly shaped dose-response

246 C. V. Rider et al.

http://www.combosyn.com/index.html
http://www.combosyn.com/index.html


curves. Many of those other approaches are based on or motivated by the interpre-

tation of toxicological similarity as chemicals that are dilutions (concentrations) of

each other and hence have the characteristics Berenbaum describes in his sham

mixture example. He also contrasted his general solution with postulated require-

ments of sigmoidal dose-response curves for the median-effect equation, linear

dose-response curves for effect summation, and simple exponential dose-response

curves for independent action. While appropriate for the literature of 1985, those

latter “requirements” are not considered necessary in current formulas based on

independence (see Chap. 14).

The dose-addition model proposed by Berenbaum (1985) is based on the concept

of linear isoboles and can be described mathematically by Eq. 9.1 for a given

response level y:

XJ
j¼1

dj,y
EDj,y

¼ 1 ð9:1Þ

where J is the number of chemicals in the mixture, dj,y is the dose of chemical j in
the mixture that produces response y, and EDj,y is the dose of j alone that will

produce response y (as estimated, e.g., from dose-response data for each individual

chemical). For a binary combination, the equation simplifies to:

dA,y
EDA,y

þ dB,y
EDB,y

¼ 1 ð9:2Þ

where dA,y and dB,y are the doses of chemicals A and B, respectively, in the mixture

that elicit response y and EDA,y and EDB,y are the respective doses of chemicals A

and B alone that elicit response y. Berenbaum referred to this equation as the

“hyperplane theorem.” Chemicals that individually do not produce an effect but

that could increase or decrease the effect of other chemicals in a mixture can be

incorporated into Eq. 9.1, as Berenbaum pointed out, by assuming that EDj is

infinite so that
dj
EDj

for that chemical is 0. At least one chemical must produce a

nonzero response for Eq. 9.1 to hold. While chemicals that are dose-additive obey

Eq. 9.1, a sum less than 1 indicates greater than dose-additive effects of the mixture,

and a sum greater than 1 indicates less than dose-additive effects of the mixture.

Berenbaum went on to demonstrate that the equation for dose addition (Eq. 9.1) can

be rearranged to solve for the predicted mixture response provided that all constit-
uent chemicals display similar dose-response relationships (Berenbaum 1985) – a

restriction that is not needed for application of Eq. 9.1. Although Berenbaum’s
framework is relatively flexible compared to other approaches, limitations still

exist. For example, mixture effects can only be calculated up to the maximum

effect of the least effective constituent, thereby limiting the utility of this approach

for mixtures containing partial agonists. Furthermore, Bosgra et al. have criticized

the isobole approach advocated by Berenbaum and others based on the possibility

of noninteracting chemicals that display nonlinear isoboles (Bosgra et al. 2009).
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Nevertheless, the work of Berenbaum has provided the foundation for many

subsequent efforts to refine predictive models for mixture toxicity based on an

assumption of dose additivity.

9.3.2 Summary of Select Dose-Addition Models

This section discusses approaches that have been developed more recently.

Altenburger and colleagues have made significant contributions to the dose-

addition literature from the field of ecotoxicology (Altenburger et al. 1990, 2000,

2004; Faust et al. 2001). Their work systematically evaluated mixtures of chemicals

with similar and dissimilar mechanisms of action in order to better understand the

joint action of combinations of environmental chemicals. Their overarching goal

appears to be the development of general principles that can improve our ability to

predict mixture effects based on dose-response relationships for component

chemicals. To this end, they have adapted established dose-addition (and

independent-action) concepts and applied them to a number of different mixtures.

Their work evaluates which additivity models are most appropriate for estimating

the toxicity of different mixtures with known mechanisms of action. For example,

they test the hypothesis that chemicals with the same mechanism of action will

better conform to a model of dose addition than to a model of independent action.

Their approach represents a practical application of the dose-addition principles

described by Berenbaum. First, various dose-response functions (e.g., probit, logit,

Weibull) are fit to data from each individual chemical to identify a separate “best

fit” function for each chemical (i.e., there is no requirement for a shared function

among constituents). This feature is relatively uncommon among dose-addition

models, which typically use a common function to describe all individual chemical

dose-response curves. Next, the proportion of each individual chemical in the

mixture and the dose corresponding to a designated response level derived from

the “best fit” function serve as input for calculating the predicted mixture dose

corresponding to that effect level. For mixtures of known and fixed composition,

Altenburger et al. (2000) rearrange the variables in the equation proposed by

Berenbaum (Eq. 9.1) to solve for the dose of the mixture that would elicit a given

effect level y:

EDmix,y ¼
XJ
j¼1

qj
EDj,y

 !�1

ð9:3Þ

where EDmix,y and EDj,y are the doses of the mixture and individual chemical j,
respectively, expected to elicit a designated effect level y, and qj is the fraction of

chemical j in the mixture. The mixture dose EDmix,y is calculated for a range of

y values spanning approximately 1–99% of the maximal response. This results in

articulation of the predicted dose-response relationship for the mixture. As with the
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original Berenbaum approach, predictions can be made only up to the lowest

maximum effect level among the individual constituents and down to the highest

minimum effect level. This limitation is not ideal for mixtures containing constit-

uents that display incomplete efficacy (i.e., partial agonists). Generally,

Altenburger et al. compare predictions of mixture toxicity based on dose addition,

along with predictions based on independent action as a second reference curve, to

observed mixture toxicity over a range of doses.

The method first described by Altenburger et al. (2000) has been applied by

many other groups to evaluate diverse environmental mixtures in a wide array of

test systems from in vitro estrogenicity assays (Silva et al. 2002; Rajapakse et al.

2004; Payne et al. 2000) to in vivo rodent toxicity studies (Metzdorff et al. 2007).

Although the essentials remain consistent, the approach has been applied with

various modifications and increasing sophistication. For example, the collection

of functions from which the “best fit” to individual chemicals is selected may differ

among research groups. Additionally, bootstrap methods have been used to incor-

porate statistical uncertainty into model predictions to more rigorously evaluate the

differences between predicted and observed dose-response relationships (Metzdorff

et al. 2007). Finally, Scholze et al. have adapted the method to assess mixtures

containing constituents that display partial efficacy (Scholze et al. 2014).

The work of Gennings and colleagues offers another significant body of litera-

ture providing methods for detecting departure from dose additivity of chemical

mixtures (Casey et al. 2004; Gennings et al. 1997, 2004a, b). A defining hallmark of

this work is in the statistical comparison of predicted to observed mixture effects

using the whole dose-response curve instead of, or in addition to, a point-by-point

comparison. Models developed by Gennings et al. have been applied to a diverse

array of mixtures and testing paradigms. A detailed description of this and related

statistical approaches for dose additivity can be found in Chap. 11.

Another example of adapting Berenbaum’s dose-addition principles comes from

Howard and Webster, who offer a novel approach to assessing mixtures containing

constituents with partial efficacy (e.g., partial agonists) (Howard and Webster

2009). In contrast to the methods developed by Altenburger et al., this approach

incorporates a single model (3-parameter Hill model) for all individual chemicals.

The slope (i.e., Hill coefficient) for each chemical is assumed to be 1. Howard and

Webster’s equation for the “generalized concentration addition” model for a given

response y is:

XJ
j¼1

dj,y

f j
�1 yð Þ ¼ 1 ð9:4Þ

where dj,y is the dose of chemical j in the mixture that produces response y and fj
�1is

the inverse of the dose-response function fj for chemical j. Compared to the

Berenbaum formula of Eq. 9.1, Eq. 9.4 is simply a change in notation: replacing

EDj,y by fj
�1(y). The novelty arises because Howard and Webster formally define

the inverse function for partial agonists on the full range of responses possible for
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the full agonist, revising the usual definition where each inverse function is defined

only on the range of responses for that individual chemical. This revised definition

eliminates some dose-response models from consideration. When the dose-

response model is a Hill model with a slope equal to 1, this revised definition

assigns “negative” doses of a partial agonist to response levels beyond that partial

agonist’s maximal response and, for binary mixtures of a partial and a full agonist,

leads to linear isoboles with positive slope at those response levels. If the assump-

tion about the Hill slope is tenable, this approach is particularly well-suited for

assessing dose additivity for mixture data from receptor-based in vitro assays that

frequently include partial agonists (Howard et al. 2010; Hadrup et al. 2012, 2013).

9.3.3 Application of Dose-Addition Modeling in Toxicology:
Male Reproductive Tract Development

Endocrine-disrupting chemicals have been the focus of a large body of mixture

research that uses dose-addition modeling as a tool to explore the joint action of

potentially co-occurring chemicals. This line of research is motivated by multiple

factors. First, there is concern that a number of reproductive tract malformations

and pathologies (e.g., testicular dysgenesis syndrome) are increasing in certain

populations; exposure to environmental contaminants has been implicated in this

trend (Main et al. 2010). Second, the U.S. National Health and Nutrition Exami-

nation Survey (NHANES) (Buttke et al. 2012) and some international

biomonitoring efforts (Frederiksen et al. 2014) have demonstrated that people are

routinely exposed to numerous chemicals that have endocrine-disrupting potential.

Third, the period of reproductive tract development represents a particularly sensi-

tive window. Fourth, the joint effects of endocrine-disrupting chemicals that act at

different points in complex signaling pathways are not fully understood. Fifth,

knowledge of whether chemicals display dose-additive or greater than dose-

additive toxicity provides information useful for the risk assessment of chemical

mixtures.

Research groups at the U.S. EPA led by Gray (Rider et al. 2010, 2008) and in

Europe led by Hass and Kortenkamp (Christiansen et al. 2009; Metzdorff et al.

2007; Ermler et al. 2011) have used dose-addition modeling to understand how

individual endocrine-disrupting chemicals act jointly to disrupt male reproductive

tract development. Both groups have identified individual environmental chemicals

(e.g., pesticides, herbicides, plasticizers, personal care product ingredients) that

disrupt male reproductive tract development through different mechanisms (e.g.,

androgen receptor antagonism, disruption of steroidogenesis). The general hypoth-

esis developed by these researchers is that chemicals that share common key events

in their respective adverse outcome pathways (see Chap. 7 for detailed information

on using adverse outcome pathways to prioritize mixtures for study), or that simply

share a common adverse outcome, will adhere to predictions based on dose
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addition. In other words, a convergence of pathways at or near the manifestation of

the adverse outcome is hypothesized to result in combined effects that are dose-

additive.

Figure 9.4 provides a visual representation of the general hypothesis. In this

example, three chemicals (vinclozolin, dibutyl phthalate, and dioxin) elicit repro-

ductive toxicity via different mechanisms of action (i.e., they activate different

molecular initiating events). The fungicide vinclozolin binds to the androgen

receptor thereby blocking the action of androgens (e.g., testosterone, dihydrotes-

tosterone) responsible for normal development of male reproductive tissue. Dibutyl

phthalate, a plasticizer, decreases the availability of testosterone. Vinclozolin and

dibutyl phthalate share a common adverse outcome of disrupting the development

of male reproductive organs in rats exposed in utero. Though not all of these

chemicals elicit the same suite of effects, some effects are overlapping (e.g.,

disruption of epididymal development). The biological underpinning of applying

the dose-addition hypothesis to binary combinations of vinclozolin and dibutyl

phthalate is that the target tissue (i.e., epididymal tissue) does not recognize

whether the decrease in activated androgen receptor is due to receptor antagonism

Fig. 9.4 Hypothetical adverse outcome pathway network for four chemicals that disrupt male

reproductive tract development. Each chemical displays a unique molecular initiating event

(MIE). Solid arrows represent pathways with substantial scientific support, while lighter arrows

with dashed lines represent hypothesized pathway interactions. Some of the key events are

unknown, including the molecular initiating event for phthalates and the intermediate steps for

dioxin

9 Predicting Mixture Toxicity with Models of Additivity 251



or decreased androgen; the tissue only recognizes the total decrease in activated

receptors. Even though the specific mechanisms are different, their convergence

supports the use of dose addition. Multiple studies with combinations of chemicals

with the mechanisms described above have shown that predicted mixture responses

based on dose addition are similar to observed mixture responses, supporting the

hypothesis (Rider et al. 2008, 2010).

The hypothesis of dose addition is less clearly applied to the addition of dioxin to

the binary mixture. Dioxin’s mechanism of action is not known, and its effect on

epididymal development is less well-defined. To expand the dose-addition hypoth-

esis to the ternary mixture, dose-response data from the three chemicals that exhibit

reproductive toxicity could be used to calculate expected effects of a three-

chemical mixture based on an assumption of dose additivity. These predictions

could then be compared to empirical data generated from testing the defined

mixture.

A fourth chemical, simvastatin, is known to disrupt cholesterol synthesis, but it

does not exhibit similar effects on reproductive endpoints. The hypothesis of dose

addition could be used to investigate the joint action of simvastatin with the other

three reproductive toxicants. Here, the assumption would be that simvastatin would

not contribute to the toxicity of the three-chemical mixture (i.e., its contribution to

dose-additive toxicity would be 0). A greater than dose-additive or less than dose-

additive result would indicate that, although simvastatin does not directly induce

the adverse outcome, it does alter the toxicity of one or more of the three chemicals

that act through the androgen receptor-mediated adverse outcome pathway

(Fig. 9.4). Mechanistic studies would then be required to investigate the hypothesis

that decreased cholesterol could lead to a decrease in testosterone sufficient to

contribute to downstream toxicity.

In addition to work aimed at exploring the dose additivity of antiandrogenic

mixtures, similar work looked at estrogenic mixtures (Silva et al. 2002; Rajapakse

et al. 2004) and at thyroid-disrupting mixtures (Crofton et al. 2005). Data from

experiments like those described above help to inform cumulative risk assessment.

For example, such studies contributed to the decision by a National Academy of

Sciences panel to recommend to the U.S. EPA that reproductive toxicant phthalates,

as well as other antiandrogenic chemicals, should be included in cumulative risk

assessments (National Research Council 2008).

9.4 Independent Action

As with many terms in mixture toxicology, “independent action” is not used

consistently throughout the literature. In particular, “independent action” has

been used interchangeably with “independent joint action,” “response addition,”

and “Bliss independence.” Here, the term “independent action” was deliberately

selected. Although “response addition” provides a convenient counterpart to the

term “dose addition,” it does not adequately convey the underlying concept. First,
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the terms “response” and “addition” can be synonyms of “effect” and “summation,”

respectively. In this chapter, the concepts of “response addition” and “effect

summation” are carefully defined so they are not equivalent and lead to different

prediction formulas for the combination exposure (see detailed discussion later in

chapter). Second, independent action does not necessarily lead to a simple addition

of responses. Although independent action and independent joint action have both

been used widely, a preference for simplicity favored the use of independent action

herein.

9.4.1 Background

The first description of independent action is generally attributed to Bliss (1939).

The foundational biological premise of independent action is that individual

chemicals act through distinct, non-interfering pathways to arrive at an apical

response (see Sect. 2 for further discussion). In a binary mixture with independent

action, the presence of chemical B does not influence the dose of or the response to

chemical A and vice versa. The work of Bliss is based on pesticides and refers

specifically to quantal responses, those involving some measurable two-category

event (generically, occurrence/nonoccurrence, presence/absence, or yes/no, e.g.,

death, presence of a particular tumor at sacrifice, or body weight less than 18 g).

Quantal responses are characterized by the probability that the event occurs as

estimated by the fraction of the population (or sample) that experiences the event.

The equation for calculating mixture response under independent action most often

cited in the toxicology literature is:

pmix ¼ 1�
YJ
j¼1

1� pj
� � ð9:5Þ

where pmix is the probability of the event occurring in response to a given dose of

the mixture and pj is the corresponding probability for chemical j alone at the same

dose as it is present in the mixture. Equation 9.5 is a consequence of an elementary

probability calculation that assumes that the occurrence of the event in response to

an individual chemical is independent across the chemicals. The probability that the

event does not occur in response to the mixture is 1–pmix. For the event not to occur

in response to the mixture means that the event cannot occur in response to any of

the individual chemicals (if one or more of the individual chemicals at their dose in

the mixture had elicited the event, then the mixture dose would have elicited the

event). The non-occurrence probability for chemical j is 1–pj. Under the indepen-
dence assumption, the probability that no single chemical elicited the event is the

product of their individual non-occurrence probabilities, namely,
YJ
j¼1

1� pj
� �

.

Equating 1–pmix to this product and solving for pmix yields Eq. 9.5.
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For a binary combination of chemicals, the formula simplifies to:

pmix ¼ pA þ pB � pApBð Þ ð9:6Þ
where pA and pB are the event probabilities for individual chemicals A and B,

respectively. Because the fraction of individuals who respond both to chemical A

and to chemical B is included twice in the sum pA + pB, the term ( pA pB) must be

subtracted to compensate for the double counting. Bliss noted that this formula

corresponds to Abbott’s formula, which is used in entomology to distinguish

between mortality attributable to pesticide application or to natural causes (Abbott

1925).

Bliss pointed out that the underlying assumption about independent action leads

to different predictions of the mixture response depending on the “correlation in

susceptibility” to the distinct mixture constituents. Imagine a population in which

individuals exhibit a range of susceptibilities or tolerances (i.e., the exposure level

of a given chemical required to elicit the event differs among individuals). In

addition, suppose that each individual has a separate susceptibility to each distinct

chemical in a mixture. In a population of individuals, the susceptibilities to distinct

chemicals may be correlated or not. Limiting himself to two chemicals, Bliss

considered three possibilities: no correlation (no relationship between susceptibil-

ities), perfect positive correlation (ordering of individuals’ susceptibilities is the

same for both chemicals), and some intermediate degree of positive correlation.

Equations 9.5 and 9.6 correspond to independent action with uncorrelated

susceptibilities.

In Fig. 9.3, the angular isobole (perpendicular gray line segments) corresponds

to the case of independent action with perfect positive correlation among suscep-

tibilities. That special case is likely to be extremely rare for real mixture exposures

but merits inclusion here because it shows up in mixture literature, usually without

explanation. When the susceptibility correlation is positive but less than perfect, the

isobole would have a different shape that depended on the shapes of the dose-

response functions for the two chemicals. The concept of independent action,

regardless of the correlation among susceptibilities, properly applies only to quantal

responses.

Plackett and Hewlett (1948) also contributed to describing the concept of

independent action put forth by Bliss and went into further detail on potential

correlation in susceptibilities. In addition to the options described by Bliss, Plackett

and Hewlett considered perfect negative correlation (the ordering of individuals’
susceptibilities to one chemical is exactly the reverse of their susceptibilities to the

other), as well as intermediate degrees of negative correlation. For perfect negative

correlation of susceptibilities, the probability of response to the mixture is given by:

pmix ¼ min ðpA þ pB, 1Þ, ð9:7Þ
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which reflects the constraint that a probability cannot exceed 1. In particular, the

proportion responding to the mixture cannot exceed 1, regardless of the proportions

responding to the individual constituents.

Effect summation is considered in the next section as a separate approach from

independent action, though there is an overlap between the two concepts. The usual

effect-summation formula for a binary mixture is:

pmix ¼ pA þ pB ð9:8Þ
and corresponds to Eq. 9.7 (for independent action with perfect negative correlation

of susceptibilities) if the sum of pA and pB does not exceed 1, and it approximates

Eq. 9.6 (for independent action with no correlation of susceptibilities) if the

response probabilities are small enough that the product of pA and pB is negligible

(see, e.g., Fig. 9.5).

Assessing correlations among pairs of susceptibilities is not trivial with two

chemicals and becomes unmanageable with more than two chemicals. Furthermore,

if chemicals are indeed working through different (i.e., independent) mechanisms,

perfect correlation (either positive or negative), though instructive for illustrating

the limiting cases, seems unrealistic. The difficulty in assessing these correlations

coupled with the implausibility of perfectly correlated susceptibilities could explain

why correlation of susceptibilities is not discussed widely in current mixture

literature and why most researchers default to Eq. 9.5, which corresponds to the

assumption of uncorrelated susceptibilities. Unless specifically stated, this chapter

will take “independent action” to mean “independent action with uncorrelated

susceptibilities” as in Eqs. 9.5 and 9.6.

9.4.2 Application of Independent Action

As with many concepts in mixture toxicology, the application of independent action

has evolved over time to scenarios beyond the original scope. Most importantly,

independent action is currently used to predict a variety of biological responses that

BABAmix ppppp

.01 x .01 = .0001

.02 x .03 = .0006

.06 x .04 = .0024

.08 x .12 = .0096

.01 + .01 = .02

.02 + .03 = .05

.06 + .04 = .10

.08 + .12 = .20

.0199 = 

.0494 = 

.0976 = 

.1904 = 

Fig. 9.5 Example of calculating mixture effects at low individual effect levels (<15%) when

assuming independent action. The product pA pB is small and does not appreciably change the sum

pA + pB

9 Predicting Mixture Toxicity with Models of Additivity 255



do not reflect the initial definition, derived from probabilities of events. Equations

9.5 and 9.6 are specific calculations for the probability of co-occurrence of statis-

tically independent events; consequently, they properly apply to the probability that

the event occurs or the proportion of the population that experiences the event,

quantities that must fall between zero and one. Quantal response data that meet the

original definition of independent action include mortality and the proportion of

animals within a dose group that displays a certain characteristic. Continuous

endpoints (e.g., growth, organ weight, hormone levels, magnitude of gene expres-

sion changes) generally do not lie between zero and one and are not interpretable as

probabilities; consequently, they fall outside of the scope of that definition. If the

continuous response (y) has predefined minimal and maximal possible values (ymin,
ymax), then it can be rescaled to lie between zero and one (equivalently, 0% and

100%) by transforming to (y�ymin)/(ymax�ymin). Even such rescaled responses,

however, are not typically interpretable as “probabilities.” For example, knowing

that an exposed rat lost 40% of its body weight says little about the probability of

that response. Thus, the use of Eq. 9.5 with continuous responses, even after

transformation to a scale that looks like a probability, is not supported by the

underlying probability argument that justifies Eq. 9.5. Furthermore, while the 1–p
term in Eq. 9.5 is clearly interpreted as the probability of non-occurrence (e.g., if the

event is death, then non-occurrence is survival), we do not know of any analogous

interpretation of the corresponding 1–y term. Consequently, application of Eqs. 9.5

or 9.6 with quantal responses has no similar theoretical basis as a benchmark for

independent action when applied to continuous responses. In other words, there is

no reason to believe that chemicals that act independently will obey Eqs. 9.5 or 9.6

when the ps are replaced by ys, even rescaled ys. Nevertheless, despite this serious
theoretical shortcoming, using the independent-action formula as an empirical

model with continuous responses is widely practiced and may have utility.

Early discussions of applying independent action for binary mixtures to contin-

uous response data emphasized differences in response measures (Muska and

Weber 1977). While quantal data show fractions of the population exceeding

toxicity thresholds, continuous data show average measured response intensities.

Thus, the concept of susceptibility correlation is not appropriate for continuous data

and formulas like Eq. 9.7 cannot be used. Instead, estimates of combined responses

are simple sums of component response intensities (see section 9.5 for more about

effect summation). More recent instances of applying independent action to con-

tinuous endpoints employ Eq. 9.5. Examples in the literature of the application of

independent action to continuous data include in vitro enzyme activity (Froment

et al. 2016), degree of hypopigmentation in zebra fish (Schmidt et al. 2016), and

organ weights in rat pups following in utero exposure (Rider et al. 2008), among

others.

An example can be used to illustrate the different applications discussed above.

Imagine a study where pregnant females are exposed to different doses of chemical

A or chemical B alone and their pups are evaluated for responses. The two

endpoints of interest are pup mortality (Table 9.1) and pup weight at birth

(Table 9.2). For the mortality endpoint, the percent of pups who died is the response
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used in the model. Therefore, Eq. 9.5 could be used to calculate the expected

response of a binary combination of the two chemicals (at each of the dose pairings

in a given row of the table) under an assumption of independent action as in the

following example:

4 mg=kg Aþ 100 mg=kg B : 0:10þ 0:20� 0:10∗0:20ð Þ ¼ 0:30� 0:02 ¼ 0:28
¼ 28%mortality

In contrast, pup weight does not easily fit into the probability-based equation. As

opposed to mortality, mean pup weight represents an average value of a continuous

variable. Before discussing the data transformation that is required to apply the

model, it is important to address the rationale for applying the independent-action

model to these data. There are two possible arguments. First, the model can be

viewed as a strictly empirical tool, offering a point of comparison for dose-addition

predictions and observed mixture data. Second, and more problematically, one

could argue that individual chemicals are acting through different biological mech-

anisms to disrupt a common system (e.g., development) that has real biological

limits, justifying a meaningful rescaling to 0–100%. In the current example, pup

weight data could be converted to % decrease from control (but even this more

meaningful rescaling is not interpretable as providing probabilities, so it should just

be treated as an empirical model). The mean weight in the control group could serve

as a maximum response level (ymax) – though using observed means can lead to

anomalies (e.g., negative percentages which are not between 0 and 100%)

(Table 9.2). As a minimum response level (ymin), 0 g could serve as a default

minimum (pups cannot weigh less than 0 g), or, assuming pups are not viable below

some nonzero weight, the average of “lowest pup weights” achieved in previous

work could serve as a more biologically-based minimum. If all pup weights are

rescaled using the control value (e.g., the average weight of the combined control

animals from chemicals A and B, which is 6.3 g in this example) as ymax and the

minimum viable weight (3.0 g in this example) as ymin, then the data can, in

principle, be converted to a 0–100% response scale (Table 9.2). These converted

data can then be used to make predictions based on the independent-action equa-

tion, as described above for mortality.

Table 9.1 Hypothetical data to illustrate application of independent-action model

Chemical A Chemical B

Predicted mixture response

under independent action (%)

Dose

(mg/kg)

Mortality

(%)

Dose

(mg/kg)

Mortality

(%)

0 0 0 0 0

2 3 50 5 8

4 10 100 20 28

8 50 200 45 73

16 95 400 75 99
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In the past, debate has centered around which definition of additivity – dose

addition or independent action – should serve as the default approach for describing

the baseline prediction from which interactions should be measured (Greco et al.

1992). This argument has largely faded, with many researchers instead opting to

include both dose-addition and independent-action predictions as referents for

assessing tested mixtures (Rider et al. 2008; Olmstead and LeBlanc 2005;

Christiansen et al. 2009; Gregorio et al. 2013; Altenburger et al. 2000; Qin et al.

2011). Including both formulas is usually done when there is inadequate biological

information about the potential joint toxicity. It is typically held that independent

action is appropriate for chemicals that act through different adverse outcome

pathways, while dose addition is favored for chemicals that exhibit similar mech-

anisms of action. However, individual chemical adverse outcome pathways are not

always known. Furthermore, instead of a priori classification of individual

chemicals and selection of an appropriate model, the fit of observed mixture data

to either dose-addition or independent-action models has been used to support

arguments regarding similarity/dissimilarity of mechanism(s) among mixture con-

stituents (Rider and LeBlanc 2006; Froment et al. 2016; Faria et al. 2016). In many

cases, however, dose addition and independent action yield similar or even indis-

tinguishable predicted mixture effects, particularly when the response (as a prob-

ability) is very small or when the dose-response curve is close to linear (Thienpont

et al. 2013; Kortenkamp and Altenburger 1998; Cedergreen et al. 2008).

Several studies have addressed the hypothesis that chemicals with distinctly

different mechanisms of action are better fit by a model of independent action than

by one of dose addition (Backhaus et al. 2000, 2011; Ermler et al. 2014; Villa et al.

2012; Faust et al. 2003; Hermens and Leeuwangh 1982; Martin et al. 2009; Baylay

et al. 2012; Cedergreen et al. 2008); however, few of these studies found that

Table 9.2 Conversion of continuous data to a 0–100% scale for use in Eq. 9.5 to predict mixture

responses assuming independent action

Chemical A Chemical B

Predicted mixture

response under

independent action

Dose

(mg/

kg)

Mean pup

weight at

birth (g)

%

Decrease

from

control

Dose

(mg/kg)

Mean pup

weight at

birth (g)

%

Decrease

from

control

% Decrease

from control

0 6.2 3.0 0 6.4 �3.0 0.1

2 5.9 12.1 50 6.5 �6.1 6.7

4 5.7 18.2 100 5.7 18.2 33.1

8 4.5 54.5 200 5.1 36.4 71.1

16 3.9 72.7 400 4.2 63.6 90.1
aA minimum response of ymin ¼ 3.0 g was assumed when calculating the % decrease from control,

which is defined as 100 � (ymax�y)/(ymax�ymin), where ymax is the average control response of

6.3 g
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independent action consistently provided a significantly better fit than dose addition

(Backhaus et al. 2000; Faust et al. 2003).

Some of the most highly cited work on independent action comes from

Backhaus and colleagues (Faust et al. 2003; Backhaus et al. 2000). These founda-

tional studies set out to carefully investigate the joint action of chemicals with

strictly dissimilar mechanisms of action. They tested mixtures of 14 and 16 constit-

uents with the microtox assay (measuring disruption of the respiratory process of

the marine bioluminescent bacteria Vibrio fischeri) and algal toxicity, respectively.
In both studies, they found that independent action accurately predicted mixture

toxicity, while dose addition overestimated the responses of the mixture, across the

range of mixture dilutions along fixed-ratio rays with constituents present at

equipotent concentrations (e.g., constituents present at the ratio of their concentra-

tions eliciting a 50% effect when tested individually).

In the majority of papers evaluating chemicals with dissimilar mechanisms of

action for adherence to independent-action predictions, the results are much less

clear-cut. In a series of experiments assessing the effects of binary mixtures of

dissimilar chemicals on C. elegans egg production, Martin et al. (2009) found some

cases where independent action accurately predicted observed mixture effects and

other cases where it over- or underestimated observed mixture effects. In another

example, Ermler et al. (2014) found that a mixture of four chemicals with dissimilar

mechanisms of action resulted in genotoxic effects that fell between independent-

action and dose-addition predictions. Similarly, Petersen et al. (2014) observed a

dose-dependent switch from independent action at low concentrations to dose

addition at higher concentrations for a mixture of eight chemicals with diverse

mechanisms of action on the growth rate of marine algae. Baylay et al. (2012)

pursued a mechanistic understanding of the combination of two dissimilar

chemicals using metabolomic profiling of earthworm tissue following treatment

with nickel, chlorpyrifos, and a combination of the two. They concluded that while

the measured effect of the mixture on reproduction was greater than that predicted

by independent action, the hypothesis of dissimilar mechanisms of action was

supported by the finding that the metabolomic profile for the mixture was interme-

diate between the unique profiles for nickel and chlorpyrifos alone, confirming their

dissimilar activity and indicating that they both contributed to the mixture effect.

9.4.3 Challenges with Independent Action

As indicated by the name, independent action is predicated on the assumption that

the individual chemicals within the mixture operate independently; however, the

exact nature of the biological independence required to make this assumption

plausible is usually not clearly articulated. Throughout the independent-action

literature, there are references to independence at the level of mechanism of action

(adverse outcome pathway), target tissue, or target system. There are two important

points to keep in mind. First, considering the complexity of biological systems, it is
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unlikely that the mechanisms of action will be strictly dissimilar. Second, many

environmental chemicals can have more than one mechanism of action.

As alluded to above, independence of action is likely influenced by the chemical

constituents, endpoint, and model system of interest. Therefore, one can hypothe-

size that experiments that include chemicals with specific and distinct mechanisms

of action and simple model systems are more likely to produce observed results

consistent with independent-action predictions. Conversely, chemicals with

nonspecific mechanisms of action, common among environmental contaminants,

and complex systems (e.g., carcinogenesis in a rodent) might be more likely to

involve interactions among biological signaling pathways and less likely to con-

form to predictions based on an assumption of independent action. Hermens and

Leeuwangh (1982) discuss some of these considerations in their studies with

chemicals that display both specific and nonspecific mechanisms of toxicity. For

example, both Hermens and Leeuwangh (1982) and K€onemann (1981) discuss the

concept that the primary mechanisms of constituent chemicals could act indepen-

dently, while a lesser (secondary) narcotic mechanism present in all organic

chemicals could contribute in a dose-additive manner to toxicity, resulting in

observed mixture toxicity that exceeds independent-action predictions.

9.5 Effect Summation

As mentioned earlier (Sect. 4.1), under certain conditions (e.g., low effect levels),

effect summation can be applied directly with quantal response data to approximate

predictions under independent action. Nevertheless, some investigators have

applied effect summation beyond quantal responses to continuous responses, even

without prior conversion to a 0–100% scale. Avoiding such conversion is particu-

larly useful when the responses being measured are not readily amenable to it. Of

course, the sum of effects, whether rescaled or not, can exceed the 100% limit for

probabilities or the experimentally determined maximum effect level for continu-

ous responses – a characteristic that is often cited as a fatal flaw of the approach (see

below for a discussion of the limited application of effect summation). The general

equation for effect summation is:

Ymix ¼
XJ
j¼1

Yj ð9:9Þ

where Yj is the response elicited by chemical j alone. For a binary mixture, the

equation simplifies to:

Ymix ¼ YA þ YB ð9:10Þ
where YA and YB represent the responses elicited by chemicals A and B, respec-

tively, when given alone.
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9.5.1 Application and Challenges of Effect Summation

In toxicological studies, effect summation is often cited as an inappropriate

approach for assessing mixtures because of a lack of biological plausibility at

high effect levels (Boedeker and Backhaus 2010). A primary example of this

implausibility is that an effect-summation model can produce response predictions

beyond the natural response boundaries. In contrast, for independent action, the

laws of probability ensure that the predicted probabilities satisfy the natural bound-

ary constraints. Thus, effect summation is frequently discounted as an appropriate

tool in toxicology because a biological plausibility threshold can be exceeded.

Nevertheless, effect summation does have one important advantage over indepen-

dent action: there is no requirement to convert the individual data, so they can be

combined across chemicals in raw form. Therefore, effect summation could be used

as a benchmark, if researchers acknowledge its limitations.

The example described in Sect. 4.2 can be used to illustrate the advantages and

disadvantages of effect summation compared to independent action. In Table 9.3, it

is apparent that the responses can be added together without converting the data.

However, at the highest dose of the mixture (16 mg/kg chemical A þ 400 mg/kg

chemical B), the predicted effect is a 4.5 g decrease in pup weight. This decrease

would result in pup weights around 2.0 g, well below the 3.0 g that was thought to

be the minimum that is biologically plausible (see independent-action example

above). This again emphasizes the need for a biologically-based limit on the

predicted effect. Because most effect measures are surrogates for a complex

physiological process, many effect limits are empirically derived, including limits

on what values are considered “normal” or “healthy.” At those highest doses in

Table 9.3, the pups are of such low weight as to be biologically compromised. For

example, at the highest dose of chemical A (16 mg/kg), the pup weight loss is 37%,

well in excess of the common limit of 10% (Chapman et al. 2013). Furthermore,

Table 9.3 Predictions of mixture responses based on effect summation

Chemical A Chemical B

Effect-

summation

prediction

Dose

(mg/kg)

Mean

pup

weight

(g)

Decrease in pup

weight (g) from

controla
Dose

(mg/kg)

Mean

pup

weight

(g)

Decrease in pup

weight (g) from

controla

Decrease in

pup weight

(g) from

controla

0 6.2 0.1 0 6.4 �0.1 0

2 5.9 0.4 50 6.5 �0.2 0.2

4 5.7 0.6 100 5.7 0.6 1.2

8 4.5 1.8 200 5.1 1.2 3.0

16 3.9 2.4 400 4.2 2.1 4.5
aThe control response for calculating decrease in weight was the average of the zero-dose

responses for both chemicals, namely, 6.3 g
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they likely have some physiological or biochemical processes that are no longer

functioning normally, calling into question the purpose of the predictive model

based on one measured effect.

9.6 Integrated Addition

Integrated addition is a more recent development in the mixture literature and

represents a combining of concepts from dose addition and independent action to

accommodate mixtures that contain constituents with similar and dissimilar adverse

outcome pathways (Rider and LeBlanc 2005; Teuschler et al. 2004; Altenburger

et al. 2005). First, chemicals are grouped into toxicologically similar groups (see

discussion in Sect. 2). Next, the total response for each group is calculated using a

dose-addition method. This response must be a measure of probability (see Sect. 4.2

for concerns). Finally, the responses from the different groups are combined using

an independent-action approach (Figs. 9.6 and 9.7). The goal driving development

of the integrated-addition approach was to refine predictions of mixture toxicity

based on known mechanisms of action.

9.6.1 Application of Integrated Addition

In one of the first papers describing an integrated-addition approach, a ternary

mixture of two organophosphate pesticides (malathion and parathion) and the

A

B
B

B

B

Mixture Response 
for A and B

+
A

A

Dose
Addition

D

D
D

D

Independent
Action

C

C
C

C

Dose
Addition

+

Mixture Response 
for C and D

+

Total Mixture Response

Integrated Addition

Fig. 9.6 Representation of integrated addition. In this example, chemicals A and B share a

common mechanism of action (binding to a receptor to elicit a downstream effect), as do

chemicals C and D (interfering with lipid membranes). A dose-addition model can be used to

calculate expected mixture effects for each of the two mechanism-based groups. The responses of

each of the mechanism-based groups can then be combined using an independent-action model
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pesticide synergist piperonyl butoxide was assessed for its joint effects on immo-

bilization of the crustacean Daphnia magna (Rider and LeBlanc 2005). Malathion

and parathion inhibit acetylcholinesterase activity. Their joint action was estimated

using dose addition. Next, piperonyl butoxide effects were combined with the dose-

additive effects of malathion and parathion using independent action (Eq. 9.5). An

interaction coefficient was also added to the equation to account for the interaction

between organophosphates and piperonyl butoxide. (Quantitative interaction infor-

mation is rarely available, and the modification of models to incorporate interac-

tions is beyond the scope of this chapter.)

In another early effort to combine dose addition and independent action,

Altenburger et al. (2005) used various mechanism-based grouping strategies to

compare modeled predictions to observed algal toxicity of a 14-chemical nitroben-

zene mixture. They used both individual chemical dose-response parameters and

known mechanistic data to group chemicals. Based on this approach, they articu-

lated three groups: 11 nitrobenzenes operating primarily through narcosis, two

mononitrobenzenes acting through a redox-cycling mechanism, and a single chem-

ical acting through an antimitotic pathway. Dose addition was used to calculate the

expected joint effects from each of the two groups with more than one chemical.

These two groups were then combined with the single chemical using independent

action (Fig. 9.7).

Since its introduction, integrated addition has been used by various research

groups to provide an additional point of comparison together with independent

action and dose addition (Ra et al. 2006; Flippin et al. 2009). There have also been

attempts to improve models based on integrated addition using more sophisticated

statistical procedures. Mwense et al. (2004, 2006) used advanced approaches such

as molecular modeling to derive chemical descriptors and fuzzy set theory to assign

Fig. 9.7 Example of an application of the integrated-addition concept to a 14-chemical mixture of

nitrobenzenes (Altenburger et al. 2005)
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chemicals to similarity groups. Qin et al. (2011, 2015) employed multiple linear

regression techniques to combine predictions based on independent action and dose

addition.

9.6.2 Challenges of Integrated Addition

The greatest challenge to applying integrated addition is a lack of information on

the mechanisms of action or adverse outcome pathways associated with individual

chemicals. Additionally, chemicals can induce more than one adverse outcome

pathway (Chap. 7) and can activate different adverse outcomes depending on the

species. Advances in model development address the need for knowing a priori the

adverse outcome pathways associated with each individual chemical by relying on

physicochemical properties and data from individual dose-response curves. These

approaches, however, often require advanced statistical and toxicological under-

standing or access to larger datasets that may not be widely available.

Inclusion of both dose addition and independent action within a single approach

necessarily includes all of the challenges associated with application of those

models separately. Integrated addition does not specify a particular method for

calculating predictions under dose addition. Thus, any of the dose-addition methods

described above could be used in the integrated-addition framework; however,

because the independent-action part of the framework requires probabilities or

percentages, all of the issues associated with converting response data discussed

previously also apply here.

9.7 Conclusions and Recommendations

This chapter has described the long history of using simple mathematical models to

better understand the toxicity of mixtures. Over the course of the last 90 years, a lot

of progress has been made in developing these tools. Despite the many overlapping

approaches and the often confusing terminology, some basic principles have

emerged.

• Simple mathematical models to predict mixture toxicity from individual chem-

ical data provide a useful tool for exploring the joint action of chemicals. Most of

the underlying toxicological concepts involve similarity or independence. In

many cases, responses predicted using dose addition and/or independent action

provide close approximations of observed mixture responses.

• Despite the many variations of dose addition available, the general concept

remains intact, with specific changes resulting in potentially wider application

(e.g., modification to accommodate partial agonists) without substantially

changing the underlying null hypothesis.
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• Deviations of observed mixture responses from predicted responses can be due

to a number of factors including that the prediction model is too simple (it lacks

biological complexity) or there are toxicological interactions between chemicals

that are not captured by the models (e.g., greater than or less than dose-additive

interactions). Significant deviations could signal that follow-up mechanistic

studies are required to better understand potential interactions. Further work

comparing biological models (e.g., toxicokinetic models) with these simple

additivity models will be important in developing plausible interaction models

as well as extensions of additivity models to reflect dose dependence or mixing

ratio dependence.

• When biological evidence for similarity or for independence is weak, including

more than one model (e.g., dose addition and independent action or effect

summation) to compare observed and predicted responses is recommended.

Since adverse outcome pathways associated with chemicals are often unknown

or incomplete, including multiple models can better frame the potential range of

predicted mixture responses without requiring a mechanism-based argument for

application of a specific model. This range of predicted responses is not the

expected range of true responses, but it characterizes responses under the null

models most likely to be used.

• Much of the toxicology work on mixtures has focused on low numbers of

chemicals (binary and ternary combinations), with less work addressing chem-

ical mixtures containing 10–20 constituents. Work with higher-order mixtures

will be important in determining the limitations of the models described here.
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