
Chapter 17

Psychosocial and Chemical Stressors

Jane E. Clougherty and Jonathan I. Levy

Abstract Psychosocial stress has been consistently linked with alterations in

immune, endocrine, and metabolic function, and growing evidence indicates that

psychosocial stressors—including noise, poverty, and exposure to violence—may

alter human susceptibility to environmental chemical exposures. As a result, there

is a growing need for methods to disentangle patterns in chemical and non-chemical

exposures and to quantify their independent and interacting effects on health.

Here, a framework is presented for integrating psychosocial stressors into a

traditional risk assessment approach, with attention to exposure assessment for

non-chemical stressors and to statistical methods for incorporation of very disparate

exposures into a risk assessment. Finally, an illustrative case example is presented,

to demonstrate an approach for incorporating a psychosocial stressor (here, expo-

sure to violence, a key stressor in urban U.S. communities) into a cumulative risk

assessment aiming to quantify air pollution effects on health.
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17.1 Introduction/Framework

17.1.1 Psychosocial Stressors in Mixtures Analysis
and Cumulative Risk Assessment

The rapidly growing interest in characterizing the combined effects of chemical and

non-chemical stressors on health outcomes and in cumulative risk assessment has

stemmed from a few key observations. First, significant chemical and non-chemical

stressors are often spatially or demographically correlated, clustered in lower-
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income communities near highways or industrial corridors (Bullard 1993). Second,

there is growing epidemiological and toxicological evidence that chronic psycho-

logical stress (oftentimes driven by poverty, exposure to violence, and other

community-scale non-chemical stressors) may alter individuals’ susceptibility to

environmental pollution (Clougherty et al. 2007, 2010a, 2014; Clougherty and

Kubzansky 2010; Virgolini et al. 2006). This heightened susceptibility may be

mediated through a suite of immune, endocrine, and metabolic changes that occur

under chronic stress, a condition collectively referred to as allostatic load (McEwen

1998). Together, these observations suggest that the most pollution-exposed com-

munities also may be the most susceptible (Lipfert 2004). Thus, disentangling the

effects of chemical and non-chemical exposures and identifying their potential for

greater than additive effects are increasingly becoming research and policy prior-

ities, recognized as critical toward identifying and protecting susceptible

populations as well as reducing health disparities (U.S. EPA 2003). While numer-

ous non-chemical stressors may either cause harm directly or increase vulnerability

to harm by other stressors, the focus of this chapter is on the role of psychosocial

stressors in cumulative risk assessments for physical or chemical environmental

exposures.

A cumulative risk assessment may be motivated by observed disease patterns

(effects-based risk assessment), interest in a specific set of exposures present in a

given community (stressor-based risk assessment), or a defined subpopulation of

concern within a community (receptor-based risk assessment). Although this third

category is likely to overlap procedurally with either an effects-based or stressor-

based assessment, given the nature of cumulative risk assessments, it would include

a more explicit characterization of the community including elements such as

demographics, geographic boundaries, and health. For any of these applications,

psychosocial stressors may be hypothesized either to directly influence health

outcomes or to modify health response to chemical/physical exposures. The issues

at hand in accurately characterizing psychosocial stressors and their potential role

in cumulative risk assessment apply equally to any assessment type, including such

significant questions as:

• How does cumulative risk assessment integrate insight from epidemiology,

given that (1) toxicological evidence may not fully capture human psychosocial

stressors, (2) epidemiological evidence is currently lacking for the vast majority

of chemicals, and (3) the vast majority of chemicals also do not currently have

toxicological data sufficient for traditional risk assessment processes? Relatedly,

can either toxicology or epidemiology adequately inform the distribution of

stressors or vulnerability in a population, given relatively homogeneous

populations in toxicology, and challenges in determining effects across differing

subpopulations in epidemiology?

• How can exposures to psychosocial stressors be appropriately and jointly quan-

tified and represented, given relatively little data beyond demographic informa-

tion in most settings? Can defaults be established that are both meaningful and

interpretable in a variety of settings?
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• Can a cumulative risk assessment meaningfully include both chemical and

psychosocial stressors, if interventions typically target chemical stressors? Is

the process different if a non-chemical stressor happens to be influenced by risk

management activities (e.g., if cleaning up a pollution source in a community

alleviates psychosocial stress)?

• Which psychosocial stressors are potentially relevant for specific settings,

chemical exposures, or outcomes?

The focus of this chapter is on the role of psychosocial stressors in human health

cumulative risk assessment, with attention to a few key steps (i.e., exposure

assessment, dose-response modeling). Available databases and metrics that could

allow for characterization of exposure to psychosocial stressors are discussed,

considering both ideal parameters and proxy measures and default assumptions

that could be useful in the absence of detailed population-specific data. For dose-

response modeling, strategies that could be used for epidemiological or toxicolog-

ical evidence are considered, and similarities and differences from chemical mix-

tures are discussed. Finally, an illustrative case example is presented that

emphasizes the viability of including psychosocial stressors using epidemiological

evidence.

17.1.2 Background and Terminology

Psychosocial stressors (i.e., perceived stressors in our social environment) are

hypothesized to lead to negative health outcomes directly, or through stress-related

alterations in immune, neuroendocrine, or metabolic function, collectively referred

to as ‘allostatic load’ (McEwen 1998). Through these multiple stress-related path-

ways, chronic stress may serve to damage the individual’s health directly (Evans

2003) or may alter the individual’s susceptibility to exposures in the physical

environment, such as air pollutants (Clougherty et al. 2014) or cold viruses

(Cohen et al. 1991).

The psychosocial stressor pathways can be best understood in that psychological

stress, regardless of the perceived stressor (social or otherwise), results when

external demands exceed an individual’s perceived abilities and resources to meet

those demands (Cohen et al. 1995). This may be best characterized as a three-phase

process:

1. Stressor (i.e., event, condition, or stimuli which pose a challenge)

2. Appraisal (i.e., an individual’s perception or interpretation of the stressor)

3. Response (e.g., psychological and physiological sequelae)

These phases are not independent, and all phases are required in order to exert a

psychological or biological stress response; a stressor perceived as benign or

beneficial generally produces no psychological stress response. Thus, exposure

assessment for psychosocial stressors would ideally not simply catalog stressors
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(e.g., life events, community violence), but would rather emphasize total perceived

stress (capturing response to multiple differently appraised stressors) or negative

affect (e.g., anxiety, depression) as a cumulative indicator of mental distress and

psychosocial stress (Kubzansky et al. 1999; Seeman et al. 2002). In cumulative risk

assessment, it can be very challenging to quantify the appraisal and response

phases, especially across large populations, though these factors influence the

accuracy and interpretability of many psychosocial stressors. It is a topic of ongoing

research to validate associations between community-level stressors (e.g., crime)

and individual perceived stress and to identify factors which strengthen or weaken

associations between stressor indicators and stress responses.

17.2 Exposure Assessment

Although much discussion on psychosocial stressors in cumulative risk assessment

focuses on dose-response modeling, characterizing human exposures to psychoso-

cial stressors is a critical step. It is extremely challenging to accurately characterize

exposures to chemicals, especially in a community context where there is a need to

account for multiple chemicals simultaneously. Psychosocial stressors can be even

more challenging and cannot be quantitatively measured or modeled using only the

same methods used for chemical exposures. In large part, this is because responses

to psychosocial stressors vary with individual perception (i.e., “appraisal”), often

influenced by history and context. Here, we briefly address four key dimensions of

exposure assessment for psychosocial stressors:

1. The need to characterize the mechanism(s) of action and hypothesized pathways

of effect

2. The need to carefully assess proxy variables for psychosocial stressors, consid-

ering the level of operation (i.e., community or individual level) and validating

measures

3. The need to consider correlations among psychosocial and chemical exposures,

which influence the accurate development of statistical models for epidemiology

and accurate interpretations of measures of association

4. The need to establish default assumptions for psychosocial stressor exposures, in

the absence of population-specific exposure data

17.2.1 Characterizing Mechanism(s) of Action/Pathways
of Effect

Measuring psychosocial stressors is particularly challenging because many can act

through multiple pathways. Some exposures can operate (simultaneously) as both a

physical and psychological stressor. For example, noise can physically damage the
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inner ear but also can be a psychological stressor. The appropriate exposure

assessment for the physical pathway would be direct measures of sound, while

the appropriate exposure assessment for the psychosocial pathway would require

measures of perceived annoyance. Although these measures may correlate, sub-

stantial exposure misclassification would occur where using physical measures

alone for the psychosocial pathway. Likewise, heat may be a physical stressor,

leading to heat exhaustion or hypertensive outcomes, and is also uncomfortable and

therefore psychologically stressful over extended periods (one of many causes

believed to contribute to greater urban violence during summer months and heat

waves). Again, the optimal measure depends on the hypothesized pathway [i.e.,

apparent temperature (physical), or perceived discomfort (psychological)].

A related challenge is the possibility that some pollution sources may also be

psychosocial stressors if, for example, residents perceive substantial risk from a

local source or if the source’s presence suggests to residents that their health and

well-being are not valued by the larger society (Bullard 1990). As such, it is often

challenging to disentangle the physical and psychological aspects of pollution

which impact communities near toxic sites (Elliott et al. 1993; Eyles et al.

1993)—and, again, the appropriate measure for each pathway would differ. It has

been argued that having exposure assessment be homologous with dose-response

modeling is a critical feature of risk assessment (National Research Council 2009,

2011), which is especially true for psychosocial stressors. Thus, we recommend that

any exposure assessment begin with a clear conceptual model for hypothesized

direct and indirect pathways to health effects, which, in turn, would drive the

selection of exposure measures.

Because individual stress responses vary over time, and because individuals

respond differently to most community-level stressors, there is increasing interest in

developing biomarkers of stress. In theory, a well-characterized biomarker could

facilitate epidemiological analysis and provide a comprehensive indicator of the

response of an individual to multiple stressors. Stress is, however, by definition, a

non-specific condition impacting a wide range of bodily systems (Selye 1936),

many of which (e.g., inflammation) are also impacted by chemical and physical

exposures, and the effects of which may vary with co-exposures, comorbidities, or

other facets of individual physiologic susceptibility. Further, the timing of stressor

exposure can greatly influence response (e.g., acute vs. chronic stress have very

different physiologic sequelae). Taken together, it is unlikely that a single bio-

marker—or even a resolved suite of biomarkers—will reliably and meaningfully

capture all stress responses, for all periods of interest.

Nevertheless, substantial research has examined the physiology of stress and the

search for “biomarkers” of both acute and chronic stress. To date, most “bio-

markers” identified have been immune or neuroendocrine markers associated

with physiological stress responses—e.g., cytokines and glucocorticoids (Miller

et al. 2002)—and an important emphasis has been on distinguishing biomarkers of

acute stress (e.g., cortisol as an indicator of hypothalamic-pituitary-adrenal (HPA)-

axis activity) from those of chronic stress (e.g., endocrine disruption or NF-κB
signaling as an indicator of HPA-axis regulation) (Miller et al. 2007).
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Formerly, corticosteroids (e.g., cortisol) in blood or saliva were emphasized as

markers of HPA-axis activity, although stress-related HPA function changes lead to

cortisol dysregulation (via glucocorticoid resistance and HPA regulation), not

simply increased cortisol production. As such, cortisol can be difficult to interpret

and generally better indicates acute, rather than chronic, stress. Importantly, it

remains unknown how acute stress response may differ under chronic stress

scenarios, and thus some more recent research emphasizes indicators of glucocor-

ticoid resistance and neuroendocrine signaling (Miller et al. 2007). Other evidence

suggests that C-reactive protein (CRP) may reasonably capture chronic stress;

however, CRP is a non-specific immune marker also elevated in response to air

pollution and other exposures (Clougherty et al. 2010a). Although no single bio-

marker is appropriate for all applications (Brunner 2007), suites of physiologic

parameters have been developed to represent chronic “allostatic load” in humans

and include indicators of cardiovascular function, metabolism, cholesterol, glucose

metabolism, HPA-axis function, and sympathetic nervous system activity

(Kubzansky et al. 1999; Seeman et al. 2002). Several studies document chronic

stress effects on cardiovascular risk indicators (abdominal obesity, elevated serum

triglycerides, lower levels of high-density lipoprotein (HDL) cholesterol, glucose

intolerance, elevated blood pressure) (Brunner 2007), known collectively as “met-

abolic syndrome,” and this may provide a method for capturing cumulative stress

effects on cardiovascular and systemic function.

It is important to recognize that biomarkers representing physiological responses

to stress may provide insights that are more relevant to dose-response modeling, or

to determining the mechanism of action, than to exposure measurement per

se. There may be utility in characterizing some biomarkers for effects-based

cumulative risk assessments, as multiple chemical and psychosocial stressors may

influence cardiovascular function or other endpoints. Currently, however, these

biomarkers do not necessarily inform exposure characterization. Following the

stressor-appraisal-response model, commonly available exposure databases (e.g.,

census demographic data or community crime rates) may represent stressors, and

biomarkers may capture aspects of stress response, but it is arguably individual

appraisals that are most specific and germane to accurate assessment of psychoso-

cial stress.

17.2.2 Use and Validation of Proxy Variables
for Psychosocial Stressors

Many psychosocial stressors are difficult to measure or model directly, especially

across all individuals in a large population. Thus, there is often value in identifying

or constructing proxy variables to capture geographic patterns in stressor preva-

lence (e.g., community crime rates, school quality indicators), due to limited

individual-level data. In many contexts, however, even characterization of relevant
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community-level stressors may not be viable, and risk assessors may wish to use

relatively simple aggregate-level data on socioeconomic positon (SEP) or similar

proxy measures. In such cases, validation of associations between stressor indica-

tors and a representative sample of individual stressor perceptions would be

encouraged.

In this case, analysts should also carefully describe the hypothesized pathways,

differentiating to the degree possible between compositional vs. contextual vari-

ables. Compositional variables refer to measures that reveal information about the

distribution of individuals within a community, whereas contextual variables reveal

information about the setting in which individuals live. For example, community-

level poverty measures could serve as a proxy for the likelihood of individual

poverty (a compositional variable) or as an indicator of processes which function

solely at the aggregate (or community) level (e.g., collective efficacy, social capital,

disinvestment in a community). These latter community-level features which

impact multiple individuals are contextual variables. For example, the percent of

households under the poverty line could be a compositional variable reflecting

individual-level likelihood of poverty or a contextual variable reflecting negative

neighborhood attributes.

The impact of SEP on health has been extensively explored in many settings:

using wealth or income as an index of status within and across countries

(Subramanian and Kawachi 2004), in communities using measurements of per-

ceived social standing (Singh-Manoux et al. 2005), and in workplace settings using

job grade (Clougherty et al. 2010b; Marmot et al. 1991). Given numerous measures

of SEP, and potential confusion about what these proxy variables capture for

cumulative risk assessment, key definitions and concepts are described briefly

here. SEP refers to the individual or family’s relative position in a society, partic-

ularly where economic and cultural factors determine resource access, or in hier-

archical societies where psychosocial goods such as social influence or security are

largely determined by social stature. SEP influences human health through a highly

complex mix of many social and physical factors accumulating and interacting over

the life course, including diet and health behaviors, healthcare access, and working

and housing conditions. Increasingly, psychosocial stress appears to be one

extremely important aspect of SEP influencing health, though SEP should not be

assumed to be synonymous with psychosocial stress.

Wherever possible, validation studies should be performed to ensure that an

aggregate-level indicator (especially when used as a compositional variable, to

proxy for individual-level data) accurately captures intra-community contrast in the

construct (and pathway) of interest. For example, community crime statistics used

to proxy for crime-related stress could be validated using intra-community surveys

on perceived crime exposures and chronic stress, then comparing crime indicators

to the individual-level measures. While such validation studies may not always be

practical, looking to existing validation and multilevel studies on stressor exposures

and characterization may aid in accurately interpreting potential proxy variables, at

both the individual and aggregate levels.
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17.2.3 Incorporating Exposure Correlations

Exposure characterization in cumulative risk assessment should explicitly consider

possible correlations among stressor exposures, both positive and negative, as these

may impact exposure measurement error or apparent interaction effects. For exam-

ple, if proximity to major roadways is associated with increased exposures to both

traffic-related air pollutants and noise, then the exposure assessments should aim to

differentiate these spatially and temporally confounded exposures to the extent

possible.

Correlations could exist at the aggregate level (i.e., among contextual variables)

or only as a function of individual behaviors or activities (individual-level compo-

sitional variables). For psychosocial stressors associated with multiple individual or

contextual factors, especially for a community-scale cumulative risk assessment,

simulation approaches to characterize multivariable demographic attributes with

high geographic resolution may be warranted (Levy et al. 2014). Inclusion of

geographic and demographic predictors of physical or chemical exposures, time

activity patterns, and other exposure-relevant behaviors would facilitate modeling

of psychosocial exposures.

It is recommended that each conceptual model be as clear and simple as can

reasonably capture the key exposure(s) and pathway(s) of interest—even within a

cumulative risk assessment which may ultimately include many interacting expo-

sures or a complex disease outcome. Overloading the conceptual model may

obscure the specific hypothesized pathways, and lead to overly complicated (and

less meaningful) “kitchen-sink” analyses.

17.2.4 Establishing Default Assumptions

For psychosocial stressors, often difficult to characterize directly in a cumulative

risk assessment, default distributions can be derived from administrative data (e.g.,

census variables, large-scale population surveys, surveillance data, or the peer-

reviewed literature, depending on the stressor of interest). Understanding the

readily available factors that correlate with psychosocial stress, and thereby could

serve as proxies or predictors of individual stress or stressor exposures, would be

crucial in conducting assessments that are both meaningful and comparable across

applications. Risk assessors would greatly benefit from an exposure factors hand-

book or analogous database that extended to non-chemical stressors, as has been

recommended by expert committees on risk assessment (National Research Council

2009).
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17.3 Dose-Response Modeling

Dose-response modeling for cumulative risk assessment presents significant meth-

odological challenges, including but not limited to the complexities of incorporat-

ing non-chemical stressors. For psychosocial stressors, insight may be derived from

epidemiological or toxicological evidence (or a combination), but the evidence

must be systematically evaluated to ensure meaningful outputs.

In general, psychosocial stressors can be evaluated comparably to chemical

stressors, provided that the requisite exposure data and health evidence are avail-

able. For example, the concept of “sufficient similarity” is being explored for

complex mixtures of chemicals, wherein major chemical components are found

in similar proportions and similarities in health effects and dose-response relation-

ships are also considered (see Chap. 15). For psychosocial stressors, similarities in

the type and magnitude of health effects may fulfill “sufficient similarity” and

suggest groupings of psychosocial stressors (or psychosocial and physical/chemical

stressors) that could be beneficial to the cumulative risk assessment process. Similar

to chemical groupings, psychosocial stressors may be reviewed for their

co-occurrence, joint action, and mode of action. Psychosocial stressors may also

contribute to dose-response modeling through an improved understanding of back-

ground exposures influencing the shape of the dose-response function for other

stressors. In general, existing guidelines on chemical mixtures can be modified to

include psychosocial and other non-chemical stressors, potentially through a focus

on common adverse outcomes, rather than on common mode of action.

17.3.1 Centrality of Epidemiological Evidence
for Psychosocial Factors/Developing Dose-Response
Functions Using Epidemiology

In many cases, epidemiological evidence will be the only viable strategy for

incorporating psychosocial stressors into cumulative risk assessment. If the expo-

sure assessment relied on proxy variables for SEP or demographic attributes, these

proxies do not translate readily into a toxicological context. More generally, there

may not be animal models to represent the types of psychosocial stressors of

interest. This raises considerable challenges given that relatively few epidemiolog-

ical studies are able to fully characterize effects of multiple chemical and psycho-

social stressors. If adequate epidemiology is available for all stressors of interest,

developing dose-response functions for cumulative risk assessment may be rela-

tively straightforward, though several key diagnostic questions still need to be

answered before dose-response functions can be fully characterized.

First, the ideal evidence would involve studies examining all risk factors simul-

taneously and reported dose-response functions derived from multivariable models,

controlling for co-exposures and testing for effect modification. Many
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epidemiological studies, however, are underpowered for such investigations or do

not use statistical methods needed to discern the effects of stressors with common

sociodemographic predictors or operating at multiple levels. Structural equation

models have increasingly been used to evaluate the joint influence of multiple risk

factors in epidemiological studies, allowing for direct and indirect effects to be

simultaneously estimated (Peters et al. 2014). These and other statistical techniques

for multi-exposure epidemiology require large sample sizes and are limited in the

types of data they can adequately incorporate but can offer considerable insight on

both proximal and distal causes.

In many situations, however, not all stressors of interest will have been included

in a single epidemiological study. Extracting dose-response functions for different

stressors from different studies, generally from regression models that do not

include all relevant stressors, is a viable approach only where confounding is

shown to be limited. While most epidemiological studies likely omit some candi-

date confounders, insight on the likelihood of significant correlations between

exposures can be included based on external evidence and first principles. For

example, two predominantly indoor pollutants, highly correlated with air exchange

rates, would likely be positively correlated, whereas an ambient air pollutant and a

foodborne exposure may be less correlated. Combining insights from different

studies also requires judgments on the distribution of vulnerable individuals in

the population and presence of potential modifiers.

Another complexity arises from epidemiological studies using socioeconomic

and demographic covariates as proxies for non-chemical or lifestyle factors (includ-

ing but not limited to psychosocial stress). For example, SEP may be included in a

regression model linking lead with IQ decrements, with the idea that SEP could

proxy for psychosocial stress, nutritional factors, presence of a stimulating home

environment, or a number of other risk factors associated with neurodevelopment.

Using the findings for SEP, either as a main effect or effect modifier, would require

a careful judgment about what the term captures in the study population, and

whether the same association is present in the population of interest for the

cumulative risk assessment. Development of a detailed conceptual model that

includes both proximal and distal effects on health, as described earlier, will

facilitate this process.

17.3.2 Developing Dose-Response Functions Using
Toxicology

Despite the centrality of epidemiological evidence for psychosocial stressors, often

only toxicological information is available for many chemical stressors. For

non-cancer risk assessments, where the question of cumulative exposures is rather

less well-studied than for cancer risk assessments, psychosocial stressors can be

considered in three different places. First, if there is direct toxicological evidence
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on the psychosocial stressor illustrating a similar mode of action as a chemical

stressor, it can be treated similarly to a chemical mixture. For example, in rat

models of lead and chronic stress (Cory-Slechta et al. 2004, 2010), or concentrated

air pollution and chronic stress (Clougherty et al. 2010a), the psychosocial stressor

is considered in the same bioassay with well-characterized chemical or physical

exposures. As proposed in the NRC report on cumulative risk assessment for

phthalates (National Research Council 2008), dose addition can be applied in

contexts other than congruent dose-response functions, allowing for a broader

application. The NRC report also proposes approaches to establish benchmark

dose (BMDL) values for chemical mixtures under an assumption of dose addition,

which can be directly applied to psychosocial stressors as well if the analogous

toxicological data are available and if the dose metrics are relevant to human

populations. This is a viable approach in limited contexts where exposures to

psychosocial stressors can be readily characterized in toxicological studies.

Second, psychosocial stressors can also contribute toward a general understand-

ing of the appropriate conceptual model for chemical stressors evaluated toxico-

logically. In Science and Decisions (National Research Council 2009), the

committee proposed that the functional form of a dose-response model could only

be determined once a series of diagnostic questions were asked, related to the mode

of action, relevant background exposures and endogenous processes, and vulnera-

ble populations. Depending on the responses, the population dose-response func-

tion would reflect one of three conceptual models: (1) low-dose linear responses for

individuals, with low-dose linear responses for the population; (2) non-linear

responses for individuals with low-dose linear population responses with back-

ground dependence, and (3) non-linear responses for individuals with low-dose

non-linear population responses independent from background. Historically,

non-cancer responses have been considered to be of the third category (nonlinear

for individuals with nonlinear population responses at low doses), although signif-

icant background exposures or other processes could be sufficient to linearize an

otherwise nonlinear population dose-response function.

Practically speaking, this means that improved mechanistic knowledge for some

psychosocial stressors could inform the shape of the dose-response function for

those chemical stressors with adequate toxicological evidence. For example,

increased risk of hypertension or elevated systolic/diastolic blood pressure has

been associated with psychosocial stress, diet, and other non-chemical stressors,

though perhaps not in toxicological data, in a manner necessary to follow the

second approach above. The non-chemical stressors are associated with the out-

come of interest and prevalent in the general population. This would imply that the

toxicological evidence associating a chemical stressor with hypertension would be

assumed to follow the second conceptual model above, with the point of departure

(POD) used to develop a slope term and an estimated risk-specific dose. This

approach is conceptually viable but has two significant challenges. First, as men-

tioned previously, it may be unclear whether the background processes are suffi-

cient in magnitude to conclude that a low-dose linear model would be appropriate.

Experience with some case studies would help to formalize this step. Second, one
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would not be able to quantify risks attributable to non-chemical stressors incorpo-

rated in this manner. While this would be problematic in contexts where these

non-chemical stressors were the targets of risk management efforts, they would

only be included in this manner if there were no adequate toxicology or epidemi-

ology, in which case they would be omitted from traditional quantitative analysis

regardless of the approach.

Third, psychosocial stressors could be captured within physiologically based

pharmacokinetic (PBPK) or pharmacodynamic models that provide insight about

how these stressors would influence delivered dose or pharmacodynamic outcomes

that could be the endpoints of cumulative risk assessments. For example, evidence

has shown that chronic psychosocial stress can influence metabolism and cause

hormonal changes (Agarwal and Marshall 1998), which could be incorporated into

PBPK models. So, even lacking direct toxicological evidence on the influence of

psychosocial stressors, these stressors could be incorporated into cumulative risk

assessments via an adjustment of either the delivered doses from the toxicological

study or the interpretation of the pharmacodynamic outcome.

17.3.3 Combining Insights from Epidemiology
and Toxicology

In some cases, there will be epidemiological evidence for a small number of

stressors, toxicological evidence for other stressors, and perhaps a subset of

stressors with both toxicological and epidemiological evidence. Developing a

systematic approach to incorporate psychosocial stressors in this context will

therefore be key to cumulative risk assessment.

Depending on the nature of the available evidence, a hybrid of the two

approaches above would be warranted. In a situation where the preponderance of

the evidence is toxicological and the epidemiology is not directly applicable, the

more limited epidemiological information could help establish whether the toxi-

cants should be considered as linear or non-linear at low doses. In situations where

multiple compounds are well-characterized toxicologically and at least one is well-

characterized epidemiologically, approaches can be used to establish dose equiva-

lence within toxicological studies to allow for interpretation of the epidemiological

evidence. For example (Benignus et al. 2005), toxicological studies have linked

both toluene and alcohol with similar neurobehavioral effects. Epidemiological

evidence is robust for alcohol but not available for toluene. The toxicological

studies can be used to estimate the dose of toluene that is functionally equivalent

to a dose of alcohol for a defined outcome, and this could be used as a bridge to

interpret the alcohol epidemiology with respect to toluene exposure. This clearly

involves a number of assumptions regarding comparable dose-response function

shapes, but the approach can be generalized in a variety of ways.
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Developing comparable dose-response models across epidemiological and tox-

icological studies, in a manner that would allow for the models to be quantitatively

combined, would only be possible in a limited number of situations. The adverse

outcomes would need to be comparable to one another, which may be possible for

some physiological measures but would be challenging for outcomes such as

asthma attacks, hospitalizations, and other common epidemiological endpoints.

There would also need to be detailed understanding of the vulnerability character-

istics of both the human and animal populations, to ensure that adequate adjust-

ments were made to account for the presumed greater heterogeneity in the human

population. It is likely that these criteria would be met very infrequently, so that

more often, cumulative risk assessment would be primarily based on either epide-

miological or toxicological evidence, using the other to help inform the conceptual

model or determination of mode of action.

17.4 Illustrative Case Example

To illustrate some of these approaches for incorporating psychosocial stressors, a

case study example is presented, drawing on the epidemiological literature

suggesting significant effect modification of associations between urban air pollut-

ants and childhood asthma by chronic stressors prevalent in urban environments,

notably exposure to violence (ETV). A process by which cumulative risk assess-

ment could include this psychosocial stressor in the presence of chemical/ physical

stressors is described, intending that the structure could extend to other stressors in

a specific risk management context.

Asthma is a multifactorial illness impacted by a host of social, environmental,

and genetic risk factors. As such, it serves as an appropriate case study for

considering the interplay among two (or many more) risk factors—acting sepa-

rately or in tandem—toward shaping patterns of asthma etiology and exacerbation

in the urban environment.

This example may be conceptualized as within either a stressor-based or effects-

based cumulative risk assessment (Menzie et al. 2007). For example, an analysis

might consider the health benefits of multiple stressors reduced through traffic

mitigation efforts and would need to take into account the modifying influence of

key psychosocial stressors. Similarly, an analysis might be focused on geographic

areas with elevated asthma prevalence or rates of exacerbation, determining key

contributors to these patterns, in which case ETV and air pollution may be impor-

tant to consider.

Air pollution and chronic stressors have been explored together in several

epidemiological studies (e.g., Shankardass et al. 2009; Chen et al. 2008), and

common distributions have been explored due to concerns about spatial correlations

and potential confounding (e.g., traffic-related air pollution is spatially confounded

by traffic-related noise) (Allen et al. 2009). ETV is explored here due, in part, to a

small but growing literature on the salience of urban violence as a key chronic
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stressor which may modify pollution effects on health. A study of asthmatic

children in Boston public housing reported altered response to indoor allergen

exposures with caregiver-reported fear of violence (Clougherty et al. 2006). A

longitudinal study of childhood asthma etiology in East Boston reported significant

associations with nitrogen dioxide (NO2) exposures, but only among children with

above-median prior lifetime exposure to violence (Clougherty et al. 2007). This

model also informed one toxicological study exploring the effect of an aggressor

stress (Social Dominance Paradigm), as a modifier of concentrated particulate air

pollution (CAPs) effects on respiratory function in rats (Clougherty et al. 2010a);

the authors reported substantively different responses to CAPs by stress group, with

only stressed animals breathing more frequently and shallowly (e.g., hyperventila-

tion) in response to increased CAPs exposures.

A few studies have explored other chronic stressors as modifiers of air pollution

effects on asthma outcomes, though issues related to exposure measurement and the

relative temporality between stress and pollution exposures have proven challeng-

ing. Aside from this small epidemiological literature suggesting a strong effect,

there are several reasons why ETV is an appropriate stressor to examine in a

cumulative risk assessment context:

1. Most importantly, violence is one of the few stressors that is rarely positively

appraised. As described in the Exposure Assessment section above, under Char-
acterizing mechanism(s) of action/ pathways of effect, perceived or psychosocial
stress is strongly mediated through individual perception (appraisal). Unlike

ETV, most other stressors may be appraised either positively or negatively

(e.g., one may view losing a job as a good or bad thing, depending on whether

one enjoyed the job or needed the financial benefit). A positive appraisal can

render the stressor null; as such, most other stressors lend themselves to expo-

sure misclassification. Exposure to violence, however, is almost never charac-

terized as a positive exposure.

2. Outside of the rare instances of physical altercation, most of the impact of

“exposure to violence” is through fear, hypervigilance, or stress-related path-

ways. (And, indeed, the experience of “fear of violence” can vary by gender,

age, race, class, and other personal or community-level factors.) But, because

most ETV impact occurs via psychosocial pathways, unlike other urban com-

munity stressors (e.g., housing quality), the hypothesized psychosocial pathway

is relatively unconfounded by co-occurring physical impacts.

3. Analyses of spatial patterning in urban exposures suggest that ETV is not always

spatially confounded by poverty and other stressors (Shmool et al. 2014). Thus,

the health impacts of ETV conceivably can be disentangled from those of SEP,

which is a much more complicated construct entailing a broad array of physical

(e.g., diet) and psychosocial (e.g., discriminatory experience) exposures, at both

the individual and community level, accumulating over the life course.

4. Crime data, albeit an imperfect community-level ETV indicator, is collected

systematically by every police department nationwide, often according to stan-

dard criteria (i.e., felony crimes). Reporting bias remains a challenge—and
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certainly differs by jurisdiction and type of crime—but the data are collected and

publicly available nationwide.

While the details listed above are specific to ETV, the logic used to validate its

inclusion is generalizable. Any psychosocial stressor under consideration would

require a logical exposure metric that can be reasonably and systematically col-

lected, evidence for a causal effect on a defined health outcome, and a systematic

determination that the exposure metric is reasonably sensitive and specific for the

health outcome in question.

To incorporate interaction effects in a cumulative risk assessment, we first

recommend careful development of a conceptual model for the hypothesized

relationships among the exposures of interest, with attention to modes of action

(MOA) or common adverse outcomes. Here, our relatively simple conceptual

model captures some of the key constructs of interest:

1. A psychosocial stressor (e.g., ETV) and air pollution exposures may separately

influence childhood asthma etiology or exacerbation.

2. Perceived ETV (as a chronic stressor) may, through “allostatic load” pathways,

alter individual susceptibility to air pollution exposures in the progression of

asthma.

Notably, many more conceptual models are possible, considering the myriad of

exposures that impact upon childhood asthma. Here, we restrict our analysis to the

one key exposure (air pollution) and one key hypothesized psychosocial effect

modifier (ETV). A typical conceptual model likely would be more complex, with

explicit consideration of multiple causal pathways and both proximal and distal risk

factors for health.

Here, a community-level indicator (e.g., crime rates) serves to proxy (albeit

imperfectly) for individual-level perceived ETV. For analyses in which both

community-level and individual-level data are available, it would be preferable to

use the individual data as the primary exposure metric and to explore the

community-level indicator as a predictor of the individual-level variable or as a

contextual variable interacting (in a hierarchical model) with the individual-level

variable. It is recommended that each conceptual model be as clear and simple as

can reasonably capture the key exposure(s) and pathway(s) of primary interest.

It may be determined that solely of interest are community-level stressors, which

may act primarily through psychosocial pathways and are captured reasonably

through aggregate data. If so, the construct of interest (e.g., ETV) is first defined,

then existing data are catalogued that may reasonably indicate the construct (e.g.,

felony crimes, murders, robberies, at police precinct level). For community-scale

metrics and environmental exposures (e.g., air pollution), it can be valuable to

apply spatial methods in Geographic Information Systems (GIS) to evaluate rela-

tive spatial distributions within and among exposures. Here, it would be valuable to

understand:

1. Spatial (neighborhood-to-neighborhood) variability in crime rates—this extent

of spatial “clustering” (or spatial autocorrelation) within a stressor can be
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formally tested using GIS-based methods such as geographically weighted

regression (GWR) or local indicators of spatial association (LISA). This analysis
indicates how each exposure, separately, varies across the region of interest. In

an ongoing investigation of social stressor patterning across New York City,

significant spatial variation was found within all stressors examined, across

multiple domains (e.g., economic stressors, crime and violence exposures,

resource access, school-based stressors, etc.) (Shmool et al. 2014).

2. Spatial correlations between and among psychosocial stressors and pollutant

exposures (e.g., correlation between ETV and air pollution) may be examined by

comparing spatial distributions, and quantified using spatial autoregressive

modeling (SAR). This analysis indicates the potential for confounding and/or

effect modification between exposures. In New York City, social stressors were

found to vary substantially in their spatial patterning, and not all stressors were

correlated with poverty or pollution exposures (Shmool et al. 2014).

Developing the conceptual framework would normally involve initial screening-

level quantification of health risks to determine whether the stressors are significant

enough to merit inclusion. In this case, the relative risks of air pollution and ETV,

from the epidemiological literature, are high enough, and the exposures sufficiently

ubiquitous, to substantiate their inclusion. While the focus here is on epidemiolog-

ical evidence, toxicological insights enhance the plausibility of the observed inter-

action (Virgolini et al. 2005, 2006; Cory-Slectha et al. 2004, 2010).

It is generally preferable to determine relative risks that consider both stressors

simultaneously (whether as main effects or effect modifiers). Conceptually, the

underlying epidemiological models would primarily be of two broad structures:

1. Direct effect of psychosocial stressor on the outcome:

Asthma outcomes ¼ best metric sð Þ of ETV½ � þ confounders

2. Direct effect of a physical/chemical exposure on the outcome:

Asthma outcomes ¼ best metric sð Þ of air pollution½ � þ confounders

In each case, the confounders could include the other exposure, though effect

modification likely would not be considered at this stage. Importantly, the best

available metrics of each exposure may differ significantly in sensitivity and

specificity (if, for example, the best available metric of ETV is a community-

level index, and the best available metric of air pollution is a modeled residence-

specific estimate). Thus, differential exposure misclassification needs be consid-

ered, both when comparing separate models that examine two different exposures

on a common health endpoint, and when merging both exposure metrics into the

same epidemiological model.

At this stage, the underlying epidemiological study often would use GIS

methods to visualize and assess spatial relationships among exposures (stressors)
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of interest. These associations can be examined by comparing spatial maps of each

stressor with that of the outcome variable (e.g., asthma hospitalizations) and

quantified using SAR, to quantify these separate (unadjusted) associations. This

step assumes that each stressor/exposure of interest carried forward should have a

significant independent association with the outcome of interest, regardless of

co-exposures or effect modifiers. In some cases, however, this may not be true; in

one longitudinal study of childhood asthma etiology (Clougherty et al. 2007),

significant associations between traffic-related NO2 and asthma etiology were

observed solely among children with above-median ETV. In cases of strong effect

modification, the effect of the physical exposure of interest (air pollution) may be

diluted to non-significance, if the sample has a high enough prevalence of

low-susceptibility individuals. This concern may be alleviated through sensitivity

testing wherein potential modifiers and exposures are considered iteratively prior to

final exclusion. The heuristic epidemiologic model for such analyses would be:

Asthma ¼ best metric sð Þ of ETV½ � þ best metric sð Þ of air pollution½ �
þ confounders

Statistical tools, such as multiple and logistic regression and process models, can

be used to explore the contributions of various stressors to the health endpoint of

interest.

At this stage, GIS-based spatial approaches can be used to visualize and examine

the overlay of stressors with the observed health effects. As above, maps of each

exposure and outcome can be compared and formally tested using SAR or similar

models, to assess the extent of spatial autocorrelation. A refinement that may be

useful at this stage is examining the combined (joint) spatial distributions in ETV

and air pollution (or the spatial distribution in a composite index that combines

these exposures) against the spatial distribution in the health outcome of interest

(e.g., maps of asthma hospitalizations). Unaccounted-for nonlinear or other com-

plex joint distributions (such as that observed in Shmool et al. 2015) can lead to

mis-specification or misinterpretation of epidemiological results, particularly when

incorporating multiple exposures or interactions into the model.

Finally, an epidemiologic model would explore the possibility of interactions.

Knowledge reflected in conceptual models should provide a grounding (and some

limits on) the interactions considered. Clear mechanistic hypotheses indicating

which stressor is hypothesized to modify each exposure are needed for useful,

interpretable epidemiological analyses and related cumulative risk assessment

output. Conceivably, this could lead to some stressors being considered only as

effect modifiers, because no plausible mechanism exists for a main effect absent

another stressor of interest. The incorporation of too many interactions, or interac-

tions not supported by a plausible mechanistic pathway, however, can complicate

the analysis, reduce statistical power, and lead to uninterpretable results (especially

as the number of stressors under consideration increases). Of note, the interaction

between the chemical and psychosocial stressor may not be a simple linear associ-

ation, and statistical techniques that allow for multidimensional smoothed functions
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of health response associated with multiple stressors may be informative. The

heuristic epidemiological model that would support this interaction analysis is:

Asthma ¼ best metric sð Þ of ETV½ � þ best metric sð Þ of air pollution½ �
þ best metric sð Þ of ETV½ � � best metric sð Þ of air pollution½ �
þconfounders

Epidemiological models being developed for cumulative risk assessment appli-

cations could also be designed to be responsive to the ultimate risk management

decisions. For example, if the risk management strategies in question focused on air

pollution exposures, it may be most salient to explicitly consider the influence of

ETV as an effect modifier. Understanding the main effect of ETV would be less

relevant, although it does contribute to an understanding of background rates of

disease and characteristics of high-risk subpopulations. Although this is not an

appreciable reduction in effort for a two-stressor analysis, an analysis of numerous

stressors would benefit greatly from the analytical boundaries created through an

appropriately focused set of risk management options.

Uncertainty analysis is emphasized as a key component of any cumulative risk

assessment. For the epidemiology that may underlie a cumulative risk assessment,

this goes beyond reported confidence intervals to include sensitivity analyses for

the parameters included in the final models. It is strongly recommended that any

cumulative risk assessment extract information on the sensitivity of epidemiolog-

ical findings to some key assumptions. Similarly, researchers conducting epidemi-

ological studies aiming to inform cumulative risk assessment should explicitly

report uncertainties.

Because some important modifiers and predictors may be lost by omitting vari-

ables prior to testing interactions (i.e., researchers and risk assessors may miss

effects that only become apparent through effect modification), some sensitivity
testing on covariate selection is needed. This can be done by:

• Swapping order of terms/interactions tested in models

• Identifying key hypothesized predictors and modifiers carried throughout the

analysis, regardless of significance

• Using automated variable selection procedures using both predictors and mod-

ifiers (e.g., regression trees)

• Using automated variable selection procedures that do not assume linearity or

specific interaction structures (e.g., random forest), to identify underutilized

stressor(s) for which data are available, but the relationships of such exposures

with the outcome of interest have not been recognized fully in the main model

Finally, there remains significant utility in establishing that available exposure

metrics accurately capture variability in the stressor(s) of interest. An effective way

to do so, for aggregate-level indices (e.g., community violence rates), is to imple-

ment surveys (questionnaires) on individual’s perceived stress (1) to systematically

determine whether community-level indices accurately capture community-to-

community variation in mean individual-level violence exposures and (2) to select
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those aggregate-level metrics that best reflect individual variation in stressor

exposures.

In summary, this case example illustrates that a psychosocial stressor such as

exposure to violence can be incorporated reasonably into cumulative risk assess-

ments including air pollution, as there is a biologically plausible linkage with a

common adverse outcome (supported by some findings from both toxicology and

epidemiology), an approach for exposure characterization that involves reasonable

proxies from public databases, and empirical evidence supporting main effects and

effect modification for both key stressors. Other non-chemical stressors can be

evaluated and included through analogous approaches.

17.5 Conclusions

Data on psychosocial stressors indicate important effects on health that can interact

with chemical environmental exposures. For psychosocial stressors, challenges

arise with exposure assessment, dose-response modeling, and risk characterization

in the context of risk management. In general, the exposure assessment phase of

cumulative risk assessment requires increased attention, given both the need to

characterize effects of simultaneous exposure to multiple chemical stressors and the

need to develop meaningful proxies of exposure to psychosocial and other

non-chemical stressors that are challenging to characterize directly. Development

of a strong conceptual model including proximal and distal effects on health will

help in determining the appropriate constructs for the analysis. This step is key, as

many psychosocial stressors can influence health through multiple pathways, and

many proxies for psychosocial stressor exposures can represent multiple stressors.

Dose-response modeling using epidemiological data can benefit from systematic

modeling approaches tied to well-developed conceptual models and using tech-

niques such as structural equation modeling to identify associations with proximal

and distal factors. Toxicological evidence may be more limited for psychosocial

stressors, but even where evidence is insufficient to incorporate a psychosocial

stressor into a mixtures analysis, consideration of psychosocial stressors can con-

tribute toward selecting a conceptual dose-response model and may be incorporated

into PBPK models or other analyses related to delivered doses or pharmacodynamic

outcomes. The case example illustrates that it is viable to incorporate selected

psychosocial stressors into cumulative risk assessment, following a systematic

logic for well-structured exposure characterization and epidemiological modeling.
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