
Chapter 8
Dose-Response Modeling

Gregg E. Dinse and David M. Umbach

Abstract For any definition of additivity, evaluating whether an organism’s
response to a mixture is additive depends on the dose-response relationships for
each of the mixture’s component chemicals. Consequently, the statistical analysis of
dose-response relationships is fundamental to mixture toxicology – as well as to
other areas of toxicology. This chapter offers a broad overview of dose-response
modeling and an introduction to some statistical issues that arise in the use of dose-
response models – with an eye to evaluating additivity. It does not, however, attempt
to be a handbook or guide to the use of any specific models; instead, it tries to make
readers aware of issues that need attention to achieve efficient and valid inference.
The chapter mentions features of study design and describes how they can influence
both aspects of model fitting and the quality of results. It considers the choice of
functional form used to describe how the mean response changes as dose increases
as well as the evaluation of how well the chosen form fits the data at hand. The
chapter also points out that proper modeling of the variability inherent in the
structure of the data is crucial to efficient statistical inference. Finally, because
many dose-response models require iterative numerical methods, it offers a few
pointers to help overcome problems when these methods fail to converge. Dose-
response modeling is an essential tool in mixture toxicology but one that demands
careful application to achieve the best results.
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8.1 Introduction

One fundamental project in mixture toxicology is the evaluation of whether a
mixture obeys an additive or no-interaction null model, whereby the typical response
of an organism (or an isolated biological system) to different concentrations of the
mixture can be predicted based on the organism’s (or system’s) typical response to
different concentrations of each component of the mixture individually. This project
has three essential elements: (1) a suitable definition of the additive state, formulated
in a way that is amenable to constructing quantitative predictions (see Chap. 9);
(2) an appropriate collection of data from experiments that examined dose-response
relationships both for the individual component chemicals and for the mixture; and
(3) an array of statistical techniques that use these data to make inferences about the
question of additivity (see Chap. 11). Shortcomings regarding any of these three
elements can impinge on the value of mixture experiments for risk assessment.

Because prediction of the response of an organism to a mixture under additivity –
regardless of the precise definition of additivity invoked – is rooted in the dose-
response relationships for each of the mixture’s component chemicals, statistical
analysis of dose-response curves for individual chemicals becomes a key building
block for evaluating hypotheses about departures from additivity. In fact, the
statistical properties of predicted responses to a mixture under an additivity assump-
tion depend crucially on how well the statistical models used to analyze data from
the individual component chemicals represent the underlying true dose-response
relationships. If dose-response relationships for the component chemicals in the
mixture are estimated with bias, the prediction for the mixture would likely be
estimated with bias as well. Correspondingly, if the estimated dose-response rela-
tionships for the component chemicals are highly variable, the prediction for the
mixture would likely be highly variable, so that tests of the additivity null hypothesis
would have low statistical power. In addition, if a statistical dose-response model
represents the typical dose-response trajectory accurately but fails to properly
account for multiple sources of variation in the data, the precision attributed by the
data analysis to the dose-response relationships might be larger or smaller than it
actually is. Such errors in modeling variability in dose-response relationships can
lead to incorrect conclusions about additivity, including false positive declarations of
departures from additivity or false negative declarations of no departure from
additivity. Analogous kinds of statistical issues centered on adequate specification
and fitting of a dose-response relationship also arise when specifying models that are
intended to reflect departures from additivity and fitting those models to data from
mixtures of chemicals. Sound statistical analysis is essential for valid quantification
of dose-response relationships; consequently, it is important throughout toxicology –
including mixture toxicology.

The purpose of this chapter is to acquaint toxicologists who are now (or intend to
be) working in the area of mixtures with some statistical issues that are ubiquitous in
studying dose-response relationships. Because toxicologists conduct an exceedingly
broad range of experiments with various outcomes and study designs, the variety of
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statistical techniques needed to analyze the range of toxicologic data is comparably
broad. Any attempt to even touch on all possibilities would require a book-length
treatment, not simply a chapter. Instead, this chapter highlights certain issues that are
common across many statistical techniques and that can have a distinct impact on
inferences about dose-response relationships. First, it defines some terminology and
notation that will be used throughout the chapter. Next, it discusses statistical issues
related to study design and describes how they can impinge on the choice of
statistical models employed and on the quality of the results. Then, it goes on to
talk about modeling strategies, including the choice of functional form for fitting the
mean dose-response trajectory. The chapter also draws attention to the importance of
specifying a variance structure that properly reflects sources of variation in the data.
In addition, it points out techniques for evaluating the adequacy of the specified
dose-response model for the data at hand. Finally, because many dose-response
models useful in toxicology require iterative numerical methods for fitting, it
mentions some ways to cope with failure of these methods to converge to a unique
best fit to the data. The chapter closes with a summary.

8.2 A Statistical Perspective on Dose-Response Modeling

To establish some definitions and basic notation, consider as a template a simple
dose-response study involving a single chemical and a single response or outcome.
Assume that the study involves a total number N of experimental units, where
“experimental unit” is a generic term that statisticians use to denote the entity that
is assigned at random to receive a particular treatment or condition in an experiment.
Thus, the experimental units could be male mice in a rodent carcinogenicity study,
pregnant rats in a teratogenicity study, petri plates containing a Salmonella tester
strain in an Ames mutagenicity assay, culture dishes growing a given cell line in
in vitro studies, and so on. In a dose-response study, the treatments to which the
experimental units are assigned at random are the particular dose or concentration
levels of the compound being investigated. Let D denote the number of dose levels
and d1, d2, d3, � � �, dD denote the D particular dose levels used in the study. Because
these dose levels are under the control of the experimenter, one usually regards them
as known constants and not subject to errors of measurement. For simplicity, assume
that the total number of experimental units N is a multiple of the number of dose
levels D, such that N/D ¼ n and that the same number, n, of units are assigned to
each dose level di. Here the index i is one of the numbers {1, 2, 3, � � �,D}. At each
dose level, each experimental unit is labeled by a second index j that is one of the
numbers {1, 2, 3, � � �, n}. Consequently, in this study, each experimental unit is
uniquely identified by two indices, i indicating dose group and j indicating experi-
mental unit within dose group. Let Yij or yij represent the response of the jth

experimental unit at the ith dose level; uppercase Y indicates that one is thinking of
the response as a random quantity that has probabilistic properties (but lacks a
known numerical value), whereas lowercase y indicates that one is referring to an
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actual value that would be observed in a study. Thus, yij is the observed value of the
random variable Yij. Also, one omits the subscripts when referring to a response in
general or uses only subscript i to emphasize the role of dose level when the
particular experimental unit is inconsequential. Typically, both subscripts are needed
only when referring to the response of a particular experimental unit assigned to a
given dose level. Also, though i indexes the dose levels di used in the experiment, the
notation d is used for dose level more generically – including dose levels not
included in the experiment.

Depending on the response measured, data analysis for toxicologic studies
utilizes a range of statistical distributions. The response of interest in a mouse
carcinogenicity study might be the presence/absence of a certain type of tumor in
each mouse at death. Then, Y (viewed as 1/0 for presence/absence) might be
modeled statistically as having a Bernoulli distribution, and a dose-response analysis
might focus on how steeply the probability of the tumor being present increases with
increasing dose level. In a teratogenicity study, if the chemical under study was
known to have no effect on implantation, the response of interest might be the
number of rat pups in each litter born alive and without any malformations. For each
litter, the count Y (which could range from 0 to the number of zygotes implanted)
might be modeled statistically as having a binomial distribution, and a dose-response
analysis might focus on how steeply the probability of being born alive and without
malformation decreases with increasing dose level. In an Ames assay for mutage-
nicity, the response of interest is the number of revertant colonies on the plate; then,
for each plate, the count Y (which could range from 0 upward) might be modeled
statistically as having a Poisson distribution, and a dose-response analysis might
focus on the rate of increase in the expected number of revertant colonies with
increasing dose level. In studies that use cell lines to assess toxic effects, the response
of interest might be the level of a particular enzyme. The enzyme level Y (whose
value could be any non-negative number) might be modeled as having a log-normal
distribution, and a dose-response analysis might examine how the typical enzyme
level changes with increasing dose level.

Although the details of an appropriate data analysis would differ for each of these
examples, they share some fundamental commonalities: each asks how some char-
acteristic of the response’s statistical distribution, a characteristic whose true value is
unknown, changes as the dose level changes; and each acknowledges inherent
variability of the response around its true value. One can think of the characteristic
of interest as the signal and the inherent variability (random error) as the noise – so
the goal of statistical dose-response analysis is to uncover the signal in noisy data.

From a statistical perspective, several decisions must be made in carrying out a
dose-response study. These decisions fall into two phases: the design phase and the
data analysis phase. First is the design phase: one must have a plan for gathering the
needed dose-response data. Having a statistically efficient design for an experiment
enhances validity and cost-effectiveness. Although many aspects of study design are
the purview of the toxicologist, statisticians can help address issues like choosing the
number and location of dose levels or setting the number of experimental units –
both overall and at each dose level – to achieve acceptable statistical performance. In
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complex experiments where, for example, the experiment might need to be
conducted over several days and involve multiple batches of experimental units,
statistical design is indispensable for allocating experimental units from different
batches to different days to ensure that the dose effects of interest can be estimated
without bias and that uncertainty attributable to days, batches, and experimental
units can properly be assessed. The statistical design of experiments is a broad and
challenging field, beyond the scope of this chapter, but the next section (Sect. 8.3)
considers a few aspects of statistical design and how they impinge on dose-response
data analysis.

The second phase of a dose-response study is, of course, the analysis of the data.
Here the decisions have to do with constructing a statistical model that describes the
data and allows estimation of the dose-response relationship of interest and quanti-
fication of uncertainty in the estimate. As indicated in the examples presented earlier
in this section, one must choose a statistical or probability distribution that describes
the random behavior of the experimental units at each dose level. Usually, with
knowledge of the type of response being measured and personal experience or
guidance from the literature regarding similar responses, the analyst will quickly
nominate a small set of candidate distributions that can be refined as the analysis
proceeds.

A second early decision is what feature of the statistical distribution to focus on
for describing the dose-response relationship. The distributional feature used most
often in the dose-response context is the mean of the dose-level-specific distribution
of responses. A mean is a common way to assess central tendency in a statistical
distribution, not only for continuous responses but more generally. For example, for
a list of presence/absence responses (coded as 1/0), their average (i.e., the number of
ones divided by the number of experimental units) gives the proportion of experi-
mental units with 1 as a response, and such a proportion can often be interpreted as
an estimate of the probability of the characteristic being present. Though features
other than the mean response might sometimes be useful in dose-response analysis,
this chapter considers only the mean.

Another crucial aspect of the analysis phase is specifying a model or algebraic
expression that describes how the mean response changes with dose level. For
example, one can represent each observation using the mathematical formula:

Yij ¼ μi þ εij, ð8:1Þ
where μi is the unknown true mean response at dose level di from the experiment and
εij is an error term that is conceptualized as a random deviation from that mean for
experimental unit j at dose level di, one that corresponds to the particular statistical
distribution under consideration. This representation embodies the common notion
that an observed value is an imperfect or noisy reflection of a true but unknown
“typical” value for any experimental units that experience a particular dose level.
The collection of μi for i in the set {1, 2, 3, � � �,D} represents a model for the mean as
a function of dose in that the μi values describe how the mean changes with applied
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dose level. The goal of the statistical analysis might be obtaining point and confi-
dence interval estimates for each μi or for differences among them.

If the investigator were only interested in the mean response at the pre-selected
dose levels tested in the experiment, estimation of those particular mean responses
via Eq. 8.1 would be useful. More commonly, however, dose-response studies are
conducted to make inferences about dose levels in addition to those actually tested in
the experiment; perhaps an investigator seeks to characterize an entire dose-response
curve or to make inference about mean responses at arbitrary dose levels either
between or beyond (e.g., low-dose extrapolation) those studied experimentally. In
this case, one could replace Eq. 8.1 with a possibly nonlinear regression model:

Yij ¼ f dijθð Þ þ εij, ð8:2Þ
where f(dij θ) is a prespecified regression function that relates dose level di to the
unknown true dose-specific mean response μi and that depends on a vector of
unknown parameters θ, and εij is an error term as in Eq. 8.1. For example, in the
Ames assay for mutagenicity, one often specifies f(djθ) ¼ α + βd (here, θ ¼ (α, β)),
where α reflects the background mutant yield and β represents the mutagenic
potency (Bernstein et al. 1982). A second example might involve enzyme concen-
trations measured in such a way that the response ranges from 0 to 1 (or, equiva-
lently, from 0% to 100%) and one might specify f(djθ) using the Hill model (Hill
1910), namely, f(djθ) ¼ dγ/(dγ + δγ) (here, θ ¼ (δ, γ)), where δ represents the ED50

(or median effective dose) and γ is known as the Hill coefficient. Because Eq. 8.2
allows inferences for any d, a key difference between Eqs. 8.1 and 8.2 is the latter’s
capacity for allowing inference to dose levels that were not observed in the exper-
iment. Of course, there is a trade-off: proper inferences with Eq. 8.2 rely, in part, on
the assumption that f(djθ) is correctly specified for (or at least a close approximation
to) the true dose-response relationship under study. Further consideration of the
mean function f(djθ) and consequences of specifying it incorrectly appear later in the
chapter.

The presentation of Eqs. 8.1 and 8.2 has so far focused on modeling the
relationship between dose level and mean response as embodied in the μi or in
f(dijθ); but both models also involve random errors, as embodied in the set of εij. For
now, assume that the mean response model is correctly specified so that the εij,
averaged across experimental units, have mean zero at each dose level. The impor-
tant remaining properties of the εij are their variances and their covariances. Variance
may be the same for every experimental unit or may change across dose levels. A
covariance is zero when two experimental units are independent and non-zero when
they are correlated. In fitting Eqs. 8.1 and 8.2 to data, correct specification of
variances and covariances for all experimental units is critical. This specification is
done via a variance-covariance matrix for the vector ε (whose N entries are the εij).
Let Σ denote the N � N variance-covariance matrix for ε (or, more generally, for the
vector of observations Y given their true means); the diagonal elements of Σ are the
variances of the εij and the off-diagonal elements are their pairwise covariances. The
matrix Σ can depend on one or more unknown parameters (denoted by vector ω);
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one can write Σ(ω) to emphasize that dependence and regard Σ(ω) as representing a
model for the variance-covariance matrix in terms of unknown parameters to be
estimated.

For example, when the dose-level-specific response distribution is normal, a
typical default assumption is that its variance is unknown but constant across dose
levels and that the individual εij are independent (their covariances are zero) both
within dose level and across dose levels (in this example, the off-diagonal elements
of Σ are all zero, and the diagonal elements are all the same unknown constant often
denoted σ2). The assumption of constant variance may not always hold, however.
Some probability distributions have the property that their variance and their mean
are related in a defined way. For example, for the Poisson distribution, the mean and
the variance are equal; for the Bernoulli and binomial distributions, both the mean
and the variance depend on the success probability; for the log-normal distribution,
the variance increases as the mean increases in a prescribed way. Thus, certain forms
of heteroskedasticity (nonconstant variance) are built into the data analysis via the
statistical distribution chosen for the analysis. Sometimes, however, the mean-
variance dependence that is built in by the chosen distribution does not adequately
accommodate the observed degree of heteroskedasticity, so that the data analyst
must incorporate additional parameters to accommodate extra variability (Breslow
1984; Williams 1982). For example, models that incorporate extra-binomial varia-
tion are commonly applied in studies of possible teratogens where a dam is the
treated experimental unit, but a presence/absence response is assessed on each dam’s
individual pups (Haseman and Hogan 1975; Piegorsch and Haseman 1991; Zorrilla
1997) and summarized into a single Yij for each dam. Even for distributions like the
normal that accommodate constant variance, the underlying data-generating mech-
anism may deliver heteroskedasticity across dose levels; and such heteroskedasticity
must be properly taken into account to achieve efficient and valid statistical
inference.

Another consideration when modeling the variance-covariance structure of the
data is whether the observations can be modeled as independent, which implies that
covariances are zero. When experimental units that are homogeneous (representing a
single unstructured population of units) are assigned at random to dose levels, the
homogeneity of the units together with the randomization process strongly supports
that the observations would be independent. If the experimental units are not
homogeneous to begin with, however, but instead represent multiple subgroups,
then non-zero covariances can arise even with randomization. Say, for example, the
experimental units are mice and the mice needed for the study were accumulated by
taking multiple littermates from several different litters, then arguably the responses
of two littermates may well be more similar to each other than the responses of two
mice from different litters – leading to non-zero covariances for certain pairs of units
that should be acknowledged in the data analysis. Aspects of the way an experiment
is conducted can also lead to non-zero covariances between experimental units. For
example, if an experiment is so large that it must be carried out in multiple runs and
each run involves several experimental units and is accomplished on a different day,
or if a procedure involves incubating treated plates (the experimental units) at a
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controlled temperature for a certain period and the large number of plates involved
necessitates the use of multiple incubators, then two units from the same run or in the
same incubator could arguably be more similar in response than two units from
different runs or in different incubators. In this way, details of the conduct of an
experiment can have a strong bearing on the covariance structure that may exist
among the observations.

Thus, an overall statistical model for the data from a dose-response study
typically consists of three components: (1) a probability distribution appropriate
for the response under study; (2) a mathematical model, denoted here by f(djθ), that
describes the relationship between mean response and dose; and (3) a model,
denoted here by Σ(ω), for the variance-covariance matrix of the data. After the
data analyst has established such a statistical model for the dose-response data, the
task is to estimate the unknown parameters θ andω and to quantify the uncertainty in
those estimates. For example, the model f(djθ)¼ α + βd describes an entire family of
possible straight lines because both α and β can take on values ranging from �1 to
1. Estimating the unknown parameter θ ¼ (α, β) amounts to choosing the specific
values of α and β that produce the straight line that fits the data best.

The process of fitting a model to data – that is, of estimating the particular values
of the unknown parameters θ andω that provide the best fit to the data at hand – is, of
course, a key step in data analysis. Statisticians have devised various criteria to
operationalize the concept of “best fit.” For regression models for normally distrib-
uted observations, estimates of θ, denotedbθ, are typically derived using the principle
of least squares, where the best estimates are those that minimize the sum of squared
differences between observed data and model predictions (Seber and Wild 1989).
Variance parameters ω for normally distributed observations can be estimated by
equating observed average squared deviations to their expected values expressed as
functions of ω (Searle et al. 2006). Another widely used criterion for “best fit” is
based on the principle of maximum likelihood. Generally, the likelihood is an
algebraic expression of the joint probability of the observed data regarded as a
function of the unknown parameters. The value of the unknown parameter declared
to fit best is the one that makes this joint probability as large as possible – hence,
maximum likelihood. Maximum likelihood delivers estimates of both θ and ω
directly. For normally distributed data, the least squares and the maximum likelihood
estimates of θ coincide – a relationship that may not hold for other distributions.
Maximum likelihood estimates are widely used because they have desirable statis-
tical properties that hold for many distributions (Mood and Graybill 1963). Of
course, other ways of defining “best fit” could also be used: some are versions of
maximum likelihood such as restricted maximum likelihood or penalized maximum
likelihood; others are developed in a Bayesian framework (Box and Tiao 1992;
Carlin and Louis 2000). Maximum likelihood receives the most attention in this
chapter.
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8.3 Design Considerations

Proper experimental design can have a substantial impact on the precision and power
of statistical inferences from a dose-response study. A study’s design can also
influence the range of models that can be successfully fitted to the eventual data.
Designing an experiment always entails trade-offs. In a study with multiple goals, a
good design for addressing one goal may be less useful for addressing another; in a
study with multiple endpoints, an ideal design for one endpoint may be suboptimal
for another. Consider a study where the investigator anticipates that the appropriate
dose-response function is a straight line between the lowest and highest dose levels
of interest. Assume further that the responses will be normally distributed and have
constant variance across all dose levels. Then, for the goal of having the most precise
estimate of the slope of the line, the optimal design is to allocate half the experi-
mental units to the lowest dose of interest and the other half to the highest (Seber
1977). If the investigator entertained any doubts that a straight line was the correct
dose-response model, this design could be catastrophic, as it is completely unable to
detect any curvature in dose-response trajectory. Allocating experiment units to
intermediate dose levels would allow one to check whether, in fact, the straight
line was an appropriate dose-response model, though at the cost of some loss of
precision for slope estimation, and would enable the investigator to fit a more
appropriate model if necessary. When selecting dose levels for an Ames mutagenic-
ity assay, the investigator is faced with just this kind of trade-off; at higher dose
levels, toxicity begins to dominate mutagenicity, and an increasing dose-response
curve tends to bend downward. Possible goals for a dose-response study for an
individual endpoint include choosing a model that aptly describes the dose-response
trajectory, estimating the unknown parameters of the selected model, assessing risk
through quantities such as the median effective dose or some other benchmark dose,
and predicting expected response at any desired dose level – and seeking the most
accurate and precise estimation possible for these last three. A chosen design will
often have to compromise among such competing goals – while simultaneously
honoring any constraints imposed by budgets, facilities, and available time.

Consider first a simple setting, known to statisticians as a completely randomized
design. In that setting all the experimental units are viewed as homogeneous, and all
are allocated at random to the chosen dose levels; such a design incorporates no
structure arising from different batches of experimental units or from different
technicians or different runs or other restrictions on randomization. In that setting,
the basic quantities contributing to the statistical design are the number of dose levels
in the study, the actual dose levels employed (think of their placement – location and
spacing – on the dose axis of a graph), and the number of experimental units
assigned to each dose level. The choice of each of these quantities is informed
both by the nature of the dose-response models to be fitted to the data, namely, the
set of functions f(djθ) under consideration, and by the number of experimental units
that the investigator can afford to obtain and carry through the study. Generally
speaking, more flexible models can be fitted when more dose levels are studied and,
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for a fixed number of dose levels, estimates become more precise as the number of
replicate experimental units allocated to each dose level increases – but costs and
other practicalities typically limit these numbers.

A fixed number N of experimental units could be allocated to particular dose
levels in various ways, ranging from placing all of them at a single dose to placing a
single observation at N distinct dose levels. Statisticians often think in terms of an
optimal experimental design – one where the placement of dose levels and the
proportion of the total number of experimental units allocated to each dose level is
guaranteed to meet some desirable property (often to minimize the variances of the
parameter estimates) for any total number of experimental units. An optimal design
for minimizing the variance of an estimated slope for a straight line was mentioned
earlier. Such optimal designs are a prominent area of theoretical statistics, but most
of the work and the results are applicable when the model used to analyze the data is
linear in the unknown parameters, for example, a straight line or many models used
in analysis of variance. In these settings, often there will be a unique optimal design
regardless of the true values of the unknown parameters. A majority of dose-
response models used in toxicology, however, are nonlinear in the unknown param-
eters (e.g., the Hill model mentioned earlier). Though optimal designs may still be
found, finding them is much more difficult for nonlinear models; and, when found,
they often have the unfortunate property that the placement of the dose levels for the
optimal design changes depending on the true values of the unknown parameters
(Seber and Wild 1989) – which means that the investigator has to know a good deal
about the underlying truth before a dose-response experiment can be designed
optimally. Consequently, focusing on optimal designs is not practical in the present
context, and instead the focus will be on heuristics for good design.

In general, the number of dose levels (including dose zero) in the study must, at
minimum, equal the number of individual parameters in the vector θ. Under ideal
circumstances, that minimal number of dose levels ensures all individual parameters
can be estimated uniquely (if several different models are being considered, then use
the θ with the most elements to determine the minimum). For a simplistic example
illustrating the problem with having too few dose levels, consider fitting a straight
line (where θ has two individual parameters) to a design where all the replicates were
allocated to a single dose level. Although one could certainly estimate a mean
response at the single dose level, one could not estimate an intercept and slope
uniquely: there is no best choice among the infinitely many lines that can be fitted
through a single point. To estimate both parameters, a design must employ at least
two dose levels. Analogously, at least two dose levels would be required to estimate
the parameters γ and δ in the Hill model mentioned earlier. Similarly, if θ contained
four individual parameters, then a study would need at least four distinct dose levels
to have any chance of obtaining unique estimates of the four parameters.

While the number of parameters in the selected model provides a minimum for
the number of dose levels required, usually it would be unwise to implement a design
with such a limited number of dose levels – for several reasons. One has already been
mentioned in connection with the optimal design for a straight line: if an investigator
wants to check whether a more complex model, one with more parameters to allow a
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richer variety of shapes, might fit better than the one used to determine the minimal
number of dose levels, the design needs to have additional dose levels to accommo-
date the more complex alternative model. A second reason has to do with the
placement of the dose levels.

How the placement of dose levels can influence the ability of a design to estimate
unknown parameters can be illustrated by an example using a sigmoid dose-response
function, a shape often relevant in toxicology. Consider an extended version of the
Hill model mentioned previously, namely,

f djθð Þ ¼ Lþ U � Lð Þ � dγ= dγ þ δγð Þ½ � ð8:3Þ
(here, θ ¼ (L,U, δ, γ)), where L is the lower response limit, U is the upper response
limit, δ represents the ED50 (or median effective dose), and γ is known as the Hill
coefficient and is related to how sharply the curve rises (or falls). Whereas in the
original version of the Hill model (the portion enclosed in brackets in Eq. 8.3), the
possible response values ranged from 0 to 1 (assuming an increasing function, i.e.,
γ > 0); in this version, response values range from L toU, and both of these limits are
to be estimated. If f(djθ) is plotted against the logarithm of dose, the resulting graph
is sigmoid, with a long shallow rise from an asymptote at L with small dose levels,
eventually rising more quickly, reaching its steepest slope at the ED50, then gradu-
ally rising more slowly as it increases toward an upper asymptote at U with large
dose levels.

For the four-parameter model of Eq. 8.3, a design must incorporate at least four
distinct dose levels. Suppose an experimental design assigned four non-zero dose
levels to be equally spaced on a logarithmic scale (often a convenient spacing for a
laboratory because of the ease of serial dilutions). If the four dose levels selected all
corresponded to the early part of the curve when the increase was shallow (say, all
were well below the ED50), then one gets a lot of information about response levels
close to L but little information about other response levels (Fig. 8.1a). Thus, it is
likely that only the parameter L would be estimated satisfactorily; the data from such
a design would not serve to estimate the other parameters well at all. Similarly, if the
four dose levels selected for the design were all above the ED50, then data resulting
from the design might estimate U well but not the other three parameters (Fig. 8.1b).
Alternatively, if the four doses were widely spaced on the log scale but the true curve
rose rapidly over a narrow intermediate dose range, it is possible that the two lower
doses would correspond to the early relatively flat part of the curve and the two
higher doses would correspond to the late relatively flat part of the curve, with no
data collected in the region where the dose-response function changed rapidly
(Fig. 8.1c). In that situation, data arising from the design might estimate L and
U well but not the ED50 or Hill coefficient. Of course, estimating all the model
parameters well simultaneously is important if one seeks a reliable estimate of the
entire dose-response curve, which requires appropriate placement of the four dose
levels (Fig. 8.1d). Even the placement of doses d1–d4 in Fig. 8.1d, though better than
the placements in the other panels, may not sufficiently capture information about
the flat parts of the curve. The use of two additional dose levels (d0, d5) to extend the
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range of dose levels would likely improve estimation of all parameters, pointing to
the value of using more dose levels than the minimum required number.

Another way to think about why the dose level placements mentioned in the
previous paragraph are problematic is by relating the dose levels in the design to the
expected response levels. The set of dose levels included in a design should
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Fig. 8.1 Illustration of how dose-level placement may influence estimation of dose-response
relationships. Each panel shows a dose-response function generated from the four-parameter Hill
model in Eq. 8.3 and four evenly spaced dose levels (d1, d2, d3, d4). Panel (a): all dose levels on the
lower flat portion of the curve provide information mostly about parameter L. Panel (b): all dose
levels on the upper flat portion of the curve provide information mostly about parameter U. Panel
(c): failure to include dose levels in the region where the curve rises provides information mostly
about parameters L and U. Panel (d): dose-level placement that includes the region where the curve
rises as well as the shoulders where the curve is nearly level provides information about all four
parameters; placing additional dose levels at d0 and d5 (alternately, replacing dose levels d1 and d4
with d0 and d5) would provide better information about the flat parts of the curve and enhance
estimation of all parameters
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correspond to a set of true unknown response levels that are representative of the
entire range of possible underlying response values. Thus, a design whose dose levels
only capture the low end but not the middle or high end of the response range – like
the design mentioned earlier with all dose levels below the ED50 – is unlikely to be a
good design for a sigmoid curve. Similarly, a design whose dose levels capture only
the highest and lowest response levels but none in the middle – because the dose
spacing is too wide to have doses corresponding to intermediate response levels –
is unlikely to be a good design. The placement of dose levels is important so that
the design captures a range of responses at the collection of chosen doses.

This discussion serves to illustrate a point made earlier – that an optimal design
for nonlinear models depends on the unknown true values of the parameters. One
must have some idea about the shape and location of the dose-response curve one is
trying to estimate if one hopes to design an experiment to estimate it well. Although
equally spaced dose levels, either on an additive or logarithmic scale, are common
default choices, irregular spacing of dose levels – farther apart where the dose-
response curve is expected to be flat and closer together where the dose-response is
expected to change rapidly – can be a useful strategy, but one that demands more
extensive prior knowledge of the dose-response curve. If an investigator does have a
good sense of an appropriate range of dose levels to represent the full range of
response levels, then choosing a number of dose levels nearer the minimum required
by the number of model parameters seems reasonable – though including several
additional dose levels that will allow flexibility for fitting more complex models and
will accommodate any lingering uncertainty as to the appropriate dose range would
be a prudent strategy. On the other hand, if the investigator is very uncertain of the
nature of the dose-response curve, other strategies are needed. Most important would
be to employ a pilot dose-finding study to help home in on an appropriate dose range.
In addition, when the dose-response shape is uncertain, designs using a relatively
large number of dose levels (and necessarily fewer experimental units at each dose)
would increase the chances for avoiding some of the aforementioned problems with
poor dose placement.

Usually designs assign an equal number of observations at each dose level – this
strategy is just simple to execute. If the investigator expects that variability in
response is greater at some dose levels than others – say, variability is greater at
higher dose levels – allocating more experimental units at those dose levels expected
to be most variable can be an efficient strategy but one that is not widely used.

The design considerations to this point have focused on a completely randomized
design; but such simple designs are not the best approach in every study. Many dose-
response experiments must accommodate distinct batches of experimental units or
involve procedures that must be carried out on different days or using several
instruments of the same type to accommodate the throughput. In such experiments,
statistical efficiency demands that one account for the batches or days or instruments
at the data analysis stage – because they contribute batch-to-batch or day-to-day or
instrument-to-instrument variability. The statistical design goal is to be able to
remove, when possible, such unavoidable but attributable variability from the
variances of dose-level comparisons and the variances of parameter estimates. One
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statistically useful but relatively simple design in this context is a randomized
complete block design, where “block” is a generic statistical term for a set of
experimental units that have some feature in common. That feature might be a
common source (e.g., mice from different litters could constitute separate blocks,
or mice from different strains could constitute separate blocks), or that feature might
be some commonality in the way units are handled during the conduct of the
experiment (e.g., if multiple incubators are used in an experiment, the set of
experimental units assigned to each incubator would be considered a block). A
randomized complete block design assigns the experimental units within each
block at random to the set of dose levels under study. Thus, each block is a dose-
response study with one experimental unit allocated to each dose level; in a sense,
each block is a separate mini-dose-response study. This design is useful when the
number of experimental units in a block (the block size) is large enough to handle the
entire set of dose levels under study. If the block size is smaller than the number of
distinct dose levels, then more complicated designs known as randomized incom-
plete block designs may be appropriate. Statisticians have devised many sorts of
statistical designs to handle various sorts of restrictions on randomization imposed
by the way experiments must be conducted. The intent here is to make readers aware
of these issues and to point out that consultation with a statistician at the design stage
can help an investigator make the best use of resources in settings where complex
blocking may be needed.

8.4 The Model Describing How Mean Response Depends
on Dose: f(djθ)

Toxicologists typically consider dose-response curves that are continuous (i.e.,
without jumps) and where the mean response either increases across the entire
range of doses or decreases across that entire range. Dose-response curves that
never change directions are called “monotone.” A monotone dose-response model
can have one or more flat regions; however, if a monotone model has no flat regions,
it is called “strictly monotone.” A model is called “non-monotone” when it exhibits
any change in direction (i.e., the response increases over some dose ranges but
decreases over others).

Non-monotone dose-response models are not widely used in toxicology, but they
have some applications. For example, in the Ames assay, dose-response curves may
turn downward at the highest dose levels when cell toxicity dominates mutagenicity
(Margolin et al. 1981); others have allowed the possibility of non-monotonicity
when fitting flexible curves for relative potency estimation (Guardabasso et al. 1987,
1988). Consideration of hormesis also leads to non-monotonicity in dose-response
models (Hunt and Bowman 2004; Kim et al. 2016). As with the toxicity-
mutagenicity competition just mentioned, models constructed to reflect an increase
in response attributable to one process (say, mutagenicity) with a decrease in
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response due to another (say, toxicity) have been applied to non-monotone dose-
response data in other settings, such as high-throughput screening experiments (EPA
2016; Shockley 2016).

Monotone models with flat regions are used more often, however. A typical
example is a threshold model where the response is initially flat from dose zero up
to some critical dose where the monotone increase or decrease in response begins
(e.g., Casey et al. 2004). The initial flatness of a threshold model is interpreted as a
continuation of the response in the absence of chemical exposure until the dose
becomes sufficiently high to elicit a measureable response. Though such models are
useful, using noisy data to distinguish a flat region (where the slope is zero) from a
region with a very shallow positive or negative slope is difficult; consequently,
inference about the critical dose (join point) is difficult in the sense that estimates of
the join point often have large standard errors. Also, from a curve-fitting perspective,
a flexible and carefully chosen strictly monotone model can often closely mimic and
be difficult to distinguish statistically from a threshold model. Consequently, this
chapter will focus primarily on strictly monotone dose-response models.

Another reason to favor strictly monotone dose-response models in the context of
mixtures is that methods for constructing the dose-response curve for a mixture
under an assumption of additivity (e.g., Berenbaum’s definition of dose additivity;
Berenbaum 1985) become problematic without strict monotonicity. A dose-response
model maps a given dose to the corresponding expected response level; but use of
Berenbaum’s definition requires mapping an observed response level to the dose of
each component chemical that separately would induce that response level. What is
required is a mapping from response to dose – the inverse of the dose-response
function. If a dose-response curve has a flat section between two dose levels, the
response level of the flat portion does not correspond to a unique dose – but to any
dose between those two dose levels. A strictly monotone dose-response curve,
however, has a unique response corresponding to each dose and can be inverted to
provide a unique dose corresponding to each response. Thus, strict monotonicity of
the dose-response model is desirable in connection with mixtures.

Luckily, the class of strictly monotone mathematical functions to use as dose-
response models is large and can accommodate a wide variety of curve shapes. Many
dose-response models that toxicologists use routinely are nonlinear, often sigmoid.
In Eq. 8.3, an extended version of the Hill model was introduced; this model is
strictly monotone so long as γ 6¼ 0, and it is increasing or decreasing depending on
the sign of γ. Consider replacing the Hill function, dγ/(dγ + δγ), in Eq. 8.3 by a
general strictly monotone function g(djθ∗) that is governed by a vector of parameters
θ∗ and that takes values between 0 and 1 as d increases from 0 to 1 (or, equiva-
lently, as the logarithm of d increases from �1 to 1). One can write the resulting
more general dose-response model as:

f djθð Þ ¼ Lþ U � Lð Þ � g djθ∗ð Þ ð8:4Þ
(here, θ ¼ (L,U, θ∗)). This formulation allows f(djθ) to increase from L to U or to
decrease from U to L, depending on whether g(djθ∗) is monotone increasing or
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decreasing in d. For concreteness, the mean response in this chapter will be assumed
to increase monotonically with dose, unless otherwise stated. Therefore, the lower
response limit L is the value of f(djθ) when d ¼ 0 and the upper response limit U is
the value of f(djθ) as dose d gets arbitrarily large.

Generally speaking, the response limits in Eq. 8.4 can take any values such that
L is smaller than U. Some experiments may involve natural boundaries for the mean
response, in which case L and U might be assigned fixed values a priori. For
example, if the response is a percentage of experimental units responding, one
might specify L ¼ 0 and U ¼ 100 or in fact any pair of intermediate values that
satisfy 0 � L < U � 100. Alternatively, one or both of the response limits can be
treated as unknown and estimated from data in the current experiment (Dinse and
Umbach 2011) or from data on negative and positive controls in historical studies.
Even if the mean response is a proportion, the lower limit could exceed 0% if there
were a background rate, which could occur if a fraction of the population showed an
effect even without chemical exposure. Similarly, the upper limit could be less than
100% if a fraction of the population did not show an effect regardless of how great
the dose became.

The family of curves described by the dose-response model of Eq. 8.4 changes for
different specifications of the function g(djθ∗). Of course, the Hill model of Eq. 8.3
is one family where g(djθ∗) ¼ dγ/(dγ + δγ) with θ∗ ¼ (δ, γ). For statisticians, one
convenient way to specify a monotone increasing curve for g(djθ∗), which has a
lower bound of 0 and an upper bound of 1, is to use a cumulative distribution
function for a known statistical distribution, which by definition increases mono-
tonically from 0 to 1. (If a monotone decreasing g(djθ∗) is desired, subtract the
cumulative distribution function from 1 and use that difference as g(djθ∗).) Some
common statistical distributions used in toxicology include the logistic (Reeve and
Turner 2013); the normal, which leads to the well-known probit model (Finney
1971); and the Weibull (Christensen and Nyholm 1984). Many other choices are
possible, of course; but usually choices are restricted to familiar statistical
distributions.

Statistical cumulative distribution functions have rigidly defined shapes. Investi-
gators looking for more flexibility in the shape of a dose-response model to better fit
the data at hand have several options. One is to create a new dose-response model by
replacing dose d in an existing model with a transformed version of dose d; a second
is to use other kinds of models that allow more flexible dose-response shapes, such
as regression splines or smoothing splines.

Perhaps the most frequently used transformation of dose is the natural logarithm
of dose, in symbols, t(d )¼ ln (d ). Here, t(∙) is notation for a generic transformation,
and ln(∙) is the natural (base e) logarithm function. If one starts with a function f(djθ)
and substitutes t(d ) for d, one gets a new dose-response function f∗(djθ). Consider
the linear dose-response model f(djθ)¼ α + βd. If one replaces d with ln(d ), the new
dose-response model becomes f∗(djθ) ¼ α + β ln (d ). The latter model describes a
different family of curves than the original model. The same kind of manipulation is
possible starting from any model f(djθ); of course, one has no guarantee that the
resulting model f∗(djθ) will be better suited than the original for the data at hand.
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The distinction between creating a new dose-response model and simply
reparameterizing the original model is important and is often a point of confusion.
Often a model expressed as a function of d is reexpressed as a function of ln(d ) for
mathematical convenience or computational stability. This reexpression takes
advantage of the mathematical identity: d � exp (ln(d )). For example, the popular
Hill model (limited here to the response range 0–1) is frequently written as a function
of dose d:

g djθð Þ ¼ dγ= dγ þ δγð Þ: ð8:5Þ
Alternatively, Eq. 8.5 can be algebraically rearranged and reparameterized to give
the following logistic model, which is expressed as a function of log dose:

g djθð Þ ¼ 1= 1þ exp �α� β ln dð Þð Þ½ �, ð8:6Þ
where parameters α and β have different interpretations from parameters δ and γ.
Often α is referred to as an intercept and β as a slope because Eq. 8.6 can be rewritten
as a linear function of ln(d ), namely, ln{g(djθ)/[1 � g(djθ)]} ¼ α + β ln (d ). If one
sets α¼ � γ ln (δ) and β¼ γ, then Eqs. 8.5 and 8.6 coincide and both specify exactly
the same mean response for any particular dose. Thus, simply because two dose-
response models look distinct algebraically does not mean that they must specify two
different families of dose-response relationships – sometimes two models are exactly
the same even though the functional forms appear to be different.

For some models, one parameterization may offer computational or interpreta-
tional advantages over another. For example, when summarizing results in terms of
the ED50, one might prefer a model that incorporates the ED50 directly as a
parameter, such as parameter δ in Eq. 8.5, rather than calculating it indirectly from
other parameters. Alternatively, a model expressed in terms of ln(d), such as Eq. 8.6,
has properties that make it less susceptible to numerical problems with model fitting:
it minimizes curvature and thus reduces bias by more closely mimicking a linear
model (Bates and Watts 1988; Reeve and Turner 2013).

Rather than selecting a fixed dose transformation in advance, one can write the
transformation function t(∙) as a function of unknown parameters and build those
additional parameters into an original dose-response model, in essence estimating a
dose transformation that enhances model fit. Perhaps the most common transforma-
tion function with an adjustable parameter is the Box-Cox transformation (Box and
Cox 1964): t(d ) ¼ (dλ � 1)/λ, where the parameter λ governs the shape of the dose
metric, with a continuum of dose transformations for the range of λ values between
�1 and 1. This family of transformations includes (after changing multiplicative
and additive constants to 1 and 0, respectively) t dð Þ ¼ ffiffiffi

d
p

if λ ¼ 1
2, t(d ) ¼ 1/d if

λ¼ � 1, and t(d )¼ ln (d ) in the limit as λ! 0. For example, to obtain a linear dose-
response model with an arbitrary dose metric, one could substitute (dλ � 1)/λ for d in
f(djθ)¼ α + βd to create a new model f∗(djθ)¼ α + β[(dλ� 1)/λ] and then estimate λ
together with α and β using software for nonlinear regression. The same general
procedure could be applied to almost any dose-response model. For instance,
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Altenburger et al. (2000) considered several models that included a Box-Cox
transformation of dose.

One feature to be aware of when applying the Box-Cox approach is that the mean
response at dose 0 can differ from the response limit expected under the original
model. For example, consider a dose-response model f(djθ) as in Eq. 8.4, with g(djθ∗)
having the form shown in Eq. 8.6, except that (dλ � 1)/λ is substituted for ln(d).
An estimate of λ close to 1 would suggest using d � 1 (or, equivalently, d) as the
dose metric. By definition, at dose 0 the values of g(djθ∗) and f(djθ) should be 0 and L,
respectively. For an increasing dose-response curve (β> 0), however, substituting d for
ln(d) in Eq. 8.6 gives g(0jθ∗)> 0, and thus f(0jθ)> L. Therefore, use of the Box-Cox
approach can force a non-zero background rate even if L¼ 0. A similar problem occurs
for a decreasing dose-response curve (β< 0), where themean response at dose 0 would
remain below the upper limit, i.e., f(0jθ)<U, thereby precluding 100% response even if
U¼ 100. In other words, employing the Box-Cox transformation approach can imply a
redefinition of parameters L and U in models having the basic structure of Eq. 8.4.

Up to this point, the presentation has focused on parametric dose-response
models. Each of these models has a family of curves associated with it, and each
expresses the mean response as a smooth and strictly monotone function of dose.
These models often have parameters with useful interpretations. The shapes of the
curves within each family are rigid in certain ways, however. Despite one’s ability to
adjust a model’s parameters to achieve a best fit within that model or family of
curves, one may not always be able to find a model that adequately fits the data at
hand. Certain desired inferences, such as extrapolation below the lowest doses in the
experiment, rely heavily on the dose-response shape determined by the parametric
model.

As an alternative, one might seek approaches that also produce a smooth and
strictly monotone curve for the dose-response function but alleviate some of the
rigidity in shape of particular parametric models. To achieve greater flexibility in
curve shape, one generally has to sacrifice some interpretability of model parameters.
Still, for mixture applications, the goal is often fitting a smooth monotone dose-
response curve. From such a curve, one can estimate any quantities of interest such
as the ED50 or other benchmark doses even when a single parameter identified with
the quantity of interest is not part of the model. On the other hand, low-dose
extrapolation is even more uncertain with such models because their flexibility
precludes using the rigid parametric model structure to help make inferences beyond
the range of the available data. Various kinds of flexible smoothing models could be
applied for dose-response modeling with choices dictated to some extent by the
nature of the available data. Splines, which are piecewise polynomial models, could
be useful in many dose-response settings (Harrell 2001; Ramsay 1988). The analyst
chooses the number and location of knots (the dose levels where the polynomial
pieces join), the degree of polynomial to employ, and sometimes a constraint on the
function beyond the lowest and highest knots. For dose-response modeling,
constraining the fitted spline to be monotone is an important consideration. For
example, with respect to evaluating mixture data for departures from additivity,
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Kelly and Rice (1990) used a monotone hybrid of smoothing and least-squares
splines, where monotonicity is achieved by constraining coefficients and smoothing
is controlled by a penalty parameter and by the number of knots. For data with a
binary response, Dette et al. (2005) proposed a nonparametric method for obtaining
monotone estimates of effective dose without requiring constrained optimization or
function inversion. In a relative potency setting, Guardabasso et al. (1987) assumed
that multiple chemicals share a common but arbitrarily shaped dose-response curve,
which can be shifted or stretched along the log-dose scale to give chemical-specific
curves; they model the common curve by a cubic spline (though without requiring
monotonicity) and then apply chemical-specific shift and scale parameters. Notting-
ham and Birch (2000) combined parametric and nonparametric estimates of a dose-
response function, with a mixing parameter that adjusts the relative weight given to
each component based on how well it individually fits the data.

Another modeling strategy, one that is capable of generating quite flexible
predictive models but one that has largely been unexplored for dose-response
modeling, is model averaging. The idea is that one postulates a list of K possible
dose-response model families, say f1(djθ1), f2(djθ2), f3(djθ3), � � �, fK(djθK), and fits
each of the K models to the available data. The final predictive model is a weighted
average of the best-fitting models, one from each family. Typically, model fitting is
accomplished using a Bayesian paradigm where the weights are also estimated.
Although we have not yet seen model averaging used in the context of mixture
models, model averaging has been proposed by several authors as a way to estimate
a benchmark dose that is not tied to any single parametric model family (Fang et al.
2015; Simmons et al. 2015; Wheeler and Bailer 2007, 2008, 2009) and to detect
hormesis (Kim et al. 2016).

When examining whether a mixture is obeying some definition of additivity,
there is a premium on accurate and precise estimation of the dose-response curves of
the component chemicals because the predictions from those curves are combined to
calculate the expected dose-response curve for the mixture under additivity.
Hertzberg et al. (2013) proposed an approach based on guidance from the U.S.
Environmental Protection Agency that assumes that all component chemicals are
toxicologically similar and that the specific dose-response curve for each chemical
comes from a common family of models; that is, the component-specific curves
differ only in their specific parameter values, but not the form of f(djθ). Those
authors use model selection criteria (see Sect. 8.5) to select the simplest model
family that still provides an adequate fit to the data for each component chemical.
This approach is straightforward and likely sound if all component chemicals are
indeed toxicologically similar. There is, however, no guarantee that a single model
family will provide the best fit to the data on each component chemical. The
Hertzberg et al. approach could suffer if the dose-response relationships of certain
component chemicals were poorly fit by the common model family. In a less
restrictive approach, Altenburger et al. (2000) specified a list of model families
(such as described above for model averaging) and selected a best-fitting model for
each component chemical across the list of model families. Thus, each component
chemical could have a dose-response curve from a different model family, a strategy
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which improves overall fit at the expense of greater complexity. A model averaging
approach would, in principle, offer better response prediction for each component
chemical than could any single model – but that potential advantage would come at
the expense of a vastly more computationally intensive fitting procedure.

8.5 Analysis Considerations

As mentioned previously, a dose-response model is specified via three components:
a probability distribution, a model f(djθ) that describes the relationship between
mean response and dose, and a model Σ(ω) for the variance-covariance matrix of the
data. The process of fitting a dose-response model to data is the process of estimating
the values for the unknown parameters θ in the mean model and ω in the variance-
covariance model that best fit the data. Denote the estimated values by bθ and bω,
respectively. Although the details of the calculations differ depending on the
assumed probability distribution for the data and the criterion employed in defining
“best fit,” statistical software will provide the estimates bθ and bω together with
estimates of the variances and covariances of those parameter estimates – as well as
related quantities such as confidence intervals and test statistics. After fitting a
particular model f(djθ) to data from an experiment and having the estimate bθ
available, one can estimate the true mean response under the model at any specified
dose level d∗ by calculating f ðd∗jbθÞ, that is, by substituting d∗ and bθ into the
relevant equation. The value f ðd∗jbθÞ is called the predicted response (or predicted
value) at dose d∗. The variance of these predicted responses can be estimated using
bω, but details of the calculation differ depending on the particular dose-response
model assumed. Again, many statistical software tools will provide these predicted
values and their variances (or standard errors). Thus, fitting a dose-response model
allows one to plot the estimated mean response trajectory as a function of dose and to
construct confidence bands for and test hypotheses about that trajectory.

A well-known aphorism attributed to statistician GEP Box is “All models are
wrong; but some are useful.”With any regression models, and dose-response models
are no exception, one seeks a model where the estimated dose-response trajectory
closely mimics the trajectory of the observed data, and the assumed variance model
and probability distribution are faithfully reflected by the observed data. If the
assumed model does not satisfactorily reflect the data, then inferences based on
that model are questionable and conclusions are potentially misleading. The model
must be a sufficiently good approximation to be useful. Thus, a critical part of any
dose-response analysis involves assessing the aptness of the model for the data at
hand. Essentially, this process is one of model criticism – what are the good and bad
aspects of the model in terms of being in accord with the data.

Inspecting residual plots is often a sensible first step in model criticism. Pro-
cedures for examining model assumptions through residual plots are commonplace
for models that are linear in the parameters; for such linear models, the residuals have
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two desirable features: (1) the variability in the residuals is a straightforward
reflection of the variability in the data; and (2) the residuals and the predicted values
are uncorrelated. A so-called raw residual, ε̂ij, is the difference between an observed

response and its predicted response under the fitted model; thus, ε̂ij ¼ yij � f ðdijbθÞ;
sometimes these raw residuals are rescaled to have variance 1 by dividing each by
some measure of variability. The raw residuals, and their various rescaled counter-
parts, are commonly used with linear models. Residuals with names such as Pearson
residuals or deviance residuals are often used with models involving binomial or
Poisson distributional assumptions (Agresti 2013), but the fundamental idea remains
the same – a residual assesses how far an observed response is from the value
expected under the fitted model.

What is less often recognized is that, for the nonlinear models common in dose-
response modeling, raw residuals do not necessarily retain the features that make
them useful for checking aptness of linear models via plotting. (Problems arise when
a nonlinear model has high intrinsic curvature, a concept beyond the scope of the
current presentation.) Instead, another concept of residuals, called projected resid-
uals (Cook and Tsai 1985), can be used with nonlinear models to recover the
desirable properties needed for using simple plots of residuals as diagnostic tools.
Statistical software packages such as SAS provide projected residuals for plotting.

Consider modeling a continuous response, like enzyme activity, with n > 1
experimental units per dose level under the assumption that the response at each
dose level is normally distributed about its mean with constant variance across dose
levels. Aspects of model aptness can be examined by plotting the residuals appro-
priate for the type of model fitted against dose level di or against predicted response
f ðdi jbθÞ. If the assumed model for the mean fits well, the n residuals at each dose
level should be centered near zero at every dose (Fig. 8.2a); departures where the
residuals are centered above zero for some dose levels and below zero for others
suggest that a different mean function may provide a better fit (Fig. 8.2b). If, in
addition, the variance is constant as assumed, residuals at every dose level will
exhibit approximately equal spreads (Fig. 8.2a); patterns where the spread in the
residuals grows larger or smaller with increasing dose level provide evidence for
heteroskedasticity (Fig. 8.2c) and may indicate that a transformation of the response
or a more complex model that incorporates heteroskedasticity is needed. Moreover, a
histogram of the residuals should reveal a symmetric distribution if the data are
distributed normally.

Another common graphical diagnostic approach applied with linear regression is
to look for influential observations – those that have an unusually large influence on
parameter estimates or on predicted values when they are deleted from the data set –
by plotting various statistics known collectively as influence diagnostics against a
variable that identifies each observation. Again, as with residuals, inherent charac-
teristics of nonlinear regression models that differ from those of linear models imply
that some concepts used for influence diagnostics must be reinterpreted for use with
nonlinear models (St. Laurent and Cook 1992, 1993).
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In addition to informal visual inspections of residual plots, formal statistical tests
can be applied as well. Perhaps the most basic test for aptness of the regression
model f(djθ) arises from comparing the fit of Eqs. 8.1 and 8.2. When each of the
D distinct dose levels in a dose-response experiment has n > 1 experimental units
assigned, the estimates of the set of μi in Eq. 8.1, denoted μ̂i, are the average values of
the observations at each dose level. Those values should be unbiased estimates of the
true unknown responses at those dose levels (most accurate estimates available with
the data at hand); the larger n, the more precise the estimates. The use of regression
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Fig. 8.2 Characteristic residual plots for a dose-response model whose errors εij have a normal
distribution. Underlying data have responses measured on 20 experimental units at each of 11 dose
levels (d1, d2, d3,. . ., d11). Panel (a): data-generating model has homoskedastic errors and the fitted
f(d j θ) was correctly specified; residuals have similar spreads and are vertically centered near zero at
all dose levels. Panel (b): data-generating model has homoskedastic errors, but the fitted f(d j θ) was
incorrectly specified; residuals have similar spreads at all dose levels, but their centers exhibit a
non-horizontal trajectory (above zero at intermediate dose levels and below zero at lower or higher
dose levels). Panel (c): data-generating model has heteroskedastic errors, but the fitted f(d j θ) was
correctly specified; residuals are vertically centered near zero at all dose levels but have spreads that
increase with dose level
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model f(djθ) to provide inference about responses at untested doses proceeds under
the belief that it also provides unbiased estimates of the true unknown response at
each tested dose level. On the other hand, if the mean responses at tested dose levels
based on fitting f(djθ) appear biased, then it may not be a useful model. Thus, one
regards the regression model f(djθ) as fitting the data well when its predicted
responses at tested doses closely match the corresponding dose-specific means,
i.e., when f ðdijbθÞ � μ̂i. This idea is the basis of a test of model fit that can be
applied whenever the vector θ contains fewer than D parameters. The general
procedure is to fit both Eqs. 8.1 and 8.2 via maximum likelihood and construct a
likelihood ratio test (Seber and Wild 1989) comparing the fit of Eq. 8.2 to that of
Eq. 8.1. Rejection of the null hypothesis that both models fit equally well implies that
the regression model f(djθ) was unsuccessful in estimating the observed dose-
specific mean responses and should be replaced with a different model. Of course,
details of constructing the likelihood ratio test depend on the statistical distribution
assumed for the responses.

For example, consider a study involving D distinct dose levels with
n experimental units assigned to each dose and assume that the response has a
normal distribution at each dose level. Then, the fitting of Eq. 8.1 amounts to
conducting a one-way analysis of variance with the dose levels as the treatment
groups. Taking f(djθ) to be the Hill model of Eq. 8.3 where θ contains four
parameters, a least-squares-based test that is essentially equivalent to the likelihood
ratio test comparing Eq. 8.2 to 8.1 would involve an F-statistic withD� 4 degrees of
freedom in the numerator and D � (n � 1) in the denominator (Seber and Wild
1989).

The underlying principle used in the goodness-of-fit test described above for
comparing Eqs. 8.1 and 8.2 can be applied to any pair of nested models to decide
whether the smaller model fits as well as the larger. Consider two regression models,
with f2(∙jθ2) being a nested sub-model of f1(∙jθ1). One way to think of a nested
sub-model is that the parameter vector θ2 of the sub-model contains the same
parameters as θ1 except that, in the sub-model, some of the parameters are fixed at
specified values and do not need to be estimated. For example, consider the Hill
model of Eq. 8.3 with parameter vector θ1¼ (L,U, δ, γ). Another Hill model with the
lower and upper asymptotes fixed at 0 and 1, respectively, would have parameter
vector θ2 ¼ (0, 1, δ, γ) and be nested within the first because the parameters to be
estimated in θ2 are a subset of those to be estimated in θ1. When one model is a
special case of another, the one with more parameters is more flexible and will
necessarily fit at least as well as the one with fewer parameters; however, if the
difference in fit is negligible, the simpler model with fewer parameters would
typically be preferred based on parsimony. Formal statistical tests such as likelihood
ratio tests can be used to decide whether or not fixing a subset of the parameters at
specified values degrades model fit (Seber and Wild 1989).

Comparing two regression models that are not nested requires a different strategy.
Formal tests to compare non-nested models are rarely used in toxicology; instead,
one chooses the “better”model by using a model selection criterion. Because models

8 Dose-Response Modeling 227



with more parameters might be expected to fit better than models with fewer
parameters, model selection criteria typically make adjustments for the number of
parameters in the model. The general procedure is to choose a model selection
criterion and calculate its value for each candidate model under consideration.
Then select as the best model the one with the largest value (or sometimes smallest,
depending on the particular criterion used) of the criterion. A great variety of such
criteria are in use. The coefficient of determination (R2), or a version of it adjusted for
the number of parameters in the model, selects according to the proportion of
variation in the data accounted for by the fitted model. Other commonly used criteria,
such as the Akaike information criterion (AIC) (Akaike 1974) or the Bayesian
information criterion (BIC) (Schwarz 1978; Montgomery et al. 2012), evaluate
goodness of fit through the likelihood of the observed data but impose a penalty
that increases with the number of model parameters. Thus, if two models produced
the same likelihood, these criteria would favor the one with fewer parameters. In
experiments that involve very few observations, one might prefer the AICc
(Burnham and Anderson 2002), a version of the AIC with a correction for small
sample sizes. Model selection criteria such as these are useful adjuncts to strategies
for modeling mixture components, such as those of Hertzberg et al. (2013) and
Altenburger et al. (2000), which involve selecting best-fitting models. On the other
hand, even the best-fitting among a list of candidate regression models may exhibit
important lack of fit when compared to fitting the dose-specific mean responses via
Eq. 8.1.

When the model f(djθ) for the mean response shows evident lack of fit, how
should it be remediated? An obvious answer is to choose a different model with
superior fit – but that may be easier said than done. Experience with the particular
response or assay may suggest alternative models to try; similarly, a literature search
or reaching out to colleagues might turn up alternatives. A plot with the fitted dose-
response model overlaying the observed data sometimes reveals the main discrep-
ancies between model and data, thereby suggesting modifications to improve the
model – including perhaps changing the dose metric. Such a plot or residual plots
may instead reveal “unusual” or “influential” data values that adversely affect model
fit, initiating careful scrutiny of the validity or correctness of those data points. If
efforts to find a better-fitting parametric model fail, one could consider more flexible
modeling approaches such as splines or model averaging, as mentioned earlier.
Another consideration is whether the model is useful for its intended purpose despite
some lack of fit. For example, suppose model fit suffers mainly at high doses but is
satisfactory at lower doses. If inferences at lower doses are the primary use for the
model, perhaps the formally ill-fitting model will yield useful information – inter-
pretation should be cautious, however: lack of fit in the mean model can distort
variance estimates so that, for example, confidence interval coverage may suffer
even at the low doses where the mean model fits well. Although the use of a model
that exhibits substantial lack of fit is undesirable, it is occasionally unavoidable; in
those unavoidable cases, one should clearly acknowledge evident lack of fit in
reporting the results of the data analysis.
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Although the primary focus is often on the mean response, a full dose-response
model must also properly model the variability of the data around the mean. This
variability is partly described by the nature of the probability distribution employed
and partly by the model Σ(ω) for the variance-covariance matrix.

As mentioned previously, the nature of the response (binary, count, or continu-
ous) and experience often is sufficient for properly specifying an appropriate prob-
ability distribution. Nevertheless checking distributional assumptions is always
useful. Histograms or Q-Q plots (Wilk and Gnanadesikan 1968) of residuals can
reveal deviations from an assumed distributional shape, particularly for continuous
responses. Formal procedures for testing distributional assumptions are available.
Some, such as the Kolmogorov-Smirnov test or the Anderson-Darling test, are
general purpose (Stephens 1974); others, such as the Shapiro-Wilks normality test,
are directed toward particular distributions (Stephens 1974).

Building models for the variance is often a complex undertaking and well beyond
the scope of this chapter – so the remarks here merely scratch the surface. As
mentioned earlier, for distributions like the binomial or Poisson, the variance is a
function of the mean, so the variance model is partly preset. Additional variance
parameters are introduced only when the preset model proves inadequate for the
data. When the normal distribution is the relevant probability model, often the
default assumption is that the variance is constant and governed by a single param-
eter. Nonconstant variance is possible; it can sometimes be stabilized by a transfor-
mation of the response variable to achieve constant variance (Bates and Watts 1988;
Bickel and Doksum 1977) or, alternatively, be modeled as a parametric function of
dose. For complex experimental designs that involve more structure than a
completely randomized design – such as multiple batches of experimental units or
an experiment that is carried out in blocks over several days –modeling the variance
often requires the use of several variance parameters. For example, the model might
need a parameter for variance in response among units in a single batch and one for
variance among batches. If the overall variability can be partitioned into such
components, statistical analysis implements a so-called mixed model approach that
allows simultaneous estimation of mean parameters and multiple variance parame-
ters (Searle et al. 2006).

Another kind of departure from assumptions arises if observations are correlated
instead of being independent as many models assume. Such correlations typically
arise from block structure in the experimental design or from certain pre-analysis
data manipulations. One common practice is to rescale a continuous response so that
its limits are 0 and 1 on a probability scale or 0 and 100 on a percent scale. If the
largest responses occur at dose zero, one might rescale by dividing all responses by
the mean response among the negative controls so that on average the responses
have an upper limit of 100% (Crofton et al. 2005; Hertzberg et al. 2013). Although
such rescaling has intuitive appeal, in principle, dividing several responses by the
same random quantity (average of negative control responses) induces correlations
among them that contradict independence – because the rescaled responses all
depend on the same mean response among controls. Particularly when the rescaling
is done separately for different runs that are part of the same experiment (using
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run-specific control means), the analysis should arguably account for this depen-
dence. Again, mixed models can be constructed to account for correlations. Alter-
natively, with likelihood-based estimation methods, statisticians have developed
alternative estimators for the standard errors of parameter estimates that adjust for
such correlations. These estimators, known as “sandwich estimators” (Kauermann
and Carroll 2001; Freedman 2006), are also useful in settings with
heteroskedasticity. In situations where appropriate variance estimators are difficult
to derive theoretically, bootstrap methods or other resampling methods can be used
to estimate standard errors appropriately (Efron and Tibshirani 1993).

In evaluating model fit, it is important to recognize that all three components of
the dose-response model play off one another. If the probability model assumes a
symmetric distribution but the actual data distribution is skewed, the variance model
may be (or appear to be) misspecified. If the mean function fails to fit the data well,
that could also impinge on the diagnostics for evaluating the variance model or the
distribution. In evaluating the aptness of a model, one must keep in mind that all
three components work together.

8.6 Computational Issues

Many dose-response models used in toxicology require iterative computational
methods for model fitting. Whether the criterion for best fit is least squares or
maximum likelihood, estimation for models that are nonlinear in the parameters
uses computational algorithms that approach the best fit incrementally through
successive cycles of computation. The iterations stop when an additional cycle
fails to improve the fitting criterion by a preset amount – in which case the algorithm
is said to have converged. For maximum likelihood, one can think of the process as
analogous to finding the highest point in a landscape (for least squares, the lowest);
only the dimension of the “landscape” –which depends on the number of parameters
in the model – is often higher than three. Also, the algorithms cannot just look
around and see the highest point and head toward it; they must use clues available at
the current location, such as steepness and uphill direction, to determine which way
and how far to go for the next iteration. When the topology is complicated, the
algorithms have trouble finding the maximum. A long and nearly flat ridge makes
finding the maximum difficult. Sometimes an algorithm “falls off a cliff” and has
difficulty climbing back. Multiple nearby peaks of different heights also make
finding the unique maximum difficult. All these issues may lead to failure of an
algorithm to converge.

One common cause for failure to converge is a design that is not well suited to the
model at hand, as was more fully discussed earlier. Thus, an appropriate choice of
the number and spacing of dose levels goes a long way toward avoiding convergence
problems in model fitting. Even with a sound design, however, nonlinear models can
be quirky to fit. Sometimes a model can be reparameterized so that the numerical
properties of the fitting algorithms are improved while the trajectory of predicted
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responses remains unchanged. Although the best way to parameterize a given model
is not always obvious, some choices work better than others. A reparameterization of
the Hill model to improve numerical performance was described earlier (see Sect.
8.4). In addition to the mean response, the overall model may involve one or more
variance parameters, and reparameterizing the variance may also help in some
situations. For example, rather than directly estimating the variance or even the
standard deviation, the logarithm of the standard deviation may work better, possibly
due to its scale being more similar to that of the mean parameters. Sometimes
centering dose levels can enhance convergence and lessen variability of parameter
estimates by reducing multicollinearity (Reeve and Turner 2013). All iterative
algorithms must start at some initial set of guesses at the parameter values and
proceed iteratively to improve those estimates – but convergence can be highly
dependent on the choice of starting values. Ill-chosen values can lead to
non-convergence. Moreover, in situations where the likelihood surface has multiple
peaks, different starting values can lead to seemingly successful convergence to
estimates that represent different local maxima – but the goal is to find the global
maximum. Even if convergence appears to have been achieved, it is good practice to
try multiple distinct starting values and confirm that all produce the same ultimate
estimates. When fitting closely related dose-response curves simultaneously to
multiple chemicals that differ widely in potency, one simple but effective step that
frequently helps with convergence issues is to rescale the doses of each chemical, so
corresponding parameter estimates will have similar magnitudes across chemicals.
For example, in simultaneously fitting Hill models to two chemicals, the first with an
ED50 near 0.005 mg/kg and the second with an ED50 near 5.0 mg/kg, convergence
might be improved if the dose levels of the first chemical were rescaled to μg/kg, so
both ED50 values were near 5.0 in their respective units. Of course, the resulting
estimates and confidence limits could be reexpressed in any common units desired.
Finally, there are usually several different computational algorithms that can be used
to estimate the parameters of a given model. For example, the NLIN procedure in
SAS offers four choices: steepest descent (or gradient), Newton, modified Gauss-
Newton, and Marquardt. Some methods may work better than others for a given set
of data, so if one algorithm fails to converge, try another. Also, most algorithms
involve preset constants that control aspects of the algorithm; sometimes adjusting
these “tuning parameters” helps with computational issues.

8.7 Summary

Dose-response modeling is an important data analysis tool throughout toxicology,
particularly so in evaluating chemical mixtures. This chapter provides a broad
introductory overview to statistical issues that arise in studying dose-response
relationships. Statistical dose-response models consist of a probability distribution
for the response, a function f(djθ) to describe the relationship between the mean
response and dose, and a model Σ(ω) for the variance-covariance matrix of the data.
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The chapter discusses the role of statistical study design, including the roles of dose
placement and of properly accounting for multiple sources of variation or correla-
tions among observations, in achieving accurate and precise parameter estimation
and efficient hypothesis testing. It discusses the choice of a functional form for f(djθ)
and describes strategies for examining the adequacy of the proposed dose-response
model. Finally, the chapter considers some ways to cope with the failure of iterative
model-fitting algorithms to converge to a unique solution. Careful attention to study
design and the use of statistical models that are appropriate for the data at hand are
critical for achieving the best possible results from dose-response studies.
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