
Chapter 11
Comparing Predicted Additivity Models
to Observed Mixture Data

Chris Gennings

Abstract Dose-response relationships are generally assumed to be nonlinear. Stan-
dard multiple regression models may approximate the relationship in a narrow dose
range but may not adequately approximate the relationship over a wider dose range –
which may have a sigmoidal shape. Further, when the number of components in a
mixture is large, the required experimental design to test for interactions becomes
infeasible using factorial designs. In contrast, tests for departure from additivity may
be based on comparing additivity-predicted models to those of mixtures data along
fixed-ratio rays of the components. As such, tests for departure from additivity in
mixtures should accommodate both nonlinear relationships and efficient experimen-
tal designs. In this chapter, we illustrate the strategy using three different basic
assumptions about the underlying response surface from single chemical data.

Keywords Dose addition · Nonlinear models · Additivity · Hypothesis testing

11.1 Introduction

Previous chapters describe different types of additivity models (e.g., dose additivity,
independent action) and examples of their application in toxicology (Chap. 9) and
epidemiology (Chap. 10), while a later chapter deals with modeling additivity in risk
assessment (Chap. 14). This chapter focuses on statistical considerations in applying
concepts of dose additivity. The framework for testing hypotheses of additivity for
chemical mixtures has transitioned beyond traditional multiple regression models
with cross-product terms for interaction. Instead, mixture data are compared to an
additivity model with statistically rigorous hypothesis tests. The motivating feature
is that additivity models can be estimated with design support from only single
chemical dose-response data instead of the impractical design required for estimation
of a full response surface. For example, the design required to build an additivity
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model for a mixture of J components is J dose-response curves. Assuming a control
group and 4 dose groups per chemical to allow for nonlinearity, the design would
include 5 J design points. With 10 components, there would be 50 design points. In
contrast, consider a factorial design to support a response surface with only two
levels for each component (assuming linear relationships which cannot be tested
with such a design); the full factorial design includes 2J design points. With
10 components, this would require an impractical 1024 design points. Fractional
factorial designs reduce the number of design points but at the cost of assumptions
about interactions that cannot be tested. As the number of components increases, the
strategy of building additivity models that accommodate nonlinear dose-response
shapes is appealing. Tests for interaction are based on comparing experimental
mixture data or models of experimental mixture data to predictions constructed
from single chemical data under an assumption of additivity.

This chapter illuminates this strategy using three different basic assumptions
about the underlying response surface from single chemical data. When the dose-
response curves for J components in a mixture of interest have a common maximum
effect, the additivity model may be readily parameterized assuming the same
parametric form for each component (e.g., Casey et al. 2004). In contrast, Rajapakse
et al. (2004) consider parametric models from a set of possible models and select the
“best model fit” for each component separately. The additivity surface is defined
based on the dose addition definition using the selected models. This approach
allows for different maximum effects per chemical. The limitation is that the
prediction under additivity is constrained to be no greater than the maximum effect
of the component with the lowest maximum. Finally, this limitation is not relevant
when the dose-response curves are adequately represented by Hill functions with
Hill parameter (slope factor) of 1 (e.g., Howard et al. 2010). Details of these
strategies are described in the next section. The approaches are illustrated with
mixture and corresponding single chemical data for six chemicals in an estrogen
receptor-alpha reporter gene assay.

11.2 Definition of Additivity

Dose addition (used herein synonymously with concentration addition) is a widely
used concept that assumes the expected combination effect of a mixture of chemicals
is such that the components exert their effect without influencing each other’s action
(Berenbaum 1985; Casey et al. 2004; Gennings et al. 2004; Scholze et al. 2014; U.S
EPA 2000). Therefore, the expected combination effect may be predicted from
single chemical dose-response data. In particular, consider a mixture of
J chemicals where single chemical dose-response data are available on each. Dose
addition satisfies the assumption of planar contours of constant response: i.e.,
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XJ
j¼1

dj
EDj,y

¼ 1 ð11:1Þ

where dj is the dose of the j
th component in the mixture and EDj, y is the dose of the j

th

component alone that produces the same response level ( y) as the mixture. Eq. 11.1
refers to a J-dimensional plane – i.e., planar contours of constant response. A
schematic of a three-dimensional planar contour is given in Fig. 11.1 for chemicals
X1, X2, and X3. An important consideration is the metameter (magnitude of the
observed phenomenon) of the definition. Typically, the assumption is that additivity
applies on the dose scale and not on the log-dose scale; or said another way, if the
assumption holds on the dose scale, it generally will not be true on another scale
(e.g., log-dose scale). Another definition of additivity is independent action which is
based on statistical definitions of independence (e.g., Bliss 1939; Greco et al. 1992)
but is not considered herein (see Chap. 9 for a discussion of independent action).

11.3 Building Additivity Models

Several strategies have been used to build additivity models using single chemical
data (see a conceptual discussion of additivity in Chap. 9). The most general is to use
a “best fit” model to dose-response data from each chemical (Scholze et al. 2001).
Various nonlinear regression models (e.g., logistic function, Hill function,
Gompertz, exponential models; parameterizations of some are provided in Sect.
11.6) for monotonic sigmoidal (or partial sigmoidal) relationships are fit indepen-
dently to the same data set, and the best fitting model is selected on the basis of a
statistical goodness-of-fit test. The corresponding dose additivity model given by
Eq. 11.1 is estimated for specified mixtures by defining the inverse functions for
each dose-response curve (i.e., the ED values in Eq. 11.1). A limitation of this
flexible approach is that the dose addition concept cannot be applied to effect levels

X1

X2

X3

Fig. 11.1 Schematic of a
planar contour of constant
response on an additivity
surface
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that exceed the maximal effect of the least efficacious compound present in the
mixture (Scholze et al. 2014). Scholze et al. (2014) extend the approach by using a
novel toxic unit extrapolation method, which does not have this limitation.

Less generally, the same nonlinear dose-response function (e.g., Hill function
with Hill parameter equal to 1; Howard et al. 2010) is assumed for each single
chemical while allowing for different maximal effects for each chemical. Under the
simplifying assumption of a common slope estimate, the combined effect of any
combination of full and partial agonists can be calculated using the definition of
additivity in Eq. 11.1. When the assumptions of a common background effect and
maximum effect for all active chemicals are appropriate, simplifying forms of
predicting under additivity are available (Casey et al. 2004).

To illustrate, without loss of generality, consider the combination of two
chemicals A and B. Under the best fit model strategy, assume the dose-response
relationship for chemical A is best fit with a four parameter nonlinear logistic model:

μ0 ¼ αA þ γA�αAð Þ

1þ dA
CA

� �βA
with inverse function EDA ¼ exp

log
γA�μ0
μ0�αA

n o
þβAlogCA

βA

2
4

3
5, where

C is the inflection point (i.e., the ED50) and β is the Hill slope at C. Assume the dose-
response curve for chemical B is best fit with a four parameter Gompertz model:
μ0 ¼ αB + (γB � αB) exp [exp � (β0,B + β1,BdB)] with inverse function

EDB ¼
�log log

μ0�αB
γB�αB

n oh i
�β0,B

β1,B
. Under the assumption of dose addition, the combina-

tion [dA, dB] associated with response μ0 (i.e., the isobole) satisfies the equation
dA
EDA

þ dB
EDB

¼ 1, which is the equation of a line with intercept EDA and slope �EDA
EDB

.

Scholze et al. (2001) estimate the combination dose with the confidence interval
constructed by bootstrap sampling of the original data and re-estimation of the
combination dose associated with the mean of observed dose groups. This general
strategy is readily generalized to J chemicals in combination.

In comparison, Howard et al. (2010) assumed all concentration-response curves
were Hill functions with Hill parameter equal to 1, i.e.,μj ¼ αjdj

κjþdj
, j¼ A,B, where κj is

the macroscopic dissociation equilibrium constant (i.e., equivalent to the effective
concentration causing 50% of maximal response) and αj is the maximal effect level
of the jth ligand in the tissue or system under study. In this case, substituting the Hill
function into Eq. 11.1, under dose addition, the combination of [dA, dB] associated
with response μ0 is given by μ0 ¼ αAdA=κAþαBdB=κB

1þdA=κAþdB=κB
. Howard et al. (2010) used a

nonparametric Mann-Whitney test to assess the fit of the modeled response surface
to experimental mixtures data. This general strategy is readily generalized to
J chemicals in combination.

Finally, following the approach of Casey et al. (2004), without loss of generality
that other nonlinear functions may be used, assume the dose-response curves for
both chemicals are adequately represented by the nonlinear Gompertz function
with common maximum effect parameter and intercept, i.e.,
μA,B ¼ α + (γ � α) exp [exp � (β0 + βAdA + βBdB)]. This function is algebraically
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manipulated into the form of Eq. 11.1 for contour specified by μ0 : i.e.,
dA
EDA

þ dB
EDB

¼ 1, where EDj ¼ �log log
μ0�α
γ�αf gð Þ�β0

βj
and j ¼ A,B. Thus, the additivity

model has linear contours of constant response (i.e., isoboles). Goodness-of-fit of the
additivity model to the single chemical data may be assessed graphically by over-
laying observed and additivity model predicted dose-response estimates on the same
graph. Again, this general strategy is readily generalized to J chemicals in
combination.

11.4 Hypothesis Tests Comparing Mixture Data
to Predicted Model Under Additivity

Goodness-of-fit tests are used by Howard et al. (2010) to assess the fit of the modeled
additivity response surface to the experimental data. For example, the Mann-
Whitney test (i.e., Wilcoxon rank sum test) tests the hypothesis that the experimental
data and modeled data come from the same distribution. A significant p value (e.g.,
p < 0.05) indicates that the distributions differ.

In contrast, the strategy described by Scholze et al. (2014) for predicting addi-
tivity for a mixture with fixed mixing proportions by inverting Eq. 11.1 includes
statistical uncertainty by applying bootstrap samples with repeated estimation of
additivity – and the total dose associated with a fixed mean response. Differences
between predicted and observed effect doses are considered statistically significant
when the 95% confidence belt of the prediction (from the bootstrap sampling of
single chemical data) does not overlap with those of the experimentally observed
mixture effects.

The assumptions of the additivity model made by Casey et al. (2004) permit a
statistical test of the hypothesis of additivity, which may be a Wald-type test,
likelihood ratio test, or a score test. Specifically, mixture data are assumed to be
available on one or more fixed-ratio ray(s). To set notation, the mixing proportion of

the jth chemical in a mixture of J chemicals is aj and
XJ
j¼1

aj ¼ 1. Thus, the dose of the

jth chemical at total dose T is dj ¼ ajT. From the additivity model, using a Gompertz
nonlinear model for two chemicals, the predicted dose-response curve for the
mixture is given by

μA,B ¼ αþ γ � αð Þexp exp� β0 þ βAdA þ βBdBð Þ½ �
¼ αþ γ � αð Þexp exp� β0 þ βAaAT þ βBaBTð Þ½ �
¼ αþ γ � αð Þexp exp� β0 þ βAaA þ βBaBð ÞTð Þ½ �
¼ αþ γ � αð Þexp exp� β0 þ θaddTð Þ½ �

Following the approach of Casey et al. (2004), the mixture data with fixed mixing
proportions are fit to a similarly parameterized model: e.g.,
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μmix ¼ αmix + (γmix � αmix) exp [exp � (β0, mix + θmixT )]. Then the test of additivity
for the specified mixture is a test of coincidence with null and alternative hypotheses:

H0 : α ¼ αmix and γ ¼ γmixand β0 ¼ β0,mix and θadd ¼ θmix

vs
H1 : any inequality

An F test with 4 n–p degrees of freedom based on a Wald-type statistic can be used
to test this hypothesis.

11.5 Sample Size and Power Considerations

Testing hypotheses of additivity which reject with evidence of departure from
additivity should be based on study designs with adequate sample size to provide
high power for detecting interaction (see Chap. 12 for further discussion of sample
size and power considerations in experimental design of mixtures experiments). That
is, not detecting interaction may not indicate additivity when the study design is poor
(e.g., with small sample size). The location of dose/concentration groups in a study
design and sample size at each group both impact the variance of slope parameters in
a regression model and thereby the power for rejecting the null hypothesis of
additivity. Strategies for addressing sample size and power have been described
for comparison of mixture points to an additivity model (Meadows-Shropshire et al.
2005) and when comparing a model for a mixture with fixed mixing proportions
compared under additivity (Casey et al. 2006).

11.6 Illustration

Data were extracted from graphs in Fig. 3 from Gennings et al. (2004) to provide an
illustration of the methods described in this chapter and are provided in the appendix.
The SAS code for the analysis presented herein is also in the appendix.

In short, six chemicals were selected for study by Gennings et al. (2004),
including methoxychlor (MXC), o,p-DDT, beta-hexachlorocyclohexane (b-HCH),
bisphenol A (BPA), octylphenol (OCT), and 2,3-bis(4-hydroxyphenyl)-propionitrile
(DPN). An estrogen receptor-alpha (ER-α) gene transcription assay with MCF-7
human breast cancer cells was used to evaluate estrogenic activity. The data were
assessed as units of luciferase activity normalized to the β-gal activity from individ-
ual wells. Experiments were evaluated with fold induction as the primary endpoint.
A mixture was constituted with mixing proportions based on the no-observable-
effect concentrations (NOECs) from preliminary concentration range-finding studies
(data not shown). The resulting proportions were as follows: MXC ¼ 0.4715;
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DPN ¼ 0.0047; DDT ¼ 0.4715; b-HCH ¼ 0.0471; OCT ¼ 0.0047; and
BPA ¼ 0.0005. Details are provided in Gennings et al. (2004).

Three models were considered for illustration of the methods and parameterized
as follows:

• Hill function with slope parameter 1 with background response of 1 for 100% fold
induction: μ ¼ 1þ γx

ED50þd.

• Four-parameter logistic model: μ ¼ αþ γ�αð Þ
1þ d

Cð Þβ
where α is the minimum asymp-

tote, γ is the maximum asymptote, C is the inflection point (i.e., the ED50), and β
is the Hill slope at C. This model assumes symmetry around the inflection point.

• Four-parameter Gompertz model: μ¼ α + (γ � α) exp [exp� (β0 + βd)], where α
and γ are as above, β0 is a parameter associated with the lower plateau, and β is
the slope parameter.

The single chemical data with model predicted curves from the Hill function,
nonlinear Gompertz, and nonlinear logistic models are presented in Fig. 11.2. There
is clear evidence of varying maximum effect levels across the single chemicals. Thus
the strategy of Casey et al. (2004), which assumes a common maximum effect, is not
justified.

Following Howard et al. (2010), the Hill function with slope 1 was fit to each
single chemical with the correction that the background response was set to 1 (i.e.,
the mean fold induction is 1 in the control groups): i.e.,μj ¼ 1þ αjdj

κjþdj
and j¼ 1,. . .,6.

Under dose addition, the combination of [d1, d2, d3, d4, d5, d6] associated with

response μ0 is given by μ0 ¼ 1þ

P6
j¼1

αjdj=κj

1þP6
j¼1

dj=κj

. A sign rank test was used to test

the fit of the modeled additivity response surface to experimental mixture data with
significant evidence of lack of fit ( p < 0.001). The mixture data, predicted model,
and additivity-predicted model are presented in Fig. 11.3. There is evidence that the
mixture response is less than expected under additivity.

Following Scholze et al. (2001), the best fit models were used to estimate the
additivity model for the mixture with fixed mixing proportions (Fig. 11.4) using
minimum sum of squares error (SSE) as the model selection criterion. The selected
models were the nonlinear Gompertz for β-HCH and OCT; the nonlinear logistic for
MXC, DPN, BPA, and the mixture; and the Hill function with Hill slope and
background parameters of 1 for DDT. The predicted curve under additivity for the
specified mixture is restricted to the response region of the chemical component with
the smallest maximum effect; here, β-HCH has maximum effect at 3.3 (Fig. 11.2);

i.e., tadd ¼
X6
j¼1

aj
ED μ0ð Þj

 !�1

which is defined for μ0 between 1.0 and 3.3. Scholze

et al. (2014) have developed a “toxic unit extrapolation approach” to address this
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Fig. 11.2 Comparison of predicted models for single chemical data: Hill function with Hill
parameter 1 (blue); nonlinear Gompertz (green); nonlinear logistic (red)
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limitation of dose addition with combinations of chemicals with differing saturating
effects; however, it is beyond the scope of this chapter.

For these data, prediction of additivity was not possible for 4 of the mixture dose
groups. In contrast to using a comparison of confidence bands from bootstrap
samples suggested by Scholze et al. (2001), a likelihood ratio test can be conducted
to test the hypothesis of additivity. The unrestricted (or full) model, based on the best
fit model selection, is parameterized with each single chemical and mixture ray fit
separately. Since the control group response of fold induction was set to a mean of
1.0, themodels were parameterized as follows: μ¼ 1 + (γj� 1) exp [exp� (β0j + βjd )]

for β-HCH ( j ¼ 1) and OCT ( j ¼ 2); μ ¼ 1þ γj�1ð Þ
1þexp � β0jþβ1jdð Þð Þ for MXC ( j ¼ 3),

DPN ( j ¼ 4), BPA ( j ¼ 5), and the mixture ( j ¼ 6); and μj ¼ 1þ αjdj
κjþdj

for DDT

( j ¼ 7).
Without clear evidence of a plateau, the maximum effect parameters for MXC,

DPN, and BPA were set to 10, a value somewhat beyond the observed data. Thus,

Fig. 11.3 Observed and
model predicted (blue solid)
mixture data (with mixing
proportion as specified in
the text) using a Hill
function assuming a slope of
1. The additivity model
(green dashed) as predicted
from single chemical data is
also included, based on the
Howard et al. (2010)
strategy

Fig. 11.4 Observed and
model predicted (blue solid)
mixture data (with mixing
proportion as specified in
the text) using best fit model
(here, four parameter
logistic model). The
additivity model (green
dashed) as predicted from
single chemical data with
best fit models is also
included
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the total number of parameters estimated in the full model was 18, including an
estimate for σ2, with SSE(full) ¼ 210.3 with N ¼ 152. In comparison, the restricted
model (under additivity) included only 15 parameters – those associated with the
single chemical models omitting the mixture model. The prediction for the mixture is
based on the dose addition model where the estimation of the restricted model is
conducted with the full data set not just the single chemical data. The SSE
(restricted) ¼ 372.07. A likelihood ratio statistic is constructed as follows:

F∗ ¼ SSE restð Þ � SSE fullð Þð Þ=Δdf
SSE fullð Þ= N � df fullð Þð Þ

¼ 372:07� 210:31ð Þ=3
210:31= 152� 18ð Þ

¼ 34:4

Compared to an F distribution with (3, 134) degrees of freedom, p < 0.001, the
hypothesis of additivity is rejected. Thus, there is evidence of departure from
additivity, and the observed data are less than that predicted from additivity.

11.7 Summary

Generally, additivity models, supported from single chemical dose-response data,
are statistically compared to mixture dose-response data (or models) to test the
hypothesis of additivity. That is, single chemical dose-response data are used to
estimate an additivity response surface (that satisfies the definition of additivity in
Eq. 11.1) for any mixture of the components used in the estimation – assuming the
same experimental conditions. Testing for evidence of departure from additivity
using mixture dose-response data (i.e., a test of the goodness-of-fit of the additivity
model) may follow standard statistical testing methods including Wald-type tests,
likelihood ratio tests, and score tests. Wald-type tests may be based on comparison of
model-based parameters (e.g., Casey et al. 2004) or predictions with bootstrap
confidence bands (e.g., Scholze et al. 2014). In essence these tests are based on
comparisons of prediction of mean responses for experimentally observed mixture
data to that predicted from an additivity model. In contrast, likelihood ratio tests
compare full and restricted likelihoods. Likelihood functions are joint probability
distributions, which are evaluated at all data points (single chemical and mixture
data) under the null hypothesis of additivity using only the parameters from the
single chemical data. This restricted likelihood is compared to full likelihood using
additional parameters to estimate the mixture mean response(s) (e.g., Gennings et al.
2004). The implementation of the likelihood ratio test simply requires the estimation
of the full model (models for single chemical and mixture data) and the restricted
model (including estimation of the model for the mixture data under additivity) with
the likelihood calculated in each case and compared: i.e.,�2(restricted loglikelihood
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– full loglikelihood). Finally, score tests – not illustrated herein – have the advantage
of being estimated only under the null hypothesis (here, of additivity) but are not
generally available in many software packages.

Appendix

Extracted data from Fig. 3 in Gennings et al. (2004)

Chemical CONC FoldIND Chemical CONC FoldIND Chemical CONC FoldIND

MXC 0 0.9 b-HCH 0 0.6 BPA 0 0.6

MXC 0 1 b-HCH 0 1.1 BPA 0 1

MXC 0 1.2 b-HCH 0 1.4 BPA 0 1.4

MXC 1 0.8 b-HCH 1 0.8 BPA 0.008 1.4

MXC 1 1 b-HCH 1 0.9 BPA 0.008 1

MXC 2 0.9 b-HCH 1 1 BPA 0.008 0.08

MXC 2 1.6 b-HCH 2 1 BPA 0.01 3.2

MXC 2 1.6 b-HCH 2 1.3 BPA 0.01 2.4

MXC 4 2 b-HCH 2 2.3 BPA 0.01 2.2

MXC 4 3 b-HCH 4 1.8 BPA 0.02 3

MXC 4 4.2 b-HCH 4 3 BPA 0.02 1.4

MXC 8 3 b-HCH 4 4.2 BPA 0.02 1.4

MXC 8 3.2 b-HCH 8 2.4 BPA 0.04 1.8

MXC 8 3.5 b-HCH 8 3.4 BPA 0.04 1.2

MXC 10 3.8 b-HCH 8 4.2 BPA 0.04 1

MXC 10 6.6 b-HCH 10 2.4 BPA 0.08 1.1

MXC 10 6.8 b-HCH 10 3 BPA 0.08 1.1

DPN 0 0.6 b-HCH 10 4.3 BPA 0.08 1

DPN 0 1 OCT 0 0.6 BPA 0.1 2.5

DPN 0 1.4 OCT 0 1 BPA 0.1 1.5

DPN 0.01 0.6 OCT 0 1.4 BPA 0.1 1.5

DPN 0.01 1 OCT 0.01 0.8 BPA 0.5 2

DPN 0.01 1 OCT 0.01 0.9 BPA 0.5 2.1

DPN 0.02 1 OCT 0.01 1.2 BPA 0.5 3.2

DPN 0.02 1.4 OCT 0.02 1 BPA 1 4.4

DPN 0.02 1.4 OCT 0.02 1.2 BPA 1 8

DPN 0.04 2.6 OCT 0.02 1.8 BPA 1 10

DPN 0.04 4 OCT 0.04 0.9 MIX 0 0.06

DPN 0.04 4.4 OCT 0.04 1 MIX 0 0.09

DPN 0.08 4 OCT 0.04 3.6 MIX 0 0.09

DPN 0.08 4.4 OCT 0.08 1 MIX 0 1

DPN 0.08 4.4 OCT 0.08 1.2 MIX 0 1.1

DPN 0.1 5.5 OCT 0.08 1.2 MIX 0 1.4

DPN 0.1 6 OCT 0.1 1.6 MIX 0.2 0.8

DPN 0.1 11.5 OCT 0.1 2.4 MIX 0.2 0.8

DDT 0 0.8 OCT 0.1 2.8 MIX 0.2 1

(continued)
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Chemical CONC FoldIND Chemical CONC FoldIND Chemical CONC FoldIND

DDT 0 1 OCT 0.2 3.4 MIX 1 1

DDT 0 1.2 OCT 0.2 3.4 MIX 1 1.1

DDT 1 5 OCT 0.2 4.8 MIX 1 1.5

DDT 1 6.8 OCT 0.4 4 MIX 2 1

DDT 1 9 OCT 0.4 4.2 MIX 2 1.4

DDT 2 4.8 OCT 0.4 6.8 MIX 2 1.8

DDT 2 7 OCT 0.8 3.8 MIX 3 2

DDT 2 7 OCT 0.8 6 MIX 3 2.4

DDT 4 4.5 OCT 0.8 6.2 MIX 3 2.8

DDT 4 6.5 OCT 1 5.5 MIX 4 3.2

DDT 4 6.9 OCT 1 6 MIX 4 4.8

DDT 8 11 OCT 1 7 MIX 4 6

DDT 8 11.2 MIX 8 5.8

DDT 8 11.2 MIX 8 6.2

DDT 10 8.2 MIX 8 9.5

DDT 10 9

DDT 10 15.5
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SAS Code for Example Data

*****************************;
*** Gompertz function;
proc nlin data=two;
parms g=4 b0=-.6 b1=.2;  ** for bhch, OCT, DDT, MIX;

*    parms b0=-.6  b1=.2;* g=10; ** for DPN, BPA, MXC;
a=1;  
mu = a + (g-a)*exp(-exp(-(b0+b1*conc )));
model foldind=mu;
output out=predgomp p=predg;
title 'Gompertz';
run;

symbol1 v=star i=none;
symbol2 v=none i=join c=blue;
proc sort; by conc;
proc gplot data=predgomp;

plot (foldind predg)*conc/overlay;
run; quit;

*****************************;
*** logistic function;
proc nlin data=two;
parms g=4 b0=-.6 b1=.2; a=1;  ** for bhch, OCT, DDT, MIX;

*    parms g=6 b0=-.6  b1=.2;
*    parms  b0=1 b1=.2;* g=10; ** for DPN, BPA, MXC;

a=1; * g=15;* a=-10;
*  b0 = -log((g-1)/(1-a));
mu = a + 2*(g-a)/(1+exp(-(b0+b1*conc )));
model foldind=mu;
output out=predlogistic p=predL;
title 'logistic';
run;

title;
symbol1 v=star i=none;
symbol2 v=none i=join c=blue;
proc sort; by conc;
proc gplot data=predlogistic;

plot (foldind predL)*conc/overlay;
run; quit;

***************************************************;
**** analysis of the mixture and tests of additivity;
***************************************************;
**** Howard model;
** chemicals: 'bHCH', 'OCT', 'MXC', 'DPN', 'BPA','DDT';
****************************************************;
proc nlmixed data=twob;

parms a1=4.8 k1=9.5 a2=7 k2=.4 k3=17 k4=.11 k5=1.1
a6=11 k6=1.8 km=9;

a3=10; a4=10; a5=10; am=10;
mu = 1+ (chemical='bHCH')*a1*conc/(k1+conc) + 

(chemical='OCT' )*a2*conc/(k2+conc) +
(chemical='MXC' )*a3*conc/(k3+conc) +
(chemical='DPN' )*a4*conc/(k4+conc) +
(chemical='BPA' )*a5*conc/(k5+conc) +
(chemical='DDT' )*a6*conc/(k6+conc) +
(chemical='MIX' )*am*conc/(km+conc) 

;
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num = conc*(chemical='MIX')*
(a1*mix_bhch/k1 + a2*mix_oct/k2 + a3*mix_mxc/k3 + 

a4*mix_dpn/k4  + a5*mix_bpa/k5 + a6*mix_ddt/k6);
den= 1+ conc*(chemical='MIX')*

(mix_bhch/k1 + mix_oct/k2 + mix_mxc/k3 + 
mix_dpn/k4  + mix_bpa/k5 + mix_ddt/k6);

muadd = 1+  num/den;
if chemical ne 'MIX' then muadd=.;
id muadd;
model foldind~normal(mu,sigsq);
predict mu out=pred ;

run;

**********************************************************;
**** FSCR model Gennings and best fit model;
** chemicals: 'bHCH', 'OCT', 'MXC', 'DPN', 'BPA','DDT';
**********************************************************;

*** unrestricted;
proc nlmixed data=twob ;

parms g1=3.3 b01=-3 b1=1 g2=5 b02=-.6 b2=.1
b03=-2 b3=.1
b04=-2 b4=.2 b05=-2 b5=.2 a6=10 k6=3

gm=10 b0m=-.6 bm=1;
g4=10; g5=10; g3=10;
a=1;
mu = (chemical='bHCH')*(a+(g1-a)*exp(-exp(-(b01+b1*conc)))) + 

(chemical='OCT' )*(a+(g2-a)*exp(-exp(-(b02+b2*conc)))) +
(chemical='MXC' )*(a+(g4-a)/(1+exp(-(b03+b3*conc ))))+
(chemical='DPN' )*(a+(g4-a)/(1+exp(-(b04+b4*conc ))))+
(chemical='BPA' )*(a+(g5-a)/(1+exp(-(b05+b5*conc ))))+
(chemical='DDT' )*(1+a6*conc/(k6+conc)) +

(chemical='MIX' )*(a+(gm-a)/(1+exp(-(b0m+bm*conc ))));
;
model foldind~normal(mu,sigsq);
predict mu out=pred ;

ED1=.; ed2=.; ed3=.; ed4=.; ed5=.; ed6=.;
if mu>1 and chemical='MIX' and mu<g1 then do;
ED1= (-log(-log((mu-a)/(g1-a)))-b01)/b1; end;

if mu>1 and chemical='MIX' and mu<g2 then do;
ED2= (-log(-log((mu-a)/(g2-a)))-b02)/b2;   end;

if mu>1 and chemical='MIX' then do;
if mu<g3 then ED3= (-log(-log((mu-a)/(g3-a)))-b03)/b3;
if mu<g4 then ED4= (log((mu-a)/(g4-mu))-b04)/b4;
if mu<g5 then ED5= (log((mu-a)/(g5-mu))-b05)/b5;
if mu<a6 then ED6= k6*(mu-1)/(a6-mu+1);
end;
tadd = 1/(mix_bhch/ed1 + mix_oct/ed2 + mix_mxc/ed3 + 

mix_dpn/ed4 + mix_bpa/ed5 + mix_ddt/ed6);
id ed1 ed2 ed3 ed4 ed5 ed6 tadd mu;

run;

** restricted under additivity - no mixture parameters;
proc nlmixed data=twob ;
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*   where foldind ne .;
parms g1=3.3 b01=-3 b1=1.2 g2=6 b02=-1 b2=9 b03=-4 b3=.3

b04=-4 b4=34 b05=-4 b5=3.3 a6=11 k6=1.8;
g5=10; g4=10; g3=10;
a=1;
muadd = (chemical='bHCH')*(a+(g1-a)*exp(-exp(-(b01+b1*conc)))) + 

(chemical='OCT' )*(a+(g2-a)*exp(-exp(-(b02+b2*conc)))) +
(chemical='MXC' )*(a+(g3-a)/(1+exp(-(b03+b3*conc ))))+
(chemical='DPN' )*(a+(g4-a)/(1+exp(-(b04+b4*conc ))))+
(chemical='BPA' )*(a+(g5-a)/(1+exp(-(b05+b5*conc ))))+
(chemical='DDT' )*(1+a6*conc/(k6+conc)) 

;

do mu0 = 0 to 8 by .1;
if mu0>1 and chemical='MIX' and mu0<g1 then do;
ED1= (-log(-log((mu0-a)/(g1-a)))-b01)/b1; end;
if mu0>1 and chemical='MIX' and mu0<g2 then do;
ED2= (-log(-log((mu0-a)/(g2-a)))-b02)/b2;   end;

if mu0>1 and chemical='MIX' then do;
ED3= (-log(-log((mu0-a)/(g3-a)))-b03)/b3;
ED4= (log((mu0-a)/(g4-mu0))-b04)/b4;
ED5= (log((mu0-a)/(g5-mu0))-b05)/b5;
ED6= k6*(mu0-1)/(a6-mu0+1);
end;
tadd_ = 1/(mix_bhch/ed1 + mix_oct/ed2 + mix_mxc/ed3 + 

mix_dpn/ed4 + mix_bpa/ed5 + mix_ddt/ed6);
if chemical='MIX' then do;

if (tadd_-conc)**2<0.01 then do;  
muadd=mu0;

tadd=tadd_;
end;

end; end;
if chemical='MIX' and (tadd-conc)**2>0.01 then muadd=.;

model foldind~normal(muadd,sigsq);
predict muadd out=predadd ;
id ed1 ed2 ed3 ed4 ed5 ed6 tadd muadd;

run;
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