
Chapter 10
Mixtures: Contrasting Perspectives from
Toxicology and Epidemiology

Thomas F. Webster

Abstract Investigation of the health effects of mixtures will benefit from the
cooperation of toxicologists and epidemiologists. This chapter provides insight
into the commonalities and differences in the viewpoint and methods that toxicol-
ogists and epidemiologists use to investigate health effects of mixtures. Ways in
which these two important disciplines can work together are suggested.
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10.1 Introduction

The field of mixtures has had a resurgence in the last decade, with increasing interest
from researchers and governments. As a report from NIEHS on a 2011 workshop put
it, “Traditionally, toxicological studies and human health risk assessments have
focused primarily on single chemicals. However, people are exposed to a myriad
of chemical and nonchemical stressors every day and throughout their lifetime. . .It is
imperative to develop methods to assess the health effects associated with complex
exposures in order to minimize their impact on the development of disease.”Another
conclusion was the “need for further collaboration among epidemiologists, toxicol-
ogists, and biostatisticians.” (Carlin et al. 2013). For such collaborations to be most
productive, researchers in all three fields need to be at least aware of each other’s
jargon, especially the definition of “interaction.” Further, toxicologists and epide-
miologists need to understand the viewpoints and methods that the two fields use to
investigate health effects of mixtures (see also Boedeker and Backhaus 2010;
Howard and Webster 2013).
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10.1.1 The Mixtures Problem for Toxicologists

The mixtures problem typically faced by toxicologists and pharmacologists is to
predict the effect of a combination of compounds based only on information for each
compound individually, including toxicological mechanism of action. Put more
concretely, when and how can the individual dose-response curves plus mechanistic
information be used to predict the joint response across a range of doses, i.e., the
dose-response surface. For simplicity, concepts will be illustrated with a mixture of
two compounds; it is important to note that the ideas presented here can be
generalized to more complicated situations. This problem can be visualized with a
three-dimensional diagram: plot the dose of one compound on the X1-axis, the dose
of the second compound on the X2-axis, and response on the Y-axis (Fig. 10.1, right).
In some situations, the response surface can be accurately predicted using compo-
nent-based mixtures models, as briefly discussed later in this chapter and elsewhere
in this volume (Chaps. 9, 11 and 14). Sometimes toxicologists are faced with a well-
defined mixture for which the composition is fixed or nearly so. For such
multicomponent defined mixtures, direct toxicological testing of the complete mix-
ture can be used. Toxicologists also directly test highly complex environmentally
realistic mixtures (whole mixtures) where some part of the mixture mass is known
and the rest consists of unidentified components (Narotsky et al. 2012, 2013).

10.1.2 The Mixtures Problem for Epidemiologists

Environmental epidemiologists face a related but complementary problem. For
component-based mixtures, toxicologists can choose the compounds they are exam-
ining and the combinations of doses. Since epidemiologists cannot ethically expose
people to toxic compounds, they look for natural experiments where such exposures
occur. For each person, the investigator needs to know their exposure to each
compound Xj (during the biologically relevant time period), the outcome Y, as well
as potential confounders and effect measure modifiers. At the simplest level, a
confounder is a third variable that is associated with the exposure and is an
independent predictor of the outcome (for a more thorough definition and discussion
of confounding, see Aschengrau and Seage 2013; Rothman et al. 2008). If not
controlled in some way, confounding causes a distortion of the relationship between
the exposure of interest and the outcome; this distortion can be in any direction,
either diminishing/masking a true association or creating false associations. It is
important to note that the omission of a risk factor for an outcome does not cause
confounding if it is not also associated with the exposure of interest. Effect measure
modification is discussed in more detail later in the chapter.

For now, two simplifying assumptions are made: the outcome Y is continuous,
and there is no effect measure modification. The exposure of each person can be
plotted as a point on the X1�X2 plane, generating the distribution of data in exposure
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space (e.g., Fig. 10.2). Statisticians typically use regression modeling to estimate the
associations between each exposure and the outcome (Chap. 8) as well as statistical
interaction. For example, one might use a regression equation of the form

Y ¼ β0 þ β1X1 þ β2X2 þ β12X1X2 þ β3Z þ ε ð10:1Þ
where β0 is a constant; β1 and β2 are the effect estimates for the two exposures X1 and
X2 individually (called the main effects) (e.g., Harrell 2001). In statistics, β12X1X2 is
called a multiplicative interaction term. As discussed later in this chapter, this is not
necessarily the same as interaction from an epidemiologic or toxicologic point of
view. Z is a confounder that requires adjustment, and ε is an error term, assumed to
be random and unmeasured. Regression uses the data for each person (Xij, Yi, Zi) to
estimate the parameters β0, β1, β2, β12, and β3. Equation 10.1 is quite simple. In
addition to the two assumptions discussed above, it also assumes that individual
dose-response curves are linear and there is only one confounder; these assumptions
can be relaxed. More complicated interaction terms can also be used. While toxi-
cologists can usually avoid confounding by experimental design (Chaps. 8 and 13),
it is a major cause of concern in environmental epidemiology: this difference arises
because of the uncontrolled quality of natural experiments. For example, only a
limited number of exposure variables (e.g., different chemicals) are usually mea-
sured, potentially causing confounding.

While a component-based toxicology approach uses data on individual com-
pounds to estimate the effect of the mixture, the epidemiologist tries to estimate
the response surface directly from the data in exposure space: Equation 10.1 is a
model of the dose-response surface (it also yields estimates of the individual dose-
response curves, e.g., by setting the other compound equal to zero). Unlike toxicol-
ogists, epidemiologists often have neither a priori individual chemical dose-response
information nor information about toxicological mechanism.

Fig. 10.1 An important mixtures problem in toxicology: When and how can dose-response curves
and other information about individual components (left) predict the dose-response surface of the
mixture (right)?
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Epidemiologists have at least three questions in mind when studying exposure to
mixtures (Braun et al. 2016): (1) Variable selection: Which components of the
mixture contribute to the outcome? In our example, are both X1 and X2 associated
with the effect? (2) Are there “interactions” (however defined) between the two
exposures? (3) Can some kind of summary measure of the exposures be constructed
(discussed later in this chapter)? Examining mixtures in epidemiology is a difficult
problem, facing a number of challenges (e.g., Braun et al. 2016).

Several recent efforts have been aimed at developing methods to evaluate mix-
tures of chemicals in epidemiology: e.g., the EPA multipollutant workshop (Johns
et al. 2012) and the NIEHS workshop Statistical Approaches for Assessing Health
Effects of Environmental Chemical Mixtures in Epidemiology (NIEHS 2015). Novel
methods that have been applied to assess mixtures in epidemiological settings
include weighted quantile sum regression (Carrico et al. 2015), Bayesian kernel
machine regression (Bobb et al. 2014), and exposure space smoothing (Webster and
Vieira 2015). A series of publications are expected to come out of the NIEHS
workshop comparing various methods (e.g., Taylor et al. 2016).
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Fig. 10.2 Example of exposure space for two compounds BDE 47 and PCB153, as they occur in
human serum (ng/g lipid weight, unpublished data). Each axis represents an exposure; each point
represents a person
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10.2 Toxicology and Epidemiology of Mixtures: The
Importance of Exposure Space

To generalize, instead of two exposures, suppose there are J exposures. Thus, instead
of the simple diagram in Fig. 10.2, the exposure space has J dimensions; the
response variable adds an additional dimension. This space is potentially very
large: it is estimated that there are somewhere between 25,000 and 84,000 chemicals
in commerce in the USA (IOM 2014). To this one might add natural compounds,
metabolites, pharmaceuticals, and nonchemical exposures. (However, we have still
simplified, as considerations of time and exposure measurement error are omitted
from the discussion.)

It is currently not possible to simply test our way out of the mixtures problem: the
numbers are too big. For example, even if we examined only one dose of only three-
way combinations of 25,000 chemicals, the number of toxicology experiments
required is 2.6 � 1012. We clearly need ways to reduce the number of combinations.
This sobering fact provides a compelling rationale for the following two main
toxicological approaches to mixtures. The component-based approach, when it is
applicable, only requires data on individual compounds. When the relative compo-
sition of a mixture is fixed, then varying the dose of the whole mixture produces a ray
in exposure space, a line from the origin outward (Chap. 13).

The distribution of points in exposure space is thus of key importance for both
toxicology and epidemiology (e.g., Carlin et al. 2013). Large pieces of the space will
be empty: such combinations of exposure do not occur and don’t require investiga-
tion. Some exposures will be highly correlated, even forming rays amenable to
whole mixture approaches. Understanding exposure space is also critical for envi-
ronmental epidemiologists as they cannot control the distribution of exposures
except to some degree by choice of populations. The good news is that epidemiol-
ogists study exposures as they actually occur—thus targeting important parts of
exposure space—at least if they are measured. But this can also pose problems. For
example, estimating both main effects and interactions is difficult unless the popu-
lation under study is sufficiently large, and the data are to some degree spread across
exposure space. For example, with two exposures, one would ideally have groups of
people with exposure to both compounds, exposure to neither compound, and
exposure to only one or the other. If two exposures are highly correlated, it is
difficult to disentangle separate effects: putting both exposures in the regression
model can produce unstable estimates, a problem called collinearity (note that if
exposures are very highly correlated, the epidemiological problem is related to the
whole mixture approaches of toxicology). Suppose components A and B are corre-
lated because they come from a common source, but only A contributes to the effect.
If only B is measured (or included in a model), it will incorrectly appear to be
associated with the outcome, i.e., it is confounded by the missing exposure
(Fig. 10.3). For all of these reasons, it is important to increase the number of
exposures that are measured and examined: expanded targeted analysis, nontargeted
analysis, and similar approaches are critical for a better understanding of what
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mixtures occur. Targeted analysis looks for specific compounds in a sample;
nontargeted analysis is a screening approach that can identify previously unknown
or uncharacterized exposures (e.g., Getzinger et al. 2015; Chaps. 3 and 4). Analysis
of such expanded exposure data will also require larger sample sizes, e.g., to achieve
desired levels of statistical power.

Methods for analyzing the information in exposure space are also important. For
example, Fig. 10.4 illustrates the correlations of a set of persistent organic pollutants
in human serum from the same cohort as Fig. 10.2, but with more compounds
(unpublished data). The dendrogram, which can be interpreted similar to a family
tree, was constructed using hierarchical clustering. Compounds joined closer to the
bottom are more highly correlated (using Spearman’s correlation coefficients of the
serum concentrations), those joined at the top less so. For example, BDE47 and
BDE99 are two highly correlated (and tightly clustered) compounds. They are two
polybrominated diphenyl ether (PBDE) congeners that occur in the same commer-
cial flame retardant and that have similar routes of exposure. The PBDEs and PCBs
are in two different clusters because they are not very correlated with each other. For
example, BDE47 is not well correlated with PCB153, as shown in Fig. 10.2. This
suggests that PBDEs and PCBs are unlikely to confound each other (at least in this
cohort); that does not preclude “additive” or “interactive” effects however.

10.3 Component-Based Mixture Methods in Toxicology

When mechanisms are sufficiently well understood, models of the effect of mixtures
can sometimes be constructed. For example, biologically based mathematical
models can be constructed of the effects on receptor activation by mixtures of
ligands, one important mechanism for endocrine disruption (e.g., Weiss et al.
1996; Howard and Webster 2009; Webster 2013). However, toxicologists and risk
assessors often need to make predictions without this kind of detail. Two main
approaches are used. As these ideas are discussed in more detail elsewhere in this
book (Chap. 9), these concepts will be only briefly reviewed.

Source

A

B

Y

Fig. 10.3 Suppose that exposures A and B are correlated because they both arise from a common
source. A, but not B, causes the outcome Y. If B is the only exposure measured, it will falsely appear
to be associated with Y due to confounding

276 T. F. Webster

https://doi.org/10.1007/978-3-319-56234-6_3
https://doi.org/10.1007/978-3-319-56234-6_4
https://doi.org/10.1007/978-3-319-56234-6_9


For compounds that act via similar toxicological mechanisms, one approach
assumes dose addition, also known as concentration addition. Compounds that are
dose additive obey the following equation (see Chap. 9):

XJ
j¼1

dj
EDj,y

¼ 1 ð10:2Þ

where dj is the dose of compound j and EDj,y is the dose of compound j alone that
causes response level y, e.g., the ED10 (Berenbaum 1989). Depending on the number
of dimensions, Eq. 10.2 describes a line, plane, or hyperplane. As a result, the
isoboles (contours) of the response surface form negatively sloped lines, planes, or
hyperplanes when projected onto the exposure space (Fig. 10.5).

A simple version of dose addition is toxic equivalence: it can occur when the
relative potency between compounds is the same at all response levels (Howard and
Webster 2009; Chap. 14). The joint response of the mixture under toxic equivalence
( fTE) is a function of a linear combination of the component doses scaled by potency.
If chemical 1 is selected as the reference compound, then the mixture response can
be represented by the dose-response model for chemical 1 applied to the linear
combination of the component doses

Fig. 10.4 Dendrogram showing the correlations between the concentrations of a number of
persistent organic pollutants in human serum
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f TE d1; . . . ; dJ½ � ¼ f 1
XJ
j¼1

γjdj

" #
ð10:3Þ

where f1[.] is the dose-response curve for the reference compound, compound 1. The
γj are the relative potency factors (RPFs) compared to a reference compound. When
the reference compound has the highest potency, the other compounds in the mixture
act as if they are dilute versions of the reference compound (for a discussion of
definitions of RPFs and TEFs, see Chap. 14 as well as USEPA 2008). The concept
underlying dose addition is perhaps most easily seen for toxic equivalence: one first
scales doses by their relative potencies (to give their equivalent doses as chemical 1)
and then applies the dose-response function of chemical 1 to total equivalent dose.
Under toxic equivalence, the isoboles are always parallel, negatively sloped straight
lines (Fig. 10.5b).

We have proposed a modification of dose addition called generalized concentra-
tion addition (GCA) that can in principle handle mixtures of full and partial agonists,
i.e., compounds with different maximal responses (Howard andWebster 2009). This
class of models has been successfully applied to mixtures of full and partial agonists
of the AhR and PPARγ receptors (Howard et al. 2010; Watt et al. 2016). Isoboles for
mixtures obeying GCA are straight lines but can have negative or positive slopes: the
latter implies that the partial agonist acts like a competitive antagonist at response
levels above its maximum effect level (Howard and Webster 2009).

When compounds act via different mechanisms, many mixtures toxicologists use
independent action. The mixture response expected under independent action ( fIA)
is:
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Fig. 10.5 Isoboles: The response surface on the left (a) yields the contours (isoboles) on the right
(b). Compounds that are dose additive have isoboles that are negatively sloped straight lines. For
compounds that follow the toxic equivalence model (a special case of dose addition with constant
relative potency), the isoboles are also parallel
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f IA d1; . . . ; dJ½ � ¼ 1�
YJ
j¼1

1� f j dj
� �� �

ð10:4Þ

Originally derived from independence in probability theory, independent action
assumes that responses range between zero and one.

Effect summation (ES) is defined by

f ES d1; . . . ; dJ½ � ¼
XJ
j¼1

f j dj
� � ð10:5Þ

and describes the excess effect, above controls (Chap. 9) (note that at very low effect
levels independent action is approximated by effect summation). It is worth empha-
sizing that effect summation has often been rejected as a general mixtures model by
mixtures toxicologists, e.g., Howard and Webster (2009), but may be useful when
dose-response curves are approximately linear or under other conditions (Chap. 14).
Effect summation frequently appears in the toxicology literature as well as in
textbooks.

Perhaps not surprisingly, there has been discussion in the toxicology literature
about when one should use dose addition vs. independent action, in particular, how
similar the toxicological mechanisms must be for dose addition to apply (Webster
2013). The choice of dose addition vs. independent action can have profound
consequences; this is nicely illustrated in the “something from nothing” experiment
of Silva et al. (Silva et al. 2002), where a mixture of xenoestrogens, each at doses less
than their empirical no effect levels, produces a response in combination; indepen-
dent action would predict no combination response. Further, the compounds exhibit
toxic equivalence and thus dose addition well describes the mixture response. As the
dose-response curves for these compounds are concave upward at low doses
(Fig. 10.6a), the combined response exceeds that predicted by effect summation
(Silva et al. 2002; Rajapakse et al. 2002). Some models (integrated addition models)
combine features of both dose addition and independent action (e.g., Rider and
LeBlanc 2005, Chap. 9)

In sum, mixtures toxicologists often use either dose addition or independent
action to estimate the effect of mixtures from individual components. The choice
often depends on the toxicological similarity of the components. Furthermore, dose
addition (or GCA) and independent action can be considered as toxicologic defini-
tions of non-interaction/additivity. Having specified such a definition, one can then
determine if a mixture has an interaction, producing responses greater than additive
or less than additive relative to the chosen definition.
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10.4 Additivity and Interaction in Epidemiology

To borrow a frequently used example (Rothman 1986), Table 10.1 shows hypothet-
ical risks of lung cancer categorized by exposure to asbestos and smoking in a cohort
study (rates of disease could also be used). Let’s assume there is no confounding or
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Fig. 10.6 (a) Suppose A and B follow the toxic equivalence model and have the same potency,
with a nonlinear response curve that is concave up. The same dose of A alone or B alone would give
the same response. For a mixture of these doses, effect summation would predict twice the response
of either compound alone. Dose addition gives the correct, higher value. But from the point of view
of epidemiology, the incremental effect of compound B depends on the amount of compound
A. They interact, as defined by epidemiologists. (b) Suppose A and B follow the toxic equivalence
model and have the same potency, with a linear response curve that is concave up. The same dose of
A alone or B alone would give the same response. For a mixture of these doses, effect summation
and dose addition gives the same, correct value. From the point of view of epidemiology, the
incremental effect of compound B does not depend on the amount of compound A. They do not
interact, as defined by epidemiologists

280 T. F. Webster



other biases. The highest risk is in the doubly exposed people. As will be seen,
epidemiologists think about interaction in quite a different way from toxicologists.

Epidemiologists summarize the associations between exposure and disease using
effect measures. For example, Table 10.1 shows the relative risks (RR) for the
association between lung cancer and asbestos, holding smoking constant. In this
case, the RR—the ratio of the risk in the asbestos exposed to the risk in the asbestos
unexposed—equals 5 for smokers and also 5 for non-smokers. As the RRs are the
same in both strata, there is no effect measure modification of the asbestos RR by
smoking. Similarly, Table 10.1 shows that asbestos exposure does not modify the
RR for smoking and lung cancer: it is 10 in both strata. On the other hand, suppose
the investigator used another equally valid effect measure: the risk difference (RD),
which equals the risk in the exposed minus the risk in the unexposed. The RD for the
association between lung cancer and asbestos is 40/100,000 for smokers and
4/100,000 for non-smokers. Thus, the asbestos RD is modified by smoking (and
vice versa). This phenomenon is called effect measure modification because it
depends on the choice of effect measure, here either RD or RR (there are other
possibilities such as odds ratios, typically used in case-control studies).

Epidemiologists consider effect measure modification to be descriptive. Interac-
tion is a different concept. Like toxicologists, epidemiologists also use the term
interaction to mean nonadditive, either greater than additive (called synergism by
epidemiologists) or less than additive. Unlike toxicology, epidemiologists have a
single definition of non-interaction (additivity), making no distinction for mecha-
nism: it is based on additivity of risk differences. For the example in Table 10.1,
epidemiologists would say that asbestos and smoking interact, having a greater than
additive (synergistic) effect on lung cancer. Indeed, some epidemiologists call this
“biologic interaction” (e.g., Ahlbom and Alfredsson 2005).

To see how epidemiologists judge Table 10.1 to display nonadditivity, let’s
briefly review one derivation of the epidemiologic definition of interaction (for a
detailed explanation, see Howard and Webster 2013; Rothman et al. 2008). As in
Table 10.1, epidemiologic examples traditionally use binary exposures and out-
comes. One model for interaction in epidemiology relies on what are called coun-
terfactual susceptibility types. For pairs of two binary exposures A and B, there are
16 possible patterns of exposures and outcomes, each of which can be considered a
possible response type (Table 10.2). For some types, one needs to know the value of

Table 10.1 Hypothetical risks of lung cancer categorized by exposure to asbestos and smoking
(2 � 2 table). Risks and risk differences (RD) are expressed as cases per 100,000; relative risks
(RR) are ratios

Exposed to asbestos Not exposed to asbestos RRa RDa

Smoker 50 10 5 40

Non-smoker 5 1 5 4

RRb 10 10

RDb 45 9
aExposed to asbestos vs. unexposed to asbestos, stratified by smoking status
bSmokers vs. non-smokers, stratified by asbestos status
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both exposures to know the outcome. For example, for people of type 8, the outcome
occurs only if both exposures occur, i.e., A ¼ B ¼ 1. Epidemiologists call these
types interdependent. For non-interdependent types, the effect of exposure to one
compound does not depend on the other. For example, people of type 6 will have the
outcome if A ¼ 1, irrespective of the value of B. Risks associated with different
exposure scenarios can be written as rAB; e.g., r10 is the risk in the population
exposed to A but not to B. Writing down the risks associated with only the
non-interdependent types—types 1, 4, 6, 11, 13, and 16—(and assuming no
confounding or bias) yields the following equation:

r11 � r00ð Þ ¼ r10 � r00ð Þ þ r01 � r00ð Þ ð10:6Þ
where rij denotes the risk for each exposure patterns (e.g., r10 means the risk in a
population exposed to X1 and unexposed to X2). This equation means that the risk
difference between the jointly exposed (r11) and the jointly unexposed (r00) is equal
to the sum of the risk differences due to individual exposures, (r10�r00) and
(r01�r00). Since this equation includes only non-interdependent types, deviation
from this equation implies the presence of interdependent types. Thus risk difference
additivity is used by epidemiologists as the criteria for interaction/interdependence.
It is necessary but not sufficient, i.e., interaction may occur even if Eq. 10.6 holds,
e.g., if risks associated with interdependent types cancel out (dividing Eq. 10.6 by r00

Table 10.2 Counterfactual susceptibility type model for two exposures provides a basis for
thinking about interaction for epidemiologists. The outcome (binary) depends on the combination
of exposure (A, B)

Type
A ¼ 1
B ¼ 1

A ¼ 0
B ¼ 1

A ¼ 1
B ¼ 0

A ¼ 0
B ¼ 0 Description

1 1 1 1 1 Doomed (always develops outcome)

2a 1 1 1 0 A causal, B causal, A and B causal

3a 1 1 0 1

4 1 1 0 0 A ineffective, B causal

5a 1 0 1 1

6 1 0 1 0 A causal, B ineffective

7a 1 0 0 1 A preventative, B preventative, A and B antagonizes

8a 1 0 0 0 A and B causal

9a 0 1 1 1 A and B preventative

10a 0 1 1 0 A causal, B causal, A and B antagonizes

11 0 1 0 1 A preventative, B ineffective

12a 0 1 0 0

13 0 0 1 1 A ineffective, B preventative

14a 0 0 1 0

15a 0 0 0 1 A preventative, B preventative, A and B
preventative

16 0 0 0 0 Immune (never develops outcome)
aInterdependent types
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provides equivalent criteria in terms of relative risks). Applying this equation to
Table 10.1 shows that asbestos and smoking interact: indeed they have a greater than
additive effect on lung cancer. Setting r11 ¼ 50, r10 ¼ 10, r01 ¼ 5, r00 ¼ 1 yields

50� 1ð Þ > 10� 1ð Þ þ 5� 1ð Þ ð10:7Þ
For simplicity, the denominator of 100,000 was omitted for all of the numbers in

Eq. 10.7.
This all might seem very reasonable until one realizes the following fact: the

epidemiologic definition of biological interaction is consistent with effect summa-
tion, the definition rejected by many mixtures toxicologists! Equation 10.6 is a
special case of effect summation, Eq. 10.5, where outcomes and exposures are
binary (Howard and Webster 2013). To see this, recall that effect summation
examines the excess effect above controls. For two exposures, Eq. 10.5 is equivalent
to Eq. 10.6 with the background risk (r00) subtracted.

Similar ideas about interaction are sometimes applied to continuous outcomes in
epidemiology. For continuous outcomes Y (untransformed) and linear dose-response
curves (or binary exposures), regression models such as Eq. 10.1 can test for
statistical interaction (and control for confounding). The beta coefficients for main
effects are the differences in outcome per unit of exposure. Results consistent with
β12 meaningfully different from zero imply there is an interaction using the epide-
miologic definition. This conclusion depends on the use of an additive scale. The
presence of a non-zero interaction term in more general regression models does not
necessarily imply interaction from the epidemiologic point of view, i.e., statistical
interaction is not the same as epidemiologic interaction. For example, in a logistic
model, as is commonly used for binary outcomes, one cannot simply examine an
interaction term; there are, however, more complicated methods to assess epidemi-
ologic interaction in such cases (Andersson et al. 2005).

10.5 Contrasting Interaction in Toxicology
and Epidemiology

What would toxicologists and pharmacologists say about the data in Table 10.1? To
highlight differences between epidemiology and toxicology, consider replacing
asbestos and smoking by compounds A and B, about which little is known (the
epidemiologic conclusion would remain the same). The answer would depend on
whether one hypothesized that A and B worked by similar or different mechanisms.
If the toxicologist thought they acted by “different” mechanisms, they might use
independent action and conclude that it is greater than additive (since the risks are
small, independent action is approximately equal to effect summation). Suppose
they believed the chemicals acted by “similar” mechanisms? Unfortunately,
Table 10.1 does not contain enough information to determine if A and B
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(or smoking and asbestos) are dose additive. One would also need information or
assumptions about the dose-response curves for each compound alone.

The contrasting ideas about interaction and additivity between epidemiology and
toxicology are perhaps most stark when comparing effect summation with dose
addition for a mixture of compounds that follow toxic equivalence (a special case of
dose addition) and a dose-response curve that curves upward (e.g., Fig. 10.6a). The
mixture is nonadditive from the epidemiologic point of view where one first applies
the dose-response function to each compound separately and adds the results: the
sum of the effects is less than the effect of the mixture. But toxicologists would
define this mixture as additive (relative to dose addition). For toxic equivalence, one
first adds component doses scaled by relative potency factors and then applies the
dose-response function of the reference compound. The contrast derives from the
underlying logic of the epidemiologic definition. As illustrated in Fig. 10.6a, the
increase in the effect due to a dose of compound B depends on whether compound A
is also present in the mixture. Hence, nonlinear dose-response curves will lead to
interaction as defined by epidemiologists. The toxicologic and epidemiologic defi-
nitions coincide when the dose-response curve is linear (Fig. 10.6b).

Now suppose that A and B are merely different doses of the same substance, an
idea called sham substitution (Berenbaum 1989). Although the definition of dose
addition used here does not depend on this idea, it is sometimes used by toxicologists
as a rationale for thinking of dose addition as noninteractive. According to this line
of thought, a compound does not interact with itself. From the epidemiologic point
of view, sham substitution implies that different doses of the same compound do
interact when dose-response curves are nonlinear (Rothman 1974; Howard and
Webster 2013).

Toxicologists and epidemiologists thus use the same terminology—additive,
greater than additive, less than additive—but mean something quite different.
Understanding this difference is important for interpreting mixtures studies that
come out of the two fields. None of this discussion means that toxicology is correct
and epidemiology is wrong or vice versa. Definitions cannot be “wrong” (at least, if
used logically); the real test is whether they are useful. Research is needed compar-
ing mixtures studies in the two fields. Epidemiology has the possible advantage of
relying on one definition rather than two as in toxicology, where the choice depends
on sometimes fuzzy distinctions about similarity of mechanism (Howard and Web-
ster 2013). It is possible that the toxicologic definition sheds more light on biology,
whereas the epidemiologic definition (despite being called biologic by some epide-
miologists) might be more useful for thinking about intervention to protect public
health (e.g., Rothman et al. 1980). As an example of the latter, consider two
exposures that have a greater than additive effect from the epidemiologic point of
view; this implies that reduction of either exposure may lead to a dramatic reduction
of risk. Returning to our example of Table 10.1, preventing exposure to either
smoking or asbestos would have a large impact, greatly reducing the risk of lung
cancer in those who would otherwise have been exposed to both.
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10.6 Combining Ideas from Toxicology and Epidemiology

Progress on mixtures would benefit from greater communication and collaboration
between toxicologists, epidemiologists, statisticians, and exposure scientists. The
mixtures problem can be thought of as having two sub-questions:

1. What are the patterns of co-exposure in real populations?
2. What are the health effects of the mixtures to which populations are exposed?

As discussed above, exposure science has much to contribute to the first question.
The second can be investigated by the complementary approaches of toxicology and
epidemiology.

Epidemiologists have used some of the toxicological ideas discussed in this
chapter. Perhaps the best example is the use of TEFs when studying health effects
in people of exposure to dioxin-like compounds (e.g., Korrick et al. 2011). For
example, when exposure is measured using blood concentrations, one multiplies the
concentrations by the appropriate TEFs and sums. The result is then used as a
summary measure of exposure in a regression equation that gets around collinearity
problems. With sufficient toxicological information to construct RPFs, this strategy
could be applied to other classes of compounds. This approach could be a very
fruitful line of collaboration between toxicologists and epidemiologists.

Let’s now take a more general view of the mixtures problem for epidemiologists,
one called exposure space smoothing (Webster and Vieira 2015). Important limita-
tions of Eq. 10.1 include the assumption of linearity of dose-response functions and a
particular mathematical form of the interaction term. These restrictions can be
avoided by using a smoothing function f(.) of the exposures

g Y½ � ¼ f X1;X2½ � þ γ
0
Z þ ε ð10:8Þ

For simplicity, only two exposures (X1, X2) are shown, but higher dimensional
smooths are possible with sufficient data. Equation 10.8 also includes a link function
g[Y] of the outcome, allowing the use of continuous, binary, and other types of
outcome data. Equation 10.8 can be treated as a generalized additive model (gam)
(Hastie and Tibshirani, 1990). Gams can also adjust for confounders, important for
any epidemiologic analysis (Eq. 10.8 adjusts for a vector of confounders Z ). Rather
than impose a specific functional form (e.g., linearity), smoothing functions use the
data to inform the shape. There are a number of ways to do smoothing, but one
method estimates the value of the function at a particular point by using a weighted
average of the outcomes at points that are nearby in exposure space (for details on
how this works in two-dimensional geographic space, see Webster et al. 2006). The
results of a two-dimensional smooth can be displayed in a number of ways, e.g., as
color-coded maps or by using contours (e.g., Fig. 10.5b). For more dimensions,
slices can be displayed. Such results can also be used as exploratory data analysis to
inform additional modeling. The contours of the response surface, called isoboles,
have a toxicologic interpretation. As discussed above, isoboles that are

10 Mixtures: Contrasting Perspectives from Toxicology and Epidemiology 285



approximately negatively sloped parallel straight lines suggest that a summary
measure can be constructed using RPFs. If the RFPs are not known from toxicologic
data, they might be estimated using other approaches, including methods such as
weighted quantile sum regression (Carrico et al. 2015). Isoboles which curve toward
the origin suggest a greater than dose-additive response; isoboles which curve away
from the origin suggest a less than dose-additive response.

Another interesting potential approach that combines aspects of exposure science,
toxicology, and epidemiology is EAMEDA: exposomic analysis of mixtures via
effect-directed analysis (Fig. 10.7). Effect-directed analysis (EDA) uses a high-
throughput response assay, e.g., reporter assays, to biologically compute the com-
bined effect of a mixture (e.g., serum or dust) on that biological endpoint. Working
backward, chemical fractionation and targeted and nontargeted analysis are used to
identify the components of the mixture responsible for the result (e.g., Simon et al.
2013; Fang et al. 2015, Chap. 3). For example, Fang et al. (2015) measured total
PPARγ activity of dust extracts using a reporter assay. The dust samples were then
chemically fractionated with normal phase high-performance liquid chromatogra-
phy. Each fraction was retested with the reporter assay. In fractions with significant
activity, compounds were identified using targeted and nontargeted analysis. Fatty
acids were determined to be a major contributor to the dust PPARγ activity. Simon
et al. (2013) used a transthyretin-binding assay to examine an aspect of thyroid
hormone disruption in polar bears. Nonylphenols and certain hydroxylated PCBs
contributed to this activity in plasma. The biologically based measure of activity can
be considered the central focus of the EAMEDA concept: (1) Investigators work
backward using EDA to determine which compounds contribute to the activity.
(2) They could also work forward, using the result of the assay—an integrated
measure of the activity of the mixture—as the measure of exposure in an epidemi-
ologic study. Clearly, the appropriateness of the assay and the samples would need to
be carefully considered.

I look forward to greater synergy—or at least additivity—between toxicologists,
epidemiologists, statisticians, and exposure scientists in investigations of the mix-
tures problem.

Biological 
assay

Work forward: use the 
assay as the exposure 

measure

Work backward: identify 
constituents responsible 

for activity

Fig. 10.7 Overview of EAMEDA: Exposomic Analysis of Mixtures via Effect Directed Analysis.
A biological assay (e.g., luciferase reporter assay) is used to measure the integrated activity of the
sample. The investigator uses these results as the exposure measure in an epidemiology study. One
also uses effect-directed analysis (or some related technique) to determine which compounds in the
sample account for the activity
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