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To all who came before, paving the way, to
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of mixtures research – from unraveling
complex exposures to performing
toxicological evaluations of mixtures and
assessing cumulative risk. In particular, we
recognize George Alexeeff, who dedicated
himself to advancing public health and
understanding cumulative health impacts,
with particular attention to vulnerable
populations overburdened by multiple sources
of pollution.



Foreword

Mixtures are our everyday reality. We are exposed to numerous chemicals through-
out our lifetimes from various sources in our environment – personal care products,
food and water contaminants, occupational exposures, traffic pollution, molds and
allergens, pesticides, pharmaceuticals, and too many others to list. These external
exposures are influenced by our internal milieu, which reflects background genetics
and acquired epigenetic changes, as well as a host of nonchemical environmental
factors (e.g., microbiome, psychosocial stressors, disease states, nutritional status).
Considering this complex and dynamic exposure scenario, it has long been recog-
nized that evaluating exposures and their effects on a chemical-by-chemical basis is
not adequate for protecting public health. However, there has not been a clear path
forward for changing the paradigm, and the complexities involved in mixtures
research and risk assessment have often been used as justification for perpetuating
the standard approach of assessing one chemical or one exposure at a time. Despite
the challenges, many researchers across diverse fields of science have been actively
engaged in the study of mixtures. Through these efforts, we have gained a significant
understanding of the key issues in mixtures science and developed many approaches
for addressing these issues. In this book, insights from leading-edge researchers and
analysts have been pulled together to present a comprehensive picture of the current
state of mixtures science and provide tools for practitioners engaged in assessment of
risk from exposure to mixtures.

My interest in mixtures has spanned the breadth of my career. Through my own
research program and as director of the National Institute of Environmental Health
Sciences (NIEHS) and the National Toxicology Program (NTP), I have had the
opportunity to be a part of the mixtures research story. One of my early interests was
in mixtures of dioxin-like chemicals. Work from my lab and others contributed to
some of the first efforts to account for the cumulative risk associated with exposure
to mixtures. Dioxins, typified by the reference contaminant 2,3,7,8-
tetrachlorodibenzo-p-dioxin (TCDD), represent persistent organic pollutants that
are highly toxic and exist in complex mixtures. Dioxins accumulate in the food
chain, and people are exposed today mainly through food consumption. The toxic
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equivalency factor approach, developed to sum the total burden of dioxin-like
chemicals, was a pioneering effort to move beyond single chemical analyses of
risk and account for the cumulative effects of dioxin-containing mixtures. Lessons
learned through that effort have been applied to many other classes of environmental
contaminants. I have since been involved in mixtures research touching upon
endocrine disruptors, flame retardants, organophosphates, and perfluorinated com-
pounds, among others.

During my tenure as director of NIEHS, I have had the pleasure of seeing
mixtures research elevated through numerous workshops and NIEHS-wide research
efforts. In 2011, NIEHS hosted a meeting titled “Advancing Research on Mixtures:
New Perspectives and Approaches for Predicting Adverse Human Health Effects.”
This workshop brought together mixtures experts from exposure science, toxicol-
ogy, epidemiology, statistics, and risk assessment to outline challenges in mixtures
research and discuss approaches to address those challenges. More recently, NIEHS
organized a workshop on “Statistical Approaches for Assessing Health Effects of
Environmental Chemical Mixtures in Epidemiology Studies.” Development of sta-
tistical methods for analysis of mixtures in epidemiological studies was an area
specifically identified in the 2011 workshop as requiring research attention. During
this innovative workshop, participants were given multiple epidemiological datasets
and asked to apply their analysis methods, which were then compared. In addition to
workshops, the NIEHS has also demonstrated a commitment to mixtures research by
including “Understand how combined environmental exposures affect disease path-
ogenesis” as Goal #4 in the 2012–2017 NIEHS Strategic Plan, which identifies
priority areas of research. This goal includes assessing the joint action of multiple
environmental factors, including both chemical and nonchemical stressors. Finally,
numerous projects led by NIEHS scientists and grantees are dedicated to better
understanding the potential health effects of exposure to mixtures. Projects
supported by NIEHS range widely from defining the totality of human exposure
through research into the exposome to targeted projects that address the toxicity of
specific complex mixtures, such as toxicity testing of botanical dietary supplements
at the NTP.

The future of mixtures research is bright. Mixtures research has moved beyond
simply combining chemicals to look for greater than additive interactions. Instead,
we are using the latest understanding of biological systems to predict how combi-
nations of chemicals and nonchemical factors might interact by targeting an adverse
outcome pathway. We are developing hypotheses of combined effects and using
every tool available to test these hypotheses. Combinations of in silico, in vitro,
alternative animal and traditional toxicity studies are being employed to prioritize
mixtures for study and to routinely assess both defined and complex mixtures. We
are developing more sophisticated methods to analyze “big data” resulting from
high-content assays and refining methods to predict mixture effects. All of these
efforts inform risk assessment efforts that are increasingly expanding beyond single
chemicals to address cumulative and community-specific risks. As we move forward
with mixtures research, we are critically evaluating findings in the context of our
historical knowledge of mixtures.
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This book is an excellent example of the type of thoughtful collaboration that is
required to understand the human health consequences of a life lived, beginning
before conception, in a soup of chemical and nonchemical stressors. The editors and
the authors collaborated on producing a book that stands in sharp contrast to most
multiauthored books. The authors agreed to use a common set of definitions and
terminology, greatly enhancing the ability of the reader to move between chapters
and sections. Conference calls were held at the request of various writing teams with
other writing teams. Further, the authors shared draft chapters within and between
sections to ensure continuity and lack of duplication. The book and the reader
directly benefit from the intense effort required to accomplish this level of integra-
tion. The book loosely follows the risk assessment paradigm (exposure, hazard
identification, risk characterization), providing the reader with essential information
and tools. It also highlights some recent advances in predicting co-occurrence, using
the new adverse outcome pathway concept to group chemicals and to identify the
appropriate risk assessment strategy, and environment-wide association studies
(EWAS) for identification of the effect drivers within complex exposures. The
book concludes with suggested approaches for incorporating nonchemical stressors
into cumulative risk assessment. This book provides a sound foundation for anyone
engaging in some aspect of consideration of chemical mixtures and chemical and
nonchemical stressors and their impact on human health.

National Institute of Environmental
Health Sciences and National
Toxicology Program,
Research Triangle Park, NC, USA

Linda S. Birnbaum
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Chapter 1

Introduction

Cynthia V. Rider and Jane Ellen Simmons

Abstract All people are exposed to complex and dynamic mixtures of chemicals

and nonchemical stressors throughout their lives. Understanding how these com-

bined exposures impact human health is an active area of research spanning

exposure science, toxicology, epidemiology, statistics, and risk analysis. Mixtures

under study range from simple combinations of chemicals to the complete exposure

profile known as the exposome. Research efforts to explore mixtures have used

individual chemical data to estimate mixture effects in a bottom-up approach and

have evaluated the effects of whole mixtures in a top-down approach. Considering

the numerous perspectives and approaches, mixture terminology has been particu-

larly challenging. In this introductory chapter, we lay the groundwork for the book

by providing a rationale for the study of mixtures, defining important terms, and

describing the flow of the book.

Keywords Mixtures · Nonchemical stressors · Combined exposures · Mixture

terminology
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1.1 To Study Mixtures or Not to Study Mixtures, That Is

the Question

The study of mixtures is often paradoxically referred to as essential and as prohib-

itively complicated. Essential, because it is widely accepted that humans are not

exposed to a single chemical throughout their lifetimes, but to a complex milieu of

chemicals that differ circumstantially and across time (Pohl and Abadin 2008).

Therefore, efforts to better understand how public health and ecological systems are

affected by their ambient conditions must include consideration of mixtures (Sex-

ton 2012). Prohibitively complicated, because as researchers move toward

addressing more environmentally relevant mixtures, uncertainty increases in

terms of study design, interpretation of results, and translation into risk estimates

(Fig. 1.1). This sentiment is captured in a 2004 paper titled “Chemical Mixtures: An

Unsolvable Riddle?” which details the increased uncertainty in assessing the risk of

mixtures as compared to single chemicals (Borgert 2004). These two opposing

viewpoints (i.e., essentiality versus prohibitive complexity) have provided the

backdrop for decisions on whether to continue on a path of assessing chemicals

individually or to move toward more standard consideration of mixtures. Fortu-

nately, many investigators have braved the various obstacles and contributed to the

significant body of mixtures research that now exists. It is important to note that the

study of mixtures has included effort directed at building on knowledge from the

study of individual chemicals and simple mixtures and developing new ways to

interpret information from the study of complex mixtures. In other words, mixture

studies have included bottom-up approaches to understand how components of a

mixture contribute to mixture effects and top-down approaches involving assess-

ment of complex mixtures and developing methods to interpret and apply informa-

tion gained.

1.1.1 Mixtures Are Reality

According to the Environmental Protection Agency’s Toxic Substances Control

Act (TSCA) Inventory, there are approximately 85,000 chemical substances

manufactured or processed in the United States (U.S. EPA 2017a). People are

constantly exposed to dynamic mixtures of chemicals, through the air we breathe;

our diets; use of personal care and household products; pharmaceutical intake;

Fig. 1.1 As the complexity

of the study mixture

increases, confidence in

associated data and

interpretation decreases
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occupational, recreational, accidental, and intentional exposures; etc. It is clear

from biomonitoring efforts such as the National Health and Nutrition Examination

Survey (NHANES), which measures over 200 chemicals in human samples, that

chemicals are making their way from the environment into our bodies (CDC 2015).

Although chemicals have been the focus of the majority of mixtures research, many

of the concepts also apply to nonchemical factors. There are many pathways for

nonchemical factors to influence toxicity outcomes.

Consideration of the many nonchemical factors that can potentially affect human

health or modify our response to chemical exposures moves us closer to the real-

world scenario. People are exposed to various nonchemical factors that can include

physical stressors (e.g., heat, radiation, allergens, and noise) as well as psychosocial

stressors (e.g., circumstances or events that elicit an acute or chronic stress

response). Furthermore, there are some factors that do not fit neatly into categories.

For example, over-consumption of an essential trace mineral (e.g., manganese)

could be considered as a chemical exposure with the potential to elicit toxicity,

while a trace mineral deficiency could be considered as a nonchemical factor that

could also negatively affect health but with a different constellation of effects.

People are exposed to different mixtures throughout their lifetime, and exposure

profiles can change drastically based on behavior as well as age. For example,

crawling and hand-to-mouth behaviors in an infant may result in relatively high

exposure to house dust and chemicals attached to dust, as compared to adults (Pohl

and Abadin 2008). Product use and diet can change over time, as can surroundings.

Whereas young children may spend a significant portion of their time at home,

outside, or in a daycare setting, adults may be exposed to very different mixtures

depending on their occupation. In addition to changing exposures over time, there

are also differences in the responses of individuals to exposure that can depend on

genetic background, life stage, or disease state.

1.1.2 What Mixtures Are Being Studied?

Accepting that there are an infinite number of potential combined exposures for

study, it is important to define the term “mixture” before discussing the associated

science. Although the majority of this book addresses mixtures of chemicals,

combined exposures to any factors (chemical, physical, or psychosocial) to which

a human, animal, or cell are exposed, either concurrently or separated in time, may

also be relevant determinants of outcome. Mixtures span a wide range of complex-

ity. The following is a presentation of common terms and definitions used to

describe mixtures. It is not meant to be exhaustive, but to provide illustrative

examples of the types of mixtures that are the focus of research attention.

Mixture Types The term binary mixtures refers to combinations of two factors

and represent the simplest possible mixtures. Good examples of binary mixtures

can be found in the pharmacology field, where binary combinations of drugs are

either recommended for increased efficacy/selectivity (e.g., combination
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chemotherapy) or discouraged based on the potential for increased toxicity (e.g.,

many drugs are counter-indicated for people taking the anticoagulant warfarin). A

specific example of a well-studied binary mixture can be found in combined use of

alcohol and acetaminophen – a combination that can lead to increased hepatotox-

icity as compared to use of one or the other alone. Typically, binary mixtures are the

subject of focused studies to assess interactions among select factors. Ternary and

quaternary mixtures can be considered as incrementally more complex versions of

this simple binary mixture category.

Following binary mixtures, the next level of complexity can be captured by the

term defined mixtures (which subsumes binary, ternary, and quaternary combina-

tions). In defined mixtures, all of the constituents and their concentrations are

known. Many studies with defined mixtures have been conducted to assess the

performance of predictive models of mixture toxicity based on single chemical data

(i.e., component-based approaches) (Kortenkamp 2007; Howdeshell et al. 2017).

Defined mixtures are also studied under the assumption that complex mixture

toxicity can be estimated by evaluating a subset of known active constituents. For

example, research efforts can focus on a subset of dioxin-like chemicals that have

demonstrated binding to the aryl hydrocarbon receptor, while the actual mixture to

which people are exposed could contain a more complex suite of structurally

diverse chemicals. Alternatively, exposure data can be used to identify a subset

of chemicals from which to build defined mixtures for study. Although defined

mixtures do not recapitulate the complexity of real-world exposures, they offer an

intermediate step in understanding the behavior of chemicals acting jointly.

Moving beyond defined mixtures are different types of whole mixtures or

complex mixtures. Recently, the more descriptive term to categorize these mixtures,

“chemical substances of Unknown or Variable Composition, Complex Reaction

Products and Biological Materials,” abbreviated as UVCB, has been used by the

EPA in the Toxic Substances Control Act (TSCA) Chemical Substance Inventory

(U.S. EPA 2017b) and by the European Chemicals Agency (ECHA) (ECHA 2017).

Complex mixtures can be further subcategorized into formulations and environ-
mental mixtures. Formulations are whole mixtures that contain one or more pur-

ported active chemical(s) and a number of potentially inert ingredients. Although it

is possible for formulations to be defined mixtures, they are categorized as whole

mixtures here, because many of their ingredients can be proprietary or can be

variable in terms of their concentration. Consider personal care products, which

may list “fragrance” as an ingredient, or commercial formulations of flame retar-

dants, such as Firemaster 550, which include a proprietary mixture of different

active classes of chemicals (e.g., brominated and non-halogen flame retardants).

Although the active constituent(s) are often identified in formulations, they are

often unknown in environmental mixtures. These mixtures include samples taken

from hazardous waste sites (e.g., Superfund sites), spills or catastrophic events

(e.g., Elk River chemical spill, Gulf oil spill, Fukushima disaster), or those created

by intentional processes (e.g., drinking water disinfection, gas extraction via

hydraulic fracturing).
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Finally, the most complex and challenging type of mixture to study is that

encompassed by the exposome concept – all exposures over a lifetime. This concept

includes all factors (chemical, physical, biological, psychosocial) that an individual

is exposed to from conception to death (Wild 2005). Essentially, the exposome

represents the real-world scenario. The difficulties in assessing the exposome are in

measuring the totality of exposures and deconvoluting how these exposures collec-

tively affect health. It is important to note that to develop effective interventions,

the drivers of harm must be identified.

In addition to defining the types of mixtures that are typically the focus of

research, there is also a need to define the relevant terms that have been used in

mixture science. As discussed below, terminology has been particularly confusing

in the field of mixtures, with multiple meanings associated with a single term and

meanings differing between disciplines. The next section does not offer an official

consensus on terminology, but instead attempts to clarify meanings for the terms as

they are used in this volume.

1.1.3 Additional Mixture Terminology

The topic of mixtures has been of interest to many diverse fields, including ecology,

epidemiology, exposure science, pharmacology, risk analysis science, statistics,

and toxicology. Scientists in these fields approach mixtures from perspectives

informed by their expertise and apply specialized terminology to address mixture

questions most relevant to their discipline. While this multidisciplinary treatment is

critical to understanding environmental and human health effects resulting from

exposure to mixtures, it has also led to confusion over terminology.

A list of common terms and definitions is provided below to clearly articulate the

interpretation of each term applied within this text. Throughout the book, the terms

will be used as defined below with exceptions explicitly noted by chapter authors.

1.1.3.1 Terms to Identify the Combined Exposure or Mixture

of Interest

Combined Exposure This represents a broad term that encompasses any combi-

nation of two or more exposures or factors of interest. Exposures can include

chemical and/or nonchemical stressors and can be concurrent or separated in

time. Often, this term is used interchangeably with the term “mixture.” However,

while “combined exposure” can refer to chemical and/or nonchemical exposures,

the term “mixture” is limited to chemical exposures in this text.

Mixture A mixture is any combination of two or more chemicals of interest

present concurrently or separated in time. See additional definitions of mixture

types above. A simple mixture is one where the effects of the mixture can be
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reasonably estimated based on knowledge of its components. Although the upper

limit of a simple mixture has not yet been defined and may depend on the nature of

the component chemicals, it is estimated that mixtures between 2 and 25 compo-

nents would qualify as simple mixtures. A complex mixture contains too many

components to allow for a reasonable estimate of mixture effects based on compo-

nent chemicals and usually contains some unidentified fraction (portion of a

mixture that has not been chemically characterized). In contrast, a defined mixture
contains chemicals that are identified and present in known quantities (see above for

more detailed description).

Chemical and Nonchemical Factors The term “chemical” refers to any natural or

anthropogenic substance to which a person or animal can be exposed. Unless noted,

this does not include endogenous chemicals (e.g., natural hormones produced in the

body). Chemicals are differentiated from nonchemical factors, which can be

subdivided into physical and psychosocial stressors. Physical stressors are defined
here as biological agents (e.g., viruses) or external forces (e.g., radiation, noise) that

can modify exposure or elicit a physiological response from the exposed organism.

Psychosocial stressors are defined as factors in the external environment that are

perceived to be harmful (e.g., fear of violence), which can result in physiological

changes (e.g., increased production of cortisol).

1.1.3.2 Terms to Describe the Joint Action of Exposures

Dose Addition Dose addition and concentration addition are essentially the same

concept, with the term “dose” applying where appropriate (e.g., oral gavage to

rodents, ingestion of pharmaceuticals) and the term “concentration” applying where

appropriate (e.g., aquatic exposures, cell-based experiments). Under dose addition,

the effect (response) of the mixture is predicted by summing the exposure doses of

the component chemicals. A key concept is that the doses of the component

chemicals are weighted by their toxic potency. In the idealized situation, the

component chemicals behave as concentrations or dilutions of each other. Dose

addition is thought to be best applied to those chemicals that share a common or

similar mode of action or similarity of target organ. Thus, the behavior of a

chemical mixture is considered dose additive if the effects of the combined com-

ponents (i.e., the effect of the mixture) can be estimated from the sum of the scaled

doses of the individual components.

Independent Action Under independent action (also called independent joint
action or response addition), the effect (response) of the mixture is predicted by

summing the effects (responses) of the component chemicals. A key concept is that

the mixture response is predictable by the sum of the responses of the components

using the formula for the sum of the probabilities of independent events. Indepen-

dent action is thought to be best applied to mixtures of chemicals that have

dissimilar modes of action; these chemicals are toxicologically independent (i.e.,

the biological response to each chemical is the same whether or not the other
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chemical(s) is present). Thus, the behavior of a chemical mixture is considered to be

consistent with independent action if the effects of the combined components (the

effect of the mixture) can be estimated from combining the responses of the

individual chemicals using an equation to describe the probability of independent

events co-occurring. Effect summation, which represents a simple summation of

component effects, can be viewed as a special case of independent action. Although

effect summation is commonly used in the mixture literature, its application should

be limited (see Chap. 9).

Interaction The term “interaction” is common in both toxicology and epidemiol-

ogy and has notably different implications depending on the context (see Chap. 10).

Unless otherwise stated, “interaction” will be used to describe a joint action among

combined exposures that differs significantly from the clearly stated expectation of

additivity (e.g., predicted effects based on dose addition or independent action).

Greater-than-Additive and Less-than-Additive It is recommended that conclu-

sions regarding interactions be drawn as to whether the response of the mixture in

question is consistent with a specific definition of additivity as in “no detectable

deviation from additivity” or inconsistent with the specific definition, showing

“greater-than-additive” or “less-than-additive” responses. The definition of addi-

tivity should be specific as to dose addition or independent action with appropriate

reference to the underlying literature. It is highly recommended that the use of the

terms “synergy” and “antagonism” be avoided due to the vast confusion that has

plagued chemical mixture toxicology and risk assessment. In effect, they are

problematic because of the many differing definitions of these terms and their

widespread use without articulation of the meaning ascribed by the user. To

avoid confusion “synergy” is replaced with “greater-than-additive,” and “antago-

nism” is replaced with “less-than-additive.” When the term “synergy” cannot be

avoided, it should be defined within the context of the definition of additivity

being used.

1.1.3.3 Terms to Describe Exposure or Risk

Aggregate Exposure, Aggregate Risk The term “aggregate” is used here to

indicate the summing of exposure for an individual chemical across all relevant

routes, so that the total dose to the person/animal model can be used to estimate the

aggregate risk. For example, in the case of bromodichloromethane, multiple routes

of exposure (i.e., oral, inhalation, and dermal) make significant contributions to

internal dose and contribute to the aggregate exposure and aggregate risk (Haddad

et al. 2006).

Cumulative Exposure, Cumulative Risk The term “cumulative” is used here to

indicate consideration of more than one stressor (chemical or nonchemical) in an

exposure or risk assessment. This is a general term that can be applied to any

exposure characterization or risk assessment that includes multiple factors (e.g.,
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cumulative assessment of organophosphate pesticides, community-based assess-

ment involving chemical and nonchemical exposures in a select population) and

can be contrasted against single chemical exposure or risk evaluations. Cumulative
is notably distinct from aggregate and should not be used interchangeably. How-
ever, an exposure characterization or risk assessment can be both aggregate and
cumulative. It is an umbrella term that does not dictate the specific model used to

assess cumulative risk, and concepts of either dose addition or independent action

can be used as a basis for the calculation of cumulative risk. It is important to note

the distinction between the concepts used to describe joint action (dose addition and

independent action) and the methods available for calculation of risk (e.g., hazard

index, relative potency factors) that are built upon those concepts.

Exposure/Response Modifier Due to inconsistent definitions of the terms suscep-

tibility, vulnerability, and sensitivity, as well as interchangeable use in the litera-

ture, the single term “exposure/response modifier” has been suggested as an

umbrella term to capture any condition or state that could alter exposure or response

to a chemical or nonchemical stressor or buffer. Although the use of this more

generic term is recommended, the terms susceptibility, vulnerability, and sensitivity
have a long history of use, particularly in epidemiology, and do appear in this

volume. Throughout the book, these three terms are used interchangeably and

defined as any factor or set of factors that increases the likelihood of harm from

an exposure. Examples include low socioeconomic status and other psychosocial

stressors (e.g., exposure to violence, lack of access to healthcare) within a popula-

tion that contribute to decreasing the resiliency reservoir required to maintain

health. For more information, see Gee and Payne-Sturges (2004). The traditional

use of “genetic susceptibility” refers specifically to genetic variations that increase

the likelihood of harm from an exposure. For example, inherited mutations in the

tumor suppressor genes BRCA1 and BRCA2 predispose women to development of

breast cancer (Valencia et al. 2017).

1.2 Challenges in Mixtures Research

As discussed previously, mixtures can be approached from a reductionist (i.e.,

bottom-up) or holistic (i.e., top-down) perspective. The challenges associated

with mixtures research differ depending on which approach is used. In the reduc-

tionist approach, the challenges can lie in relating findings from carefully controlled

experiments with defined mixtures to the real-world scenario. On the other hand,

the holistic approach presents a different set of challenges in understanding how to

interpret data and develop targeted interventions based on findings from complex

mixtures.

Specific challenges associated with a reductionist approach include deciding on

chemicals to incorporate in the defined mixture for study and understanding how

the defined mixture fits into the bigger exposure picture. Prioritizing chemicals for
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inclusion in mixtures research or cumulative risk assessment can be driven by

exposure information or biological considerations (e.g., common toxicity target).

The NHANES database has been an excellent source of information for better

understanding of co-exposures. In terms of using biological information to priori-

tize mixtures for study, there has been movement from focusing on isolated targets

(e.g., estrogen receptor, liver) toward a systems biology view that considers the

complex network of signaling pathways involved in disease manifestation. This

evolution has expanded our view on which chemicals and/or factors to include in

defined mixture studies.

Challenges in the study of whole mixtures include identifying which chemicals

are present in the mixture of concern and which chemicals are responsible for

eliciting the observed effects. Identifying the active constituents within a complex

mixture can require significant investment in chemical analysis without guaranteed

success. Furthermore, efforts to confirm the biological activity of possible active

constituents by isolating, identifying, and testing individual chemicals are compli-

cated by the possibility of interactions among constituents. In effect, it is often very

difficult to disentangle the problem when the mixture, the biological target, and the

interaction of the mixture with the biological target are all complex.

1.3 Progress to Date and Future Directions

Despite the many challenges associated with the study of mixtures, there have been

significant advancements over the past century. The first major step was the

development of modeling approaches that used single chemical dose-response

data to predict mixture effects in the mid-1900s (detailed in Chap. 9). Almost

half a century later, these models were further advanced and applied to different

types of mixtures. There followed a period defined by the search for unexpected

interactions, thereby beginning the controversy over use of the term “synergy.”

Perhaps a lack of discovery of the “holy grail” (i.e., chemicals that produced

thousandfold greater effects when tested in combination versus alone) shifted

focus away from the search for such remarkable deviations from additivity toward

more sophisticated modeling of predicted mixture responses.

This advancement in modeling of predicted mixture toxicity continues today.

Work in this area represents a joint effort between statisticians and toxicologists to

design more efficient and appropriate studies to assess mixtures, to develop

methods to better fit individual chemical data, and to utilize appropriate statistical

methods for comparing predicted responses to observed responses. Increasingly,

there has been a recognition that methods to assess mixtures should be fit for

purpose, not one size fits all.

Another more recent evolution is from mixtures research focusing exclusively

on simple mixtures to an expansion into complex mixtures. Although there is a long

history of assessing the toxicity and risk associated with complex mixtures (e.g.,

diesel exhaust, tobacco smoke) as a single entity, attempts to better understand

1 Introduction 9

https://doi.org/10.1007/978-3-319-56234-6_9


complex mixtures and compare across them represent a relatively recent develop-

ment. There are still only a handful of studies that attempt to assess whether or not

complex mixtures are sufficiently similar, meaning that data from a well-

characterized reference mixture can be applied to a related, untested mixture of

interest. This represents an area where more research is needed.

Finally, incorporation of nonchemical stressors, including both physical and

psychosocial, into mixtures research and cumulative risk assessments remains an

area that requires significant attention. The default has been to apply methods from

chemical mixtures to these nonchemical stressors, but more work is needed to

validate this application. The development of case studies that incorporate both

chemical and nonchemical stressors will offer opportunities to identify data needs

and areas that require refinement.

1.4 Flow of Book Sections

In this volume, the current state of the science on mixtures is presented. Beginning

with exposure, the measurement of chemicals is addressed, including both internal

measures of chemicals in human samples (biomonitoring) (Chap. 2) and external

measures of chemicals in the environment (Chap. 3). These chapters on exposure

measurement are complemented with a chapter covering modeling approaches to

describe exposure (Chap. 4). The set of three chapters provides insight into the

characterization of mixtures in the environment, people, and populations.

Following identification of chemicals, a prioritization step is needed to focus

attention on mixtures that require research attention. Prioritization can be based on

the presence and concentration of chemicals (e.g., high levels measured in an

NHANES population), or it can be driven by a particular goal (e.g., occupational

risk assessment). The section on prioritization of chemicals focuses on newer

approaches that have been developed to intelligently design mixtures for study.

These include using statistical tools for determining association of exposure to

effect markers in Environment-Wide Association Studies (EWAS; Chap. 5),

methods adapted from the field of biogeography to examine chemical

co-occurrence (Chap. 6), and building adverse outcome networks using mechanistic

data to inform mixture decisions (Chap. 7).

Having identified the mixture(s) of interest, it is then critical to understand how

to go about evaluating the mixture. In the section on Mixture Toxicology, there is a

thorough coverage of evaluating defined mixtures using component-based

approaches. A chapter on dose-response evaluation addresses single chemical

data that are used to understand mixtures (Chap. 8). Predicting mixture effects is

addressed in multiple chapters, which cover models of additivity conceptually

(Chap. 9), contrasting toxicological and epidemiological approaches (Chap. 10),

and statistical comparison of observed and predicted mixture responses (Chap. 11).

The challenging topic of physiologically based pharmacokinetic modeling of
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mixture toxicity is also addressed (Chap. 12). Finally, elements of experimental

design in the study of mixtures are examined (Chap. 13).

The risk assessment section covers both component-based (Chap. 14) and whole

mixture (Chap. 15) approaches. There are many well-established component-based

methods for estimating cumulative risk. Whole mixtures are often handled like

single chemicals; however, there is a need for methods to determine sufficient

similarity of whole mixtures. Throughout these chapters, areas of uncertainty are

highlighted.

In the last section of the book, nonchemical stressors are brought into the picture.

Physical stressors (e.g., heat, radiation) are discussed in terms of how to begin to

quantify the effects of these stressors and bring them into cumulative risk assess-

ments (Chap. 16). Psychosocial stressors (e.g., fear of violence) represent a chal-

lenging area of combined exposure research and cumulative risk evaluation that

include the unique aspect of perception (Chap. 17). Finally, many of the concepts

presented throughout the book are brought together by providing an example of

community-based cumulative impact assessment (Chap. 18).
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Chapter 2

Biomonitoring to Assess Exposures

to Mixtures of Environmental Chemicals

Antonia M. Calafat

Abstract In modern societies, humans may be exposed to a wide spectrum of

environmental stressors, including mixtures of anthropogenic chemicals. Further-

more, because human exposure does not occur under controlled conditions of dose-

response evaluations in animal studies, exposure assessment is complex. Three

main tools have been used to assess human exposures: history/questionnaire infor-

mation, environmental monitoring, and biomonitoring (i.e., measuring concentra-

tions of the chemicals or their metabolites or adducts in human specimens). In this

chapter, we will discuss the suitability of biomonitoring data for evaluating expo-

sures to mixtures of environmental chemicals.

Keywords Biomonitoring · Exposure · NHANES · Endocrine disruptors ·

Environmental chemicals

2.1 Introduction

In the course of their daily routines, humans are exposed to a large number and

variety of physical, biological, psychosocial, and chemical stressors. All of these

stressors, their timing, and duration along with each person’s genetic makeup, diet,

and lifestyle can affect human health (Needham et al. 2005a; Birnbaum 2010).

Because of the complexity of such exposures and their interactions, understanding

the potential effects of the exposures on health requires a multidisciplinary

approach—a topic of interest to several scientific fields including, among others,

chemistry, ecology, epidemiology, exposure science, pharmacology, risk analysis,

statistics, and toxicology (Carlin et al. 2013).
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Three main tools have been used to assess chemical exposures: history/ques-

tionnaire information, environmental monitoring, and biomonitoring (i.e., measur-

ing concentrations of the chemicals or their metabolites or adducts in human

specimens) (Calafat et al. 2006; Sexton et al. 2004; Needham et al. 2005b).

Exposure models, covered in the last chapter of this section, usually incorporate

information from the three approaches. The use of history/questionnaire data to

assess human exposure to environmental chemicals falls within the purview of

environmental epidemiology. Indirect measures of exposure (e.g., environmental

monitoring) are the subject of the second chapter of this section. In this chapter, we

will cover the assessment of internal exposures using biomonitoring.

2.2 Biomonitoring Overview

Biomonitoring is the assessment of internal dose (i.e., body burden) by measuring

the parent chemical (or its metabolite or reaction product) in human samples.

Biomonitoring, a “gold standard for assessing exposure to chemicals” (Sexton

et al. 2004), has many potential uses in the public health context of preventing

disease related to people’s exposure to chemicals. Biomonitoring can be used to

detect and monitor chemical exposures, to assess people’s health risk as a result of

such exposures, to develop and implement interventions to reduce exposures, and to

evaluate the effectiveness of those interventions (CDC 2009; National Research

Council 2012).

In some cases, evidence of chemical exposures and their human health effects

(e.g., lead poisoning) have been known since antiquity (Waldron 1973; U.S. EPA

1985), although the use of biomonitoring to track lead poisoning did not start until

the late 1890s with the screening of factory workers’ blood and urine (Sexton et al.

2004). Since then and thanks, in part, to access to and availability of sophisticated

analytical chemistry techniques, trace levels of lead and many other chemicals in a

person’s body can be routinely measured with high precision and accuracy

(Angerer et al. 2007; Pirkle et al. 1995).

These scientific and technologic advances along with the increase in global

production of chemicals and their use in a myriad of industrial and consumer

products starting in the twentieth century (UNEP 2013) have contributed to the

remarkable growth of human biomonitoring research in the last few decades

(Angerer et al. 2006; National Research Council 2006; Needham et al. 2007). For

example, biomonitoring concentrations are increasingly used to categorize expo-

sures (e.g., low, medium, high) within populations to assess internal exposure to

environmental chemicals (National Research Council 2012). However, the scenario

of chemical human exposures is complex (Table 2.1). First, controlled conditions,

as in traditional animal studies based on the administration of a single chemical and

identification of potential target organs (Carlin et al. 2013), do not generally apply.

Second, intensity, duration, and frequency of the exposures are normally unknown

and often changing. Third, the timing of the exposure is seldom known. Fourth,
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exposure routes and sources are numerous and, at times, even unknown. Finally, in

a world where more than 80,000 chemicals are used in commerce (Bell and

Edwards 2015), people are exposed to “cocktails” (multiple/mixtures) of

chemicals. Therefore, mixtures encompass the large majority of environmental or

background chemical exposures, even in situations when other exposures to mainly

single chemicals or chemical classes may occur (e.g., accidental exposures). The

fact that all of the above considerations would apply to each of the individual

components of the mixtures may further complicate the interpretation of human

biomonitoring data. Nevertheless, because biomonitoring per its nature provides an

aggregate measure of exposure, biomonitoring has the potential to provide invalu-

able information for the exposure assessment of chemical mixtures.

2.3 Analytical Aspects of Biomonitoring

Biomonitoring relies on a targeted analysis to provide a quantitative measure of the

amount of a chemical or chemicals present in the human body. These chemical

biomarkers can be markers of exposure, effect, or susceptibility (National Research

Council 2006). As defined by the World Health Organization (WHO), a biomarker

of exposure is a “chemical or its metabolite or the product of an interaction between

a chemical and some target molecule or cell that is measured in a compartment in an

organism,” a biomarker of effect is “a measurable biochemical, physiologic,

behavioral, or other alteration in an organism that, depending on the magnitude

can be recognized as associated with an established or possible health impairment

or disease” (e.g., DNA adduct), and a biomarker of susceptibility is “an indicator of

an inherent or acquired ability of an organism to respond to the challenge of

exposure to a specific chemical substance” (e.g., glucose-6-phosphate dehydroge-

nase deficiency) (National Research Council 2006). In this chapter, we will focus

on biomarkers of exposure.

Table 2.1 Typical scenarios of human vs animal exposures to environmental chemicals

Chemical-dependent

Variable Human Animal

Dose Low? (known?) High (controlled/

known)

Intensity Unknown Known

Timing Variable (known?) Fixed

Frequency Unknown, likely episodic yet

chronic

Known

Pathway Multiple (known?) Single and identifiable

Chemicals Many (known?)

Metabolites?

Single (mixtures)

Target organ Accessible? (known?) Accessible
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The success of a biomonitoring approach greatly depends on the adequate

selection of the exposure biomarkers, the matrix, and the analytical method (Need-

ham et al. 2007). Knowledge of the physicochemical properties of the target

chemicals is important in the choice of exposure biomarkers (e.g., parent compound

vs metabolite) and biomonitoring matrix. In general, persistent compounds are

commonly measured in blood or blood products, while metabolites of nonpersistent

compounds (chemicals with half-lives of the order of hours) are measured in urine

(Needham et al. 2007). Measuring blood concentrations of nonpersistent chemicals

may be possible when the blood is collected soon after the exposure and if the

analytical method is sensitive enough to detect the much lower blood concentra-

tions of the chemical than of its metabolites in urine (Needham and Sexton 2000).

Because exogenous chemicals are present in the biological matrix at much lower

concentrations than other endogenous compounds, biomonitoring methods gener-

ally include steps to (a) preconcentrate the target analytes and eliminate unwanted

matrix components and (b) separate the target analytes from each other and from

residual matrix constituents before quantification. The chemical nature of the

biomarker and availability of instrumentation can impact the choice of

preconcentration (e.g., liquid-liquid extraction, solid-phase extraction) and separa-

tion (e.g., chromatography) techniques. For example, separation of volatile organic

chemicals is generally achieved by gas chromatography, while liquid chromatog-

raphy separates nonvolatile organic compounds; nonvolatile organic compounds

may also be amenable to gas chromatography after suitable chemical derivatization

(Needham et al. 2005c). For human biomonitoring of organic chemicals, isotope-

dilution mass spectrometry is generally considered the gold standard quantification

technique (Needham et al. 2005c; WHO 2011). Other techniques (e.g., enzyme-

linked immunosorbent assay [ELISA], fluorescence) may have the required sensi-

tivity but generally lack adequate analytical selectivity and specificity (WHO

2011).

Biomonitoring methods, rooted in their analytical chemistry foundation, must be

sensitive (i.e., capable of accurately measuring small amounts of a given substance

in a sample (Saah and Hoover 1997)), selective and specific (i.e., able to measure

one particular substance, rather than others in a sample (Saah and Hoover 1997)),

and accurate and precise at trace levels (Needham et al. 2005c; Calafat and

Needham 2009). Thanks to the scientific and technical advances in robotics and

analytical instrumentation in the past few decades, such methods have become

increasingly common in many laboratories (Angerer et al. 2007). In addition,

biomonitoring methods should preferably use minimal matrix volume, be high

throughput, show sustained reproducibility, and concurrently quantify multiple

biomarkers. To achieve such characteristics, biomonitoring requires highly trained

staff, top quality analytical standards (often custom-synthesized), and the use and

maintenance of state-of-the-art instrumentation and facilities. Because of the

uniqueness of these resources, biomonitoring is relatively expensive. Nevertheless,

despite cost and other challenges associated with the interpretation of

biomonitoring data (e.g., study design, communication of results), the use of

biomonitoring in environmental public health is on the rise (National Research
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Council 2012, 2006; Albertini et al. 2006; Morello-Frosch et al. 2015). Specifically,

the possibility of measuring multiple chemicals simultaneously in a small amount

of biospecimen makes biomonitoring uniquely suited to study human exposures to

chemical mixtures and the potential effects of such exposures on health.

2.4 Interpretation of Biomonitoring Data

Biomonitoring provides information on the concentrations (i.e., amount) of select

chemicals that were absorbed into the body after contact between the chemicals—

or their precursors—and the body (Needham et al. 2005b). Noteworthy, such

concentrations are in the range of trace levels (compared to the generally higher

concentrations of the chemicals in the environment) and integrate all environmental

pathways and routes (e.g., food, water, air, dust, product use). Furthermore, using

biomonitoring concentrations to estimate exposure can pose study design chal-

lenges related both to the nature of the biomarker (e.g., specificity, temporality) as

well as to the adequacy of the sampling process.

Specificity of the Biomarker Interpreting biomonitoring data requires a good

understanding of the toxicokinetics of the target biomarkers. In general, relying

on the concentrations of the most abundant biomarker for a given chemical will

likely minimize exposure misclassification. For example, di-isononyl phthalate

(DINP) metabolizes into mono-isononyl phthalate (MINP) before forming several

oxidative metabolites which are the major DINP metabolites in urine (Koch and

Angerer 2007). In general population settings, using urinary concentrations of

MINP may underestimate exposure to DINP because MINP represents only a

minor fraction (~2%) of the DINP excreted in urine compared to the oxidative

metabolites (~44%). In fact, exposure to DINP in approximately 82% of Americans

would have been misclassified based on the concentrations of the insensitive

biomarker MINP, highlighting the importance of selecting a priori the best bio-

markers for the intended purposes of the study (Calafat et al. 2011). An additional

benefit of measuring phthalate oxidative metabolites is that they cannot be formed

as a result of external contamination with the parent phthalate (Koch and Calafat

2009), thus also increasing the specificity of the measurement. In general, when a

compound is converted to multiple metabolites, the quantification of all metabolites

provides the best biomonitoring approach for exposure assessment. Depending on

the aims of the study, exposure categorization can then be based on the concentra-

tions of the individual biomarkers (e.g., four di (2-ethylhexyl) phthalate [DEHP]

metabolites) and/or their sum (e.g., sum of all measured DEHP metabolites) (Dales

et al. 2018; Kasper-Sonnenberg et al. 2017; Sathyanarayana et al. 2016; Huang

et al. 2016; Axelsson et al. 2015; Ferguson et al. 2014; Guo et al. 2014; Kim and

Hong 2014; Larsson et al. 2014; Mervish et al. 2014; Watkins et al. 2014; Zhang

et al. 2014; Kim et al. 2013; Park et al. 2013; Tellez-Rojo et al. 2013; Upson et al.
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2013; Braun et al. 2012; James-Todd et al. 2012; Kasper-Sonnenberg et al. 2012;

Teitelbaum et al. 2012; Frederiksen et al. 2011; Romero-Franco et al. 2011).

The fact that several chemicals can metabolize into the same end product may

also complicate the interpretation of biomonitoring data. For example, a number of

synthetic pyrethroid insecticides are converted to 3-phenoxybenzoic acid (Leng

et al. 2003). Therefore, the presence of 3-phenoxybenzoic acid in urine suggests

exposure to pyrethroids, but 3-phenoxybenzoic acid concentrations per se cannot

pinpoint the specific pyrethroid(s) to which exposure occurred. Similarly, certain

chemicals (e.g., organophosphate insecticides) may degrade in the environment,

and exposure could be to both the parent compound and the preformed degradate

(e.g., dialkylphosphates) (Needham et al. 2005a; Barr et al. 2004). Yet,

biomonitoring concentrations of degradates will reflect exposure to both the parent

chemical and the preformed metabolites. In the above scenarios, interpreting the

concentrations of the biomarkers may be challenging, particularly when the bioac-

tivity of the precursors/parent compounds and their corresponding degradates or

non-specific metabolites differ (Duggan et al. 2003). Nonetheless, use of these

“non-specific” urinary biomarkers can still provide useful information about cumu-

lative exposure to the parent class of compounds (e.g., pyrethroids,

organophosphates).

Temporality of the Biomarker Exposure biomarkers should reflect a person’s
exposure to the target chemicals or their precursors within a specific time period

(e.g., pregnancy) (Calafat et al. 2015). However, with a few exceptions of defined

patterns of exposure, such as scheduled tasks in occupational settings (Arnold et al.

2013), the timing, duration, and intensity of chemical exposures are generally

unknown and likely different for each chemical in a mixture. As a result, even

though biomarker concentrations can accurately rank a person’s exposure at a

single time point, to evaluate exposure over weeks, months, or years may require

different approaches.

In general, for persistent compounds, the timing of the exposure relative to

sample collection is not critical. Regardless of the nature of the exposure (i.e.,

constant vs episodic), its duration, intensity, or timing, a single biomarker concen-

tration at a given time point adequately represents exposure over an extended time

(e.g., years) because persistent compounds have relative long elimination half-lives

(Needham et al. 2005a; Meeker et al. 2009; Makey et al. 2014). Nonetheless, in

certain situations, more than one sample may be needed. For example, chemical-

specific toxicokinetics, including transplacental transfer or distribution into breast

milk, can result in biomarker concentration changes which, in turn, could impact

long-term exposure estimates obtained using a single sample collected during

pregnancy or lactation (Adetona et al. 2013; Hooper et al. 2007; Glynn et al.

2012; Kato et al. 2014).

Variability in concentrations is much more pronounced for nonpersistent than

for persistent chemicals because concentrations of the target biomarkers for non-

persistent chemicals increase and decay rapidly in blood and urine after exposure
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(Needham et al. 2005a, 2008; Needham and Sexton 2000; Aylward et al. 2014).

Therefore, the intrinsic short half-life (e.g., hours) of nonpersistent chemicals, the

nature of the exposure (i.e., intensity, duration, recurrence), and the time passed

between exposure and collection of the biomonitoring matrix will impact the

reproducibility of the biomarker concentrations (Needham et al. 2005a; Needham

and Sexton 2000; Aylward et al. 2014). The timing, duration, and intensity of

recurrent activities including use of personal care products or diet—likely pathways

of exposure to environmental chemicals—generally change not only between days

but even within a day and result in individual variability in concentrations of

nonpersistent chemical biomarkers (Aylward et al. 2017; Koch and Angerer

2007; Preau et al. 2010; Teeguarden et al. 2011; Ye et al. 2011; Koch et al. 2004,

2005, 2012, 2013, 2014; Frederiksen et al. 2013; Li et al. 2010; Lassen et al. 2013;

Fromme et al. 2007). Assuming a recurrent exposure of constant intensity and

duration, this variability will increase as the half-life of the target chemical

becomes shorter and the exposure becomes more infrequent (Aylward et al.

2014). The real situation, though, is not as simple: exposures likely recur but at

unknown times, and with variable duration and intensity. Moreover, the variability

of concentrations will differ for the individual components of chemical mixtures.

Nevertheless, because background chemical exposures arise from everyday activ-

ities (e.g., food consumption, product use), acceptable biomarker variability over

time exists although a person’s concentration of a nonpersistent chemical will vary

considerably (Calafat et al. 2015; Koch et al. 2014; Preau et al. 2010; Ye et al. 2011;

Frederiksen et al. 2013; Li et al. 2010; Lassen et al. 2013; Bradman et al. 2013;

Wielgomas 2013). Therefore, biomarker concentrations of a single sample—

representing each person’s variable exposure scenario—obtained from a large

number of individuals can adequately characterize a population’s average concen-
tration over extended time because every person’s exposure (represented by the

biomarker concentration in his/her single sample) would contribute to the mean and

extent of exposure (categorized from the mean and range of biomarker concentra-

tion, respectively) of the overall population (Calafat et al. 2015; Aylward et al.

2014). This principle is at the foundation of population-based or nation-based

biomonitoring programs discussed later in this chapter.

In environmental epidemiology, the intrinsic variability in biomarker urinary

concentrations may result in considerable exposure misclassification and bias

associations between exposures and health outcomes toward the null hypothesis.

Therefore, optimizing the design of exposure assessment in epidemiological studies

will require information on the temporal variability of concentrations of the target

compounds, particularly for nonpersistent compounds. Determining exposure over

weeks, months, or years may require multiple measurements or use of composite

(i.e., pooled) specimens to minimize this variability (Ferguson et al. 2014; Adibi

et al. 2008; Bertelsen et al. 2014; Braun et al. 2011; Braun et al. 2012; Cantonwine

et al. 2014; Engel et al. 2014; Hauser et al. 2004; Irvin et al. 2010; Lewis et al. 2014,

2015; Mahalingaiah et al. 2008; Meeker et al. 2012; Peck et al. 2010; Philippat et al.

2013; Quiros-Alcala et al. 2013; Smith et al. 2012; Teitelbaum et al. 2008; Watkins

et al. 2014; Whyatt et al. 2012; Baird et al. 2010; Valvi et al. 2015; Hoppin et al.
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2002; Townsend et al. 2013; Heffernan et al. 2014; Jusko et al. 2014; Nepomnaschy

et al. 2009; Meeker et al. 2005; Perrier et al. 2016; Weiss et al. 2015; Morgan et al.

2015; Geens et al. 2015; Spaan et al. 2015; Reeves et al. 2014; Fisher et al. 2015;

Ackerman et al. 2014; Guidry et al. 2015; Pollack et al. 2016; Romano et al. 2017);

the biomarker concentrations obtained from multiple measures (preferably from

collections at various times of the day and on multiple days during the study period)

or pooled specimens would “average” the concentrations of the target chemicals

during the study period.

Of interest, the reproducibility of such measurements will differ, depending on

the chemical, the nature of the exposure, and the study population. For example, for

nonpersistent compounds for which exposure is largely driven by use of personal

care products (e.g., certain phthalates, parabens), the largest variability contributor

will be interindividual, while for nonpersistent chemicals with mainly dietary

sources that can change substantively from day to day and even within a day

(e.g., bisphenol A [BPA], polycyclic aromatic hydrocarbons [PAHs]), large

intraindividual differences are expected (Koch et al. 2014; Preau et al. 2010;

Teeguarden et al. 2011; Ye et al. 2011; Frederiksen et al. 2013; Li et al. 2010;

Lassen et al. 2013; Fromme et al. 2007; Bradman et al. 2013; Wielgomas 2013). For

example, the intraclass correlation coefficient (ICC) describes the reliability of

repeated measures over time and is defined as the ratio of between-subject variance

to total (between-subject plus within-subject) variance. ICC ranges from zero

(no reproducibility) to one (perfect reproducibility). Interestingly, ICCs of bio-

marker concentrations associated with episodic dietary exposures tend to be lower

than for other exposures (e.g., use of personal care products), regardless of the study

population (e.g., children, pregnant women, other adults) and the timeframe eval-

uated (days, months, years) (Ferguson et al. 2014; Adibi et al. 2008; Bertelsen et al.

2014; Braun et al. 2011, 2012; Cantonwine et al. 2014; Engel et al. 2014; Hauser

et al. 2004; Irvin et al. 2010; Lewis et al. 2014, 2015; Mahalingaiah et al. 2008;

Meeker et al. 2012; Peck et al. 2010; Philippat et al. 2013; Quiros-Alcala et al.

2013; Smith et al. 2012; Teitelbaum et al. 2008; Watkins et al. 2014; Whyatt et al.

2012; Baird et al. 2010; Valvi et al. 2015; Hoppin et al. 2002; Townsend et al. 2013;

Heffernan et al. 2014; Jusko et al. 2014; Nepomnaschy et al. 2009; Meeker et al.

2005; Perrier et al. 2016; Weiss et al. 2015; Morgan et al. 2015; Geens et al. 2015;

Spaan et al. 2015; Reeves et al. 2014; Fisher et al. 2015; Ackerman et al. 2014;

Guidry et al. 2015; Dewalque et al. 2015). These findings suggest that short-term

variability in biomarker concentrations may also apply to long-term variability

because the associated exposures related to lifestyle habits do not change consid-

erably over time (Calafat et al. 2015), particularly if commercial formulations of the

chemicals do not change within the study timeframe and geographic location.

Sampling Strategies The use of spot urine samples (i.e., single, untimed urine

specimen, voided spontaneously) is common in environmental epidemiology

despite the well-recognized fact that spot concentrations for short-lived chemicals

can show considerable inter- and intraindividual temporal variability, particularly

for episodic exposures (Calafat et al. 2015; Aylward et al. 2014). Collecting spot

22 A. M. Calafat



samples, including first morning voids, is easier than collecting 24-h samples and

may facilitate compliance in epidemiologic studies.

In recent years, several investigations evaluated the suitability of spot samples,

including first morning voids, and 24-h collections to categorize exposures to

nonpersistent compounds such as plastic components (phthalates, BPA), personal

care product chemicals (e.g., parabens, triclosan), pesticides, and PAHs from the

biomarker urinary concentrations (Koch et al. 2014; Preau et al. 2010; Ye et al.

2011; Frederiksen et al. 2013; Li et al. 2010; Lassen et al. 2013; Bradman et al.

2013; Wielgomas 2013; Aylward et al. 2017). Interestingly, regardless of the

collection strategy (spot, first morning, 24-h), urinary concentrations of the target

biomarkers varied considerably during the 6–7 consecutive days of study, and the

main contributors to the total variance differed. Specifically, biomarker urinary

concentrations of chemicals with mainly dietary sources showed higher inter-day

variability than those of chemicals with mostly non-dietary sources (e.g., use of

personal care products) for which inter-person variability was most pronounced.

These findings and the fact that the concentrations of biomarkers in first morning

voids or spot samples correlated moderately to highly with those from 24-h

composites suggest that, for exposure assessment, collecting 24-h voids may not

be advantageous compared to multiple spot collections.

The nature of the exposures (diet vs other lifestyle factors) and timing of urine

sampling to evaluate chemical exposures should be considered. This critical aspect

is particularly relevant when evaluating exposures to chemical mixtures because the

sources and timing of the exposures are likely to vary depending on the chemical.

Changing the time of collection of spot samples and recording the time of urine

collection and time since last void would provide useful information to interpret

biomonitoring data for chemical mixtures.

Because not all sources of the more than 80,000 chemicals commercially used

are known, understanding the details related to collecting and processing of

biomonitoring specimens is also critical. Sampling must ensure that the biomarker

concentrations reflect contact with the chemicals or their precursor(s) from a

person’s usual exposures over time (e.g., during pregnancy) and not from recent

contact, such as from use of medical equipment or medical intervention or from

specimen contamination (Calafat and Needham 2009; Calafat et al. 2015). Field or

travel blanks are advantageous to identify potential external contamination during

sample collection (Calafat and Needham 2009) but are inadequate to highlight

contact with the chemical shortly before sampling. For example, during medical

interventions people may be exposed to chemicals used in plastics such as DEHP

and BPA (Huygh et al. 2015; Su et al. 2012; Weuve et al. 2006; Green et al. 2005;

Calafat et al. 2004; Duty et al. 2013; Calafat et al. 2009). Concentrations of these

chemicals or their metabolites in specimens collected soon after medical treatment

would reflect true exposures (Calafat et al. 2015; Vandentorren et al. 2011; Yan

et al. 2009), but would not be representative of typical daily exposures and,

therefore, likely would be irrelevant in environmental epidemiology studies.
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2.5 Population-Based Biomonitoring Surveys

Human biomonitoring data per se do not provide information on health effects

(CDC 2009), but general population human biomonitoring programs are useful for

investigating human exposure to chemical mixtures and are important tools for

integrating environment and health (Angerer et al. 2006; National Research Coun-

cil 2006; Bell and Edwards 2015; Sobus et al. 2015).

For example, in the United States, the Centers for Disease Control and Preven-

tion (CDC) conducts the National Health and Nutrition Examination Survey

(NHANES) (CDC 2011, 2017). Beginning in 1971 and then yearly since 1999,

NHANES collects detailed medical history and performs physical examinations on

all survey participants, approximately 5000 per year—selected through a complex

statistical process using the most current census information—and includes a

biomonitoring component from participants 1 year of age and older (CDC 2017;

Calafat 2012). Most NHANES biomonitoring data are based on the analysis of

samples from representative subsets of participants (e.g., one-third sample); subset

distributions often change with survey cycles. Of note, biomonitoring measure-

ments in blood or blood serum are only available from participants 12 years and

older, with the exception of lead, cadmium, mercury, and, since 2011, manganese

and selenium (minimum age of 1 year), and cotinine (minimum age of 3 years);

biomonitoring measurements in urine are available for persons 6 years (3 years

starting in 2015) of age and older (CDC 2011; Calafat 2012). Since 1999, the

number of chemicals measured in people’s blood has increased from 27 to more

than 300 (CDC 2017). The NHANES biomonitoring program provides the most

comprehensive assessment of the U.S. general population’s exposure to hundreds of
environmental chemicals (CDC 2011, 2017). These data, which are representative

of the U.S. population, have been used to establish population reference ranges,

track exposure trends, identify populations with higher than background exposures,

prioritize research needs, and, sometimes, inform chemical risk assessments

(National Research Council 2012; Sobus et al. 2015). For example, several federal

agencies in the United States have used NHANES biomonitoring data to support

various research and regulatory activities, including, among others, the

U.S. Environmental Protection Agency (EPA) decision to remove lead from gaso-

line and the reregistration of triclosan and the U.S. Consumer Products Safety

Commission (CPSC) decision to prohibit the use of certain phthalates in children’s
toys and child care articles (Sobus et al. 2015; U.S. EPA 2008; CPSC 2017). More

recently, EPA also used NHANES data for lead, mercury, perchlorate, and several

organic compounds—polyfluoroalkyl and perfluoroalkyl substances,

polychlorinated biphenyls, polybrominated diphenyl ethers, phthalates, and

BPA—in its third edition of America’s Children and the Environment (U.S. EPA

2013), a report which, among other goals, can help policymakers and the public

track and understand the potential impacts of environmental contaminants on

children’s health and, ultimately, to identify and evaluate ways to minimize these

impacts.
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Nationwide human biomonitoring initiatives also exist in other countries,

including Austria, Belgium (Flanders), Canada, Czech Republic, France, Germany,

Israel, Japan, Korea, Slovenia, and Spain (Health Canada 2017; Kolossa-Gehring

et al. 2012; Kawamoto et al. 2014; Perez-Gomez et al. 2013; Cerna et al. 2012;

Frery et al. 2012; Schoeters et al. 2012; Perharic and Vracko 2012; Berman et al.

2012; Casteleyn et al. 2015; La Corte and Wuttke 2012; Hohenblum et al. 2012; Ha

et al. 2014). Biological samples collected as part of these programs have been used

to provide the most comprehensive assessment of these countries’ general

populations’ exposure to select environmental chemicals (CDC 2017; Becker

et al. 2009; Koch et al. 2007; Schulz et al. 2007; Haines and Murray 2012; Jeong

et al. 2014; Geens et al. 2014; Saoudi et al. 2014; Puklova et al. 2010; Bartolome

et al. 2015; Levine et al. 2015; Černá et al. 2017) and also have the potential to

inform chemical risk assessments (Albertini et al. 2006).

In addition to nationwide general population programs, biomonitoring has been

increasingly used in environmental epidemiology such as birth cohort studies as

well as cohorts of specific population groups. The list of programs relying on

biomonitoring measurements is so extensive that it can’t be covered in this short

chapter. The examples below are meant to illustrate the breadth and versatility of

populations for which biomonitoring can provide useful information in environ-

mental epidemiology research.

Birth cohort studies include, among many others, the U.S. National Institute of

Environmental Health Sciences/EPA’s Children’s Centers for Environmental

Health and Disease Prevention (https://www.epa.gov/research-grants/niehsepa-

childrens-environmental-health-and-disease-prevention-research-centers), Project

VIVA, The Infant Development and the Environment Study, the Mothers and

Children’s Environmental Health Study, the Norwegian Mother and Child Cohort

Study, the Danish National Birth Cohort, and the Northern Norway Mother-and-

Child Contaminant Cohort (Kim et al. 2009; Zeman et al. 2013; Ronningen et al.

2006; Guxens et al. 2012; Olsen 2012; Veyhe et al. 2015; Oken et al. 2015; Barrett

et al. 2014). Cohorts of specific population groups include, among many, the

Framingham Heart Study, the Nurses’Health Study, the Women’s Health Initiative,
the Childhood Autism Risks from Genetics and the Environment Study, the Shang-

hai Women’s Health Study, and the Shanghai Men’s Health Study (Zheng et al.

2005; Cupples et al. 2007; Colditz and Hankinson 2005; Hays et al. 2003; Hertz-

Picciotto et al. 2006; Cai et al. 2007). Lactating women may be considered a special

category within these specific population groups. Human milk is regarded as

infants’ best nutrition source (Landrigan et al. 2002). Nonetheless, environmental

chemicals can also partition into breast milk (Lehmann et al. 2014), and breast milk

monitoring programs can provide useful information to study early life exposures to

environmental chemicals (Lehmann et al. 2014; Solomon and Weiss 2002; Berlin

et al. 2005; Fenton et al. 2005; LaKind et al. 2005; Pan et al. 2010; LaKind et al.

2001; Colles et al. 2008; Li et al. 2009; Croes et al. 2012). Breast milk programs, for

instance, albeit restricted to one specific sector of the population, have been useful

to assess temporal trends to select persistent organic compounds (Solomon and

Weiss 2002; Konishi et al. 2001; Kunisue et al. 2006; Raab et al. 2007; Abballe
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et al. 2008; Polder et al. 2008; Lignell et al. 2009; Sundstrom et al. 2011; Fang et al.

2013; Vukavic et al. 2013; Darnerud et al. 2015).

For these population-based initiatives, biomonitoring can provide important

exposure information as well as data to understand the potential impact of the

environment, including chemical mixtures, among other factors, on various aspects

of human health such as reproductive outcomes, development, behavior, and

respiratory health. Age; diet and lifestyle; route, frequency, and intensity of the

exposures; potential interactions among chemicals; and genetic factors, among

others, are critical in determining health outcomes from exposures to chemical

mixtures. In the context of environmental public health, the recent increase in

studies linking biomonitoring exposure data and human health would benefit

from the definition and implementation of best practices for analysis, interpretation,

and communication of biomonitoring data (Sobus et al. 2015; LaKind et al. 2014).

2.6 Conclusions

Biomonitoring provides an integrated measure of exposure to chemicals from all

sources and routes and can be reliably used to estimate internal doses. Because of

technological advances, a vast amount of biomonitoring exposure data already

exist, and the volume of studies including a biomonitoring component for exposure

assessment and, most recently, for relating internal exposure to potential health

effects continue to increase. The proper use and interpretation of biomonitoring

depend in large part on the study objectives which, in turn, dictate the study design.

Adequate selection of the study population, procurement and type of biospecimens,

and choice of analytical methods are critical to a successful biomonitoring

initiative.
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Chapter 3

Considerations for Measuring Exposure

to Chemical Mixtures

L. Blair Paulik and Kim A. Anderson

Abstract Exposure to chemical mixtures contributes to human disease risk. While

analytical capability is continuing to increase, many chemicals remain understudied

with regard to environmental occurrence and to toxicity. If a commercial chemical

standard does not exist for a given chemical, then little to no quantitative data likely

exists for that chemical. This chapter discusses exposures to organic chemical

mixtures, lists necessary considerations for studying those exposures, and high-

lights research needs to continue to advance mixtures exposure science. When

planning or reviewing studies that focus on exposure to chemical mixtures, impor-

tant considerations include: spatial orientation of sampling, temporality of sam-

pling, bioavailability of measured chemicals, measuring enough of the appropriate

chemicals, potential for chemical transformations, and mixture effects. Importantly,

relatively little is known about how exposure to mixtures of chemicals differs from

exposure to individual chemicals. The majority of toxicity studies are performed

using individual chemicals, so characterizing the toxicity of chemical mixtures

should be a priority for the scientific community.

Keywords Exposure assessment · External exposure · Environmental chemistry ·

Environmental toxicology · Chemical mixtures · Sampling strategies · Passive

sampling · Effect-directed analysis

3.1 Introduction: Measuring Chemical Stressors

in the Environment

Nonscientists are often surprised to learn that science is incapable of measuring all
of the chemicals people are exposed to on a daily basis. In reality, data about

environmental chemical exposures only exists for chemicals for which detection
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methods have been developed. Those methods only exist for chemicals that (a) have

existing analytical standards and (b) are stable enough to reasonably be measured

(Baird 2015). Additionally, the chemicals that meet these criteria are not always the

ones that are the most relevant to environmental or human health, either with regard

to toxicity or frequency of exposure (Brack 2003). In fact, we are exposed to many

chemicals on a daily basis for which data about toxicity and/or environmental fate

are sparse or nonexistent. To add another layer of complexity to this problem,

people are constantly exposed to mixtures of chemicals. While we know that

chemicals in mixtures do not necessarily behave the same as they do individually,

we have limited information about what those differences are (Chap. 13,

Cedergreen et al. 2008). Regardless researchers, risk assessors, and other

decision-makers must regularly determine whether exposures to measured levels

of pollutants are concerning or not. In the face of these uncertainties and data gaps,

these can be difficult decisions to make.

This chapter includes considerations for assessing exposure to mixtures of

organic chemicals in the environment. These considerations should be addressed

both when designing studies to answer questions about chemical exposures and

when interpreting results of such studies. Specifically, characterization of exposures

to common chemical mixtures (Sect. 3.2), considerations for assessing exposure to

these mixtures (Sect. 3.3), case studies to illustrate these considerations (Sect. 3.4),

and priority research needs to improve the assessment of exposure to chemical

mixtures (Sect. 3.5) are discussed.

3.2 Exposure to Common Chemical Mixtures

3.2.1 Why Characterize Exposure to Chemical Mixtures?

Accurately assessing a person’s chemical exposures is essential for determining the

impact of environmental exposures on human health. It is well established that

exposure to many environmental pollutants is linked with disease (Wild 2012).

While the science of externally measuring chemical exposures has come a long

way, there is still much work to be done. The main principle of toxicology is that the

dose determines the effects. It follows that a toxic substance does not increase

disease risk if no exposure occurs. Consequently, there can be no useful assessment

of toxicological risks without appropriately and quantitatively assessing chemical

exposure. Therefore, it is important to continue to learn both about what chemicals

should be prioritized for study and about how, where, and when chemical exposures

happen. The importance of this area of study was emphasized in the new Strategic

Plan from the U.S. National Institute of Environmental Health Sciences (NIEHS).

This plan aims to characterize human exposure to chemical mixtures over a lifetime

and to learn how those exposures may affect health and disease risk (Birnbaum

2012).
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Although the risk of developing disease is attributed to both genetic and envi-

ronmental factors, it has been suggested that differences in environmental factors

may substantially affect disease risk (Willett 2002; Rappaport and Smith 2010; Wu

et al. 2016). While the exact proportion of disease risk that can be attributed to

environmental factors is under debate (Tomasetti and Vogelstein 2015; Wu et al.

2016), it is established that environmental factors, including environmental pollu-

tion, play an important role in disease risk (Lichtenstein et al. 2000; Wu et al. 2016).

Although recent definitions of a person’s “environment” have encompassed the

internal, external, and psychological environment, and it has been suggested many

of these varied factors may contribute to disease risk (Wild 2012), the relationship

between exposure to environmental pollutants and health remains a key area of

study. Additionally, there are many chemical exposures that are still under-

characterized (Wild 2012). To move exposure science forward, the scientific

community needs more accurate and comprehensive assessments of chemical

exposure. It is also important that these studies take into account how exposures

vary with space and time.

3.2.2 How to Characterize Chemical Mixtures
in the Environment: What Are the Options?

3.2.2.1 Existing Technologies for Measuring Chemical Exposures

in the Field

3.2.2.1.1 Traditional Methods

Epidemiologists frequently evaluate the effect of environmental exposures on

disease using data from questionnaires. Inferences gleaned from these question-

naires often require extrapolating from a participants’ response to a chemical

exposure and can therefore be uncertain (Rappaport 2011). For instance, a ques-

tionnaire may ask participants whether they grilled meat during the course of a

study, and a “yes” response may be interpreted as exposure to carcinogenic

chemicals that are products of incomplete combustion. However, this response

would not provide information about which chemicals participants were exposed

to, what concentrations they were exposed to, or the duration or frequency of this

exposure.

All of this extra information could affect how this exposure is interpreted by

researchers, but none of it would be captured by the questionnaire. Situations like

this likely increase uncertainty in data from questionnaires. Thus, much care should

be taken when either developing exposure assessment questionnaires or interpreting

data from such questionnaires (Nieuwenhuijsen 2005). Additionally, epidemiolo-

gists rarely have access to baseline or historical exposure data. The lack of low-cost,

easy-to-use sampling technology for directly measuring chemicals in the environ-

ment, or for directly measuring exposure to those chemicals, hinders
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epidemiological studies. In rare cases when exposure assessments are based on data

from environmental sampling, they often are limited in sampling time points or

sampling locations, are limited to readily accessible tissues, and are limited in

subject size due to challenges of cost and compliance.

Exposures to chemical mixtures can be measured either internally (e.g., with

biomonitoring) or externally. As described in the previous chapter (Chap. 2),

biomonitoring has both substantial strengths and limitations. Biomonitoring has

the advantage of directly measuring concentrations in participants’ bodies. When a

sufficiently specific and sensitive biomarker exists for a contaminant of concern, the

direct nature of this tool can greatly reduce uncertainty about whether participants

were exposed to that contaminant. However, biomonitoring studies can be hindered

by the lack of specificity and sensitivity of many biomarkers, temporal challenges

related to timing of exposure, and a relatively short list of measureable exposures.

Another challenge is that biomonitoring estimates are transient snapshots of expo-

sure, which can be difficult to interpret (Schwartz et al. 2005). Collecting biological

samples from study participants also presents additional challenges for participants

and can therefore have a negative impact on participant compliance compared to

less invasive methods.

Exposure to environmental pollutants happens via three main exposure routes:

inhalation, ingestion, and dermal. Additionally, characterizing chemical pollution

for health assessments may entail measuring chemical mixtures in four broad types

of media: sediment/soil, water, air, and food products. It is important to keep in

mind that measuring chemicals in these media is only useful where it addresses

exposures that may occur through at least one of the three main exposure routes

(inhalation, ingestion, and dermal). While the last 50–60 years saw significant

advances in analytical chemistry (e.g., enabling chemists to detect as little as a

few femtograms of thousands of chemicals), much less progress has been made in

how we collect samples from the environment. Additionally, while it is encourag-

ing that analytical chemists can now detect a few thousand chemicals, this does not

mean that methods exist to detect all of these chemicals in all types of samples (e.g.,

soil, water, air, food). And there are still numerous chemicals present in the

environment for which no analytical methods exist at all.

Below we discuss existing methodologies for externally measuring chemicals

in the environment, for use in estimating human health risks associated

with exposure to those chemicals:

There are a number of existing technologies for measuring exposures externally.

Some traditional measurement techniques are unique to one of the three main

exposure routes, while others bridge multiple pathways. In general, people can be

exposed to chemicals measured in the sediment or soil through dermal exposure,

and potentially through ingestion (if a child ingests the contaminated soil or

sediment directly, or if that chemical moves from the soil or sediment into a plant

or shellfish that develops in the soil or sediment). People are generally exposed to

chemicals measured in water dermally, through ingestion if a chemical moves from

the water into a fish that a person eats, through ingestion if that chemical is not
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filtered out before the water is used as drinking water, or through inhalation of

volatiles/semi-volatiles vaporized from water. Exposures to chemicals measured in

the air happen predominantly through inhalation. Finally, exposures to chemicals

measured in foods occur through ingestion.

There are multiple techniques for measuring chemicals in each of the media

listed above. To measure chemicals in the sediment/soil, traditional methods

include taking what is known as a “grab sample” of sediment/soil, extracting the

whole sediment/soil, and reporting the chemicals measured in the whole sample.

Traditional methods of measuring chemicals in water include taking grab samples

of water, extracting chemicals from that water, and reporting the totality of what is

measured. Traditional methods of measuring chemicals in air involve setting up an

active air sampler which pumps air over a filter or other sorbent, and then extracting

that filter. To measure exposure via ingestion of food grown at a contaminated site,

traditional methods include directly sampling the food of concern and then

performing an extraction and measuring chemicals in that food.

Extraction techniques are also often specific to the type of sample (e.g., air or

sediment) and to a certain chemical or class of chemicals (e.g., only for mercury or

only for hydrocarbons). The near-infinite list of combinations of chemicals and

sample types necessitates developing many different extraction methods, and this

further complicates the task of efficiently measuring chemicals in the environment.

When coupled with appropriate analytical techniques, each of the traditional

methods described above yields chemical concentrations that are representative of

the specific location and time of sampling. Given that exposures to pollutants in the

environment are dynamic, it is necessary to extrapolate from environmental con-

centrations to estimate human exposure. However, data from traditional sampling

methods are commonly used to assess pollution levels that an individual, or a

population, is exposed to. This is done using exposure factors to approximate

how much of a chemical a person might be exposed to on a regular basis.

Depending on the exposure route of interest, different exposure factors are required

to make this extrapolation. Exposure factors range from estimating the number of

hours individuals in a population spend in their houses each day to the average

number of grams of crayfish individuals eat each day, to the number of years

individuals live adjacent to a source of pollution, and everything in between.

Specific examples of many of these exposure factors that are commonly used in

the U.S. Environmental Protection Agency (U.S. EPA) risk assessment are given in

the U.S. EPA’s 2011 Exposure Factors Handbook (U.S. EPA 2011).

Other chemical sampling techniques aim to measure chemical exposures in an

individual’s personal environment, by placing samplers directly on individuals.

These methods are attractive because they eliminate (or greatly reduce) the need to

extrapolate between a measured chemical concentration and an external exposure.

Traditionally, techniques for measuring personal exposure to organic contaminants

have included putting air-sampling backpacks on study participants (Perera et al.

2003) or putting active samplers on participants’ lapels (Tsai and Vincente 2001).

However, these tend to be costly, monitor relatively few environmental
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contaminants, and require committed participants because the devices can be bulky

or noisy during use. Monitors exist to measure other types of contaminants, such as

particulate matter in the air, in real time (Chung et al. 2001). Real-time monitors for

freely dissolved organic contaminants, however, are still in development. While not

a focus of this chapter, other techniques exist for measuring personal exposure to

inorganic contaminants, such as metals. One such technique uses an acidic hand

wipe to assess personal exposure to metals (Lidén et al. 2008). Existing tools for

measuring personal organic chemical exposure all require some in-lab analysis after

deployment. Sampling devices for individuals should ideally be easily worn,

adaptable, capable of measuring many chemicals, easy to use by research staff,

integrated with many simultaneous measures (e.g., location, chemical exposures,

health outcomes like lung function), rugged, and noninvasive and have the capacity

to store and transmit data.

3.2.2.1.2 Passive Sampling

Thinking outside the “sampling jar” is required to accurately and efficiently char-

acterize chemical exposures. Since the early 1990s, passive sampling has been

gaining momentum as an effective tool for measuring trace levels of contaminants

of concern (Petty et al. 2000; O’Connell et al. 2014). Passive samplers measure

time-integrated concentrations of the freely dissolved concentration (Cfree) of

contaminants. Passive samplers are relatively low cost, and they do not require

energy or maintenance while deployed. The ability to infuse passive samplers with

performance reference compounds (PRCs) before deployment further improves this

tool’s ability to accurately assess contaminant levels (Huckins et al. 2006).

Numerous polymer materials and membrane technologies for passive sampling

of water, air, and the personal environment have been explored. Low-density

polyethylene (LDPE) and silicone are two widely used materials to make passive

samplers for measuring organic contaminants (Anderson et al. 2008; O’Connell
et al. 2014). When deployed in air, water, or sediment porewater, these polymers

absorb hydrophobic organic contaminants via simple diffusion from the environ-

ment into the hydrophobic membrane. This process is analogous to uptake across a

phospholipid membrane into an organism, making passive samplers well-suited to

serve as surrogates for contamination in organisms (Booij et al. 2006; Allan et al.

2011, Fernandez and Gschwend 2015; Paulik et al. 2016a; Forsberg et al. 2014).

Other samplers, such as Diffusive Gradient Thin Films, or DGT, passively absorb

inorganic contaminants (Pérez and Anderson 2009a; Vrana et al. 2005; Gimpel

et al. 2003).

Another attractive aspect of passive sampling is that some passive samplers can

be paired with high-throughput bioassay systems, such as the embryonic zebra fish

assay. This allows chemical mixtures measured in the environment (by a passive

sampler) to be tested in toxicity bioassays (Allan et al. 2012). The zebra fish

bioassay is also attractive because it requires relatively small amounts of sample.

Traditional animal bioassays are much more expensive and time-consuming and

42 L. B. Paulik and K. A. Anderson



require much larger amounts of sample. By pairing a passive sampler extract with

the zebra fish assay, the bioassay helps reveal the toxicity of the whole mixture.

More can be learned when bioassays are combined with fractionation techniques to

separate components of the mixture based on physical or chemical parameters (e.g.,

polarity, size) (Burgess et al. 2013). This will be discussed further below. While

there has been significant progress with passive technologies, the nexus of the

passive sampling platform technology is yet to be fully exploited.

Recently new technology has emerged which passively samples individuals’
chemical exposures. The passive wristband sampler is a new, wearable passive

sampler that directly measures the chemicals a person is exposed to (O’Connell
et al. 2014). These wristbands accumulate thousands of common environmental

chemicals (O’Connell et al. 2014), including many used in commerce and organic

compounds formed during natural and industrial processes. The wristband can also

capture emerging chemicals of concern. For example, it quantifies the concentra-

tions of oxygenated polycyclic aromatic hydrocarbons (OPAHs), toxic compounds

in asphalt fumes (O’Connell et al. 2014). Another promising aspect of the wristband

sampler is that it is easily used by citizen scientists, making it easier to engage

community members in research studies.

3.2.2.1.3 Limitations of Passive Sampling:

As with any technology, passive sampling has its limitations. One challenge is

accurately calculating an environmental (or a personal exposure) concentration of a

chemical from what is measured in a passive sampling device. This requires adding

labeled chemicals to the passive sampler before deployment to act as PRCs and

measuring the loss of those PRCs during the deployment. The amount of PRC lost is

used to estimate whether the sampler had reached equilibrium with the system for

that chemical. This information is then used to correct the concentration measured

in the sampler, to more accurately reflect the concentration in the environment.

While the scientific community accepts this approach (Huckins et al. 2006), it does

introduce some uncertainty into reported concentrations of environmental

chemicals that are measured using passive samplers (Khairy and Lohmann 2012;

Allan et al. 2009). Another aspect to consider is that passive samplers produce time-

integrated concentrations of chemicals (Greenberg et al. 2014; Petty et al. 1993).

This is a strength or weakness of the technology depending on the goals of the

study. It is a strength if the goal is to assess a person’s total individual chemical

exposure over a period of time or to measure an average concentration of a

chemical over a given time period (Tidwell et al. 2016; Khairy and Lohmann

2012). It is a weakness, however, if the researcher wants to capture the elevated

concentration at a specific moment during a pulse of contaminants (e.g., during a

brief emission of air pollution).
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3.2.2.2 Existing Technologies for Measuring Chemical Exposures

in the Lab

3.2.2.2.1 Traditional Methods: Which Chemicals Are Measured?

Traditional analytical methods only include the relatively few chemicals that are

feasible to measure. These are not necessarily the chemicals that should be prior-

itized due to being frequently encountered in the environment or due to being the

most toxic (Brack 2003). In some cases, chemicals have been prioritized for study

based solely on availability of analytical standards (Baird 2015). Additionally, if a

standard is mistakenly misidentified, this can lead to years of incorrect conclusions

about that chemical (Baird 2015). There are many chemicals, therefore, for which

environmental occurrence data, toxicity data, or both are sparse. There are other

chemicals for which these data do not exist at all. While this chapter focuses on

human exposures to chemical mixtures, the contaminants we discuss also affect the

environment as a whole.

For many chemicals found in the environment, toxicity information is limited, or

regulatory limits do not exist. Therefore, even when these chemicals are included in

analytical methods and detected in the environment, they are often excluded from

risk assessments. If there is no toxicity information for a measured chemical, it is

impossible to include it in a risk assessment. Several approaches exist to close some

of these toxicity data gaps. Many of these approaches involve predicting toxicity of

understudied chemicals (one such set of predictive tools is quantitative structure-

activity relationships, or QSARs). The U.S. EPA’s ToxCast is a promising initia-

tive, which aims to efficiently predict and characterize the toxicity of thousands of

chemicals (U.S. EPA 2015). In this program, EPA scientists screen thousands of

chemicals using high-throughput toxicity bioassays. This enables researchers to

prioritize which chemicals to study based on toxicity.

The gap between environmental measurements and toxicity is further widened

as most dose-response studies (Wright and Welbourne 2001) are not conducted at

environmentally relevant doses and are not performed with mixtures that are

realistically found at contaminated sites. Conventional sampling methods may

allow pollutants with unknown toxicological relevance to be overlooked, but

passive samplers begin to address this problem. Although passive samplers are

not exhaustive tools for chemical extraction from the environment, they can be

designed to extract a wide range of contaminants. PAHs (Baussant et al. 2001;

Lohmann et al. 2001; Sun et al. 2008), polychlorinated biphenyls (Anderson and

Johnson 2001; Sethajintanin and Anderson 2006), pesticides (Sethajintanin and

Anderson 2006), flame retardants (Booij et al. 2002), dioxins (Lohmann et al.

2001), and metals (Pérez and Anderson 2009b; Pérez and Anderson 2009a;

Zhang et al. 1995; Zhang and Davison 1995) are all examples of contaminants

that can be captured by passive samplers. Additionally, passive samplers provide

real-world mixtures of chemicals that can be directly integrated with bioassays for

toxicity testing. This is useful when studying contaminants for which toxicity data
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are sparse. Oxygenated PAHs (OPAHs) are an example of a group of chemicals that

is often encountered in the environment but for which relatively little toxicity

information exists. OPAHs, also known as PAH ketones or quinones, have one or

more oxygen-containing functional groups attached to the aromatic ring structure

and may also contain other chemical groups (Wischmann and Steinhart 1997). It is

possible to use passive samplers to simultaneously sample PAHs (which are well-

studied) and OPAHs, allowing the researcher to answer multiple research questions

with the same sampling campaign.

3.2.2.2.2 Unmonitored and Infrequently Monitored Chemicals: Approaches

for Identification and Toxicity Exploration

Many commonly encountered chemicals (which may or may not contribute sub-

stantially to exposures affecting human health) are not currently included in

analytical methods. In some cases, it is possible to glean more data from existing

analytical techniques. For instance, it is possible to look more closely at a chro-

matogram obtained from high-resolution GC-MS analysis of an environmental

sample and to identify unmonitored chemicals in that sample. Additional analytical

approaches that can be used to identify nontarget chemicals include nuclear mag-

netic resonance (NMR) and two-dimensional gas chromatography (GC x GC). If

unmonitored chemicals are identified in this way, then their toxicities can be

explored. These approaches involve searching through analytical data and trying

to identify individual chemicals that are not traditionally monitored, using chemical

parameters (e.g., structure, molecular weight, charge). These techniques are often

very time intensive (requiring days, weeks, or even months), and there are often no

analytical standards available to confirm chemical identification. This creates the

potential to misidentify chemicals (potentially causing errors in databases) due to

multiple chemicals having the same chemical formula, but differing in structure.

Another challenge is that, the methods and software for identifying unmonitored

chemicals are often written by individual investigators in individual research labs.

This can make it difficult to reproduce or compare data among different

laboratories.

Another method for identifying nontarget chemicals is known as “effect-directed

analysis,” or EDA. In this approach, environmental chemical mixtures are sepa-

rated through a series of chemical and/or physical separations, creating different

chemical fractions of the mixture (Burgess et al. 2013; Brack 2003) (see Fig. 3.1).

Fractionation techniques include normal-phase chromatography, size exclusion

chromatography, and many others. After fractionation, EDA can help researchers

learn which fractions (and which chemicals) are causing toxicity in the mixture.

EDA is also useful to help researchers identify which chemicals in mixtures are not
causing observed toxicity. Which fractionation techniques are most appropriate,

and which fractions are of most interest, depends on the specific research question

being asked. EDA enables the researcher to use these fractions in toxicity bioassays,

to explore the toxicities of each fraction, and ultimately to elucidate which
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components of the chemical mixture are causing toxicity. This is a useful tool for

identifying both environmental occurrence and toxicity of chemicals that are rarely

or infrequently included in environmental monitoring or sampling. In a recent

review, Brack suggested that EDA is especially useful for measuring nontarget

compounds at sites that are known to be heavily polluted (Brack 2003).

Fig. 3.1 A whole chemical mixture is separated into fractions using effect-directed analysis

(EDA). The toxicity in the whole mixture is depicted by the yellow bar in the top graph. In the

first fractionation, the whole mixture (WM) was separated into three fractions (1–3). Both fraction

1 and 3 contained some toxicity, but no toxicity was observed in fraction 2. The toxicity of fraction

1 appears to be the same as the toxicity of the whole mixture. However, there is additional toxicity

in fraction 3. This suggests that there was less than additive toxicity in the whole mixture before

fractionation. This illustrates the power of EDA to help researchers identify both toxic and inert

fractions within chemical mixtures. In the second level of fractionation, fractions 1 and 3 were

separated into fractions 1a and 3a–c. In these fractions, we see that the toxicity of fraction 1a is the

same as the toxicity of fraction 1, and of the whole mixture. This could be interpreted to mean that

the majority of toxicities observed in the original mixture and in fraction 1 were coming from the

yellow circles in the mixtures. When these circles were completely isolated in fraction 1a, this

fraction retained the same level of toxicity as in the whole mixture and in fraction 1. However, in

this final fractionation, we also see that the sum of the toxicities of fractions 3a–c is less than the

toxicity of fraction 3. This suggests that there was the potential for greater than additive toxicity in

fraction 3 before the second fractionation. This example illustrates the utility of EDA to help

researchers identify: components that are causing toxicity within a mixture, mixtures (and frac-

tions of mixtures) where greater or less than additive toxicity is observed, and fractions of mixtures

that do not appear to cause toxicity but may influence the toxicity of the whole mixture
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3.3 Considerations for Assessing Exposure to Chemical

Mixtures

3.3.1 Field Methods: Appropriate Sampling Techniques

3.3.1.1 Spatial Considerations: Stationary (or Population-Based)

vs. Individual

In many cases, chemical levels measured at stationary sampling sites in air, water,

sediment/soil, or food are used to estimate exposure levels for people living nearby

or for larger populations (e.g., cities or regions). To use a concentration measured at

a specific location in the environment to estimate a personal exposure level,

researchers must make assumptions about how often, and for how long, individuals

in a population are exposed to the contaminant in that environmental compartment

through inhalation (if measured in air), dermally (if measured in water or sediment/

soil), or through ingestion (if measured in food). A good example of this is when

data from immobile air-monitoring stations are used to estimate human health risks

based on inhaling those contaminants. A few limitations with this approach are that

fixed monitoring stations may be many miles away from the location(s) of expo-

sure, they are not always continuously operated, they often only monitor a few

chemicals, and they are likely not reflective of indoor air. Thus, there is a lot of

uncertainty inherent in this approach that reduces its utility as an accurate surrogate

for an individual’s inhalation exposure.

Examples of typical exposures occurring through the three main exposure

routes, in different locations, are shown in Fig. 3.2. Each exposure route requires

extrapolation with different exposure factors. For instance, to estimate inhalation

exposure, the researcher must estimate how many hours per day, and days per year,

individuals would be exposed to contaminants at the levels measured at the

stationary air-sampling site. For ingestion exposure, on the other hand, the

researcher would need to estimate how often the consumer ate the food that was

sampled and howmuch of it they ate each time. These estimated exposure levels are

used in risk assessment to determine whether the exposure exceeds acceptable

regulatory levels of pollution. Estimating these exposure factors can increase

uncertainty in exposure estimates, because not all members of a population have

the same behaviors. The benefit of stationary or population-based measurements is

that they can reduce costs, as a small number of samples can be used to estimate

exposure levels for large numbers of people.

More recently, methods have been evolving to sample chemical exposures

directly on individuals. One such tool is the passive wristband sampler, introduced

in Sect. 3.2.2 above. When used in risk assessment, personal sampling techniques

require much less extrapolation than stationary environmental sampling techniques.

When the sampler is on a participant constantly, there is no need to make assump-

tions regarding the frequency of exposure, duration of exposure, or other factors

that are required when making exposure inferences based on chemical
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concentrations at stationary monitors. Therefore, using personal sampling tools

may provide more accurate individual exposure information, reducing uncertainty

in exposure estimates used in risk assessments. For example, if a personal sampler

were put on the woman in Fig. 3.2, it would accumulate exposure information from

all four of those exposure scenarios, as well as others throughout her day. However,

if the goal is to estimate exposure for a population, extrapolation would still be

required from the exposures of the individuals measured to the larger population.

Additionally, depending on which sampling techniques are used, it may be prohib-

itively costly to sample enough individuals to characterize a population.

Moving forward, successful strategies for assessing exposures to mixtures of

environmental chemicals will likely incorporate both stationary/population-based

and individual sampling techniques. When choosing a sampling technique for a

study assessing chemical exposures, it is important to consider which of these

techniques best addresses the question being asked. In some cases, the best option

may be to use a combination of sampling tools.

Fig. 3.2 People are exposed to chemical mixtures, for example PAHs, through a variety of

scenarios every day. Here, snapshots of a typical day depict four different exposure scenarios.

This progression illustrates the spatial and temporal components of exposure and provides

examples of common exposures occurring through the three main exposure routes. On the left,

an ingestion exposure is shown in the woman’s kitchen. This could include ingesting chemicals

like PAHs in cereals. Next, as the woman commutes to work in heavy traffic, an inhalation

exposure is shown. She may be exposed to elevated levels of PAHs and other chemicals emitted

from car exhaust while driving to work. Next, additional examples of inhalation and ingestion

exposure are shown as she walks in the city. She may be exposed to PAHs and chemical mixtures

by inhaling chemicals emitted from the myriad anthropogenic pollution sources present in a

congested city. On the right, examples of inhalation, ingestion, and dermal exposure are shown

in this recreational scene. While enjoying a campfire, there is the potential to inhale PAHs and

other chemical mixtures from smoke, to ingest chemicals present in food that has been roasted over

fire, and to experience dermal exposure. Taken together, these vignettes represent a realistic suite

of PAH and chemical mixture exposures that could occur in the daily lives of many people. All of

the exposure scenarios described, as well as others that are not pictured in these four snapshots,

would combine to yield this person’s cumulative daily PAH and chemical mixture exposures
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3.3.1.2 Temporal Considerations: Temporality of Sampling Should

Match Temporality of Exposure

Understanding how temporality of sampling compares to temporality of exposure is

another challenging aspect of assessing exposure to chemical mixtures. These two

should be as well matched as possible, and temporality should be considered both

within the day and within or among the year(s). For instance, if the goal is to study

an exposure to emissions from a factory, and those emissions vary throughout the

day, it would be important to sample for at least one full day to account for that

variability. At the same time, if exposures are most likely to occur at one time of the

day, then it may be appropriate to emphasize this time in sampling. Examples of

exposures occurring sequentially throughout a day are visualized in Fig. 3.2. There

is also seasonal variation in levels of some chemicals in the environment (Sower

and Anderson 2008; Brun et al. 2004). This seasonal variation can come from

emissions varying with changing practices in different seasons or from climactic

conditions changing available concentrations. If the goal is to assess an exposure

that would occur over many years, best practice would be to sample at multiple

points throughout the year to gain as much information as possible about the

potential exposures. If an exposure would only occur at one time of year, over a

lifetime, best practice may be to sample at the same time in multiple years.

Additionally, exposures at different stages of life may lead to different toxic

responses. An exposure to a developing fetus may have a much more substantial

impact on health risk than an exposure to a healthy adult (Wild et al. 2013; Wild

2012). It is therefore important to capture the effects of exposures at various stages

of life, especially during life stages where people may be more susceptible (e.g.,

during development, or during old age). The importance of assessing exposures at

susceptible life stages, to more accurately assess exposure to chemical mixtures

over the entire life span, was identified by the NIEHS in their most recent strategic

plan (Birnbaum 2012).

3.3.1.2.1 Time-Integrated Concentration vs. Grab Sample

As mentioned above, traditional “grab samples,” only allow assessment of contam-

inant levels in the environment at one moment in time. In contrast, passive samplers

sequester chemicals over time, yielding time-integrated concentrations. This is

useful because passive samplers can capture less frequent, acute episodes of

exposure. It is also useful because passive samplers absorb contaminants over

time, making them good surrogates for the fraction of contaminants sequestered

by an organism over time in the same environment. However this makes it impor-

tant to consider the length of deployment, especially if the goal is to sample a brief

pulse of contamination, as in episodic or catastrophic events (e.g., after spills or

hurricanes). It may be most appropriate in these cases to use short deployment

times.

3 Considerations for Measuring Exposure to Chemical Mixtures 49



3.3.1.3 Bioavailability: Fraction of Chemicals Sampled Should Match

the Fraction to Which the Individual Is Exposed

It is generally accepted that measuring the total amount of an individual chemical

concentration in the environment is not enough to predict biological effects.

Conventional methods for human exposure assessment involve measuring total

contaminant concentrations in the ambient environment (e.g., water, sediment)

and extrapolating to toxicological endpoints; however this approach has proven

ineffective (Alexander 2000; Petty et al. 2004; Mayer et al. 2014). Measuring total

ambient contaminant concentrations yields at best rough estimates of exposure

(Schwartz et al. 2005) and in many cases does not reflect the fraction of contam-

inants to which people or organisms are actually exposed (Allan et al. 2006; Spacie

et al. 1995). Instead, measuring the bioavailable fraction is thought to be most

relevant to human and ecological health. This is the contaminant portion to which

an organism is directly exposed or that a person is exposed to when eating a

contaminated organism. Scientists call this the “freely dissolved fraction,” or

“Cfree,” in water or sediment porewater. Measuring the freely dissolved fraction

of a contaminant is imperative when assessing chemical bioavailability, toxicity,

mobility, and degradation (Alexander 2000; Escher and Hermens 2004;

Mayer et al. 2014). For most routes of exposure and health endpoints, it is the

freely dissolved, or unassociated, form of hydrophobic contaminants that is

transported across biological membranes of organisms and may exert toxic effects

(Suffet et al. 1994; Escher and Hermens 2004). A decrease in freely dissolved

contaminants directly reduces bioavailability and vice versa. It is therefore this

bioavailable fraction that is thought to be the most relevant fraction to measure to

understand exposures.

The bioavailable fraction of contaminants can be quantified using various

analytical approaches. Passive sampling is well-suited to measure the bioavailable

fraction of chemicals in water and sediment/soil, as passive samplers mimic the

uptake of a cell or organism via both chemical and physical processes. Passive

samplers may be used to assess contaminant levels, and subsequently exposure, in

water (Ke et al. 2007; Utvik et al. 1999), air (Bartkow et al. 2004), and sediment/

soils (Tao et al. 2008; Huckins et al. 1990, 2004; Gimpel et al. 2003; Wennrich et al.

2002; Anderson and Johnson 2001; Lohmann et al. 2001; Harner et al. 2003; Wania

et al. 2003; Martin et al. 2003; Kingston et al. 2000; Wells and Lanno 2000; Burgess

et al. 2017). A major advantage of passive samplers is the ability to distinguish

between dissolved and bound molecules, rather than assessing the mere presence or

absence of chemicals (Mayer et al. 2003). One important consideration, however, is

that when passive samplers are used to measure contaminants in air, they only

absorb the fraction of contaminants in the vapor phase. Given that both the vapor

phase and particulate-bound phase of contaminants may be inhaled, this means that

passive sampler-generated assessments of air contamination may be

underrepresentative of total contaminants available for inhalation exposure. One

definition of the bioavailable fraction (when measuring mixtures of chemicals in
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water) is the portion of contaminants that can be taken up by an organism. It has

been observed that this fraction can be accurately measured using passive samplers

(Booij et al. 2006; Huckins et al. 2006; Forsberg et al. 2014; Paulik et al. 2016a).

3.3.1.4 Measuring the External Aspect of Chemical Exposure

Timely, high-quality data are needed to bridge the gap between environmental

monitoring data and quantitative data about individual chemical exposures and to

identify which of these exposures are most relevant to human health. In recent years

there has been a movement toward measuring complete, lifelong exposures (Wild

2005, 2012; Wild et al. 2013). The goal of this work is to learn as much as possible

about the relationship between environmental exposures and disease risks and to

use these findings to improve public health decision-making (Wild 2012). Simi-

larly, one of the goals of the U.S. NIEHS’ recent Strategic Plan is to “transform

exposure science by enabling consideration of the totality of human exposures,”

(Birnbaum 2012). There is evidence that environmental factors contribute heavily

to disease risk and that environmental chemical exposures are an important piece of

the environment that may affect that risk (Wild 2012; Wild et al. 2013). It has been

suggested that interdisciplinary teams of scientists should work together to tackle

this challenge with innovative technologies (Wild et al. 2013). Effectively assessing

cumulative chemical exposure will likely require collaboration among chemists,

toxicologists, immunologists, public health specialists, epidemiologists, and others.

From the perspective of measuring external chemical exposures, it will be impor-

tant to choose environmental sampling techniques that measure as much of a

person’s chemical exposures as possible, as accurately as possible. Personal sam-

pling devices, such as the passive wristband sampler, may be some of the best

existing tools to address this piece of the exposure assessment puzzle.

3.3.2 Lab Methods

3.3.2.1 Which Chemicals Should Be Measured?

The chemicals that are most heavily studied are not necessarily those that people are

most commonly exposed to, or that are most toxic, but rather that existing methods

can detect. While the goal is to measure chemicals that are the most relevant to

environmental and human health, there is also preference toward measuring

chemicals for which regulatory guidelines exist (Rappaport 2011; Baird 2015). In

many cases this is appropriate (i.e., a potentially hazardous chemical has been

previously identified and regulated, and so it receives attention). The challenge is

that this can make it difficult to study certain chemicals (e.g., a new chemical that

does not fall into an existing regulatory category). Developing methods to detect

chemicals requires analytical standards, and each analytical standard must be
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created in response to demand for that specific standard. So, there are many

chemicals for which no standards exist and thus for which there is little to no data

about their environmental occurrence or toxicity.

Most analytical methods are only used to quantify a few dozen chemicals.

However, in most cases, there is additional information that could be harnessed

from existing chromatographic analyses. Hundreds of additional chemicals could

be quantified from many existing chromatographic methods, if the methods were

further developed. By the time the sample is ready for analysis, much of the expense

of the sample collection and processing has already been incurred. Often, precious

research funds could produce more results if methods were further optimized.

Generally only a few chemicals are quantified, when the same sample could be

used to quantify hundreds or thousands of additional chemicals in the mixture.

Chemicals that share certain properties are often lumped into a group, or “class,”

as if all chemicals in a class have the same mode of action and toxicity. In reality,

not all chemicals in a class behave the same. Chemicals within a given class can

follow wildly different environmental pathways after emission and also can have

different toxic modes of action and potencies.

3.3.2.1.1 Example Chemical Class: Polycyclic Aromatic Hydrocarbons

(PAHs)

One class of environmental pollutants that has diverse physicochemical properties

and modes of toxic action is polycyclic aromatic hydrocarbons, or PAHs. PAHs are

pervasive environmental pollutants of concern, associated with hydrocarbon extrac-

tion and adverse health impacts (U.S. EPA 2010; Ravindra et al. 2008). The main

categories of health concerns associated with exposure to PAH mixtures are cancer

risk and respiratory distress. Some PAHs are pro-carcinogens, meaning they can be

metabolically activated to create biologically active intermediates which can form

DNA adducts (Baird et al. 2005). Thus, research has focused primarily on PAHs’
carcinogenic risk (IARC and Monographs 2005; IARC and Monographs 2009).

PAH-related cancer risk has been studied in relation to oil spills, traffic exhaust,

wood smoke, and cooking. However, exposure to PAHs also increases the risk of

cardiovascular disease (Lee et al. 2011) and the risk of mortality from heart attack

(Burstyn et al. 2005; Lee et al. 2011). Animal studies indicate that PAHs can

increase blood pressure and heart rate and accelerate the progression of atheroscle-

rosis (Gentner and Weber 2011; Knaapen et al. 2007; Penn and Snyder 1988, Wang

et al. 2009). Mechanistic evidence and epidemiological evidence associate PAHs

with airway inflammation and asthma (Al-Daghri et al. 2013; Lee et al. 2005), and

exposures are associated with developmental and behavioral deficits (Dejmek et al.

1999; Perera et al. 1999, 2009; Dejmek et al. 2000; Wu et al. 2010; Perera et al.

2006). There are also multiple biological effects and targets for PAHs that remain

unknown or understudied. Additional toxic endpoints that have been studied in

relation to PAHs include adverse developmental, reproductive, respiratory, and

neurological effects (Herbstman et al. 2012; Perera et al. 2006; Miller et al. 2010;
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Miller et al. 2004; Rosa et al. 2011). All of this evidence suggests that assuming the

potencies and modes of action of all PAHs are the same is an oversimplification.

Benzo[a]pyrene, or BaP, has been extensively studied in relation to its carcino-

genicity. It is used as a model carcinogenic PAH in many studies and in regulatory

guidance (U.S. EPA 2010). While there is substantial evidence that BaP is indeed a

carcinogenic PAH, it is often incorrectly assumed that it is so widely studied

because it is the most carcinogenic PAH. However, research suggests that other

PAHs are as or more carcinogenic than BaP. Analytical methods are lacking for

some PAHs. For others, measurement methods are available, but they are rarely if

ever encountered in the environment, and so they are not practical to study with

regard to human exposures. However, there are some highly carcinogenic PAHs

that are both measurable and found in the environment and that receive much less

research attention than BaP. One such PAH is dibenzo[a,l]pyrene (also known as

dibenzo[def,p]chrysene, or DBC) (Baird 2015). DBC was included in the U.S.

EPA’s 2010 list of carcinogenic PAHs (U.S. EPA 2010). In this document, relative

potency factors (RPFs) were assigned to 26 unsubstituted PAHs, to scale their

carcinogenic potencies relative to that of BaP. BaP was assigned an RPF of 1, and

the rest of the compounds’ RPFs were scaled relative to BaP. DBC was given an

RPF of 30, suggesting that it is 30 times as carcinogenic as BaP at the same

concentration. While there are uncertainties inherent in this assessment, it is

worth noting that DBC is still not included in regular environmental monitoring

regimes. This may simply be the natural progression of the identification of

hazardous chemicals. Momentum must gain behind a chemical before it can truly

be well-characterized. For comparison, the study of the carcinogenicity of BaP

began in the late eighteenth century, when English surgeon Percivall Pott observed

that chimney sweeps in London had higher rates of scrotal cancer. In the 1930s,

what is now known as BaP was directly isolated from 2 tons of coal tar, and it was

identified as a cancer-causing agent (Baird 2015). Since that time, the carcinoge-

nicity of BaP has been demonstrated in numerous studies (U.S. EPA 2010). Given

the advances that science has made since the initial identification of BaP as a

carcinogen, identifying and prioritizing toxic chemicals should be much more

efficient now.

It is similarly incorrect to assume that all PAHs behave the same in the

environment. For instance, four examples of PAHs commonly measured in the

environment are naphthalene, phenanthrene, pyrene, and benzo[e]pyrene. These

four PAHs have pure water solubility values of 32, 1.0, 0.1, and 0.004 mg/L,

respectively, ranging about five orders of magnitude. This means that the fate of

each of these PAHs is very different once it is released into the environment.

Additionally, while water solubility values are reported for pure water above, few

environmental waters are even close to pure. As the amount of dissolved organic

carbon (DOC) in water increases, the solubility of organic contaminants increases

as well. For instance, Johnson-Logan et al. demonstrated the solubility of the

pesticide chlordane in groundwater with a mere 34 mg/L DOC increased 500%

(Johnson-Logan et al. 1992). The enhanced solubility is due to partitioning of

hydrophobic organic contaminants onto the dissolved organic carbon within the

water column. An increase in DOC can increase solubility, but it may or may not
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increase bioavailability. However, it most certainly affects fate and transport of the

chemical.

PAH exposures occur to complex mixtures of PAHs, and the composition of

these mixtures can differ dramatically depending on the source(s) (Tidwell et al

2016; Allan et al. 2011; Tidwell et al. 2016). For instance, the vapor-phase PAH

profile from woodburning is different from diesel exhaust, which is different from

petroleum. Stout et al. recently observed that relying only on the U.S. EPA’s
16 priority pollutant PAHs can inhibit the researchers’ ability to determine the

source of the PAHs (Stout et al. 2015). Diagnostic isomer ratios and alkylation

patterns of PAHs are therefore commonly used to identify sources of PAHs (Yunker

et al. 2002; Tobiszewski and Namieśnik 2012; Stout et al. 2015). Different sources

emit PAH mixtures with differing magnitudes of individual PAHs and with differ-

ent ratios of PAH isomers. Including more alkylated PAHs and more isomers in

analysis allows for more robust source identification. It is also important to under-

stand exposure to individual PAHs, because they have different modes of action.

For instance, Jung et al. found that childhood asthma was associated with pyrene

but not as strongly associated with five other measured PAHs (Jung et al. 2012).

Another interesting facet of PAHs is that exposures occur through all three of the

main exposure routes (inhalation, ingestion, and dermal contact, with inhalation

and ingestion typically being the primary routes). Respiratory PAH burden includes

exposure to both PAHs in the vapor-phase and the particulate-bound fraction. Air

sampling is often focused on determining the concentration of particulate-bound

chemicals, but exposure to PAHs in the vapor phase has also been shown to

contribute to the cancer risk from inhalation exposure (Ramı́rez et al. 2011; Tsai

et al. 2002; Liu et al. 2007). Hassan et al. demonstrated that 67% of inhalable PAHs

were in the vapor phase at a study site in Giza, Egypt (Hassan and Khoder 2012).

Significant effort has been put toward clarifying the association between PAH

inhalation and increased incidence of respiratory syndromes, especially asthma

and lung cancer (Karimi et al. 2015, Kuo et al. 1998), so accurately understanding

PAH levels in air is important.

3.3.2.2 Accounting for Transformations of Chemicals

in the Environment, Between the Source and the Exposure

The importance of chemical transformations in the environment is often underrep-

resented in study designs to measure chemicals in the environment and interpreta-

tion of environmental chemical occurrence data. Chemical exposure estimates are

often calculated based on emission reports from point sources, from large-volume

chemical use reports, or from environmental monitoring programs. However, many

of these reporting techniques only focus on short lists of chemicals and do not

account for chemical transformations that occur in the environment. Degradation,

adsorption, transport, and other chemical fate processes can transform the chemical

composition of a point source emission.
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Chemical transformations may lead to less or more toxic chemical mixtures than

what is measured at an emission source. In some cases, transformations that alter

the parent compound after emission may make a product that is less toxic than the

parent (Baird 2015). In other cases, transformative processes can create chemicals

that are more toxic than what was in the original mixture. These transformation

products are often not included in analytical methods, and so they often cannot be

detected, and thus are entirely missed from the exposure discussion. For many

degradation products, toxicity information is sparse. In some cases, specific trans-

formation products that lead to increased toxicity after transformation may not have

been identified. Interestingly, EDA has been identified as a useful tool for identi-

fying specific transformation products that are causing toxicity in transformed

mixtures (Brack 2003).

Regardless, transformations often make the exposure experienced by an indi-

vidual different from the original source of emissions. The magnitude of this

difference depends on the chemicals in the original mixture (and their potential

for transformations) and on the time and distance from the emission source to the

exposure. Exposure to sunlight, microbial activity, changing temperature, and

precipitation are all factors that could transform chemicals in the environment,

after they leave their sources and before exposure occurs.

Additionally, it is important to consider that PAH mixtures redistribute in the

environment. For instance, if a certain mixture of PAHs is emitted from a source

into the air, that mixture will be different at a sampling device 10 miles away, even

without chemical transformations. This is partly due to differences in physical and

chemical parameters of chemicals, which dictate the environmental fate of each

individual chemical. For instance, if a mixture of PAHs is emitted into the air, more

of the higher molecular weight PAHs may partition preferentially into the soil,

while more of the lower molecular weight PAHs may remain in the air. Thus, the

mixture measured in those two matrices would not look the same as the mixture at

the source.

One example of compounds that are commonly formed through environmental

transformations, may have greater toxicity than their parent compounds, and are

relatively understudied are oxygenated PAHs or OPAHs (Lundstedt et al. 2007;

O’Connell et al. 2014). OPAHs can be formed from parent PAHs in the environ-

ment, through chemical oxidation, photo-oxidation, or biological transformation

(Lundstedt et al. 2007). There is evidence that some OPAH compounds are more

toxic than the unsubstituted parent PAHs (Lampi et al. 2006; Lundstedt et al. 2007;

Yu 2002, Bamforth and Singleton 2005; Knecht et al. 2013). However, they are

rarely included in environmental monitoring. When designing a study, it is impor-

tant to consider how much transformation may have occurred in the environment

for the chemicals of interest. If there is the potential for transformations, then both

the degree of transformation of the parent compounds and the creation of new

transformation products should be considered. It is worth considering how these

transformations might alter the toxicity of the mixture a receptor is exposed to

compared with the toxicity of the mixture at the original source. An exposure

experienced by an individual near an emission source might be quite different
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from an exposure experienced by an individual that is distant from the source. This

example illustrates that personal monitoring can provide more accurate estimates of

exposure than stationary monitoring.

Transformation products that are formed through environmental degradation

processes are sometimes the same products that are created during in vivo metab-

olism. This can mean that the same chemical could enter a person’s body both

exogenously (as from a source where it was used in the environment) and endog-

enously (through metabolism of a different chemical). This can lead to errors in

assessment of chemical exposure. One example of this is that mammalian metab-

olism of organophosphate pesticides (OPs) results in formation of a series of dialkyl

phosphates (DAPs) that are excreted in the urine. It has often been assumed that the

concentration of DAPs in the urine is directly related to dietary exposure to parent

OPs. Improved analytical ability to measure DAPs in urine has resulted in an

increase in studies using this biomarker of OP exposure. However, the same

enzyme-mediated oxidation and hydrolysis reactions that produce DAPs in humans

are also responsible for the transformation of OPs in the environment. Thus, DAPs

are formed in the environment and are present on many foods before they are

ingested. When DAPs are consumed, they do not change in vivo and are excreted

(Forsberg et al. 2011). Traditionally, studies of the environmental fate of OPs have

not analyzed for DAPs. This means that if all urinary DAPs are assumed to be from

OP exposures, then this is likely a significant overestimate of exposure. Given that

OPs have known health effects, and DAPs are generally considered nontoxic, it is

important to distinguish between exposure to OPs and exposure to DAPs. However,

this has not traditionally always been done. This is an example of the importance of

considering whether transformations in the environment are possible with the

contaminants of interest and how those transformations may impact the data.

3.3.2.3 Considerations for Assessing Exposures to Mixtures

of Environmental Chemicals

3.3.2.3.1 Limited Data on Mixture Interactions

The health community has traditionally evaluated the toxicity of one compound at a

time, identified its health effects, and determined an acceptable exposure level for

regulatory use (e.g., a permissible exposure limit in the case of occupational

exposures regulated by OSHA in the United States). However, we are constantly

exposed to mixtures of chemicals in our daily lives. Limited data exists concerning

how exposure to these mixtures may differ from exposure to the individual com-

ponents of the mixture. In mixtures such as car exhaust fumes, the toxicity of PAHs

may be additive, greater than additive, or less than additive (Siddens et al. 2012).

Siddens et al. demonstrated that PAH mixtures are more potent skin carcinogens

compared to benzo[a]pyrene than the EPA’s Relative Potency Factor approach

would suggest (Siddens et al. 2012). Novel approaches to assess the health impacts

of mixtures are needed.

56 L. B. Paulik and K. A. Anderson



3.3.2.3.2 Risk Assessment of Mixtures: Appropriateness of Assuming

Additivity?

Current methods of estimating risk from exposure to chemical mixtures often

assume that the toxicities of individual chemicals from the same class (e.g.,

PAHs) are dose-additive. This assumption requires presuming that the mode of

action of each PAH is the same. However, it has been observed that interactions

between individual compounds in a mixture can lead to a greater or less than

additive toxic responses (Chap. 13, Cedergreen et al. 2008). One way to improve

risk estimates would be to directly test the mixtures of chemicals measured in the

environment in toxicity assays. While testing the endless list of potential mixtures

would be prohibitively challenging, a starting place may be to assess the combined

toxicities of mixtures that commonly occur in the environment. One example of this

could be the mixture of PAHs measured in water or an organism at a site contam-

inated by a common profile of pollution sources (Paulik et al. 2016a). This would

require close communication between exposure scientists and mixture toxicolo-

gists. For instance, a recent study measured an almost identical mixture of 10 car-

cinogenic PAHs in crayfish tissues, in a Superfund site 10 years apart (Paulik et al.

2016a). Given that the same mixture was measured in the crayfish collected

10 years apart in this study, it may be a useful mixture to test in bioassays to

learn more about mixture effects.

EDA is a promising framework that can be used to assess the toxicity of

chemical mixtures measured in the environment. It is especially attractive because

it allows the researcher to break down the chemical mixture piece by piece and

explore the toxicity of each of these fractions (Fig. 3.1) (Brack 2003; Burgess et al.

2013). This technique has potential to help researchers characterize which compo-

nents of a chemical mixture are contributing which aspects to the observed toxicity.

Importantly, EDA may also eliminate broad groups or classes of chemicals that are

not contributing to toxicity. It can also help elucidate how various chemicals behave

in the presence of the whole mixture, relative to just in the presence of a chemically

similar fraction of that mixture, relative to individually. With new low-volume

bioassays, the fractionation process can be scaled accordingly, and this allows for

rapid turnaround of fractionations and bioassay assessments on the order of days.

Historically EDA would employ strong extraction techniques, such as Soxhlet

extraction, of samples before fractionation. However these extracts yielded frac-

tions that bore little connection to the chemical exposures. Soxhlet extraction

involves using a strong solvent, high heat, and/or elevated pressure to extract as

much contaminant as possible from an environmental sample (e.g., sediment).

Thus, the concentration of contaminants measured using Soxhlet extraction may

be much higher than what would truly be bioavailable in the environment. Often

chemicals may be toxic at high levels, but are not bioavailable in situ at concen-

trations sufficient to cause toxicity. EDA aims to characterize the toxicity of

mixtures. So, if it is performed using chemical mixtures that are not representative

of true environmental concentrations, this defeats the purpose. One way to avoid

this problem is to use passive sampling to collect mixtures for use in EDA. Passive
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samplers absorb bioavailable fraction of contaminants when deployed in the envi-

ronment. Passive samplers are extracted using simple solvent extractions, without

elevating temperature or pressure. This yields more realistic estimates of the

bioavailable fraction of contaminants in the environment. These estimates are

more relevant for use in EDA than artificially heightened concentrations that may

be obtained using other techniques. After extraction, EDA employs multiple rounds

of fractionation using various techniques (e.g., normal-phase chromatography, size

exclusion chromatography, etc.) to separate the various chemicals within the

mixture. These fractions can then be individually used in toxicity bioassays,

allowing the researcher to further elucidate which parts of the chemical mixture

may cause toxicity and which parts are not causing toxicity.

All of these tools and more need to be employed for exposure science to begin to

address the substantial data gaps surrounding exposures to mixtures of chemicals in

the environment.

3.3.2.3.3 Importance of Looking for Risk-Driving Chemicals

In the absence of comprehensive data describing exposures to all chemical mix-

tures, the majority of chemical risk assessments assume that the toxicities of

chemicals in a mixture are additive (i.e., conform to an assumption of either dose

addition or independent action). This approach requires assuming that there are no

pharmacokinetic or pharmacodynamic interactions among chemicals. As long as

this is the paradigm, it will be especially important to measure the chemicals that

are most impactful to health risks. The importance of measuring the more toxic

PAHs in the mixture (or, at least, the PAHs with the highest known toxicities) for

use in risk assessment was illustrated in a recent study measuring PAH mixtures in

crayfish tissue (Paulik et al. 2016a). In this work, it was observed that risk estimates

were slightly higher than estimates presented in a previous public health assessment

for the study area. One factor likely increasing the estimates in the study was that

the study’s analysis used the EPA’s 2010 RPF approach to scale the carcinogenic

potency of the PAH mixture relative to that of benzo[a]pyrene (U.S. EPA 2010).

When this was combined with an analytical method that quantifies 23 of the

26 PAHs that were given RPFs by the EPA 2010 (U.S. EPA 2010) document,

risk estimates increased relative to previous methods. This increase is due both to

quantifying more PAHs (e.g., relative to looking for the EPA’s 16 priority pollutant
PAHs) and to using the extended list of potency values presented by the EPA in

2010 (compared to a shorter list, such as the EPA’s 1993 list of 7 RPFs (U.S. EPA

1993)). Additionally, the crayfish tissue contained a few of the PAHs from the EPA

2010 document that have RPFs higher than benzo[a]pyrene. Even a small quantity

of a highly potent chemical can change the risk assessment picture. For instance,

benzo[c]fluorene was measured in some of the crayfish tissues presented in this

study (Paulik et al. 2016a). This compound has an RPF of 20, suggesting that if a

sample had the same concentration of benzo[a]pyrene and of benzo[c]fluorene,

benzo[c]fluorene would contribute 20 times more carcinogenic risk. However, this
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compound is not included in traditional monitoring programs and is not in the

EPA’s previous priority pollutant list (Keith 2014). As the EPA’s 16 priority

pollutant list is still often used as the standard PAHs to measure, benzo[c]fluorene

or other carcinogenic PAHs such as DBC (discussed above) could often be present

in the environment without being detected. Assuming that these newer estimates are

accurate would suggest that previous risk assessments, which only included the

EPA’s shorter list of priority pollutants, may have been inadvertently

underrepresenting the potential for risk.

3.3.3 Summary of Considerations for Interpreting Data from
Exposure Assessment Studies

It is important to consider the factors mentioned in this section when interpreting

data from studies assessing environmental exposures. Below is a list summarizing
the main considerations outlined above:

• Spatial orientation and choice of sampling technique: Does the chosen sampling

technique fit the research question? For instance, does the choice between a

personal or stationary sampler make sense? If one was used and not the other,

consider how the choice of sampling technique may affect the results. It is also

important to consider sources of uncertainty related to each sampling technique.

• Temporality of sampling technique: Was the sampling method timed appropri-

ately to capture the exposure scenario of interest? How does temporality of the

sampling event compare to expected temporality of exposure? If they are

different, what impact might that have on the results?

• Is the appropriate fraction of contaminants measured? Did the sampling strat-

egy measure the fraction of contaminants that a person or other biological

receptor would be exposed to, via the exposure route of interest? Did the

sampling design measure the bioavailable fraction of contaminants? If not,

what impact could that have on results?

• What chemicals are measured? Are they the appropriate ones to answer the

question or enough of the appropriate ones to answer the question? Can the

toxicity of the entire mixture be explored (e.g., through EDA)? Could more

chemical data be gleaned from the analytical techniques that were used?

• Transformations of contaminants in the environment: Is there potential for

transformations to have occurred between the chemicals’ source and the sam-

pling site or the exposure site? If so, was this addressed? If not, what impact

might that have on the results?

• Mixture effects: Was the challenge of assessing exposure to mixtures addressed?

Was a form of dose-additivity assumed? If so, is that consistent with EPA

guidance for mixtures risk assessment (e.g., (U.S. EPA 2000))? How might

any assumptions, or data gaps, about exposures to the mixtures being studied

affect results?
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3.4 Case Study: Ingestion and Inhalation/Personal

Here a two-part case study is presented, illustrating many of the concepts discussed

in the preceding sections. This case study focuses on measuring PAHs associated

with unconventional natural gas extraction (NGE) and addressing potential expo-

sures associated with these emissions. In this exposure scenario, there is potential

for people living or working nearby to be exposed to PAHs through two of the

dominant exposure routes (ingestion and inhalation). There may also be potential

for dermal PAH exposure, predominantly for individuals working near NGE well

pads, but this will not be a focus of this case study. The case study is broken into two

pieces, with one outlining a potential pathway for ingestion exposure (Sect. 4.2) and

another describing an application of personal passive samplers to assess individual

PAH exposures, predominantly through inhalation (Sect. 4.3). The sidebars in this

section draw attention to how the considerations described in Sect. 3.2.2 of this

chapter are relevant to the case study presented here.

3.4.1 Introduction: PAHs and NGE

Natural gas extraction (NGE) has expanded rapidly in the USA in the last 15 years.

This has been largely due to improvements to the technologies of hydraulic

fracturing and horizontal drilling, which liberate previously inaccessible gas

reserves from shale (EIA 2011). Due to the influence of these techniques, this

activity has broadly been referred to as “fracking” and has begun to receive more

attention from both the public and regulators. Despite this increase in NGE in the

U.S. interior, there has been relatively little investigation of the impacts NGE

activity may have on health. A few studies have measured impacts to air quality,

predominantly concluding that NGE contributes contaminants to the environment

(Colborn et al. 2014; McKenzie et al. 2012, McKenzie et al. 2014; Paulik et al.

2016b).

Air emissions have been identified as one of the main potential exposures

pathways through which NGE may impact the health of nearby communities or

workers. There is evidence that NGE emits volatile organic compounds (VOCs)

and semi-volatile organic compounds (SVOCs) at levels that may impact human

health. However, there is still limited information about levels of these contami-

nants in the environment. One class of SVOCs that has recently been measured in

the air associated with NGE emissions is polycyclic aromatic hydrocarbons (PAHs)

(Paulik et al. 2016b; Colborn et al. 2014).
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3.4.2 Ingestion Case Study: Potential for Natural Gas
Extraction to Affect Nearby Wheat Crops and Local
Wheat Consumers

The potential for crop plants to sequester PAHs has not been considered in relation

to NGE. It is established that PAHs enter plants through dry deposition from air

(Simonich and Hites 1994a, b). This phenomenon has been specifically shown in

agricultural crops such as wheat (Jones et al. 1989; Tuominen et al. 1988;

Kobayashi et al. 2008). Wheat is a major U.S. crop (behind only corn and soybeans)

and a substantial component of diets worldwide (USDA 2014). Thus, there is

significant potential for changes in contaminant levels in wheat to cause changes

in PAH-related health risk for wheat consumers. Here we consider the potential for

PAHs emitted from NGE to be sequestered by wheat plants and to impact the PAH

exposures of wheat consumers.

Ingestion is a major route of human exposure to PAHs (Phillips 1999). Addi-

tionally, cereals are one of the main constituents of ingestion-related PAH exposure

for the average person in the USA (Menzie et al. 1992; Phillips 1999). This is due

both to the ability of cereals such as wheat to sequester SVOCs including PAHs and

to the large amount of cereals that are consumed as part of the Western diet. In

contrast, smoked salmon can contain higher PAH levels per unit mass than cereal,

yet eating smoked salmon presents relatively little risk for most people, due to

low-average ingestion rates (Forsberg et al. 2012).

It is worth considering how PAH exposure from eating wheat may compare to an

individual’s overall PAH exposure. This has been given some thought previously

by Kobayashi et al., comparing risk associated with consumption of PAHs in wheat

to that of inhalation from living in the region where the wheat was collected

(Kobayashi et al. 2008). The authors conclude that risk associated with eating

wheat sampled in the study ranged from 0.05% to 76% of the inhalation risk for

someone living in the study area (Kobayashi et al. 2008). While seasonal variation

and differences in risk assessment parameters add considerable variability to this

estimate, it is striking that PAHs from one food source could potentially contribute

as much as 76% of a person’s risk due to inhalation.

Considerations from Section 3, Applied to Case Study 4.2

• Spatial orientation and choice of sampling technique: Because relatively

little is known about emissions from NGE, this is an instance where it

would be important to carefully choose the appropriate sampling tech-

nique. For instance, it may be most relevant to sample wheat, but it may

also be relevant to sample the air near the NGE wells. It would also be

useful to consider the spatial component of sampling in this project and

ideally to sample at various locations a range of distances from NGE. If,

(continued)
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Considerations from Section 3, Applied to Case Study 4.2 (continued)

for instance, PAH levels in wheat are only affected when wheat plants are

within a short distance from NGE wells, then this could potentially be

mitigated by planting wheat a certain distance away from NGE activity.

Both the sampling matrix and the spatial considerations would help the

researcher assess whether PAHs were in fact moving from the NGE wells

through the air and into wheat plants. If the concentration data suggested

such movement (e.g., PAH levels elevated in air, soil, and wheat plants

near NGE relative to levels measured farther from NGE), this would make

a stronger case for NGE activity elevating PAH levels in wheat than if only

wheat plants were sampled or if wheat were only sampled at one distance

from NGE.

Another consideration with regard to spatial sampling is dilution of

wheat grown near NGE, between the point when wheat leaves the farm

and when it reaches the consumer’s plate. This would have a big impact on

the actual PAH levels to which wheat consumers were exposed. While the

Western diet includes a large amount of wheat, determining definitively

what fraction of the wheat consumed by an individual was grown near

NGE would be difficult. Very few, if any, wheat consumers likely eat

products containing wheat exclusively grown near NGE. Many processed

foods likely contain wheat from a variety of locations. While there are

many locations within the USA where wheat growing and NGE co-occur

(NAWG 2015; EIA 2011), there would still likely be more locations where

wheat was not grown near NGE. This could be addressed partially with

careful spatial sampling. In addition to sampling at a range of distances

close to NGE, researchers should also measure PAH concentrations in

wheat grown far from NGE. Even if PAH levels in wheat grain were

substantially elevated in wheat grown near NGE, this would have no

impact on health risk to a consumer who only ate wheat grown far from

NGE. On the contrary, if 100% of a consumer’s wheat were grown near

NGE, that consumer would experience an increase in health risk due to the

increased PAH levels in wheat grain grown near NGE. This disparity in

risk estimates could be mitigated by performing risk assessment using both

the “best-case scenario” and “worst-case scenario”—assuming that 0% or

100% of a consumer’s wheat was grown near NGE. This would bracket the
range of potential effects dilution of wheat may have on health risk to

wheat consumers. It may also be worth considering estimates assuming

that 50% of a consumer’s wheat was grown near NGE, or other ratios.

None of that risk assessment flexibility would be possible if wheat were

only sampled near NGE. The importance of this dilution potential would

depend on the goals of study. If the study simply aimed to determine

(continued)
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Considerations from Section 3, Applied to Case Study 4.2 (continued)

whether PAHs could feasibly travel from an NGE well pad into a wheat

grain, then it would be appropriate only to sample wheat from fields at

various distances from NGE well pads, including some with no NGE well

pads nearby. However, if the goal was to directly assess potential human

exposures to elevated PAH levels related to NGE emissions, then a much

more sophisticated spatial sampling campaign would be needed, to

account for transport of wheat around the country and the world, and the

associated dilution of wheat grown close to NGE wells.

Additionally, if the goal of the study is to assess impacts of NGE on

PAH exposure to wheat consumers, it should also be considered whether

PAHs should be directly measured in consumables made from the wheat

that came from the various sampling locations. This may be the most

relevant sample to collect, depending on the specific goals of the study.

Processed foods, for instance, may contain very little wheat grown near

NGE and would likely have very diluted PAH levels. On the other

extreme, if a consumer made bread with locally sourced wheat that was

grown near NGE, this would represent minimal dilution of PAH levels in

wheat. Thus, directly measuring PAHs in those consumer products would

give researchers more information about what actual risks wheat con-

sumers may face.

• Temporality of sampling technique: It would be important to consider

temporality of sampling in this project. Specifically, it would be preferable

to sample wheat in different years. PAH movement throughout the envi-

ronment can change with environmental conditions (e.g., temperature,

humidity, and precipitation), as well as with changing activity levels at

the emission source. The concentration, as well as profile, of PAHs

reaching the target site (in this case the wheat plant) can therefore vary

year to year. Best practice would be to collect samples in various years, to

most accurately estimate the range of potential exposure concentrations.

For wheat samples, the grain would need to be thoroughly sampled at the

time of harvest. This would ideally include sampling in multiple years. It

would be especially important to consider temporal aspects of sampling

design if the study aimed to approximate lifetime ingestion risk associated

with exposure to measured concentrations. It could be misleading, for

instance, if a concentration were only measured during 1 year, and then

that concentration was extrapolated to represent the concentration of

PAHs in wheat over a lifetime when assessing ingestion risks. The

resulting estimate could inadvertently over- or underestimate risk.

However, it would also be important to keep in mind that there is much

uncertainty inherent in risk assessment. So, another approach could be to

(continued)
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Considerations from Section 3, Applied to Case Study 4.2 (continued)

use a few samples to characterize the temporal variation expected in the

samples and assess how this uncertainty compared to the overall uncer-

tainty is inherent in the process. If it were estimated to only increase

uncertainty slightly above existing levels of uncertainty, then an argument

could be made for a simpler sampling design.

• Is the appropriate fraction of contaminants measured?When assessing the

human health risk of ingesting PAHs in wheat, it would be important to

consider the bioavailability of PAHs in wheat. This would require know-

ing whether the PAHs measured in wheat are capable of crossing the GI

tract, thus reaching target sites where they may be metabolized and may

potentially lead to DNA adducts. There is limited information in the

scientific literature about the bioavailability of PAHs in wheat for uptake

in humans. If PAHs are somehow inextricably bound to the wheat particles

and not able to cross the GI tract, then no level of PAHs found in wheat

would contribute additional human health risk. Fully answering this ques-

tion would require further research. It would be an important consideration

for the researcher to keep in mind and to communicate when communi-

cating results of the project.

• What chemicals are measured? Because only a few studies have measured

SVOCs emitted from NGE, and even less have measured PAHs in this

context, the researcher should take care to measure PAHs that are most

likely to both be emitted by NGE and be sequestered by wheat. Addition-

ally, many studies traditionally only measure a small subset of PAHs (e.g.,

the EPA’s 16 priority pollutants). Given that these are not necessarily the

most toxic PAHs, it is important to measure as many as possible of the

more toxic PAHs as well.

• Transformations of contaminants in the environment: This scenario has the
potential for PAHs to be transformed between being emitted from the

NGE well and deposited in the wheat plant. Given that the proposed

mechanism of NGE altering PAH levels in wheat is via transport through

the air, it would be important to consider transformations that might occur

to parent PAHs emitted from NGE and how these may affect resulting

contaminants measured in wheat. For instance, the presence of UV light

may transform some parent PAHs to OPAHs. So, it may also be useful to

analyze the air, soil, or wheat for OPAHs as well as PAHs. It would also be

useful to consider how the composition of PAH mixtures might change

between the emission source and being sampled in wheat, air, or soil. All

of this would help the researcher learn more about how PAHs are moving

through the system and about what is measured in wheat compares to what

is emitted from NGE. Additionally, given that some OPAHs may be more

(continued)
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Considerations from Section 3, Applied to Case Study 4.2 (continued)

toxic than the parent PAHs, sampling transformation products in all

samples would inform the researcher more about toxicity of chemical

mixtures in the system.

There could also be transformations that occur to PAHs after they are

deposited on the plants’ surface, after they have been absorbed into the

plant, or during processing of wheat to make consumables. All of these

would warrant consideration during study design and data interpretation.

• Mixture effects: If the PAH data measured in this study were used in risk

assessment, it would be important to consider that mixtures of PAHs may

or may not have toxicity equal to the toxicity expected under an assump-

tion of dose addition. Given that present regulatory guidance (e.g., from

the U.S. EPA (U.S. EPA 2010)) assumes that the carcinogenic risk of a

PAH mixture is dose-additive, this is a challenge facing all PAH risk

assessors and is not unique to this project. However, it would merit

consideration.

3.4.3 Personal/Inhalation Exposure Case Study: Using
a Personal Passive Sampler to Assess Individual
Exposure to Natural Gas Extraction

The second part of this case study illustrates a real-world example of using an

innovative personal passive sampling technology to assess individual exposure to

air emissions from an understudied potential source of pollution. Instances where

steps were taken to address sampling considerations raised in this chapter are

highlighted in the sidebar.

3.4.3.1 Introduction to Individual Inhalation Exposure to NGE

While there is only a small amount of recent data regarding contaminant levels in

the environment related to NGE, there is even less data about personal exposure to

contaminants emitted from NGE. Some studies have used data from stationary

monitors to estimate community-level health impacts (Paulik et al. 2016b;

McKenzie et al. 2012; Bunch et al. 2014), while others have used results from

questionnaires to approximate individual health impacts of NGE (Brasier et al.

2011; Bamberger and Oswald 2014; Rabinowitz et al. 2015). The majority of these

studies have concluded that NGE has the potential to impact human health. Still

other studies have concluded that much research is still needed to assess the public

health impact of NGE. Several recent studies have addressed the need to directly

measure the impact of NGE on environmental and human health (Goldstein et al.

2014; Penning et al. 2014; Adgate et al. 2014).
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Some studies have used stationary monitors to measure VOCs or SVOCs in the

air near NGE (Paulik et al. 2016b; Colborn et al. 2014; McKenzie et al. 2012).

However, no study has directly measured the individual exposures of people living

or working near NGE. This information would reduce the uncertainty in assessing

environmental impacts of NGE. Knowing what contaminants an individual was

exposed to would greatly improve the ability to assess risk(s) associated with living

or working near NGE. Individualized exposure data yields much more accurate risk

estimates, compared to approximating exposure from questionnaires or extrapolat-

ing exposure from stationary monitoring data. Estimates from questionnaire data

are fraught with potential for miscommunication between the researcher and the

respondent, while estimates from stationary monitors necessitate numerous

assumptions about timing, frequency, and duration of exposure. Personal monitor-

ing bypasses all of these uncertainties, by directly measuring the chemicals to

which an individual is exposed.

A pilot study was conducted in a rural Ohio community that has been heavily

affected by the U.S. natural gas boom. At the time of the study, this area was one of

the most densely affected counties in Ohio, with more than one natural gas well pad

per square mile. Because this area was historically rural (and thus had limited

pre-existing anthropogenic sources of pollution, compared to an industrial area or a

city), this community presented researchers with a good opportunity to measure any

potential pollutant increases related to NGE. Volunteers were identified through

collaboration with a concerned citizens group in the area.

3.4.3.2 Methods for Assessing Individual Inhalation/Personal Exposure

to NGE

This study employed the use of a novel personal passive sampler, the passive

wristband sampler (O’Connell et al. 2014). While the participant is wearing the

wristband, it absorbs contaminants from the vapor phase in the surrounding air. The

fraction of contaminants sequestered by the wristband is similar to the fraction that

is inhaled by the participant, making the wristband a good surrogate for individual

inhalation exposure. Compared to other personal sampling technologies, such as

wearing a heavy backpack with a noisy active sampler or giving blood or urine

samples for biomonitoring, the wristband is noninvasive and easy to use. This

makes it easier for researchers to achieve high rates of compliance with the

wristband, than with some more cumbersome or invasive traditional techniques.

Thus, the wristband was selected as an ideal tool to estimate personal exposure

to NGE.

To ensure that the wristband only sampled the contaminants each participant was

exposed to, wristbands were transported between the lab and the study area and

back in airtight Teflon bags. This study also engaged the participants as citizen

scientists. At the time when the research team gave the participant the wristband,
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each participant was trained in how to properly wear the wristband and in how to

mail it back to the lab for chemical analysis. Importantly, this included education

about how the technology worked, so that participants could be mindful not to

accidentally bias their wristbands. Overall, this pilot study had over 91% compli-

ance with the wristband, which is very promising.

Considerations from Section 3, Applied to Case Study 4.3

• Spatial orientation and choice of sampling technique: While the wristband

has limitations, it is important to put it in the context of existing technol-

ogies for assessing personal exposure to chemicals. As described above,

other techniques that have been used to address personal exposure to PAH

emissions are questionnaires and stationary monitors, which both include

substantial uncertainty about accurately assessing personal exposures to

pollutants. Thus, as long as the wristband’s limitations are considered in

study design and data interpretation, the wristband is a good tool to address

this research question. It is easy to use, and thus participants are more

likely to use it and to use it correctly. Combined with the increased

accuracy compared to questionnaires, tools like the wristband will be a

useful addition to the science of measuring environmental exposures.

From a spatial perspective, the wristband is a far more appropriate tool

for assessing personal exposures than other existing tools. Simply, the

wristband goes everywhere the participant goes and thus directly repre-

sents the person’s exposure. Eliminating the spatial extrapolation that has

historically been required to estimate exposure is a major strength of this

technology.

• Temporality of sampling technique: Temporality of sampling would be

important to consider in this project. Specifically, it would be preferable to

sample the personal environment at different times of the year. As

described above, PAH movement throughout a system can change with

environmental conditions, as well as with changing activity levels at the

emission source, and thus can vary with time of day and time of year.

Thus, best practice would be to collect samples at various times through-

out the year, to more accurately estimate the totality of potential exposure

concentrations. Personal samples, collected using the wristband, have the

advantage of sampling continuously over the course of multiple days. So,

variation in PAH concentration throughout the day would automatically be

taken into account by the sampling technology. It is especially important

to consider temporal aspects of sampling design when the study aims to

approximate lifetime risk (likely predominantly due to inhalation in this

case) associated with exposure to measured concentrations. It could be

misleading, for instance, if a concentration were only measured during one

(continued)
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Considerations from Section 3, Applied to Case Study 4.3 (continued)

time of year, and then that concentration was extrapolated to represent the

concentration of PAHs over a lifetime when calculating risk.

• Is the appropriate fraction of contaminants measured? The passive wrist-

band sampler would measure the majority of what the individual is

exposed to via inhalation. However, the wristband only samples vapor-

phase contaminants in air and does not capture PAHs that are particulate-

bound. Many of the more carcinogenic PAHs are higher molecular weight.

Given that the particulate-bound phase typically contains a greater fraction

of higher-molecular-weight PAHs, while the vapor phase typically con-

tains a higher fraction of lower-molecular-weight PAHs, excluding the

particulate phase means missing a fraction of the carcinogenic PAHs that

are available for inhalation (Kameda et al. 2005, Hassan and Khoder

2012). Thus, the wristband would yield a concentration of PAHs in the

air that is lower than the total. This would need to be acknowledged in any

risk assessment using concentrations measured by the wristband.

• What chemicals are measured? As described in the first piece of this case

study, it would be best to measure PAHs that are most likely to be emitted

from NGE. However, as data are currently limited, this could be challeng-

ing to determine. If an aim was to perform human health risk assessment, it

would be useful to measure as many of the risk-driving PAHs as possible.

Additionally, after a sample has been collected and analyzed for PAHs in

the lab, many more chemicals can often still be measured in that sample.

This could be achieved by combining compatible analytical methods and

by exploiting data that is already collected in analyses. This would allow

researchers to further characterize chemical mixtures and learn more about

chemical exposures.

• Transformations of contaminants in the environment: The considerations

here would not differ markedly from the considerations described for

transformations for the previous case study. In short, there would be

potential for the PAHs emitted from NGE to transform before being

absorbed by the wristband. Also, the profile of PAHs would likely change

between the emission source and the wristband. This should be taken into

account during data collection and analysis. Additionally, including

OPAHs, or other chemicals that can be formed through transformations

of parent PAHs in the environment, could help inform researchers about

any potential transformation that occurred between PAH emissions and

compounds sequestering into the wristband.

• Mixture effects: As in Case Study 4.2, if the PAH data measured in this

study are to be used in risk assessment, it would be important to consider

that mixtures of PAHs may or may not have toxicity expected under an

(continued)
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Considerations from Section 3, Applied to Case Study 4.3 (continued)

assumption of dose-additivity of the individual PAHs in the mixture.

Given that present regulatory guidance (e.g., from the U.S. EPA

(U.S. EPA 2010)) assumes that risk associated with exposure to PAH

mixtures is dose-additive, this is a challenge facing all PAH risk assessors

and is not unique to this project. However, it would merit consideration.

The wristband generates chemical mixtures that represent personal

exposures in the real world. This type of study could therefore be a useful

piece of a larger project, by investigating the toxicity of those mixtures to

learn more about potential nonadditive toxicity in mixtures.

3.5 Priority Research Needs for Assessing Exposure

to Chemical Mixtures

3.5.1 Field

3.5.1.1 Develop Sampling Techniques that Accurately Assess

Exposures, While Minimizing Cost and Maximizing

Compliance

Optimal sampling techniques for any study ideally consider spatial and temporal

factors of exposure, and whether personal or stationary/population-based sampling

is most appropriate. As identified by the NIEHS’s strategic plan, this must include

considering how exposures may differ at more susceptible life stages (Birnbaum

2012). In many cases, a personal sampler may be the best tool for assessing

exposures. To make this feasible, there is a need to develop more sampling tools

that are cost-effective and have the ability to measure a wide range of chemicals. By

continually measuring chemicals on an individual, these tools allow researchers to

more accurately estimate what chemicals an individual is exposed to, over a longer

period of time. These samplers can also be paired with toxicity bioassays and

incorporated into pre-existing or new public health studies. The passive wristband

sampler is an example of such a tool.

3.5.1.2 Move Toward Personal, in situ Sampling—More

Representative of True Exposure

To best assess total chemical exposures, we must develop interdisciplinary teams of

scientists measuring many aspects of exposures (Wild et al. 2013). From the

environmental chemistry perspective, it seems appropriate to focus efforts on

measuring personal chemical exposures, in situ.
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3.5.1.3 Integrate Personal Sampling with Other Technologies to Learn

Even More

For example, a recent study demonstrated the utility of combining a personal

sampling device with a GPS-tracking device, questionnaires, and a spirometer to

track lung function (Rohlman et al. 2015). This is an excellent example of an

interdisciplinary project, where multiple forms of data are used to assess the

relationship between exposures and adverse health outcomes.

3.5.1.4 Sampling Technologies That More Accurately Reflect Temporal

Changes

Technology that continually samples chemical concentrations, as opposed to only

measuring concentrations at distinct time points, enables estimations of chemical

exposures to be normalized over time. This is more representative of the entirety of

a person’s exposure over a given unit of time. These technologies are therefore

promising for use in epidemiological studies or for use in human health risk

assessment.

3.5.2 Lab

3.5.2.1 Which Chemicals to Measure? How to Prioritize Them?

The EPA’s ToxCast work is one example of how chemicals are being prioritized for

further study (U.S. EPA 2015). ToxCast rapidly screens and predicts the toxicity of

thousands of chemicals, in order to prioritize which to study. Another useful tool is

the EPA’s ExpoCast (U.S. EPA 2016). ExpoCast uses high-throughput approaches

to rapidly estimate exposure for thousands of chemicals. Taken together, ToxCast

and ExpoCast should help exposure scientists prioritize which chemicals are most

relevant for study, based both on toxicity and exposure. Additionally, EDA is

another tool that can help identify nontarget chemicals that are eliciting adverse

effects. One way to identify currently unmonitored chemicals is to look more

closely at and reexamine existing analytical data. There is often additional infor-

mation in analytical results that just needs to be identified. This is an argument for

collecting and sharing all analytical data possible. Even if some of the data are

outside the main goals of a study, sharing all of it allows other researchers to use it

to make new discoveries and to make observations and connections the primary

researchers may not have had resources to exploit.
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3.5.2.2 Assess Risk of Exposure to Chemical Mixtures Using Various

Approaches (And Importance of Using the Right Metric

to Estimate Risk)

3.5.2.2.1 Screen Commonly Found Mixtures

The exposure science community needs more studies directly measuring the bio-

available fraction of chemicals in the environment. This will add to our knowledge

of the chemicals where human exposure is common or frequent, and therefore

which to prioritize for study. This will also improve our ability to make public

health decisions that have the greatest possible reduction in public health risks

associated with environmental exposures. Additionally, mixtures that people are

commonly exposed to should be prioritized. A recent study used ecological niche

theory to identify that certain pesticides co-occur much more often than others in

U.S. childcare centers (Chap. 6, Tornero-Velez et al. 2012). Characterizing mixture

effects in these commonly occurring pesticide mixtures would be much more useful

than in mixtures that rarely occur in the environment. Continuing to identify

commonly occurring chemical mixtures would allow toxicologists and risk asses-

sors to better prioritize which mixtures to study and to more accurately assess risk

associated with exposure to chemical mixtures.

3.5.2.2.2 Interface with Bioassays

Rarely can currently used technologies for measuring mixtures of chemicals in the

environment integrate directly with in vitro or in vivo toxicity assays. The envi-

ronmental health science community needs more comprehensive measures of

exposure and how they vary as a function of space and time. An example of this

is testing a chemical extract from an environmentally deployed passive sampler,

representing a mixture of chemicals from the environment, in a bioassay such as the

embryonic zebra fish model. The utility of this technique has been demonstrated

previously (Hillwalker et al. 2010; Allan et al. 2012). Combining techniques like

these allows the researcher to directly observe health effects of real-world mixtures.

3.5.2.2.3 Holism vs. Reductionism

Holism and reductionism represent two different approaches to revealing the links

between chemicals and our health. Holism attempts to understand the properties of

a whole system by studying all of its parts together. The basis of the approach is that

some system properties cannot be found by studying the individual components

separately due to the complexity and integration of the system. Reductionism

attempts to reveal the properties of the system by separating the components

(e.g., measuring the toxicity of chemicals individually). While this approach is

3 Considerations for Measuring Exposure to Chemical Mixtures 71

https://doi.org/10.1007/978-3-319-56234-6_6


the foundation of centuries of successful scientific exploration, the method has

shortcomings when it comes to assessing the effects of chemical exposures on

human health. In the same way that an organism would not be well represented by

its isolated cells, a chemical mixture should not be described exclusively by the

properties (environmental occurrence, toxicity, etc.) of its components. One could

argue we need both holistic and reductionist approaches. Because it is much easier

to apply the reductionist method to analytical methods, this has been the predom-

inant approach for decades. However, the exposure science community should be

striving to include more holistic approaches, both for analytical methods and

exposure estimation.

3.5.2.2.4 Effect-Directed Analysis (EDA)

The goal of EDA is to determine which chemical (or chemicals) in a complex

sample may be causing toxicity, by manipulating the sample to simplify the

analysis. Equally importantly, it may be possible to use EDA to eliminate large

numbers of chemicals that do not elicit toxicity. However, to conduct an accurate

effect-directed analysis, it is necessary to consider bioavailability. An additional

area of useful research would be developing other methods of extracting the

bioavailable fraction of contaminants from the environment, for exploration

through EDA.
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Chapter 4
Modeling Complex Exposures

Dimosthenis A. Sarigiannis and Spyros P. Karakitsios

Abstract This chapter deals with the aspects of modeling complex exposures,
highlighting the integration of various external and internal exposure models, fol-
lowing the exposome paradigm. Several approaches are investigated, relating either
to the assessment of the overall chemical mixture as a single compound, or applying
the compound-by-compound approach. Identifying the contribution of the various
pathways leading to complex exposure requires the precise estimation of the various
exposure mechanisms that integrate through the three main exposure routes (inha-
lation, oral and skin); hence, modeling environmental fate at different scales (such as
regional, local or micro-environmental scale) for capturing both far field and near
field exposure is essential. Integration of exposure through various pathways and
routes occurs at the level of internal dosimetry. This is also reflected in the observed
biomonitoring data, highlighting the need for integrated modeling tools that allow
the functional link among exposure, internal dose and biomonitoring data. Extrap-
olation of exposure estimates from individual data to population exposure through
advanced probabilistic techniques and agent-based models, as well as the latest
advances in personal sensors for tracking activity and location are also presented.
The importance of these aspects is highlighted in characteristic case studies regard-
ing indoor air mixtures and multiple pesticide exposure.
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4.1 Exposome and the Need for Modeling Complex
Exposures

One of the most recent developments in the field of exposure science is the
introduction of the exposome concept (Wild 2005). The exposome represents the
totality of exposures from conception onwards, simultaneously identifying, charac-
terizing and quantifying the exogenous and endogenous exposures and modifiable
risk factors that predispose to and predict diseases throughout a person’s life span.
The exposome came as a complement to the human genome; although decoding of
the human genome (Schmutz et al. 2004) increased our understanding of the
underlying causes of disease, the genome explains only a percentage of the popula-
tion burden of disease. Indeed, according to Rappaport et al. (2014), two thirds of all
people worldwide die of chronic disease (mostly heart disease and cancer) which are
caused by combinations of the genome and exposome (representing all exposures –
internal and external). However, disease risks attributed to the genome alone are
modest, representing less than 15%, suggesting that more than 85% of risks results
from exposome and interaction of the genome and the exposome. Thus, it is evident
that environmental factors are equally or potentially more important than genetic
traits for characterizing health risk. What is truly critical is the interaction between
environmental determinants of disease with biological systems. Characterizing the
exposome will carry us along towards a better understanding of the causal links
between the genome, environment, and disease. To do this, both environmental
exposures and genetic variation should be assessed simultaneously; properly deter-
mining and quantifying complex exposures is one of the main pillars of the current
efforts towards unraveling the exposome. It is very important to keep in mind that the
several responses observed at the molecular level, are the result of the combined
exposures to several compounds in a dynamic, time-dependent manner. Thus, to
properly identify the differences in the responses at different levels of biological
organization it is critical:

– To properly account for different sources of exposure at different time resolutions
and scales

– To translate these exposures into internal and biologically effective doses.

Exposome studies require novel tools to address the complexity of emerging
environmental health issues. Critical for success will be the ability to bring together
existing geospatial, environmental, health and socioeconomic data, and to collect
new high resolution data. Innovative environmental micro-sensors, remote sensing
or other community- and -omics/systems biology-based approaches can be used to
describe the exposome and how it relates to the advent of multiparametric and multi-
causal human disease, such as endocrine disruption-related syndromes and
sex-related changes (menopause), neurodegenerative or respiratory diseases. It is
important to focus on: susceptibility windows during growth (including pregnancy)
and development; the unequal distribution of the burden of food and environment-
related disease to vulnerable populations (e.g., the young, the elderly, socio-
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economic disadvantaged, and gender and ethnic minorities); and epigenetic
influences.

The individual exposome is dynamic and continually changing. Indeed, all
exposures and their determinants and modifiers can vary over the course of a day,
not to mention over the weeks, months, and years that make up a lifetime, as our
bodies, diets, risk factors and lifestyles change. Sources and levels of exposure
change over time and capturing all these changes verges on the impossible in the
impracticality of “high-resolution real-time” monitoring of all the exposures for the
entire lifetime. Thus, the exposome has to be constructed by assessing the exposures
at critical life periods through representative snapshots that act as demonstrative
measures of these critical periods. Indeed, mapping the entire lifecycle of an
individual may not be necessary if critical lifetime events where an individual’s
geospatial lifeline crosses a noteworthy environmental event (Sabel et al. 2009) are
recognized and understood. Thus, one major challenge consists of identifying
critical life stages that are most informative, as well as forming a picture of a person’s
overall exposure using sets of short-term measurements during these critical life
stages, and relating these to downstream consequences. The latter may include both
observable health outcomes and subtler changes in biomarkers. The most relevant
exposure episodes in an individual’s life could be reconstructed and linked to socio-
economic conditions at critical life stages such as prenatal exposure, puberty, or the
reproductively active period. Whereas exposure during all life stages may entail
adverse effects, fetuses, children, pregnant women and the elderly are particularly
susceptible. Modeling the mobility patterns of the population at risk at the individual
level is challenging. There are considerable conceptual and computational difficul-
ties involved in intersecting data on the distributions of pollutants, and/or the
patterns of movements of recipient individuals or groups, reflecting the limitations
of available data on environmental conditions and human distributions. Complex
exposure patterns can be disentangled by fusing mobility and behavior data with the
corresponding environmental data. The most appropriate such data are themselves
the result of fusion of environmental monitoring data derived from the use of
personal and remote sensors, including air- and satellite-borne ones; conventional
monitoring systems used for regulatory compliance across several jurisdictions; and
environmental modeling used to fill the observed data gaps. With the advent of
geographic information systems (GIS), global positioning systems (GPS) to track
individuals, and personal environmental monitoring, undertaking such analyses
throughout an individual’s lifetime is now possible.

Complex exposures are rarely measurable at sufficient levels of resolution and
precision to allow proper exposure assessment for risk assessment purposes. For this
reason, exposure modeling is necessary to support accurate exposure assessment and
thus provide the currently missing link in complex mixtures risk assessment. In this
context external exposure modeling needs to be coupled with internal exposure
modeling to properly account for potential interactions influencing both:

– Uptake and intake rate of mixture components (dealt with individually or in
chemical groups) and

– Exposure route and the relative importance of multiple routes.
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The latter, in turn, influences the bioavailability of the mixture components and
may determine the dominant phase of metabolism and consequently the internal and
biologically effective dose of mixture components (assessed individually or in
chemical classes on the basis of clustering criteria coupling physical/chemical
properties, biokinetic features and toxicity profiles).

Internal and external exposure modeling brings out the hidden added value of
human biomonitoring data. Human biomonitoring alone has a limited ability to
identify specific exposure sources, and may not be applicable to all relevant envi-
ronmental stressors (e.g., particulate matter (PMx) or noise). Coupling it with
internal exposure modeling may help to reconstruct external exposure profiles
even in cases with high complexity either due to the nature of co-exposure patterns
to multiple stressors or due to the complexity of the exposure patterns in time or
space. Integrating human biomonitoring data, exposure models and environmental
monitoring and modeling data will lead to a more comprehensive view of the
exposome and of related health outcomes and will be of use in future large-scale
population studies.

Information on lifestyle/behavior patterns (such as time-activity-location infor-
mation, food consumption, use of consumer products, etc.) is needed to understand
individual and population-based geospatial lifelines and the corresponding exposure
profiles.

– Spatial information and initiatives to harmonize their collection (e.g., Infrastruc-
ture for Spatial Information in Europe (INSPIRE), Copernicus) have the ability to
transform the way scientists and policy makers think about exposure to environ-
mental stressors.

– At the same time, behavioral information functions as the most accessible and
direct way for policy makers and risk assessors to understand and manage an
individual’s exposure patterns.

4.2 Complex Exposure Modeling

Complex exposures include exposures to complex mixtures of chemical stressors
(e.g., mixtures of more than fifty chemicals) as well as to combinations of stressors
(chemical, physical, biological) on the basis of complex exposure patterns in space
and time. Modeling complex exposures requires describing and mathematically
capturing both the fate and exposure characteristics of key individual mixture
components and taking into account potential interactions of the latter. Thus the
related models need to pertain to the combination of aggregate (all pathways and
routes) and cumulative (all stressors) exposure. In practice, people live in a contin-
uously dynamic environment, encountering different locations and performing dif-
ferent activities within the day, ingesting several food items and using several
consumer products. Thus, individual exposure dynamics are greatly affected by
personal behavior and practices such as transportation mode and nutritional habits.
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Although exposure assessment historically used to pay special attention to specific
exposure scenarios (e.g., a particular occupational exposure) and well defined
mixtures (e.g., circumscribed chemical classes such as polycyclic aromatic hydro-
carbons (PAHs) or polychlorinated biphenyls (PCBs)), now attention has been paid
to the cumulative exposure to compounds or groups of compounds that pose additive
or greater than additive effects. That means that when exploring the causality of an
adverse outcome, e.g., endocrine disruption related outcomes, a long list of com-
pounds needs to be addressed such as plasticizers (bisphenol-A, phthalates), pesti-
cides, dioxins and PCBs. This implies that an exposure-driven approach should be
established, seeking identification of the complex and cumulative exposures of
stressors that result in combined toxicity. Thus, it is imperative to properly account
for exposure of each individual compound (or sub-groups of compounds) before
estimating risk based on established methods (e.g., concentration/dose addition,
independent action, effect summation) or seeking for associations between exposure
and disease.

One of the main dimensions of complex exposure modeling is accounting for the
fate of and exposure to complex chemical mixtures (Kinerson 1987). Kinerson
(1987) has identified the following possibilities to model complex chemical
mixtures:

(a) Based on bulk properties of the overall mixture
(b) Based on chemical classes that are representative of the mixture
(c) Based on chemical fractions clustered by physical/chemical and biokinetic

properties (the latter is of particular importance when considering the link
between external exposure levels into internal and, eventually, biologically
effective dose.

(d) As individual components (one compound at a time).
(a) Model bulk properties of the mixture: In this approach, the overall mixture of

components is treated as a single component. This approach has to be carefully
applied and it is appropriate only for mixtures where the properties governing
environmental and biokinetic fate are very similar for the individual components
of the mixture. The advantage of the method is that model estimates are obtained
through a single run.

(b) Model by (representative) chemical classes: This approach represents an inter-
mediate solution between the one compound and the bulk properties approach.
In practice, the overall mixture is broken down into representative chemical
classes, and each class is represented by one characteristic compound. Although
ideally the representative compounds should be selected as being of biological
significance, frequently, they are selected because their properties have been
determined.

A good example of such an approach is given by the work of Pistocchi and
Bidoglio (2009) who attempted to model the spatial extent of exposure to pesticides
in Europe on the basis of a compound that has been considered as representative of
each chemical class of pesticides based on the toxic potency of the class. Similarly,
Sarigiannis et al. (2013) have derived a highly granular inventory of pesticide
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emissions into the air and the corresponding bystander and farmer/applicator expo-
sure maps across Europe. An example of this application is given later in this chapter
to exemplify the advantages and disadvantages of the approach as well as possibil-
ities to optimize the outcome by integrating models of different complexity over
space and time.

(c) Model by chemical fractions: a similar approach to the above is to chemically
fractionate the mixture, by dividing it physically into several fractions, each
containing chemicals of greater similarity, based on determinants of environ-
mental fate (water solubility, volatility, degradability, etc.). The advantage of
this approach compared to modeling by chemical class is that chemicals are
clustered based on their properties rather than the designated class; thus they
provide more realistic estimates about the compounds included within the same
fraction. Highly toxic fractions could be further fractionated and tested to
determine their chemical properties in an iterative process to optimize the
modeling outcome without excessive demand in computational resources. The
chemical fractionation approach is discussed further in Chap. 3.

(d) Model one compound at a time: The most common approach for addressing
complex exposure modeling is to model the fate and exposure of one single
compound at a time. This includes execution of the model for each compound
identified in the mixture and collation of the results for assessing the overall
mixture fate. Although this approach seems ideal, sufficient data on the proper-
ties (volatilization, hydrolysis, photolysis, and biodegradation) governing envi-
ronmental behavior and exposure are lacking, and there are very high
requirements of modeling and computational resources for such an endeavor
to succeed.

The choice of complex exposure modeling tier could be based on the availability
of data to characterize the chemicals constituting the complex mixture of interest or
the intended use of the modeling outcome. This follows the two-tiered approach to
cumulative risk assessment of chemicals proposed by Sarigiannis and Hansen
(2012). The authors suggest using a dose addition assumption to calculate a hazard
index taking into account interactions as a default option for hazard quantification
and risk assessment. The hazard index formulation takes into account potential
non-linear effects from the interaction of mixture components if the necessary
information is available, while simplifying down to dose addition if interaction
data do not exist. Overall, it would give a reasonable approximation of the toxic
potency of a mixture if the necessary data were available; and it would allow
conservative assumptions about effects of combined exposure to multiple chemicals
if no such data exist. For further detail, please read the chapter on dose addition
(Chap. 9) or the chapter on component-based risk assessment (Chap. 14) in this
volume. As a second tier assessment (i.e., when dealing with data-rich situations)
more sophisticated tools can be used, including mechanistic, biology-based model-
ing that accounts for the biologically effective dose of mixture components at the
target tissue and incorporates system-wide data coming from –omics technologies.
The authors call this the connectivity approach. By the same token, exposure
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modeling of complex mixtures and scenarios could be designed to follow these tiers
by moving gradually from whole mixture, to chemical class, fraction and finally
individual compounds considering the potential interactions amongst them.

4.2.1 Modeling Exposure Using the Intake Fraction

Intake fraction (iF) is a metric of the emission-to-intake relationship, facilitating
comparisons among sources in terms of their exposure potential (Bennett et al.
2002b). For a given emission source and pollutant, iF is the cumulative mass
taken in by the exposed population divided by the cumulative emissions. Consider-
ing that iF depends on several parameters affecting the emission-to-intake process,
(e.g. prevalent wind, emissions strength, population density), it is expected that it
would vary with location and time.

For a primary pollutant, iF can be expressed as (Marshall et al. 2003):

iF ¼ Population Intake
Total Emissions

¼
R1
T1

PP
i¼1 Ci tð ÞQi tð Þ

� �
dtR T2

T1
E tð Þ dt

ð4:1Þ

Where, T1 and T2 are the starting and ending times of the emission; P is the number
of people in the exposed population; Qi(t) is the intake rate for individual i at time t;
Ci(t) is the incremental concentration, attributable to a specific source at time t and E
(t) is that source’s emissions at time t.

The mathematical expression for exposure to a release through all exposure
pathways is given by the following equation (Bennett et al. 2002a):

iF totalð Þ ¼ iF inhalationð Þ þ iF ingestionð Þ þ iF dermalð Þ ð4:2Þ
where the term “total” indicates that intake is summed across all exposure routes.

In a multimedia, multipathway model, a source to-intake relationship is typically
expressed as an intake rate (mg/kg-BW/d) per unit emission rate (mg/d). To convert
from a source-to-intake relationship to an iF, the following conversion must be made
(Bennett et al. 2002a):

iF ¼ Source to Dose
mg=kg=day
mg=day

� �
� BW kgð Þ � Population ð4:3Þ

Where BW is the population average body weight (kg) and Population is the size of
the exposed population.

Typical values for the iF vary greatly based upon the environmental fate of the
mixture of interest and the population density of the area of release; this is the reason
why iFs of mixtures released into the indoor environment are usually two to three
orders of magnitude higher than the respective values of iF for mixtures emitted into
the external environment in urban areas. iF is especially useful in obtaining a quick
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overview of the emission-to-intake pathway without returning to detailed environ-
mental fate and exposure modeling. This is of particular interest when exposure
modeling aims at identifying the extremes of the exposure probability distribution
especially when the latter affects the most socioeconomically disadvantaged popu-
lation (Marshall and Nazaroff 2007).

Parameters affecting iF include (a) the location where the release occurs (i.e.,
indoor or outdoor) and the area of interest, (b) the population density and size of the
exposed population close to the area associated with the quantity released,
(c) dispersion parameters related to the natural or the built environment, (d) the
compound-specific environmental fate parameters and (e) based on the different
environmental media distribution, the exposure pathway(s) of relevance.

The iF may be an important tool for complex exposure modeling, since it can be
applied to groups of pollutants. This pertains to compounds emitted from the same
source characterized by similar properties with regard to environmental fate and
transport. Thus, by breaking the mixture into several fractions, each of which
comprises chemicals with similar environmental fate features, one can be certain
that the compounds within the same group will have similar iFs, irrespective of the
overall mixture chemical composition and mass emission rates.

4.2.2 Environmental Fate Modeling of Real Life Chemical
Mixtures

To properly address complex chemical exposures, it is essential to develop modeling
tools that cover a wide chemical space including a large number of industrial
chemicals and metals characterized by significantly diverse physicochemical prop-
erties. These affect the distribution of mixture components in different environmen-
tal media (air, soil, water, sediment), their persistence (regulating processes such as
biodegradation and photo degradation) and the respective bioaccumulation and
biomagnification potentials.

4.2.2.1 Environmental Fate and Exposure Models for Complex
Mixtures

Environmental fate models describe the interactions between different environmen-
tal scales and media (air, soil, water, sediment) using physicochemical properties,
such as the octanol water partition coefficient (Kow) and octanol-air partition coef-
ficient (Koa), to describe transfer, partitioning, and degradation (Mackay et al. 1992,
2001). The main inputs of multimedia models relate to environmental releases and
mode of entry in the environment, properties of the environment or landscape
receiving the contaminants (e.g., organic content of soil, distribution of land
cover) and compound specific physicochemical properties.
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The European Union System for the Evaluation of Substances (EUSES) (Lijzen
and Rikken 2004) provides a comprehensive framework for evaluating human and
ecosystem exposures and health risks from new and existing chemicals in the
European Union. EUSES directly links the overall uptake to probable health end-
points through exposure/response relations without taking into account the
toxicokinetics/toxicodynamics and the related internal dose (Fryer et al. 2004).
The Calendex™ model system is currently used by the U.S. EPA to evaluate
aggregate and cumulative human exposures to pesticides. Calendex™ is similar in
both scope and approach to the LifeLine™ (Hampshire 2002) and CARES: Cumu-
lative and Aggregate Risk Evaluation System (CropLife 2002) models. Out of these
three models, Calendex™ is generally the least complex in terms of the methodology
and techniques it adopts to conduct exposure assessments. However, the proprietary
nature of the model and its dependence on expert judgement would appear to limit its
potential for widespread adoption (Fryer et al. 2004). The CARES model is funda-
mentally similar in scope and approach to both the LifeLine™ and Calendex™
models. All three models focus on predicting risks to the U.S. population from
dietary, drinking water and residential pesticide exposures. However, the exact
methodology adopted in CARES is different from that used by the other models,
particularly with regard to the use by CARES of a reference population. The source
code of the model has been published and is freely available (Farrier and Pandian
2002). This means that although the model has been developed for use in the USA, it
could be updated and adapted to be representative of situations in the EU and other
world regions. The LifeLine™ model provides a comprehensive, in-depth tool for
assessing human exposures to pesticides and subsequent health risks. LifeLine™
focuses on intra-individual variability in exposure levels in more detail than both
Calendex and CARES. The ConsExpo model (Vermeire et al. 1993) provides a
framework for evaluating exposures to chemicals in consumer products. The inclu-
sion of models of varying degrees of complexity means that ConsExpo provides a
useful tool for assessing consumer product exposures at all tiers of the risk assess-
ment framework, from screening level to specific exposure situations. Validation
studies have assessed the performance of some of the individual ConsExpo models
against measured datasets (Van Veen et al. 1999; Wilschut et al. 1995) and calcu-
lated exposure estimates were generally found to be within an order of magnitude of
the measured values. A multimedia modeling approach focusing on spatially explicit
modeling of chemical fate and transport processes has been proposed by Pistocchi
et al. (2010). The basic idea of this approach is to replace the numerical solution to
the advection–dispersion equation with a series of local analytical solutions. Such
simplified models comprise the box model, or “continuous stirred tank reactor”
(CSTR), the plug flow (PF) and Gaussian plume (GP) models. This set of models
judiciously combined may represent most of the typical environmental distributions.
E-FAST (Exposure and Fate Assessment Screening Tool) is a model developed by
U.S. EPA aimed at providing screening-level estimates of the concentrations of
chemicals released to air, surface water, landfills, and from consumer products
(Egeghy et al. 2011). E-FAST intentionally provides reasonable overestimations
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(90% confidence limit of the upper bound of the estimate) of exposures (ERG 2001),
for use in screening level assessment.

For more elaborate calculations, the Stochastic Human Exposure Dose Simula-
tion for multimedia, multipathway chemicals (SHEDS-Multimedia) system is avail-
able for download from the U.S. EPA website (https://www.epa.gov/chemical-
research/stochastic-human-exposure-and-dose-simulation-sheds-estimate-human-
exposure). The residential scenarios included in the SHEDS-Pesticides model focus
on organophosphate pesticides (Hore et al. 2006). The SHEDS models do however
allow detailed assessments of specific exposure scenarios to be made and are
non-proprietary in nature, also providing some links to biomonitoring data (Zartarian
et al. 2002). To further improve the exposure assessment approach, the methodology
first developed for the SHEDS model was enhanced and incorporated through new,
generalized code into the Modeling ENvironment for TOtal Risk studies (MEN-
TOR) (Georgopoulos et al. 2005; Georgopoulos and Lioy 2006; Georgopoulos et al.
2006; Lioy et al. 2007; Georgopoulos et al. 2008c), which was designed to analyze
not only exposures to individual contaminants but to assess physiologically based
target tissue doses of Multiple co-occurring contaminants via Multimedia,
Multipathway, Multiroute exposures (4 M) for specific individuals or for study-
specific populations. The GIS extension module of MENTOR, is the Prioritization/
Ranking of Toxic Exposures (Royce et al. 2014; Georgopoulos et al. 2014), that
utilizes simplified versions of MENTOR components to provide screening level
analyses. Similarly to MENTOR, INTEGRA (Sarigiannis et al. 2014a) provides a
multimedia environmental model similar to EUSES (Vermeire et al. 1997), follow-
ing the European Chemicals Agency (ECHA) recommendations, a detailed micro
environmental multi-zone model (Sarigiannis et al. 2012a, b), and addresses in detail
multi-route exposure and internal dosimetry. Among all the above models, MEN-
TOR-4 M and INTEGRA provide the most complete methodological framework for
assessing aggregate exposure from environmental and consumer sources. In addi-
tion, INTEGRA integrates a large database for industrial chemicals and additional
QSAR models, enabling environmental modeling for multiple chemicals.

4.2.2.2 Specific Considerations for Addressing Complex Exposures

Despite the limitations of the above models, many of them are able to address the
issue of complex exposures as a substance by substance problem. One significant
issue that relates to complex exposure is the effect of biotransformation in the
environment and consequently the fate of transformation products. This results in
exposure to additional compounds than the one that was initially released in the
environment. The next step is the incorporation of interactions between compounds
released in the environment. At present, these types of interactions are limited to
consideration in atmospheric (Morris et al. 2004) and indoor air chemistry, where
these types of transformation play a significant role.
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4.2.3 Addressing Multi-pathway and Multi-route Complex
Exposures with the Compound-by-Compound
Approach

To properly account for the contribution of different pathways and routes of expo-
sure, the key parameters affecting the major exposure mechanisms have to be briefly
described. It is important to understand that differences in behavioral patterns are
also relevant to exposure, e.g., infants and children are more likely to be exposed to
compounds found in settled dust than adults due to significantly more frequent hand
to mouth behavior, or people performing intensive exercise close to busy roads are
more likely to be exposed to ambient air mixtures.

4.2.3.1 Inhalation

Inhalation is a major route for numerous outdoor (e.g., CO, NOx, SO2, PM, PAHs)
and indoor (e.g., aldehydes, phthalates, and benzene, toluene, ethylbenzene, and
xylenes (BTEX)) air pollutants. Personal exposure is equal to the average concen-
tration of a pollutant that a person is exposed to over a given period of time. If over
the given period of time, T, the person passes through n locations, spending a
fraction fn of the period T in location n where the concentration of the pollutant
under consideration is Cn, then the personal exposure for this period T, represented
by the concentration CT, is given by Eq. 4.4:

CT ¼
X
n

f n � Cn ð4:4Þ

Inhalation uptake is estimated by the area under the curve of exposure
E multiplied by the inhalation rate inh, divided by the bodyweight BW and for the
desired simulation time.

Uptakeinh ¼
P
n
En � inhn
BW

ð4:5Þ

where inhn is the inhalation rate which is age and activity dependent (ICRP 2002) for
each type of microenvironment n encountered.

To properly estimate inhalation exposure, age, gender and activity intensity
differences have to be taken into account. There are databases that categorize the
majority of daily activities based on their intensity; intensity of activity is associated
with age- and gender-dependent inhalation rates (Sarigiannis et al. 2012a, b). In the
absence of data, default daily activity patterns can be used. Intensity of activity can
also be measured using personal wearable sensors such as Fitbit or Actigraph. This
significantly alters the outcome of actual exposure and intake, either between
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different individuals encountering the same locations (Sarigiannis et al. 2012a, b), or
the intra-day variability for a given individual (Sarigiannis et al. 2014b).

4.2.3.2 Dietary Ingestion

Dietary exposure sources include water and food, and may occur through environ-
mental contamination and bioaccumulation (e.g. pesticides, mercury) or leaching
from food contact materials (e.g. bisphenol A from can lining).

To estimate human exposure through diet, contaminant concentrations in foods
are multiplied by the corresponding intake rates. The sum of these individual food
contaminant intake values is corrected for bodyweight to obtain the daily contam-
inant exposure via the diet (Lambe 2002):

Ediet ¼
Xn
x¼1

Cfoodx � qfoodx
� �

BW
ð4:6Þ

Ediet: daily contaminant exposure through diet (mg/kg/day)
Cfoodx: contaminant concentration in food item x (mg/kg)
qfoodx: food item x consumption (kg/day)
BW: body weight (kg)

To properly account for dietary exposure, detailed food consumption databases
have to be used that take into account ethnicity, age, gender and socioeconomic
status differences (EFSA 2011). Food residues are estimated as the sum of the
contribution of the contamination transferred through the food web and migration
from food contact materials.

4.2.3.3 Non-dietary Ingestion

4.2.3.3.1 Dust and Soil Ingestion

Scenarios simulating the ingestion of dust and soil combine amounts of dust and soil
ingested daily with concentrations of chemicals in these media. The amount of soil
and dust ingested daily might be estimated either from daily determinations of trace
elements in food intake and fecal output (Stanek and Calabrese 1995, 2000), or by
predicting (modeling) soil and dust ingestion by pathway, source type, population
group, geographic location, and other factors (Ozkaynak et al. 2011). These expo-
sure pathways are particularly relevant for infants and toddlers who are known to
incidentally ingest small amounts of dust and soil daily. Such quantities are higher
than the ones for adults by one to two orders of magnitude.

Average daily dose from non-dietary ingestion of chemicals from dust is esti-
mated by the following formula (Wormuth et al. 2006):
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Edust ing ¼
Cdust � qdust ing

BW
� ruptake ð4:7Þ

where,

Edust_ing: the internal exposure to chemical (μg/kg/day);
Cdust: Concentration of the chemical in dust (μg/mg)
qdust_ing: Amount of dust ingested (mg/day)
ruptake: absorbed fraction from the ingested quantity
BW: body weight (kg)

Similarly, for soil ingestion, the following formula is used (Wormuth et al. 2006)

Esoil ing ¼
Csoil � qsoil ing

BW
� ruptake ð4:8Þ

where,

Esoil_ing: the internal exposure to chemical (μg/kg/day);
Csoil: Concentration of the chemical in soil (μg/mg)
qsoil_ing: Amount of soil ingested (mg/day)
ruptake: absorbed fraction from the ingested quantity
BW: body weight (kg)

4.2.3.3.2 Object-to-Mouth

Several literature sources that describe non-dietary ingestion exposure to chemical
residues in objects contacted via object-to-mouth activity can be found. One of them
is the U.S. EPA’s EXPOsure toolBOX (EPA-Expo-Box1), a toolbox created to assist
individuals from government, industry, academia, and the general public with
assessing exposure (USEPA 2013). To estimate the average daily potential dose
from ingestion of surface residues from object-to-mouth contact, the U.S. EPA
proposes the following algorithm:

ADD ¼ Csurface residue � CR � EV � ET � EF � ED
BW � AT ð4:9Þ

where,

ADD: Average daily potential dose (mg/kg/day)
Csurface residue: Concentration of contaminant on the surface of the hands or objects

that are mouthed (mg/cm2)
CR: Contact rate with contaminated surface (cm2/event)
EV: Event frequency (events/h)

1http://www.epa.gov/risk/expobox/index.htm.
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ET: Exposure time (h/day)
EF: Exposure frequency (days/year)
ED: Exposure duration (years)
BW: body weight (kg)
AT: Averaging time (days)

This could be further refined if more detailed information is available for the
microactivity (i.e., a specific mouthing event in a specific microenvironment)
resulting in indirect ingestion over a given exposure period. In this case, total indirect
ingestion exposure is estimated in two steps (Tulve et al. 2002): (a) individually for
each microactivity, and/or (b) summed for all activities for an exposure duration of
interest (i.e., 24-h).

For each microactivity resulting in indirect ingestion, exposure over a 24-h period
can be defined as:

End ¼ CX � TEX � SAX � EF ð4:10Þ
where,

X: body, hand, surface, toy, or any other object that is mouthed
End: indirect ingestion exposure from a specific mouthing event over a 24-h period

(μax) (μg/day)
Cx: total contaminant loading on object x (μg/cm2)
TEx: transfer efficiency, fraction transferred from object x to mouth
SAx: surface area of object x that is mouthed (cm2/event)
EF: frequency of mouthing events over a 24-h period (event/day)

The total indirect ingestion exposure over a 24-h period can be estimated by
summing exposures for all microactivities. For any particular microenvironment
being modeled, the potential exposure is the sum of all exposures for all
microactivities conducted in that microenvironment (e.g., indoors, at home, on
carpet).

4.2.3.3.3 Unintentional Swallowing of a Substance in a Product During
Normal Use

Here, it is assumed that consumers incidentally ingest small amounts of a chemical
substance in a consumer product. The best known application of this exposure
scenario is the unintentional ingestion of personal care products (PCPs). Scenarios
for ingestion of PCPs use information on amounts of products ingested daily and on
chemical concentrations in such products. Usually detailed information on how
much PCPs are ingested daily is not available; thus, a worst-case assumption
could be used here: infants, toddlers, children, and female teenagers and adults
ingest 50 mg product per day; male teenagers and adults ingest 25 mg product per
day (Wormuth et al. 2006). The higher amounts ingested should reflect the more
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careless use of PCPs by infants, toddlers and children and the more frequent use of
PCPs by female consumers.

The mathematical formulation is

Eprod ing ¼
Cprod � qprod ing

BW
� ruptake ð4:11Þ

where,

Eprod_ing: the internal exposure to chemical (μg/kg/day);
Cprod: Concentration of the chemical in the product (μg/mg)
qprod_ing: Amount of product ingested (mg/day)
ruptake: absorbed fraction from the ingested quantity
BW: body weight (kg)

4.2.3.4 Dermal Exposure

Dermal exposure is determined by the processes involved in contact between the
skin and the product or article. Since processes and exposure determinants differ
largely between articles and products, different approaches are needed. Also within
the category of products, a number of processes play an important role in dermal
exposure, depending on the type of product and its use. For example, dermal
exposure to substances in personal care products can be approximated by the applied
dose and the application surface, whereas dermal exposure to substances in house-
hold products is not only affected by the amount of product used, but also depends
on duration and type of contact between the product and skin during the application
phase, and by the contact between skin and the surface on which the product is
applied (post-application phase). Therefore, mathematical description of dermal
exposure is split up for different types of products, and articles as a separate
category.

Exposure through skin includes several mechanisms that relate to the different
uses of industrial chemicals. Major mechanisms of dermal exposure include
(Delmaar et al. 2005):

• Instant application: The instant application mode assumes that all compounds in
the product are directly applied to the skin. This is the situation for personal care
products, but can also be used as a first tier worst-case approach or if details on
how the skin is exposed to the compound are not known.

• Constant rate of application to the skin: This mode of dermal loading describes a
situation in which a compound is loaded onto the skin during a certain time, with
a constant rate (e.g., when skin comes into contact with a clothing).

• Rubbing off mechanism: Contrary to the previous dermal exposure modes, the
rubbing off mode describes a secondary exposure situation. Instead of direct
application of a product to the skin, the rubbing off mode describes a situation
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in which a surface (e.g., table top, floor) is treated with a product and dermal
exposure arises from contact with the treated surface.

• Exposure during showering or swimming pool
• Deposition of particles onto the skin

4.3 Individual and Population Exposure Modeling

Exposure to chemicals is rarely characterized by regular, uniform events; thus
exposure assessment needs to account for the frequency, duration and level (mag-
nitude) of exposure (Nieuwenhuijsen 2003). Since the degree of exposure often
varies with time, the period during which an exposure estimate is based can have a
large influence on the result (Benford and Tennant 1997). Thus, exposure assess-
ment may target either an individual, or the population at large; the latter is usually
the target group of regulatory bodies.

4.3.1 Deterministic Exposure Modeling

Theoretically, there is no single risk for a particular exposure circumstance; rather,
there are as many different risk values as there are individuals (Harper 2004). To
overcome the problem of addressing variability in exposure and risk assessment,
regulatory authorities have traditionally characterized the risks to individuals in a
population who are likely to encounter the greatest exposure. The approach they
have used, frequently referred to as a ‘point-estimate’ or ‘deterministic’ approach,
uses single values to represent each exposure variable and produces a single risk
estimate. In chemical risk assessments, initial screening of potential human health
risks from chemicals of concern is often carried out by calculating ‘worst-case’,
(a.k.a. ‘high-end’ or ‘upper bound’) point estimates of exposure using maximum or
upper percentile values for exposure variables. In risk characterization, these point
estimates of exposure are then combined with an appropriate toxicological end-point
to determine whether a hypothetical ‘worst’ case individual exceeds the regulatory
threshold of concern (or other calculated margins of safety). Where worst-case
exposure estimates exceed regulatory thresholds, refined point-estimate exposure
estimates (or ‘best-case’ estimates), are sometimes derived using average, mean or
median values for exposure variables to provide a more realistic estimate of
exposure.

The main advantages of using deterministic approaches for modeling exposure
are that these are generally simple, quick and inexpensive and can be used as a
screening tool for assessing chemical health risks. These approaches have, however,
a number of disadvantages, which can undermine their use in regulatory decision-
making. Deterministic approaches provide little information on the extent to which
exposure or risk varies within a population or subgroup under investigation; certain
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models are inflexible and do not allow different assumptions or scenarios to be
considered and they can provide conservative or unrealistic exposure estimates. For
example, it is not possible to determine from a ‘worst-case’ point estimate whether
this represents an exposure likely to be encountered by the 95th, 99th or 99.999th
percentile individual in a given population or is so extreme that it is unlikely ever to
take place. If a high-end point estimate significantly exceeds the maximum (100th
percentile) exposure likely to be encountered by a real population, it is likely to be
highly unrealistic and provide an extremely conservative basis upon which to
regulate safety to chemicals.

4.3.2 Probabilistic Exposure Modeling

To expand exposure assessment from the single individual to the wider population
groups, probabilistic modeling techniques can be implemented (Bogen et al. 2009;
Mutshinda et al. 2008; Zidek et al. 2005). Probabilistic analysis is an alternative
approach used in exposure modeling which addresses the shortcomings of deter-
ministic, point-estimate methods in terms of variability and uncertainty and produces
more accurate and realistic estimates of exposure across the populations under
investigation (Harper 2004). Depending on the availability and quality of data,
distributions for any exposure variable relevant to a given exposure assessment
scenario can be used in a probabilistic exposure model. In probabilistic modeling,
distributions of exposure variables are combined in such a way as to give an
exposure distribution. Exposure variables are also sometimes combined with toxi-
cological endpoint levels to give risk distributions. Although there are several ways
to combine exposure input distributions, the most common approach involves the
use of a mathematical sampling technique called Monte Carlo simulation. The
Monte Carlo technique, as applied to exposure assessment, involves combining
the results of hundreds or thousands of random samplings of values from input
distributions to produce an output distribution, which reflects the expected range and
frequency of exposures.

Monte Carlo analysis is used to determine the probability of occurrence for the
point estimates of a deterministic risk assessment and, in this way, deal with the
uncertainty associated with these assessments (Hayes 2000). Whilst deterministic
risk assessment applies a single value for each of the model’s input parameters and
calculates a single output value, probability risk assessment assigns a probability
distribution to these input parameters, either as a probability density function, which
is an analytical continuous function, or as a probability mass function, which is a
discretized distribution. For a continuous random variable (i.e., a variable that can
assume any value within some defined range), the probability density function
expresses the likelihood that the value for a random sample will fall within a
particular very small interval. Well known probability density functions are: normal,
triangular, uniform and lognormal (Wilson et al. 2013).
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A key part of developing a comprehensive probabilistic exposure model is to
conduct a global sensitivity analysis of the exposure determinants. Sensitivity
analysis is a technique that allows determination of the effect on the overall outcome
of altering the value of one variable. The relative importance of each variable in
determining the values of the output distribution can then be independently assessed.

4.3.2.1 Hierarchical Population Modeling Based on Bayesian Statistics

The Bayesian approach provides a formal way to incorporate prior knowledge on
model parameters together with observed data in the modeling process. The analysis
starts with the construction of prior probability distributions of the model parameters
of interest, usually based on studies available in the literature. These distributions are
then evaluated on the basis of their likelihood given observed data to compute
posterior distributions of the model parameters. Hierarchical modeling with Bayes-
ian Markov Chain Monte Carlo simulation is suitable for population exposure and
internal dose (PBBK) models because the development of these models often
involves non-linear processes, small datasets, high uncertainty, and biological var-
iability (Bernillon and Bois 2000).

Markov Chain Monte Carlo methods are a class of algorithms for sampling from
generic probability distributions (for more detailed information, see Robert and
Casella 2004). A basic concept of the method is that of a Markov chain, i.e., a
sequence of random variables:

Y0, Y1,Y2, . . . ,

for which the distribution of the future state of the process, given the current and the
past values, depends only on the immediately preceding state:

p Ytþ1 j Y0; Y1; . . . ; Ytð Þ ¼ p Ytþ1 j Ytð Þ
Markov Chain Monte Carlo methods are based on the construction of a Markov

chain that converges to the desired target distribution p (i.e., the one from which one
wants to simulate from, for instance the unknown distribution of a parameter of
interest). More formally, we say that p is the stationary distribution of the Markov
chain. In most practical cases, after a sufficiently large number of iterations, referred
to as “burn-in,” the chain will forget the initial state and will converge to a unique
stationary distribution, which does not depend on state t or Y0. Once convergence is
reached, it is possible to calculate any required statistic using Monte Carlo
integration.

Figure 4.1 shows an intuitive representation of the process of convergence for a
Markov Chain. Initially, the values sampled for two chains are dependent on the two
different starting points. However, after the burn-in period, they tend to converge to
the same distribution (this process is also known as mixing up). The first set of
simulated values can then be discarded and the ones after convergence used as a
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sample from the target distribution. One of the most popular Markov Chain Monte
Carlo methods is Gibbs sampling (Geman and Geman 1984). The steps needed to
perform the simulation via Gibbs sampling are schematically described in the
following.

1. Define an initial value to be arbitrarily assigned to the parameter of interest. The
sampling procedure starts from that value.

2. Perform a set of simulations during which the Markov chain converges to the
stationary distribution, i.e. the required posterior. It is usually convenient to
define more than one chain (two are generally sufficient), starting from distant
initial values, to assess the convergence more efficiently (see Fig. 4.1).

Once convergence is reached (this process can be monitored by suitable statistics,
such as that proposed by Gelman and Rubin (1996), a sample of values is drawn
from the estimated target distribution. Using this sample all the inferences of interest
can be performed; for instance, the whole distribution might be analyzed (i.e., by
means of graphical methods, such as histograms or kernel density estimations), or
point estimations such as the posterior mean or median can be computed.

4.3.2.2 Maximum Likelihood Estimates

Maximum likelihood estimation is a statistical method used for fitting a statistical
model to data, and providing estimates for the model parameters. The method of
maximum likelihood corresponds to many well-known estimation methods in sta-
tistics. Given a sample of some number of exposure attributes, but not the entire
population, with knowledge that their values are normally distributed with some
unknown mean and variance, the sample mean is the maximum likelihood estimator
of the population mean, and the sample variance is a close approximation to the
maximum likelihood estimator of the population variance.

For a fixed set of data and underlying probability model, maximum likelihood
picks the values of the model parameters that make the data “more likely” than any

Chain 1

Chain 2

T

tSample after
convergenceBurn-in

Fig. 4.1 A graphical
representation of the process
of convergence of Markov
Chains: the two chains start
from very different points
but after the burn-in they
converge to the stationary
distribution
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other values of the parameters would make them. Maximum likelihood estimation
gives a unique and easy way to find a solution in the case of the normal distribution
and many other problems, although in very complex problems this may not be
possible. If a uniform prior distribution is assumed over the parameters, the maxi-
mum likelihood estimate coincides with the most probable values thereof.

4.3.3 Agent-Based Modeling

Using data fusion techniques, health and exposure data derived from fixed monitor-
ing networks may be supplemented by a range of emerging novel techniques and
technologies such as agent-based modeling, mobile phone apps, environmental
sensor-webs, micro-sensors and satellite remote sensing. The information from the
coupled use of agent-based models and sensor webs improves exposure modeling
using deterministic and/or probabilistic approaches, and supports the application of
new epidemiological and biostatistical methods to relate modeled exposure to health
outcomes. The input to agent-based models consists of data relating to an individ-
ual’s behavior within his/her environment (such as movement data within specific
micro-environments) and between individuals exploring interactions around health-
related behaviors and key risk determinants such as low socio-economic status.
Using these parameters and the evolution of the virtual agents, simulations produce
detailed information relating to the overall societal systems and populations consid-
ered. The estimated values produced can be used to fill the gaps of traditional
datasets. This holistic approach is highly novel, taking the best from existing
monitoring and sensor technology, but supplementing it with computational model-
ing. It is of particular relevance where real-world data are unavailable at the spatial
and temporal scales that modeling complex exposures at the individual or population
subgroup level requires. Although commonly used elsewhere, agent-based models
and fusion methods have not been regularly applied in exposure assessment yet. This
array of novel technologies, coupled with state-of-the-art fate modeling of chemicals
will provide a complete and dynamic picture of external exposure to environmental
chemicals in the near future supporting comprehensive, yet refined exposure and
health risk assessment.

4.3.3.1 Improving Assessment of Activity Patterns: Use of Personal
Sensors

Technological advances in recent years have produced sophisticated monitoring
devices which can be carried or worn by a person during his/her regular daily
routine, allowing for personal exposure to be monitored explicitly. Smartphone
apps, wireless devices and the downsizing of monitoring technologies and costs
make it possible for various environmental stressors and exposure factors to be
measured more easily and frequently, thus providing a more reliable “time–
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geography of exposure” shifting the current paradigm from population to individual
level exposure.

Direct reading monitors help us to identify whether peak exposures are more
important than average exposure values, identify specific exposure pathways that
dominate in critical time windows over an individual’s lifetime, and finally build
individual exposure profiles. The advent of multiple sensor classes makes the use of
sophisticated data and model fusion schemes necessary if the full potential of remote
and personal sensing is to be harvested for improved cumulative exposure assessment.
Such algorithmic schemes include the use of advanced statistical models such as
random forest optimization, artificial intelligence techniques such as back-propagation
artificial neural networks or data clustering techniques such as fuzzy set modeling.

Combining information on individual position with spatially resolved pollution
levels allows assignment of pollutant concentrations to persons as they move
through different microenvironments. Moreover, information on individual physical
activity as tracked by personal sensors supports the estimation of breathing rates
during different activities, which, in turn, translate into inhaled dose. The possibility
to use personal sensors able to provide real-time data on air pollution exposure (CO2,
CO, NO2, O3, PMx of different size fractions) has been explored by several inves-
tigators (Snyder et al. 2013; De Nazelle et al. 2013). If proven to be reliable, these
sensors will constitute an added value to the array of remote sensing instrumentation
building the sensor web of exposome related studies (Sarigiannis and Gotti 2014;
Nieuwenhuijsen et al. 2014).

4.3.3.2 The Development of Space-Time-Exposure Trajectories

Time-Geography provides a coherent ontological framework within which to
explore spatio-temporal behavior of individuals and their interaction with the envi-
ronment. By analyzing and modeling these trajectories an individual’s behavior can
be determined in terms of time-geography, thus beginning to estimate individual
level exposure. In Fig. 4.2 one sees conceptually how an individual can coincide
spatially in X,Y and time, either with an environmental hazard prism (left) or vector
(right).

In this ontological modeling framework an individual who resides in one place
may be represented by a vertical line (a process in the time dimension alone) while
horizontal lines show changes of place (processes in the spatial dimension as well).
Time periods usually contain innumerable moves in space, which in turn create
trajectories. By analyzing and modeling these trajectories, one could determine an
individual’s behavior in terms of time geography, and thus begin to estimate
individual level exposure. With increasing access to individual residential history
data, and computational power (e.g., exploring the possibilities offered by cloud-
based and distributed computing), the time-geography approach has recently
regained popularity in environmental health sciences. An example of this multi-
layered data fusion coupled with agent-based modeling for the estimation of expo-
sure to particulate matter through the ambient air is given graphically in Fig. 4.3.
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Administrative and spatially resolved infrastructure information such as the road
and building networks in the area of interest (e.g., city, district) are used as knowl-
edge substrates upon which the agent-based model estimates space-time trajectories
of individual agents within the exposure time frame of reference. The emission and

Fig. 4.2 Space-time trajectories through environmental hazard prisms (left) and vectors (right)

Fig. 4.3 Layer 1: road
network, layer 2: buildings
network, layer 3: agent’s
trajectory, layer 4: daily
average PM
concentration map
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environmental concentration model or the data fusion model that integrates multi-
platform environmental monitoring data across the area of interest is then coupled with
the space-time trajectories to reckon personal exposure estimates. Allowing the sim-
ulation to unfold and running it using a Monte Carlo algorithm to perturb the initial
conditions stochastically within specified limits (determined to ensure plausibility of
exposure scenarios) results in emerging patterns of behavior and corresponding
combined exposure burden to the pollutants of interest. Exposure estimates are
differentiated by type of population subgroup modeled, and time-dependent exposure
profiles for characteristic individuals can be drawn; the method gives an explicit
account of the residual uncertainty and variability in exposure profiles.

4.3.4 Critical Time Windows of Exposure

Vulnerability (defined here as variations in exposure between individuals or groups)
and susceptibility (the degree to which individuals or groups may respond to a given
exposure) related to complex exposure vary significantly during an individual’s
lifespan. Thus, it is of great importance to identify the critical periods and the
types of complex exposures that require special attention during certain life stages.
Within the frame of the HEALS2 (Health and Environment-wide Associations based
on Large population Surveys) project, ten critical periods of exposure were identified
(Table 4.1). Critical periods include early developmental stages such as preconcep-
tion, the three trimesters of pregnancy and the age before and after 3 years of age.
Puberty is a period with significant hormonal alterations, and as such, it has been
proven to be crucial for asthma, weight and behavioral variations. Middle age
lifestyle parameters (e.g., nutrition, exercise, smoking), health status (hypertension,
diabetes) and use of drugs are determinant for the onset and the progress of

Table 4.1 Critical periods of exposure

Preconception

1st semester of pregnancy

2nd semester of pregnancy

3rd semester of pregnancy

3rd year of age

Puberty

Middle age

Menopause

Age of 50

Age of 65

Age of 80

2www.heals-eu.eu.
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neurodegenerative diseases. Change in lifestyle choices after the age of 30 introduces
new conditions that increase the risk of metabolic disorders that may eventually lead
to obesity and type 2 diabetes. Menopause in women (between 45 and 55 years of
age) is a period of significant change in the hormonal system, related to a cascade of
effects, asthma, and increased susceptibility to metabolic disorders, as well as to
neuroinflammation. At the age of 50 significant changes in gene expression involved
in brain-related function seem to be determinant for the onset of neurodegenerative
disorders. After 65 years both males and females are more susceptible to environ-
mental insults, due to reduced detoxification capacity, as well as reduced capacity of
maintaining homeostasis. After 80 and 85 years, normal ageing is accompanied by
pathological ageing.

As a general rule, for stages related to development or significant hormonal
changes, assessment of complex exposures should be more focused on endocrine
disrupting chemicals (EDCs), including several chemical classes, (e.g. PCBs and
dioxins, phthalates, BFRs), each of which includes multiple individual mixture
components. To properly account for these compounds, multiple pathways and
exposure routes have to be addressed; their relative importance is also age depen-
dent. At later stages, complex air quality mixtures (PAHs, BTEX, CO, NOx ozone
and PMx) that relate to oxidative stress (and the related cascade of effects) are more
important than exposure to EDCs. Thus, modeling efforts of complex exposures
should account for the specific needs of the critical windows of exposure that pertain
to the individuals or the population at risk.

4.4 Internal Exposure Modeling of Real Life Chemical
Mixtures

4.4.1 Overview of Physiology Based BioKinetic (PBBK)
Models

PBBK models are continuously gaining ground in regulatory toxicology, describing
in quantitative terms the absorption, metabolism, distribution and elimination pro-
cesses in the human body, with a focus on the effective dose at the expected target
site (Bois et al. 2010). This trend is further amplified by the continuously increasing
scientific and regulatory interest about aggregate and cumulative exposure; PBBK
models translate external exposures from multiple routes (Yang et al. 2010) into
internal exposure metrics, addressing the effects of exposure route in the overall
bioavailability (Sarigiannis and Karakitsios 2011; Valcke and Krishnan 2011) or the
dependence on critical developmental windows of susceptibility, such as pregnancy
(Beaudouin et al. 2010), lactation (Verner et al. 2008) and infancy (Edginton and
Ritter 2009). With regard to cumulative exposure, PBBKmodels offer the advantage
of calculating the effect of the interactions among the mixture compounds at the
level of metabolism, however due to the inherent difficulties arising, the existing

104 D. A. Sarigiannis and S. P. Karakitsios



applications are currently limited mainly to VOCs (Haddad et al. 2000; Sarigiannis
and Gotti 2008) and metals (Sasso et al. 2010). Recently, efforts have shifted
towards the integration of whole-body physiology, disease biology, and molecular
reaction networks (Eissing et al. 2011), as well as integration of cellular metabolism
into multi-scale whole-body models (Krauss et al. 2012).

The use of internal dose modeling aims at integrating exposure data and modeling
output with human biomonitoring data. Its goals are to (a) provide the time history of
the exposure profile, focusing on susceptible developmental stages; (b) assimilate
the biomonitoring data related to the cohorts to estimate the individual exposome in
quantitative terms; and (c) derive reliable biologically effective dose values for the
compounds of interest so that they can be associated to observed health outcomes.
The key component of the above is the development of a lifetime (including
gestation and breastfeeding) generic PBBK model (Sarigiannis and Karakitsios
2012) incorporating mixtures interaction (Sarigiannis and Gotti 2008) and a frame-
work for biomonitoring data assimilation (Georgopoulos et al. 2008b). Aiming to
expand the applicability of the generic PBBK model to cover the chemical space as
much as possible, parameterization of the model for known and new chemicals with
limited information is done through the development of QSAR models. The generic
PBBK model will also be used to reconstruct exposure from human biomonitoring
data (Andra et al. 2015). A tiered approach will be followed as a function of data
availability (periodicity and size of sampling, specimen type) and requirements of
the exposure reconstruction analysis (temporal analysis of exposure, contribution
from different routes), ranging from Exposure Conversion Factors (Tan et al. 2006),
up to Markov Chain Monte Carlo analysis. Inputs involve spatial and temporal
information on micro-environmental media concentrations of xenobiotics and
corresponding information on human activities, food intake patterns or consumer
product use that results in intakes; outputs are the observed biomarkers; and the error
metric can be defined in terms of population variation (the latter has to be lower than
the intra-individual variation, which may be associated with measurement or other
random error source). On the individual level, PBBK will be combined with
multimedia models and survey questionnaires to identify exposure sources. PBBK
modeling will also be used to estimate the internal doses of xenobiotics that exceed
levels associated with biological pathway alterations (Judson et al. 2011) and,
eventually, health risk. The latter can involve the use of specific omics results
(e.g., metabolomics analysis) and associations of biologically effective doses to
early biological responses. In addition, biologically effective doses would be used
to quantify the effect of compound-induced extracellular perturbations on metabolic
states, so as to directly couple the PBBK model with metabolic regulatory networks.
Direct coupling defines a feedback loop that connects clearance and metabolite
production rates to metabolism regulation (Eissing et al. 2011) via dynamic flux
balance analysis (Krauss et al. 2012).

Considering the opportunities offered by the use of PBBK models in exposure/
risk characterization, several research groups are developing generic PBBK models,
either as stand-alone models such as PK-Sim (Willmann et al. 2003) and Indus-
Chem (Jongeneelen and Berge 2011), or incorporated within integrated computa-
tional platforms for exposure assessment such as INTERA (Sarigiannis et al. 2011)
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and MENTOR (Georgopoulos et al. 2008c). The development of generic PBBK
models is substantiated by the recent advances in quantitative structure–activity
relationships (QSARs) and quantitative structure–property relationships (QSPRs)
(Price and Krishnan 2011; Peyret and Krishnan 2011), providing the basis for
development of relevant PBBK models for data-poor or new chemicals.

The INTEGRA methodology is advancing the existing state of the art by inte-
grating all of the above elements, with a plan to develop a generic lifetime (including
pregnancy) (Sarigiannis and Karakitsios 2012) multi-route PBBK model. The inte-
gration of this generic PBBK model into a wider modeling framework will allow
forward (internal exposure) or reverse calculations (exposure reconstruction) so as to
provide the link among exposure components and biomonitoring data. Additional
elements of using physiologically based modeling to understand the kinetics and
effects of chemical mixtures are covered in Chap. 12.

4.4.2 Internal Dosimetry Models

PBBK models are tools that describe the mechanisms of absorption, distribution,
metabolism and elimination of chemicals in the body resulting from acute and/or
chronic exposure regimes. They are independent structural models, comprising the
tissues and organs of the body with each perfused by, and connected via, the blood
circulatory system. In PBBK models the organism is frequently represented as a
network of tissue compartments (e.g., liver, fat, slowly perfused tissues, and richly
perfused tissues) interconnected by systemic circulation. A generic PBBK model,
reflects the incorporation of basic physiology and anatomy. The compartments
actually correspond to anatomic entities such as liver, lung, etc., and the blood
circulation conforms to the basic mammalian physiology. The primary means of
transport for xenobiotic chemicals that enter the body through one or more of these
routes is via blood, the main vehicle for nutrient supply and waste removal from
tissues. In the basic PBPK model, transport of chemicals between blood and tissues
is assumed to be flow-limited, which implies that the transport barriers between the
free molecules of chemical in blood and tissue are negligible, and equilibration
between free and bound fractions in blood and tissue is rapid. Concentrations of
chemical in venous blood exiting a tissue, and tissue concentrations are assumed to
be at equilibrium, and the tissue is assumed to be homogeneous with respect to the
concentration of the chemical. The flow-limited assumption is usually appropriate
for lipophilic or low molecular weight compounds, which easily partition or diffuse
through cell membranes. Every PBBK model requires several parameters that are
critical determinants of chemical uptake and disposition. These determinants can be
classified into three main categories, namely, anatomical/physiological, physico-
chemical, and biochemical. A partial list of anatomical/physiological parameters
includes cardiac output, tissue blood flow rate, organ and tissue weight and volumes.
In addition to physiological/anatomical data, PBBK models require information on
the ability of the body to metabolize chemicals – these are known as biochemical
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parameters. Typical biochemical parameters include the maximal velocity for metab-
olism (Vmax), binding association constant (Kb) and Michaelis affinity constant (Km).
The third type of data required by these models is the solubility of pollutants in the
organs and tissues of the body. These are physicochemical data known as partition
coefficients (P). Partition coefficients are experimentally determined parameters that
give an indication of the distribution of a chemical between two different phases,
e.g. air and blood, blood and liver, blood and muscle, blood and fat, etc. The
fundamentals of PBBK modeling are to identify the principal organs or tissues
involved in the disposition of the chemical of interest and to correlate the chemical
absorption, distribution, metabolism, and excretion within and among these organs
and tissues in an integrated and biologically plausible manner.

A scheme is usually formed where the normal physiology is followed in a
graphical manner. Within the boundary of the identified compartment (e.g., an
organ or tissue or a group of organs or tissues), whatever inflows must be accounted
for via whatever outflows or whatever is transformed into something else. This mass
balance is expressed as a mathematical equation with appropriate parameters carry-
ing biological significance. A generic equation, for any tissue or organ, is:

Vi
dCij

dt
¼ Qi CAj � CVij

� ��Metabij � Elimij þ Absorpij � PrBindingij ð4:12Þ

where Vi represents the volume of tissue group i, Qi is the blood flow rate to tissue
group i, CAj is the concentration of chemical j in arterial blood, and Cij and CVij are
the concentrations of chemical j in tissue group i and in the effluent venous blood
from tissue i, respectively. Metabij is the rate of metabolism for chemical j in tissue
group i; liver, is the principal organ for metabolism and, with some exceptions,
Metabij is usually equal to zero in other tissue groups. Elimij represents the rate of
elimination from tissue group i (e.g., biliary excretion from the liver), Absorpij
represents uptake of the chemical from dosing (e.g., oral dosing), and PrBindingij
represents protein binding of the chemical in the tissue. All these terms are zero
unless there is definitive knowledge that the particular organ and tissue of interest
has such processes.

A series of similar mass balance differential equations representing all of the
interlinked compartments are formulated to express a mathematical representation,
or model, of the biological system. This model can then be used for computer
simulation to predict the time course behavior of any given parameter in the
model. See Chap. 12 for more information on PBBK development.

The generic model developed in INTEGRA is designed to describe as closely as
possible the actual absorption, distribution, metabolism and elimination processes
occurring in the human body, so that it can be easily applicable for a broad variety of
chemicals assuming proper parameterization. The model includes the parent com-
pounds and at least three potential metabolites for each of the compounds in the
mixture. For each compound/metabolite all major organs are included and the link
among the compounds and the metabolites is through the metabolizing tissues. This
is mainly the liver, but also other sites of metabolism (e.g., gut, skin) might be
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considered based on the presence of the enzymes involved in the metabolism of the
compound of interest. To capture in utero exposure, the model is replicated to
describe the functional interaction of the mother and the developing fetus through
the placenta (Fig. 4.4). The anthropometric parameters of both the mother and the
fetus models are age-dependent, so as to provide a life stage-dependent internal dose
assessment.

4.4.3 Expanding the Chemical Space to Assess Internal Dose
for Multiple Chemicals

A critical limiting factor in describing ADME processes accurately for a large
chemical space is the proper parameterization of PBBK models for “data poor”
compounds. Advanced Quantitative Structure-Activity Relationships (QSARs) can
be used to predict input parameters for these models allowing PBBKmodels to cover
a large number, and several classes, of chemicals. In silico approaches, including
QSARs, are widely used for the estimation of physicochemical and biochemical
properties and predicting how they might lead to biological responses (Puzyn et al.

Fig. 4.4 Conceptual representation of the Mother-Fetus PBBK model, including both the parent
compound and one metabolite
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2010). QSARs are described as regression or classification models, which form a
relationship between the biological effects and chemistry of each chemical com-
pound (Puzyn et al. 2010). Significant progress in expanding the chemical space for
industrial chemicals has been made by the INTEGRA project, where parameteriza-
tion of essential parameters such as blood:tissue partition coefficients for several
tissues, maximum initial velocity of the enzyme catalyzed reaction (Vmax) and the
substrate concentration that gives half maximal velocity of an enzymatic reaction
(Km or Michaelis-Menden constant) has been carried out for a large number of
chemicals. The mathematical formulation coupled Abraham’s solvation equation
with Artificial Neural Networks of variable geometry in order to optimize the
performance of the model. Abraham’s solvation equation (Linear Free Energy
Relationship) describes the process of the transfer of chemicals from the liquid
phase to a large number of solvents or other condensed phases, including biophases.
The descriptors, which characterize these physicochemical and biochemical phe-
nomena, are combined into Eq. 4.13,

logSP ¼ cþ e � E þ s � Sþ a � Aþ b � Bþ v � V ð4:13Þ
Where SP is a biological property for a set of chemicals in a given system. The
independent descriptors are the properties of the examined chemicals, E is the excess
molar refractivity of the chemical, S is the chemical’s dipolarity/polarizability, A and
B are the chemical’s effective or summation hydrogen bond acidity and basicity,
respectively, and V is the McGowan characteristic volume of the chemical (Abraham
1993; Payne and Kenny 2002). The coefficients c, e, s, a, b and v reflect the
properties of chemicals, so e corresponds to the tendency of the chemical to interact
with solute π- and n- electrons, s corresponds to the chemical’s dipolarity/polariz-
ability, a and b correspond to the chemical’s hydrogen bond basicity and acidity,
respectively, and v is a measure of the chemical’s lipophilicity. Artificial Neural
Networks were used to develop a non-linear model based on Abraham’s solvation
equation.

The calculated values of metabolic constants using the statistical method
described above (Abraham’s solvation equation coupled with Artificial Neural
Networks) were compared to experimental values and the results obtained by Price
and Krishnan (2011) in Fig. 4.5. The methodology followed by Price and Krishnan
(2011) was based on the group contribution method, implying that each fragment in
the molecular structure contributes to the metabolic parameters, depending on its
frequency of occurrence in the given molecule (Gao et al. 1992). In previous studies,
the parameters used to describe the interactions between chemicals and tissues were
mainly related to chemical structure or tissue composition in water, proteins and
lipids Price and Krishnan 2011; Zhang 2004). In the present example, Abraham’s
equation descriptors are not linked directly with tissue composition. They encode
specific chemical information regarding the size, polarizability and hydrogen bond-
ing of the examined chemicals and each term can reveal the factors that influence a
particular interaction. The modeling results indicate that the molecular descriptors of
the equation can be suitable for the estimation of the parameters that characterize
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relevant physicochemical and biochemical phenomena. The improved performance
of Abraham’s equation compared to the group contribution method can be attributed
to its capacity to represent the complex interactions of the micro-processes of
chemicals’ distribution and metabolism into several tissues.

4.5 Complex Exposure Modeling Using Human
Biomonitoring Data

4.5.1 Overview of Biomonitoring

The main achievement of human biomonitoring is that it provides an integrated
overview of the pollutant load to which an individual is exposed, and hence serves as
an excellent approximation of aggregate exposure including all pathways, mecha-
nisms and routes of exposure. For additional information on biomonitoring and its
utility in measuring exposure to mixtures, see Chap. 2. The internal dose of a
chemical, following aggregate exposure has a much greater value for environmental
health impact assessment as the internal body concentration is much more relevant to
the impact on human health than mere exposure data. However, it needs to be
stressed that HBM in itself cannot replace environmental monitoring and modeling
data. At the same time, mathematical approaches to describe the pharmacokinetic
and toxicokinetic behavior of environmental agents (i.e. PBBK models) offer a more
mechanistic insight into the behavior and fate of environmental agents following
exposure. As biomarker data also reflect individual ADME characteristics of
chemicals, HBM data offer an excellent opportunity to validate PBBK models.
Ultimately, coupling both lines of evidence to assess exposure proves to be the

Fig. 4.5 Predicted vs experimental values of normalized maximal velocity andMichaelis –Menten
constant under Abraham’s equation (orange dots) and a group contribution method (Literature data;
blue dots)
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optimal solution towards relating complex exposure to environmental stressors to
potential adverse health effects assessment.

There are three approaches for linking biomonitoring data to health outcomes:
direct comparison to toxicity values, forward dosimetry, and reverse dosimetry.
Biomonitoring data can be directly compared to toxicity values when the relation-
ship of the biomarker to the health effect of concern has been characterized in the
human. In forward dosimetry, pharmacokinetic data in the experimental animal can
be used to support a direct comparison of internal exposure in humans derived
through the application of PBBK models, providing an estimate of the Margin of
Safety in humans. It is possible to determine the relationship between biomarker
concentration and effects observed in animal studies. An evolution of this concept is
the biomonitoring equivalents. Alternatively, reverse dosimetry can be performed to
estimate the external exposure that is consistent with the measured biomonitoring
data through the backward application of PBBK models. In a more elaborate
scheme, the reconstructed exposure could be used to run the PBBKmodel in forward
mode, so as to estimate the biologically effective dose at the target tissue.

4.5.2 Exposure Reconstruction in Practice

Human biomonitoring typically is an integrative measure of different exposure
episodes along various routes and over different time scales; thus, it is often difficult
to reconstruct the primary exposure routes from human biomonitoring data alone.
This uncertainty limits the interpretative value of biomarker data. However, several
mathematical approaches have been developed to reconstruct exposures related to
population biomonitoring studies, and can be subdivided into a number of different
approaches. Exposure reconstruction techniques combined with PBBK models can
be divided into Bayesian and non-Bayesian approaches (Georgopoulos et al. 2008a).
Moreover, computational inversion techniques (and exposure reconstruction tech-
niques as well), can be classified as deterministic or stochastic (Moles et al. 2003)
based on the identification of a global minimum of the error metric, the input
parameters and the model setup.

The deterministic methods aim to achieve convergence on a global minimum.
The problem is solved using an “objective function” based on biomarkers. Addi-
tionally, constraints in the form of bounds, equalities and inequalities are incorpo-
rated. Deterministic models have been used in several biological applications using
different methods. Muzic Jr and Christian (2006) have applied a regression tech-
nique to estimate pharmacokinetic parameters. A gradient method has been used by
Isukapalli et al. (2000) to calculate the uncertainty in PBBK models. A maximum
likelihood method has been carried out for short- and long-term exposure recon-
struction using a PBBK model for chloroform (Roy et al. 1996).

In contrast, stochastic methods aim to provide a reasonable solution, not a
mathematically optimal one. A probabilistic framework for the inverse computation
problem is the Bayesian approach, which is based on Bayes’ theorem. According to
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the methodology developed in the frame of the INTEGRA project, the analysis of
exposure reconstruction problems based on the Markov Chain Monte Carlo and
Differential Evolultion Markove Chain technique is realized according to the fol-
lowing steps:

1. The process starts from exposure related data which are fed into the INTEGRA
exposure model;

2. This in turn provides input to the PBBK model, taking into account the duration
and the magnitude of exposure from all exposure routes (inhalation, skin and oral
route);

3. The result of the PBBK model simulation (also taking into account the distribu-
tion of PBBK parameters, e.g., inter-individual variability in clearance), is then
evaluated against the human biomonitoring data distributions. Based on the
outcome of the comparison, the optimization algorithm changes the exposure
model input parameters after each iteration, so as to achieve convergence to
biomonitoring data;

4. More detailed information on exposure parameters reduces uncertainty in back-
calculating doses from biomarker information, resulting in faster and more
efficient convergence;

5. Several iterations are repeated, until the error between the predicted and the actual
biomonitored data is minimized.

The Bayesian Markov Chain Monte Carlo technique described above simulates
and calculates the investigated exposure conditions. The sampling scheme is set
appropriately according to the problem and to the available data for the proposed
function. The flowchart of the overall process is shown in Fig. 4.6.

4.6 Case Studies of Complex Mixtures Modeling

4.6.1 Exposure Assessment of Indoor Air Complex Mixtures

Indoor air is one of the most typical examples related to complex exposures. The
combination of building materials (e.g., paint, floors, doors and windows), consumer
products (e.g., electronic devises, furniture, carpets) and activities (e.g., biomass
combustion, smoking, cooking) creates a variable and complex mixture of chemical
and biological health stressors (e.g., mold, pollen). The multitude of compounds
found in indoor air (Sarigiannis 2014), as well as the respective health risks are
graphically illustrated in Fig. 4.7.

Modeling complex exposures in the indoor environment requires a virtual recon-
struction of the actual environmental setting of interest. This implies the virtual
reconstruction of the indoor environment, including all potential emission sources.
After calculating emissions, the next step is to calculate indoor concentrations in the
three media of exposure relevance, meaning gaseous phase, particles and settled
dust. The latter is of particular interest, since based on the physicochemical
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Fig. 4.6 Exposure reconstruction flowchart

Fig. 4.7 Multiple stressors found in indoor environment and related health endpoints
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properties of the compound (e.g., Kow and Henry constant), significant differences in
the respective phase distribution are expected; more volatile compounds such as
aromatics and aldehydes are found only in the gaseous phase, semi-volatile com-
pounds (e.g., phthalates) tend to distribute in all phases, while heavier and more
lipophilic compounds (e.g. PBDEs) are found mostly in dust (Weschler and
Nazaroff 2010; Weschler and Nazaroff 2008). In turn, the way compounds are
distributed in different phases determines the pathways and routes of exposure
involved, e.g., non-dietary ingestion and inhalation respectively. This allows the
proper estimation of external exposure, which in turn provides input to the internal
exposure model. The full series of calculations, starting from emissions, calculating
indoor environmental levels, exposure and internal dose for many chemicals can be
performed with the INTERA computational platform3 (Sarigiannis et al. 2012a), an
open access online computational platform running via the world wide web at the
Centre for Research and Technology Hellas (CERTH). A special case of complex
exposure in the indoor environment is tobacco smoke. During smoking, several
compounds are emitted, including particles and organic compounds such as alkenes,
nitrosamines, aromatic and heterocyclic hydrocarbons and amines. Some of these
compounds are emitted from several other sources as well; thus, it is not always easy
to attribute poor indoor air quality to cigarette side stream smoke. However, nicotine,
serves as a unique marker of exposure to environmental tobacco smoke. Nicotine is
rapidly metabolized to cotinine upon entering the human body, which is excreted
through urine. Urinary cotinine serves as an exposure biomarker to environmental
tobacco smoke. Using complex exposure modeling the amount of cotinine found in
urine could be used as a starting point for reconstructing exposure to nicotine. This
would allow identification of exposure levels and in turn the indoor concentration of
nicotine that resulted in the observed biomonitored cotinine levels (Sarigiannis et al.
2009). By continuing the reverse calculation, smoking intensity is estimated. At this
point, estimated smoking intensity can be used to estimate the emissions and
concentration levels for the hundreds of compounds present in environmental
tobacco smoke...

Exposure reconstruction of urinary cotinine levels allows us to further identify the
exposure and effects of individual carcinogenic compounds e.g., benzene, formal-
dehyde, Nicotine-derived nitrosamine ketone (NNK), B[a]P and their interactions at
different levels among the individual compounds (Sarigiannis et al. 2009):

– Interaction at the level of metabolism (using PBBK modeling) among benzene,
toluene, ethylbenzene and xylene

– Effect summation of lung cancer related to NNK and B[a]P
– Independent action in terms of cumulative cancer risk (at different sites) among

benzene (leukemia), formaldehyde (nasopharyngeal cancer), NNK and B[a]P
(lung cancer)

3http://www.intera.cperi.certh.gr/auth/login.

114 D. A. Sarigiannis and S. P. Karakitsios

http://www.intera.cperi.certh.gr/auth/login


4.6.2 Pesticides: Multi-pathway and Multi-route Exposure by
Chemical Class

Complex exposure to pesticides for bystanders has been computed on the European
scale at a very high spatial resolution using a multi-compartment model, the infor-
mation flow of which is depicted in Fig. 4.8. The modeling methodology has three
main components: (1) modeling the emission of active substances (AS) (i.e., AS
emissions to air per km2 extracted from the emission inventory), (2) modeling the
fate and transport of the AS in the environment to estimate concentrations (expressed
in computed AS concentration per hour in 1 year), and (3) modeling population
exposure (expressed as intake computed from daily average AS concentrations)
differentiated by age and gender for all AS. The overall model is spatially resolved
and all estimates are given at a pan-European 0.1 � 0.1 km grid.

The multi-step methodology used included the following steps:

1. Starting from the emission inventory, annual emission data per AS were extracted
for 25 EU Member States.

2. A typical emission profile was used in accordance to the local agriculture
practices for a time window that coincided with the growing season in each
country/region.

3. A pesticide dispersion model was developed to compute concentration into the
ambient air at a 1 � 1 km grid using as input the variable emission profile, local
meteorological data and AS physicochemical characteristics.

4. Outdoor to indoor penetration modeling was used to estimate the indoor concen-
tration of AS and its partitioning among the different phases (gaseous, particles
and settled dust).

5. An exposure model was developed, based on which intake rates per population
group differentiated by age and gender (i.e., adult male-female, children 0–4 yr,
5–9 yr and 10–14 yr) was computed comprising all exposure pathways

Fig. 4.8 Full chain complex exposure assessment from pesticides
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(inhalation of gaseous and particles, dust ingestion, particles deposition on skin,
dust rubbing off) and routes. The effect of changing the daily duration of pesticide
application, the total application window as well as uncertainty in the meteoro-
logical conditions and variability in the physiological parameters were incorpo-
rated in the assessment.

The pesticide release inventory model (Sarigiannis et al. 2013) comprised five
crop types (three seasonal and two permanent), the list of pesticides used per crop
and their usage quantities at the country level (source: Eurostat 2011), a pesticide
disaggregation algorithm to distribute quantities at the grid and the computed annual
emission data based on wind drift, volatilization during application and from the
crop canopy. This inventory model was based on crop data extracted from the
Common Agricultural Policy Regionalised Impact (CAPRI) Modeling System
(CAPRI 2012).

According to the methodology followed to create this pesticide inventory
(Sarigiannis et al. 2013), usage quantities for each AS per cell and crop were
disaggregated from the country level to the 1 � 1 km grid, using an area weighing
algorithm and assuming a constant annual ‘area reduced dosage’ per AS for each cell
in the same country. The ‘area reduced dosage’ is a measure of pesticide use per crop
area based on country data, and incorporates estimates of uncertainty in the actual
crop area to which a specific AS is applied within the spatial grid. Average annual
emissions, ERijk,(in kg/yr), of each AS applied in a field to the air of an AS i applied
on crop j for a country k, at short range from the site of application were computed
from the sum of spray wind drift Dijk, volatilization during application Eapp,air,ijk and
volatilization from the crop canopy Ecrop,air,ijk as shown by Eq. 4.14.

ERijk ¼ Dijk þ Eapp, air, ijk þ Ecrop, air, ijk ð4:14Þ
The annual emission data generated from Eq. 4.14 per grid cell were fed to the

concentration model described in the following sections, assuming typical emission
profiles.

The pesticides were prioritized on the basis of a hazard factor that accounts for
both toxicity and persistence in the environment based on the methodology of
Gunier et al. (2001). According to this methodology, the hazard factor (HF) is
multiplied by AS quantities and then the AS with the highest score (HF � quantity)
from each group (i.e., herbicides, fungicides, insecticides, other) was selected for
more detailed presentation. The top chemicals in each group were glyphosate
(herbicide), chlorpyrifos (insecticide), mancozeb (fungicide) and
1,3-dichloropropene (other). 1,3-dichloropropene has one of the largest hazard
factors due to high toxicity and high volatilization flux.

In practice, application periods are limited to 1–3 months during the year and
correspond to specific crop types, climatic conditions and agricultural practices that
differ among countries, even among regions. It is assumed that the applicators of
pesticides and farmers use the total quantity of pesticides in a specific time period,
regardless of weather conditions to render the assessment conservative. Therefore,
the annual quantity of AS i for crop j for a country k (ERijk) is applied, in the form of
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a ‘pulse’ with a 10-h period for a total window of several months, in accord with the
estimated country annual emission estimates and the typical AS uses. Moreover,
since application practices in Europe vary, pesticide drift does occur in many cases,
differentiated between primary drift, off-site movement of spray at the time of
application, and secondary drift associated with pesticide vapor. The effects of
pesticide drift were included in this assessment via the AgDrift (Teske et al. 2002)
and AgDisp (Bird et al. 2002) models. They were used to evaluate the average
deposition fraction (i.e., implicitly drift), under different operational and environ-
mental conditions, focusing in particular, on the droplet size in accordance, to the
ASAE S572 standard (very fine <150 μm, fine 150–250 μm, medium 250–350 μm
and coarse 350–425 μm), the wind speed, the temperature and the relative humidity.
Hence, changes in emissions over time were deduced and used as input to the
concentration model.

A critical step for calculating exposure was the estimation of outdoor concentra-
tions. The concentration model employed at each cell was of a box-volume form,
described by the differential equation:

V � dCijk

dt

� �
¼ ERijk � Cijk � I � V � Ki � Cijk � V ð4:15Þ

where Cijk is the concentration of an AS i applied on crop j for a country k, in g/m3,
ERijk is the average emission rate of an AS i, in g/h during application, I is the air
changes per hour in the volume (i.e., I ¼ u/L with u the average wind speed in m/s,
L the lateral distance covered in m), V is mixing volume, in m3 (i.e., V ¼ L2�H, with
L the lateral distance, in m andH the mixing height, in m), t is the time, in h, Ki is the
decay rate of an AS i, in h�1 (i.e., Ki ¼ ln2/(HLi), with HLi the half life in air of an
AS i, in h). The following solution of Eq. 4.15 is obtained for discrete time steps Δt:

Cijk tð Þ ¼ 1
u=Lþ ln 2=HLi

� ERijk tð Þ
L2 � H

� �
� 1� exp � u

L
þ ln 2
HLi

� �
� Δt

� �� �

þ Cijk t � 1ð Þ � exp � u

L
þ ln 2
HLi

� �
� Δt

� �
ð4:16Þ

In addition, when the application rate is zero, Eq. 4.16 becomes,

Cijk tð Þ ¼ Cijk t � 1ð Þ � exp � u

L
þ ln 2
HLi

� �
� Δt

� �
ð4:17Þ

Pesticides in the particle phase were also estimated. This calculation was based on
the partition coefficient Kp between gaseous and particles phase based on the
Pankow model (Pankow 1994):

Kp ¼ Ns � αTSP � T � e Q1�Qνð Þ
R�T

1600 � p∘L
ð4:18Þ

4 Modeling Complex Exposures 117



where Ns (cm
�2) is the available surface for adsorption, atsp (m

2 g�1) is the special
surface of aerosols, Q1 (kJ mol�1) is the enthalpy of adsorption from the surface, QV

is the enthalpy of vaporization of the subcooled liquid, R is the ideal gas constant, T
is the temperature (�K), and pL� is the vapor pressure at 25 �C. Pesticide concentra-
tions in the particle phase were then estimated by the following relationship:

Kp ¼ F=TSP
A

ð4:19Þ

where F is the concentration of pesticides in the particles phase, TSP is the total
suspended particles (in practice all the amount of pesticides is adsorbed in PM up to
10 μm aerodynamic diameter) and A is the concentration of pesticides in the gaseous
phase. This calculation was done for each of the AS using EPISuite v4.11 (EPA
2012)

Concentration estimates were obtained with a time step of 1 h. This ambient air
concentration was used as input to the microenvironmental model, allowing the
estimation of the concentration in the different exposure relevant indoor environ-
mental media (gaseous, particles and dust phase).

The inhalation exposure model is described by Eq. 4.20, where the daily average
intake rate IRijkg (in mg/kg_bw/day) for each AS at each cell, was computed from the
pesticide concentration, both outdoor and indoor (integrated over a year), the
exposed group’s inhalation rate and body weight and from the total time of exposure.
At each time step, the respective outdoor or indoor concentration was estimated
based on the activity pattern of the exposed individuals. The exposed population
groups considered, included infants, children aged 4–9 years, 10–14 years, adult
females and males. For each age, gender and ethnicity group, different inhalation
rates (ICRP 2002), amount of dust ingested (Wormuth et al. 2006) and body weights
(Sarigiannis et al. 2012b) were used.

IRijkg ¼
Qinh,g � texp

BWg
=365

� �

�
Z t2

t1

Cijk tð Þdt þ
Z t3

t2

Cijk tð Þdt þ . . .þ
Z tn

tn�1

Cijk tð Þdt
� �

ð4:20Þ

where Cijk is the average pesticide concentration in the exposure medium (in mg
AS/m3) over the exposure period (texp), Qinh,g is the daily inhalation rate per gender
category g (in m3 air/d), BWg is the body weight (in kg) per gender category g, texp is
1 day and tn is the total simulation time (in hours). The same approach was used for
the inhaled pesticides adsorbed in particles. In this case, the actual intake (taking into
account the deposition fractions based on PM size distribution) was estimated.
Similar considerations (in terms of exposure duration and age and gender depen-
dence) were made for the other pathways and routes, which in practice included
(a) particles deposition on the skin, (b) dust exposure to skin through rubbing off and
(c) dust ingestion due hand to mouth behavior. Overall intake on a daily basis was
the sum of the intake rate from all exposure pathways.
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4.7 Conclusions

Exposure assessment is the weak link in the chain of calculations required for
assessing the risk of chemical mixtures. The current understanding of the need to
capture exposures that take place during different key periods of one’s life (i.e. the
exposome) to properly investigate the link between chemical mixtures and human
health warrants the use of complex models. Intake fraction modeling is a good start
for screening purpose modeling. However, more detailed insights on exposure
drivers and patterns, dynamics in space and time and variation by gender, age,
socio-economic status, location and other determinants are needed to properly
account for co-exposure to multiple chemicals in real life. Our work has shown
that the real integrator is the human body, i.e. that internal exposure should be
considered to properly capture the health effects of complex chemical exposure.
Indeed, age, physiology, metabolic capacity, pre-existing health condition and
exposure history (especially to persistent and biocumulative compounds) affect
significantly how uptake dose of chemicals is transformed into biologically effective
dose at the relevant target tissue. Integrating external with internal exposure is key to
improving health risk assessment of chemical mixtures. Integrated complex expo-
sure modeling facilitates the assimilation of human biomonitoring data in the actual
exposure estimation.

Complex exposure modeling helps the assimilation of human biomonitoring data
for exposure estimation. It also helps capture and quantify potential interactions
between mixture components at realistic / actual exposure doses. Biokinetics and
biodynamics of active xenobiotics may be perturbed from co-exposure to chemicals,
which compete for the same metabolic receptor sites or induce allosteric effects
perturbing metabolic pathways that may be linked to adverse outcome pathways.
Being able to mathematically describe such perturbatory mechanisms avoiding the
complexity and cost of extensive experimentation helps to tackle mechanistically the
effects of co-exposure to multiple compounds and/or elements. Modeling platforms
such as INTEGRA and MENTOR provide the necessary computational infrastruc-
ture to perform high performance computing so as to reckon the biologically
effective dose of xenobiotics in a mixture and their toxic metabolites.
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Chapter 5
Introduction to Environment
and Exposome-Wide Association Studies: A
Data-Driven Method to Identify Multiple
Environmental Factors Associated
with Phenotypes in Human Populations

Chirag J. Patel

Abstract It is a priority to identify multiple environmental factors, or mixtures,
associated with disease phenotypes in human populations. However, high-
throughput computational methods to identify mixtures that are important in
human disease are lacking. This chapter describes the “environment-wide associa-
tion study” (EWAS) analytic approach to identify a number of environmental
exposures in human disease. With the advent of high-throughput environmental
exposure information (e.g., exposome), methods such as EWAS will be instrumental
to accelerate discovery in disease.

Keywords Environment-wide association study · Genome-wide association study ·
High-throughput · Biostatistics · Bioinformatics

5.1 Introduction

The phenomena of environmental exposure are complex, and humans are exposed to
not a handful but many heterogeneous exposures simultaneously (Patel and
Ioannidis 2014a, b). As discussed throughout this book, it is a priority to identify
combinations of factors, or mixtures, associated with disease in human populations.
However, most epidemiological investigation studies to date consider one or a few
exposures at a time, and we currently lack data-driven methods to associate, and
discover, numerous environmental exposures with phenotype and disease.

This is of concern as complex diseases are multifactorial, and it is hypothesized
that diseases arise due to the contribution of multiple interacting genetic and
environmental factors (Schwartz and Collins 2007). For example, the genome-
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wide association study (GWAS) is a commoditized, standardized, and popular
framework used by researchers to evaluate genetic factors in disease or phenotype
along the entirety of the genome (Burdett et al. 2015; Salonen et al. 2007; Saxena
et al. 2007; Sladek et al. 2007). Due to wide accessibility of genome-scale GWAS
assays, which can ascertain millions of genetic variants simultaneously, human
geneticists have now moved from studying a handful of genetic variants at a time
to a more data-driven, comprehensive, systematic, and agnostic reporting of robust
genetic associations and their replication in independent populations. As a result,
over 2000 GWAS have been published, often over 20 for specific diseases such as
type 2 diabetes (T2D) (Burdett et al. 2015) in sample sizes now reaching in the
hundreds of thousands. GWAS has strengthened the epidemiological process and
methodology of screening and validating genetic variants. In this chapter, analogous
methods are described for environmental exposure to enable data-driven discovery
of multiple environmental exposures that reflect a mixture of individual factors
associated with disease.

Specifically, in this chapter, an analogous framework to GWAS is proposed,
called “environment-wide association study” (EWAS), to search for and analytically
validate environmental factors associated with continuous phenotypes or discrete
ones such as disease. This type of question is different from a hypothesis-driven
approach in which a single candidate or a handful of environmental factors are
chosen a priori and tested individually for their association to a phenotype and
analogous to questions facilitated by GWAS.

But first, what accelerated genomic discovery through GWAS? The primary
driver for GWAS was accessibility of decreased-cost, high-throughput, and unified
genome-wide assays, giving human geneticists and genetic epidemiologists (Wild
2005, 2012; Wild et al. 2013) a more comprehensive way to search for genetic
factors in disease. Currently, this is elusive in environmental epidemiological stud-
ies. To meet this challenge, scientists have called for efforts to elucidate and measure
the exposome (Chap. 3), the environmental exposure analog to the genome, whereby
a higher-throughput battery of environmental exposures is ascertained in humans
including infection, pollutants, and nutrients simultaneously throughout the life
course (Rappaport 2012; Rappaport et al. 2014; Rappaport and Smith 2010; Buck
Louis and Sundaram 2012; Miller and Jones 2014; Patel and Ioannidis 2014b).

As such, there are few epidemiological cohorts that ascertain the exposome to
facilitate the identification of mixtures associated with disease. However, at least two
studies, the National Health and Nutrition Examination Survey (NHANES) (Centers
for Disease Control and Prevention (CDC) 2013, http://www.cdc.gov/nchs/nhanes.
htm and http://nhanes.hms.harvard.edu) and DEMOCOPHES (http://www.eu-hbm.
info/democophes), provide opportunities for exposome and mixtures research. The
NHANES is a cross-sectional survey representative of the United States. It is
comprised of both health questionnaire and laboratory and clinical data using a
multistage probability sampling design, and the Centers for Disease Control and
Prevention – the administrators of the survey – collected information through
in-person interviews, physical measurement at mobile examination centers, and
human samples (Chap. 2). To date, the NHANES is a gold standard for
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ascertainment of quantitative exposome measurements in human tissue, consisting
of over 300 individual biomarkers of environmental exposure (see http://www.cdc.
gov/nchs/data/nhanes/survey_content_99_14.pdf). For a subset of the population,
longer-term follow-up information such as cause of death and utilization of Medi-
care is also available to the public.

In fact, NHANES has been utilized to conduct EWAS for multiple phenotypes,
including to identify in a data-driven manner multiple exposures associated with
type 2 diabetes (Patel et al. 2010), blood pressure (Tzoulaki et al. 2012), serum lipid
levels (Patel et al. 2012), all-cause mortality (Patel et al. 2013a), telomere length
(Patel et al. 2016) mothers with preterm birth (Patel et al. 2013b), and even correlates
of income (Patel et al. 2014). See Fig. 5.1 for examples. These analyses provide
illustrations of the potential for identifying mixtures in populations, and readers are
encouraged to read them for broader details. By the time that this chapter is
published, new technologies and cohorts will likely have emerged that consider
the exposome and its association to disease as it is an obvious venue to ascertain
mixtures in humans. One promising avenue includes the Children’s Health Analysis
Resource (or CHEAR: http://www.niehs.nih.gov/research/supported/dert/programs/
chear/), a NIH/NIEHS funded program to develop new technologies to measure

Fig. 5.1 A “Manhattan plot” visualization of an EWAS for type 2 Diabetes (T2D). Briefly,
NHANES was utilized to search for environmental exposure factors associated with T2D. Individ-
uals classified as T2D had a fasting blood glucose greater or equal to 126 mg/dL, and controls were
individuals lower than this threshold. Using methods described in this chapter, each of 266 expo-
sures in four independent surveys of NHANES (depicted as diamonds [1999–2000 survey], squares
[2001–2002], circles [2003–2004], and triangles [2005–2006]) was associated. The y-axis depicts
the p-value of significance of the correlation; the x-axis arranges each of the exposures tested in
categories of exposure, such as nutrients, PCBs, and heavy metals. The red line depicts a false
discovery rate (FDR) threshold of 10%, and open symbols are ones that are found in more than one
survey and are replicated (Reproduced from Patel et al. 2010)
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children’s exposomes and computational methods and standards to associate the
exposome to critical health outcomes, such as development and growth.

The description of EWAS begins by briefly introducing the genome-wide analog,
GWAS. Second, the EWAS framework and the current EWAS methodology are
described. Last, we discuss our results and posit ways to extend the EWAS
methodology.

5.2 Methods Background

5.2.1 Genome-Wide Association to Disease

With the sequencing of the genome and projects that characterized common genetic
variation such as the HapMap, investigators are now able to interrogate how
genome-wide genetic differences are associated with disease and disease-related
phenotypes on an epidemiological scale (Hardy and Singleton 2009; International
HapMap Consortium 2005). These revolutionary studies, known as GWAS, have
enabled investigators to ask what common genetic loci are associated with a
particular phenotype in an agnostic, systematic, and comprehensive way with
explicit control of multiple test correction to mitigate possibilities of false positive
reporting.

Specifically, during the HapMap project, common single nucleotide (SNP) var-
iants were catalogued on the basis of their population frequency (� 10% population
frequency) and major and minor allele versions (Manolio et al. 2008). The location
of each SNP along the genome is referred to as a “locus,” and the presence of
variation at a particular locus denotes a “polymorphism” or a “polymorphic” locus.
“Common” polymorphisms are those that occur in approximately greater than
5–10% in the population. Thus, by definition, a “common” SNP must reside at a
polymorphic locus. There are greater than 1 million common SNPs in the genome
(International HapMap Consortium 2005). While SNPs are the most common type
of polymorphism in the genome accounting for 90% of genetic variation, many other
types of genetic variation exist, such as copy number variants, insertions, and
deletions.

GWAS relates traits to variation at each – or a large subset of – common
polymorphic locus in the genome and is enabled by genomic technologies, known
as “SNP microarrays,” which can assay greater than 1 million loci simultaneously
for an individual. These microarrays are now mere commodity items, like com-
puters, making accessible genome-wide measurements on a large number of indi-
viduals (Wetterstrand 2011). Further, these technology platforms are known to have
very low measurement error (Ioannidis et al. 2009).

GWAS is constructed by recruiting thousands of individuals with (“cases”) and
without (“controls”) a trait or disease. Genotype frequencies at each locus across the
genome are then compared between cases and controls using common statistical
tests such as a chi-squared test (Pearson and Manolio 2008), assuming independence
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between each locus. Loci can be correlated with each other, a phenomenon known as
“linkage disequilibrium.” Loci that are in “linkage disequilibrium” occur more
frequently together than would be expected if they were independent (discussed in
detail in Sect. 2.2). When multiple loci are correlated, their associations with the
disease or trait may be shared, and association tests are updated by “adjusting” the
statistical models with another locus in linkage. Genetic loci can also be associated
with continuous traits, such as levels of a biomarker (e.g., blood pressure or serum
glucose), by modeling the continuous trait in a linear regression model (Frayling
et al. 2007). This linkage is expanded upon below.

Multiple comparisons are accounted for through conservative Bonferroni adjust-
ment, and significant loci are validated in independent populations. As will be
described in more detail below, corrections to significance thresholds, such as the
Bonferroni correction, are required to guard against spurious findings when
conducting multiple tests of association. For example, imagine conducting an
association study between 100 pollutants and blood pressure. Also imagine that an
oracle has told us the true scenario that none of the pollutants are truly associated
with blood pressure (and therefore no correlations should emerge). At a p-value
threshold of 0.05 under the distribution of no correlation between the pollutant
factors and blood pressure, five pollutants will emerge as significant! These are
known as false positives and may emerge when conducting more than one test of
association. Go ahead and test this out for yourself in your favorite statistics software
by generating 100 random “pollutant” factors, and correlate those each with a
random “phenotype,” and count how many times a significant correlation occurs at
p-values 0.1, 0.05, and 0.01. How many associations are significant due to chance?

Preceding GWAS were “candidate gene studies,” a hypothesis-driven study to
correlate a handful of genetic variants to a trait of interest using a “smaller” sample
size. As a consequence of lack of power and prohibitive genotyping cost, the
agnostic, comprehensive, and systematic analytical and validation procedure of
GWAS eluded traditional genetic association studies (Goldstein 2009; Manolio
et al. 2009; Mccarthy et al. 2008; NCI-NHGRI Working Group on Replication in
Association Studies 2007; Ioannidis et al. 2001). To facilitate discussion regarding
“environment-wide association,” we describe these “agnostic,” “systematic,” or
“comprehensive” characteristics of GWAS. The agnostic or comprehensive charac-
teristic means all possible hypotheses (all environmental factors) are tested and the
investigators do not “cherry-pick” what factors to correlate. Systematic refers to the
similar treatment of each association test: each association is modeled in the same
way, using the same model, population samples, and/or adjustment variables. How
this is achieved in EWAS is described below.
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5.2.2 Environment-Wide Association to Disease

In the following, a study design analogous to GWAS is proposed called “environ-
ment-wide association study” (EWAS) to search for and analytically validate envi-
ronmental factors associated with complex diseases and phenotypes.

EWAS assumes a similar “data structure” to that of GWAS. Recall that in
GWAS, multiple genetic factors are assayed along with phenotypic information on
each individual (Fig. 5.2). In other words, the genetic factors are the independent
variables, and the phenotype is the dependent variable. In EWAS, the genome
domain is substituted with the environmental domain or exposome domain
(Rappaport et al. 2014; Rappaport and Smith 2010).

Specifically, the quantity or presence of environmental factors is directly mea-
sured on each individual, such as the amount of a chemical in bodily tissue, or a
proxy measure, such as self-report historical exposure. It is important to note that the
environment is a dynamic entity, unlike the data structure of GWAS. Thus, the
dimension of time may also be added to the structure of EWAS data, framing it in a
longitudinal context.

Fig. 5.2 Sample data structure for EWAS. “Phenotype” is the dependent variable. “Sex,” “age,”
“ethnicity,” and “SES” (socioeconomic status) are examples of adjustment variables. X1 through Xp

are environmental factors; sample1. . .samplen are the individuals that make up the population.
Values inside each cell denote an example of the data type for the variable. For example,
“phenotype” here is a binary variable taking on 1 if the phenotype is present, 0 if absent; “sex” is
a categorical variable for males and females. X variables representing environmental factors may be
continuous (e.g., X1, Xp), positive/negative (e.g., X2), or ordinal (X3). Data might be missing (e.g.,
NA cells). The vertical axis denotes individuals in the sample. Each environmental factor belongs to
a “class,” or grouping, that represents a common characteristic of those factors, represented in the
figure as “Class A,” “Class B,” and “Class Z”
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GWAS variables are “binned” by their chromosomal location, facilitating the
description of their correlation structure – known as linkage disequilibrium (LD) –
when visualizing associations. Specifically, LD is the correlation of two or more loci
in the genome. Further, LD is a function of relative location of the two loci; that is,
the closer together two loci are on a chromosome in general, the higher their
LD. Suppose one locus is being considered: in this scenario, individuals inherit
alleles from their parents, one from the mother and one from the father. The genotype
at one locus is a random event and is dependent on the frequency of alleles present at
that one locus in the mother and father. Now suppose two loci (two sets of
genotypes) are in “LD.” This means that their pattern of inheritance is correlated;
that is the occurrence of a particular allele “A” at a locus A and “B” at a locus B is
nonrandom or dependent with respect to one another. In other words, the presence of
one allele can predict the presence of another. LD among different populations has
been characterized by the HapMap project and is ongoing with the 1000 Genomes
Project (International HapMap Consortium 2005). In GWAS, LD structure is impor-
tant. First, since only a prevalent subset of polymorphic loci is being assayed, LD
allows narrowing down of what variants might be causal. For example, given an
association signal for a variant, the causal variant might be one in strong LD with
it. LD also provides an internal gauge of validity; for example, given a strong
association signal of a variant at loci X, one would expect measured common
variants that are also in LD with X to harbor some signal.

At present, LD in EWAS is qualitative not quantitative as in GWAS. In applica-
tion of EWAS, factors are binned according to categories that described the com-
pound “class,” had shared environmental health “relevance,” or described some
other arbitrary shared characteristic as a group of factors. A nonarbitrary shared
characteristic would be co-occurrence or correlation (environmental exposure fac-
tors that are correlated may co-occur with one another). A research effort will be to
fully characterize the LD of the exposome including their correlation/covariance
structure and population-wide prevalence as has been done with the HapMap.

EWAS achieves the agnostic, systematic, and comprehensive qualities that char-
acterize GWAS. First, instead of testing a few environmental associations at a time,
EWAS evaluates multiple environmental factors agnostically. EWAS is comprehen-
sive in that each factor measured is assessed for possible association with the target
phenotype. Next, associations are systematically adjusted for multiplicity of com-
parisons. Further, EWAS calls for validation of significant associations in an inde-
pendent population.

The EWAS framework calls for systematic and comprehensive sensitivity ana-
lyses of highly significant or validated factors. Specifically, all possible measured
confounders are included in final models, and their effect on the estimate of the
environmental factor is assessed. Last, given the dense web of correlation for
nongenetic measures, such as between environmental factors and clinical measures,
the correlation structure between validated environmental factors and risk factors is
systematically computed and visualized to understand the degree of their
interdependence called “exposome globes” (Patel and Ioannidis 2014b; Patel and
Manrai 2015). By visualizing relationships in this way, mixtures of nonindependent
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exposures associated with phenotype can be inferred, similar to “relevance network”
or clustering analyses (Butte and Kohane 2000; Butte et al. 2000).

5.2.3 Conceptual Challenges in Data-Driven Studies
of Environmental Exposures in Disease

Challenges and biases related to observational studies influence all association
studies, be it from hypothesis-driven candidate factor study, GWAS, or EWAS. In
contrast to “gold-standard” randomized trial study data, environmental epidemio-
logical studies, including EWAS, rely on observational study data, such as longitu-
dinal cohort, case-control, or cross-sectional data. These types of epidemiological
studies are subject to confounding biases that hinder causal inference and are
avoided, to some degree, in randomized studies (Greenland 1990); however, the
gold standard scenario of a clinical trial is not suited for agnostic study of the
exposome as it is impossible to randomize such a matrix of factors.

“Confounding” is used to describe a scenario in which a variable is correlated
with both the factor of interest (the independent variable) and phenotype (dependent
variable) (Greenland and Morgenstern 2001); in EWAS analyses, the factor acts as a
“proxy” to the confounding variable, resulting in a false association between the
dependent and independent variable. A partial solution to this type of bias is
including the confounder as a covariate in the statistical model or “controlling” for
the confounder. This, of course, is only possible when the confounder is known and
measured.

Famous examples include associations derived from observational studies later
contradicted by randomized control trials (RCT): (1) β-carotene, thought to have
muted the risk for smoking-induced cancer (Peto et al. 1981), only to be refuted by a
RCT later (Omenn et al. 1996), (2) vitamin E and decreased risk of coronary heart
disease (CHD) (Hooper et al. 2001), and, notably, (3) vitamin C and CHD, where
relative risks from observational studies indicated a protective effect of vitamin C,
whereas vitamin C was found to increase relative risk of CHD in a large RCT (Davey
Smith and Ebrahim 2003)!

Another source of “bias” includes “reverse causality” or reverse association.
Reverse causality leads to the failure to infer proper “forward” direction between
the independent variable (e.g., environmental factor) and dependent variable (phe-
notype). Specifically, it occurs when the independent variable comes directly or
indirectly as a result of the dependent variable. An example of this is a sample-wide
behavioral shift due to the dependent variable, such as increased intake of a vitamin
due to an adverse phenotype. If we were to associate the environmental factor, the
vitamin, with the phenotype as the dependent variable, the interpretation of the
model would suggest that a change in vitamin exposure leads to a change in
phenotype when in fact the opposite is true. These biases are especially prevalent
in case-control or cross-sectional studies in which individuals are measured at one
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point in time. A way to take into account the dynamic nature of nongenetic variables
and biases such as reverse causality includes conducting a longitudinal study in
which we may observe jointly changes in phenotype and exposure pattern as a
function of time (Rothman et al. 2008).

The nature of the environmental factors themselves also biases results. First, the
assessment of the quantity of environmental factors in blood and serum is subject to
measurement error (Ioannidis et al. 2009), and self-report variables are subject to
recall bias. Further, physiological characteristics of factors themselves influence
estimates, including the variability of the kinetics of chemical factors, such as how
long they are retained in accessible body tissue. For example, chemical compounds
that are easily measured include those that are lipophilic and persistent in fatty tissue.
As adiposity is related to both the measurement of the factor and often the phenotype
of interest (e.g., metabolic syndrome), a positive correlation might indicate
confounding. On the other hand, many types of factors are excreted quickly, also
affecting their measurement and association to the phenotype of interest; however,
“steady-state” or constant exposure might allay a kinetic effect of environmental
chemicals (Bartell et al. 2004).

Importantly, current epidemiological investigations may be fraught with issues in
multiplicity, and these issues may be exacerbated by the dense correlational web of
environmental exposure (Patel and Ioannidis 2014a). Multiplicity signifies the space
of hypothesis tests that can occur: for example, given a database of 300 exposures,
there are 300 potential hypothesis tests for a disease phenotype. Testing multiple
variables for associations with other exposures and outcomes makes possible the
prospect of making discoveries, but the cost of multiplicity can lead to type I error or
false positives. Multiplicity needs to be taken into consideration when identifying
multiple exposures associated with disease, and adjustment for multiple hypotheses
is recommended to “pay the cost” for searching for numerous exposures. One way to
adjust includes the simple but constraining, Bonferroni correction, and yet another
includes the false discovery rate (FDR) approach. These topics are described at
length below.

5.3 EWAS Method

The EWAS methodology and analysis framework are analogous to that utilized in
GWAS. First, an initial scan is conducted for environmental factors associated with a
phenotype of interest through general linear modeling, such as logistic or linear
regression (see example below). Since environmental association occurs in the
observational (vs. randomized scenario), these models include variables that adjust
for known confounders, such as clinical risk factors. Second, multiple hypotheses
are accounted for by estimating the false discovery rate (FDR). Third, factors that are
deemed significantly associated with the phenotype beyond the region of false
discovery are “validated” in independent cohorts. Factors that are validated are
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considered true discoveries. R software to conduct EWAS can be found here: https://
github.com/chiragjp/xwas.

The EWAS framework also calls for systematic sensitivity analyses, whereby
validated factors are modeled under different assumptions or with additional
covariates. Further, the pair-wise correlation between each validated factor is com-
puted and examined to determine their dependence, which can be interpreted as
co-occurrence of a pair of factors or indicative of confounding. Each step is
described further below.

5.3.1 Stage 1: Linear Modeling

Each environmental factor is associated with a phenotype of interest using general
linear models; for example, each is associated with disease status (i.e., case or
control) using logistic regression. Normally distributed continuous phenotypes are
correlated to environmental factors with linear regression. Common risk, demo-
graphic, and clinical factors are added as adjusting variables, such as age, sex,
ethnicity, and socioeconomic status, as phenotypic states and environmental factors
are confounded by these variables. Thus, for an environmental factor Xi in the list of
measured factors Xi . . . Xp, the disease state (Y ) is modeled as a linear function of
environmental factors and adjustment variables (represented by Z ):

Y ¼ αþ βiXi þ ζ Z ð5:1Þ
Xi corresponds to the environmental factor, and βi corresponds to the effect size of
that factor, adjusted by other variables.

The strength of association is computed by the two-sided p-value for βi, which
tests the “null hypothesis” that βi is equal to zero. When modeling the phenotype as
the logit (logistic regression), the exponentiation of βi serves as the odds ratio or the
change in the odds for disease versus un-diseased status for a unit change of the
factor. In the linear regression setting, βi can be interpreted as the change in
phenotype per unit change of the factor. p-values are computed through common
tests of significance, such as Wald tests.

Continuous factors are z-transformed (centered about the mean and divided by
their standard deviation) in order to compare the effect sizes. A z-transformation
allows one to compare across exposures as the new units are in terms of standard
deviations of exposure factors. Many factors measured in tissue have a right skew
and thus are log transformed prior to z-transformation. Binary factors (such as
presence or absence of a factor) are standardized such that effect size reflects a
unit change between exposed and unexposed status; that is, the referent is consis-
tently the “negative” result of a binary test. Ordinal factors are left untransformed.

138 C. J. Patel

https://github.com/chiragjp/xwas
https://github.com/chiragjp/xwas


5.3.2 Stage 2: Controlling for Multiple Hypotheses by
Estimating the False Discovery Rate

Given a set of “discoveries,” or a list of potentially significant factors, how can those
that are false discoveries be determined? In the GWAS setting, Bonferroni correction
is utilized to adjust for multiple comparisons. The Bonferroni adjustment is straight-
forward: it simply divides the significance threshold α for the total number of tests
conducted. This adjustment guarantees the “family-wide error rate” – the probability
of having one or more false positive(s) in a set of results is equivalent to a setting in
which only one hypothesis was tested at level α. However, the threshold is conser-
vative, and therefore power for detection is lost.

To account for multiple comparisons in EWAS, an empirical estimate is com-
puted of the false discovery rate (FDR) derived through permutations of the pheno-
type multiple times, effectively creating a “null distribution” of test statistics. In
contrast to the Bonferroni correction, the FDR provides a quantitative estimate of the
number of false positives in a set of “discoveries.” The FDR is less conservative and
therefore more powerful than the Bonferroni correction (Noble 2009). Further, since
the estimate of the FDR utilizes the data itself, it inherently considers the covariance
structure of the data, an important quality given the dense correlation of nongenetic
factors (Noble 2009).

The FDR is the estimated proportion of false discoveries made versus the number
of real discoveries made for a given significance level α, to control for multiple
hypothesis testing. To estimate the number of false discoveries, a “null distribution”
of regression test statistics is created by shuffling the phenotype a large number of
times (100–1000) and refitting the regression models. The FDR is the ratio of the
proportion of results that were called significant at a given level α in the null
distribution and the proportion of results called significant from the real tests. A
significance level is used that corresponds to a FDR of 5–10% to select associations.

The example algorithm to compute the FDR follows:

1. Do: Stage 1, Linear Modeling.

2. nullPvalues <- NewList()

3. For i in [1. . .numberPermutations]:

4 randomPheno <- permutePhenotypeWithoutReplacement(phenotype)

5. For xi in [X1. . .Xp]:

6. Modi <-GeneralLinearModel(randomPheno,xi,Xses,Xeth,Xsex,

Xage)

7. ListAppend(nullPvalues, getPvalue(Modeli, xi))

8. fdrRaw <- []

9. for pvalue in Pvalues:

10. numerator <- sum(nullPvalues < pvalue)/numberPermutations

11. denominator <- sum(Pvalues < pvalue)

12. listAppend(fdrRaw, numerator/denominator)
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13. fdrs <- []

14. for I in [1. . .p]:

15. fdr <- min(rawFdr[i. . .p])

16. ListAppend(fdrs, fdr)

Algorithm 1 Computing the FDR (q-value) for each p-value during Stage
1 of EWAS.

To begin algorithm 1, the p-values for association for each factor need to be
established. Then, for a number of permutations, the regression model is refit for the
random phenotype for each environmental factor, and all of these “null” p-values
(line 3–7) are collected. For each p-value computed, the raw FDR, or the ratio of the
raw number of results that exceeds that p-value threshold in the permuted data and
the number of results that exceeds that p-value in stage 1 (line 11, 12, and 13), is
calculated. As FDR should be a monotonically increasing function of the p-value,
the researcher ensures that the FDR for a p-value is the minimum of the FDRs for all
p-values equal to or greater than that p-value (line 15). The resulting array of FDR
values corresponds to the FDR for each p-value computed in Stage 1.

Of course, the original method for estimating the FDR can be used (Benjamini
and Hochberg 1995), eliminating the need for algorithm 1. However, as discussed
earlier, estimating the FDR through permutations of the dependent variable is
preferred in the scenario in which the variables are correlated. In addition, much
has been documented about what variables to permute or bootstrap. For example, it
has been suggested that model residuals, the difference between the predicted and
true values, should be permuted (or bootstrapped) as opposed to the original
outcome variables (replacing line 4 in algorithm 1 (Efron 2010)). In our experience,
similar estimates of the FDR were obtained under different documented methods of
permuting. The reader is advised to refer to Manly, Efron, and Westfall and Young
for more in this area (Manly 2007; Efron 2010; Westfall and Young 1993).

5.3.3 Stage 3: Validation

Findings deemed significant corresponding to some nominal FDR level are validated
or replicated in one or more additional independent cohorts with a nominal p-value
(e.g., p ¼ 0.05 in the independent replication cohort). Importantly, the direction of
the effect size in the validation cohort must be equivalent to that in the initial screen.

5.3.4 Stage 4: Sensitivity Analyses

Confounding and reverse causality influences the strength of association, biases the
effect size estimate, and in general affects causal inference of environmental factors
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to phenotypes. Thus, a method is proposed to begin to approximate these biases.
However, it cannot be claimed that these biases will be found nor that confounding
will be eliminated; nevertheless, methods are described to assess bias given that they
were measured.

In the first, all measured variables are systematically reviewed that were not
considered in the list of environmental factors – but could influence the association
– and sequentially added to the linear model as an additional covariate. Then the p-
value of association and the effect size corresponding to the environmental factor
calculated from the extended model are compared to the original model computed in
Stage 2. The difference between the extended and original factor coefficients
quantifies the contribution of the bias due to the new variable.

Types of variables that might bias the associations depend on the phenotype and
environmental factors under study but often include knowledge of clinical status
(e.g., diagnosis of a disease), recent food, supplement or drug intake, and physical
activity. For example, knowledge regarding one’s disease state might induce behav-
ioral change, resulting in increased exposure to foods high in vitamins and certain
nutrients; association between these vitamin factors and disease might then be
attributed to reverse causality. Or, the use of a drug might induce phenotypic change,
biasing estimated effects toward the null. This method is dependent on a multitude of
measured potential confounders. Large epidemiological datasets arising from the
public domain or of large consortia often measure many of these other clinical and
behavioral nongenetic variables which can be utilized to test the “sensitivity” of the
final validated effects of environmental factors associated with a phenotype.

5.3.5 Stage 5: Correlation Globes

The correlation/covariance structure between nongenetic measures is known to be
“dense” (many factors are correlated with one another), and this structure also
influences the ability to infer the independent effect of factors on phenotype as
discovered in EWAS. Furthermore, the initial screen methodology assumes inde-
pendence between factors and therefore provides little information about their
correlation.

Concretely, given a list of discovered factors, their joint association to the
phenotype of interest might be due to their co-occurrence, such as similar routes of
exposure. The degree of dependency between validated factors is assessed by
computing their raw correlation coefficient (Spearman’s ρ) and visualizing this
with a correlation “globe” (Patel and Manrai 2015). Briefly, correlation between
exposures allows analysts to describe how certain exposures can lead to other
exposures. For example, many nutrients are consumed together. A nonoptimal diet
(however it may be defined) may lead to a deficiency in a whole group of vitamins
and nutrients. As another example, individuals who are exposed to air pollution may
also be exposed to or have high body burdens of hydrocarbons, volatile compounds,
and heavy metals.
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Many methods have been proposed to describe the correlation between multiple
variables and have been used successfully in the genomics field (e.g., Horvath 2011;
Eisen et al. 1998; Butte and Kohane 2000). These methods have yet to be applied to
describe relationships between exposures. The exposome globe is utilized to visu-
alize clusters of measured exposures correlated with exposures identified in EWAS
(“EWAS-identified exposure”). Here it is hypothesized that it is possible to attain a
broader and more interpretable view of EWAS-identified exposures with an
exposome globe.

Briefly, to compute and visualize an exposome globe, a nonparametric correlation
coefficient between each pair of environmental factors is estimated. These coeffi-
cients are tetrachoric correlations between pairs of binary factors and Spearman
correlations for continuous factors. There are many ways to compute correlations
between variables. A nonparametric approach was chosen to avoid distributional
assumptions regarding the environmental factors. Next, a permutation-based
approach – similar to that described in algorithm 1 – is used to estimate the
two-sided p-value of significance for each pair of correlations. Specifically, each
environmental factor is randomly permuted (sampled without replacement), and the
correlations were recomputed to create a set of correlations that reflected the null
distribution of no correlation. The p-value for an individual correlation is then
estimated by counting the number of permuted correlations (corresponding to the
null distribution) that exceed the correlation in question. Next, the FDR is estimated
using the Benjamini-Hochberg step-down approach (Benjamini and Hochberg
1995).

This exercise creates an array of pair-wise exposures whose interdependency is
captured by a correlation coefficient. Each pair-wise correlation is visualized with
the Circos visualization toolkit version 0.67 (Krzywinski et al. 2009). Each individ-
ual environmental factor is grouped and arranged in a circle. Lines between factors
on the inside of the circle depict replicated correlations between factors, and the
thicknesses of the lines depict the absolute values of the correlations. Red and blue
lines represent positive and negative correlations, respectively. By visualizing rela-
tionships in this way, nonindependent exposures associated with phenotype can be
inferred (Butte and Kohane 2000; Butte et al. 2000). For an example, see Fig. 5.3.
Code to estimate correlation globes in the National Health and Nutrition Examina-
tion Survey (NHANES) can be found here: https://github.com/chiragjp/exposome_
correlation. Further, one can peruse correlation globes estimated from the NHANES
data here: http://www.chiragjpgroup.org/exposome_correlation/html/. The
exposome globe is claimed here as a first step toward identifying putative mixtures
of exposures associated with disease. These mixtures may be a result of common
routes of exposure or behaviors (e.g., foods are mixtures of nutrients, or smoking
behavior can result in a mixture of hydrocarbons and heavy metals). These system-
atic correlations may also help identify shared characteristics of exposures; for
example, chlorinated persistent pollutants were all densely correlated with one
another perhaps due to shared routes of exposure but also because they happen to
be lipophilic and have similar metabolic fates.
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Fig. 5.3 (a) Exposome correlation globes for EWAS in all-cause mortality and (b) type 2 diabetes
(T2D). Association p-values from EWAS are shown as a separate track (“EWAS track”) above each
exposure (red points denote EWAS validated associations with positive effect size [indicating risk];
blue points indicate an EWAS validated negative effect size [indicating protective]). Each line
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5.4 Discussion

As described above, EWAS may facilitate many different ways of screening for
factors. But, in the end, detecting mixtures will be an analytically complex exercise,
requring new machine learning methods, but most importantly, large sample sizes.
Previously, we recommended documenting prevalent exposures associated with
disease using EWAS and replication before attempting to investigatehow combina-
tions of exposures may influence phenotype or disease risk (Patel 2017). Extensions
are described that might be used off-the-shelf to accommodate longitudinal data and
statistical learning methods that consider the entire matrix of dependent variables
at once.

5.4.1 Longitudinal Data

As discussed, environmental factors are dynamic. One way to capture the dynamic
relationship between environmental factors and a phenotype of interest includes
repeatedly measuring individuals over time. An example includes a longitudinal
cohort study, in which a cohort is followed for a certain amount of time beginning
prior to disease onset, such as childhood or adolescence. This type of study design
might lessen the bias of reverse causality, but not completely (Rothman et al. 2008).

For a binary dependent variable, the Cox proportional hazard model is a common
analytic model that can accommodate both time-independent and time-dependent
variables. With this model, line 4 of algorithm 1 is substituted with the Cox model
that inputs time-dependent variables. For both continuous and dependent variables,
hierarchical modeling techniques such as generalized estimating equations may be
utilized. The EWAS as described by algorithm 1 depends on the distribution of the p-
values and effect sizes for the environmental factors, and statistical tests for these
modeling techniques provide this requirement. Calculation of the empirical FDR
proceeds also in the same way (Witten and Tibshirani 2010).

Fig. 5.3 (continued) represents p-values from high to low, and the significance increases as you
move inward. Validated EWAS associations for T2D and all-cause mortality are offset in red or
blue text. Only “first-degree” correlations (correlations for validated EWAS findings) are displayed
in the globes and displayed in black text. Acryl acrylamide, Mel Melamine, VOC volatile organic
compounds, PCBs polychlorinated biphenyls, and PFCs polyfluorinated compounds (Reproduced
with permission from Patel and Manrai 2015)
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5.4.2 Feature Selection: Shrinkage Methods

The EWAS screening method considers each environmental factor in a separate
linear model iteratively (algorithm 1). This makes feasible the screening and inter-
pretation of many variables without over-fitting the linear model (i.e., p < < n,
where p is the number of predictors, n is the number of individuals). However, this
falsely assumes independence between environmental factors. Statistical learning
methods, such as “shrinkage”methods, enable one to model the dependent variables
simultaneously in the “overdetermined” ( p � n) setting.

Two such popular shrinkage methods include the “lasso” (Tibshirani 1996) and
“elastic net” (Zou and Hastie 2005). These methods are extensions of multivariate
regression and have some relation to tree “boosting” methods (Hastie et al. 2009)
and are applicable over the generalized linear model family, including Cox propor-
tional hazards for longitudinal data (Witten and Tibshirani 2010). Both the lasso and
elastic net are able to fit an overdetermined model by constraining the size of
coefficients (“shrinking”). Because these methods consider the entire set of inde-
pendent variables simultaneously (i.e., multiple regression), algorithm 1 is
supplanted with the shrinkage procedure. Further, k-fold cross-validation is utilized
to select features that have the lowest prediction variability on k number of datasets
held out of the model building process (Hastie et al. 2009).

Feature selection operates through optimizing prediction accuracy of the depen-
dent variable and not through ordering of test statistics of individual coefficients
used in inference. Thus, parts of Stage 1 (FDR estimation) and Stage 2 (Validation)
are reconfigured to accommodate this. Reconfiguring Stage 1, one cohort is used as
the “discovery” or “prediction” cohort, applying the shrinkage method to find factors
associated with the phenotype. Within this cohort, k-fold cross-validation is applied
to optimize prediction accuracy with prediction cohort. Thereafter, the top factors
found through this method are “validated” individually in additional validation
cohorts using common tools for inference (e.g., GLM). Successful validation
requires low nominal p and FDR values for the validation analyses.

Of course, “classical” methods for feature selection exist in the linear regression
domain, such as “forward-stepwise” and “backward-stepwise.” These methods may
be used to select environmental factors, but they are not discussed here due to their
high variability in subset selection due to the stepwise procedure, ultimately reduc-
ing their prediction accuracy (Vittinghoff et al. 2005). The shrinkage methods
discussed above avoid this problem.

In this chapter, a straightforward and generalizable way to associate environmen-
tal variables toward identification of relevant mixtures in disease is presented.
Furthermore, a way of ranking what variables may be worthwhile to pursue for
further study through computation of the FDR is provided. Because of its proposed
utility, the method has become a center point of discussion and debate (Todd 2010;
Fallin and Kao 2011; Mak 2011; Heard et al. 2010; Borrell 2011; Rappaport and
Smith 2010).
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Chapter 6

Ecological Assembly of Chemical Mixtures

Rogelio Tornero-Velez and Peter P. Egeghy

Abstract Human-environment interactions have a significant role in the formation

of chemical mixtures in the environment and by extension in human tissues and

fluids. These interactions, which include decisions to purchase and use products

containing chemicals as well as behaviors and activities that explain the uptake and

absorption of chemicals, may be viewed as an ecological relationship between

humans and their environments. Methods with origins in community ecology for

evaluating structure in assemblages of flora and fauna are applied to investigate the

nonrandom assembly of chemical species. Presence-absence matrix-based tech-

niques are used to elaborate co-occurrence patterns with the aim of identifying the

principal chemicals which tend to co-occur. This ecological premise is expanded by

drawing on consumer market basket analysis techniques to show how this approach

may help identify robust co-occurrence patterns.

Keywords Co-occurrence patterns · Community ecology · Chemical assembly ·

Human-environment interaction · Frequent itemset mining · Null model analysis

6.1 The Chemical Landscape and Emerging Technologies

Manufactured chemicals are integrated into nearly all industrial processes, building

materials, and commercial goods such as furnishings, clothing, electronic equip-

ment, cleaning products, and cosmetics (Weschler 2009; Wilson and Schwarzman

2009). Tens of thousands of anthropogenic chemicals are believed to be in wide

commercial use, and several hundred additional chemicals are introduced into the

market every year (U.S. EPA 2014). Despite a pervasive concern about the health

consequences of exposure to ubiquitous synthetic chemicals (Wilson and

Schwarzman 2009), particularly with respect to their role in the etiology of
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increasingly prevalent diseases, such as autism, asthma, and childhood leukemia

(Hertz-Picciotto and Delwiche 2009; Meeker 2012; Perrin et al. 2007), the hazard

and exposure data necessary to assess risk adequately are unavailable for the vast

majority of chemicals in commerce, even among those produced at a quantity

greater than one million pounds per year (Judson et al. 2009).

In response to the need for accelerated risk assessment to substantially expand

the number of chemicals evaluated, large-scale efforts are underway to apply high-

throughput screening (HTS) approaches for toxicity testing (Kavlock et al. 2012;

Tice et al. 2013). These approaches employ in vitro assays of toxicity pathway

perturbations to predict the potential toxicity of chemicals as a cost-effective means

of prioritizing candidates for more extensive toxicological evaluation. Although

high throughput in nature, to date, these systems have been applied mainly to

individual compounds and not to mixtures. Given the infinite possible ways

chemicals may combine to form mixtures, information on the co-occurrence of

chemicals in environmental and biological media is needed to inform the selection

of mixtures for testing. Unfortunately, traditional approaches for measuring and

monitoring chemicals in environmental and biological media have left us without

even the most basic information on the occurrence, much less the co-occurrence, for

the vast majority of man-made chemicals (Muir and Howard 2006; Schwarzman

and Wilson 2009). Only a small fraction of all chemicals in commercial use have

been measured in our environment or in our bodies largely due to the high cost of

developing and applying targeted methods for the analysis of chemicals at trace

levels in complex environmental matrices (Egeghy et al. 2012; McLachlan et al.

2014). Over the past two decades, and particularly over the past few years, new

chromatography methods that allow screening for a large number of compounds in

a single analysis have been developed to efficiently address the extensive number of

chemicals that remain largely unmeasured (Cherta et al. 2015; Croley et al. 2012).

These screening and nontargeted measurement methods are typically based on

high-resolution mass spectrometry platforms, often with Orbitrap1 or time-of-flight

instrumentation, and are applicable to a variety of environmental and biological

media. The approach relies on the accurate determination of the mass of the

molecular ion and subsequent inference of its elemental composition (mass for-

mula) but remains limited by difficulties in processing and filtering the large

amounts of resulting data and by the absence of sufficient reference resources and

optimization algorithms to facilitate the assignment of specific molecular structures

from accurate mass (McLachlan et al. 2014). To compensate for the paucity of

available measurements, approaches for modeling the presence of chemicals in the

environment from information on sources and transportation processes based on

linked environmental fate and bioaccumulation models have been developed

(Arnot et al. 2010, 2012, 2014). Such modeling has been successful at predicting

1An Orbitrap (Orbitrap™, Thermo Scientific™) mass analyzer traps ions in an electrostatic field

where the oscillations of the ions vary in accordance with their mass to charge ratio (Hu et al.

2005).
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presence and relative concentrations of individual chemicals (Arnot et al. 2012) but

has not been evaluated for the ability to correctly predict observed co-occurrence.

Biomonitoring studies show that humans carry a body burden of large numbers

of chemicals, yet representatives of different chemical classes are rarely studied

together (Meek et al. 2011; Yorita Christensen et al. 2013). In their prescient

commentary which set forth a vision for collaboration between the National

Institute of Environmental Health Sciences (NIEHS) and National Center for

Environmental Health (NCEH) and Centers for Disease Control and Prevention

(CDC), melding advances in toxicological testing (transgenic mouse, estrogen

screen) and data on biomarkers in the population, Bucher and Lucier (1998)

discussed use of large population-based surveys such as the National Health and

Nutrition Examination Surveys (NHANES), (1) to determine whether there are

common subsets of chemicals that persist in large segments of the population (and

proposed that such subsets provide a logical starting point from which mixture

studies can be designed and tested in rodents) and (2) to evaluate persistent

chemicals found in the population for common biological activity.

The recent study by Qian et al. (2015) exemplifies the first aim of Bucher and

Lucier (1998). In their evaluation of urinary metabolite data for six phthalates, Qian

et al. (2015) observed that none of the individuals in the NHANES survey had a

concentration at or above the 95th percentile for all six phthalates measured.

However, at least 40% of individuals were exposed to 3–6 phthalates above their

50th percentiles. Thus, characteristic phthalate subsets were identified in population

samples, and these data provide a basis to inform toxicological evaluations in

rodent studies or streamlined high-throughput methods.

The NHANES National Report on Human Exposure to Environmental

Chemicals is the most comprehensive repository of nationally representative chem-

ical biomonitoring data (NHANES 2015a). However, Sobus et al. (2015) suggest

that the potential of NHANES in this regard has not been fully realized as only a

small percentage of the sampled NHANES-related publications reported on chem-

ical biomarkers (8% yearly average). Indeed, the balance of publications focus on

growth (obesity), physical activity and fitness surveys, diet behavior and nutritional

status, and various health measures (including blood pressure, cholesterol, hepatitis,

herpes, HIV status, osteoporosis, and cardiovascular health) (NHANES 2015b). To

be sure, these metrics are of fundamental importance, yet by themselves they do not

necessarily unravel the role of environmental chemicals in disease etiology.

A number of recent publications illustrate how both NHANES health and

exposure data may be mutually informative. Yorita Christensen et al. (2013) used

data from the 2003–2004 cycle of NHANES to evaluate the relationship between

alanine aminotransferase (ALT) and 37 environmental contaminants and observed

significant associations between elevated ALT levels and levels of heavy metals,

non-dioxin-like polychlorinated biphenyls (PCBs), and dioxin-like compounds.

Furthermore, those authors reported interactions between these exposure classes

and ALT and attributed 78% of this interaction to mercury, PCB 180, and

3,30,4,40,5-pentachlorobiphenyl. Patel et al. (2010) used 1999–2006 NHANES to

investigate the relationship between 266 environmental factors and a marker of type
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2 diabetes (fasting sugar� 126 mg/dl), employing a novel methodology which they

denote environment-wide association study (EWAS), modeled after the genome-

wide association study (GWAS) in controlling for multiple comparisons (Chap. 5).

The authors observed increased odds ratios (OR) for exposure to heptachlor epox-

ide (OR 1.7), the vitamin ɣ-tocopherol (OR 1.5), and exposure to high concentra-

tions of PCBs (OR 2.2), as well as a protective effect for beta-carotenes (OR 0.6).

Bell and Edwards (2014, 2015) applied a methodology with origins in market

basket analysis known as frequent itemset mining2 to discover relationships

between 219 chemicals and 93 health outcomes/biomarkers in the 1999–2010

NHANES. The authors not only confirmed chemicals implicated in type 2 diabetes

by Patel et al. (2010) but also confirmed several findings of the “C8 Science Panel”

(Fletcher et al. 2005), which was commissioned to evaluate links between exposure

to perfluorooctanoic acid (PFOA or “C8”) and several health outcomes as part of a

class action lawsuit.

Bucher and Lucier (1998) noted the potential of NHANES in guiding toxico-

logical assessments of complex exposures. They proposed that NHANES may be

used to identify common subsets of chemicals which persist in populations and that

the identified subsets serve as a template to recreate mixtures for testing purposes.

Accordingly, understanding the underlying exposures which may explain chemical

co-occurrence in biological media continues to be a driving goal. The number of

ways that even a relatively small number of chemicals may combine to form unique

chemical combinations can be astronomically large and is equal to 2r for a pool of

r chemicals; for example, with the 212 chemical biomarkers measured in the

2003–2004 NHANES cycle, this works out to 6.58� 1063 combinations. However,

it is imperative to recognize that not all combinations are equally plausible

(Tornero-Velez et al. 2012). For that reason, an understanding of the generative

processes that lead to plausible mixtures is sought, that is, an understanding of

which single chemicals tend to combine to form common subsets and which of

these subsets tend to combine to form higher-order mixtures.

This work explores the hypothesis that chemical mixtures in the environment,

and by extension in human tissues and fluids, are assembled through human-

environment interactions. Methods that were originally developed for understand-

ing ecological assembly of communities are applied to investigate the nonrandom

assembly of chemical species using presence-absence matrix-based techniques.

Machine learning tools are then used to investigate and identify co-occurrence

patterns and their nested structure, thereby revealing which chemicals tend to

combine. The result is an identification of specific chemicals that are likely to

have high probability of co-occurrence at measurable concentrations. These

observed combinations can inform the intelligent toxicity testing of mixtures,

2Now used for the identification of sets of a variety of items in large databases (e.g., a specific set

of symptoms characteristic of a rare disease observed in a medical records database), the technique

originally was developed to examine customer behavior with respect to consumer products

purchased.
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whether for high-throughput screening or more traditional in vivo evalua-

tions (Kapraun et al., 2017). Similarly, these approaches can inform exposure

monitoring and biomonitoring studies by identifying targets for measurement to

optimize monitoring strategies for collecting data of highest value in understanding

chemical exposure.

6.2 Human-Environment Interaction

An ecological assembly of chemical mixtures (ecological in this context refers to

the shaping of chemical mixtures through human-environment interaction) is con-

sidered. The environment refers to modern civilization, not devoid of forests and

savannahs and other natural spaces, yet clearly marked by the city and its urban

landscape, in a state of perpetual growth and flux. Modern civilization is insepara-

ble from technology and anthropogenic chemicals. Humans are in perpetual contact

with anthropogenic chemicals, in the air breathed, the food and water consumed,

the daily commute, the workplace, and most notably in the ever-expanding portfo-

lio of consumer products being brought to market. Chemicals released into the

environment from distant, “far-field” sources (e.g., factories, refineries) are ulti-

mately dispersed away from the source and among various environmental com-

partments (e.g., air, water, soil, vegetation). Those that are more persistent in the

environment can be distributed over great distances and can come into contact with

humans through a series of complex environmental pathways that include transport

through several environmental media and food web bioaccumulation (Arnot et al.

2012; NRC 2000). Persistence (i.e., resistance to environmental degradation) is

often identified as the most important factor affecting such indirect exposure via the

environment as it, along with release rate, controls the amount present in the

environment. Furthermore, chemicals that degrade slowly may travel greater dis-

tances by long-range transport in air or water and may affect a larger population

(Mackay et al. 2014). Although wind and water serve to disperse chemicals, modern

society also distributes chemicals in a nonrandom fashion, deliberate in its infra-

structure and in the production and consumption of consumer goods. Indeed, it is

the proximal, “near-field” sources of chemicals in the residential environment (e.g.,

consumer goods, household articles, building materials) that are believed to pro-

duce the highest exposure for the vast majority of chemicals, particularly those that

are nonpersistent (Jayjock et al., Jayjock et al. 2009; Mitchell et al. 2013;

Wambaugh et al. 2014). Consequently, chemical co-occurrence is structured

through these societal processes. This chapter focuses on the assembly and identi-
fication of chemical mixtures that arise through human-environment interaction.
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6.2.1 Community Ecology

Human ecology is the study of the relationship between humans and their natural,

social, and built environment. This discipline addresses the process of human-

environment interaction, which encompasses the distribution and use of chemicals

(and the products made from them) and facilitates the creation and maintenance of

one’s immediate surroundings as well as one’s own lifestyle choices. While

acknowledging the broad and diverse scope of human ecology (McKenzie 1924;

Mumford 1938; Hawley 1986; Urban Land Institute 2013), the focus here is on

interactions that involve consumer products. Consumer products contain multiple

chemicals, and thus they introduce chemical mixtures into the environment. How-

ever, these mixtures are also dependent on the combinations of products that

consumers choose to acquire and use. An ecological paradigm is demonstrated as

a useful construct to examine how these choices may impact chemical

co-occurrence in our immediate environment.

In ecology, a community is an assemblage of two or more different species

occupying the same geographical area. The question of whether ecological com-

munities (species assemblages) are structured (nonrandom) and, if so, whether the

structure derives from competitive interaction has been a central question in

community ecology (Diamond 1975; Connor and Simberloff 1979; Sepkoski

1996; Gotelli 2000; Connor et al. 2013). Diamond (1975) hypothesized that inter-

specific competition (wherein different species compete for the same resources)
leads to a lack of co-occurrence of species. In describing the distribution of birds in

the Bismarck Archipelago, Diamond noted “checkerboard” patterns and proposed

that these patterns signify community assembly rules. These assembly rules are as
follows:

a. If one considers all the combinations that can be formed from a group of related species,

only certain ones of these combinations exist in nature.

b. Permissible combinations resist invaders that would transform them into forbidden

combinations.

c. A combination that is stable on a large or species-rich island may be unstable on a small

or species poor island.

d. On a small or species-poor island, a combination may resist invaders that would be

incorporated on a larger or more species-rich island.

e. Some pairs of species never co-exist, either by themselves or as part of a larger

combination.

f. Some pairs of species that form an unstable combination by themselves, may form part

of a stable larger combination.

g. Conversely, some potential larger combinations that are composed entirely of stable

sub-combinations are themselves unstable.
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6.2.2 Parallels Between Chemical and Biotic Species

As divorced as these rules may appear to be from chemical mixtures, consider that

chemicals in commerce are subject to market pressures. Borrowing from the

community ecology model, Tornero-Velez et al. (2012) likened avian species to

chemical species to investigate the co-occurrence patterns of pyrethroid pesticide

residues in 168 child care centers across the country (Tulve et al. 2006). The authors

observed nonrandom co-occurrence patterns of pyrethroids reminiscent of patterns

observed for bird species by Diamond (1975) and concluded that studies of species

co-occurrence parallel the issue of chemical co-occurrence at specific locations.

Both are driven by processes that introduce structure in the pattern of

co-occurrence. Although Tornero-Velez et al. (2012) described a parallel specifi-

cally with avian co-occurrence patterns (i.e., the West Indian Finch matrix), similar

patterns are evident in assemblages of ants (Gotelli and Ellison 2002), reptiles

(França and Araújo 2007), plants (G€otzenberger et al. 2012), fungi (Horner-Devine
et al. 2007), plant-animal combinations (Peng et al. 2008), and even parasites on

marine fish (Gotelli and Rohde 2002). The critical implication of community

structure is that there are fewer realized species combinations than under the purely

random case (where the theoretical tally of unique combinations is 2r for a pool of

r species). But how does structure manifest?

If the idea of replacing avian species with chemical species is entertained, in
particular for chemicals with a social context (consumer products), assembly rules
may be inferred from observed chemical combinations. Diamond’s (1975) assem-

bly rules are not presented here as orthodoxy – indeed, some rules appear as

tautologies of others (Connor and Simberloff 1979). The aim is to repurpose

methods by which community ecologists contemplated a “mixtures problem”

(identification of a community) as one of assembly – assembly of chemical mix-

tures. This is evidently germane to ecology – to delineate an apparent chance

assemblage of flora/fauna species from a real community and to question the

basis for species assembly whether via immigration or competition or both. It is

proposed that the discourse concerning ecological assembly of species is relevant to
the toxicology of chemical mixtures. Mixtures toxicology has developed the

methods to assess departures from additivity,3 though one of the obstacles has

been in identifying specific mixtures to test. If mixture assembly can be understood

as a generative process, it is possible to anticipate which mixtures are likely to form.

In parallel with ecology, chemical assemblages (mixtures) are assumed relevant to

an ecological niche (e.g., licensed child care centers on the national scale).

In a critical examination of Diamond’s (1975) assembly rules, Connor and

Simberloff (1979) accepted some and dismissed others, but what drew most

contention was the notion that competitive segregation is the underlying basis for

community structure (e.g., Brooks 1985; Bartha et al. 1995; Krüger et al. 2010).

3See Gennings et al. (2005) for discussion of a method based on consideration of changes in the

slope of the dose-response curve of one chemical produced by the presence of other chemicals.
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The purpose here is not to delve into this controversy – one which has endured

40 years – but rather to say that the controversy drew attention to an elegant

hypothesis (competitive segregation) and a useful methodology (namely, null
model analysis) for identifying species co-occurrence patterns which can also be

applied to the problem of identifying plausible chemical combinations. It is this

discourse and inquiry that is relevant to mixture toxicology. Popularized by this

debate, the presence-absence matrix has become a fundamental unit of analysis in

community ecology and biogeography (Connor and Simberloff 1979; Diamond and

Gilpin 1982; Gilpin and Diamond 1982; Manly 1995; Jackson et al. 1992; Kelt et al.

1995; Gotelli 2000; Miklós and Podani 2004; Ulrich and Gotelli 2013). In preparing

a site-by-species (0,1) matrix from raw data, information on species abundance

(population size) is discarded beyond registering the presence (1) or absence (0) of

the species. Although this represents a loss of information, the problem is recast as

one of co-occurrence or mutual exclusion (anti co-occurrence) of species.
Figure 6.1 is an example of presence-absence matrix derived from the distribu-

tion of 17 species of finches from 19 of the largest islands in the West Indies (West

Indian Finch matrix (WIF); Gotelli and Abele 1982). Each row i represents a

species (i ¼ 1 to R rows), and each column j represents a site ( j ¼ 1 to C columns).

The entries Xij in the matrix represent the presence (1) or absence (0) of species i at
site j.

Note the widespread occurrence of Loxigilla noctis and Tiara bicolor and, on the
other hand, the rare occurrence of other species such as Loxigilla violacea and Tiara
canora that find habitat in just one or a few islands. This is not unlike the market

presence of some anthropogenic chemicals. Note that in the West Indian Finch

matrix in Fig. 6.1, Hispaniola (the second largest island) exhibits the greatest

species diversity.4 In Fig. 6.1, the total number of species occurrences is 55. Two

2-by-2 submatrices (“checkerboards”) each showing mutual exclusion for a species

pair are emphasized, one with adjacent cells (pair, T. bicolor and T. canora), the
other with nonadjacent cells (pair, T. olivacea and L. noctis). Attention is called to

these checkerboards because when this pattern is sustained across all sites of

occupancy for the pair, it is the basis of Diamond’s (1975) assembly rules. Overall,

of the 136 possible species pairings,5 91 pairs form perfect checkerboard distribu-

tions in the WIF archipelago (species pairs that never co-occur on the same islands;

Gotelli 2000). This is more than the 55 pairs expected (through simulation) had the

occurrences been randomly cast on a “blank” matrix of similar dimensions (Gotelli

2000). Under the model of Diamond (1975), this difference between observed and

expected patterns implies structure derived from competitive segregation.

4All other factors held constant; the number of species on an island is generally observed to

increase with increasing area (Connor and McCoy 1979).
5For N species, there are N(N–1)/2 possible species pairs or 136 pairs for N ¼ 17 species.
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6.3 Null Model Analysis of Pyrethroid Mixtures

Null model analysis has been a way to test hypothesized species interaction, in

particular competitive segregation, in presence-absence matrices. Null model anal-

ysis involves developing a set of randomized matrices and comparing the random-

ized set with the observed matrix to accept or reject a hypothesis of structure (via

the observation of patterns). As defined by Gotelli and Graves (1996):

A null model is a pattern-generating model that is based on randomization of ecological
data or random sampling from a known or specified distribution. The null model is designed
with respect to some ecological or evolutionary process of interest. Certain elements of the
data are held constant, and others are allowed to vary stochastically to create new
assemblage patterns. The randomization is designed to produce a pattern that would be
expected in the absence of a particular ecological mechanism.

To examine co-occurrence patterns of pesticides in the child care center study

reported by Tulve et al. (2006), Tornero-Velez et al. (2012) applied null model

analyses (as prescribed by Gotelli 2000). The Tulve et al. (2006) study aimed to

characterize the environments of young children in a randomly selected, nationally

representative sample of licensed institutional child care centers. Multistage sam-

pling with clustering was used to select 168 child care centers in 30 primary

sampling units in the United States. Pesticides, lead, and allergens were measured

at multiple locations in each center. The authors reported floor surface loadings

Fig. 6.1 West Indian Finch (WIF) matrix as an example of a presence-absence matrix. Two

submatrices (“checkerboards”) are shown indicating mutual exclusion of species pairs in two

islands. The left one has adjacent cells; the right one has nonadjacent cells (Data from Gotelli and

Abele 1982)

6 Ecological Assembly of Chemical Mixtures 159



(ng/cm2) of 15 different pyrethroid or pyrethrin pesticides (hereafter, “pyre-

throids”) in each of the centers. A pyrethroid was considered present (1) if its

surface loading at a particular site (child care center) exceeded the respective

method of detection limit (ranging from 0.002 to 0.016 ng/cm2), and absent

(0) otherwise. In this way, a 15-by-168 presence-absence matrix was derived for

15 distinct pyrethroids in 168 centers. In the context of null model analysis, this

matrix represents the observed matrix. An important assumption/parallel in the null

model analysis approach was that the 168 licensed child care centers were consid-

ered analogous to the archipelagic collection of islands/sites in that both represent a

broad ecological niche. Inferences on chemical co-occurrence patterns correspond

to the domain of the niche (i.e., licensed child care centers). Furthermore,

co-occurrence was assessed among pyrethroids in the same way that ecologists

constrain the analysis to a guild; that is, a group of species competing for the same

environmental resources is analogous to a class of chemicals (pyrethroids) com-

peting for market share.

Gotelli (2000) reviewed the null model analysis literature and developed a

3-by-3 matrix locating nine historical null models used for randomizing and testing

(Fig. 6.2). This summary representation provides an internally consistent interpre-

tation of the methodology. A balance between randomness and structure is achieved

by constraining the randomization according to parameters of the observed matrix.

Thus, a null (1 of 9) can be chosen, and the species-site probabilities calculated

based on the parameters, producing randomized matrices in accordance with the

chosen null.

The analysis works by constraining the null according to beliefs of structure

(based on the marginal row and column totals of the data matrix). More specifically,

the structural hypothesis is derived from parameters of the observed matrix (N, Si, Tj).
Let Si be the total number of occurrences of species i across all sites (row sums).

Define Tj as the total number of species occurring in site j (column sums). And, let

N equal the total number of all species occurrences in the matrix. Allowing the row

and column margin totals to vary randomly with either equal probability (“equally

likely”) or with probabilities proportional to the margin totals in the original matrix

(“proportional”) or to be identical to the margin totals in the original matrix (“fixed”)

leads to nine null models (Fig. 6.2).

With the exception of Null 9 (see Fig. 6.2), the randomization procedure is the

same for all null models, a bootstrapping of the observed matrix. Thus, the

N occurrences are placed back on a blank matrix of the same dimensions as the

observed matrix according to the probability specified by a formula of N, Si, and Tj
(Fig. 6.2). This is performed multiple times, say 5000 times, and a set of matrices

consistent with the null is produced. A metric of choice is then computed for the

observed matrix and compared with a distribution of that metric across the ran-

domized set. If the frequency of the metric in the observed matrix resides in the tails

of the distribution in the randomized set, the null is rejected. The metric at the

center of the assembly rules debate has been the CHECKER (pairs of species which

are mutually exclusive; Gotelli 2000). Tornero-Velez et al. (2012) examined the

CHECKER and considered a metric directly based on association, both in the total
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number of unique combinations (COMBO metric; Pielou and Pielou 1968) and, in

particular, k-way combinations. This does not imply that competitive segregation

was rejected as operative in chemical mixture assembly.

In investigation of pyrethroid co-occurrence in child care centers, a larger

CHECKER score (quantifying the number of pyrethroid pairs forming perfect

checkerboard distributions in the presence-absence matrix) was observed compared

with a chance process (Tornero-Velez et al. 2012). A lower COMBO score (the

total number of unique combinations) was observed compared with purely chance

process. The trend in both these indices provides evidence of structure in

co-occurrence patterns. Table 6.1 shows the parallel between the CCC (child care

centers) matrix and the WIF (West Indian Finch) matrix – both supporting com-

petitive segregation (CHECKER score). For both WIF and CCC matrices, Null

1 (random) simulated too low of a CHECKER score compared with the observed

matrix and was thus rejected (p-value < 0.001). For both WIF and CCC, Null

9 simulated the CHECKER score in accordance with the observed data. For both

WIF and CCC, the COMBO score, the number of unique combinations, tended to

decrease with increasing structure (Null 1! Null 8 ! Null 9)6; however, Null

9 tended to overpredict the COMBO score in both the CCC and WIF matrix. This

suggested that competitive segregation provides a preferable explanation for

Fig. 6.2 Null models used to evaluate structure in presence-absence matrices. Each null has a

unique formula for calculating the probability of occupancy for the first cell in the matrix [P(Xij)],

where N ¼ matrix total, R¼number of rows, C ¼number of columns, Si ¼ total for row i, and T ¼
total for column j. “Proportional” denotes that margin totals are allowed to vary randomly but with

probabilities proportional to the margin totals in the original matrix (Adapted from Gotelli 2000)

6Evaluations of CHECKER and COMBO indices were conducted only for null models 1, 8, and

9 (Tornero-Velez et al. 2012).
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structure. However, for the CCC matrix, the structural isomers of permethrin (e.g.,

cis-permethrin and trans-permethrin) were posited to inflate the number of unique

combinations. After lumping isomers in the CCC matrix into 12 distinct species, a

COMBO score statistically consistent with the observed matrix (Null 9) was

achieved (Table 6.1). Thus, the take-home message from these analyses was that

null model 9, the most structured null, was most consistent with both species and

chemical co-occurrence patterns.

6.3.1 Specific Combinations and Nested Behavior

Tornero-Velez et al. (2012) found that observed combinations were generally of

low order (i.e., five-way or less). Among the 168 centers, there was only one

observation each of seven-, eight-, and nine-way combinations. Combinations

higher than nine-way (considering 12 or 15 distinct chemical species) were not

observed. Four unique five-way combinations were observed; in particular,

{cyfluthrin, cypermethrin, esfenvalerate, cis-permethrin, trans-permethrin} and

{cyhalothrin, cypermethrin, esfenvalerate, cis-permethrin, trans-permethrin} were

consistent with nulls requiring some form of species proportionality. Thus, the

prominence of some species/chemicals across multiple sites suggests they serve as

generators for forming combinations. Null models predicated on equal probability

species (Null 1, 2, and 7) were rejected for combinations of order three-way and

higher; however, these nulls were not rejected for some one-way and two-way

combinations. Furthermore, for combinations three-way and higher, nulls permit-

ting equal probability of sites were tolerated (not rejected). It is unlikely that sites

are equally likely to “host” chemical species. This may indicate that null model

analysis does not have sufficient power to determine the robustness of individual

Table 6.1 Null model analysis on the child care centers (CCC) and West Indian Finch (WIF)

matrices

CCC matrix

15 species � 168 site

CCC matrix, lumped

12 species � 168 sites

WIF

17 species � 19 sites

CHECKER COMBO CHECKER COMBO CHECKER COMBO

Observed 34 39 20 35 91 10

Null 1 7.2** 101.5** 8.8** 65.6** 70.8** 18.6**

Null 8 35.9 61.9** 21.7 46.3** 51.0** 17.2**

Null 9 34.9 42.8* 19.7 35.4 89.4 15.1**

Adapted from Tornero-Velez et al. (2012)

Note: CHECKER index is the number of species pairs forming checker patterns. Segregation

increases as CHECKER increases. COMBO index is the total number of unique combinations.

Structure (nonrandomness) decreases as COMBO decreases. Expected indices under the null

model are based on 5000 simulations, **p-value < 0.001, *p-value < 0.05. To remove the effect

of structuring due to co-occurring isomers produced during synthesis, “CCC matrix, lumped”

lumps isomers together, resulting in 12 distinct species of pyrethroids
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combinations. Indeed, it has been used by ecologists only in conjunction with

general measures of co-occurrence (Gotelli 2000). What was striking – though

not systematically evaluated by Tornero-Velez et al. (2012) – was a pattern of

nested subsets. For example, the most frequent four-way combinations, {cyfluthrin,

cypermethrin, cis-permethrin, trans-permethrin} and {esfenvalerate, cypermethrin,

cis-permethrin, trans-permethrin}, were each observed three times in the 168 cen-

ters, all of which are subsets of the two five-way combinations. And, of the three-

way combinations, {cypermethrin, cis-permethrin, trans-permethrin} was observed

14 times and {cis-permethrin, trans-permethrin} was observed 46 times by itself.

Thus, a nested pattern was apparent in the data.

Nested species patterns are observed in ecological systems (Patterson 1990). The

classic pattern in island geography consists of a cluster of islands off the mainland.

Species richness is greater in the mainland and becomes more fractured on islands

farther from the mainland. The overall pattern is one of nested subsets; as distance

from the mainland increases subsets of species drop-off. The pattern is thought to

result from the predictable sequence of species undergoing extinction from

inhabiting fragmented land (Patterson 1990). The causality of nestedness in insular

communities, whether from selective immigrations or extinctions, is the subject of

debate in ecology (Lomolino 1996). Methods to assess nestedness in ecology tend

toward general measures, some, for example, focusing on the entropy of the

ecological niche (Atmar and Patterson 1993; Rodrı́guez-Gironés and Santamarı́a

2006). A matrix exhibiting nestedness has a “low temperature” indicating low

entropy/structure, while a matrix devoid of nestedness has a “high temperature”

indicating high entropy/randomness. Given the potential for many nested patterns,

it is understandable that ecologists have gravitated toward general measures of

co-occurrence and nestedness in characterizing communities. For purposes of

examining co-occurrence of chemical mixtures, a promising methodology to orga-

nize and make use of nested behavior is the technique of frequent itemset mining.

6.4 Frequent Itemset Mining and Nested Behavior

Community ecology and market basket analysis are of course very distinct and

separate endeavors; however an interesting parallel is that both are concerned with

nested behavior of species (or products). The nested behavior of items (consumer

products, environmental chemical residues) reveals the generative processes that

lead to chemical co-occurrence. The market basket analysis method of frequent
itemset mining exploits the nested behavior of consumer product transactions to

determine if consumers are more or less likely to buy specific items based on their

other purchases. If, for example, an online merchant is aware of the items in a

consumer’s electronic shopping cart, other items are suggested to the consumer

based on the nested behavior of past transactions by a larger population of con-

sumers. Frequent itemset mining relates transactions (T) or “baskets” to items (I),
allowing for mining of association rules (Agrawal et al. 1993; Hahsler et al. 2005).
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In the ecological context, transactions or baskets may refer to islands (sites) and

items to species. In the environmental chemical context, baskets remain sites, and

items become the chemicals of interest. The structure is as follows (Agrawal et al.

1993):

Setof items : I ¼ I1; I2; . . . ; Imf g
Setof transactions : T ¼ t1; t2; . . . ; tnf g, tj � I
AnysubsetB � I is called an itemset

More concretely, Fig. 6.3 shows transactions for grocery store purchases. Here,

the items, I ¼ {milk, bread, butter, beer}. There are six transactions; the fourth

transaction is t4 ¼ {milk, bread, butter}. Any subset B of I is an itemset; however,

here the only concern will be with frequent itemsets.

Frequent itemset mining identifies the frequent itemsets among the infrequent or

spurious itemsets. This is achieved by requiring a global threshold level of occur-

rence (minimum support count) for itemsets. In this way, the major associations are

uncovered when the minimum support count is set high, and rarer more obscure

associations are discovered when the minimum support count is decreased. The

Fig. 6.3 Example database with six transactions and four items. (a) Transaction ID list. (b)

Presence-absence representation. (c) Lattice with frequent itemsets (black) satisfying minimum

support count of 1/3 (Example abstracted from Hahsler and Hornik 2007)
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space of all itemsets can be elaborated as a network (Fig. 6.3) of all possible subsets

of I starting with the empty set (null) and working downward, ending with the set of

all members {abcd}. The nodes represent the universe of unique combinations. In

total, there are 2R � 1 unique combinations (excluding the null set) where R is the

number of items/species/chemicals (4, in the current example).

The Apriori algorithm (Agrawal et al. 1993) is used to trim the exponential

search space (2R) based on support (occurrence). The algorithm proceeds by

elaborating the network from null down through all k-order combinations and

determines if such combinations are observed in the transaction database T at or

above a minimum support count (minimum occurrence threshold) set by the

investigator. Nodes satisfying this criterion are defined frequent itemsets. The set

properties of Apriori are as follows (Agrawal et al. 1993):

No superset of an infrequent itemset can be frequent.

All subsets of a frequent itemset are frequent.

Thus, in Fig. 6.3C since {abc} is frequent, all of its subsets are frequent.

Conversely, since item {ad} is infrequent, all of its supersets are infrequent. Once
frequent itemsets are identified, association rules are developed. A rule is defined
as an implication of the form (Agrawal et al. 1993):

X ! Y
whereX,Y � I andXY ¼ ф

In the expression “X!Y,” consider that X is {milk, bread} and Y is {butter}.

Depending on the number of baskets containing {milk, bread, butter}, the rule X!Y
is supported with support (X [ Y). Only if X!Y is realized do X and Y co-occur, {X,
Y} (Agrawal et al. 1993). X is called the left-hand side (LHS) of the implication and

Y the consequent right-hand side (RHS). The Apriori algorithm requires that the

support count (o) (occurrence in the transaction database) of X and Y be at least

equal to the minimum support count or greater. Support (S) is expressed as an

occurrence fraction (o/N), where N is the number of transactions (examples). Thus,

if the minimum support is set to 0.001 for a database of 50,000 consumer trans-

actions, the minimum support count is 50 occurrences.

The confidence of a rule, conf(X!Y), is defined as the conditional probability of
observing the RHS given the LHS, P(Y|X). In other words, conf(X!Y) is the

proportion of transactions that contain X which also contain Y (Hahsler et al. 2005):

conf X ! Yð Þ ¼ S X [ Yð Þ=S Xð Þ
In this example of six transactions (Fig. 6.3), three of the six (3/6) involve milk and

bread, S(X) is 3/6, but only two of those six (2/6) also involve butter, an S(X [ Y) of
2/6. The confidence of the rule: conf({milk, bread} ! {butter}) ¼ (2/6)/(3/6) ¼ 2/3,

meaning that 2/3 of transactions involving {milk, bread} have the co-occurrence of

interest {milk, bread, butter}. S(X [ Y) can be considered in two important ways, as

the support of the rule (1/3) and as the co-occurrence (1/3).
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Normalizing the confidence by the support of Y gives the lift measure. The lift is

the ratio of observed support (for co-occurrence) to that expected if X and Y were

independent (Hahsler et al. 2005):

liftðX ! YÞ ¼ SðX [ YÞ=ðSðXÞ � SðYÞÞ
In the example, lift ({milk, bread} ! {butter}) ¼ (2/6)/(3/6 � 3/6) ¼ 1.33. If

independence is assumed between {milk, bread} and {butter}, a frequency of

co-occurrence of 1/4 is estimated. But the observed co-occurrence of {milk,

bread, butter} is 1/3, so the estimate would be off by a factor of 1.33. The lower

bound of lift is one (independence), and an increase in lift suggests a stronger

dependent association.

6.4.1 Association Rules Mining of the CCC Study

As discussed earlier in this chapter, Tornero-Velez et al. (2012) examined

co-occurrence of pyrethroid residues in child care centers. Co-occurrence patterns

were reexamined using frequent itemset mining to further investigate nested pat-

terns. Minimum support count was set to 5%, thus requiring occurrences in at least

5% of centers. A total of 29 rules were found, and these involve only five pyre-

throids cis-/trans-permethrin, cypermethrin, cyhalothrin, esfenvalerate, and

cyfluthrin. Figure 6.4 shows that all the pyrethroids are networked with one another

except cyfluthrin. While cyfluthrin co-occurs with other pyrethroids, those

co-occurrences do not meet the minimum support threshold (5%).

At 5% minimum support, the highest-order combinations are three-way occur-

rences: {cis-permethrin, trans-permethrin, cypermethrin} in 18% of centers, {cis-

permethrin, trans-permethrin, cyhalothrin} in 6% of centers, and {cis-permethrin,

trans-permethrin, esfenvalerate} in 6% of centers (Table 6.2). Rules of the form {}

! {Y} indicate % occurrence of Y.
To harvest the remaining co-occurrence patterns, the minimum support was

lowered from 5% (8/168) to 3/167. To set minimum support lower than 3/167

would be to rely on 1 or 2 counts. At minimum support of 3/167, the same actors are

present, yet now with additional pyrethroids: cis-/trans-allethrin, bifenthrin,

deltamethrin, pyrethrin II, sumithrin, tetramethrin, and resmethrin. Apart from

bifenthrin and deltamethrin, these additional pyrethroids were found to only

co-occur with cis-/trans-permethrin. Among these, cis-/trans-allethrin exhibited

the strongest association with cis-/trans-permethrin. Figure 6.5 provides a graphical

interpretation for the top 50 of 197 rules, sorted by lift. More edges are observed

with the previously identified pyrethroids (trans-permethrin, cis-permethrin,

cypermethrin, esfenvalerate, cyhalothrin, and cyfluthrin). By comparison, it is

evident that cis-/trans-allethrin, bifenthrin, and deltamethrin have less linkages.

On the threshold of minimum support (3/167), deltamethrin and allethrin co-occur

exclusively with cyhalothrin and permethrin, respectively. These findings are
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determined with ease using frequent itemset mining but may be difficult/tedious to

make otherwise. In Table 6.3, a portion of the 197 rules are highlighted. For the

three rules involving deltamethrin and cyhalothrin, note that co-occurrence S(X [
Y ) ¼ 3/167 is the same regardless of the directionality of the rule. On the other

hand, the confidence depends on the directionality of the rule. Although bifenthrin

is on the periphery in Fig. 6.5, it is involved in a four-way co-occurrence

{bifenthrin, trans-permethrin, cis-permethrin, cypermethrin} with support 5/167.

Fig. 6.4 Association rules

mining of the CCC matrix.

Minimum support count set

to 5% (29 rules). Support

(circle size) ranged from 6%

to 71%. Lift (shading)

ranged from 1 to 1.45.

Analysis with R (R Core

Team 2013) and R package

arules (Hahsler et al., 2011)

(Data from Tulve et al.

2006)

Table 6.2 Association rules (9 of 29) for floor wipe pyrethroid residues in the CCCa study

(minimum support ¼ 5%, N ¼ 167b)

Rule Support Confidence Lift

{cis-permethrin, trans-permethrin} ! {cypermethrin} 0.18 0.28 1.3

{cis-permethrin, trans-permethrin} ! {cyhalothrin} 0.06 0.09 1.3

{cis-permethrin, trans-permethrin} ! {esfenvalerate} 0.06 0.09 1.4

{} ! cis-permethrin 0.69 0.69 1.0

{} ! trans-permethrin 0.71 0.71 1.0

{} ! cypermethrin 0.21 0.21 1.0

{} ! cyfluthrin 0.07 0.07 1.0

{} ! cyhalothrin 0.07 0.07 1.0

{} ! esfenvalerate 0.07 0.07 1.0
aTulve et al. 2006 applied population weights in summary statistics, including % detect. In

contrast, Tornero-Velez et al. 2012 did not apply weights. Thus, presence/absence was determined

by an unweighted comparison of the floor sample loading and the corresponding limit of detection
bOne of the 168 centers (ID ¼ 326) had missing values for cis- and tran-permethrin, and all other

pyrethroid values for this center were below the limit of detection. This center did not impact

analysis in Tornero-Velez et al. 2012 but should have been recognized as a center to be removed,

thus N ¼ 167
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Fig. 6.5 Association rules

mining of the CCC matrix.

Showing for 50/197 rules

with a minimum support

count set to 3/167. Support

(circle size) ranged from

1.8% to 4.2%. Lift (shading)

ranged from 3.4 to 55.7.

Analysis with R (R Core

Team 2013) and R package

arules (Hahsler et al. 2011)

(Data from Tulve et al.

2006)

Table 6.3 Association rules (10 of 197) for floor wipe pyrethroid residues in the CCC study

(minimum support ¼ 3/167, N ¼ 167)

Rule Support Confidence Lift

All Rules involving deltamethrin

{} ! deltamethrin 3/167 3/167 1

{deltamethrin} ! {cyhalothrin} 3/167 1.0 13.9

{cyhalothrin} ! {deltamethrin} 3/167 0.25 13.9

Highlighted rules involving bifenthrin

{} ! {bifenthrin} 8/167 8/167 1

{bifenthrin} ! {cypermethrin} 6/167 0.75 3.6

{cypermethrin, cis-permethrin, trans-permethrin} !
{bifenthrin}

5/167 0.17 3.5

Highlighted rules involving cis-/trans-allethrin

{cis-allethrin} ! {trans-allethrin} 3/167 1.0 55.7

{cis-permethrin, trans-permethrin, cis-allethrin}! {trans-

allethrin}

3/167 1.0 55.7

Highlighted rules involving center cluster

cypermethrin, cis-permethrin, trans-permethrin} !
{esfenvalerate}

7/167 0.23 3.5

{cypermethrin, cis-permethrin, trans-permethrin} !
{cyfluthrin}

6/167 0.2 2.8

{cypermethrin, cis-permethrin, trans-permethrin} !
{cyhalothrin}

4/167 0.13 1.9

{esfenvalerate, cypermethrin, cis-permethrin, trans-permethrin}

! {cyhalothrin}

3/167 0.43 5.9
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In Table 6.3, the 3 of 20 rules associated with bifenthrin are highlighted. Impor-

tantly, rules not shown are permutations involving subsets of the superset

{bifenthrin, trans-permethrin, cis-permethrin, cypermethrin}. Next, exploring the

center region of Fig. 6.5, the most frequent observed four-way combinations

involve the nested three-way combination {cis-permethin, trans-permethrin,

cypermethrin} and either {esfenvalerate}, {cyfluthrin}, or {cyhalothrin}. Finally,

the highest-order superset is a five-way {cis-permethrin, trans-permethrin,

cypermethrin, esfenvalerate, cyhalothrin} with a support of 3/167. In Tornero-

Velez et al. (2012), this set was observed once as a stand-alone five-way combina-

tion and embedded in the single eight-way and single nine-way, for a total of three

occurrences.

6.5 A Narrative of Ecological Assembly

The toxicological profile of a single chemical, that is, its inherent properties, its

mechanism of action, its potency, its absorption, and other pharmacokinetic char-

acteristics, invariably extends to whether or not exposure is at all possible, and

under which circumstances the chemical agent is presented to a living organism as

an exposure. Basic toxicological parameters such as dose administered, route of

exposure, and dose rate are germane to toxicology and informed by exposure. The

same narrative holds for mixtures, be they PCBs, brominated flame retardants,

diesel exhaust, water disinfection byproducts, or phthalates. Mixtures recognized in

toxicology for testing have an accompanying exposure narrative. An important part

of this narrative is who are the actors and how do the actors manifest? Most often,

the chemical constituents of a tested mixture represent the target or the by-products

of a chemical process or manufacturing process. By relating the actors to a specific

process (e.g., chlorination, combustion, formulation), an “organizing principle” is

established. Without the notion of an organizing principle, there may be reluctance

to test an environmental mixture simply because it may be a spurious occurrence. If

the origin of the mixture is not understood, there is doubt as to the value of the

acquired information – doubt as to which population will encounter the mixture and

under what circumstances. It’s useful to examine the idea of “organizing principle”:

An organizing principle is a core assumption from which everything else by proximity can
derive a classification or a value. It is like a central reference point that allows all other
objects to be located, often used in a conceptual map. (NCHRP 2014)

Mixtures that originate from chemical or manufacturing processes undergo

further mixing in the environment owing to their dispersal by humans and nature.

Human-environment interaction is less explored as an organizing principle for

mixtures, and yet there is recognition that disease may cluster by region for certain

populations, motivating investigation of ecologic factors (Kellen et al. 2008; Savitz

1993; Stang et al. 2016; Holowaty et al. 2010). Non-alcohol fatty liver disease,

cardiovascular disease, and developmental effects have been investigated in
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northern populations by testing mixtures of various environmental contaminants

unique to the Arctic, using the so-called northern contaminant mixtures (NCM)

(Mailloux et al. 2014; Elabbas et al. 2011, 2014; Florian et al. 2013). Derived from

concentrations of organic and inorganic chemicals found in the blood of Inuit

populations during a 2004–2005 assessment, there is a supposition that inferences

can be made to the Inuit population from the NCM.

Climate, rate and transport processes, and Inuit customs shape the NCM.

Because the climate of the Arctic is ill-suited for agriculture and lacks plant matter

that may be foraged for much of the year, the traditional Inuit diet is higher in fat

and animal protein compared to the global average (Searles 2002). The fat-based

food web of the Arctic favors the accumulation of persistent organic pollutants

which are subject to long-range transport. This combination serves as an organizing

principle to make the NCM composition an environmentally relevant mixture for

the Inuit.

Clearly though, organizing principles may not be as evident for human

populations engaged in an array of modern life activities comprising consumerism

and interaction with the built environment. However, it is reasonable to assume that

biogeographical and market basket techniques can be applied to more complex

scenarios to elucidate new organizing principles for contaminant subsets (Bucher

and Lucier 1998). By analogy, although the Island Theory of Biogeography was

developed by ecologists to explain uneven distributions of animal species based on

observations made on islands (isolated habitats), it was intended also to have

explanatory power for community structure on the mainland (non-island habitats)

where demarcations are less sharply defined (MacArthur and Wilson 1967). As

these techniques are based on 0’s and 1’s, they easily accommodate the presence/

absence of stressors, membership to a demographic group, socioeconomic class,

age grouping, or behavior pattern (Huang et al., 2017). Consideration of such

factors may be needed to elucidate an organizing principle driving an environmen-

tally relevant mixture of chemicals.

The examples provided in this chapter illustrate the application of methods

developed for understanding ecological assembly of communities using presence-

absence matrix-based techniques and methods developed for understanding

consumer-purchasing behavior using frequent itemset mining to investigate the

nonrandom assembly of chemicals in mixtures and to identify co-occurrence

patterns. Moreover, these techniques are useful for identifying those structuring

factors that produce specific, environmentally relevant mixtures. Explicit knowl-

edge of these factors, be they related to natural processes, economic drivers, or

human decision-making, can facilitate the intelligent toxicity testing of mixtures,

whether for high-throughput screening or more traditional in vivo evaluations.

Similarly, this knowledge can inform exposure monitoring and biomonitoring

studies by identifying targets for measurement to optimize monitoring strategies

for collecting data of highest value in understanding chemical exposure.
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Chapter 7
Adverse Outcome Pathways to Support
the Assessment of Chemical Mixtures

Mark D. Nelms, Jane Ellen Simmons, and Stephen W. Edwards

Abstract Due to the ever-increasing number of chemicals coming to market, and
the cost of performing traditional in vivo studies, there has been a shift toward the
use of less costly alternative techniques. The adverse outcome pathway (AOP)
concept has emerged as a scaffold for organizing mechanistic information from
these methods. Two main elements – key events (KEs) and key event relationships
(KERs) – are utilized to describe the underlying mechanism outlined by the AOP.
Each KE depicts the measureable changes in the state of the biological system at
each level of organization that are essential for the progression along the pathway.
The KERs, meanwhile, contain the biological information that connects each of the
KEs. This chapter covers some of the potential applications for AOPs when
performing risk assessment of chemical mixtures. The structure of the AOP provides
much more precision when considering mechanistic data in a mixtures assessment.
The use of this concept provides a means to allow more specificity when deciding
whether to use dose addition, independent action or integrated addition risk assess-
ment methodologies. Furthermore, AOPs enable novel approaches for determining
chemical groups and how they may be utilized within mixtures risk assessment.
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Keywords Chemical grouping · Adverse outcome pathway · Key event · Key event
relationship · Molecular initiating event · Dose additivity · Independent action · AOP
network

Abbreviations

ADME Absorption, distribution, metabolism, and elimination
AO Adverse outcome
AOP Adverse outcome pathway
KE Key event
KER Key event relationship
MIE Molecular initiating event

7.1 Introduction

One goal of research to support hazard/risk assessment is to generate data upon
which to make an informed decision concerning a chemical’s (potential) toxicity.
Traditionally, risk assessments have been performed utilizing data from in vivo
methods to identify the apical adverse effect(s) observed upon exposure to a
chemical. These in vivo tests are expensive to perform not only in terms of their
monetary cost but also with respect to the amount of time and the number of animals
required. For example, a single 90-day oral repeat dose rodent study can cost an
estimated €116,000 (~$125,000) and requires approximately 80 animals (10 ani-
mals/sex/group and at least four dose groups, including a control) per chemical
(Taylor et al. 2014; Fleischer 2007). Thus, this limits the number of hazard assess-
ment studies that can be conducted each year for any novel, or commercially
available, chemicals.

In 2007, the National Research Council of the U.S. National Academies of
Sciences published a report entitled Toxicity Testing in the 21st Century: A Vision
and a Strategy, in which a paradigm shift in toxicity testing was suggested (NRC
2007). This shift was away from expensive in vivo tests that typically identify apical
effects toward a testing strategy that utilizes various alternative techniques that are
time- and cost-effective and rely on an understanding of the underlying toxicity
pathway(s). A toxicity pathway is defined by the NRC as “a cellular response pathway
that would result in an adverse health effect when sufficiently perturbed” (NRC 2007).
In addition to the 2007 NRC report, legislation has been passed and a number of
initiatives implemented, in both the United States and Europe that suggest advancing
science through development and application of alternative toxicity testing data
(EC 2003, 2006a, b). These programs act to either directly (i.e., the 7th Amendment
to the Cosmetics Directive) or indirectly (i.e., REACH) promote the development and
use of alternative testing methods to assess the hazard/risk of the ever-increasing
number of chemicals introduced into commerce. In addition, the increase in animal
welfare campaigns that call for in vivo testing to occur only as a last resort has
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provided extra impetus for development of alternative testing methods, especially for
the testing of cosmetic ingredients (Stoddart and Brown 2014).

Since the 2007 NRC report, there has been an increased effort to develop
alternative methods for chemical hazard/risk assessment. These alternative methods
employ in vitro, in chemico, in silico, and “omics” techniques. In vitro-based
methods, such as the Ames test, use isolated biological organisms (e.g., bacteria,
yeast), cell lines, or subcellular components to identify the effects of xenobiotics on
the biological system. In chemico-based methods, such as the glutathione assay, are
abiotic assays that use macromolecules (e.g., proteins/DNA) to measure the level of
reactivity between a chemical and a surrogate biological macromolecule (Gerberick
et al. 2008; Asturiol and Worth 2011). In silico-based methods, such as (Quantita-
tive) Structure-Activity Relationships ((Q)SARs), utilize computational systems to
enable predictions regarding various end points based on chemical structure. Mean-
while, “omics” approaches utilize multiple technologies, such as microarray, mass
spectrometry, or chromatography, which may be able to detect changes across all of
the genes, mRNA, proteins, or metabolites present within a biological sample.
However, these types of data require an organizational scaffold to provide the
level of mechanistic detail needed to link the data to traditional regulatory end
points. To address this problem, the adverse outcome pathway (AOP) concept was
introduced (Ankley et al. 2010). The intention behind the AOP concept is to utilize
the multitude of mechanistic data that are generated by these alternative techniques
in conjunction with advances in systems biology and bioinformatics (Garcia-Reyero
2015). As such, AOPs provide a framework for establishing a mechanistic connec-
tion between a molecular initiating event and a downstream adverse outcome
relevant for risk assessment. This is accomplished via a number of measurable
intermediate key events that traverse different levels of biological organization
(Fig. 7.1) (Villeneuve et al. 2014a; Ankley et al. 2010). Ideally, an individual
AOP should have a single molecular initiating event associated with a single adverse
outcome, while the amount of intermediate key events required to link these together
will vary based upon the number of biological processes that may be disrupted
(Villeneuve et al. 2014a; OECD 2014). An exception to this rule, however, is when
multiple late-stage key events could all be considered adverse under different
decision contexts. Furthermore, it is important to note that a molecular initiating
event, intermediate key event, and/or an adverse outcome may be shared by multiple
AOPs. Additionally, a single molecular initiating event may be capable of inducing
multiple adverse outcomes, and a single adverse outcome may be induced by
multiple molecular initiating events. The latter scenario is important when consid-
ering chemical mixtures, as described later in this chapter. This process – i.e., the
identification of measurable key events that describe the mechanistic pathway
leading to an adverse effect – is similar to the Mode of Action (MoA) framework
that was developed by the World Health Organization’s International Programme on
Chemical Safety for use in human health hazard/risk assessment (Meek et al. 2014).
There is, however, at least one subtle difference between the MoA and AOP
frameworks: the primary purpose behind their identification and development.
MoA-based pathways are developed for individual chemicals to perform regulatory
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risk assessments. In contrast, AOPs are chemical agnostic pathways that describe the
biological processes that are perturbed leading to an adverse outcome of regulatory
significance (Edwards et al. 2016).

AOPs are typically depicted as linear constructs with one molecular initiating
event linked to one adverse outcome via an unbranched set of intermediate key
events (Fig. 7.1). However, this is an oversimplification used to better enable the
development and evaluation of individual AOPs. Therefore, to be of most use when
making regulatory decisions, and to better encapsulate the inherent complexities of
toxicological processes within biological systems, it is likely that multiple AOPs will
need to be used (Villeneuve et al. 2014a; Knapen et al. 2015). This is due to the
potential for one-to-many, and many-to-one, relationships being present throughout
an AOP. For example, one chemical may perturb many molecular initiating events,
or many upstream events may induce a single downstream event. When several
AOPs share at least one common key event, or key event relationship, an AOP
network may be produced. Thus, these AOP networks provide a more realistic
representation as to the underlying processes that are perturbed between a (set of)
given molecular initiating event(s) and a (set of) given adverse outcome
(s) (Villeneuve et al. 2014a; Knapen et al. 2015). An example of such an AOP
network is depicted in Fig. 7.2, whereby the gradient-filled nodes highlight the initial
key event that connects two individual AOPs together (Knapen et al. 2015).

7.1.1 Constituent Components of an AOP

There are two major components required to describe an AOP: key events (KE) and
key event relationships (KER). Within the AOP diagram (Fig. 7.1), nodes depict the
KEs, while the KERs are depicted by edges (i.e., visual representation of relation
among nodes – represented by arrows in Fig. 7.1) that connect nodes together.

Each KE within an AOP will fall into one of three categories: a molecular initiating
event (MIE), an intermediate key event, or an adverse outcome (AO) (Villeneuve et al.
2014b); each of which is discussed in more detail below. Overall, these KEs represent
a change in biological state at varying levels of organization from the molecular level

Level of 
Biological
Organization Molecular

Key Event Key Event
Relationship

Celluar Tissue Organ Individual Population

AOAOIKEIKEIKEMIE

Fig. 7.1 Diagram of the components that comprise the AOP concept. MIE molecular initiating
event, IKE intermediate key event, AO adverse outcome, and arrows – key event relationship. The
direct key event relationships are illustrated by arrows with solid lines, while indirect key event
relationships are illustrated by arrows with dotted lines
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to effects at the individual or population levels. Additionally, an event is considered
“key” if (1) the change in state can be measured by use of one, or more, testing
strategies and (2) the event is essential for the advancement along the pathway toward
the AO (Villeneuve et al. 2014b; Groh et al. 2015a). However, even though KEs are
essential in the progression of an AOP, the observation of a single KE, in isolation,
does not necessarily mean the AO will be observed; it merely implies the adjacent
downstream KE has the potential to be perturbed.

7.1.2 Molecular Initiating Event

Perturbation of the MIE is a prerequisite for the initiation of an AOP; without the
perturbation of the MIE, the subsequent downstream KEs cannot commence. In the
context of AOPs, a perturbation is any change in state of the normal biological
processes occurring within an organism due to the interaction with an exogenous
stressor. For example, either agonism or antagonism of a receptor by a chemical
would be considered a perturbation. Within the AOP framework, the MIE is the first
event that triggers the progression of the pathway toward the AO; as such, it also is
seen as the upstream anchor within the AOP (Ankley et al. 2010; Villeneuve et al.
2014a). The MIE is unique compared to the other KEs in that it is the only point in
the AOP where a chemical or stressor has a direct interaction with a biological
(macro)molecule (Villeneuve et al. 2014b). Therefore, knowledge regarding the
MIE provides mechanistic information pertaining to the initial interaction between
the chemical/stressor and a biological system at the molecular level. Developing an
understanding of the mechanisms underlying the MIE can be useful in determining
the structural and/or physicochemical properties required by a (group of) chemical
(s) to perturb the same MIE (Przybylak and Schultz 2013; Enoch and Roberts 2013;
Enoch et al. 2013). For example, chemicals capable of inducing mitochondrial
toxicity via uncoupling of oxidative phosphorylation (i.e., the futile translocation
of protons across the inner mitochondrial membrane with no ATP production) are
typically lipophilic (log P 1.5–5), weak acids (pKa 3–6) with an aromatic moiety
capable of stabilizing a delocalized electron. Local anesthetics and nitroaromatic
chemicals would fit within this mechanism-based chemical category (Kadenbach
2003; Nelms et al. 2015a, b; Spycher et al. 2008; Naven et al. 2013; OECD 2011;
Przybylak and Schultz 2013).

A number of different MIEs have been identified as trigger points in a variety of
AOPs, including reproductive toxicity, skin sensitization, cholestasis, weak acid
respiratory uncoupling, and neural toxicity (Ankley et al. 2010; Schultz 2010;
Landesmann et al. 2012; OECD 2011; Vinken et al. 2013; OECD 2012). A common
type of MIE is (ant)agonistic binding of chemicals to specific molecular receptors or
enzymes. For example, agonistic binding of chemicals to the androgen receptor
induced reproductive toxicity in female fish (Ankley et al. 2010) (https://aopwiki.
org/aops/23, accessed January 6th, 2018). Alternatively, there are MIEs that perturb
less specific biomolecules; such MIEs include those constrained by the electrophilic
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reactivity of the chemical. One example of this is the covalent interaction between
the perturbant and the cysteine/lysine residues present in the proteins of epidermal
cells within the skin sensitization AOP (OECD 2012; Enoch et al. 2008; Roberts
et al. 2006). However, it should be noted that a molecular interaction described as the
MIE within one AOP may, potentially, be defined as an intermediate KE within
another AOP if the interaction between the chemical and biological system occurs
upstream (Villeneuve et al. 2014b). An example is activation of the estrogen
receptor, which could be either an MIE or intermediate KE depending upon the
ligand. If activation of the estrogen receptor occurs via direct binding of a xenobiotic
to the receptor, it would, in this instance, be considered an MIE. In contrast, if
upstream KEs initiate the release of an endogenous ligand that subsequently binds
to, and activates, the estrogen receptor, it would be considered an intermediate KE
(Villeneuve et al. 2014b).

7.1.3 Intermediate Key Events

Upon sufficient perturbation of the MIE, the intermediate KEs are the transitional
stages by which the AOP progresses toward the AO. The preferred convention when
developing an AOP is to include an intermediate key event from each level of
biological organization between the molecular initiating event and the expected
adverse outcome (Villeneuve et al. 2014b; OECD 2014). Obviously, due to the
complex and multifaceted nature of biological systems and the incomplete mecha-
nistic knowledge currently available for many end points, this is not always feasible.
For an event to be considered an intermediate KE, it has to be (1) measureable within
a testing method and (2) essential to the progression of the AOP toward the AO, i.e.,
without the perturbation of each intermediate KE within the AOP, the AO cannot be
induced. The former is required so that hypotheses surrounding an AOP, and each of
the steps within it, can be experimentally tested to verify the mechanism(s) by which
the MIE may induce the AO (Przybylak and Schultz 2013). Once the AOP is
established, the associated testing methods could be used during hazard identifica-
tion and risk assessment to identify whether a (set of) chemical(s) has the potential to
perturb each level of organization and therefore has the capability to induce the
AO. Additionally, the association of an alternative testing method with an interme-
diate KE (that has been causally linked to the AO) will minimize the number of
animal studies needed to identify the potential hazards/risks posed by a chemical.

7.1.4 Adverse Outcome

The terminal stage of an AOP is the observation of an AO. As the ultimate objective
of AOPs is for use within regulatory decision-making, the downstream AO(s) relate
to the apical effects observed when undertaking in vivo experimentation and should,
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therefore, be relevant for performing hazard/risk assessment (OECD 2013). As such,
the level of biological organization at which a KE is considered to be the AO can
vary (Ankley et al. 2010; OECD 2013, 2014; Vinken et al. 2013; Villeneuve et al.
2014b). Similar to the MIE, the presence of an AO is a prerequisite of AOP
development as it acts to anchor the AOP to an observable downstream adverse
effect (OECD 2013; Ankley et al. 2010). As with the other KEs in an AOP, clearly
defining the AO affects the upstream KEs that may be present within the AOP. For
example, if skin sensitization were the regulatory end point under consideration (i.e.,
the AO), this would thus limit the upstream KEs to only those that culminate in the
observation of a sensitized individual. In addition, clearly defining the AO under
consideration drives the number and type of individual AOPs that may comprise an
AOP network.

7.1.5 Key Event Relationships

The information relating to how pairs of adjoining KEs are connected is provided by
the KERs, i.e., the edges (arrows) in Fig. 7.1. The KERs act to identify one KE as the
upstream event and the event it induces as the downstream event, thereby providing
the AOP with directional information. The primary purpose of these KERs is to
document the evidence that supports these causal relationships between the upstream
and downstream KEs (Villeneuve et al. 2014b). Each KER present within an AOP
can describe one of two types of relationship connecting KEs, either (1) a direct
connection between two adjacent KEs (solid arrows), e.g., AhR agonism inducing a
change in gene expression (Ankley et al. 2010), or (2) an indirect connection
between two KEs separated by one, or more, KEs (dotted arrow), e.g., sustained
AhR activation inducing hepatopathy (Becker et al. 2015b; OECD 2014; Villeneuve
et al. 2014a). The indirect KER can allow evidence supporting nonadjacent KEs to
be included. This is important because in many cases the majority of the evidence for
an AOP will be concentrated on a subset of the KEs. By including these indirect
relationships, one may achieve a higher degree of confidence in the AOP even with
more limited support for individual KE pairs. For example, the amount and support
present for an indirect KER linking KEn and KEn þ 2 (dotted arrow in Fig. 7.1)
within an AOP may be much higher than the confidence in the direct KER(s) linking
KEn to KEn þ 1 and/or KEn þ 1 to KEn þ 2. This may be due to a number of factors
such as the assay used to measure KEn þ 1 may be inherently more error prone than
that used to measure either of the other KEs; therefore, the level of confidence in the
indirect KER (i.e., between KEn and KEn þ 2) would be higher.

The data utilized in support of the scientific explanation linking two KEs can
come from a variety of testing methods, as well as knowledge present in the available
literature. Depending upon the level of understanding of the relationship between the
two KEs and the type of assay(s) available for testing, these data may be quantitative,
semiquantitative, or qualitative in nature. Additionally, these data are used to
support, or refute, the KER by using a weight of evidence approach to assess the
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biological plausibility and empirical support for the KER (Villeneuve et al. 2014a;
OECD 2014; Becker et al. 2015a). In general, current understanding of the biolog-
ical system’s functioning under “normal” (homeostatic) conditions is used to inform
the biological plausibility of the KER, i.e., under “normal” circumstances what is the
relationship between the two KEs? In comparison, empirical support for the KER is
typically founded upon (1) temporal concordance, i.e., observation of the upstream
KE occurring prior to the downstream KE; (2) response-response concordance, i.e., a
lesser, or equal, concentration of stressor is required to see perturbations in the
upstream KE compared to the downstream KE; and (3) incidence concordance, i.e.,
the upstream KE is as, if not more, prevalent than the downstream KE. In practice,
there are many cases where empirical data are inconsistent relative to these guide-
lines even when the KER is real. For example, the assay used to test the downstream
KE may be more sensitive than that for the upstream KE. Therefore, it may identify
perturbation of the downstream KE at a lower concentration of test chemical or a
higher prevalence for the downstream KE even though the perturbation of that KE is
mediated by the upstream KE. This is why biological plausibility carries a higher
weight than empirical support when evaluating the weight of evidence. Furthermore,
the KERs allow a single KE to connect to different downstream KEs based on the
context of the perturbation. For example, sustained activation of the aryl hydrocar-
bon receptor (AhR) is required for the changes in cellular homeostasis and apoptosis
that are the next step leading to rodent liver tumors (Becker et al. 2015b) (https://
aopwiki.org/aops/41, accessed January 6th, 2018). Capturing this information in the
KER, rather than having separate KEs for sustained vs. acute activation of the
receptor, ensures that all chemicals that interact with the AhR can be considered
for their potential to cause rodent liver tumors with the understanding that it would
only occur under circumstances where sustained activation was present.

7.2 AOP Development

In 2012, the Organisation for Economic Co-operation and Development (OECD)
introduced the AOP development program to promote the development and use of
AOPs (Villeneuve et al. 2014a). The AOP-Knowledge Base (AOP-KB, https://
aopkb.oecd.org/, accessed January 6th, 2018) has emerged as part of this program.
The AOP-KB consists of four discrete modules designed to assist with the different
aspects of the AOP development process: AOPXplorer (currently under develop-
ment) will enable users to view networks of interrelated AOPs; Effectopedia (http://
www.effectopedia.org/, accessed January 6th, 2018) contains quantitative KER data
in addition to information pertaining to the available assays and biomarkers for each
KE; and Intermediate Effects Database (IEDB) will provide information on
chemicals that perturb an AOP and can be used in a regulatory setting utilizing
data from Europe’s International Uniform Chemical Information Database
(IUCLID) database (Oki et al. 2016). The fourth module, the AOP-Wiki (http://
aopwiki.org, accessed January 6th, 2018), provides a template that AOP developers
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can use to capture each of the KEs within an AOP and evaluate the supporting
scientific evidence for an AOP. The AOP development handbook, written by the
OECD, acts as the blueprint upon which the AOP-Wiki is based (OECD 2014). In
addition to the handbook, a number of articles have been published that provide
further advice and guidance for developing and assessing AOPs for their reliability
and robustness (Villeneuve et al. 2014a, b; Groh et al. 2015a, b; Vinken 2013).

Five core concepts have been identified to aid researchers when developing AOPs
(Villeneuve et al. 2014a):

• AOPs are chemical agnostic – any chemical that is sufficiently able to perturb the
MIE may start a cascade, whereby each upstream KE perturbs the neighboring
downstream KE up to and including the apical AO.

• AOPs are modular – this is accomplished by ensuring the two constituent
components of AOPs (i.e., the KE and KER) are not necessarily specific to a
single AOP. The reusability of these building blocks provides the AOP with this
modular structure, allowing for a single KE or KER to be incorporated into
multiple AOPs.

• An individual AOP is a pragmatic unit of development and evaluation – the single
chain of KEs organized from one MIE to one AO provides a simplified structure
that assists with the development and evaluation of AOPs.

• AOP networks are the functional unit of prediction – AOP networks will build up
naturally over time due to shared KEs and KERs appearing across multiple
individual AOPs. Typically, organisms are exposed to complex chemical mix-
tures. Therefore, AOP networks better illustrate the complex biology at play,
enabling more accurate predictions to be made with regard to the most likely AO.

• AOPs are living documents – the KEs and KERs are supported by data from
various testing methods. Thus, as these methods develop and their accuracy
increases, so too will the information for the KEs and KERs. Additionally, the
AOPs that are comprised of these modular components will improve over time as
our understanding of the underlying biology improves.

The first step in AOP development is assembly of the AOP scaffold by identifi-
cation of KEs in the AOP, including the MIE and AO, and defining the relationships
among the KEs. Several strategies have been discussed that may be employed when
developing an AOP: (1) bottom-up, where data pertaining to the MIE are the starting
point and mechanistic information linking the MIE to KEs at higher levels of
biological organization is required; (2) middle-out, where data are available for an
intermediate KE in an AOP and mechanistic information is needed to anchor the
intermediate KE by connecting to both the upstream MIE and downstream AO; and
(3) top-down, where data surrounding an observable AO are present; therefore,
mechanistic information is needed that links the AO to the upstream KEs (Ville-
neuve et al. 2014a; Groh et al. 2015b). The mechanistic knowledge relating to each
information block within the AOP can be derived from a variety of testing methods,
including in silico techniques such as the identification of chemical structures
(or fragments) that are associated with inducing an MIE, in chemico methods that
can be used to measure the ability of a chemical to covalently bind to important
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biological macromolecules, in vitro assays that utilize cultured bacterial/mammalian
cells to observe the (sub)cellular responses initiated by a chemical, and in vivo tests
that enable observations to be made for regulatory relevant end points, e.g., at the
organ, individual, or population level (OECD 2013, 2014). In addition to performing
one of these methods, evidence that mechanistically connects one KE to another may
be available within the current literature and should be considered in support of the
KEs within the AOP.

The second step utilizes the AOP scaffold set out in the first step to assemble the
scientific evidence in support of each KE and KER in preparation for the evaluation
step (discussed below). The AOP-Wiki can be utilized at this stage, in conjunction
with the associated handbook (OECD 2014), as it provides a common platform for
aggregating and displaying data that supports the inclusion of each KE and KER in
the AOP. The summarized data pertaining to each KE in an AOP should (1) have a
description of the KE’s role under normal physiological conditions and how this is
perturbed during the course of eliciting an AO and (2) have a description of the assay
(s) that can be utilized to measure the KE. When performing the overall assessment
of the AOP, an evaluation of the evidence regarding the essentiality of the KEs for
the progression of the AOP is required. In addition, the KER descriptions should
outline the weight of evidence present in the primary literature and cover (1) the
biological plausibility of the connection, based upon the relationship between the
two KEs under normal physiological conditions, (2) the empirical evidence that
supports the association between the perturbation of the upstream KE and the
subsequent initiation of the downstream KE, and (3) any uncertainty that may be
present within the literature surrounding the relationship between the KEs, i.e., is
there conflicting evidence present that “disputes” the connection between the KEs?

Once the evidence has been assembled, it is possible to assess the support for the
AOP by systematically evaluating the evidence for each component. This informa-
tion can be used as a guide to the most appropriate use of the AOP within a
regulatory setting, as well as identifying any data gaps present within the AOP.
Considerations based on the Bradford Hill criteria, commonly applied to the analysis
of toxicological and epidemiological data, form the basis for assessing AOPs as they
can help to determine the relevance of the supporting information identified during
the data summation phase (OECD 2014; Przybylak and Schultz 2013; Becker et al.
2015a; Meek et al. 2014; Bradford Hill 1965). Together these considerations enable
evaluations to be made about the biological plausibility and empirical support for
each individual KER, as well as the essentiality of each KE, present in the AOP
(OECD 2014). Assessment of KER biological plausibility uses knowledge surround-
ing the biological processes in question to ascertain whether the KER is credible, i.e.,
is there mechanistic evidence supporting the relationship between the upstream and
downstream KEs?

Assessing the empirical support for each KER within an AOP requires informa-
tion regarding the response-response (change in the response for the downstream KE
based upon a change in response for the upstream KE), temporal, and incidence
concordance. Such an assessment enables an evaluation to determine whether a
change in an upstream KE is succeeded by an appropriate change in the downstream
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KE. Importantly, while dose-response, time-course, and incidence data from specific
chemicals are used to evaluate the KERs, the comparison is between the response of
the upstream KE and the response of the downstream KE. The KER defines a causal
connection between the upstream and downstream KEs. Therefore, the perturbation
of the downstream KE by the chemical is mediated by the upstream KE except for
the MIE. If this is true, the perturbation of the upstream KE should be seen at lower
doses, earlier times, and with increased incidence compared with the downstream
KE. In practice, this is not always true due to technical considerations with the
methods used to measure the perturbations of the KEs, so care must be taken when
assembling the weight of evidence based on the empirical support.

The assessments into essentiality of each KE within an AOP use information from
studies that block the perturbation of an upstream KE to determine if there is a
concomitant inhibition/reduction in the downstream KEs. The assembled evidence
also allows the domain of applicability to be determined for the AOP and its
components. Typically, the applicability domain is restricted to only the species,
life stages, and sexes of the organism(s) exhibiting the relevant AO. However, in
cases where the AOP has been developed to assess human health end points,
information from other species may be used if there is concordance among the
species, i.e., the underlying mechanism is conserved across taxa.

When developing an AOP, it is important to work through each of these steps in
turn from the identification of the KEs and KERs relevant for the AOP, to assem-
bling the supporting evidence for each of the KE/KERs and culminating in the
evaluation of the collected evidence. In cases where quantitative precision is needed
to predict adverse outcomes at the individual or population level based upon assays
for KEs, the development of a quantitative AOP (qAOP) is needed. This requires
quantitative response-response information for each pair of KEs so that the level of
change in the upstream KE required to induce the downstream KE can be elucidated
(Villeneuve et al. 2014a). Subsequently, this quantitative information can be used to
identify and develop in silico models (e.g., Quantitative Structure-Activity Relation-
ships) that may be used to predict the likelihood that a chemical would initiate the
AOP via direct perturbation of the MIE, thereby enabling a prediction to be made as
to whether the AO will be observed given a measured change in an assay or
biomarker for an early KE.

7.3 Use of AOPs

An AOP may lie anywhere along a broad continuum with respect to its completeness
and associated uncertainty, which affects the applications for that AOP in a hazard/
risk assessment setting. For example, when used for screening and prioritization
purposes, an AOP with limited confidence may still provide valuable information
when prioritizing based on high-throughput toxicity assays or predictions based on
chemical structure. In contrast, to use an AOP as the basis for replacing an
established in vivo test with (likely multiple) high-throughput in vitro tests would
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require a higher level of confidence in the AOP itself. However, since confidence is
measured for each KER within the AOP as well, the overall confidence in the AOP
may not necessarily matter for use. For example, an AOP with a relatively low
confidence score (due to a high degree of uncertainty at downstream KEs/KERs)
may still be of use for performing read-across or prioritization if there is a high level
of confidence in the upstream KE(R)s and their associated assays (Becker et al.
2015a).

One of the broadest applications of the AOP framework is for use in chemical
category formation and subsequent read-across analysis. Chemical category forma-
tion is an approach whereby a set of chemicals with similar properties are grouped
together into a category (Enoch 2010; Enoch and Roberts 2013; ECHA 2009; OECD
2011; ECHA 2008). Chemical categories can be developed via a variety of
approaches, one of the most powerful being a common mechanism of action,
typically relating to the MIE (Enoch and Roberts 2013; Przybylak and Schultz
2013). This approach relies on identifying key structural features within a group of
chemicals (e.g., substructures, fragments, chemical classes) that are associated with
inducing toxicity (e.g., skin sensitization) through the same MIE (e.g., covalent
protein binding). These features can then be utilized as the basis for developing
mechanism-based structural alerts. Additionally, if certain toxicokinetic parameters
are known to be required for a given end point (e.g., a molecular weight less than
700), these can be associated with the structural alert as a method of refinement.
Thus, structural alerts can lie anywhere along a continuum from only having
knowledge of a conserved structural fragment to having physicochemical parameters
associated with the structural fragment that are required to be present. Where along
this continuum a specific structural alert lies depends on the level of information and
support that was available during its development. Once a chemical category has
been developed, for example, based upon the presence of one (or more) structural
alert(s), category members with existing toxicity data (called source chemicals) can
be used to make predictions via interpolation/extrapolation for the target chemical
(s) for which no toxicity data exists for the end point under consideration. This
interpolation of missing data between source and target chemicals within a chemical
category is called read-across (Enoch et al. 2013; Enoch 2010; Cronin 2013; ECHA
2009). These read-across predictions rely on the premise that similar chemicals are
expected to have similar biological/chemical activities (Jaworska and Nikolova-
Jeliazkova 2007; Cronin 2013; ECHA 2008). Importantly, the confidence in the
information pertaining to the AOP (and the relevant KE(s)) will affect the level of
confidence in the read-across predictions, i.e., a higher confidence in the connection
between the MIE and AO within an AOP will lead to a higher confidence in the
resulting prediction.

Profiling a large dataset or inventory to prioritize chemicals for further testing
within an alternative testing method can be carried out utilizing mechanism-based
structural alerts developed using AOPs (Przybylak and Schultz 2013; Enoch and
Roberts 2013; Perkins et al. 2015; Gutsell and Russell 2013). Inventory screening
uses a set of structural alerts relating to the same outcome (e.g., protein or DNA
binding) for rapid identification of chemicals with the potential to induce toxicity. In
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this instance, as further testing will be performed, nonmechanistic structural alerts
(i.e., structural fragments associated with inducing toxicity but lacking mechanistic
information) may be used. However, the use of mechanism-based structural alerts is
preferable as these better guide the end points that should be addressed by the
alternative methods.

As the level of mechanistic understanding pertaining to the KEs, and the relation-
ships between them, increases, so too does their use within hazard/risk assessment.
For example, an AOP with a moderate level of understanding and confidence may be
useful in building Integrated Approaches to Testing and Assessment (IATA)
(Tollefsen et al. 2014; Perkins et al. 2015; OECD 2015). In this instance, the AOP
acts as the anchor point upon which chemical-specific testing data for each KE can
be assembled and evaluated. Once this process is complete, an assessment can be
made as to the suitability of the current data and the uncertainty associated with the
AOP. If more information is required, the AOP can inform the amount and type of
data that are required. Finally, an AOP that contains a high level of quantitatively
defined causal relationships between the MIE, intermediate KEs, and the AO along
with dose-response and absorption, distribution, metabolism, and excretion (ADME)
information for the chemical in question can be utilized to perform quantitative risk
assessment or predictive toxicology (Leonard et al. 2016).

While these applications can be used for individual AOPs, it is likely that most
regulatory decisions will be made using AOP networks connected via common KEs
(Fig. 7.2). This is not only because typical exposure scenarios are to mixtures of
chemicals that may act on different biological targets to impact a common AO but
also because individual chemicals have the potential to trigger multiple MIEs
depending upon concentration, length of exposure, and route of administration and
thereby impact more than one AO. In addition, the AOP networks allow for
additional modifying factors such as genetic susceptibility or preexisting disease to
be incorporated within the proper mechanistic context.

7.4 AOP-Informed Risk Assessment for Mixtures

While others have briefly mentioned the potential utilization of AOPs for chemical
mixtures (Ankley et al. 2010; NRC 2007; Groh et al. 2015a, b), discussions
surrounding the use of AOPs within hazard/risk assessment are limited typically to
the exposure of one chemical in isolation. However, within a real-world scenario,
humans are exposed continually to varying numbers of chemicals present as mix-
tures in the environment. These mixtures might result either from sequential expo-
sure to individual chemicals (i.e., where the chemicals are “ingested” separately but,
due to their toxicokinetic/toxicodynamic profiles, the chemicals or the biological
consequences of chemical exposure or both appear within the body at the same time)
or from concurrent exposure to multiple chemicals (i.e., where the chemicals are
“ingested” simultaneously). In addition, chemicals can enter the body via either the
same route or different routes (i.e., oral, dermal, or inhalation). Therefore, it is
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important to consider how AOPs can be utilized for performing hazard/risk assess-
ments for defined chemical mixtures. In this instance, a defined mixture is one where
all of the chemical constituents present are known. Furthermore, it should be noted
that in the context of this book chapter, the focus is on low doses of chemicals likely
to be present within the environment.

When performing risk assessment on a chemical mixture, the ideal scenario is to
have data pertaining to the mixture itself; however, these data are rarely available. In
the absence of suitable data on the mixture itself, data for a sufficiently similar
mixture, if available, are preferred. The main limitation of sufficient similarity is that
methods to determine what constitutes a sufficiently similar mixture have not been
widely applied or validated (Rider and Simmons 2015). If neither of these data types
are available, risk assessment is performed using single-chemical data for chemicals
within the mixture considered important or for which concentration levels and point
of departure values are available, i.e., component-based analysis. Due to the scarcity
of data available for mixtures, component-based analysis is used in the majority of
cases when undertaking mixtures risk assessment.

Currently, one of the first stages in mixtures risk assessment is to identify when
(i.e., sequential or concurrent) and how (i.e., oral, dermal, or inhalation) exposure to
a chemical within the mixture occurs. Additionally, the toxicokinetic/toxicodynamic
profiles of each constituent chemical need to be taken into consideration. This is
because toxicokinetics will determine how persistent the chemicals are within the
body based upon their respective ADME properties. In comparison, toxicodynamics
will determine how persistent the biological effects (if any) are within the environ-
ment/organism. In this book chapter, chemicals are deemed to co-occur if their
toxicokinetic/toxicodynamic profiles are such that they or their biological effects
are present within an organism at the same time. For a screening-level assessment,
co-occurrence may be sufficient for inclusion of the chemical in the mixtures risk
assessment (Chap. 14). In subsequent steps, or as the initial stage, relevant toxicity
data for the individual chemicals are used to subcategorize the broader grouping
based on co-occurrence. In both cases, the toxicity data are used to identify the
tissue(s)/organ(s) in which adverse effects are observed following exposure.

In the future, as the number and scope of AOPs increase, it is envisioned that the
use of the AOP construct within mixtures risk assessment will also increase. One of
the fundamental applications of the AOP framework is providing mixtures risk
assessment with the mechanistic understanding of the sequence of events that
occur between the MIE and AO. This sequence of events forms a scaffold onto
which toxicological information from in silico models, in chemico, in vitro, and/or
in vivo assays, together with information from the available literature, can be placed
to help make more informed decisions. Therefore, once an AOP has been developed
(and verified), it may be of use when performing mixtures risk assessment for a
variety of scenarios. Here, in no particular order, we will discuss some of the
mixtures risk assessment scenarios for which AOPs could be of use. For the purpose
of clarity, each of the scenarios below will discuss how AOP(s), and structural alerts,
for a specific end point may be used in selection of the most appropriate mixtures risk
assessment method for use.
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The first scenario (Fig. 7.3a) involves utilizing an AOP related to an end point of
concern, to identify mixtures of chemicals that a risk assessor could expect to be dose
additive, under a) the assumption that the chemicals are from the same (structural/
mechanistic) group(s) which perturb the same AOP and b) that the chemicals
co-occur. In this respect, a risk assessor would likely use structural alerts, which
have been associated with perturbing the MIE and inducing the AO, to develop
chemical categories specific for that AOP. Thus, any chemicals that co-occur and
contain one, or more, of the associated structural alerts would form a logical
grouping. Subsequently, the available LOAEL/BMD data for the analogues may
be used to perform read-across. Thus, this may enable a prediction to be made (via
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Fig. 7.3 Graphical representations of how AOP networks may be used to influence the decision as
to whether dose addition, independent action, or integrated addition would be most appropriate to
undertake a mixtures risk assessment depending upon the chemicals present in the mixture. (a)
Chemicals A and B perturb the same AOP; therefore, dose addition would be an appropriate
strategy to perform. (b) Chemicals A and D only converge at a common AO; therefore, independent
action would be an appropriate strategy. (c) Chemicals A and C perturb separate MIEs but converge
at an intermediate KE; therefore dose addition would be an appropriate strategy. (d) Chemicals A
and C converge at an intermediate KE, while Chemical D only converges at the AO; therefore
integrated addition would be an appropriate strategy. MIE molecular initiating event, IKE interme-
diate key event, AO adverse outcome, arrows key event relationships, triangles chemicals. Nodes
that contain the colors of two AOPs represent the initial common key events that generate the AOP
network
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interpolation or extrapolation) regarding the concentration at which the MIE would
be sufficiently perturbed to induce the downstream KEs for the target chemical(s),
i.e., those chemicals that do not have associated toxicity data. This in silico predic-
tion could then be verified by performing in vitro or in chemico assays that are
associated with the MIE and/or other KEs in the AOP. With the assumption that each
co-occurring chemical initiates the same AOP via the same MIE, dose addition
would be assumed. Subsequently, a dose-additive risk assessment approach may be
employed to assess the combined risk of the mixture of chemicals toward the end
point in question.

For example, a risk assessor may be concerned about the potential for larval fish
death to be initiated after ligand binding to the aryl hydrocarbon receptor (AhR). The
pathway for this AO has been set forth by Ankley and colleagues (Ankley et al.
2010) and is summarized in Fig. 7.4. Briefly stated, AhR agonists bind to the
receptor inducing dimerization with aryl hydrocarbon receptor nuclear translocator,
thereby increasing the expression of various genes, including those that encode for
enzymes involved in xenobiotic metabolism (such as CYP1A1 and CYP1B1)
(Ankley et al. 2010; Peterson et al. 1993; Henry et al. 1997; Walker and Peterson
1994). Together these changes initiate a variety of other KEs that culminate in the
death of fish at the larval life stage. A number of polychlorinated dibenzodioxins
(PCDD), polychlorinated dibenzofurans (PCDF), and other similar halogenated
planar aromatic chemicals have the ability to bind to AhR (Belair et al. 2001;
Henry et al. 1997; Peterson et al. 1993; King-Heiden et al. 2012). Therefore, these
chemical classes could be used to produce separate mechanism-based structural
alerts, i.e., each alert is associated with the ability to bind to AhR. If multiple
chemicals from any one or more of these chemical categories were to co-occur,
AhR binding would be expected based upon read-across predictions. As such, at
environmentally relevant levels, these chemicals would be expected to exhibit dose
additivity, and mixtures risk assessment using dose addition methodologies would
be undertaken (Ankley et al. 2010).

The assumption here of low dose additivity is entirely consistent with the
acknowledgment in the “Supplementary Guidance for Conducting Health Risk
Assessment of Chemical Mixtures” (U.S. EPA, 2000) that the majority of
component-based procedures have an underlying assumption that interaction effects
either do not occur at low doses or are sufficiently small to be inconsequential to the
risk estimate. The AOP framework may also provide an in vitro assay that could be
performed to verify the results from the in silico predictions. Furthermore, the results
from these assays could potentially be used to rank order and calculate relative
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Fig. 7.4 AOP concerning larval fish death initiated by binding to the aryl hydrocarbon receptor
(AhR) (Adapted from Ankley et al. 2010)
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potency factors for the chemicals within the same category (i.e., the chemicals that
perturb the same MIE).

The second scenario involves having two, or more, AOPs that only share a
common AO (i.e., no overlap in MIE or intermediate KEs). This knowledge may
be used to identify chemicals that would likely be expected to act via independent
action if they were to co-occur (Fig. 7.3b). In this instance, it is assumed that
knowledge pertaining to the AO of concern has been utilized to identify an AOP
network, whereby the constituent AOPs only share a common AO. Upon develop-
ment of this AOP network, the structural alerts associated with each of the MIEs may
be used to group the co-occurring chemicals based upon the MIE and thus the AOP;
they are likely to perturb. As with the first scenario, other available testing methods
may be utilized to verify that the individual chemicals induce the KEs within the
relevant AOP, including the MIE and AO. For example, available assays may be
used to verify that (1) chemical A can perturb the KEs within the blue AOP but does
not perturb (within the limits of the assay(s)) the KEs within the orange AOP and
(2) chemical D can perturb the KEs within the orange AOP but does not perturb
(within the limits of the assay(s)) the KEs with the blue AOP (Fig. 7.3b). In this
instance, an independent action mixtures risk assessment method would be assumed
to be appropriate as the co-occurring chemicals (chemicals A and D) initiate separate
AOPs, by perturbing different MIEs, while eliciting the same AO, i.e., the same
response (Fig. 7.3b).

The third scenario involves having knowledge of two, or more, AOPs that have
separate MIEs but converge at an intermediate KE and initiate the same downstream
KEs, up to and including the AO (Fig. 7.3c). As with the previous scenarios, the
assessment starts by identifying the structural alerts associated with the MIEs of the
individual AOPs that comprise the AOP network, enabling chemicals to be grouped
based upon the MIE perturbed, which may in turn be utilized to facilitate read-
across. Within this scenario as long as at least one of the intermediate KEs upstream
of the convergence point between the AOP (i.e., the common intermediate KE) is
known, then a dose-additive mixtures risk assessment strategy may be adopted. A
dose-additive strategy appears appropriate in this context because even though
chemicals A and C perturb separate MIEs, the AOPs converge at an intermediate
KE upstream of the AO (Fig. 7.3c). Therefore, downstream of the initial common
intermediate KE (shaded blue and yellow Fig. 7.3c), the AOPs can be considered the
same. As such, the effect at the AO can be estimated from the sum of the scaled
concentrations of the individual chemicals that perturb the MIEs consistent with the
recommendation that dose-additive methods for toxicologically similar chemicals
(Rider and Simmons 2015; NRC 2008). One example where this scenario may be of
use is for performing a mixtures risk assessment with respect to male reproductive
toxicity by androgen antagonism. At present, no formal AOPs have been fully
developed for this end point. However, having tested a variety of phthalates and
other antiandrogenic chemicals, a number of studies and review articles discuss the
biological mechanisms leading to the AO (NRC 2008; Mylchreest et al. 1998; Fisher
2004; Wolf et al. 1999). The results from these studies seem to suggest that, if AOPs
were developed, while there may be separate MIEs (e.g., androgen receptor

194 M. D. Nelms et al.



antagonism or 5α-reductase inhibition), these separate pathways would converge
into an AOP network upstream of the AO, in a manner similar to that illustrated in
Fig. 7.3c. Therefore, dose additivity may be assumed an appropriate strategy to use
for a mixtures risk assessment for androgen antagonists associated with male
reproductive toxicity. This is backed up by the findings within the “Phthalates and
Cumulative Risk Assessment: The Task Ahead” report by the National Research
Council in 2008; this report summarizes studies that tested combinations of different
antiandrogens where the experimentally observed effects of the mixture were con-
sistent with those predicted under an assumption of dose addition (NRC 2008).

Finally, the fourth scenario pertains to instances where the AOPs within the AOP
network merge at multiple points. A generic example of this is illustrated in
Fig. 7.3d, whereby three separate AOPs merge at different points: with the blue
and yellow AOPs converging at a common intermediate KE and the orange AOP
converging at the common AO. Due to the complexity of this AOP network, i.e.,
individual AOPs merging at both the intermediate KEs and the AO within the
pathway, neither dose addition nor independent action in isolation is likely to give
the most accurate prediction. However, a combination of these two strategies, termed
integrated addition, may be suitable (Rider and Simmons 2015; Rider and LeBlanc
2005; Olmstead and LeBlanc 2005). The integrated addition approach first groups
chemicals based upon a shared “mechanism of action,” and a prediction is made for
each group separately using dose addition. Subsequently, the results for each of these
mechanism-based groups are merged via an overall prediction made using indepen-
dent action (Rider and Simmons 2015; Rider and LeBlanc 2005). In this instance, the
AOP paradigm would provide the rationales to be used to more accurately form both
the chemical- and mechanism-based categories. The initial chemical categories
could be developed based upon their ability to perturb the same MIE, i.e., grouped
by conserved mechanism. Subsequently, these mechanism-based categories would
be grouped together based upon whether or not the AOPs shared common KEs
upstream of the AO.

Even though each of the above scenarios has focused on only one use case, i.e.,
identifying the more appropriate risk assessment strategy, other use cases exist that
AOPs could be utilized for; these include (1) having the information regarding the
presence of a disease incidence within the community (either human or environ-
mental) and identification of the chemical mixture(s) that would be of potential
concern or (2) having knowledge that chemicals co-occur within the environment
and utilizing this information to elucidate which AOP(s) will likely be triggered. A
disease incidence would act as the AO within an AOP, thereby enabling the AOP
(s) that culminate in the shared outcome to be elucidated. Upon identification of the
AOPs, the appropriate MIE(s) and their associated structural alert(s) can be
discerned. These alerts can then be utilized to screen and categorize the groups of
chemicals of most concern if they were to co-occur. Alternatively, knowledge of
co-occurring chemicals would require the chemicals to be categorized according to
the presence of a structural alert. Subsequently, this information regarding the alert
(s) present within the chemicals could be related to the MIE(s) they perturb. In turn,
this information can be used to identify the AOP(s) that are most likely to be initiated
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and thereby the AOs of most concern. In addition, the information within these
AOPs would act as a guide as to the assays to perform to refine the predictions. Each
of these scenarios illustrate an added benefit the AOP paradigm may provide risk
assessors when conducting a mixtures risk assessment as an aid to define the
toxicological (and mechanistic) similarity of chemicals within the mixture. Conse-
quently, this information can be utilized in better determining the most appropriate
mixtures risk assessment strategy to undertake for a given scenario.

7.5 Benefits of Using AOPs in Mixtures Risk Assessment

In cases where assessments of chemical mixtures are needed, AOP networks can be
utilized to decide whether a dose additive, independent action, or integrated addition
method is more appropriate to use when performing the mixtures risk assessment for
a specific chemical mixture and AO. The initial step is to organize the individual
AOPs that relate to the AO of concern into an AOP network. The AOP network is
developed by collapsing individual AOPs together based upon the presence of one or
more common KEs across each of the AOPs. An example of such an AOP network is
shown in Fig. 7.2. Subsequently, the AOP network can be annotated with chemical
information. This annotation involves matching each of the co-occurring chemicals
to their respective MIE, either through the use of structural alerts, high-throughput
screening assays, or prior knowledge. Thereafter, a decision can be made as to
whether dose addition, independent action, or integrated addition is the most appro-
priate mixtures risk assessment technique to perform. The decision will be made
based upon where in the AOP network the chemicals overlap, i.e., at the MIE, an
intermediate KE, or the AO. Consequently, there are four situations that are the most
conceivable through which a decision could be made, as shown in Fig. 7.3.

The additional structure provided by the AOP construct when describing the
mechanistic basis for toxicity can support an increase in the confidence both in
selection of the appropriate mixtures risk assessment strategy and in use of the
selected methodology. By defining AOPs in terms of common KEs as shown in
Fig. 7.3, we can now specifically define at what point in the pathway any two
chemical perturbations will intersect. As an example, chemicals A and C both
have three to four unique KEs (including the MIE) as well as three common
intermediate KEs leading to the common AO. Currently, a determination would be
made regarding whether these chemicals share a “common mode of action” to decide
between dose addition, independent action, and integrated addition. The additional
specificity of the AOP definition allows us to evaluate this assumption more care-
fully. In the example shown in Fig. 7.3c, the key question is whether the KEs that are
unique to the two different AOPs could collectively produce dose-response curves of
different shapes when considering perturbation of the common KEs including the
final AO. This could be due to differences in the types of biological processes
involved in the unique KEs such as receptor signaling cascades vs. enzymatic
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processes, or it could result from differences in homeostatic processes such as an
effective threshold response in one AOP vs. a continuous response in another. Since
these differences can be hypothesized based on the AOP description alone, the
default assumption of dose addition could be evaluated. In cases where the confi-
dence in this assumption is not sufficient for the given decision context, the AOP
framework highlights the experiments needed to confirm or refute the assumption of
dose addition. Furthermore, since AOPs are chemical agnostic, as these questions
are addressed for a given set of chemicals, the information can then be used for any
other chemicals that operate through that set of KEs.

The AOP also provides more options with regard to the response used for
independent action of a chemical mixture. Using the example of chemicals A
and C, if the first shared intermediate KE is more easily measured than later KEs
or the AO, tests could be run for the two chemicals to refine the response at this
KE. If needed, based on the decision context, the combined response at the KE could
be estimated by these data using the independent action approach without requiring
data for the apical outcome from all chemicals. The predicted response at this KE
from the mixture in question could then be used to predict the overall AO based on
knowledge of the downstream events in the AOP. Alternatively, if the response-
response characteristics of the unique KEs in the two AOPs are well characterized,
the predicted response at the first common KE could potentially be computationally
predicted based on the perturbation of the MIE, even in cases where differences in
the dose-response curves across the unique KEs are distinct between the two AOPs.
All chemicals like A could then be combined via dose addition, similarly for all
chemicals like C, and then the combined response at the first shared KE could be
calculated from the predicted responses for each group. Since these earlier key
events can be investigated via in vitro and less time- and resource-intensive assays
than in vivo studies, it should be much easier to get models that predict an early stage
KE than models that extend to the AO.

The examples above are intended to show the theoretical potential for AOPs to
impact mixtures assessments. They are by no means comprehensive and will not be
applicable in all cases. We expect them to be revised, refined, and expanded based on
the valuable insights that will be gained from attempts to apply these strategies to
actual data and by comparative analysis of mixtures risk assessments performed via
more traditional methods to those that take full advantage of the AOP concept.
However, as the examples show, the AOP framework should provide a means to
think more precisely about the question of dose addition and independent action in
the future. Because AOPs are chemical agnostic, both the number of AOPs available
for decision-making and the quality of those AOPs will increase over time. In
addition, as the AOP construct is used to support mixtures assessments, experimental
evaluation will determine the best methods for using AOPs in this context. For this
reason, AOPs should play an ever-increasing role in supporting risk assessment of
chemical mixtures.
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Chapter 8
Dose-Response Modeling

Gregg E. Dinse and David M. Umbach

Abstract For any definition of additivity, evaluating whether an organism’s
response to a mixture is additive depends on the dose-response relationships for
each of the mixture’s component chemicals. Consequently, the statistical analysis of
dose-response relationships is fundamental to mixture toxicology – as well as to
other areas of toxicology. This chapter offers a broad overview of dose-response
modeling and an introduction to some statistical issues that arise in the use of dose-
response models – with an eye to evaluating additivity. It does not, however, attempt
to be a handbook or guide to the use of any specific models; instead, it tries to make
readers aware of issues that need attention to achieve efficient and valid inference.
The chapter mentions features of study design and describes how they can influence
both aspects of model fitting and the quality of results. It considers the choice of
functional form used to describe how the mean response changes as dose increases
as well as the evaluation of how well the chosen form fits the data at hand. The
chapter also points out that proper modeling of the variability inherent in the
structure of the data is crucial to efficient statistical inference. Finally, because
many dose-response models require iterative numerical methods, it offers a few
pointers to help overcome problems when these methods fail to converge. Dose-
response modeling is an essential tool in mixture toxicology but one that demands
careful application to achieve the best results.
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8.1 Introduction

One fundamental project in mixture toxicology is the evaluation of whether a
mixture obeys an additive or no-interaction null model, whereby the typical response
of an organism (or an isolated biological system) to different concentrations of the
mixture can be predicted based on the organism’s (or system’s) typical response to
different concentrations of each component of the mixture individually. This project
has three essential elements: (1) a suitable definition of the additive state, formulated
in a way that is amenable to constructing quantitative predictions (see Chap. 9);
(2) an appropriate collection of data from experiments that examined dose-response
relationships both for the individual component chemicals and for the mixture; and
(3) an array of statistical techniques that use these data to make inferences about the
question of additivity (see Chap. 11). Shortcomings regarding any of these three
elements can impinge on the value of mixture experiments for risk assessment.

Because prediction of the response of an organism to a mixture under additivity –
regardless of the precise definition of additivity invoked – is rooted in the dose-
response relationships for each of the mixture’s component chemicals, statistical
analysis of dose-response curves for individual chemicals becomes a key building
block for evaluating hypotheses about departures from additivity. In fact, the
statistical properties of predicted responses to a mixture under an additivity assump-
tion depend crucially on how well the statistical models used to analyze data from
the individual component chemicals represent the underlying true dose-response
relationships. If dose-response relationships for the component chemicals in the
mixture are estimated with bias, the prediction for the mixture would likely be
estimated with bias as well. Correspondingly, if the estimated dose-response rela-
tionships for the component chemicals are highly variable, the prediction for the
mixture would likely be highly variable, so that tests of the additivity null hypothesis
would have low statistical power. In addition, if a statistical dose-response model
represents the typical dose-response trajectory accurately but fails to properly
account for multiple sources of variation in the data, the precision attributed by the
data analysis to the dose-response relationships might be larger or smaller than it
actually is. Such errors in modeling variability in dose-response relationships can
lead to incorrect conclusions about additivity, including false positive declarations of
departures from additivity or false negative declarations of no departure from
additivity. Analogous kinds of statistical issues centered on adequate specification
and fitting of a dose-response relationship also arise when specifying models that are
intended to reflect departures from additivity and fitting those models to data from
mixtures of chemicals. Sound statistical analysis is essential for valid quantification
of dose-response relationships; consequently, it is important throughout toxicology –
including mixture toxicology.

The purpose of this chapter is to acquaint toxicologists who are now (or intend to
be) working in the area of mixtures with some statistical issues that are ubiquitous in
studying dose-response relationships. Because toxicologists conduct an exceedingly
broad range of experiments with various outcomes and study designs, the variety of
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statistical techniques needed to analyze the range of toxicologic data is comparably
broad. Any attempt to even touch on all possibilities would require a book-length
treatment, not simply a chapter. Instead, this chapter highlights certain issues that are
common across many statistical techniques and that can have a distinct impact on
inferences about dose-response relationships. First, it defines some terminology and
notation that will be used throughout the chapter. Next, it discusses statistical issues
related to study design and describes how they can impinge on the choice of
statistical models employed and on the quality of the results. Then, it goes on to
talk about modeling strategies, including the choice of functional form for fitting the
mean dose-response trajectory. The chapter also draws attention to the importance of
specifying a variance structure that properly reflects sources of variation in the data.
In addition, it points out techniques for evaluating the adequacy of the specified
dose-response model for the data at hand. Finally, because many dose-response
models useful in toxicology require iterative numerical methods for fitting, it
mentions some ways to cope with failure of these methods to converge to a unique
best fit to the data. The chapter closes with a summary.

8.2 A Statistical Perspective on Dose-Response Modeling

To establish some definitions and basic notation, consider as a template a simple
dose-response study involving a single chemical and a single response or outcome.
Assume that the study involves a total number N of experimental units, where
“experimental unit” is a generic term that statisticians use to denote the entity that
is assigned at random to receive a particular treatment or condition in an experiment.
Thus, the experimental units could be male mice in a rodent carcinogenicity study,
pregnant rats in a teratogenicity study, petri plates containing a Salmonella tester
strain in an Ames mutagenicity assay, culture dishes growing a given cell line in
in vitro studies, and so on. In a dose-response study, the treatments to which the
experimental units are assigned at random are the particular dose or concentration
levels of the compound being investigated. Let D denote the number of dose levels
and d1, d2, d3, � � �, dD denote the D particular dose levels used in the study. Because
these dose levels are under the control of the experimenter, one usually regards them
as known constants and not subject to errors of measurement. For simplicity, assume
that the total number of experimental units N is a multiple of the number of dose
levels D, such that N/D ¼ n and that the same number, n, of units are assigned to
each dose level di. Here the index i is one of the numbers {1, 2, 3, � � �,D}. At each
dose level, each experimental unit is labeled by a second index j that is one of the
numbers {1, 2, 3, � � �, n}. Consequently, in this study, each experimental unit is
uniquely identified by two indices, i indicating dose group and j indicating experi-
mental unit within dose group. Let Yij or yij represent the response of the jth

experimental unit at the ith dose level; uppercase Y indicates that one is thinking of
the response as a random quantity that has probabilistic properties (but lacks a
known numerical value), whereas lowercase y indicates that one is referring to an
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actual value that would be observed in a study. Thus, yij is the observed value of the
random variable Yij. Also, one omits the subscripts when referring to a response in
general or uses only subscript i to emphasize the role of dose level when the
particular experimental unit is inconsequential. Typically, both subscripts are needed
only when referring to the response of a particular experimental unit assigned to a
given dose level. Also, though i indexes the dose levels di used in the experiment, the
notation d is used for dose level more generically – including dose levels not
included in the experiment.

Depending on the response measured, data analysis for toxicologic studies
utilizes a range of statistical distributions. The response of interest in a mouse
carcinogenicity study might be the presence/absence of a certain type of tumor in
each mouse at death. Then, Y (viewed as 1/0 for presence/absence) might be
modeled statistically as having a Bernoulli distribution, and a dose-response analysis
might focus on how steeply the probability of the tumor being present increases with
increasing dose level. In a teratogenicity study, if the chemical under study was
known to have no effect on implantation, the response of interest might be the
number of rat pups in each litter born alive and without any malformations. For each
litter, the count Y (which could range from 0 to the number of zygotes implanted)
might be modeled statistically as having a binomial distribution, and a dose-response
analysis might focus on how steeply the probability of being born alive and without
malformation decreases with increasing dose level. In an Ames assay for mutage-
nicity, the response of interest is the number of revertant colonies on the plate; then,
for each plate, the count Y (which could range from 0 upward) might be modeled
statistically as having a Poisson distribution, and a dose-response analysis might
focus on the rate of increase in the expected number of revertant colonies with
increasing dose level. In studies that use cell lines to assess toxic effects, the response
of interest might be the level of a particular enzyme. The enzyme level Y (whose
value could be any non-negative number) might be modeled as having a log-normal
distribution, and a dose-response analysis might examine how the typical enzyme
level changes with increasing dose level.

Although the details of an appropriate data analysis would differ for each of these
examples, they share some fundamental commonalities: each asks how some char-
acteristic of the response’s statistical distribution, a characteristic whose true value is
unknown, changes as the dose level changes; and each acknowledges inherent
variability of the response around its true value. One can think of the characteristic
of interest as the signal and the inherent variability (random error) as the noise – so
the goal of statistical dose-response analysis is to uncover the signal in noisy data.

From a statistical perspective, several decisions must be made in carrying out a
dose-response study. These decisions fall into two phases: the design phase and the
data analysis phase. First is the design phase: one must have a plan for gathering the
needed dose-response data. Having a statistically efficient design for an experiment
enhances validity and cost-effectiveness. Although many aspects of study design are
the purview of the toxicologist, statisticians can help address issues like choosing the
number and location of dose levels or setting the number of experimental units –
both overall and at each dose level – to achieve acceptable statistical performance. In
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complex experiments where, for example, the experiment might need to be
conducted over several days and involve multiple batches of experimental units,
statistical design is indispensable for allocating experimental units from different
batches to different days to ensure that the dose effects of interest can be estimated
without bias and that uncertainty attributable to days, batches, and experimental
units can properly be assessed. The statistical design of experiments is a broad and
challenging field, beyond the scope of this chapter, but the next section (Sect. 8.3)
considers a few aspects of statistical design and how they impinge on dose-response
data analysis.

The second phase of a dose-response study is, of course, the analysis of the data.
Here the decisions have to do with constructing a statistical model that describes the
data and allows estimation of the dose-response relationship of interest and quanti-
fication of uncertainty in the estimate. As indicated in the examples presented earlier
in this section, one must choose a statistical or probability distribution that describes
the random behavior of the experimental units at each dose level. Usually, with
knowledge of the type of response being measured and personal experience or
guidance from the literature regarding similar responses, the analyst will quickly
nominate a small set of candidate distributions that can be refined as the analysis
proceeds.

A second early decision is what feature of the statistical distribution to focus on
for describing the dose-response relationship. The distributional feature used most
often in the dose-response context is the mean of the dose-level-specific distribution
of responses. A mean is a common way to assess central tendency in a statistical
distribution, not only for continuous responses but more generally. For example, for
a list of presence/absence responses (coded as 1/0), their average (i.e., the number of
ones divided by the number of experimental units) gives the proportion of experi-
mental units with 1 as a response, and such a proportion can often be interpreted as
an estimate of the probability of the characteristic being present. Though features
other than the mean response might sometimes be useful in dose-response analysis,
this chapter considers only the mean.

Another crucial aspect of the analysis phase is specifying a model or algebraic
expression that describes how the mean response changes with dose level. For
example, one can represent each observation using the mathematical formula:

Yij ¼ μi þ εij, ð8:1Þ
where μi is the unknown true mean response at dose level di from the experiment and
εij is an error term that is conceptualized as a random deviation from that mean for
experimental unit j at dose level di, one that corresponds to the particular statistical
distribution under consideration. This representation embodies the common notion
that an observed value is an imperfect or noisy reflection of a true but unknown
“typical” value for any experimental units that experience a particular dose level.
The collection of μi for i in the set {1, 2, 3, � � �,D} represents a model for the mean as
a function of dose in that the μi values describe how the mean changes with applied
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dose level. The goal of the statistical analysis might be obtaining point and confi-
dence interval estimates for each μi or for differences among them.

If the investigator were only interested in the mean response at the pre-selected
dose levels tested in the experiment, estimation of those particular mean responses
via Eq. 8.1 would be useful. More commonly, however, dose-response studies are
conducted to make inferences about dose levels in addition to those actually tested in
the experiment; perhaps an investigator seeks to characterize an entire dose-response
curve or to make inference about mean responses at arbitrary dose levels either
between or beyond (e.g., low-dose extrapolation) those studied experimentally. In
this case, one could replace Eq. 8.1 with a possibly nonlinear regression model:

Yij ¼ f dijθð Þ þ εij, ð8:2Þ
where f(dij θ) is a prespecified regression function that relates dose level di to the
unknown true dose-specific mean response μi and that depends on a vector of
unknown parameters θ, and εij is an error term as in Eq. 8.1. For example, in the
Ames assay for mutagenicity, one often specifies f(djθ) ¼ α + βd (here, θ ¼ (α, β)),
where α reflects the background mutant yield and β represents the mutagenic
potency (Bernstein et al. 1982). A second example might involve enzyme concen-
trations measured in such a way that the response ranges from 0 to 1 (or, equiva-
lently, from 0% to 100%) and one might specify f(djθ) using the Hill model (Hill
1910), namely, f(djθ) ¼ dγ/(dγ + δγ) (here, θ ¼ (δ, γ)), where δ represents the ED50

(or median effective dose) and γ is known as the Hill coefficient. Because Eq. 8.2
allows inferences for any d, a key difference between Eqs. 8.1 and 8.2 is the latter’s
capacity for allowing inference to dose levels that were not observed in the exper-
iment. Of course, there is a trade-off: proper inferences with Eq. 8.2 rely, in part, on
the assumption that f(djθ) is correctly specified for (or at least a close approximation
to) the true dose-response relationship under study. Further consideration of the
mean function f(djθ) and consequences of specifying it incorrectly appear later in the
chapter.

The presentation of Eqs. 8.1 and 8.2 has so far focused on modeling the
relationship between dose level and mean response as embodied in the μi or in
f(dijθ); but both models also involve random errors, as embodied in the set of εij. For
now, assume that the mean response model is correctly specified so that the εij,
averaged across experimental units, have mean zero at each dose level. The impor-
tant remaining properties of the εij are their variances and their covariances. Variance
may be the same for every experimental unit or may change across dose levels. A
covariance is zero when two experimental units are independent and non-zero when
they are correlated. In fitting Eqs. 8.1 and 8.2 to data, correct specification of
variances and covariances for all experimental units is critical. This specification is
done via a variance-covariance matrix for the vector ε (whose N entries are the εij).
Let Σ denote the N � N variance-covariance matrix for ε (or, more generally, for the
vector of observations Y given their true means); the diagonal elements of Σ are the
variances of the εij and the off-diagonal elements are their pairwise covariances. The
matrix Σ can depend on one or more unknown parameters (denoted by vector ω);
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one can write Σ(ω) to emphasize that dependence and regard Σ(ω) as representing a
model for the variance-covariance matrix in terms of unknown parameters to be
estimated.

For example, when the dose-level-specific response distribution is normal, a
typical default assumption is that its variance is unknown but constant across dose
levels and that the individual εij are independent (their covariances are zero) both
within dose level and across dose levels (in this example, the off-diagonal elements
of Σ are all zero, and the diagonal elements are all the same unknown constant often
denoted σ2). The assumption of constant variance may not always hold, however.
Some probability distributions have the property that their variance and their mean
are related in a defined way. For example, for the Poisson distribution, the mean and
the variance are equal; for the Bernoulli and binomial distributions, both the mean
and the variance depend on the success probability; for the log-normal distribution,
the variance increases as the mean increases in a prescribed way. Thus, certain forms
of heteroskedasticity (nonconstant variance) are built into the data analysis via the
statistical distribution chosen for the analysis. Sometimes, however, the mean-
variance dependence that is built in by the chosen distribution does not adequately
accommodate the observed degree of heteroskedasticity, so that the data analyst
must incorporate additional parameters to accommodate extra variability (Breslow
1984; Williams 1982). For example, models that incorporate extra-binomial varia-
tion are commonly applied in studies of possible teratogens where a dam is the
treated experimental unit, but a presence/absence response is assessed on each dam’s
individual pups (Haseman and Hogan 1975; Piegorsch and Haseman 1991; Zorrilla
1997) and summarized into a single Yij for each dam. Even for distributions like the
normal that accommodate constant variance, the underlying data-generating mech-
anism may deliver heteroskedasticity across dose levels; and such heteroskedasticity
must be properly taken into account to achieve efficient and valid statistical
inference.

Another consideration when modeling the variance-covariance structure of the
data is whether the observations can be modeled as independent, which implies that
covariances are zero. When experimental units that are homogeneous (representing a
single unstructured population of units) are assigned at random to dose levels, the
homogeneity of the units together with the randomization process strongly supports
that the observations would be independent. If the experimental units are not
homogeneous to begin with, however, but instead represent multiple subgroups,
then non-zero covariances can arise even with randomization. Say, for example, the
experimental units are mice and the mice needed for the study were accumulated by
taking multiple littermates from several different litters, then arguably the responses
of two littermates may well be more similar to each other than the responses of two
mice from different litters – leading to non-zero covariances for certain pairs of units
that should be acknowledged in the data analysis. Aspects of the way an experiment
is conducted can also lead to non-zero covariances between experimental units. For
example, if an experiment is so large that it must be carried out in multiple runs and
each run involves several experimental units and is accomplished on a different day,
or if a procedure involves incubating treated plates (the experimental units) at a
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controlled temperature for a certain period and the large number of plates involved
necessitates the use of multiple incubators, then two units from the same run or in the
same incubator could arguably be more similar in response than two units from
different runs or in different incubators. In this way, details of the conduct of an
experiment can have a strong bearing on the covariance structure that may exist
among the observations.

Thus, an overall statistical model for the data from a dose-response study
typically consists of three components: (1) a probability distribution appropriate
for the response under study; (2) a mathematical model, denoted here by f(djθ), that
describes the relationship between mean response and dose; and (3) a model,
denoted here by Σ(ω), for the variance-covariance matrix of the data. After the
data analyst has established such a statistical model for the dose-response data, the
task is to estimate the unknown parameters θ andω and to quantify the uncertainty in
those estimates. For example, the model f(djθ)¼ α + βd describes an entire family of
possible straight lines because both α and β can take on values ranging from �1 to
1. Estimating the unknown parameter θ ¼ (α, β) amounts to choosing the specific
values of α and β that produce the straight line that fits the data best.

The process of fitting a model to data – that is, of estimating the particular values
of the unknown parameters θ andω that provide the best fit to the data at hand – is, of
course, a key step in data analysis. Statisticians have devised various criteria to
operationalize the concept of “best fit.” For regression models for normally distrib-
uted observations, estimates of θ, denotedbθ, are typically derived using the principle
of least squares, where the best estimates are those that minimize the sum of squared
differences between observed data and model predictions (Seber and Wild 1989).
Variance parameters ω for normally distributed observations can be estimated by
equating observed average squared deviations to their expected values expressed as
functions of ω (Searle et al. 2006). Another widely used criterion for “best fit” is
based on the principle of maximum likelihood. Generally, the likelihood is an
algebraic expression of the joint probability of the observed data regarded as a
function of the unknown parameters. The value of the unknown parameter declared
to fit best is the one that makes this joint probability as large as possible – hence,
maximum likelihood. Maximum likelihood delivers estimates of both θ and ω
directly. For normally distributed data, the least squares and the maximum likelihood
estimates of θ coincide – a relationship that may not hold for other distributions.
Maximum likelihood estimates are widely used because they have desirable statis-
tical properties that hold for many distributions (Mood and Graybill 1963). Of
course, other ways of defining “best fit” could also be used: some are versions of
maximum likelihood such as restricted maximum likelihood or penalized maximum
likelihood; others are developed in a Bayesian framework (Box and Tiao 1992;
Carlin and Louis 2000). Maximum likelihood receives the most attention in this
chapter.
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8.3 Design Considerations

Proper experimental design can have a substantial impact on the precision and power
of statistical inferences from a dose-response study. A study’s design can also
influence the range of models that can be successfully fitted to the eventual data.
Designing an experiment always entails trade-offs. In a study with multiple goals, a
good design for addressing one goal may be less useful for addressing another; in a
study with multiple endpoints, an ideal design for one endpoint may be suboptimal
for another. Consider a study where the investigator anticipates that the appropriate
dose-response function is a straight line between the lowest and highest dose levels
of interest. Assume further that the responses will be normally distributed and have
constant variance across all dose levels. Then, for the goal of having the most precise
estimate of the slope of the line, the optimal design is to allocate half the experi-
mental units to the lowest dose of interest and the other half to the highest (Seber
1977). If the investigator entertained any doubts that a straight line was the correct
dose-response model, this design could be catastrophic, as it is completely unable to
detect any curvature in dose-response trajectory. Allocating experiment units to
intermediate dose levels would allow one to check whether, in fact, the straight
line was an appropriate dose-response model, though at the cost of some loss of
precision for slope estimation, and would enable the investigator to fit a more
appropriate model if necessary. When selecting dose levels for an Ames mutagenic-
ity assay, the investigator is faced with just this kind of trade-off; at higher dose
levels, toxicity begins to dominate mutagenicity, and an increasing dose-response
curve tends to bend downward. Possible goals for a dose-response study for an
individual endpoint include choosing a model that aptly describes the dose-response
trajectory, estimating the unknown parameters of the selected model, assessing risk
through quantities such as the median effective dose or some other benchmark dose,
and predicting expected response at any desired dose level – and seeking the most
accurate and precise estimation possible for these last three. A chosen design will
often have to compromise among such competing goals – while simultaneously
honoring any constraints imposed by budgets, facilities, and available time.

Consider first a simple setting, known to statisticians as a completely randomized
design. In that setting all the experimental units are viewed as homogeneous, and all
are allocated at random to the chosen dose levels; such a design incorporates no
structure arising from different batches of experimental units or from different
technicians or different runs or other restrictions on randomization. In that setting,
the basic quantities contributing to the statistical design are the number of dose levels
in the study, the actual dose levels employed (think of their placement – location and
spacing – on the dose axis of a graph), and the number of experimental units
assigned to each dose level. The choice of each of these quantities is informed
both by the nature of the dose-response models to be fitted to the data, namely, the
set of functions f(djθ) under consideration, and by the number of experimental units
that the investigator can afford to obtain and carry through the study. Generally
speaking, more flexible models can be fitted when more dose levels are studied and,
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for a fixed number of dose levels, estimates become more precise as the number of
replicate experimental units allocated to each dose level increases – but costs and
other practicalities typically limit these numbers.

A fixed number N of experimental units could be allocated to particular dose
levels in various ways, ranging from placing all of them at a single dose to placing a
single observation at N distinct dose levels. Statisticians often think in terms of an
optimal experimental design – one where the placement of dose levels and the
proportion of the total number of experimental units allocated to each dose level is
guaranteed to meet some desirable property (often to minimize the variances of the
parameter estimates) for any total number of experimental units. An optimal design
for minimizing the variance of an estimated slope for a straight line was mentioned
earlier. Such optimal designs are a prominent area of theoretical statistics, but most
of the work and the results are applicable when the model used to analyze the data is
linear in the unknown parameters, for example, a straight line or many models used
in analysis of variance. In these settings, often there will be a unique optimal design
regardless of the true values of the unknown parameters. A majority of dose-
response models used in toxicology, however, are nonlinear in the unknown param-
eters (e.g., the Hill model mentioned earlier). Though optimal designs may still be
found, finding them is much more difficult for nonlinear models; and, when found,
they often have the unfortunate property that the placement of the dose levels for the
optimal design changes depending on the true values of the unknown parameters
(Seber and Wild 1989) – which means that the investigator has to know a good deal
about the underlying truth before a dose-response experiment can be designed
optimally. Consequently, focusing on optimal designs is not practical in the present
context, and instead the focus will be on heuristics for good design.

In general, the number of dose levels (including dose zero) in the study must, at
minimum, equal the number of individual parameters in the vector θ. Under ideal
circumstances, that minimal number of dose levels ensures all individual parameters
can be estimated uniquely (if several different models are being considered, then use
the θ with the most elements to determine the minimum). For a simplistic example
illustrating the problem with having too few dose levels, consider fitting a straight
line (where θ has two individual parameters) to a design where all the replicates were
allocated to a single dose level. Although one could certainly estimate a mean
response at the single dose level, one could not estimate an intercept and slope
uniquely: there is no best choice among the infinitely many lines that can be fitted
through a single point. To estimate both parameters, a design must employ at least
two dose levels. Analogously, at least two dose levels would be required to estimate
the parameters γ and δ in the Hill model mentioned earlier. Similarly, if θ contained
four individual parameters, then a study would need at least four distinct dose levels
to have any chance of obtaining unique estimates of the four parameters.

While the number of parameters in the selected model provides a minimum for
the number of dose levels required, usually it would be unwise to implement a design
with such a limited number of dose levels – for several reasons. One has already been
mentioned in connection with the optimal design for a straight line: if an investigator
wants to check whether a more complex model, one with more parameters to allow a
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richer variety of shapes, might fit better than the one used to determine the minimal
number of dose levels, the design needs to have additional dose levels to accommo-
date the more complex alternative model. A second reason has to do with the
placement of the dose levels.

How the placement of dose levels can influence the ability of a design to estimate
unknown parameters can be illustrated by an example using a sigmoid dose-response
function, a shape often relevant in toxicology. Consider an extended version of the
Hill model mentioned previously, namely,

f djθð Þ ¼ Lþ U � Lð Þ � dγ= dγ þ δγð Þ½ � ð8:3Þ
(here, θ ¼ (L,U, δ, γ)), where L is the lower response limit, U is the upper response
limit, δ represents the ED50 (or median effective dose), and γ is known as the Hill
coefficient and is related to how sharply the curve rises (or falls). Whereas in the
original version of the Hill model (the portion enclosed in brackets in Eq. 8.3), the
possible response values ranged from 0 to 1 (assuming an increasing function, i.e.,
γ > 0); in this version, response values range from L toU, and both of these limits are
to be estimated. If f(djθ) is plotted against the logarithm of dose, the resulting graph
is sigmoid, with a long shallow rise from an asymptote at L with small dose levels,
eventually rising more quickly, reaching its steepest slope at the ED50, then gradu-
ally rising more slowly as it increases toward an upper asymptote at U with large
dose levels.

For the four-parameter model of Eq. 8.3, a design must incorporate at least four
distinct dose levels. Suppose an experimental design assigned four non-zero dose
levels to be equally spaced on a logarithmic scale (often a convenient spacing for a
laboratory because of the ease of serial dilutions). If the four dose levels selected all
corresponded to the early part of the curve when the increase was shallow (say, all
were well below the ED50), then one gets a lot of information about response levels
close to L but little information about other response levels (Fig. 8.1a). Thus, it is
likely that only the parameter L would be estimated satisfactorily; the data from such
a design would not serve to estimate the other parameters well at all. Similarly, if the
four dose levels selected for the design were all above the ED50, then data resulting
from the design might estimate U well but not the other three parameters (Fig. 8.1b).
Alternatively, if the four doses were widely spaced on the log scale but the true curve
rose rapidly over a narrow intermediate dose range, it is possible that the two lower
doses would correspond to the early relatively flat part of the curve and the two
higher doses would correspond to the late relatively flat part of the curve, with no
data collected in the region where the dose-response function changed rapidly
(Fig. 8.1c). In that situation, data arising from the design might estimate L and
U well but not the ED50 or Hill coefficient. Of course, estimating all the model
parameters well simultaneously is important if one seeks a reliable estimate of the
entire dose-response curve, which requires appropriate placement of the four dose
levels (Fig. 8.1d). Even the placement of doses d1–d4 in Fig. 8.1d, though better than
the placements in the other panels, may not sufficiently capture information about
the flat parts of the curve. The use of two additional dose levels (d0, d5) to extend the
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range of dose levels would likely improve estimation of all parameters, pointing to
the value of using more dose levels than the minimum required number.

Another way to think about why the dose level placements mentioned in the
previous paragraph are problematic is by relating the dose levels in the design to the
expected response levels. The set of dose levels included in a design should
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Fig. 8.1 Illustration of how dose-level placement may influence estimation of dose-response
relationships. Each panel shows a dose-response function generated from the four-parameter Hill
model in Eq. 8.3 and four evenly spaced dose levels (d1, d2, d3, d4). Panel (a): all dose levels on the
lower flat portion of the curve provide information mostly about parameter L. Panel (b): all dose
levels on the upper flat portion of the curve provide information mostly about parameter U. Panel
(c): failure to include dose levels in the region where the curve rises provides information mostly
about parameters L and U. Panel (d): dose-level placement that includes the region where the curve
rises as well as the shoulders where the curve is nearly level provides information about all four
parameters; placing additional dose levels at d0 and d5 (alternately, replacing dose levels d1 and d4
with d0 and d5) would provide better information about the flat parts of the curve and enhance
estimation of all parameters

216 G. E. Dinse and D. M. Umbach



correspond to a set of true unknown response levels that are representative of the
entire range of possible underlying response values. Thus, a design whose dose levels
only capture the low end but not the middle or high end of the response range – like
the design mentioned earlier with all dose levels below the ED50 – is unlikely to be a
good design for a sigmoid curve. Similarly, a design whose dose levels capture only
the highest and lowest response levels but none in the middle – because the dose
spacing is too wide to have doses corresponding to intermediate response levels –
is unlikely to be a good design. The placement of dose levels is important so that
the design captures a range of responses at the collection of chosen doses.

This discussion serves to illustrate a point made earlier – that an optimal design
for nonlinear models depends on the unknown true values of the parameters. One
must have some idea about the shape and location of the dose-response curve one is
trying to estimate if one hopes to design an experiment to estimate it well. Although
equally spaced dose levels, either on an additive or logarithmic scale, are common
default choices, irregular spacing of dose levels – farther apart where the dose-
response curve is expected to be flat and closer together where the dose-response is
expected to change rapidly – can be a useful strategy, but one that demands more
extensive prior knowledge of the dose-response curve. If an investigator does have a
good sense of an appropriate range of dose levels to represent the full range of
response levels, then choosing a number of dose levels nearer the minimum required
by the number of model parameters seems reasonable – though including several
additional dose levels that will allow flexibility for fitting more complex models and
will accommodate any lingering uncertainty as to the appropriate dose range would
be a prudent strategy. On the other hand, if the investigator is very uncertain of the
nature of the dose-response curve, other strategies are needed. Most important would
be to employ a pilot dose-finding study to help home in on an appropriate dose range.
In addition, when the dose-response shape is uncertain, designs using a relatively
large number of dose levels (and necessarily fewer experimental units at each dose)
would increase the chances for avoiding some of the aforementioned problems with
poor dose placement.

Usually designs assign an equal number of observations at each dose level – this
strategy is just simple to execute. If the investigator expects that variability in
response is greater at some dose levels than others – say, variability is greater at
higher dose levels – allocating more experimental units at those dose levels expected
to be most variable can be an efficient strategy but one that is not widely used.

The design considerations to this point have focused on a completely randomized
design; but such simple designs are not the best approach in every study. Many dose-
response experiments must accommodate distinct batches of experimental units or
involve procedures that must be carried out on different days or using several
instruments of the same type to accommodate the throughput. In such experiments,
statistical efficiency demands that one account for the batches or days or instruments
at the data analysis stage – because they contribute batch-to-batch or day-to-day or
instrument-to-instrument variability. The statistical design goal is to be able to
remove, when possible, such unavoidable but attributable variability from the
variances of dose-level comparisons and the variances of parameter estimates. One
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statistically useful but relatively simple design in this context is a randomized
complete block design, where “block” is a generic statistical term for a set of
experimental units that have some feature in common. That feature might be a
common source (e.g., mice from different litters could constitute separate blocks,
or mice from different strains could constitute separate blocks), or that feature might
be some commonality in the way units are handled during the conduct of the
experiment (e.g., if multiple incubators are used in an experiment, the set of
experimental units assigned to each incubator would be considered a block). A
randomized complete block design assigns the experimental units within each
block at random to the set of dose levels under study. Thus, each block is a dose-
response study with one experimental unit allocated to each dose level; in a sense,
each block is a separate mini-dose-response study. This design is useful when the
number of experimental units in a block (the block size) is large enough to handle the
entire set of dose levels under study. If the block size is smaller than the number of
distinct dose levels, then more complicated designs known as randomized incom-
plete block designs may be appropriate. Statisticians have devised many sorts of
statistical designs to handle various sorts of restrictions on randomization imposed
by the way experiments must be conducted. The intent here is to make readers aware
of these issues and to point out that consultation with a statistician at the design stage
can help an investigator make the best use of resources in settings where complex
blocking may be needed.

8.4 The Model Describing How Mean Response Depends
on Dose: f(djθ)

Toxicologists typically consider dose-response curves that are continuous (i.e.,
without jumps) and where the mean response either increases across the entire
range of doses or decreases across that entire range. Dose-response curves that
never change directions are called “monotone.” A monotone dose-response model
can have one or more flat regions; however, if a monotone model has no flat regions,
it is called “strictly monotone.” A model is called “non-monotone” when it exhibits
any change in direction (i.e., the response increases over some dose ranges but
decreases over others).

Non-monotone dose-response models are not widely used in toxicology, but they
have some applications. For example, in the Ames assay, dose-response curves may
turn downward at the highest dose levels when cell toxicity dominates mutagenicity
(Margolin et al. 1981); others have allowed the possibility of non-monotonicity
when fitting flexible curves for relative potency estimation (Guardabasso et al. 1987,
1988). Consideration of hormesis also leads to non-monotonicity in dose-response
models (Hunt and Bowman 2004; Kim et al. 2016). As with the toxicity-
mutagenicity competition just mentioned, models constructed to reflect an increase
in response attributable to one process (say, mutagenicity) with a decrease in
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response due to another (say, toxicity) have been applied to non-monotone dose-
response data in other settings, such as high-throughput screening experiments (EPA
2016; Shockley 2016).

Monotone models with flat regions are used more often, however. A typical
example is a threshold model where the response is initially flat from dose zero up
to some critical dose where the monotone increase or decrease in response begins
(e.g., Casey et al. 2004). The initial flatness of a threshold model is interpreted as a
continuation of the response in the absence of chemical exposure until the dose
becomes sufficiently high to elicit a measureable response. Though such models are
useful, using noisy data to distinguish a flat region (where the slope is zero) from a
region with a very shallow positive or negative slope is difficult; consequently,
inference about the critical dose (join point) is difficult in the sense that estimates of
the join point often have large standard errors. Also, from a curve-fitting perspective,
a flexible and carefully chosen strictly monotone model can often closely mimic and
be difficult to distinguish statistically from a threshold model. Consequently, this
chapter will focus primarily on strictly monotone dose-response models.

Another reason to favor strictly monotone dose-response models in the context of
mixtures is that methods for constructing the dose-response curve for a mixture
under an assumption of additivity (e.g., Berenbaum’s definition of dose additivity;
Berenbaum 1985) become problematic without strict monotonicity. A dose-response
model maps a given dose to the corresponding expected response level; but use of
Berenbaum’s definition requires mapping an observed response level to the dose of
each component chemical that separately would induce that response level. What is
required is a mapping from response to dose – the inverse of the dose-response
function. If a dose-response curve has a flat section between two dose levels, the
response level of the flat portion does not correspond to a unique dose – but to any
dose between those two dose levels. A strictly monotone dose-response curve,
however, has a unique response corresponding to each dose and can be inverted to
provide a unique dose corresponding to each response. Thus, strict monotonicity of
the dose-response model is desirable in connection with mixtures.

Luckily, the class of strictly monotone mathematical functions to use as dose-
response models is large and can accommodate a wide variety of curve shapes. Many
dose-response models that toxicologists use routinely are nonlinear, often sigmoid.
In Eq. 8.3, an extended version of the Hill model was introduced; this model is
strictly monotone so long as γ 6¼ 0, and it is increasing or decreasing depending on
the sign of γ. Consider replacing the Hill function, dγ/(dγ + δγ), in Eq. 8.3 by a
general strictly monotone function g(djθ∗) that is governed by a vector of parameters
θ∗ and that takes values between 0 and 1 as d increases from 0 to 1 (or, equiva-
lently, as the logarithm of d increases from �1 to 1). One can write the resulting
more general dose-response model as:

f djθð Þ ¼ Lþ U � Lð Þ � g djθ∗ð Þ ð8:4Þ
(here, θ ¼ (L,U, θ∗)). This formulation allows f(djθ) to increase from L to U or to
decrease from U to L, depending on whether g(djθ∗) is monotone increasing or
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decreasing in d. For concreteness, the mean response in this chapter will be assumed
to increase monotonically with dose, unless otherwise stated. Therefore, the lower
response limit L is the value of f(djθ) when d ¼ 0 and the upper response limit U is
the value of f(djθ) as dose d gets arbitrarily large.

Generally speaking, the response limits in Eq. 8.4 can take any values such that
L is smaller than U. Some experiments may involve natural boundaries for the mean
response, in which case L and U might be assigned fixed values a priori. For
example, if the response is a percentage of experimental units responding, one
might specify L ¼ 0 and U ¼ 100 or in fact any pair of intermediate values that
satisfy 0 � L < U � 100. Alternatively, one or both of the response limits can be
treated as unknown and estimated from data in the current experiment (Dinse and
Umbach 2011) or from data on negative and positive controls in historical studies.
Even if the mean response is a proportion, the lower limit could exceed 0% if there
were a background rate, which could occur if a fraction of the population showed an
effect even without chemical exposure. Similarly, the upper limit could be less than
100% if a fraction of the population did not show an effect regardless of how great
the dose became.

The family of curves described by the dose-response model of Eq. 8.4 changes for
different specifications of the function g(djθ∗). Of course, the Hill model of Eq. 8.3
is one family where g(djθ∗) ¼ dγ/(dγ + δγ) with θ∗ ¼ (δ, γ). For statisticians, one
convenient way to specify a monotone increasing curve for g(djθ∗), which has a
lower bound of 0 and an upper bound of 1, is to use a cumulative distribution
function for a known statistical distribution, which by definition increases mono-
tonically from 0 to 1. (If a monotone decreasing g(djθ∗) is desired, subtract the
cumulative distribution function from 1 and use that difference as g(djθ∗).) Some
common statistical distributions used in toxicology include the logistic (Reeve and
Turner 2013); the normal, which leads to the well-known probit model (Finney
1971); and the Weibull (Christensen and Nyholm 1984). Many other choices are
possible, of course; but usually choices are restricted to familiar statistical
distributions.

Statistical cumulative distribution functions have rigidly defined shapes. Investi-
gators looking for more flexibility in the shape of a dose-response model to better fit
the data at hand have several options. One is to create a new dose-response model by
replacing dose d in an existing model with a transformed version of dose d; a second
is to use other kinds of models that allow more flexible dose-response shapes, such
as regression splines or smoothing splines.

Perhaps the most frequently used transformation of dose is the natural logarithm
of dose, in symbols, t(d )¼ ln (d ). Here, t(∙) is notation for a generic transformation,
and ln(∙) is the natural (base e) logarithm function. If one starts with a function f(djθ)
and substitutes t(d ) for d, one gets a new dose-response function f∗(djθ). Consider
the linear dose-response model f(djθ)¼ α + βd. If one replaces d with ln(d ), the new
dose-response model becomes f∗(djθ) ¼ α + β ln (d ). The latter model describes a
different family of curves than the original model. The same kind of manipulation is
possible starting from any model f(djθ); of course, one has no guarantee that the
resulting model f∗(djθ) will be better suited than the original for the data at hand.
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The distinction between creating a new dose-response model and simply
reparameterizing the original model is important and is often a point of confusion.
Often a model expressed as a function of d is reexpressed as a function of ln(d ) for
mathematical convenience or computational stability. This reexpression takes
advantage of the mathematical identity: d � exp (ln(d )). For example, the popular
Hill model (limited here to the response range 0–1) is frequently written as a function
of dose d:

g djθð Þ ¼ dγ= dγ þ δγð Þ: ð8:5Þ
Alternatively, Eq. 8.5 can be algebraically rearranged and reparameterized to give
the following logistic model, which is expressed as a function of log dose:

g djθð Þ ¼ 1= 1þ exp �α� β ln dð Þð Þ½ �, ð8:6Þ
where parameters α and β have different interpretations from parameters δ and γ.
Often α is referred to as an intercept and β as a slope because Eq. 8.6 can be rewritten
as a linear function of ln(d ), namely, ln{g(djθ)/[1 � g(djθ)]} ¼ α + β ln (d ). If one
sets α¼ � γ ln (δ) and β¼ γ, then Eqs. 8.5 and 8.6 coincide and both specify exactly
the same mean response for any particular dose. Thus, simply because two dose-
response models look distinct algebraically does not mean that they must specify two
different families of dose-response relationships – sometimes two models are exactly
the same even though the functional forms appear to be different.

For some models, one parameterization may offer computational or interpreta-
tional advantages over another. For example, when summarizing results in terms of
the ED50, one might prefer a model that incorporates the ED50 directly as a
parameter, such as parameter δ in Eq. 8.5, rather than calculating it indirectly from
other parameters. Alternatively, a model expressed in terms of ln(d), such as Eq. 8.6,
has properties that make it less susceptible to numerical problems with model fitting:
it minimizes curvature and thus reduces bias by more closely mimicking a linear
model (Bates and Watts 1988; Reeve and Turner 2013).

Rather than selecting a fixed dose transformation in advance, one can write the
transformation function t(∙) as a function of unknown parameters and build those
additional parameters into an original dose-response model, in essence estimating a
dose transformation that enhances model fit. Perhaps the most common transforma-
tion function with an adjustable parameter is the Box-Cox transformation (Box and
Cox 1964): t(d ) ¼ (dλ � 1)/λ, where the parameter λ governs the shape of the dose
metric, with a continuum of dose transformations for the range of λ values between
�1 and 1. This family of transformations includes (after changing multiplicative
and additive constants to 1 and 0, respectively) t dð Þ ¼ ffiffiffi

d
p

if λ ¼ 1
2, t(d ) ¼ 1/d if

λ¼ � 1, and t(d )¼ ln (d ) in the limit as λ! 0. For example, to obtain a linear dose-
response model with an arbitrary dose metric, one could substitute (dλ � 1)/λ for d in
f(djθ)¼ α + βd to create a new model f∗(djθ)¼ α + β[(dλ� 1)/λ] and then estimate λ
together with α and β using software for nonlinear regression. The same general
procedure could be applied to almost any dose-response model. For instance,
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Altenburger et al. (2000) considered several models that included a Box-Cox
transformation of dose.

One feature to be aware of when applying the Box-Cox approach is that the mean
response at dose 0 can differ from the response limit expected under the original
model. For example, consider a dose-response model f(djθ) as in Eq. 8.4, with g(djθ∗)
having the form shown in Eq. 8.6, except that (dλ � 1)/λ is substituted for ln(d).
An estimate of λ close to 1 would suggest using d � 1 (or, equivalently, d) as the
dose metric. By definition, at dose 0 the values of g(djθ∗) and f(djθ) should be 0 and L,
respectively. For an increasing dose-response curve (β> 0), however, substituting d for
ln(d) in Eq. 8.6 gives g(0jθ∗)> 0, and thus f(0jθ)> L. Therefore, use of the Box-Cox
approach can force a non-zero background rate even if L¼ 0. A similar problem occurs
for a decreasing dose-response curve (β< 0), where themean response at dose 0 would
remain below the upper limit, i.e., f(0jθ)<U, thereby precluding 100% response even if
U¼ 100. In other words, employing the Box-Cox transformation approach can imply a
redefinition of parameters L and U in models having the basic structure of Eq. 8.4.

Up to this point, the presentation has focused on parametric dose-response
models. Each of these models has a family of curves associated with it, and each
expresses the mean response as a smooth and strictly monotone function of dose.
These models often have parameters with useful interpretations. The shapes of the
curves within each family are rigid in certain ways, however. Despite one’s ability to
adjust a model’s parameters to achieve a best fit within that model or family of
curves, one may not always be able to find a model that adequately fits the data at
hand. Certain desired inferences, such as extrapolation below the lowest doses in the
experiment, rely heavily on the dose-response shape determined by the parametric
model.

As an alternative, one might seek approaches that also produce a smooth and
strictly monotone curve for the dose-response function but alleviate some of the
rigidity in shape of particular parametric models. To achieve greater flexibility in
curve shape, one generally has to sacrifice some interpretability of model parameters.
Still, for mixture applications, the goal is often fitting a smooth monotone dose-
response curve. From such a curve, one can estimate any quantities of interest such
as the ED50 or other benchmark doses even when a single parameter identified with
the quantity of interest is not part of the model. On the other hand, low-dose
extrapolation is even more uncertain with such models because their flexibility
precludes using the rigid parametric model structure to help make inferences beyond
the range of the available data. Various kinds of flexible smoothing models could be
applied for dose-response modeling with choices dictated to some extent by the
nature of the available data. Splines, which are piecewise polynomial models, could
be useful in many dose-response settings (Harrell 2001; Ramsay 1988). The analyst
chooses the number and location of knots (the dose levels where the polynomial
pieces join), the degree of polynomial to employ, and sometimes a constraint on the
function beyond the lowest and highest knots. For dose-response modeling,
constraining the fitted spline to be monotone is an important consideration. For
example, with respect to evaluating mixture data for departures from additivity,
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Kelly and Rice (1990) used a monotone hybrid of smoothing and least-squares
splines, where monotonicity is achieved by constraining coefficients and smoothing
is controlled by a penalty parameter and by the number of knots. For data with a
binary response, Dette et al. (2005) proposed a nonparametric method for obtaining
monotone estimates of effective dose without requiring constrained optimization or
function inversion. In a relative potency setting, Guardabasso et al. (1987) assumed
that multiple chemicals share a common but arbitrarily shaped dose-response curve,
which can be shifted or stretched along the log-dose scale to give chemical-specific
curves; they model the common curve by a cubic spline (though without requiring
monotonicity) and then apply chemical-specific shift and scale parameters. Notting-
ham and Birch (2000) combined parametric and nonparametric estimates of a dose-
response function, with a mixing parameter that adjusts the relative weight given to
each component based on how well it individually fits the data.

Another modeling strategy, one that is capable of generating quite flexible
predictive models but one that has largely been unexplored for dose-response
modeling, is model averaging. The idea is that one postulates a list of K possible
dose-response model families, say f1(djθ1), f2(djθ2), f3(djθ3), � � �, fK(djθK), and fits
each of the K models to the available data. The final predictive model is a weighted
average of the best-fitting models, one from each family. Typically, model fitting is
accomplished using a Bayesian paradigm where the weights are also estimated.
Although we have not yet seen model averaging used in the context of mixture
models, model averaging has been proposed by several authors as a way to estimate
a benchmark dose that is not tied to any single parametric model family (Fang et al.
2015; Simmons et al. 2015; Wheeler and Bailer 2007, 2008, 2009) and to detect
hormesis (Kim et al. 2016).

When examining whether a mixture is obeying some definition of additivity,
there is a premium on accurate and precise estimation of the dose-response curves of
the component chemicals because the predictions from those curves are combined to
calculate the expected dose-response curve for the mixture under additivity.
Hertzberg et al. (2013) proposed an approach based on guidance from the U.S.
Environmental Protection Agency that assumes that all component chemicals are
toxicologically similar and that the specific dose-response curve for each chemical
comes from a common family of models; that is, the component-specific curves
differ only in their specific parameter values, but not the form of f(djθ). Those
authors use model selection criteria (see Sect. 8.5) to select the simplest model
family that still provides an adequate fit to the data for each component chemical.
This approach is straightforward and likely sound if all component chemicals are
indeed toxicologically similar. There is, however, no guarantee that a single model
family will provide the best fit to the data on each component chemical. The
Hertzberg et al. approach could suffer if the dose-response relationships of certain
component chemicals were poorly fit by the common model family. In a less
restrictive approach, Altenburger et al. (2000) specified a list of model families
(such as described above for model averaging) and selected a best-fitting model for
each component chemical across the list of model families. Thus, each component
chemical could have a dose-response curve from a different model family, a strategy
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which improves overall fit at the expense of greater complexity. A model averaging
approach would, in principle, offer better response prediction for each component
chemical than could any single model – but that potential advantage would come at
the expense of a vastly more computationally intensive fitting procedure.

8.5 Analysis Considerations

As mentioned previously, a dose-response model is specified via three components:
a probability distribution, a model f(djθ) that describes the relationship between
mean response and dose, and a model Σ(ω) for the variance-covariance matrix of the
data. The process of fitting a dose-response model to data is the process of estimating
the values for the unknown parameters θ in the mean model and ω in the variance-
covariance model that best fit the data. Denote the estimated values by bθ and bω,
respectively. Although the details of the calculations differ depending on the
assumed probability distribution for the data and the criterion employed in defining
“best fit,” statistical software will provide the estimates bθ and bω together with
estimates of the variances and covariances of those parameter estimates – as well as
related quantities such as confidence intervals and test statistics. After fitting a
particular model f(djθ) to data from an experiment and having the estimate bθ
available, one can estimate the true mean response under the model at any specified
dose level d∗ by calculating f ðd∗jbθÞ, that is, by substituting d∗ and bθ into the
relevant equation. The value f ðd∗jbθÞ is called the predicted response (or predicted
value) at dose d∗. The variance of these predicted responses can be estimated using
bω, but details of the calculation differ depending on the particular dose-response
model assumed. Again, many statistical software tools will provide these predicted
values and their variances (or standard errors). Thus, fitting a dose-response model
allows one to plot the estimated mean response trajectory as a function of dose and to
construct confidence bands for and test hypotheses about that trajectory.

A well-known aphorism attributed to statistician GEP Box is “All models are
wrong; but some are useful.”With any regression models, and dose-response models
are no exception, one seeks a model where the estimated dose-response trajectory
closely mimics the trajectory of the observed data, and the assumed variance model
and probability distribution are faithfully reflected by the observed data. If the
assumed model does not satisfactorily reflect the data, then inferences based on
that model are questionable and conclusions are potentially misleading. The model
must be a sufficiently good approximation to be useful. Thus, a critical part of any
dose-response analysis involves assessing the aptness of the model for the data at
hand. Essentially, this process is one of model criticism – what are the good and bad
aspects of the model in terms of being in accord with the data.

Inspecting residual plots is often a sensible first step in model criticism. Pro-
cedures for examining model assumptions through residual plots are commonplace
for models that are linear in the parameters; for such linear models, the residuals have
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two desirable features: (1) the variability in the residuals is a straightforward
reflection of the variability in the data; and (2) the residuals and the predicted values
are uncorrelated. A so-called raw residual, ε̂ij, is the difference between an observed

response and its predicted response under the fitted model; thus, ε̂ij ¼ yij � f ðdijbθÞ;
sometimes these raw residuals are rescaled to have variance 1 by dividing each by
some measure of variability. The raw residuals, and their various rescaled counter-
parts, are commonly used with linear models. Residuals with names such as Pearson
residuals or deviance residuals are often used with models involving binomial or
Poisson distributional assumptions (Agresti 2013), but the fundamental idea remains
the same – a residual assesses how far an observed response is from the value
expected under the fitted model.

What is less often recognized is that, for the nonlinear models common in dose-
response modeling, raw residuals do not necessarily retain the features that make
them useful for checking aptness of linear models via plotting. (Problems arise when
a nonlinear model has high intrinsic curvature, a concept beyond the scope of the
current presentation.) Instead, another concept of residuals, called projected resid-
uals (Cook and Tsai 1985), can be used with nonlinear models to recover the
desirable properties needed for using simple plots of residuals as diagnostic tools.
Statistical software packages such as SAS provide projected residuals for plotting.

Consider modeling a continuous response, like enzyme activity, with n > 1
experimental units per dose level under the assumption that the response at each
dose level is normally distributed about its mean with constant variance across dose
levels. Aspects of model aptness can be examined by plotting the residuals appro-
priate for the type of model fitted against dose level di or against predicted response
f ðdi jbθÞ. If the assumed model for the mean fits well, the n residuals at each dose
level should be centered near zero at every dose (Fig. 8.2a); departures where the
residuals are centered above zero for some dose levels and below zero for others
suggest that a different mean function may provide a better fit (Fig. 8.2b). If, in
addition, the variance is constant as assumed, residuals at every dose level will
exhibit approximately equal spreads (Fig. 8.2a); patterns where the spread in the
residuals grows larger or smaller with increasing dose level provide evidence for
heteroskedasticity (Fig. 8.2c) and may indicate that a transformation of the response
or a more complex model that incorporates heteroskedasticity is needed. Moreover, a
histogram of the residuals should reveal a symmetric distribution if the data are
distributed normally.

Another common graphical diagnostic approach applied with linear regression is
to look for influential observations – those that have an unusually large influence on
parameter estimates or on predicted values when they are deleted from the data set –
by plotting various statistics known collectively as influence diagnostics against a
variable that identifies each observation. Again, as with residuals, inherent charac-
teristics of nonlinear regression models that differ from those of linear models imply
that some concepts used for influence diagnostics must be reinterpreted for use with
nonlinear models (St. Laurent and Cook 1992, 1993).
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In addition to informal visual inspections of residual plots, formal statistical tests
can be applied as well. Perhaps the most basic test for aptness of the regression
model f(djθ) arises from comparing the fit of Eqs. 8.1 and 8.2. When each of the
D distinct dose levels in a dose-response experiment has n > 1 experimental units
assigned, the estimates of the set of μi in Eq. 8.1, denoted μ̂i, are the average values of
the observations at each dose level. Those values should be unbiased estimates of the
true unknown responses at those dose levels (most accurate estimates available with
the data at hand); the larger n, the more precise the estimates. The use of regression
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Fig. 8.2 Characteristic residual plots for a dose-response model whose errors εij have a normal
distribution. Underlying data have responses measured on 20 experimental units at each of 11 dose
levels (d1, d2, d3,. . ., d11). Panel (a): data-generating model has homoskedastic errors and the fitted
f(d j θ) was correctly specified; residuals have similar spreads and are vertically centered near zero at
all dose levels. Panel (b): data-generating model has homoskedastic errors, but the fitted f(d j θ) was
incorrectly specified; residuals have similar spreads at all dose levels, but their centers exhibit a
non-horizontal trajectory (above zero at intermediate dose levels and below zero at lower or higher
dose levels). Panel (c): data-generating model has heteroskedastic errors, but the fitted f(d j θ) was
correctly specified; residuals are vertically centered near zero at all dose levels but have spreads that
increase with dose level
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model f(djθ) to provide inference about responses at untested doses proceeds under
the belief that it also provides unbiased estimates of the true unknown response at
each tested dose level. On the other hand, if the mean responses at tested dose levels
based on fitting f(djθ) appear biased, then it may not be a useful model. Thus, one
regards the regression model f(djθ) as fitting the data well when its predicted
responses at tested doses closely match the corresponding dose-specific means,
i.e., when f ðdijbθÞ � μ̂i. This idea is the basis of a test of model fit that can be
applied whenever the vector θ contains fewer than D parameters. The general
procedure is to fit both Eqs. 8.1 and 8.2 via maximum likelihood and construct a
likelihood ratio test (Seber and Wild 1989) comparing the fit of Eq. 8.2 to that of
Eq. 8.1. Rejection of the null hypothesis that both models fit equally well implies that
the regression model f(djθ) was unsuccessful in estimating the observed dose-
specific mean responses and should be replaced with a different model. Of course,
details of constructing the likelihood ratio test depend on the statistical distribution
assumed for the responses.

For example, consider a study involving D distinct dose levels with
n experimental units assigned to each dose and assume that the response has a
normal distribution at each dose level. Then, the fitting of Eq. 8.1 amounts to
conducting a one-way analysis of variance with the dose levels as the treatment
groups. Taking f(djθ) to be the Hill model of Eq. 8.3 where θ contains four
parameters, a least-squares-based test that is essentially equivalent to the likelihood
ratio test comparing Eq. 8.2 to 8.1 would involve an F-statistic withD� 4 degrees of
freedom in the numerator and D � (n � 1) in the denominator (Seber and Wild
1989).

The underlying principle used in the goodness-of-fit test described above for
comparing Eqs. 8.1 and 8.2 can be applied to any pair of nested models to decide
whether the smaller model fits as well as the larger. Consider two regression models,
with f2(∙jθ2) being a nested sub-model of f1(∙jθ1). One way to think of a nested
sub-model is that the parameter vector θ2 of the sub-model contains the same
parameters as θ1 except that, in the sub-model, some of the parameters are fixed at
specified values and do not need to be estimated. For example, consider the Hill
model of Eq. 8.3 with parameter vector θ1¼ (L,U, δ, γ). Another Hill model with the
lower and upper asymptotes fixed at 0 and 1, respectively, would have parameter
vector θ2 ¼ (0, 1, δ, γ) and be nested within the first because the parameters to be
estimated in θ2 are a subset of those to be estimated in θ1. When one model is a
special case of another, the one with more parameters is more flexible and will
necessarily fit at least as well as the one with fewer parameters; however, if the
difference in fit is negligible, the simpler model with fewer parameters would
typically be preferred based on parsimony. Formal statistical tests such as likelihood
ratio tests can be used to decide whether or not fixing a subset of the parameters at
specified values degrades model fit (Seber and Wild 1989).

Comparing two regression models that are not nested requires a different strategy.
Formal tests to compare non-nested models are rarely used in toxicology; instead,
one chooses the “better”model by using a model selection criterion. Because models
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with more parameters might be expected to fit better than models with fewer
parameters, model selection criteria typically make adjustments for the number of
parameters in the model. The general procedure is to choose a model selection
criterion and calculate its value for each candidate model under consideration.
Then select as the best model the one with the largest value (or sometimes smallest,
depending on the particular criterion used) of the criterion. A great variety of such
criteria are in use. The coefficient of determination (R2), or a version of it adjusted for
the number of parameters in the model, selects according to the proportion of
variation in the data accounted for by the fitted model. Other commonly used criteria,
such as the Akaike information criterion (AIC) (Akaike 1974) or the Bayesian
information criterion (BIC) (Schwarz 1978; Montgomery et al. 2012), evaluate
goodness of fit through the likelihood of the observed data but impose a penalty
that increases with the number of model parameters. Thus, if two models produced
the same likelihood, these criteria would favor the one with fewer parameters. In
experiments that involve very few observations, one might prefer the AICc
(Burnham and Anderson 2002), a version of the AIC with a correction for small
sample sizes. Model selection criteria such as these are useful adjuncts to strategies
for modeling mixture components, such as those of Hertzberg et al. (2013) and
Altenburger et al. (2000), which involve selecting best-fitting models. On the other
hand, even the best-fitting among a list of candidate regression models may exhibit
important lack of fit when compared to fitting the dose-specific mean responses via
Eq. 8.1.

When the model f(djθ) for the mean response shows evident lack of fit, how
should it be remediated? An obvious answer is to choose a different model with
superior fit – but that may be easier said than done. Experience with the particular
response or assay may suggest alternative models to try; similarly, a literature search
or reaching out to colleagues might turn up alternatives. A plot with the fitted dose-
response model overlaying the observed data sometimes reveals the main discrep-
ancies between model and data, thereby suggesting modifications to improve the
model – including perhaps changing the dose metric. Such a plot or residual plots
may instead reveal “unusual” or “influential” data values that adversely affect model
fit, initiating careful scrutiny of the validity or correctness of those data points. If
efforts to find a better-fitting parametric model fail, one could consider more flexible
modeling approaches such as splines or model averaging, as mentioned earlier.
Another consideration is whether the model is useful for its intended purpose despite
some lack of fit. For example, suppose model fit suffers mainly at high doses but is
satisfactory at lower doses. If inferences at lower doses are the primary use for the
model, perhaps the formally ill-fitting model will yield useful information – inter-
pretation should be cautious, however: lack of fit in the mean model can distort
variance estimates so that, for example, confidence interval coverage may suffer
even at the low doses where the mean model fits well. Although the use of a model
that exhibits substantial lack of fit is undesirable, it is occasionally unavoidable; in
those unavoidable cases, one should clearly acknowledge evident lack of fit in
reporting the results of the data analysis.
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Although the primary focus is often on the mean response, a full dose-response
model must also properly model the variability of the data around the mean. This
variability is partly described by the nature of the probability distribution employed
and partly by the model Σ(ω) for the variance-covariance matrix.

As mentioned previously, the nature of the response (binary, count, or continu-
ous) and experience often is sufficient for properly specifying an appropriate prob-
ability distribution. Nevertheless checking distributional assumptions is always
useful. Histograms or Q-Q plots (Wilk and Gnanadesikan 1968) of residuals can
reveal deviations from an assumed distributional shape, particularly for continuous
responses. Formal procedures for testing distributional assumptions are available.
Some, such as the Kolmogorov-Smirnov test or the Anderson-Darling test, are
general purpose (Stephens 1974); others, such as the Shapiro-Wilks normality test,
are directed toward particular distributions (Stephens 1974).

Building models for the variance is often a complex undertaking and well beyond
the scope of this chapter – so the remarks here merely scratch the surface. As
mentioned earlier, for distributions like the binomial or Poisson, the variance is a
function of the mean, so the variance model is partly preset. Additional variance
parameters are introduced only when the preset model proves inadequate for the
data. When the normal distribution is the relevant probability model, often the
default assumption is that the variance is constant and governed by a single param-
eter. Nonconstant variance is possible; it can sometimes be stabilized by a transfor-
mation of the response variable to achieve constant variance (Bates and Watts 1988;
Bickel and Doksum 1977) or, alternatively, be modeled as a parametric function of
dose. For complex experimental designs that involve more structure than a
completely randomized design – such as multiple batches of experimental units or
an experiment that is carried out in blocks over several days –modeling the variance
often requires the use of several variance parameters. For example, the model might
need a parameter for variance in response among units in a single batch and one for
variance among batches. If the overall variability can be partitioned into such
components, statistical analysis implements a so-called mixed model approach that
allows simultaneous estimation of mean parameters and multiple variance parame-
ters (Searle et al. 2006).

Another kind of departure from assumptions arises if observations are correlated
instead of being independent as many models assume. Such correlations typically
arise from block structure in the experimental design or from certain pre-analysis
data manipulations. One common practice is to rescale a continuous response so that
its limits are 0 and 1 on a probability scale or 0 and 100 on a percent scale. If the
largest responses occur at dose zero, one might rescale by dividing all responses by
the mean response among the negative controls so that on average the responses
have an upper limit of 100% (Crofton et al. 2005; Hertzberg et al. 2013). Although
such rescaling has intuitive appeal, in principle, dividing several responses by the
same random quantity (average of negative control responses) induces correlations
among them that contradict independence – because the rescaled responses all
depend on the same mean response among controls. Particularly when the rescaling
is done separately for different runs that are part of the same experiment (using
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run-specific control means), the analysis should arguably account for this depen-
dence. Again, mixed models can be constructed to account for correlations. Alter-
natively, with likelihood-based estimation methods, statisticians have developed
alternative estimators for the standard errors of parameter estimates that adjust for
such correlations. These estimators, known as “sandwich estimators” (Kauermann
and Carroll 2001; Freedman 2006), are also useful in settings with
heteroskedasticity. In situations where appropriate variance estimators are difficult
to derive theoretically, bootstrap methods or other resampling methods can be used
to estimate standard errors appropriately (Efron and Tibshirani 1993).

In evaluating model fit, it is important to recognize that all three components of
the dose-response model play off one another. If the probability model assumes a
symmetric distribution but the actual data distribution is skewed, the variance model
may be (or appear to be) misspecified. If the mean function fails to fit the data well,
that could also impinge on the diagnostics for evaluating the variance model or the
distribution. In evaluating the aptness of a model, one must keep in mind that all
three components work together.

8.6 Computational Issues

Many dose-response models used in toxicology require iterative computational
methods for model fitting. Whether the criterion for best fit is least squares or
maximum likelihood, estimation for models that are nonlinear in the parameters
uses computational algorithms that approach the best fit incrementally through
successive cycles of computation. The iterations stop when an additional cycle
fails to improve the fitting criterion by a preset amount – in which case the algorithm
is said to have converged. For maximum likelihood, one can think of the process as
analogous to finding the highest point in a landscape (for least squares, the lowest);
only the dimension of the “landscape” –which depends on the number of parameters
in the model – is often higher than three. Also, the algorithms cannot just look
around and see the highest point and head toward it; they must use clues available at
the current location, such as steepness and uphill direction, to determine which way
and how far to go for the next iteration. When the topology is complicated, the
algorithms have trouble finding the maximum. A long and nearly flat ridge makes
finding the maximum difficult. Sometimes an algorithm “falls off a cliff” and has
difficulty climbing back. Multiple nearby peaks of different heights also make
finding the unique maximum difficult. All these issues may lead to failure of an
algorithm to converge.

One common cause for failure to converge is a design that is not well suited to the
model at hand, as was more fully discussed earlier. Thus, an appropriate choice of
the number and spacing of dose levels goes a long way toward avoiding convergence
problems in model fitting. Even with a sound design, however, nonlinear models can
be quirky to fit. Sometimes a model can be reparameterized so that the numerical
properties of the fitting algorithms are improved while the trajectory of predicted
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responses remains unchanged. Although the best way to parameterize a given model
is not always obvious, some choices work better than others. A reparameterization of
the Hill model to improve numerical performance was described earlier (see Sect.
8.4). In addition to the mean response, the overall model may involve one or more
variance parameters, and reparameterizing the variance may also help in some
situations. For example, rather than directly estimating the variance or even the
standard deviation, the logarithm of the standard deviation may work better, possibly
due to its scale being more similar to that of the mean parameters. Sometimes
centering dose levels can enhance convergence and lessen variability of parameter
estimates by reducing multicollinearity (Reeve and Turner 2013). All iterative
algorithms must start at some initial set of guesses at the parameter values and
proceed iteratively to improve those estimates – but convergence can be highly
dependent on the choice of starting values. Ill-chosen values can lead to
non-convergence. Moreover, in situations where the likelihood surface has multiple
peaks, different starting values can lead to seemingly successful convergence to
estimates that represent different local maxima – but the goal is to find the global
maximum. Even if convergence appears to have been achieved, it is good practice to
try multiple distinct starting values and confirm that all produce the same ultimate
estimates. When fitting closely related dose-response curves simultaneously to
multiple chemicals that differ widely in potency, one simple but effective step that
frequently helps with convergence issues is to rescale the doses of each chemical, so
corresponding parameter estimates will have similar magnitudes across chemicals.
For example, in simultaneously fitting Hill models to two chemicals, the first with an
ED50 near 0.005 mg/kg and the second with an ED50 near 5.0 mg/kg, convergence
might be improved if the dose levels of the first chemical were rescaled to μg/kg, so
both ED50 values were near 5.0 in their respective units. Of course, the resulting
estimates and confidence limits could be reexpressed in any common units desired.
Finally, there are usually several different computational algorithms that can be used
to estimate the parameters of a given model. For example, the NLIN procedure in
SAS offers four choices: steepest descent (or gradient), Newton, modified Gauss-
Newton, and Marquardt. Some methods may work better than others for a given set
of data, so if one algorithm fails to converge, try another. Also, most algorithms
involve preset constants that control aspects of the algorithm; sometimes adjusting
these “tuning parameters” helps with computational issues.

8.7 Summary

Dose-response modeling is an important data analysis tool throughout toxicology,
particularly so in evaluating chemical mixtures. This chapter provides a broad
introductory overview to statistical issues that arise in studying dose-response
relationships. Statistical dose-response models consist of a probability distribution
for the response, a function f(djθ) to describe the relationship between the mean
response and dose, and a model Σ(ω) for the variance-covariance matrix of the data.
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The chapter discusses the role of statistical study design, including the roles of dose
placement and of properly accounting for multiple sources of variation or correla-
tions among observations, in achieving accurate and precise parameter estimation
and efficient hypothesis testing. It discusses the choice of a functional form for f(djθ)
and describes strategies for examining the adequacy of the proposed dose-response
model. Finally, the chapter considers some ways to cope with the failure of iterative
model-fitting algorithms to converge to a unique solution. Careful attention to study
design and the use of statistical models that are appropriate for the data at hand are
critical for achieving the best possible results from dose-response studies.
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Chapter 9

Predicting Mixture Toxicity with Models

of Additivity

Cynthia V. Rider, Gregg E. Dinse, David M. Umbach, Jane Ellen Simmons,

and Richard C. Hertzberg

Abstract Researchers in numerous fields (e.g., pharmacology, entomology, toxi-

cology, and epidemiology) have attempted to model the joint action of chemicals

using simple formulas based only on knowledge of individual chemical toxicity or

pharmacological effect (i.e., dose-response relationships). Collectively, these for-

mulas are referred to as “additivity models,” and they are based on concepts of

additivity that include dose addition, independent action, integrated addition, and

effect summation. In toxicology, additivity-based predictions are often compared to

observed mixture data to assess the presence and magnitude of interactions

(greater-than-additive or less-than-additive) among chemicals. These models can

also be used to estimate the toxicity of a defined mixture for comparison to the

observed toxicity of a related, but more complex, mixture. Alternatively, additivity

models have been used to explore mechanisms of joint action. In general, the steps

for investigating joint toxicity using additivity models include (1) deciding on

which additivity model(s) to apply (e.g., dose addition, independent action, or
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both), (2) collecting dose-response data on individual chemicals and the mixture,

(3) incorporating individual chemical data in an additivity model to generate pre-

dictions, and (4) comparing predicted to observed mixture responses. Many of the

additivity models have a long and sometimes controversial history. This chapter

provides background on several of the common additivity models, illustrates their

application with examples, and discusses their advantages and limitations.

Keywords Joint action · Dose addition · Loewe additivity · Independent action

· Response addition · Bliss independence · Integrated addition · Effect summation

· Component-based approaches

9.1 Introduction

The toxicity of a mixture can be evaluated by treating the whole mixture as a single

chemical or by investigating how components in the mixture contribute to the

mixture’s toxicity. Each approach has advantages and disadvantages. While

whole mixture testing can offer a straightforward experimental design (e.g., one

test article), the major impediment lies in relating the toxicity results to real-world

exposures or to other mixtures of interest. Specifically, challenges include selecting

the whole mixture for study, generating the test article in concentrated form in a

volume sufficient for testing, and relating findings to the vast number of potentially

similar whole mixtures. Since the actual toxicological evaluation of the whole

mixture is the same as for single chemicals, the whole mixture approach will not

be discussed in this chapter. Challenges in whole mixture research relating to test

article selection and generation of test material can be found in the literature

(Simmons et al. 2008; Pressman et al. 2010), and approaches for comparing across

whole mixtures are discussed in a risk assessment context in Chap. 15. The focus of

this chapter is on understanding mixture toxicity through evaluation of the compo-

nents of the mixture. This chapter discusses approaches for using individual

chemical data in simple mathematical models to predict mixture effects.

The first step in understanding the joint action of two or more chemicals (i.e.,

how they behave when they co-occur in an organism) is to formulate a testable null

hypothesis based on what is known about the individual chemicals and to evaluate it

empirically. In studying additivity, this hypothesis typically involves a key assump-

tion that the chemicals will abide by a defined model of joint action (e.g., dose

addition, independent action) and do not interact (pharmacokinetically or pharma-

codynamically) to alter the response expected under the model. In other words, the

null hypothesis of additivity describes the “no-interaction,” “zero-interaction,” or

“baseline” situation.

Empirical evaluation of a null hypothesis of additivity requires data. For the

additivity models considered here, the required data usually consist of dose-

response data for each individual chemical in the mixture as well as dose-response

data for one or more mixtures, each defined by specified proportions of the

individual chemicals. Also, the null hypothesis of additivity is generally evaluated
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for a single specified response; or, when several specific responses are of simulta-

neous interest, additivity is evaluated for each response separately.

Of course, the totality of an organism’s responses to a tested mixture might

include characteristics that are biologically distinct from those seen with any of the

component chemicals. Such qualitatively different responses could be caused when

the components combine chemically to form a new chemical that differs from all of

the components, for example, the potent carcinogen N-nitrosomorpholine can be

formed from coadministration of nitrogen dioxide and morpholine (Van Stee et al.

1995). Alternatively, qualitatively different responses can occur when a pharma-

cokinetic interaction among chemicals leads to the formation of a toxic metabolite

that would not otherwise be formed by any of the components (Dobrev et al. 2002).

Toxicodynamic interactions could also alter physiological behavior or histological

structure so that new effects become prominent. Although the absence of dose-

response data on these responses for the individual chemicals makes formal eval-

uation of the additivity null hypothesis problematic, the appearance of those novel

responses only with exposure to the mixture and not to the individual chemicals

would provide prima facie evidence of departure from additivity.

In general, evaluation of the null hypothesis of additivity proceeds by (1) using

the individual component chemical dose-response data together with a specific

additivity model to predict the expected response at various doses of the mixture

and (2) comparing those predictions under additivity to observed dose-response

data for the mixture. At least four kinds of outcomes are possible (Fig. 9.1):

• The responses of the tested mixture are close enough to predictions under

additivity that they support the stated additivity hypothesis.

• The responses of the tested mixture occur at lower doses than predicted under

additivity, contradict the stated additivity hypothesis, and indicate a potential

greater-than-additive interaction among the component chemicals.

Dose of mixture

R
es

po
ns

e

Fig. 9.1 Comparison of predicted and observed mixture responses. The solid black line represents

predicted effects based on an assumption of additivity (a.k.a. “no-interaction” scenario). The

dotted line represents observed mixture data that conform to additivity-based predictions. The

long-dashed line represents mixture data that deviate from additivity, displaying greater-than-

additive toxicity. The dash-dot line represents mixture data that deviate from additivity, displaying

less-than-additive toxicity. Finally, the short-dashed line represents mixture data that deviate from

additivity, displaying greater-than-additive toxicity in the low-dose range and less-than-additive

toxicity in the high-dose range
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• The responses of the tested mixture occur at higher doses than predicted under

additivity, contradict the stated additivity hypothesis, and indicate a potential

less-than-additive interaction among the component chemicals.

• The responses of the tested mixture occur at lower doses than predicted under

additivity at some dose levels and higher doses than predicted under additivity at

other dose levels, contradict the stated additivity hypothesis, and indicate poten-

tial interactions that are either greater-than-additive or less-than-additive,

depending on the dose level.

Selection of an appropriate model is complicated by the fact that there are

multiple additivity models, often with numerous versions, available in the mixture

literature. Furthermore, it is important to note that deviation from an additivity

prediction is not enough to confirm the presence of an interaction among mixture

constituents. For example, an inappropriate additivity model may have been applied

– a dose-addition model was used when the chemicals displayed independence.

Conversely, consistency with model predictions does not necessarily rule out the

presence of greater-than-additive or less-than-additive interactions. One can ima-

gine, for example, that the presence of greater-than-additive interactions among

some mixture components and less-than-additive interactions among others could

counteract each other in some sense and result in responses that approximate

additivity. Also, as determination of consistency with or deviation from a model

is based on statistical comparisons between the predicted and observed responses,

some real deviations from additivity may not be detected due to inadequacy of

experimental design, including insufficient power (See Chap. 13), and some

detected deviations may represent statistical false positives.

As suggested above, no definition of additivity is universally accepted. Instead,

there are multiple definitions of additivity that can be separated into two basic

categories: (1) additivity defined through formulas involving dose levels (e.g., dose

additivity) and (2) additivity defined through formulas involving response levels

(e.g., independent action and effect summation). There are also integrated-addition

models, which combine the concepts of dose addition and independent action. For

dose addition, multiple mathematical approaches are available for calculating the

predicted response of the mixture from dose-response data on individual chemical

constituents. This chapter will focus on the different concepts of additivity and the

varied methods that have been used to predict mixture toxicity under an assumption

of additivity. It will present the history, assumptions, current applications, and

relevance of four general types of additivity (viz., dose addition, independent

action, effect summation, and integrated addition).

Many factors must be considered when tested mixtures result in responses that

deviate from those predicted under additivity. The first set of factors involves the

series of decisions made in the modeling process. Typical examples include the

quality of the individual chemical data, the dose-response modeling of the individ-

ual chemical data (Chap. 8), and the selection of the additivity model (e.g., was

independent action applied, when a dose-addition model would have been more

appropriate). The second group of factors relates to the simplicity of the models
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versus the complexity of biology. The models described in this chapter are simple

mathematical models, whereas the biological responses that are being evaluated

often involve complex, interdependent signaling networks. The additivity models

represent a reductionist approach that may provide different results depending on

the model system and endpoints being evaluated. Additionally, chemicals can

interact with biological systems in complex ways that are not captured by the

models (e.g., a single chemical can activate multiple adverse outcome pathways).

Despite these complications, the models of additivity discussed in this chapter

offer a starting place for understanding the joint action of chemicals. They can be

used to address important issues in toxicology ranging from limiting the potential

toxicity of combination therapies to informing the process of cumulative risk

assessment. Sometimes, simple models of additivity will be adequate for describing

mixture responses and will support continued application of the models for

predicting the toxicological consequences of exposure to mixtures. Other times,

information gained from applying different additivity models, such as patterns of

deviation from the model(s), could inform the development of more sophisticated

models of mixture toxicity that would better integrate component chemical dose-

response data. Regardless, targeted mechanistic studies can be designed based on

results from comparing observed mixture responses to predictions under additivity

to further characterize and understand the joint action of chemical mixtures.

Displaying dose-response relationships for mixtures graphically can be useful

for visualizing some key mixture concepts (Greco et al. 1995). For a single

chemical, a dose-response relationship is typically depicted graphically as a curve

with responses on the vertical axis and dose levels on the horizontal axis. With

binary mixtures, graphs of the dose-response relationship that depict the responses

and the dose levels of both chemicals are called response surfaces and require three

dimensions, a vertical axis for response and two perpendicular “horizontal” axes for

the dose levels (dose plane). (This idea generalizes mathematically to higher-order

mixtures, but visualization is inconvenient at best.) Two-dimensional representa-

tions of features of response surfaces are often used. For binary mixtures with a

fixed ratio of the two constituent chemicals, increasing doses of the mixture extend

along a ray that lies in the dose plane and starts at the origin (zero dose of the

mixture). A plane that is perpendicular to the dose plane and that contains the fixed-

ratio ray cuts through the response surface; the set of points at the intersection of

that perpendicular plane and the response surface is the dose-response curve for that

fixed-ratio mixture. Treating the mixture as a single “chemical,” the mixture’s dose-
response curve can be displayed in two dimensions just like any dose-response

curve for a single chemical. One can also cut the dose-response surface with a plane

parallel to the dose plane at any selected response level; this parallel plane also has

the dose levels as its axes. The intersection of such a parallel plane with the dose-

response surface is called an isobole: a line or curve that connects equi-effective

doses on a graph whose axes are the dose levels of each component chemical. Thus,

an isobole is always associated with a specified response level. A graph of isoboles

is called an isobologram. See Greco et al. (1995) for a more thorough explanation

and illustration of these ideas. As described later, isobolograms have been used

widely for evaluating the additivity of binary mixtures.
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9.2 Toxicological Similarity and Additivity Model

Selection

The degree of similarity in toxicological responses to chemicals has generally

served as the basis for selection of an appropriate additivity model, with dose

additivity traditionally being applied to chemicals that elicit “similar” responses

and independent action being applied to chemicals that elicit “dissimilar”

responses. However, the terms “similar” and “dissimilar” have had varied interpre-

tations. The spectrum of toxicological similarity among chemicals, along with

examples of chemicals that correspond to each level, is presented in Fig. 9.2. As

chemicals move down the spectrum of similarity, scientific support for applying the

concept of dose addition to predict combined effects becomes more tenuous.

As noted in Fig. 9.2, chemicals with the highest degree of similarity share a

common active metabolite (assuming that the parent compounds require metabolic

activation). In this case, the metabolite responsible for initiating the cascade of

responses is identical among chemicals. It follows that the sequence of biochemical

steps resulting from the molecular initiating event is identical between all

chemicals that share the active metabolite. Any difference in potency among

chemicals could be attributed to differences in the rate and extent to which the

chemicals are converted to the active metabolite and would be reflected in the

individual chemical dose-response relationships.

The next level of similarity involves chemicals that elicit toxicity through a

common molecular initiating event. There are many classes of chemicals that meet

this criterion, for example, organophosphate pesticides that share inhibition of

acetylcholinesterase as the molecular initiating event that leads to downstream

adverse nervous system effects (Mileson et al. 1998). Toxicological similarity at

the level of shared molecular initiating event has provided the conceptual basis for

dose addition. The concept holds that chemicals displaying similarity at the molec-

ular initiating event level act as dilutions or concentrations of each other, thus

Common active metabolite

Molecular initiating event

Adverse outcome pathway

Target tissue

Disease 

Most similar Chemicals share a…

Least similar

Examples

Benzyl butyl phthalate and dibutyl phthalate share the 
active metabolite monobutyl phthalate

Parathion and chlorpyrifosboth inhibit acetylcholinesterase
and elicit the same downstream key events

Perchlorates decreases synthesis of thyroid hormone, while
dioxin increases elimination of thyroid hormone

Ephedrine and caffeine are both cardiotoxic

DES and tobacco smoke cause cancer in different tissues

Fig. 9.2 Continuum of toxicological similarity
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eliciting the same toxic effects by the same toxicological pathways, once dose is

scaled for that “dilution” or potency factor (Cedergreen 2014; Hertzberg et al. 2013;

Loewe and Muischnek 1926). The dilution concept, first described by Bliss (1939),

can be empirically tested by determining whether the chemical components and the

mixture share a common dose-response model, except for scaling the dose

(Meadows et al. 2002), and in the most complete dilution concept, by determining

whether the response variances depend only on the response mean and otherwise

are the same across all chemical components and the mixture (Hertzberg et al.

2013).

It is at the level of adverse outcome pathway that the concepts of toxicological

similarity and independence begin to blur. Chemicals can have different molecular

initiating events that converge at any of a number of key events in their adverse

outcome pathways (Chap. 7). Moving one step further, chemicals can act through

different signaling pathways that intersect at the target tissue. Although a common

target tissue among chemicals can be one of a number of factors used to build a

“weight of evidence” case for toxicological similarity, there is continued debate on

using shared target tissue alone as the basis for applying dose addition. Many

chemicals have notably different adverse outcome pathways yet display toxicity

at the same tissue (see Sect. 3.3). Determining how the degree of toxicological

similarity of chemicals in a mixture relates to predicted mixture toxicity from

available additivity models is an active area of research and has important impli-

cations for cumulative risk assessment (Chap. 14).

Regarding the concept of toxicological similarity, it is important to note that

evidence for a concept is not the same as the lack of evidence against a concept.

Evidence supporting independent action has often involved demonstration of dif-

fering adverse outcome pathways for the most important effects. Evidence

supporting similar adverse outcome pathways has usually been interpreted as

support for toxicological similarity in general and thus for the dose additivity

model. For weakly studied mechanisms, a similar conclusion has been drawn

based on the lack of evidence for multiple differing adverse outcome pathways,

i.e., inability to reject toxicological similarity. Similarly shaped dose-response

curves (generalized parallelism) have also been interpreted as indicating similar

adverse outcome pathways, and thus dose addition, yet counterexamples exist

(Hertzberg et al. 2013). Specifically, a “lack of a different slope cannot be taken

as a proof for a similar mode of action” (Altenburger et al. 2005). The decision

about sufficient toxicological similarity for inclusion in a similarity group is a

judgment and thus requires involvement of experts in toxicology and data analysis.

Finally, evaluating the evidence for toxicological similarity necessarily involves

consideration of data quality. Different evidence streams can support determination

of similarity, including structural similarity among chemicals, consistency of tox-

icological profile, and similar findings in mechanistic studies used to build adverse

outcome pathways. For risk assessment purposes, frameworks have been developed

to make decisions on including chemicals into a toxicological similarity group

(U.S. EPA 1999). Structural comparisons (e.g., quantitative structure activity rela-

tionships) have been used for a long time, but many counterexamples exist

9 Predicting Mixture Toxicity with Models of Additivity 241

https://doi.org/10.1007/978-3-319-56234-6_7
https://doi.org/10.1007/978-3-319-56234-6_14


regarding toxic effect, so structure alone is insufficient for defining a similarity

group. For any chemical’s toxicological profile, key elements include the target

organ(s), adverse effects/apical outcome(s), and pharmacokinetic properties,

including whether the parent or metabolite is the toxic form. The preferred infor-

mation on a toxicological profile involves effects related to specific molecular

targets (e.g., particular enzyme or other protein, hormone) or target tissues (e.g.,

thyroid, blood) as similar specific effects (e.g., receptor-mediated effects) are more

likely to follow a common toxicity pathway than nonspecific toxicity (e.g., narco-

sis). Knowledge of the adverse outcome pathway and related pharmacokinetics is

the best information for judging toxicological similarity; however, these data are

often unavailable or incomplete.

In contrast to toxicological similarity and dose addition, most of the classical

literature that presents component-based formulas for joint toxicity includes min-

imal biological justification for independent-action models. The most common

justification is evidence of important differences in toxicological mode of action

or mechanism; in some cases, that evidence is only of effects occurring in different

organs. In a review comparing concentration-addition (CA) and independent-action

(IA) formulas, the conclusion was that little biological clarity has been proposed:

“The CA model has some theoretical underpinnings and some experimental data

supporting its use for mixtures of chemicals with the same site of action. In contrast,

IA is not as well grounded in theory, nor is it unambiguously supported by data”

(Cedergreen et al. 2008).

The mechanistic or functional argument for independence should be based on

data and concepts showing that an individual chemical’s toxic function, dose-

response relationship, and adverse outcome pathway are not altered by

co-exposure to the other chemical(s) in the mixture. Because toxicological interac-

tions are known to involve one or more key event(s) from exposure to apical

(adverse) effect, an evaluation of independence should include as many of those

steps as possible. For chemicals, the following processes have been identified as

involved in toxicological interaction: contact, uptake, in vivo chemical reactions,

absorption, distribution, excretion, metabolism, receptor site (antagonism), receptor

function (antagonism), and DNA binding (Mumtaz and Hertzberg 1993; Mumtaz

et al. 1993). Evidence only of a difference in toxicodynamics, i.e., in toxicological

mode of action, thus provides fairly weak support for toxicological independence.

For example, independence might not be plausible when adverse outcome pathways

overlap for secondary effects: “commonality of biological/biochemical events that

may not be part of the recognized toxic mode or mechanism of action of one

mixture component can lead to unanticipated interactions and consequences”

(Lambert and Lipscomb 2007). Such information is not commonly available.

Usually independence and the independent-action formula are assumed when

there is insufficient evidence to establish toxicological similarity.

Finally, the experimental endpoint that is selected in a mixture evaluation (i.e.,

measured response) can also influence the determination of similarity versus

independence. The specificity of the endpoint measured could increase the likeli-

hood of classifying chemicals as toxicologically independent. Consider the
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difference between an in vitro assay measuring binding to a hormone receptor and a

downstream functional measure of the system in which the hormone operates as a

signaling molecule. In the case of the in vitro binding assay, there is a limited

capacity for interactions between the chemicals and the system. Instead, there is a

focus on a single, clearly defined mechanism. In contrast, the functional measure

incorporates multiple mechanisms and potential avenues for interaction among

chemicals and complex biological systems.

9.3 Dose Addition

The phrases “dose addition” and “concentration addition” represent the same

concept, with “dose addition” used more frequently in mammalian toxicology

and “concentration addition” commonly associated with ecotoxicology. For sim-

plicity, the term “dose” will be used throughout this chapter. As indicated by its

name, dose addition is a concept that defines or predicts the additive joint action of

chemical mixtures by imposing a constraint on a weighted sum of the component-

specific dose levels (see below). Dose addition is a single concept, but it has

numerous mathematical representations. A general description of the history of

dose addition is presented below, followed by highlights of recent advances to dose-

addition modeling. For a more thorough review of work mentioned in the historical

section and other methods developed prior to 1995, see the review by Greco

et al. (1995).

9.3.1 Background

The first scientific publications on the effects of chemical combinations come from

the field of pharmacology and its consideration of the joint action of drugs.

Although often cited as providing the first description of the concept of dose

additivity, Loewe and Muischnek (1926) refer to earlier work by Emil Bürgi and
interpret the “Bürgi rule” as a reference to joint chemical effects described by an

isobole (Bürgi 1912). Loewe and Muischnek also point out the inconsistent use of

mixture-related terminology including synergism, antagonism, addition, and poten-

tiation in the literature of the time; disagreement regarding these terms continues

today (Kodell and Pounds 1991; Hertzberg and MacDonell 2002; Greco et al. 1992;

Simmons 2013). In their seminal paper, Loewe and Muischnek (1926) present a

spectrum of possible effects of a binary combination of chemicals through the use

of isobolograms; in particular, they illustrate what we now call dose addition (then

referred to as non-varying joint effects). This classic work presents a conceptual

framework for addressing chemical combinations, but it does not describe applica-

tions of these concepts to experimental data.
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The isobologram is a simple but effective graph for illustrating the concept of

dose addition. Suppose that the horizontal and vertical axes of a graph represent the

component doses of a binary mixture. Loewe and Muischnek proposed that the two

chemicals are dose-additive if the isobole for a given response level is a diagonal

line (with a negative slope) connecting the dose levels on the two axes that elicit

that given response. For example, if chemical A elicits a 50% response at dose a,
chemical B elicits a 50% response at dose b, and the straight line connecting points
(a, 0) and (0, b) covers every dose combination of chemicals A and B that elicit a

50% response, then A and B are dose-additive at the 50% response level (Fig. 9.3).

Loewe and Muischnek compared dose addition to other concepts: (1) deviation

from dose additivity (e.g., greater than dose-additive, less than dose-additive);

(2) independence of the mechanism that results in the same measured effect, i.e.,

exposure to each chemical results in the same apical outcome (e.g., death), but in

each case, the outcome is achieved by a different underlying causative series of

events (see Sect. 4.1); and (3) joint effects that are not elicited by either chemical

alone but only by the combination (Fig. 9.3). Throughout their manuscript, Loewe

and Muischnek described many key issues that continue to plague the field of

mixture toxicology. They touched on the difficulty in distinguishing independent

action of chemicals from “antagonism” (less than dose-additive interaction). They
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Fig. 9.3 Isobologram illustrating possible effects of a binary combination of chemicals (adapted

from Loewe and Muischnek (1926)). Points a and b (with coordinates (a,0) and (0,b)) represent
doses of chemicals A and B, respectively, that elicit equivalent effect levels (e.g., doses that elicit

an effect that is 50% of the maximum response or the ED50). Each line/curve in the figure is an

isobole, meaning that any combination of the concentrations of the two chemicals on that curve

will result in the same effect level. The straight (black) diagonal line connecting points a and b is

an isobole for two chemicals that are dose-additive. The dotted (red) curve represents a scenario

where the combination of chemicals A and B results in effects that are greater-than dose-additive,

and the two dashed (green) curves provide examples of less-than dose-additive scenarios. The

dash-dot (purple) curve is an example of a combination of chemicals A and B eliciting effects not

produced by any dose of either chemical alone. The angular isobole (perpendicular gray line

segments) corresponds to a mixture where chemicals A and B act independently, and susceptibility

to A is perfectly positively correlated with susceptibility to B (see Sect. 4.1)
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also highlighted the difficulties in describing complex biological processes using

simple mathematics, stating eloquently that “Biology does not know such simple

and constant relationships.” Furthermore, they acknowledged the need to incorpo-

rate experimental variability into evaluations of mixtures. Finally, Loewe and

Muischnek suggested ways to quantify deviations from additivity. It is not surpris-

ing that this early, insightful work on mixtures has been so influential in shaping our

current understanding and practice of mixture toxicology.

Bliss (1939), emerging from the fields of entomology and statistics and focusing

on pesticide efficacy, provided another significant contribution to the field. Bliss

described three possible joint action scenarios: “independent joint action” (a.k.a.,

independent action or response addition), “similar joint action” (dose addition), and

“synergistic action” (encompassing greater-than- or less-than-additive scenarios).

Although Bliss was primarily cited in reference to the origins of independent action

(discussed in greater detail later in this chapter), his discussion of the joint action of

chemicals was wide-ranging with many important observations. Regarding dose

addition, he articulated more specific requirements for chemicals expected to

exhibit dose-additive toxicity. In particular, Bliss argued that they should have

the same mechanism of action (“act upon the same system of receptors” in

producing the outcome of interest), identical susceptibilities (in a population

context) to each chemical, and parallel dose-response curves, so that the only

difference between chemicals would be in their potencies. Bliss noted that mixtures

that are dose-additive “have a greater expected potency than those” that are

response-additive. In other words, the dose-addition model predicts greater mixture

toxicity than the independent-action model for the same component doses. In

studies that compare results from dose-addition and independent-action models,

there is a general trend of dose addition providing a higher predicted toxicity than

independent action (Belden et al. 2007; Altenburger et al. 1996). However, there are

exceptions to this observed trend (Cedergreen et al. 2008), and it has been demon-

strated that the shapes of the individual chemical dose-response curves are critical

in determining whether dose addition or independent action results in greater

predicted toxicity (Christensen and Chen 1985; Drescher and Boedeker; 1995).

To facilitate visualization of combination effects, Bliss proposed linearizing the

dose-response data using a log-dose probit function and provided an example using

data from experiments measuring mortality in house flies exposed to combinations

of rotenone and pyrethrin (Bliss 1939). In that paper, Bliss focused on the “dosage-

mortality curve” and thus defined toxic response only as the fraction of the exposed

population dying. Other types of toxic response, such as continuous measurements

of physiological function, are considered in later sections of this chapter.

Finney (1942) further developed many of the concepts proposed by Bliss (1939).

In his work, Finney sought to more clearly define statistical methods for analyzing

mixture data to obtain predictions based on an assumption of either independent

action or dose addition. Finney demonstrated that the proposed methods can be

applied to mixtures which contain more than two chemicals (Finney 1942). Draw-

ing notable distinctions from Bliss (1939) and Finney (1942), Hewlett and Plackett

published a body of work on models to describe joint action (Hewlett and Plackett
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1957, 1959; Plackett and Hewlett 1952, 1963). In particular, they pointed out that

individual chemicals need not have parallel dose-response relationships to be

consistent with dose addition (Hewlett and Plackett 1959).

The next major contribution to the dose-addition literature was offered by Chou

and Talalay in a series of highly cited papers (Chou and Talalay 1977, 1981, 1983,

1984). Their approach is based on the median effect principle, which was derived

from the mass action law and has been applied mechanistically in biochemistry and

pharmacology. For any given dose and corresponding fraction responding, the

median effect principle focuses on two ratios: the ratio of the fraction responding

to the fraction not responding and the ratio of the specified dose to the median

effective dose (i.e., the ED50 or dose that elicits a 50% response). The first ratio is

assumed to equal the second ratio raised to some power, where that power reflects

the shape of the dose-response curve. The method relies on calculation of a

combination index (CI), where CI ¼ 1 indicates dose-additive effects, CI < 1

indicates greater-than-additive effects, and CI > 1 indicates less-than-additive

effects. The CI is calculated by first fitting data from each chemical alone and a

fixed ratio combination of the chemicals to the “median-effect equation” derived by

Chou (1976), which is a rearrangement of the Hill equation, of which the Michaelis-

Menten equation is a special case (Chou 2010). The CI value is then calculated from

the resulting parameter estimates. Software was developed to facilitate the use of

the approach, with the currently available CompuSyn (http://www.combosyn.com/

index.html) representing the third generation of the software (Chou 2010). Greco

et al. (1995) provide a thorough review and critique of the CI of Chou and Talalay,

while Chou has more recently (2010) provided a review with recommendations for

successful application of the method.

Contemporaneously with Chou and Talalay, Berenbaum presented another

model for dose additivity (Berenbaum 1977, 1985, 1989). Berenbaum employed

hypothetical “sham combinations” – combining a chemical with dilutions of itself –

to articulate the dose-addition concept (Berenbaum 1989). In contrast to work by

Loewe and Muischnek (1926) and Bliss (1939) described above, Berenbaum

proposed that dose addition should be used as a general empirical method to

describe the joint action of noninteracting chemicals, without requiring toxicolog-

ical similarity among mixture constituents. Notably, Berenbaum stated that the only

requirement is that the dose-response relationships for the individual chemicals are

known over an “adequate range.” The functions describing those relationships are

unconstrained and are not required to be consistent across mixture constituents. On

the topic of non-monotonic dose-response curves, Berenbaum posited that the

proposed method can be used in cases of non-monotonicity observed in individual

chemical dose-response curves while acknowledging that additional uncertainty

may be associated with the analysis (Berenbaum 1985). He claimed that the

proposed “general solution” put forth in his 1985 paper is a major departure from

alternative models for describing combination effects, which require that “all the

agents in the combination show similar dose-effect relations of the appropriate

type” in the sense of similar functions and/or similarly shaped dose-response
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curves. Many of those other approaches are based on or motivated by the interpre-

tation of toxicological similarity as chemicals that are dilutions (concentrations) of

each other and hence have the characteristics Berenbaum describes in his sham

mixture example. He also contrasted his general solution with postulated require-

ments of sigmoidal dose-response curves for the median-effect equation, linear

dose-response curves for effect summation, and simple exponential dose-response

curves for independent action. While appropriate for the literature of 1985, those

latter “requirements” are not considered necessary in current formulas based on

independence (see Chap. 14).

The dose-addition model proposed by Berenbaum (1985) is based on the concept

of linear isoboles and can be described mathematically by Eq. 9.1 for a given

response level y:

XJ
j¼1

dj,y
EDj,y

¼ 1 ð9:1Þ

where J is the number of chemicals in the mixture, dj,y is the dose of chemical j in
the mixture that produces response y, and EDj,y is the dose of j alone that will

produce response y (as estimated, e.g., from dose-response data for each individual

chemical). For a binary combination, the equation simplifies to:

dA,y
EDA,y

þ dB,y
EDB,y

¼ 1 ð9:2Þ

where dA,y and dB,y are the doses of chemicals A and B, respectively, in the mixture

that elicit response y and EDA,y and EDB,y are the respective doses of chemicals A

and B alone that elicit response y. Berenbaum referred to this equation as the

“hyperplane theorem.” Chemicals that individually do not produce an effect but

that could increase or decrease the effect of other chemicals in a mixture can be

incorporated into Eq. 9.1, as Berenbaum pointed out, by assuming that EDj is

infinite so that
dj
EDj

for that chemical is 0. At least one chemical must produce a

nonzero response for Eq. 9.1 to hold. While chemicals that are dose-additive obey

Eq. 9.1, a sum less than 1 indicates greater than dose-additive effects of the mixture,

and a sum greater than 1 indicates less than dose-additive effects of the mixture.

Berenbaum went on to demonstrate that the equation for dose addition (Eq. 9.1) can

be rearranged to solve for the predicted mixture response provided that all constit-
uent chemicals display similar dose-response relationships (Berenbaum 1985) – a

restriction that is not needed for application of Eq. 9.1. Although Berenbaum’s
framework is relatively flexible compared to other approaches, limitations still

exist. For example, mixture effects can only be calculated up to the maximum

effect of the least effective constituent, thereby limiting the utility of this approach

for mixtures containing partial agonists. Furthermore, Bosgra et al. have criticized

the isobole approach advocated by Berenbaum and others based on the possibility

of noninteracting chemicals that display nonlinear isoboles (Bosgra et al. 2009).
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Nevertheless, the work of Berenbaum has provided the foundation for many

subsequent efforts to refine predictive models for mixture toxicity based on an

assumption of dose additivity.

9.3.2 Summary of Select Dose-Addition Models

This section discusses approaches that have been developed more recently.

Altenburger and colleagues have made significant contributions to the dose-

addition literature from the field of ecotoxicology (Altenburger et al. 1990, 2000,

2004; Faust et al. 2001). Their work systematically evaluated mixtures of chemicals

with similar and dissimilar mechanisms of action in order to better understand the

joint action of combinations of environmental chemicals. Their overarching goal

appears to be the development of general principles that can improve our ability to

predict mixture effects based on dose-response relationships for component

chemicals. To this end, they have adapted established dose-addition (and

independent-action) concepts and applied them to a number of different mixtures.

Their work evaluates which additivity models are most appropriate for estimating

the toxicity of different mixtures with known mechanisms of action. For example,

they test the hypothesis that chemicals with the same mechanism of action will

better conform to a model of dose addition than to a model of independent action.

Their approach represents a practical application of the dose-addition principles

described by Berenbaum. First, various dose-response functions (e.g., probit, logit,

Weibull) are fit to data from each individual chemical to identify a separate “best

fit” function for each chemical (i.e., there is no requirement for a shared function

among constituents). This feature is relatively uncommon among dose-addition

models, which typically use a common function to describe all individual chemical

dose-response curves. Next, the proportion of each individual chemical in the

mixture and the dose corresponding to a designated response level derived from

the “best fit” function serve as input for calculating the predicted mixture dose

corresponding to that effect level. For mixtures of known and fixed composition,

Altenburger et al. (2000) rearrange the variables in the equation proposed by

Berenbaum (Eq. 9.1) to solve for the dose of the mixture that would elicit a given

effect level y:

EDmix,y ¼
XJ
j¼1

qj
EDj,y

 !�1

ð9:3Þ

where EDmix,y and EDj,y are the doses of the mixture and individual chemical j,
respectively, expected to elicit a designated effect level y, and qj is the fraction of

chemical j in the mixture. The mixture dose EDmix,y is calculated for a range of

y values spanning approximately 1–99% of the maximal response. This results in

articulation of the predicted dose-response relationship for the mixture. As with the
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original Berenbaum approach, predictions can be made only up to the lowest

maximum effect level among the individual constituents and down to the highest

minimum effect level. This limitation is not ideal for mixtures containing constit-

uents that display incomplete efficacy (i.e., partial agonists). Generally,

Altenburger et al. compare predictions of mixture toxicity based on dose addition,

along with predictions based on independent action as a second reference curve, to

observed mixture toxicity over a range of doses.

The method first described by Altenburger et al. (2000) has been applied by

many other groups to evaluate diverse environmental mixtures in a wide array of

test systems from in vitro estrogenicity assays (Silva et al. 2002; Rajapakse et al.

2004; Payne et al. 2000) to in vivo rodent toxicity studies (Metzdorff et al. 2007).

Although the essentials remain consistent, the approach has been applied with

various modifications and increasing sophistication. For example, the collection

of functions from which the “best fit” to individual chemicals is selected may differ

among research groups. Additionally, bootstrap methods have been used to incor-

porate statistical uncertainty into model predictions to more rigorously evaluate the

differences between predicted and observed dose-response relationships (Metzdorff

et al. 2007). Finally, Scholze et al. have adapted the method to assess mixtures

containing constituents that display partial efficacy (Scholze et al. 2014).

The work of Gennings and colleagues offers another significant body of litera-

ture providing methods for detecting departure from dose additivity of chemical

mixtures (Casey et al. 2004; Gennings et al. 1997, 2004a, b). A defining hallmark of

this work is in the statistical comparison of predicted to observed mixture effects

using the whole dose-response curve instead of, or in addition to, a point-by-point

comparison. Models developed by Gennings et al. have been applied to a diverse

array of mixtures and testing paradigms. A detailed description of this and related

statistical approaches for dose additivity can be found in Chap. 11.

Another example of adapting Berenbaum’s dose-addition principles comes from

Howard and Webster, who offer a novel approach to assessing mixtures containing

constituents with partial efficacy (e.g., partial agonists) (Howard and Webster

2009). In contrast to the methods developed by Altenburger et al., this approach

incorporates a single model (3-parameter Hill model) for all individual chemicals.

The slope (i.e., Hill coefficient) for each chemical is assumed to be 1. Howard and

Webster’s equation for the “generalized concentration addition” model for a given

response y is:

XJ
j¼1

dj,y

f j
�1 yð Þ ¼ 1 ð9:4Þ

where dj,y is the dose of chemical j in the mixture that produces response y and fj
�1is

the inverse of the dose-response function fj for chemical j. Compared to the

Berenbaum formula of Eq. 9.1, Eq. 9.4 is simply a change in notation: replacing

EDj,y by fj
�1(y). The novelty arises because Howard and Webster formally define

the inverse function for partial agonists on the full range of responses possible for
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the full agonist, revising the usual definition where each inverse function is defined

only on the range of responses for that individual chemical. This revised definition

eliminates some dose-response models from consideration. When the dose-

response model is a Hill model with a slope equal to 1, this revised definition

assigns “negative” doses of a partial agonist to response levels beyond that partial

agonist’s maximal response and, for binary mixtures of a partial and a full agonist,

leads to linear isoboles with positive slope at those response levels. If the assump-

tion about the Hill slope is tenable, this approach is particularly well-suited for

assessing dose additivity for mixture data from receptor-based in vitro assays that

frequently include partial agonists (Howard et al. 2010; Hadrup et al. 2012, 2013).

9.3.3 Application of Dose-Addition Modeling in Toxicology:
Male Reproductive Tract Development

Endocrine-disrupting chemicals have been the focus of a large body of mixture

research that uses dose-addition modeling as a tool to explore the joint action of

potentially co-occurring chemicals. This line of research is motivated by multiple

factors. First, there is concern that a number of reproductive tract malformations

and pathologies (e.g., testicular dysgenesis syndrome) are increasing in certain

populations; exposure to environmental contaminants has been implicated in this

trend (Main et al. 2010). Second, the U.S. National Health and Nutrition Exami-

nation Survey (NHANES) (Buttke et al. 2012) and some international

biomonitoring efforts (Frederiksen et al. 2014) have demonstrated that people are

routinely exposed to numerous chemicals that have endocrine-disrupting potential.

Third, the period of reproductive tract development represents a particularly sensi-

tive window. Fourth, the joint effects of endocrine-disrupting chemicals that act at

different points in complex signaling pathways are not fully understood. Fifth,

knowledge of whether chemicals display dose-additive or greater than dose-

additive toxicity provides information useful for the risk assessment of chemical

mixtures.

Research groups at the U.S. EPA led by Gray (Rider et al. 2010, 2008) and in

Europe led by Hass and Kortenkamp (Christiansen et al. 2009; Metzdorff et al.

2007; Ermler et al. 2011) have used dose-addition modeling to understand how

individual endocrine-disrupting chemicals act jointly to disrupt male reproductive

tract development. Both groups have identified individual environmental chemicals

(e.g., pesticides, herbicides, plasticizers, personal care product ingredients) that

disrupt male reproductive tract development through different mechanisms (e.g.,

androgen receptor antagonism, disruption of steroidogenesis). The general hypoth-

esis developed by these researchers is that chemicals that share common key events

in their respective adverse outcome pathways (see Chap. 7 for detailed information

on using adverse outcome pathways to prioritize mixtures for study), or that simply

share a common adverse outcome, will adhere to predictions based on dose
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addition. In other words, a convergence of pathways at or near the manifestation of

the adverse outcome is hypothesized to result in combined effects that are dose-

additive.

Figure 9.4 provides a visual representation of the general hypothesis. In this

example, three chemicals (vinclozolin, dibutyl phthalate, and dioxin) elicit repro-

ductive toxicity via different mechanisms of action (i.e., they activate different

molecular initiating events). The fungicide vinclozolin binds to the androgen

receptor thereby blocking the action of androgens (e.g., testosterone, dihydrotes-

tosterone) responsible for normal development of male reproductive tissue. Dibutyl

phthalate, a plasticizer, decreases the availability of testosterone. Vinclozolin and

dibutyl phthalate share a common adverse outcome of disrupting the development

of male reproductive organs in rats exposed in utero. Though not all of these

chemicals elicit the same suite of effects, some effects are overlapping (e.g.,

disruption of epididymal development). The biological underpinning of applying

the dose-addition hypothesis to binary combinations of vinclozolin and dibutyl

phthalate is that the target tissue (i.e., epididymal tissue) does not recognize

whether the decrease in activated androgen receptor is due to receptor antagonism

Fig. 9.4 Hypothetical adverse outcome pathway network for four chemicals that disrupt male

reproductive tract development. Each chemical displays a unique molecular initiating event

(MIE). Solid arrows represent pathways with substantial scientific support, while lighter arrows

with dashed lines represent hypothesized pathway interactions. Some of the key events are

unknown, including the molecular initiating event for phthalates and the intermediate steps for

dioxin
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or decreased androgen; the tissue only recognizes the total decrease in activated

receptors. Even though the specific mechanisms are different, their convergence

supports the use of dose addition. Multiple studies with combinations of chemicals

with the mechanisms described above have shown that predicted mixture responses

based on dose addition are similar to observed mixture responses, supporting the

hypothesis (Rider et al. 2008, 2010).

The hypothesis of dose addition is less clearly applied to the addition of dioxin to

the binary mixture. Dioxin’s mechanism of action is not known, and its effect on

epididymal development is less well-defined. To expand the dose-addition hypoth-

esis to the ternary mixture, dose-response data from the three chemicals that exhibit

reproductive toxicity could be used to calculate expected effects of a three-

chemical mixture based on an assumption of dose additivity. These predictions

could then be compared to empirical data generated from testing the defined

mixture.

A fourth chemical, simvastatin, is known to disrupt cholesterol synthesis, but it

does not exhibit similar effects on reproductive endpoints. The hypothesis of dose

addition could be used to investigate the joint action of simvastatin with the other

three reproductive toxicants. Here, the assumption would be that simvastatin would

not contribute to the toxicity of the three-chemical mixture (i.e., its contribution to

dose-additive toxicity would be 0). A greater than dose-additive or less than dose-

additive result would indicate that, although simvastatin does not directly induce

the adverse outcome, it does alter the toxicity of one or more of the three chemicals

that act through the androgen receptor-mediated adverse outcome pathway

(Fig. 9.4). Mechanistic studies would then be required to investigate the hypothesis

that decreased cholesterol could lead to a decrease in testosterone sufficient to

contribute to downstream toxicity.

In addition to work aimed at exploring the dose additivity of antiandrogenic

mixtures, similar work looked at estrogenic mixtures (Silva et al. 2002; Rajapakse

et al. 2004) and at thyroid-disrupting mixtures (Crofton et al. 2005). Data from

experiments like those described above help to inform cumulative risk assessment.

For example, such studies contributed to the decision by a National Academy of

Sciences panel to recommend to the U.S. EPA that reproductive toxicant phthalates,

as well as other antiandrogenic chemicals, should be included in cumulative risk

assessments (National Research Council 2008).

9.4 Independent Action

As with many terms in mixture toxicology, “independent action” is not used

consistently throughout the literature. In particular, “independent action” has

been used interchangeably with “independent joint action,” “response addition,”

and “Bliss independence.” Here, the term “independent action” was deliberately

selected. Although “response addition” provides a convenient counterpart to the

term “dose addition,” it does not adequately convey the underlying concept. First,
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the terms “response” and “addition” can be synonyms of “effect” and “summation,”

respectively. In this chapter, the concepts of “response addition” and “effect

summation” are carefully defined so they are not equivalent and lead to different

prediction formulas for the combination exposure (see detailed discussion later in

chapter). Second, independent action does not necessarily lead to a simple addition

of responses. Although independent action and independent joint action have both

been used widely, a preference for simplicity favored the use of independent action

herein.

9.4.1 Background

The first description of independent action is generally attributed to Bliss (1939).

The foundational biological premise of independent action is that individual

chemicals act through distinct, non-interfering pathways to arrive at an apical

response (see Sect. 2 for further discussion). In a binary mixture with independent

action, the presence of chemical B does not influence the dose of or the response to

chemical A and vice versa. The work of Bliss is based on pesticides and refers

specifically to quantal responses, those involving some measurable two-category

event (generically, occurrence/nonoccurrence, presence/absence, or yes/no, e.g.,

death, presence of a particular tumor at sacrifice, or body weight less than 18 g).

Quantal responses are characterized by the probability that the event occurs as

estimated by the fraction of the population (or sample) that experiences the event.

The equation for calculating mixture response under independent action most often

cited in the toxicology literature is:

pmix ¼ 1�
YJ
j¼1

1� pj
� � ð9:5Þ

where pmix is the probability of the event occurring in response to a given dose of

the mixture and pj is the corresponding probability for chemical j alone at the same

dose as it is present in the mixture. Equation 9.5 is a consequence of an elementary

probability calculation that assumes that the occurrence of the event in response to

an individual chemical is independent across the chemicals. The probability that the

event does not occur in response to the mixture is 1–pmix. For the event not to occur

in response to the mixture means that the event cannot occur in response to any of

the individual chemicals (if one or more of the individual chemicals at their dose in

the mixture had elicited the event, then the mixture dose would have elicited the

event). The non-occurrence probability for chemical j is 1–pj. Under the indepen-
dence assumption, the probability that no single chemical elicited the event is the

product of their individual non-occurrence probabilities, namely,
YJ
j¼1

1� pj
� �

.

Equating 1–pmix to this product and solving for pmix yields Eq. 9.5.
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For a binary combination of chemicals, the formula simplifies to:

pmix ¼ pA þ pB � pApBð Þ ð9:6Þ
where pA and pB are the event probabilities for individual chemicals A and B,

respectively. Because the fraction of individuals who respond both to chemical A

and to chemical B is included twice in the sum pA + pB, the term ( pA pB) must be

subtracted to compensate for the double counting. Bliss noted that this formula

corresponds to Abbott’s formula, which is used in entomology to distinguish

between mortality attributable to pesticide application or to natural causes (Abbott

1925).

Bliss pointed out that the underlying assumption about independent action leads

to different predictions of the mixture response depending on the “correlation in

susceptibility” to the distinct mixture constituents. Imagine a population in which

individuals exhibit a range of susceptibilities or tolerances (i.e., the exposure level

of a given chemical required to elicit the event differs among individuals). In

addition, suppose that each individual has a separate susceptibility to each distinct

chemical in a mixture. In a population of individuals, the susceptibilities to distinct

chemicals may be correlated or not. Limiting himself to two chemicals, Bliss

considered three possibilities: no correlation (no relationship between susceptibil-

ities), perfect positive correlation (ordering of individuals’ susceptibilities is the

same for both chemicals), and some intermediate degree of positive correlation.

Equations 9.5 and 9.6 correspond to independent action with uncorrelated

susceptibilities.

In Fig. 9.3, the angular isobole (perpendicular gray line segments) corresponds

to the case of independent action with perfect positive correlation among suscep-

tibilities. That special case is likely to be extremely rare for real mixture exposures

but merits inclusion here because it shows up in mixture literature, usually without

explanation. When the susceptibility correlation is positive but less than perfect, the

isobole would have a different shape that depended on the shapes of the dose-

response functions for the two chemicals. The concept of independent action,

regardless of the correlation among susceptibilities, properly applies only to quantal

responses.

Plackett and Hewlett (1948) also contributed to describing the concept of

independent action put forth by Bliss and went into further detail on potential

correlation in susceptibilities. In addition to the options described by Bliss, Plackett

and Hewlett considered perfect negative correlation (the ordering of individuals’
susceptibilities to one chemical is exactly the reverse of their susceptibilities to the

other), as well as intermediate degrees of negative correlation. For perfect negative

correlation of susceptibilities, the probability of response to the mixture is given by:

pmix ¼ min ðpA þ pB, 1Þ, ð9:7Þ
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which reflects the constraint that a probability cannot exceed 1. In particular, the

proportion responding to the mixture cannot exceed 1, regardless of the proportions

responding to the individual constituents.

Effect summation is considered in the next section as a separate approach from

independent action, though there is an overlap between the two concepts. The usual

effect-summation formula for a binary mixture is:

pmix ¼ pA þ pB ð9:8Þ
and corresponds to Eq. 9.7 (for independent action with perfect negative correlation

of susceptibilities) if the sum of pA and pB does not exceed 1, and it approximates

Eq. 9.6 (for independent action with no correlation of susceptibilities) if the

response probabilities are small enough that the product of pA and pB is negligible

(see, e.g., Fig. 9.5).

Assessing correlations among pairs of susceptibilities is not trivial with two

chemicals and becomes unmanageable with more than two chemicals. Furthermore,

if chemicals are indeed working through different (i.e., independent) mechanisms,

perfect correlation (either positive or negative), though instructive for illustrating

the limiting cases, seems unrealistic. The difficulty in assessing these correlations

coupled with the implausibility of perfectly correlated susceptibilities could explain

why correlation of susceptibilities is not discussed widely in current mixture

literature and why most researchers default to Eq. 9.5, which corresponds to the

assumption of uncorrelated susceptibilities. Unless specifically stated, this chapter

will take “independent action” to mean “independent action with uncorrelated

susceptibilities” as in Eqs. 9.5 and 9.6.

9.4.2 Application of Independent Action

As with many concepts in mixture toxicology, the application of independent action

has evolved over time to scenarios beyond the original scope. Most importantly,

independent action is currently used to predict a variety of biological responses that

BABAmix ppppp

.01 x .01 = .0001

.02 x .03 = .0006

.06 x .04 = .0024

.08 x .12 = .0096

.01 + .01 = .02

.02 + .03 = .05

.06 + .04 = .10

.08 + .12 = .20

.0199 = 

.0494 = 

.0976 = 

.1904 = 

Fig. 9.5 Example of calculating mixture effects at low individual effect levels (<15%) when

assuming independent action. The product pA pB is small and does not appreciably change the sum

pA + pB

9 Predicting Mixture Toxicity with Models of Additivity 255



do not reflect the initial definition, derived from probabilities of events. Equations

9.5 and 9.6 are specific calculations for the probability of co-occurrence of statis-

tically independent events; consequently, they properly apply to the probability that

the event occurs or the proportion of the population that experiences the event,

quantities that must fall between zero and one. Quantal response data that meet the

original definition of independent action include mortality and the proportion of

animals within a dose group that displays a certain characteristic. Continuous

endpoints (e.g., growth, organ weight, hormone levels, magnitude of gene expres-

sion changes) generally do not lie between zero and one and are not interpretable as

probabilities; consequently, they fall outside of the scope of that definition. If the

continuous response (y) has predefined minimal and maximal possible values (ymin,
ymax), then it can be rescaled to lie between zero and one (equivalently, 0% and

100%) by transforming to (y�ymin)/(ymax�ymin). Even such rescaled responses,

however, are not typically interpretable as “probabilities.” For example, knowing

that an exposed rat lost 40% of its body weight says little about the probability of

that response. Thus, the use of Eq. 9.5 with continuous responses, even after

transformation to a scale that looks like a probability, is not supported by the

underlying probability argument that justifies Eq. 9.5. Furthermore, while the 1–p
term in Eq. 9.5 is clearly interpreted as the probability of non-occurrence (e.g., if the

event is death, then non-occurrence is survival), we do not know of any analogous

interpretation of the corresponding 1–y term. Consequently, application of Eqs. 9.5

or 9.6 with quantal responses has no similar theoretical basis as a benchmark for

independent action when applied to continuous responses. In other words, there is

no reason to believe that chemicals that act independently will obey Eqs. 9.5 or 9.6

when the ps are replaced by ys, even rescaled ys. Nevertheless, despite this serious
theoretical shortcoming, using the independent-action formula as an empirical

model with continuous responses is widely practiced and may have utility.

Early discussions of applying independent action for binary mixtures to contin-

uous response data emphasized differences in response measures (Muska and

Weber 1977). While quantal data show fractions of the population exceeding

toxicity thresholds, continuous data show average measured response intensities.

Thus, the concept of susceptibility correlation is not appropriate for continuous data

and formulas like Eq. 9.7 cannot be used. Instead, estimates of combined responses

are simple sums of component response intensities (see section 9.5 for more about

effect summation). More recent instances of applying independent action to con-

tinuous endpoints employ Eq. 9.5. Examples in the literature of the application of

independent action to continuous data include in vitro enzyme activity (Froment

et al. 2016), degree of hypopigmentation in zebra fish (Schmidt et al. 2016), and

organ weights in rat pups following in utero exposure (Rider et al. 2008), among

others.

An example can be used to illustrate the different applications discussed above.

Imagine a study where pregnant females are exposed to different doses of chemical

A or chemical B alone and their pups are evaluated for responses. The two

endpoints of interest are pup mortality (Table 9.1) and pup weight at birth

(Table 9.2). For the mortality endpoint, the percent of pups who died is the response
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used in the model. Therefore, Eq. 9.5 could be used to calculate the expected

response of a binary combination of the two chemicals (at each of the dose pairings

in a given row of the table) under an assumption of independent action as in the

following example:

4 mg=kg Aþ 100 mg=kg B : 0:10þ 0:20� 0:10∗0:20ð Þ ¼ 0:30� 0:02 ¼ 0:28
¼ 28%mortality

In contrast, pup weight does not easily fit into the probability-based equation. As

opposed to mortality, mean pup weight represents an average value of a continuous

variable. Before discussing the data transformation that is required to apply the

model, it is important to address the rationale for applying the independent-action

model to these data. There are two possible arguments. First, the model can be

viewed as a strictly empirical tool, offering a point of comparison for dose-addition

predictions and observed mixture data. Second, and more problematically, one

could argue that individual chemicals are acting through different biological mech-

anisms to disrupt a common system (e.g., development) that has real biological

limits, justifying a meaningful rescaling to 0–100%. In the current example, pup

weight data could be converted to % decrease from control (but even this more

meaningful rescaling is not interpretable as providing probabilities, so it should just

be treated as an empirical model). The mean weight in the control group could serve

as a maximum response level (ymax) – though using observed means can lead to

anomalies (e.g., negative percentages which are not between 0 and 100%)

(Table 9.2). As a minimum response level (ymin), 0 g could serve as a default

minimum (pups cannot weigh less than 0 g), or, assuming pups are not viable below

some nonzero weight, the average of “lowest pup weights” achieved in previous

work could serve as a more biologically-based minimum. If all pup weights are

rescaled using the control value (e.g., the average weight of the combined control

animals from chemicals A and B, which is 6.3 g in this example) as ymax and the

minimum viable weight (3.0 g in this example) as ymin, then the data can, in

principle, be converted to a 0–100% response scale (Table 9.2). These converted

data can then be used to make predictions based on the independent-action equa-

tion, as described above for mortality.

Table 9.1 Hypothetical data to illustrate application of independent-action model

Chemical A Chemical B

Predicted mixture response

under independent action (%)

Dose

(mg/kg)

Mortality

(%)

Dose

(mg/kg)

Mortality

(%)

0 0 0 0 0

2 3 50 5 8

4 10 100 20 28

8 50 200 45 73

16 95 400 75 99
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In the past, debate has centered around which definition of additivity – dose

addition or independent action – should serve as the default approach for describing

the baseline prediction from which interactions should be measured (Greco et al.

1992). This argument has largely faded, with many researchers instead opting to

include both dose-addition and independent-action predictions as referents for

assessing tested mixtures (Rider et al. 2008; Olmstead and LeBlanc 2005;

Christiansen et al. 2009; Gregorio et al. 2013; Altenburger et al. 2000; Qin et al.

2011). Including both formulas is usually done when there is inadequate biological

information about the potential joint toxicity. It is typically held that independent

action is appropriate for chemicals that act through different adverse outcome

pathways, while dose addition is favored for chemicals that exhibit similar mech-

anisms of action. However, individual chemical adverse outcome pathways are not

always known. Furthermore, instead of a priori classification of individual

chemicals and selection of an appropriate model, the fit of observed mixture data

to either dose-addition or independent-action models has been used to support

arguments regarding similarity/dissimilarity of mechanism(s) among mixture con-

stituents (Rider and LeBlanc 2006; Froment et al. 2016; Faria et al. 2016). In many

cases, however, dose addition and independent action yield similar or even indis-

tinguishable predicted mixture effects, particularly when the response (as a prob-

ability) is very small or when the dose-response curve is close to linear (Thienpont

et al. 2013; Kortenkamp and Altenburger 1998; Cedergreen et al. 2008).

Several studies have addressed the hypothesis that chemicals with distinctly

different mechanisms of action are better fit by a model of independent action than

by one of dose addition (Backhaus et al. 2000, 2011; Ermler et al. 2014; Villa et al.

2012; Faust et al. 2003; Hermens and Leeuwangh 1982; Martin et al. 2009; Baylay

et al. 2012; Cedergreen et al. 2008); however, few of these studies found that

Table 9.2 Conversion of continuous data to a 0–100% scale for use in Eq. 9.5 to predict mixture

responses assuming independent action

Chemical A Chemical B

Predicted mixture

response under

independent action

Dose

(mg/

kg)

Mean pup

weight at

birth (g)

%

Decrease

from

control

Dose

(mg/kg)

Mean pup

weight at

birth (g)

%

Decrease

from

control

% Decrease

from control

0 6.2 3.0 0 6.4 �3.0 0.1

2 5.9 12.1 50 6.5 �6.1 6.7

4 5.7 18.2 100 5.7 18.2 33.1

8 4.5 54.5 200 5.1 36.4 71.1

16 3.9 72.7 400 4.2 63.6 90.1
aA minimum response of ymin ¼ 3.0 g was assumed when calculating the % decrease from control,

which is defined as 100 � (ymax�y)/(ymax�ymin), where ymax is the average control response of

6.3 g
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independent action consistently provided a significantly better fit than dose addition

(Backhaus et al. 2000; Faust et al. 2003).

Some of the most highly cited work on independent action comes from

Backhaus and colleagues (Faust et al. 2003; Backhaus et al. 2000). These founda-

tional studies set out to carefully investigate the joint action of chemicals with

strictly dissimilar mechanisms of action. They tested mixtures of 14 and 16 constit-

uents with the microtox assay (measuring disruption of the respiratory process of

the marine bioluminescent bacteria Vibrio fischeri) and algal toxicity, respectively.
In both studies, they found that independent action accurately predicted mixture

toxicity, while dose addition overestimated the responses of the mixture, across the

range of mixture dilutions along fixed-ratio rays with constituents present at

equipotent concentrations (e.g., constituents present at the ratio of their concentra-

tions eliciting a 50% effect when tested individually).

In the majority of papers evaluating chemicals with dissimilar mechanisms of

action for adherence to independent-action predictions, the results are much less

clear-cut. In a series of experiments assessing the effects of binary mixtures of

dissimilar chemicals on C. elegans egg production, Martin et al. (2009) found some

cases where independent action accurately predicted observed mixture effects and

other cases where it over- or underestimated observed mixture effects. In another

example, Ermler et al. (2014) found that a mixture of four chemicals with dissimilar

mechanisms of action resulted in genotoxic effects that fell between independent-

action and dose-addition predictions. Similarly, Petersen et al. (2014) observed a

dose-dependent switch from independent action at low concentrations to dose

addition at higher concentrations for a mixture of eight chemicals with diverse

mechanisms of action on the growth rate of marine algae. Baylay et al. (2012)

pursued a mechanistic understanding of the combination of two dissimilar

chemicals using metabolomic profiling of earthworm tissue following treatment

with nickel, chlorpyrifos, and a combination of the two. They concluded that while

the measured effect of the mixture on reproduction was greater than that predicted

by independent action, the hypothesis of dissimilar mechanisms of action was

supported by the finding that the metabolomic profile for the mixture was interme-

diate between the unique profiles for nickel and chlorpyrifos alone, confirming their

dissimilar activity and indicating that they both contributed to the mixture effect.

9.4.3 Challenges with Independent Action

As indicated by the name, independent action is predicated on the assumption that

the individual chemicals within the mixture operate independently; however, the

exact nature of the biological independence required to make this assumption

plausible is usually not clearly articulated. Throughout the independent-action

literature, there are references to independence at the level of mechanism of action

(adverse outcome pathway), target tissue, or target system. There are two important

points to keep in mind. First, considering the complexity of biological systems, it is
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unlikely that the mechanisms of action will be strictly dissimilar. Second, many

environmental chemicals can have more than one mechanism of action.

As alluded to above, independence of action is likely influenced by the chemical

constituents, endpoint, and model system of interest. Therefore, one can hypothe-

size that experiments that include chemicals with specific and distinct mechanisms

of action and simple model systems are more likely to produce observed results

consistent with independent-action predictions. Conversely, chemicals with

nonspecific mechanisms of action, common among environmental contaminants,

and complex systems (e.g., carcinogenesis in a rodent) might be more likely to

involve interactions among biological signaling pathways and less likely to con-

form to predictions based on an assumption of independent action. Hermens and

Leeuwangh (1982) discuss some of these considerations in their studies with

chemicals that display both specific and nonspecific mechanisms of toxicity. For

example, both Hermens and Leeuwangh (1982) and K€onemann (1981) discuss the

concept that the primary mechanisms of constituent chemicals could act indepen-

dently, while a lesser (secondary) narcotic mechanism present in all organic

chemicals could contribute in a dose-additive manner to toxicity, resulting in

observed mixture toxicity that exceeds independent-action predictions.

9.5 Effect Summation

As mentioned earlier (Sect. 4.1), under certain conditions (e.g., low effect levels),

effect summation can be applied directly with quantal response data to approximate

predictions under independent action. Nevertheless, some investigators have

applied effect summation beyond quantal responses to continuous responses, even

without prior conversion to a 0–100% scale. Avoiding such conversion is particu-

larly useful when the responses being measured are not readily amenable to it. Of

course, the sum of effects, whether rescaled or not, can exceed the 100% limit for

probabilities or the experimentally determined maximum effect level for continu-

ous responses – a characteristic that is often cited as a fatal flaw of the approach (see

below for a discussion of the limited application of effect summation). The general

equation for effect summation is:

Ymix ¼
XJ
j¼1

Yj ð9:9Þ

where Yj is the response elicited by chemical j alone. For a binary mixture, the

equation simplifies to:

Ymix ¼ YA þ YB ð9:10Þ
where YA and YB represent the responses elicited by chemicals A and B, respec-

tively, when given alone.
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9.5.1 Application and Challenges of Effect Summation

In toxicological studies, effect summation is often cited as an inappropriate

approach for assessing mixtures because of a lack of biological plausibility at

high effect levels (Boedeker and Backhaus 2010). A primary example of this

implausibility is that an effect-summation model can produce response predictions

beyond the natural response boundaries. In contrast, for independent action, the

laws of probability ensure that the predicted probabilities satisfy the natural bound-

ary constraints. Thus, effect summation is frequently discounted as an appropriate

tool in toxicology because a biological plausibility threshold can be exceeded.

Nevertheless, effect summation does have one important advantage over indepen-

dent action: there is no requirement to convert the individual data, so they can be

combined across chemicals in raw form. Therefore, effect summation could be used

as a benchmark, if researchers acknowledge its limitations.

The example described in Sect. 4.2 can be used to illustrate the advantages and

disadvantages of effect summation compared to independent action. In Table 9.3, it

is apparent that the responses can be added together without converting the data.

However, at the highest dose of the mixture (16 mg/kg chemical A þ 400 mg/kg

chemical B), the predicted effect is a 4.5 g decrease in pup weight. This decrease

would result in pup weights around 2.0 g, well below the 3.0 g that was thought to

be the minimum that is biologically plausible (see independent-action example

above). This again emphasizes the need for a biologically-based limit on the

predicted effect. Because most effect measures are surrogates for a complex

physiological process, many effect limits are empirically derived, including limits

on what values are considered “normal” or “healthy.” At those highest doses in

Table 9.3, the pups are of such low weight as to be biologically compromised. For

example, at the highest dose of chemical A (16 mg/kg), the pup weight loss is 37%,

well in excess of the common limit of 10% (Chapman et al. 2013). Furthermore,

Table 9.3 Predictions of mixture responses based on effect summation

Chemical A Chemical B

Effect-

summation

prediction

Dose

(mg/kg)

Mean

pup

weight

(g)

Decrease in pup

weight (g) from

controla
Dose

(mg/kg)

Mean

pup

weight

(g)

Decrease in pup

weight (g) from

controla

Decrease in

pup weight

(g) from

controla

0 6.2 0.1 0 6.4 �0.1 0

2 5.9 0.4 50 6.5 �0.2 0.2

4 5.7 0.6 100 5.7 0.6 1.2

8 4.5 1.8 200 5.1 1.2 3.0

16 3.9 2.4 400 4.2 2.1 4.5
aThe control response for calculating decrease in weight was the average of the zero-dose

responses for both chemicals, namely, 6.3 g

9 Predicting Mixture Toxicity with Models of Additivity 261



they likely have some physiological or biochemical processes that are no longer

functioning normally, calling into question the purpose of the predictive model

based on one measured effect.

9.6 Integrated Addition

Integrated addition is a more recent development in the mixture literature and

represents a combining of concepts from dose addition and independent action to

accommodate mixtures that contain constituents with similar and dissimilar adverse

outcome pathways (Rider and LeBlanc 2005; Teuschler et al. 2004; Altenburger

et al. 2005). First, chemicals are grouped into toxicologically similar groups (see

discussion in Sect. 2). Next, the total response for each group is calculated using a

dose-addition method. This response must be a measure of probability (see Sect. 4.2

for concerns). Finally, the responses from the different groups are combined using

an independent-action approach (Figs. 9.6 and 9.7). The goal driving development

of the integrated-addition approach was to refine predictions of mixture toxicity

based on known mechanisms of action.

9.6.1 Application of Integrated Addition

In one of the first papers describing an integrated-addition approach, a ternary

mixture of two organophosphate pesticides (malathion and parathion) and the

A

B
B

B

B

Mixture Response 
for A and B

+
A

A

Dose
Addition

D

D
D

D

Independent
Action

C

C
C

C

Dose
Addition

+

Mixture Response 
for C and D

+

Total Mixture Response

Integrated Addition

Fig. 9.6 Representation of integrated addition. In this example, chemicals A and B share a

common mechanism of action (binding to a receptor to elicit a downstream effect), as do

chemicals C and D (interfering with lipid membranes). A dose-addition model can be used to

calculate expected mixture effects for each of the two mechanism-based groups. The responses of

each of the mechanism-based groups can then be combined using an independent-action model
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pesticide synergist piperonyl butoxide was assessed for its joint effects on immo-

bilization of the crustacean Daphnia magna (Rider and LeBlanc 2005). Malathion

and parathion inhibit acetylcholinesterase activity. Their joint action was estimated

using dose addition. Next, piperonyl butoxide effects were combined with the dose-

additive effects of malathion and parathion using independent action (Eq. 9.5). An

interaction coefficient was also added to the equation to account for the interaction

between organophosphates and piperonyl butoxide. (Quantitative interaction infor-

mation is rarely available, and the modification of models to incorporate interac-

tions is beyond the scope of this chapter.)

In another early effort to combine dose addition and independent action,

Altenburger et al. (2005) used various mechanism-based grouping strategies to

compare modeled predictions to observed algal toxicity of a 14-chemical nitroben-

zene mixture. They used both individual chemical dose-response parameters and

known mechanistic data to group chemicals. Based on this approach, they articu-

lated three groups: 11 nitrobenzenes operating primarily through narcosis, two

mononitrobenzenes acting through a redox-cycling mechanism, and a single chem-

ical acting through an antimitotic pathway. Dose addition was used to calculate the

expected joint effects from each of the two groups with more than one chemical.

These two groups were then combined with the single chemical using independent

action (Fig. 9.7).

Since its introduction, integrated addition has been used by various research

groups to provide an additional point of comparison together with independent

action and dose addition (Ra et al. 2006; Flippin et al. 2009). There have also been

attempts to improve models based on integrated addition using more sophisticated

statistical procedures. Mwense et al. (2004, 2006) used advanced approaches such

as molecular modeling to derive chemical descriptors and fuzzy set theory to assign

Fig. 9.7 Example of an application of the integrated-addition concept to a 14-chemical mixture of

nitrobenzenes (Altenburger et al. 2005)
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chemicals to similarity groups. Qin et al. (2011, 2015) employed multiple linear

regression techniques to combine predictions based on independent action and dose

addition.

9.6.2 Challenges of Integrated Addition

The greatest challenge to applying integrated addition is a lack of information on

the mechanisms of action or adverse outcome pathways associated with individual

chemicals. Additionally, chemicals can induce more than one adverse outcome

pathway (Chap. 7) and can activate different adverse outcomes depending on the

species. Advances in model development address the need for knowing a priori the

adverse outcome pathways associated with each individual chemical by relying on

physicochemical properties and data from individual dose-response curves. These

approaches, however, often require advanced statistical and toxicological under-

standing or access to larger datasets that may not be widely available.

Inclusion of both dose addition and independent action within a single approach

necessarily includes all of the challenges associated with application of those

models separately. Integrated addition does not specify a particular method for

calculating predictions under dose addition. Thus, any of the dose-addition methods

described above could be used in the integrated-addition framework; however,

because the independent-action part of the framework requires probabilities or

percentages, all of the issues associated with converting response data discussed

previously also apply here.

9.7 Conclusions and Recommendations

This chapter has described the long history of using simple mathematical models to

better understand the toxicity of mixtures. Over the course of the last 90 years, a lot

of progress has been made in developing these tools. Despite the many overlapping

approaches and the often confusing terminology, some basic principles have

emerged.

• Simple mathematical models to predict mixture toxicity from individual chem-

ical data provide a useful tool for exploring the joint action of chemicals. Most of

the underlying toxicological concepts involve similarity or independence. In

many cases, responses predicted using dose addition and/or independent action

provide close approximations of observed mixture responses.

• Despite the many variations of dose addition available, the general concept

remains intact, with specific changes resulting in potentially wider application

(e.g., modification to accommodate partial agonists) without substantially

changing the underlying null hypothesis.
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• Deviations of observed mixture responses from predicted responses can be due

to a number of factors including that the prediction model is too simple (it lacks

biological complexity) or there are toxicological interactions between chemicals

that are not captured by the models (e.g., greater than or less than dose-additive

interactions). Significant deviations could signal that follow-up mechanistic

studies are required to better understand potential interactions. Further work

comparing biological models (e.g., toxicokinetic models) with these simple

additivity models will be important in developing plausible interaction models

as well as extensions of additivity models to reflect dose dependence or mixing

ratio dependence.

• When biological evidence for similarity or for independence is weak, including

more than one model (e.g., dose addition and independent action or effect

summation) to compare observed and predicted responses is recommended.

Since adverse outcome pathways associated with chemicals are often unknown

or incomplete, including multiple models can better frame the potential range of

predicted mixture responses without requiring a mechanism-based argument for

application of a specific model. This range of predicted responses is not the

expected range of true responses, but it characterizes responses under the null

models most likely to be used.

• Much of the toxicology work on mixtures has focused on low numbers of

chemicals (binary and ternary combinations), with less work addressing chem-

ical mixtures containing 10–20 constituents. Work with higher-order mixtures

will be important in determining the limitations of the models described here.
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Chapter 10
Mixtures: Contrasting Perspectives from
Toxicology and Epidemiology

Thomas F. Webster

Abstract Investigation of the health effects of mixtures will benefit from the
cooperation of toxicologists and epidemiologists. This chapter provides insight
into the commonalities and differences in the viewpoint and methods that toxicol-
ogists and epidemiologists use to investigate health effects of mixtures. Ways in
which these two important disciplines can work together are suggested.

Keywords Epidemiology · Toxicology · Mixtures · Interaction

10.1 Introduction

The field of mixtures has had a resurgence in the last decade, with increasing interest
from researchers and governments. As a report from NIEHS on a 2011 workshop put
it, “Traditionally, toxicological studies and human health risk assessments have
focused primarily on single chemicals. However, people are exposed to a myriad
of chemical and nonchemical stressors every day and throughout their lifetime. . .It is
imperative to develop methods to assess the health effects associated with complex
exposures in order to minimize their impact on the development of disease.”Another
conclusion was the “need for further collaboration among epidemiologists, toxicol-
ogists, and biostatisticians.” (Carlin et al. 2013). For such collaborations to be most
productive, researchers in all three fields need to be at least aware of each other’s
jargon, especially the definition of “interaction.” Further, toxicologists and epide-
miologists need to understand the viewpoints and methods that the two fields use to
investigate health effects of mixtures (see also Boedeker and Backhaus 2010;
Howard and Webster 2013).
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10.1.1 The Mixtures Problem for Toxicologists

The mixtures problem typically faced by toxicologists and pharmacologists is to
predict the effect of a combination of compounds based only on information for each
compound individually, including toxicological mechanism of action. Put more
concretely, when and how can the individual dose-response curves plus mechanistic
information be used to predict the joint response across a range of doses, i.e., the
dose-response surface. For simplicity, concepts will be illustrated with a mixture of
two compounds; it is important to note that the ideas presented here can be
generalized to more complicated situations. This problem can be visualized with a
three-dimensional diagram: plot the dose of one compound on the X1-axis, the dose
of the second compound on the X2-axis, and response on the Y-axis (Fig. 10.1, right).
In some situations, the response surface can be accurately predicted using compo-
nent-based mixtures models, as briefly discussed later in this chapter and elsewhere
in this volume (Chaps. 9, 11 and 14). Sometimes toxicologists are faced with a well-
defined mixture for which the composition is fixed or nearly so. For such
multicomponent defined mixtures, direct toxicological testing of the complete mix-
ture can be used. Toxicologists also directly test highly complex environmentally
realistic mixtures (whole mixtures) where some part of the mixture mass is known
and the rest consists of unidentified components (Narotsky et al. 2012, 2013).

10.1.2 The Mixtures Problem for Epidemiologists

Environmental epidemiologists face a related but complementary problem. For
component-based mixtures, toxicologists can choose the compounds they are exam-
ining and the combinations of doses. Since epidemiologists cannot ethically expose
people to toxic compounds, they look for natural experiments where such exposures
occur. For each person, the investigator needs to know their exposure to each
compound Xj (during the biologically relevant time period), the outcome Y, as well
as potential confounders and effect measure modifiers. At the simplest level, a
confounder is a third variable that is associated with the exposure and is an
independent predictor of the outcome (for a more thorough definition and discussion
of confounding, see Aschengrau and Seage 2013; Rothman et al. 2008). If not
controlled in some way, confounding causes a distortion of the relationship between
the exposure of interest and the outcome; this distortion can be in any direction,
either diminishing/masking a true association or creating false associations. It is
important to note that the omission of a risk factor for an outcome does not cause
confounding if it is not also associated with the exposure of interest. Effect measure
modification is discussed in more detail later in the chapter.

For now, two simplifying assumptions are made: the outcome Y is continuous,
and there is no effect measure modification. The exposure of each person can be
plotted as a point on the X1�X2 plane, generating the distribution of data in exposure
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space (e.g., Fig. 10.2). Statisticians typically use regression modeling to estimate the
associations between each exposure and the outcome (Chap. 8) as well as statistical
interaction. For example, one might use a regression equation of the form

Y ¼ β0 þ β1X1 þ β2X2 þ β12X1X2 þ β3Z þ ε ð10:1Þ
where β0 is a constant; β1 and β2 are the effect estimates for the two exposures X1 and
X2 individually (called the main effects) (e.g., Harrell 2001). In statistics, β12X1X2 is
called a multiplicative interaction term. As discussed later in this chapter, this is not
necessarily the same as interaction from an epidemiologic or toxicologic point of
view. Z is a confounder that requires adjustment, and ε is an error term, assumed to
be random and unmeasured. Regression uses the data for each person (Xij, Yi, Zi) to
estimate the parameters β0, β1, β2, β12, and β3. Equation 10.1 is quite simple. In
addition to the two assumptions discussed above, it also assumes that individual
dose-response curves are linear and there is only one confounder; these assumptions
can be relaxed. More complicated interaction terms can also be used. While toxi-
cologists can usually avoid confounding by experimental design (Chaps. 8 and 13),
it is a major cause of concern in environmental epidemiology: this difference arises
because of the uncontrolled quality of natural experiments. For example, only a
limited number of exposure variables (e.g., different chemicals) are usually mea-
sured, potentially causing confounding.

While a component-based toxicology approach uses data on individual com-
pounds to estimate the effect of the mixture, the epidemiologist tries to estimate
the response surface directly from the data in exposure space: Equation 10.1 is a
model of the dose-response surface (it also yields estimates of the individual dose-
response curves, e.g., by setting the other compound equal to zero). Unlike toxicol-
ogists, epidemiologists often have neither a priori individual chemical dose-response
information nor information about toxicological mechanism.

Fig. 10.1 An important mixtures problem in toxicology: When and how can dose-response curves
and other information about individual components (left) predict the dose-response surface of the
mixture (right)?
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Epidemiologists have at least three questions in mind when studying exposure to
mixtures (Braun et al. 2016): (1) Variable selection: Which components of the
mixture contribute to the outcome? In our example, are both X1 and X2 associated
with the effect? (2) Are there “interactions” (however defined) between the two
exposures? (3) Can some kind of summary measure of the exposures be constructed
(discussed later in this chapter)? Examining mixtures in epidemiology is a difficult
problem, facing a number of challenges (e.g., Braun et al. 2016).

Several recent efforts have been aimed at developing methods to evaluate mix-
tures of chemicals in epidemiology: e.g., the EPA multipollutant workshop (Johns
et al. 2012) and the NIEHS workshop Statistical Approaches for Assessing Health
Effects of Environmental Chemical Mixtures in Epidemiology (NIEHS 2015). Novel
methods that have been applied to assess mixtures in epidemiological settings
include weighted quantile sum regression (Carrico et al. 2015), Bayesian kernel
machine regression (Bobb et al. 2014), and exposure space smoothing (Webster and
Vieira 2015). A series of publications are expected to come out of the NIEHS
workshop comparing various methods (e.g., Taylor et al. 2016).
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Fig. 10.2 Example of exposure space for two compounds BDE 47 and PCB153, as they occur in
human serum (ng/g lipid weight, unpublished data). Each axis represents an exposure; each point
represents a person
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10.2 Toxicology and Epidemiology of Mixtures: The
Importance of Exposure Space

To generalize, instead of two exposures, suppose there are J exposures. Thus, instead
of the simple diagram in Fig. 10.2, the exposure space has J dimensions; the
response variable adds an additional dimension. This space is potentially very
large: it is estimated that there are somewhere between 25,000 and 84,000 chemicals
in commerce in the USA (IOM 2014). To this one might add natural compounds,
metabolites, pharmaceuticals, and nonchemical exposures. (However, we have still
simplified, as considerations of time and exposure measurement error are omitted
from the discussion.)

It is currently not possible to simply test our way out of the mixtures problem: the
numbers are too big. For example, even if we examined only one dose of only three-
way combinations of 25,000 chemicals, the number of toxicology experiments
required is 2.6 � 1012. We clearly need ways to reduce the number of combinations.
This sobering fact provides a compelling rationale for the following two main
toxicological approaches to mixtures. The component-based approach, when it is
applicable, only requires data on individual compounds. When the relative compo-
sition of a mixture is fixed, then varying the dose of the whole mixture produces a ray
in exposure space, a line from the origin outward (Chap. 13).

The distribution of points in exposure space is thus of key importance for both
toxicology and epidemiology (e.g., Carlin et al. 2013). Large pieces of the space will
be empty: such combinations of exposure do not occur and don’t require investiga-
tion. Some exposures will be highly correlated, even forming rays amenable to
whole mixture approaches. Understanding exposure space is also critical for envi-
ronmental epidemiologists as they cannot control the distribution of exposures
except to some degree by choice of populations. The good news is that epidemiol-
ogists study exposures as they actually occur—thus targeting important parts of
exposure space—at least if they are measured. But this can also pose problems. For
example, estimating both main effects and interactions is difficult unless the popu-
lation under study is sufficiently large, and the data are to some degree spread across
exposure space. For example, with two exposures, one would ideally have groups of
people with exposure to both compounds, exposure to neither compound, and
exposure to only one or the other. If two exposures are highly correlated, it is
difficult to disentangle separate effects: putting both exposures in the regression
model can produce unstable estimates, a problem called collinearity (note that if
exposures are very highly correlated, the epidemiological problem is related to the
whole mixture approaches of toxicology). Suppose components A and B are corre-
lated because they come from a common source, but only A contributes to the effect.
If only B is measured (or included in a model), it will incorrectly appear to be
associated with the outcome, i.e., it is confounded by the missing exposure
(Fig. 10.3). For all of these reasons, it is important to increase the number of
exposures that are measured and examined: expanded targeted analysis, nontargeted
analysis, and similar approaches are critical for a better understanding of what
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mixtures occur. Targeted analysis looks for specific compounds in a sample;
nontargeted analysis is a screening approach that can identify previously unknown
or uncharacterized exposures (e.g., Getzinger et al. 2015; Chaps. 3 and 4). Analysis
of such expanded exposure data will also require larger sample sizes, e.g., to achieve
desired levels of statistical power.

Methods for analyzing the information in exposure space are also important. For
example, Fig. 10.4 illustrates the correlations of a set of persistent organic pollutants
in human serum from the same cohort as Fig. 10.2, but with more compounds
(unpublished data). The dendrogram, which can be interpreted similar to a family
tree, was constructed using hierarchical clustering. Compounds joined closer to the
bottom are more highly correlated (using Spearman’s correlation coefficients of the
serum concentrations), those joined at the top less so. For example, BDE47 and
BDE99 are two highly correlated (and tightly clustered) compounds. They are two
polybrominated diphenyl ether (PBDE) congeners that occur in the same commer-
cial flame retardant and that have similar routes of exposure. The PBDEs and PCBs
are in two different clusters because they are not very correlated with each other. For
example, BDE47 is not well correlated with PCB153, as shown in Fig. 10.2. This
suggests that PBDEs and PCBs are unlikely to confound each other (at least in this
cohort); that does not preclude “additive” or “interactive” effects however.

10.3 Component-Based Mixture Methods in Toxicology

When mechanisms are sufficiently well understood, models of the effect of mixtures
can sometimes be constructed. For example, biologically based mathematical
models can be constructed of the effects on receptor activation by mixtures of
ligands, one important mechanism for endocrine disruption (e.g., Weiss et al.
1996; Howard and Webster 2009; Webster 2013). However, toxicologists and risk
assessors often need to make predictions without this kind of detail. Two main
approaches are used. As these ideas are discussed in more detail elsewhere in this
book (Chap. 9), these concepts will be only briefly reviewed.

Source

A

B

Y

Fig. 10.3 Suppose that exposures A and B are correlated because they both arise from a common
source. A, but not B, causes the outcome Y. If B is the only exposure measured, it will falsely appear
to be associated with Y due to confounding
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For compounds that act via similar toxicological mechanisms, one approach
assumes dose addition, also known as concentration addition. Compounds that are
dose additive obey the following equation (see Chap. 9):

XJ
j¼1

dj
EDj,y

¼ 1 ð10:2Þ

where dj is the dose of compound j and EDj,y is the dose of compound j alone that
causes response level y, e.g., the ED10 (Berenbaum 1989). Depending on the number
of dimensions, Eq. 10.2 describes a line, plane, or hyperplane. As a result, the
isoboles (contours) of the response surface form negatively sloped lines, planes, or
hyperplanes when projected onto the exposure space (Fig. 10.5).

A simple version of dose addition is toxic equivalence: it can occur when the
relative potency between compounds is the same at all response levels (Howard and
Webster 2009; Chap. 14). The joint response of the mixture under toxic equivalence
( fTE) is a function of a linear combination of the component doses scaled by potency.
If chemical 1 is selected as the reference compound, then the mixture response can
be represented by the dose-response model for chemical 1 applied to the linear
combination of the component doses

Fig. 10.4 Dendrogram showing the correlations between the concentrations of a number of
persistent organic pollutants in human serum
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f TE d1; . . . ; dJ½ � ¼ f 1
XJ
j¼1

γjdj

" #
ð10:3Þ

where f1[.] is the dose-response curve for the reference compound, compound 1. The
γj are the relative potency factors (RPFs) compared to a reference compound. When
the reference compound has the highest potency, the other compounds in the mixture
act as if they are dilute versions of the reference compound (for a discussion of
definitions of RPFs and TEFs, see Chap. 14 as well as USEPA 2008). The concept
underlying dose addition is perhaps most easily seen for toxic equivalence: one first
scales doses by their relative potencies (to give their equivalent doses as chemical 1)
and then applies the dose-response function of chemical 1 to total equivalent dose.
Under toxic equivalence, the isoboles are always parallel, negatively sloped straight
lines (Fig. 10.5b).

We have proposed a modification of dose addition called generalized concentra-
tion addition (GCA) that can in principle handle mixtures of full and partial agonists,
i.e., compounds with different maximal responses (Howard andWebster 2009). This
class of models has been successfully applied to mixtures of full and partial agonists
of the AhR and PPARγ receptors (Howard et al. 2010; Watt et al. 2016). Isoboles for
mixtures obeying GCA are straight lines but can have negative or positive slopes: the
latter implies that the partial agonist acts like a competitive antagonist at response
levels above its maximum effect level (Howard and Webster 2009).

When compounds act via different mechanisms, many mixtures toxicologists use
independent action. The mixture response expected under independent action ( fIA)
is:
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Fig. 10.5 Isoboles: The response surface on the left (a) yields the contours (isoboles) on the right
(b). Compounds that are dose additive have isoboles that are negatively sloped straight lines. For
compounds that follow the toxic equivalence model (a special case of dose addition with constant
relative potency), the isoboles are also parallel
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f IA d1; . . . ; dJ½ � ¼ 1�
YJ
j¼1

1� f j dj
� �� �

ð10:4Þ

Originally derived from independence in probability theory, independent action
assumes that responses range between zero and one.

Effect summation (ES) is defined by

f ES d1; . . . ; dJ½ � ¼
XJ
j¼1

f j dj
� � ð10:5Þ

and describes the excess effect, above controls (Chap. 9) (note that at very low effect
levels independent action is approximated by effect summation). It is worth empha-
sizing that effect summation has often been rejected as a general mixtures model by
mixtures toxicologists, e.g., Howard and Webster (2009), but may be useful when
dose-response curves are approximately linear or under other conditions (Chap. 14).
Effect summation frequently appears in the toxicology literature as well as in
textbooks.

Perhaps not surprisingly, there has been discussion in the toxicology literature
about when one should use dose addition vs. independent action, in particular, how
similar the toxicological mechanisms must be for dose addition to apply (Webster
2013). The choice of dose addition vs. independent action can have profound
consequences; this is nicely illustrated in the “something from nothing” experiment
of Silva et al. (Silva et al. 2002), where a mixture of xenoestrogens, each at doses less
than their empirical no effect levels, produces a response in combination; indepen-
dent action would predict no combination response. Further, the compounds exhibit
toxic equivalence and thus dose addition well describes the mixture response. As the
dose-response curves for these compounds are concave upward at low doses
(Fig. 10.6a), the combined response exceeds that predicted by effect summation
(Silva et al. 2002; Rajapakse et al. 2002). Some models (integrated addition models)
combine features of both dose addition and independent action (e.g., Rider and
LeBlanc 2005, Chap. 9)

In sum, mixtures toxicologists often use either dose addition or independent
action to estimate the effect of mixtures from individual components. The choice
often depends on the toxicological similarity of the components. Furthermore, dose
addition (or GCA) and independent action can be considered as toxicologic defini-
tions of non-interaction/additivity. Having specified such a definition, one can then
determine if a mixture has an interaction, producing responses greater than additive
or less than additive relative to the chosen definition.

10 Mixtures: Contrasting Perspectives from Toxicology and Epidemiology 279

https://doi.org/10.1007/978-3-319-56234-6_9
https://doi.org/10.1007/978-3-319-56234-6_14


10.4 Additivity and Interaction in Epidemiology

To borrow a frequently used example (Rothman 1986), Table 10.1 shows hypothet-
ical risks of lung cancer categorized by exposure to asbestos and smoking in a cohort
study (rates of disease could also be used). Let’s assume there is no confounding or
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Fig. 10.6 (a) Suppose A and B follow the toxic equivalence model and have the same potency,
with a nonlinear response curve that is concave up. The same dose of A alone or B alone would give
the same response. For a mixture of these doses, effect summation would predict twice the response
of either compound alone. Dose addition gives the correct, higher value. But from the point of view
of epidemiology, the incremental effect of compound B depends on the amount of compound
A. They interact, as defined by epidemiologists. (b) Suppose A and B follow the toxic equivalence
model and have the same potency, with a linear response curve that is concave up. The same dose of
A alone or B alone would give the same response. For a mixture of these doses, effect summation
and dose addition gives the same, correct value. From the point of view of epidemiology, the
incremental effect of compound B does not depend on the amount of compound A. They do not
interact, as defined by epidemiologists

280 T. F. Webster



other biases. The highest risk is in the doubly exposed people. As will be seen,
epidemiologists think about interaction in quite a different way from toxicologists.

Epidemiologists summarize the associations between exposure and disease using
effect measures. For example, Table 10.1 shows the relative risks (RR) for the
association between lung cancer and asbestos, holding smoking constant. In this
case, the RR—the ratio of the risk in the asbestos exposed to the risk in the asbestos
unexposed—equals 5 for smokers and also 5 for non-smokers. As the RRs are the
same in both strata, there is no effect measure modification of the asbestos RR by
smoking. Similarly, Table 10.1 shows that asbestos exposure does not modify the
RR for smoking and lung cancer: it is 10 in both strata. On the other hand, suppose
the investigator used another equally valid effect measure: the risk difference (RD),
which equals the risk in the exposed minus the risk in the unexposed. The RD for the
association between lung cancer and asbestos is 40/100,000 for smokers and
4/100,000 for non-smokers. Thus, the asbestos RD is modified by smoking (and
vice versa). This phenomenon is called effect measure modification because it
depends on the choice of effect measure, here either RD or RR (there are other
possibilities such as odds ratios, typically used in case-control studies).

Epidemiologists consider effect measure modification to be descriptive. Interac-
tion is a different concept. Like toxicologists, epidemiologists also use the term
interaction to mean nonadditive, either greater than additive (called synergism by
epidemiologists) or less than additive. Unlike toxicology, epidemiologists have a
single definition of non-interaction (additivity), making no distinction for mecha-
nism: it is based on additivity of risk differences. For the example in Table 10.1,
epidemiologists would say that asbestos and smoking interact, having a greater than
additive (synergistic) effect on lung cancer. Indeed, some epidemiologists call this
“biologic interaction” (e.g., Ahlbom and Alfredsson 2005).

To see how epidemiologists judge Table 10.1 to display nonadditivity, let’s
briefly review one derivation of the epidemiologic definition of interaction (for a
detailed explanation, see Howard and Webster 2013; Rothman et al. 2008). As in
Table 10.1, epidemiologic examples traditionally use binary exposures and out-
comes. One model for interaction in epidemiology relies on what are called coun-
terfactual susceptibility types. For pairs of two binary exposures A and B, there are
16 possible patterns of exposures and outcomes, each of which can be considered a
possible response type (Table 10.2). For some types, one needs to know the value of

Table 10.1 Hypothetical risks of lung cancer categorized by exposure to asbestos and smoking
(2 � 2 table). Risks and risk differences (RD) are expressed as cases per 100,000; relative risks
(RR) are ratios

Exposed to asbestos Not exposed to asbestos RRa RDa

Smoker 50 10 5 40

Non-smoker 5 1 5 4

RRb 10 10

RDb 45 9
aExposed to asbestos vs. unexposed to asbestos, stratified by smoking status
bSmokers vs. non-smokers, stratified by asbestos status
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both exposures to know the outcome. For example, for people of type 8, the outcome
occurs only if both exposures occur, i.e., A ¼ B ¼ 1. Epidemiologists call these
types interdependent. For non-interdependent types, the effect of exposure to one
compound does not depend on the other. For example, people of type 6 will have the
outcome if A ¼ 1, irrespective of the value of B. Risks associated with different
exposure scenarios can be written as rAB; e.g., r10 is the risk in the population
exposed to A but not to B. Writing down the risks associated with only the
non-interdependent types—types 1, 4, 6, 11, 13, and 16—(and assuming no
confounding or bias) yields the following equation:

r11 � r00ð Þ ¼ r10 � r00ð Þ þ r01 � r00ð Þ ð10:6Þ
where rij denotes the risk for each exposure patterns (e.g., r10 means the risk in a
population exposed to X1 and unexposed to X2). This equation means that the risk
difference between the jointly exposed (r11) and the jointly unexposed (r00) is equal
to the sum of the risk differences due to individual exposures, (r10�r00) and
(r01�r00). Since this equation includes only non-interdependent types, deviation
from this equation implies the presence of interdependent types. Thus risk difference
additivity is used by epidemiologists as the criteria for interaction/interdependence.
It is necessary but not sufficient, i.e., interaction may occur even if Eq. 10.6 holds,
e.g., if risks associated with interdependent types cancel out (dividing Eq. 10.6 by r00

Table 10.2 Counterfactual susceptibility type model for two exposures provides a basis for
thinking about interaction for epidemiologists. The outcome (binary) depends on the combination
of exposure (A, B)

Type
A ¼ 1
B ¼ 1

A ¼ 0
B ¼ 1

A ¼ 1
B ¼ 0

A ¼ 0
B ¼ 0 Description

1 1 1 1 1 Doomed (always develops outcome)

2a 1 1 1 0 A causal, B causal, A and B causal

3a 1 1 0 1

4 1 1 0 0 A ineffective, B causal

5a 1 0 1 1

6 1 0 1 0 A causal, B ineffective

7a 1 0 0 1 A preventative, B preventative, A and B antagonizes

8a 1 0 0 0 A and B causal

9a 0 1 1 1 A and B preventative

10a 0 1 1 0 A causal, B causal, A and B antagonizes

11 0 1 0 1 A preventative, B ineffective

12a 0 1 0 0

13 0 0 1 1 A ineffective, B preventative

14a 0 0 1 0

15a 0 0 0 1 A preventative, B preventative, A and B
preventative

16 0 0 0 0 Immune (never develops outcome)
aInterdependent types
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provides equivalent criteria in terms of relative risks). Applying this equation to
Table 10.1 shows that asbestos and smoking interact: indeed they have a greater than
additive effect on lung cancer. Setting r11 ¼ 50, r10 ¼ 10, r01 ¼ 5, r00 ¼ 1 yields

50� 1ð Þ > 10� 1ð Þ þ 5� 1ð Þ ð10:7Þ
For simplicity, the denominator of 100,000 was omitted for all of the numbers in

Eq. 10.7.
This all might seem very reasonable until one realizes the following fact: the

epidemiologic definition of biological interaction is consistent with effect summa-
tion, the definition rejected by many mixtures toxicologists! Equation 10.6 is a
special case of effect summation, Eq. 10.5, where outcomes and exposures are
binary (Howard and Webster 2013). To see this, recall that effect summation
examines the excess effect above controls. For two exposures, Eq. 10.5 is equivalent
to Eq. 10.6 with the background risk (r00) subtracted.

Similar ideas about interaction are sometimes applied to continuous outcomes in
epidemiology. For continuous outcomes Y (untransformed) and linear dose-response
curves (or binary exposures), regression models such as Eq. 10.1 can test for
statistical interaction (and control for confounding). The beta coefficients for main
effects are the differences in outcome per unit of exposure. Results consistent with
β12 meaningfully different from zero imply there is an interaction using the epide-
miologic definition. This conclusion depends on the use of an additive scale. The
presence of a non-zero interaction term in more general regression models does not
necessarily imply interaction from the epidemiologic point of view, i.e., statistical
interaction is not the same as epidemiologic interaction. For example, in a logistic
model, as is commonly used for binary outcomes, one cannot simply examine an
interaction term; there are, however, more complicated methods to assess epidemi-
ologic interaction in such cases (Andersson et al. 2005).

10.5 Contrasting Interaction in Toxicology
and Epidemiology

What would toxicologists and pharmacologists say about the data in Table 10.1? To
highlight differences between epidemiology and toxicology, consider replacing
asbestos and smoking by compounds A and B, about which little is known (the
epidemiologic conclusion would remain the same). The answer would depend on
whether one hypothesized that A and B worked by similar or different mechanisms.
If the toxicologist thought they acted by “different” mechanisms, they might use
independent action and conclude that it is greater than additive (since the risks are
small, independent action is approximately equal to effect summation). Suppose
they believed the chemicals acted by “similar” mechanisms? Unfortunately,
Table 10.1 does not contain enough information to determine if A and B
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(or smoking and asbestos) are dose additive. One would also need information or
assumptions about the dose-response curves for each compound alone.

The contrasting ideas about interaction and additivity between epidemiology and
toxicology are perhaps most stark when comparing effect summation with dose
addition for a mixture of compounds that follow toxic equivalence (a special case of
dose addition) and a dose-response curve that curves upward (e.g., Fig. 10.6a). The
mixture is nonadditive from the epidemiologic point of view where one first applies
the dose-response function to each compound separately and adds the results: the
sum of the effects is less than the effect of the mixture. But toxicologists would
define this mixture as additive (relative to dose addition). For toxic equivalence, one
first adds component doses scaled by relative potency factors and then applies the
dose-response function of the reference compound. The contrast derives from the
underlying logic of the epidemiologic definition. As illustrated in Fig. 10.6a, the
increase in the effect due to a dose of compound B depends on whether compound A
is also present in the mixture. Hence, nonlinear dose-response curves will lead to
interaction as defined by epidemiologists. The toxicologic and epidemiologic defi-
nitions coincide when the dose-response curve is linear (Fig. 10.6b).

Now suppose that A and B are merely different doses of the same substance, an
idea called sham substitution (Berenbaum 1989). Although the definition of dose
addition used here does not depend on this idea, it is sometimes used by toxicologists
as a rationale for thinking of dose addition as noninteractive. According to this line
of thought, a compound does not interact with itself. From the epidemiologic point
of view, sham substitution implies that different doses of the same compound do
interact when dose-response curves are nonlinear (Rothman 1974; Howard and
Webster 2013).

Toxicologists and epidemiologists thus use the same terminology—additive,
greater than additive, less than additive—but mean something quite different.
Understanding this difference is important for interpreting mixtures studies that
come out of the two fields. None of this discussion means that toxicology is correct
and epidemiology is wrong or vice versa. Definitions cannot be “wrong” (at least, if
used logically); the real test is whether they are useful. Research is needed compar-
ing mixtures studies in the two fields. Epidemiology has the possible advantage of
relying on one definition rather than two as in toxicology, where the choice depends
on sometimes fuzzy distinctions about similarity of mechanism (Howard and Web-
ster 2013). It is possible that the toxicologic definition sheds more light on biology,
whereas the epidemiologic definition (despite being called biologic by some epide-
miologists) might be more useful for thinking about intervention to protect public
health (e.g., Rothman et al. 1980). As an example of the latter, consider two
exposures that have a greater than additive effect from the epidemiologic point of
view; this implies that reduction of either exposure may lead to a dramatic reduction
of risk. Returning to our example of Table 10.1, preventing exposure to either
smoking or asbestos would have a large impact, greatly reducing the risk of lung
cancer in those who would otherwise have been exposed to both.
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10.6 Combining Ideas from Toxicology and Epidemiology

Progress on mixtures would benefit from greater communication and collaboration
between toxicologists, epidemiologists, statisticians, and exposure scientists. The
mixtures problem can be thought of as having two sub-questions:

1. What are the patterns of co-exposure in real populations?
2. What are the health effects of the mixtures to which populations are exposed?

As discussed above, exposure science has much to contribute to the first question.
The second can be investigated by the complementary approaches of toxicology and
epidemiology.

Epidemiologists have used some of the toxicological ideas discussed in this
chapter. Perhaps the best example is the use of TEFs when studying health effects
in people of exposure to dioxin-like compounds (e.g., Korrick et al. 2011). For
example, when exposure is measured using blood concentrations, one multiplies the
concentrations by the appropriate TEFs and sums. The result is then used as a
summary measure of exposure in a regression equation that gets around collinearity
problems. With sufficient toxicological information to construct RPFs, this strategy
could be applied to other classes of compounds. This approach could be a very
fruitful line of collaboration between toxicologists and epidemiologists.

Let’s now take a more general view of the mixtures problem for epidemiologists,
one called exposure space smoothing (Webster and Vieira 2015). Important limita-
tions of Eq. 10.1 include the assumption of linearity of dose-response functions and a
particular mathematical form of the interaction term. These restrictions can be
avoided by using a smoothing function f(.) of the exposures

g Y½ � ¼ f X1;X2½ � þ γ
0
Z þ ε ð10:8Þ

For simplicity, only two exposures (X1, X2) are shown, but higher dimensional
smooths are possible with sufficient data. Equation 10.8 also includes a link function
g[Y] of the outcome, allowing the use of continuous, binary, and other types of
outcome data. Equation 10.8 can be treated as a generalized additive model (gam)
(Hastie and Tibshirani, 1990). Gams can also adjust for confounders, important for
any epidemiologic analysis (Eq. 10.8 adjusts for a vector of confounders Z ). Rather
than impose a specific functional form (e.g., linearity), smoothing functions use the
data to inform the shape. There are a number of ways to do smoothing, but one
method estimates the value of the function at a particular point by using a weighted
average of the outcomes at points that are nearby in exposure space (for details on
how this works in two-dimensional geographic space, see Webster et al. 2006). The
results of a two-dimensional smooth can be displayed in a number of ways, e.g., as
color-coded maps or by using contours (e.g., Fig. 10.5b). For more dimensions,
slices can be displayed. Such results can also be used as exploratory data analysis to
inform additional modeling. The contours of the response surface, called isoboles,
have a toxicologic interpretation. As discussed above, isoboles that are
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approximately negatively sloped parallel straight lines suggest that a summary
measure can be constructed using RPFs. If the RFPs are not known from toxicologic
data, they might be estimated using other approaches, including methods such as
weighted quantile sum regression (Carrico et al. 2015). Isoboles which curve toward
the origin suggest a greater than dose-additive response; isoboles which curve away
from the origin suggest a less than dose-additive response.

Another interesting potential approach that combines aspects of exposure science,
toxicology, and epidemiology is EAMEDA: exposomic analysis of mixtures via
effect-directed analysis (Fig. 10.7). Effect-directed analysis (EDA) uses a high-
throughput response assay, e.g., reporter assays, to biologically compute the com-
bined effect of a mixture (e.g., serum or dust) on that biological endpoint. Working
backward, chemical fractionation and targeted and nontargeted analysis are used to
identify the components of the mixture responsible for the result (e.g., Simon et al.
2013; Fang et al. 2015, Chap. 3). For example, Fang et al. (2015) measured total
PPARγ activity of dust extracts using a reporter assay. The dust samples were then
chemically fractionated with normal phase high-performance liquid chromatogra-
phy. Each fraction was retested with the reporter assay. In fractions with significant
activity, compounds were identified using targeted and nontargeted analysis. Fatty
acids were determined to be a major contributor to the dust PPARγ activity. Simon
et al. (2013) used a transthyretin-binding assay to examine an aspect of thyroid
hormone disruption in polar bears. Nonylphenols and certain hydroxylated PCBs
contributed to this activity in plasma. The biologically based measure of activity can
be considered the central focus of the EAMEDA concept: (1) Investigators work
backward using EDA to determine which compounds contribute to the activity.
(2) They could also work forward, using the result of the assay—an integrated
measure of the activity of the mixture—as the measure of exposure in an epidemi-
ologic study. Clearly, the appropriateness of the assay and the samples would need to
be carefully considered.

I look forward to greater synergy—or at least additivity—between toxicologists,
epidemiologists, statisticians, and exposure scientists in investigations of the mix-
tures problem.

Biological 
assay

Work forward: use the 
assay as the exposure 

measure

Work backward: identify 
constituents responsible 

for activity

Fig. 10.7 Overview of EAMEDA: Exposomic Analysis of Mixtures via Effect Directed Analysis.
A biological assay (e.g., luciferase reporter assay) is used to measure the integrated activity of the
sample. The investigator uses these results as the exposure measure in an epidemiology study. One
also uses effect-directed analysis (or some related technique) to determine which compounds in the
sample account for the activity
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Chapter 11
Comparing Predicted Additivity Models
to Observed Mixture Data

Chris Gennings

Abstract Dose-response relationships are generally assumed to be nonlinear. Stan-
dard multiple regression models may approximate the relationship in a narrow dose
range but may not adequately approximate the relationship over a wider dose range –
which may have a sigmoidal shape. Further, when the number of components in a
mixture is large, the required experimental design to test for interactions becomes
infeasible using factorial designs. In contrast, tests for departure from additivity may
be based on comparing additivity-predicted models to those of mixtures data along
fixed-ratio rays of the components. As such, tests for departure from additivity in
mixtures should accommodate both nonlinear relationships and efficient experimen-
tal designs. In this chapter, we illustrate the strategy using three different basic
assumptions about the underlying response surface from single chemical data.

Keywords Dose addition · Nonlinear models · Additivity · Hypothesis testing

11.1 Introduction

Previous chapters describe different types of additivity models (e.g., dose additivity,
independent action) and examples of their application in toxicology (Chap. 9) and
epidemiology (Chap. 10), while a later chapter deals with modeling additivity in risk
assessment (Chap. 14). This chapter focuses on statistical considerations in applying
concepts of dose additivity. The framework for testing hypotheses of additivity for
chemical mixtures has transitioned beyond traditional multiple regression models
with cross-product terms for interaction. Instead, mixture data are compared to an
additivity model with statistically rigorous hypothesis tests. The motivating feature
is that additivity models can be estimated with design support from only single
chemical dose-response data instead of the impractical design required for estimation
of a full response surface. For example, the design required to build an additivity
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model for a mixture of J components is J dose-response curves. Assuming a control
group and 4 dose groups per chemical to allow for nonlinearity, the design would
include 5 J design points. With 10 components, there would be 50 design points. In
contrast, consider a factorial design to support a response surface with only two
levels for each component (assuming linear relationships which cannot be tested
with such a design); the full factorial design includes 2J design points. With
10 components, this would require an impractical 1024 design points. Fractional
factorial designs reduce the number of design points but at the cost of assumptions
about interactions that cannot be tested. As the number of components increases, the
strategy of building additivity models that accommodate nonlinear dose-response
shapes is appealing. Tests for interaction are based on comparing experimental
mixture data or models of experimental mixture data to predictions constructed
from single chemical data under an assumption of additivity.

This chapter illuminates this strategy using three different basic assumptions
about the underlying response surface from single chemical data. When the dose-
response curves for J components in a mixture of interest have a common maximum
effect, the additivity model may be readily parameterized assuming the same
parametric form for each component (e.g., Casey et al. 2004). In contrast, Rajapakse
et al. (2004) consider parametric models from a set of possible models and select the
“best model fit” for each component separately. The additivity surface is defined
based on the dose addition definition using the selected models. This approach
allows for different maximum effects per chemical. The limitation is that the
prediction under additivity is constrained to be no greater than the maximum effect
of the component with the lowest maximum. Finally, this limitation is not relevant
when the dose-response curves are adequately represented by Hill functions with
Hill parameter (slope factor) of 1 (e.g., Howard et al. 2010). Details of these
strategies are described in the next section. The approaches are illustrated with
mixture and corresponding single chemical data for six chemicals in an estrogen
receptor-alpha reporter gene assay.

11.2 Definition of Additivity

Dose addition (used herein synonymously with concentration addition) is a widely
used concept that assumes the expected combination effect of a mixture of chemicals
is such that the components exert their effect without influencing each other’s action
(Berenbaum 1985; Casey et al. 2004; Gennings et al. 2004; Scholze et al. 2014; U.S
EPA 2000). Therefore, the expected combination effect may be predicted from
single chemical dose-response data. In particular, consider a mixture of
J chemicals where single chemical dose-response data are available on each. Dose
addition satisfies the assumption of planar contours of constant response: i.e.,
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XJ
j¼1

dj
EDj,y

¼ 1 ð11:1Þ

where dj is the dose of the j
th component in the mixture and EDj, y is the dose of the j

th

component alone that produces the same response level ( y) as the mixture. Eq. 11.1
refers to a J-dimensional plane – i.e., planar contours of constant response. A
schematic of a three-dimensional planar contour is given in Fig. 11.1 for chemicals
X1, X2, and X3. An important consideration is the metameter (magnitude of the
observed phenomenon) of the definition. Typically, the assumption is that additivity
applies on the dose scale and not on the log-dose scale; or said another way, if the
assumption holds on the dose scale, it generally will not be true on another scale
(e.g., log-dose scale). Another definition of additivity is independent action which is
based on statistical definitions of independence (e.g., Bliss 1939; Greco et al. 1992)
but is not considered herein (see Chap. 9 for a discussion of independent action).

11.3 Building Additivity Models

Several strategies have been used to build additivity models using single chemical
data (see a conceptual discussion of additivity in Chap. 9). The most general is to use
a “best fit” model to dose-response data from each chemical (Scholze et al. 2001).
Various nonlinear regression models (e.g., logistic function, Hill function,
Gompertz, exponential models; parameterizations of some are provided in Sect.
11.6) for monotonic sigmoidal (or partial sigmoidal) relationships are fit indepen-
dently to the same data set, and the best fitting model is selected on the basis of a
statistical goodness-of-fit test. The corresponding dose additivity model given by
Eq. 11.1 is estimated for specified mixtures by defining the inverse functions for
each dose-response curve (i.e., the ED values in Eq. 11.1). A limitation of this
flexible approach is that the dose addition concept cannot be applied to effect levels

X1

X2

X3

Fig. 11.1 Schematic of a
planar contour of constant
response on an additivity
surface
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that exceed the maximal effect of the least efficacious compound present in the
mixture (Scholze et al. 2014). Scholze et al. (2014) extend the approach by using a
novel toxic unit extrapolation method, which does not have this limitation.

Less generally, the same nonlinear dose-response function (e.g., Hill function
with Hill parameter equal to 1; Howard et al. 2010) is assumed for each single
chemical while allowing for different maximal effects for each chemical. Under the
simplifying assumption of a common slope estimate, the combined effect of any
combination of full and partial agonists can be calculated using the definition of
additivity in Eq. 11.1. When the assumptions of a common background effect and
maximum effect for all active chemicals are appropriate, simplifying forms of
predicting under additivity are available (Casey et al. 2004).

To illustrate, without loss of generality, consider the combination of two
chemicals A and B. Under the best fit model strategy, assume the dose-response
relationship for chemical A is best fit with a four parameter nonlinear logistic model:

μ0 ¼ αA þ γA�αAð Þ

1þ dA
CA

� �βA
with inverse function EDA ¼ exp

log
γA�μ0
μ0�αA

n o
þβAlogCA

βA

2
4

3
5, where

C is the inflection point (i.e., the ED50) and β is the Hill slope at C. Assume the dose-
response curve for chemical B is best fit with a four parameter Gompertz model:
μ0 ¼ αB + (γB � αB) exp [exp � (β0,B + β1,BdB)] with inverse function

EDB ¼
�log log

μ0�αB
γB�αB

n oh i
�β0,B

β1,B
. Under the assumption of dose addition, the combina-

tion [dA, dB] associated with response μ0 (i.e., the isobole) satisfies the equation
dA
EDA

þ dB
EDB

¼ 1, which is the equation of a line with intercept EDA and slope �EDA
EDB

.

Scholze et al. (2001) estimate the combination dose with the confidence interval
constructed by bootstrap sampling of the original data and re-estimation of the
combination dose associated with the mean of observed dose groups. This general
strategy is readily generalized to J chemicals in combination.

In comparison, Howard et al. (2010) assumed all concentration-response curves
were Hill functions with Hill parameter equal to 1, i.e.,μj ¼ αjdj

κjþdj
, j¼ A,B, where κj is

the macroscopic dissociation equilibrium constant (i.e., equivalent to the effective
concentration causing 50% of maximal response) and αj is the maximal effect level
of the jth ligand in the tissue or system under study. In this case, substituting the Hill
function into Eq. 11.1, under dose addition, the combination of [dA, dB] associated
with response μ0 is given by μ0 ¼ αAdA=κAþαBdB=κB

1þdA=κAþdB=κB
. Howard et al. (2010) used a

nonparametric Mann-Whitney test to assess the fit of the modeled response surface
to experimental mixtures data. This general strategy is readily generalized to
J chemicals in combination.

Finally, following the approach of Casey et al. (2004), without loss of generality
that other nonlinear functions may be used, assume the dose-response curves for
both chemicals are adequately represented by the nonlinear Gompertz function
with common maximum effect parameter and intercept, i.e.,
μA,B ¼ α + (γ � α) exp [exp � (β0 + βAdA + βBdB)]. This function is algebraically
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manipulated into the form of Eq. 11.1 for contour specified by μ0 : i.e.,
dA
EDA

þ dB
EDB

¼ 1, where EDj ¼ �log log
μ0�α
γ�αf gð Þ�β0

βj
and j ¼ A,B. Thus, the additivity

model has linear contours of constant response (i.e., isoboles). Goodness-of-fit of the
additivity model to the single chemical data may be assessed graphically by over-
laying observed and additivity model predicted dose-response estimates on the same
graph. Again, this general strategy is readily generalized to J chemicals in
combination.

11.4 Hypothesis Tests Comparing Mixture Data
to Predicted Model Under Additivity

Goodness-of-fit tests are used by Howard et al. (2010) to assess the fit of the modeled
additivity response surface to the experimental data. For example, the Mann-
Whitney test (i.e., Wilcoxon rank sum test) tests the hypothesis that the experimental
data and modeled data come from the same distribution. A significant p value (e.g.,
p < 0.05) indicates that the distributions differ.

In contrast, the strategy described by Scholze et al. (2014) for predicting addi-
tivity for a mixture with fixed mixing proportions by inverting Eq. 11.1 includes
statistical uncertainty by applying bootstrap samples with repeated estimation of
additivity – and the total dose associated with a fixed mean response. Differences
between predicted and observed effect doses are considered statistically significant
when the 95% confidence belt of the prediction (from the bootstrap sampling of
single chemical data) does not overlap with those of the experimentally observed
mixture effects.

The assumptions of the additivity model made by Casey et al. (2004) permit a
statistical test of the hypothesis of additivity, which may be a Wald-type test,
likelihood ratio test, or a score test. Specifically, mixture data are assumed to be
available on one or more fixed-ratio ray(s). To set notation, the mixing proportion of

the jth chemical in a mixture of J chemicals is aj and
XJ
j¼1

aj ¼ 1. Thus, the dose of the

jth chemical at total dose T is dj ¼ ajT. From the additivity model, using a Gompertz
nonlinear model for two chemicals, the predicted dose-response curve for the
mixture is given by

μA,B ¼ αþ γ � αð Þexp exp� β0 þ βAdA þ βBdBð Þ½ �
¼ αþ γ � αð Þexp exp� β0 þ βAaAT þ βBaBTð Þ½ �
¼ αþ γ � αð Þexp exp� β0 þ βAaA þ βBaBð ÞTð Þ½ �
¼ αþ γ � αð Þexp exp� β0 þ θaddTð Þ½ �

Following the approach of Casey et al. (2004), the mixture data with fixed mixing
proportions are fit to a similarly parameterized model: e.g.,
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μmix ¼ αmix + (γmix � αmix) exp [exp � (β0, mix + θmixT )]. Then the test of additivity
for the specified mixture is a test of coincidence with null and alternative hypotheses:

H0 : α ¼ αmix and γ ¼ γmixand β0 ¼ β0,mix and θadd ¼ θmix

vs
H1 : any inequality

An F test with 4 n–p degrees of freedom based on a Wald-type statistic can be used
to test this hypothesis.

11.5 Sample Size and Power Considerations

Testing hypotheses of additivity which reject with evidence of departure from
additivity should be based on study designs with adequate sample size to provide
high power for detecting interaction (see Chap. 12 for further discussion of sample
size and power considerations in experimental design of mixtures experiments). That
is, not detecting interaction may not indicate additivity when the study design is poor
(e.g., with small sample size). The location of dose/concentration groups in a study
design and sample size at each group both impact the variance of slope parameters in
a regression model and thereby the power for rejecting the null hypothesis of
additivity. Strategies for addressing sample size and power have been described
for comparison of mixture points to an additivity model (Meadows-Shropshire et al.
2005) and when comparing a model for a mixture with fixed mixing proportions
compared under additivity (Casey et al. 2006).

11.6 Illustration

Data were extracted from graphs in Fig. 3 from Gennings et al. (2004) to provide an
illustration of the methods described in this chapter and are provided in the appendix.
The SAS code for the analysis presented herein is also in the appendix.

In short, six chemicals were selected for study by Gennings et al. (2004),
including methoxychlor (MXC), o,p-DDT, beta-hexachlorocyclohexane (b-HCH),
bisphenol A (BPA), octylphenol (OCT), and 2,3-bis(4-hydroxyphenyl)-propionitrile
(DPN). An estrogen receptor-alpha (ER-α) gene transcription assay with MCF-7
human breast cancer cells was used to evaluate estrogenic activity. The data were
assessed as units of luciferase activity normalized to the β-gal activity from individ-
ual wells. Experiments were evaluated with fold induction as the primary endpoint.
A mixture was constituted with mixing proportions based on the no-observable-
effect concentrations (NOECs) from preliminary concentration range-finding studies
(data not shown). The resulting proportions were as follows: MXC ¼ 0.4715;
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DPN ¼ 0.0047; DDT ¼ 0.4715; b-HCH ¼ 0.0471; OCT ¼ 0.0047; and
BPA ¼ 0.0005. Details are provided in Gennings et al. (2004).

Three models were considered for illustration of the methods and parameterized
as follows:

• Hill function with slope parameter 1 with background response of 1 for 100% fold
induction: μ ¼ 1þ γx

ED50þd.

• Four-parameter logistic model: μ ¼ αþ γ�αð Þ
1þ d

Cð Þβ
where α is the minimum asymp-

tote, γ is the maximum asymptote, C is the inflection point (i.e., the ED50), and β
is the Hill slope at C. This model assumes symmetry around the inflection point.

• Four-parameter Gompertz model: μ¼ α + (γ � α) exp [exp� (β0 + βd)], where α
and γ are as above, β0 is a parameter associated with the lower plateau, and β is
the slope parameter.

The single chemical data with model predicted curves from the Hill function,
nonlinear Gompertz, and nonlinear logistic models are presented in Fig. 11.2. There
is clear evidence of varying maximum effect levels across the single chemicals. Thus
the strategy of Casey et al. (2004), which assumes a common maximum effect, is not
justified.

Following Howard et al. (2010), the Hill function with slope 1 was fit to each
single chemical with the correction that the background response was set to 1 (i.e.,
the mean fold induction is 1 in the control groups): i.e.,μj ¼ 1þ αjdj

κjþdj
and j¼ 1,. . .,6.

Under dose addition, the combination of [d1, d2, d3, d4, d5, d6] associated with

response μ0 is given by μ0 ¼ 1þ

P6
j¼1

αjdj=κj

1þP6
j¼1

dj=κj

. A sign rank test was used to test

the fit of the modeled additivity response surface to experimental mixture data with
significant evidence of lack of fit ( p < 0.001). The mixture data, predicted model,
and additivity-predicted model are presented in Fig. 11.3. There is evidence that the
mixture response is less than expected under additivity.

Following Scholze et al. (2001), the best fit models were used to estimate the
additivity model for the mixture with fixed mixing proportions (Fig. 11.4) using
minimum sum of squares error (SSE) as the model selection criterion. The selected
models were the nonlinear Gompertz for β-HCH and OCT; the nonlinear logistic for
MXC, DPN, BPA, and the mixture; and the Hill function with Hill slope and
background parameters of 1 for DDT. The predicted curve under additivity for the
specified mixture is restricted to the response region of the chemical component with
the smallest maximum effect; here, β-HCH has maximum effect at 3.3 (Fig. 11.2);

i.e., tadd ¼
X6
j¼1

aj
ED μ0ð Þj

 !�1

which is defined for μ0 between 1.0 and 3.3. Scholze

et al. (2014) have developed a “toxic unit extrapolation approach” to address this
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Fig. 11.2 Comparison of predicted models for single chemical data: Hill function with Hill
parameter 1 (blue); nonlinear Gompertz (green); nonlinear logistic (red)

298 C. Gennings



limitation of dose addition with combinations of chemicals with differing saturating
effects; however, it is beyond the scope of this chapter.

For these data, prediction of additivity was not possible for 4 of the mixture dose
groups. In contrast to using a comparison of confidence bands from bootstrap
samples suggested by Scholze et al. (2001), a likelihood ratio test can be conducted
to test the hypothesis of additivity. The unrestricted (or full) model, based on the best
fit model selection, is parameterized with each single chemical and mixture ray fit
separately. Since the control group response of fold induction was set to a mean of
1.0, themodels were parameterized as follows: μ¼ 1 + (γj� 1) exp [exp� (β0j + βjd )]

for β-HCH ( j ¼ 1) and OCT ( j ¼ 2); μ ¼ 1þ γj�1ð Þ
1þexp � β0jþβ1jdð Þð Þ for MXC ( j ¼ 3),

DPN ( j ¼ 4), BPA ( j ¼ 5), and the mixture ( j ¼ 6); and μj ¼ 1þ αjdj
κjþdj

for DDT

( j ¼ 7).
Without clear evidence of a plateau, the maximum effect parameters for MXC,

DPN, and BPA were set to 10, a value somewhat beyond the observed data. Thus,

Fig. 11.3 Observed and
model predicted (blue solid)
mixture data (with mixing
proportion as specified in
the text) using a Hill
function assuming a slope of
1. The additivity model
(green dashed) as predicted
from single chemical data is
also included, based on the
Howard et al. (2010)
strategy

Fig. 11.4 Observed and
model predicted (blue solid)
mixture data (with mixing
proportion as specified in
the text) using best fit model
(here, four parameter
logistic model). The
additivity model (green
dashed) as predicted from
single chemical data with
best fit models is also
included
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the total number of parameters estimated in the full model was 18, including an
estimate for σ2, with SSE(full) ¼ 210.3 with N ¼ 152. In comparison, the restricted
model (under additivity) included only 15 parameters – those associated with the
single chemical models omitting the mixture model. The prediction for the mixture is
based on the dose addition model where the estimation of the restricted model is
conducted with the full data set not just the single chemical data. The SSE
(restricted) ¼ 372.07. A likelihood ratio statistic is constructed as follows:

F∗ ¼ SSE restð Þ � SSE fullð Þð Þ=Δdf
SSE fullð Þ= N � df fullð Þð Þ

¼ 372:07� 210:31ð Þ=3
210:31= 152� 18ð Þ

¼ 34:4

Compared to an F distribution with (3, 134) degrees of freedom, p < 0.001, the
hypothesis of additivity is rejected. Thus, there is evidence of departure from
additivity, and the observed data are less than that predicted from additivity.

11.7 Summary

Generally, additivity models, supported from single chemical dose-response data,
are statistically compared to mixture dose-response data (or models) to test the
hypothesis of additivity. That is, single chemical dose-response data are used to
estimate an additivity response surface (that satisfies the definition of additivity in
Eq. 11.1) for any mixture of the components used in the estimation – assuming the
same experimental conditions. Testing for evidence of departure from additivity
using mixture dose-response data (i.e., a test of the goodness-of-fit of the additivity
model) may follow standard statistical testing methods including Wald-type tests,
likelihood ratio tests, and score tests. Wald-type tests may be based on comparison of
model-based parameters (e.g., Casey et al. 2004) or predictions with bootstrap
confidence bands (e.g., Scholze et al. 2014). In essence these tests are based on
comparisons of prediction of mean responses for experimentally observed mixture
data to that predicted from an additivity model. In contrast, likelihood ratio tests
compare full and restricted likelihoods. Likelihood functions are joint probability
distributions, which are evaluated at all data points (single chemical and mixture
data) under the null hypothesis of additivity using only the parameters from the
single chemical data. This restricted likelihood is compared to full likelihood using
additional parameters to estimate the mixture mean response(s) (e.g., Gennings et al.
2004). The implementation of the likelihood ratio test simply requires the estimation
of the full model (models for single chemical and mixture data) and the restricted
model (including estimation of the model for the mixture data under additivity) with
the likelihood calculated in each case and compared: i.e.,�2(restricted loglikelihood
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– full loglikelihood). Finally, score tests – not illustrated herein – have the advantage
of being estimated only under the null hypothesis (here, of additivity) but are not
generally available in many software packages.

Appendix

Extracted data from Fig. 3 in Gennings et al. (2004)

Chemical CONC FoldIND Chemical CONC FoldIND Chemical CONC FoldIND

MXC 0 0.9 b-HCH 0 0.6 BPA 0 0.6

MXC 0 1 b-HCH 0 1.1 BPA 0 1

MXC 0 1.2 b-HCH 0 1.4 BPA 0 1.4

MXC 1 0.8 b-HCH 1 0.8 BPA 0.008 1.4

MXC 1 1 b-HCH 1 0.9 BPA 0.008 1

MXC 2 0.9 b-HCH 1 1 BPA 0.008 0.08

MXC 2 1.6 b-HCH 2 1 BPA 0.01 3.2

MXC 2 1.6 b-HCH 2 1.3 BPA 0.01 2.4

MXC 4 2 b-HCH 2 2.3 BPA 0.01 2.2

MXC 4 3 b-HCH 4 1.8 BPA 0.02 3

MXC 4 4.2 b-HCH 4 3 BPA 0.02 1.4

MXC 8 3 b-HCH 4 4.2 BPA 0.02 1.4

MXC 8 3.2 b-HCH 8 2.4 BPA 0.04 1.8

MXC 8 3.5 b-HCH 8 3.4 BPA 0.04 1.2

MXC 10 3.8 b-HCH 8 4.2 BPA 0.04 1

MXC 10 6.6 b-HCH 10 2.4 BPA 0.08 1.1

MXC 10 6.8 b-HCH 10 3 BPA 0.08 1.1

DPN 0 0.6 b-HCH 10 4.3 BPA 0.08 1

DPN 0 1 OCT 0 0.6 BPA 0.1 2.5

DPN 0 1.4 OCT 0 1 BPA 0.1 1.5

DPN 0.01 0.6 OCT 0 1.4 BPA 0.1 1.5

DPN 0.01 1 OCT 0.01 0.8 BPA 0.5 2

DPN 0.01 1 OCT 0.01 0.9 BPA 0.5 2.1

DPN 0.02 1 OCT 0.01 1.2 BPA 0.5 3.2

DPN 0.02 1.4 OCT 0.02 1 BPA 1 4.4

DPN 0.02 1.4 OCT 0.02 1.2 BPA 1 8

DPN 0.04 2.6 OCT 0.02 1.8 BPA 1 10

DPN 0.04 4 OCT 0.04 0.9 MIX 0 0.06

DPN 0.04 4.4 OCT 0.04 1 MIX 0 0.09

DPN 0.08 4 OCT 0.04 3.6 MIX 0 0.09

DPN 0.08 4.4 OCT 0.08 1 MIX 0 1

DPN 0.08 4.4 OCT 0.08 1.2 MIX 0 1.1

DPN 0.1 5.5 OCT 0.08 1.2 MIX 0 1.4

DPN 0.1 6 OCT 0.1 1.6 MIX 0.2 0.8

DPN 0.1 11.5 OCT 0.1 2.4 MIX 0.2 0.8

DDT 0 0.8 OCT 0.1 2.8 MIX 0.2 1

(continued)
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Chemical CONC FoldIND Chemical CONC FoldIND Chemical CONC FoldIND

DDT 0 1 OCT 0.2 3.4 MIX 1 1

DDT 0 1.2 OCT 0.2 3.4 MIX 1 1.1

DDT 1 5 OCT 0.2 4.8 MIX 1 1.5

DDT 1 6.8 OCT 0.4 4 MIX 2 1

DDT 1 9 OCT 0.4 4.2 MIX 2 1.4

DDT 2 4.8 OCT 0.4 6.8 MIX 2 1.8

DDT 2 7 OCT 0.8 3.8 MIX 3 2

DDT 2 7 OCT 0.8 6 MIX 3 2.4

DDT 4 4.5 OCT 0.8 6.2 MIX 3 2.8

DDT 4 6.5 OCT 1 5.5 MIX 4 3.2

DDT 4 6.9 OCT 1 6 MIX 4 4.8

DDT 8 11 OCT 1 7 MIX 4 6

DDT 8 11.2 MIX 8 5.8

DDT 8 11.2 MIX 8 6.2

DDT 10 8.2 MIX 8 9.5

DDT 10 9

DDT 10 15.5
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SAS Code for Example Data

*****************************;
*** Gompertz function;
proc nlin data=two;
parms g=4 b0=-.6 b1=.2;  ** for bhch, OCT, DDT, MIX;

*    parms b0=-.6  b1=.2;* g=10; ** for DPN, BPA, MXC;
a=1;  
mu = a + (g-a)*exp(-exp(-(b0+b1*conc )));
model foldind=mu;
output out=predgomp p=predg;
title 'Gompertz';
run;

symbol1 v=star i=none;
symbol2 v=none i=join c=blue;
proc sort; by conc;
proc gplot data=predgomp;

plot (foldind predg)*conc/overlay;
run; quit;

*****************************;
*** logistic function;
proc nlin data=two;
parms g=4 b0=-.6 b1=.2; a=1;  ** for bhch, OCT, DDT, MIX;

*    parms g=6 b0=-.6  b1=.2;
*    parms  b0=1 b1=.2;* g=10; ** for DPN, BPA, MXC;

a=1; * g=15;* a=-10;
*  b0 = -log((g-1)/(1-a));
mu = a + 2*(g-a)/(1+exp(-(b0+b1*conc )));
model foldind=mu;
output out=predlogistic p=predL;
title 'logistic';
run;

title;
symbol1 v=star i=none;
symbol2 v=none i=join c=blue;
proc sort; by conc;
proc gplot data=predlogistic;

plot (foldind predL)*conc/overlay;
run; quit;

***************************************************;
**** analysis of the mixture and tests of additivity;
***************************************************;
**** Howard model;
** chemicals: 'bHCH', 'OCT', 'MXC', 'DPN', 'BPA','DDT';
****************************************************;
proc nlmixed data=twob;

parms a1=4.8 k1=9.5 a2=7 k2=.4 k3=17 k4=.11 k5=1.1
a6=11 k6=1.8 km=9;

a3=10; a4=10; a5=10; am=10;
mu = 1+ (chemical='bHCH')*a1*conc/(k1+conc) + 

(chemical='OCT' )*a2*conc/(k2+conc) +
(chemical='MXC' )*a3*conc/(k3+conc) +
(chemical='DPN' )*a4*conc/(k4+conc) +
(chemical='BPA' )*a5*conc/(k5+conc) +
(chemical='DDT' )*a6*conc/(k6+conc) +
(chemical='MIX' )*am*conc/(km+conc) 

;

11 Comparing Predicted Additivity Models to Observed Mixture Data 303



num = conc*(chemical='MIX')*
(a1*mix_bhch/k1 + a2*mix_oct/k2 + a3*mix_mxc/k3 + 

a4*mix_dpn/k4  + a5*mix_bpa/k5 + a6*mix_ddt/k6);
den= 1+ conc*(chemical='MIX')*

(mix_bhch/k1 + mix_oct/k2 + mix_mxc/k3 + 
mix_dpn/k4  + mix_bpa/k5 + mix_ddt/k6);

muadd = 1+  num/den;
if chemical ne 'MIX' then muadd=.;
id muadd;
model foldind~normal(mu,sigsq);
predict mu out=pred ;

run;

**********************************************************;
**** FSCR model Gennings and best fit model;
** chemicals: 'bHCH', 'OCT', 'MXC', 'DPN', 'BPA','DDT';
**********************************************************;

*** unrestricted;
proc nlmixed data=twob ;

parms g1=3.3 b01=-3 b1=1 g2=5 b02=-.6 b2=.1
b03=-2 b3=.1
b04=-2 b4=.2 b05=-2 b5=.2 a6=10 k6=3

gm=10 b0m=-.6 bm=1;
g4=10; g5=10; g3=10;
a=1;
mu = (chemical='bHCH')*(a+(g1-a)*exp(-exp(-(b01+b1*conc)))) + 

(chemical='OCT' )*(a+(g2-a)*exp(-exp(-(b02+b2*conc)))) +
(chemical='MXC' )*(a+(g4-a)/(1+exp(-(b03+b3*conc ))))+
(chemical='DPN' )*(a+(g4-a)/(1+exp(-(b04+b4*conc ))))+
(chemical='BPA' )*(a+(g5-a)/(1+exp(-(b05+b5*conc ))))+
(chemical='DDT' )*(1+a6*conc/(k6+conc)) +

(chemical='MIX' )*(a+(gm-a)/(1+exp(-(b0m+bm*conc ))));
;
model foldind~normal(mu,sigsq);
predict mu out=pred ;

ED1=.; ed2=.; ed3=.; ed4=.; ed5=.; ed6=.;
if mu>1 and chemical='MIX' and mu<g1 then do;
ED1= (-log(-log((mu-a)/(g1-a)))-b01)/b1; end;

if mu>1 and chemical='MIX' and mu<g2 then do;
ED2= (-log(-log((mu-a)/(g2-a)))-b02)/b2;   end;

if mu>1 and chemical='MIX' then do;
if mu<g3 then ED3= (-log(-log((mu-a)/(g3-a)))-b03)/b3;
if mu<g4 then ED4= (log((mu-a)/(g4-mu))-b04)/b4;
if mu<g5 then ED5= (log((mu-a)/(g5-mu))-b05)/b5;
if mu<a6 then ED6= k6*(mu-1)/(a6-mu+1);
end;
tadd = 1/(mix_bhch/ed1 + mix_oct/ed2 + mix_mxc/ed3 + 

mix_dpn/ed4 + mix_bpa/ed5 + mix_ddt/ed6);
id ed1 ed2 ed3 ed4 ed5 ed6 tadd mu;

run;

** restricted under additivity - no mixture parameters;
proc nlmixed data=twob ;
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*   where foldind ne .;
parms g1=3.3 b01=-3 b1=1.2 g2=6 b02=-1 b2=9 b03=-4 b3=.3

b04=-4 b4=34 b05=-4 b5=3.3 a6=11 k6=1.8;
g5=10; g4=10; g3=10;
a=1;
muadd = (chemical='bHCH')*(a+(g1-a)*exp(-exp(-(b01+b1*conc)))) + 

(chemical='OCT' )*(a+(g2-a)*exp(-exp(-(b02+b2*conc)))) +
(chemical='MXC' )*(a+(g3-a)/(1+exp(-(b03+b3*conc ))))+
(chemical='DPN' )*(a+(g4-a)/(1+exp(-(b04+b4*conc ))))+
(chemical='BPA' )*(a+(g5-a)/(1+exp(-(b05+b5*conc ))))+
(chemical='DDT' )*(1+a6*conc/(k6+conc)) 

;

do mu0 = 0 to 8 by .1;
if mu0>1 and chemical='MIX' and mu0<g1 then do;
ED1= (-log(-log((mu0-a)/(g1-a)))-b01)/b1; end;
if mu0>1 and chemical='MIX' and mu0<g2 then do;
ED2= (-log(-log((mu0-a)/(g2-a)))-b02)/b2;   end;

if mu0>1 and chemical='MIX' then do;
ED3= (-log(-log((mu0-a)/(g3-a)))-b03)/b3;
ED4= (log((mu0-a)/(g4-mu0))-b04)/b4;
ED5= (log((mu0-a)/(g5-mu0))-b05)/b5;
ED6= k6*(mu0-1)/(a6-mu0+1);
end;
tadd_ = 1/(mix_bhch/ed1 + mix_oct/ed2 + mix_mxc/ed3 + 

mix_dpn/ed4 + mix_bpa/ed5 + mix_ddt/ed6);
if chemical='MIX' then do;

if (tadd_-conc)**2<0.01 then do;  
muadd=mu0;

tadd=tadd_;
end;

end; end;
if chemical='MIX' and (tadd-conc)**2>0.01 then muadd=.;

model foldind~normal(muadd,sigsq);
predict muadd out=predadd ;
id ed1 ed2 ed3 ed4 ed5 ed6 tadd muadd;

run;
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Chapter 12
Physiologically Based Pharmacokinetic
Modeling of Chemical Mixtures

Sami Haddad

Abstract Physiologically based pharmacokinetic (PBPK) modeling is a tool that is
increasingly being used for xenobiotics exposure assessment and target tissue
dosimetry simulations in risk assessment and in pharmaceutical sciences. Because
this tool can use chemical and physiological information/data from different sources
(i.e., in vitro, in vivo, in silico), it is also being increasingly used for mixture
exposures, especially for mixtures containing chemicals that toxicokinetically inter-
act, at the physiological, physicochemical, and biochemical level. The aim of this
chapter is to give an overview of what PBPK modeling is and how it can be used in
the context of mixture toxicology. Known mechanisms of toxicokinetic interactions
between xenobiotics are described, and mathematical representations are given when
available. Existing modeling approaches that are available in the literature are
presented for mixtures of various complexities. Current methods and their limita-
tions are reported, and future directions are put forward.

Keywords Pharmacokinetics · Toxicokinetics · Interactions · Mixtures
· Metabolism

12.1 Introduction: What Is PBPK Modeling?

Physiologically based pharmacokinetic (PBPK) models (note: toxicokinetics and
pharmacokinetics are synonymous in the context of this chapter) are mathematical
descriptions of pharmacokinetic processes (absorption, distribution, metabolism,
and excretion) of xenobiotics that rely on appropriate physiological, biological,
biochemical, anatomical, and physicochemical information. They allow for predic-
tion or simulation of tissue dosimetry as a function of time and exposure scenario
(dose and timing) (Krishnan and Andersen 2007). The level of detail of these models
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can vary extensively depending on desired dosimetry (e.g., target tissue or blood
AUC, target tissue or blood Cmax, total amount metabolized, Cmax of metabolite in
target tissue, etc.) and available information. Because of their mechanistic basis,
these models are increasingly being used in toxicological risk assessment of
chemicals. This is principally due to the fact that PBPK models have the advantage
of allowing different types of extrapolations (e.g., animal to human, high to low
dose, scenario to scenario, route to route, etc.) with much more confidence than other
previously used models (e.g., non-compartmental or compartmental pharmacoki-
netic models) allow (Krishnan and Andersen 2007; Thompson et al. 2008; Espie
et al. 2009).

PBPK models are basically composed of a series of mass-balance differential
equations describing the flux of the chemical of interest in the organism (Fig. 12.1).

dAl/dt = [Ql (Ca-Cvl] - [Vmax*Cvl/(Km+Cvl)]
Al = dAl/dt*t
Cl = Al/Vl
Cvl = Cl/Pl 

dAf/dt = Qf (Ca-Cvf)
Al = dAf/dt*t
Cf = Af/Vf
Cvf = Cf/Pf 

dAr/dt = Qr (Ca-Cvr)
Ar = dAr/dt*t
Cr = Ar/Vr
Cvr = Cr/Pr 

dAs/dt = Qs (Ca-Cvs)
As = dAs/dt*t
Cs = As/Vs
Cvs = Cs/Ps 

Lungs
(Gas exchange)

Slowly perfused
tissues

Fat

Liver

Richly perfused
tissues

Cinh Cexp

A
rt

er
ia

lb
lo

od
C

a 
= 
[(

Q
c*

C
v)

 +
(Q

p*
C

in
h)
]/
[Q

c+
(Q

p/
Pb

)]
Venous

blood
C

v = ( Q
l*C

vl+Q
f*C

vf+Q
r* C

vr+Q
s* C

vs)/Q
c

Ql
Ca

Qf
Ca

Qs
Ca

Qr
Ca

Ql
Cvl

Qf
Cvf

Qs
Cvs

Qr
Cvr

Qc
Ca

Qc
Cv

Qp Qp

Fig. 12.1 PBPK model conceptual representation. The term d/dt refers to the derivative of the
variable over time. Capital letters A, C, Q, P, and V refer to amount of chemical, chemical
concentration, blood flow, partition coefficient, and volume. Lower case letters a, b, c, f, l, p, r, s,
t, v, vf, vl, vr, and vs refer to arterial blood, blood/air, cardiac, fat, liver, pulmonary, richly perfused
tissues, slowly perfused tissues, time, venous blood, venous blood leaving fat, venous blood leaving
liver, venous blood leaving richly perfused tissues, and venous blood leaving slowly perfused
tissues, respectively. Subscript inh and exp refer to inhaled and exhaled air. Vmax and Km refer to the
maximal rate of metabolism and the Michaelis-Menten affinity constant, respectively
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When in contact with the skin, lungs, or intestinal walls, a chemical can be absorbed
and enter the blood circulation (absorption). With the arterial blood flow, the
chemical can then reach the different organs of the body and accumulate, depending
on its affinity with the tissue components and its capacity to cross biological
membranes (endothelial wall or cellular membrane of parenchymal cells) (distribu-
tion). In some tissues, such as liver, metabolism can be an important process
contributing to the elimination of the compound. This results in transforming it
into another molecule (i.e., a metabolite) which can be more or less toxic than or
have the same toxic potency of the parent compound (metabolism). Other processes
involved in the elimination of unchanged chemicals which are often described in
PBPK models are renal excretion in kidneys, exhalation in lungs, or biliary excretion
in the liver (excretion).

In simple PBPK models where the chemical easily crosses tissue or cell mem-
branes, the mass-balance differential equations describing the rate of chemical
accumulation (R_acc) in a tissue compartment (subscript t) would be described by
the rate of the chemical leaving the tissue with the venous blood (R_out) subtracted
from the rate of the chemical entering the tissue with the arterial blood flow (R_in) as
follows:

R acct ¼ R int � R outt ð12:1Þ
R int ¼ Qt � Ca ð12:2Þ
R outt ¼ Qt � Cvt ð12:3Þ

where Qt, Ca, and Cvt are, respectively, tissue blood flow, arterial blood concentra-
tion, and venous blood concentration leaving tissue. When elimination occurs in the
tissue (e.g., metabolism), an additional rate (e.g., rate of amount metabolized: R_am)
must be subtracted from the R_in as follows:

R acct ¼ Qt � Cað Þ � Qt � Cvtð Þ � R amt ð12:4Þ
The amount of chemical in the tissue can then be estimated by integrating, i.e.,

numerically solving, the mass-balance differential equations using algorithms avail-
able in simulation software (e.g., ACSLX, Stella, MatLab). The concentration is
determined by dividing the amount of chemical in tissue by the tissue volume
(Eq. 12.5), and the Cvt is determined by the tissue/blood partitioning (Pt) (Eq. 12.6).

Ct ¼ At

V t
ð12:5Þ

Cvt ¼ Ct

Pt
ð12:6Þ

Many toxicokinetic processes in PBPK models can be described with first order
mathematical descriptions, such as R_in and R_out in Eqs. 12.2 and 12.3 above. This
means that the rate of the process of interest is directly proportional to the appropri-
ate blood or tissue concentration of the chemical (e.g., passive diffusion across
membranes). In some instances, kinetic processes must be described using a
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saturation model. This is more likely to happen at higher-dose regions. The same
process may be described as a first order process when only low exposure levels are
of interest but must be changed to a saturable process when simulating higher
exposure levels. In such cases, at low levels of exposure, the simulated rate of the
process seems to increase with dose, but at a certain dose range, it levels off to a
maximal rate to attain zero order (i.e., rate becomes a constant that is invariable with
dose) (Fig. 12.2). This is often the case for describing metabolic rates (R_am). For
instance, at low exposure levels, the use of an intrinsic clearance constant (Clint; first
order constant) is often sufficient (Eq. 12.7) for describing the metabolic rate of a
chemical, whereas, at higher exposure doses, the metabolic rate becomes saturated
and must be described using a maximal rate of metabolism (Vmax) and a Michaelis-
Menten affinity constant (Km) (Eq. 12.8).

First order : R am ¼ Clint∗Cvl ð12:7Þ
Saturable : R am ¼ Vmax∗Cvl

Kmþ Cvl
ð12:8Þ

where Cvl refers to venous blood leaving the liver.
The equations that compose the PBPK model are populated with parameters that

are specific to the organism (physiological parameters), the chemical or chemicals
under investigation (physicochemical parameters), and the reactions between the
organism and the chemical (biochemical parameters) (Table 12.1).

When the organism is exposed to additional chemicals, the toxicokinetics may be
unaffected, and therefore no further considerations in terms of PBPK modeling are
necessary. But in many circumstances, co-exposure to one or more chemicals may
change the relationship between external dose and internal dosimetry of the chemical
of interest.
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Fig. 12.2 First order process vs saturable process exemplified with metabolic rates
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12.2 Pharmacokinetic Interactions

When the tissue or blood concentration vs time profile of one chemical (chemical A)
is modified by co-exposure to another chemical (chemical B), it is a clear indication
that a pharmacokinetic interaction is occurring. These interactions are the result of a
pharmacokinetic mechanism being affected by the other chemical. In terms of PBPK
modeling, it can either be the result of an alteration of a physiological parameter
value (e.g., increased ventilation rate), a physicochemical parameter (e.g., increased
lipophilicity due to complexation), or modified biochemical parameters (e.g.,
increased Vmax due to enzyme induction). In the next section of the chapter, common
mechanisms of pharmacokinetic interactions will be reviewed.

12.2.1 Chemicals Altering Physiology

Exposure to some xenobiotics can lead to alterations of physiological factors that are
critical determinants of toxicokinetic processes. Hence, when such an event occurs,
the toxicokinetics of all co-exposed chemicals are modified if the physiological
parameter in question plays a role in their absorption, distribution, metabolism, or
elimination. Examples of physiological parameters that are altered by exposure to
chemicals are provided below.

One parameter that can be altered by the presence of chemicals is the alveolar
ventilation rate (Qalv). It has been shown that salicylate poisoning and amphet-
amines cause increased ventilation by raising carbon dioxide. This increase in
ventilation is the body’s attempt to compensate for excess carbon dioxide (Crisp
and Taylor 2012). Other chemicals can augment the alveolar ventilation rate by
diminishing the cellular respiration, for example, carbon monoxide diminishes
hemoglobin capacity in oxygen binding, hydrogen cyanide inhibits cytochrome c
oxidase which plays a crucial role in the electron transport respiratory chain in the

Table 12.1 PBPK model parameters

Physiological Physicochemical Biochemical

Cardiac outputa

Alveolar ventilation ratea

Body weighta

Tissue volumea

Tissue blood flowa

Tissue blood content
Tissue lipid and water content
Skin surface area
Glomerular filtration rate

Partition coefficients
Tissue/blooda

Blood/aira

Skin/air
Skin/water

Permeability coefficients

Rate constants (Vmax, Km) for
Enzymatic reactionsa

Active transport in:
Urinary excretion
Biliary excretion
Tissue uptake
Tissue efflux
GI absorption

Macromolecular binding constants
Bmax

Kd
aMost frequently used PBPK model parameters

12 Physiologically Based Pharmacokinetic Modeling of Chemical Mixtures 311



mitochondria, DDT inhibits ATP-synthase, and dichlorovinyl cystein inhibits pyru-
vate dehydrogenase in the Krebs cycle (Gregus 2008). In PBPK modeling, a
modification of Qalv will lead to changes in the pulmonary absorption rate (and
pulmonary elimination) of volatile chemicals as it is used to determine the concen-
tration in arterial blood as follows:

Ca ¼ Qc� Cvþ Qalv� Ci
Qcþ Qalv=Pb

ð12:9Þ

where Qc refers to the cardiac output, Ci to the inhaled concentration of chemical,
Cv to the venous blood concentration, and Pb is the blood air partition coefficient of
the chemical.

Many xenobiotics are known to affect hemodynamics (i.e., blood flow) in
humans or animals. This has the result of changing Qc or Qt. Necessarily, the
toxicokinetics of all co-exposed chemicals would be affected accordingly, through
altered tissue distribution, altered elimination in tissue, or even pulmonary absorp-
tion. For instance, ethanol and phenobarbital increase hepatic blood flow (Ql), hence
increasing clearance of all co-exposed chemicals that have a high hepatic extraction
ratio (Krishnan et al. 1994). Vasodilators and vasoconstrictors will influence the
distribution of co-exposed chemicals by altering tissue blood flows. For example,
many drugs have been shown to alter renal hemodynamics (e.g., hypertensive
agents, nonsteroidal anti-inflammatory drugs (NSAIDs), some immunosuppressants,
aminoglycosides, amphotericin B) (Hsu and Wu 2012). This may lead to changes in
renal clearance of other chemicals due to decreased glomerular filtration rates which
can sometimes be irreversible.

Upon exposure to some xenobiotics, gastric emptying may be affected, and,
hence, the absorption of ingested chemicals or orally administered drugs can be
altered. For example, Nimmo et al. (1975) demonstrated that absorption of orally
administered acetaminophen was considerably delayed when subjects were admin-
istered pethidine or diamorphine by intramuscular injection. Other drugs have been
shown to delay gastric emptying and upper gastrointestinal tract motility (e.g.,
opioids, anticholinergics, and adrenergic receptor agonists). Several drugs are
known to increase the motility of the upper gastrointestinal tract. Among them are
the gastrointestinal prokinetic drugs (e.g., metoclopramide, cisapride, domperidone),
which may increase rates of absorption but in some instances also decrease bioavail-
ability because of reduced available time for total absorption (Greiff and
Rowbotham 1994). Another physiological factor that can be altered to modify the
rate of absorption of orally exposed chemicals is the gastric or intestinal pH
(De Castro et al. 1996; Budha et al. 2012).

Skin structure or composition can be modified by exposure to a chemical. This
can lead to changes in dermal absorption rates of other xenobiotics. Isobutanol has
been shown to change skin composition (dehydration) and reduce the absorption of
m-xylene (Riihimaki 1979). Dermal permeability of lipophilic compounds has been
shown to be increased by dimethyl sulfoxide (DMSO) skin exposure (Hayes and
Pearce 1953; Jacob et al. 1964; Choi et al. 1990). DMSO causes swelling of basal
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cells of the stratum corneum as well as a disruption of keratin matrices in skin
(Kurihara-Bergstrom et al. 1987; Qiao et al. 1996).

Although all these xenobiotic-induced physiological changes have been
observed, to our knowledge, none have been described mathematically to ultimately
be used in a multichemical PBPK model. Proper dose-response relationships for
physiological changes would need to be characterized for them to be incorporated
into a PBPK model.

12.2.2 Chemicals Altering Physicochemical Properties

There are very few examples where physicochemical properties of a chemical are
modified by the presence of another xenobiotic. A documented example of this is the
increased membrane permeability of lead in the presence of dithiocarbamates
(Oskarsson and Lind 1985). Indeed, dithiocarbamates can form a complex with
lead that is more lipophilic than lead alone, and therefore distribution to brain is
increased. Organic chelators such as EDTA can also increase the lipophilicity of
ionic metals and therefore alter their capacity to distribute.

Another example of alteration of physicochemical properties is co-exposure to
ethanol and mercury. Ethanol is known to depress the conversion of elemental
mercury to the ionic form (Kudsk 1965). Elemental mercury, being more volatile
than the ionic form, is therefore more easily eliminated by exhalation.

12.2.3 Chemicals Affecting Chemical-Biological Interactions

In terms of published literature on toxicokinetic interactions, chemical-biological
interactions are by far the most cited, and many examples of mathematical descrip-
tions exist between multiple xenobiotics. This category of interactions basically
results in a modification of biochemical parameters affecting metabolic rates, trans-
port rates, or protein binding. The mechanisms that are affected therefore involve
proteins implicated in a critical kinetic process of the xenobiotic of interest. The
different types of interactions existing in this category can be divided into two
categories: (1) mechanisms affecting the level of active proteins (concentration of
enzymes, transporters, or binding proteins) and (2) mechanisms affecting the activity
of a protein.

(a) Mechanism Affecting the Level of Active Proteins

The concentration of an active protein (Pa) will basically depend on its synthesis
rate (R_Psynth), its degradation rate (R_Pdeg), and its inactivation rate (R_Pinact)
which is usually as follows:
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RC Pa½ � ¼ R Psynth � R Pdeg � R Pinact ð12:10Þ
where RC_[Pa] refers to the rate of change in active protein concentration involved
in xenobiotic metabolism, transport, or binding. The consequence of a change in [Pa]
will be a proportional change in Vmax for enzymes and active transporters as
Vmax ¼ Kcat [Pa] where Kcat is the turnover rate or of Bmax (maximal binding
capacity) for binding proteins as Bmax ¼ n [Pa] where n refers to the number of
binding sites.

Increased Protein Synthesis Many xenobiotics are known to increase (i.e., induce)
the activity of proteins, which can occur through different mechanisms. One way to
achieve this is through an increase in protein concentration. There are many com-
pounds that are known to interact with and activate transcription factors (e.g., PXR,
CAR, FXR, AhR, PPARα, etc.) which in turn activate the transcription and synthesis
of different enzymes and other proteins (binding proteins or transporters). In terms of
mathematical representation of such phenomena, the increased synthesis of
CYP1A1 and 1A2 by TCDD was described by a factor representing aryl hydrocar-
bon receptor binding (Andersen et al. 1997; Leung et al. 1990), and Sarangapani
et al. (2002) similarly described induction of CYP2B1/2 by
octamethylcyclotetrasiloxane via an unknown receptor. In both cases, the R_Psynth

is modulated as a function of the fraction of receptor occupancy (FRO) typically
modeled using a Hill model as follows:

R Psynth ¼ R Psynth0 þ R Psynthmax
� R Psynth0

� �� FRO
� � ð12:11Þ
FRO ¼ FL½ �n

FL½ �n þ Kdn
ð12:12Þ

whereRPsynth0 andRPsynthmax
are the basal and maximal rates of protein synthesis, Kd

is the dissociation constant, FL is the free ligand concentration in cells where the
receptor is present, and n is the hill coefficient which is dependent on the receptor.

Increased Protein Stability An increase in protein activity can also be achieved by
stabilizing the protein, i.e., by reducing the value of R_Pdeg. Indeed, an example of
such a mechanism was described by Chien et al. (1997) where ethanol stabilizes
CYP2E1, which consequently increases the overall concentration of the enzyme and
therefore its activity. In this example, schematized in Fig. 12.3, the enzyme (i.e.,
CYP 2E1) would be found in two forms, distinguishable by rate of degradation: the
form that is rapidly degraded (Pa

1) and another form which is the slowly degraded
enzyme (Pa

2). The authors’ hypothesis was that CYP2E1 was synthesized at a given
rate into the pool of Pa

1 and it can be converted to Pa
2 according to a transfer rate

constant Ktrans. In the form Pa
1, the degradation rate of the protein is rapid when not

bound to ligand and slow when bound. When Pa
1 is highly bound with ligand, the

concentration of Pa increases, and therefore the turnover to the Pa
2 form increases.

Equation 12.10 can therefore be modified as follows to describe the rate of change in
protein concentration for the CYP2E1 in the rapid degradation form:
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RC Pa
1

� � ¼ R Esynth � R Pdeg � R Ptrans ð12:13Þ
where R Pdeg ¼ Pa

1
� �� f unbound � K fast

deg þ f bound � Kslow
deg

� �
ð12:14Þ

and R Ptrans ¼ Pa
1

� �� K trans ð12:15Þ
The rate of change of concentration of the slowly degraded form of the enzyme is

determined as follows:

RC Pa
2

� � ¼ R Ptrans � R Pdeg
0 ð12:16Þ

and R Pdeg
0 ¼ Pa

2
� �� Kslow

deg ð12:17Þ

where R_Ptrans is the rate of transfer, funbound is the fraction of Ea that is not bound to
ligand, and fbound is the fraction of Pa

1 that is bound to the stabilizing ligand. The
slow and fast degradation rate constants are Kfast

deg and Kslow
deg , and the transfer rate

constant is Ktrans. The fractions bound and unbound can be calculated using the
information of dissociation constant (Kd) for the ligand.

Protein Inactivation Proteins may be inactivated in many ways by xenobiotics.
There are several published examples of enzymes being irreversibly inhibited/
inactivated by xenobiotics. Generally, the inhibitor or inactivator binds irreversibly
to the active site, consequently stopping all catalytic activity. As can be deduced
from Eq. 12.10, an increase in R_Pinact will lead to a decrease in Pa levels. The same
logic would apply for binding proteins or active transporters. Enzyme inactivation
has been mathematically described for binary mixtures where a component inhibits
the metabolic rate of the other component by this mechanism: triazolam and
erythromycin (Kanamitsu et al. 2000a), 5-fluorouracil and sorovidine (Kanamitsu
et al. 2000b), and trichloroethylene and its metabolite dichloroacetate (Keys et al.
2004). In the absence of the inactivator, the R_Pinact is nil, and levels of Pa remain
stable. Upon introduction of the inactivator into the system, the R_Pinact becomes
positive according to the following equation:

Pa1 Pa2Synthesis Transfer

Fa
st

Sl
ow

Sl
owDegradation

Fig. 12.3 Conceptual representation of CYP2E1 induction by ligand stabilization according to
Chien et al. (1997). The CYP2E1 enzyme can occur in the rapidly degraded form (Pa

1) and the
slowly degraded form (Pa

2) (Modified from Chien et al. 1997)
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R Pinact ¼
K inact � Pa½ � � f bound � I½ �t

Pt

Kiapp þ f bound � I½ �t
Pt

ð12:18Þ

where Kinact represents the maximum inactivation rate constant, Pt represents the
tissue-to blood partition coefficient, fbound is the unbound fraction in blood, and [I]t is
the inactivator’s concentration in tissue where Pa is located.

(b) Mechanisms Affecting the Activity of Proteins

The activity of proteins can be modified without actually changing their concen-
tration. The most frequently published mechanism of toxicokinetic interactions is
found in this category, the conventional reversible inhibitions, including competi-
tive, noncompetitive, and uncompetitive inhibition. Other, less frequently reported
types of interactions affecting activity of proteins are the allosteric interactions. Also,
the depletion of cofactor reserves is another way to alter the rate of protein activity.

Competitive Inhibition When two chemicals compete for the same active site
(on an enzyme or active transporter), competitive inhibition occurs. This competition
may occur between two substrates for the same active site or between a substrate and
another chemical that simply acts as an inhibitor. The consequence of this type of
interaction is the apparent decrease in ligand affinity (i.e., increase in apparent
Michaelis-Menten affinity constant: Kmapp ) as a function of inhibitor concentration
([I]) and affinity (Ki) and hence a reduction in rate of activity (Ractivity) (i.e.,
metabolism or transport), and Vmax remains unchanged (Segel 1974), as follows:

Kmapp ¼ Km � 1þ I½ �
K i

� 	
ð12:19Þ

Ractivity ¼
Vmaxapp � Cvt
Kmapp þ Cvt

ð12:20Þ

There can also be competition between two or more chemicals for a binding site
on a binding protein or transporter leading to binding displacement (e.g., tolbuta-
mide and sulfonamides for plasma protein binding) (Sugita et al. 1982). The
principle is the same as for metabolism or transport, and the apparent affinity of
the xenobiotic for the protein is reduced (i.e., increase in apparent dissociation
constant: Kdapp ) as a function of inhibitor concentration ([I]) and its dissociation
constant (Kdi) leading to a decrease in the concentration of the chemical that is bound
(Cbound), as follows:

Kdapp ¼ Kd � 1þ I½ �
Kdi

� 	
ð12:21Þ
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Cbound ¼ Bmax � Cfree

Kdapp þ Cfree
ð12:22Þ

Noncompetitive Inhibition In some cases, a binding site modulating enzyme or
transporter activity, which is different from the active site, may exist on the active
protein. A noncompetitive inhibitor may bind this modulating binding site and affect
the metabolic or transport rate of another chemical. The change in protein confor-
mation by the inhibitor is mathematically reflected by a reduction in apparent Vmax,
and Km remains unaffected, as follow (Segel 1974):

Vmaxapp ¼
Vmax

1þ I½ �
K i

� � ð12:23Þ

Uncompetitive Inhibition An inhibitor that binds only the protein-substrate com-
plex (ES) is an uncompetitive inhibitor. Such an inhibitor, observed mostly with
enzymes, will affect the catalytic function but not the substrate binding by causing
structural distortion of the active site. Because free enzyme is temporarily reduced,
Vmaxapp is reduced as well (as in Eq. 12.23), and the apparent affinity seems to be
increased due to a shift of the reaction (Enzyme þ Substrate!ES) to the right, as
follows (Segel 1974):

Kmapp ¼
Km

1þ I½ �
K i

� � ð12:24Þ

An interesting study by Barton et al. (1995) modeled the disappearance of
trichloroethylene (TCE) and vinyl chloride from a closed vapor uptake chamber
during concomitant rat exposure and showed how the three types of inhibition
descriptions (competitive, noncompetitive, and uncompetitive) best fit the
co-exposure data. This allowed elimination of noncompetitive inhibition as a mech-
anism of interaction between both chemicals but could not discriminate between
competitive and uncompetitive inhibition with this particular exposure data set. The
authors further pointed out that competitive inhibition could simulate all data sets
with the same parameter values. In contrast, with uncompetitive inhibition, although
multiple data sets were well simulated using the same kinetic parameters, several key
mixture data sets were simulated only by varying parameter values.

Allosteric Interactions There are other examples of increased enzyme activity
related to co-exposure that do not implicate a change in concentration of protein.
A few enzyme kinetic studies on interacting xenobiotics have shown that some
enzymes with multiple binding sites, particularly CYP 3A4, demonstrate unusual
kinetics in the presence of another substrate or inhibitor. Different models were
proposed for such cooperative binding (Kenworthy et al. 2001). The authors
describe three different allosteric interaction models: (a) a two-site model with
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competition between substrate and effector which can activate the enzyme at low
concentrations but inhibit it at high concentrations; (b) a three-site model for
heteroactivation where two substrates can bind cooperatively and stimulate metab-
olism at the activator site; and (c) a three-site model with inhibition including a
substrate and an inhibitor (a more detailed description and complex equations can be
found in (Kenworthy et al. 2001)). As an example of such cooperative activation and
inhibition interactions, the rate of formation of 3-hydrodiazepam from diazepam
increases up to nearly almost 400% in the presence of testosterone, and the formation
of 6β-hydroxytestosterone from testosterone is inhibited 45% by diazepam.

Cofactor Depletion The cellular reserves of cofactors for phase 2 metabolic reac-
tions (UDPGA, PAPS, GSH, etc.) are usually considered to be amounts well over
saturation levels, making the description of reaction rate limited only by substrate
concentrations. In some instances, the reserves of cofactors may be depleted well
below saturation levels, rendering the reaction rate of substrate also dependent on
levels of cellular concentrations of cofactors. The reaction rate, therefore, must be
described as a bi-enzyme kinetic reaction where both cofactor and substrate con-
centration must be considered for the calculation of the reaction rate (Marangoni
2003). Of course, co-exposure to chemicals utilizing cofactors will affect the met-
abolic rate of other compounds using the same cofactor, independently of isoenzyme
used. A description for this inhibition mechanism was used in a PBPK modeling
study by (Zurlinden and Reisfeld 2015) for acetaminophen and its major metabolites
(i.e., the sulfo-conjugate and the glucurono-conjugate) in humans. In this particular
example, substrate and co-substrate inhibition (Forrest et al. 1982; Mutlib et al.
2006; Nagar et al. 2006) must also be considered, and the description of conjugation
is as follows:

Rconjugation ¼ Vmax � C S
t � F cf

t

Km
S þ�C S

t þ� C S
tð Þ2

Ksi

� 	
Km

cf þ F cf
t

� � ð12:25Þ

whereF cf
t is the fraction of available cofactor in the metabolizing organ and Ksi is the

inhibition constant for the substrate inhibition. Superscripts S and cf are for substrate
and cofactor, respectively. Although this particular example with acetaminophen
very nicely describes the cofactor depletion phenomena, it is not in the context of
co-exposures to other chemicals. But clearly, concomitant, or even subsequent,
exposure of acetaminophen to another chemical metabolized by UGTs would be
affected by the depletion of the UDPGA cofactor, and the rate of conjugation would
have to be described accordingly.

318 S. Haddad



12.3 PBPK Modeling Strategies for Mixtures

In this section, an overview of techniques or strategies is presented for pharmaco-
kinetic modeling of mixtures and for describing or predicting the kinetics of mixture
components. Having a multichemical exposure does not necessarily mean that
pharmacokinetic interactions occur between all mixture components. None may
actually occur, or some or all components may be affected by the presence of others.
A simple way of determining which mixture components’ kinetics are affected by
the other mixture constituents is by comparing the pharmacokinetics (e.g., blood
concentration vs time profiles) of the mixture’s constituents when administered as a
mixture with the kinetics of each constituent administered alone (at the same dose
and exposure scenario). The components that show the same pharmacokinetic pro-
files in mixture and single chemical exposures are not affected by mixture constit-
uents, unless the impact of multiple interactions caused by different chemicals cancel
each other, which is rather unlikely. When developing a PBPK model for a mixture,
it is important to identify the components that interact with each other and those that
do not. The simplest situation is a mixture with no interaction between constituents.
In this case, the PBPK model for the mixture can be developed exactly in the same
way as if each chemical component were administered alone (single chemical
exposures). When interactions occur (i.e., toxicokinetic profiles differ between
single and mixture exposure), then chemical culprits (inhibitor, inducer, chelator,
etc.) and mechanisms of interaction (see previous section) should be identified, if
possible, to develop the mixture model appropriately. This may become very tedious
depending on the level of complexity of the mixture, or even the level of knowledge
of chemical components within the mixture.

12.3.1 Binary Mixtures

To date, many PBPK models have been published for binary mixtures for all sorts of
chemicals, e.g., aromatic and chlorinated solvents (Andersen et al. 1987), petroleum
products (Ali and Tardif 1999; Jang et al. 2001), drinking water contaminants (Niu
et al. 2015; Tan et al. 2007; Isaacs et al. 2004), and medicinal drugs (Ishigam et al.
2001; Boom et al. 1998; Sugita et al. 1982; Russel et al. 1987, 1989), among others.
When developing a model for such mixtures, it is common practice to start with
single chemical PBPK models of both mixture components or to develop them if not
available.

The next step would be to link both models together by the hypothesized
mechanism of interaction using the appropriate mathematical description (see
Chap. 9). The hypothesis can be supported by available information from in vitro
experiments, known biotransformation pathways, pharmacokinetic experiments, etc.
In a pharmacokinetic interaction, a mixture component may be the culprit (chemical
modifying the pharmacokinetics of the other chemical) or the victim (the chemical
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whose pharmacokinetics is being modified by the culprit) or both (Fig. 12.4). If
chemical A is the culprit and chemical B is the victim in the interaction, then only the
mathematical description of the pharmacokinetics of B will be modified to change
absorption, metabolism, distribution and/or excretion as a function of the appropriate
tissue dose of chemical A (e.g., liver concentration of A will affect hepatic metabolic
rate of B if metabolic inhibition occurs). Alternatively, if both chemicals affect the

Fig. 12.4 Illustration of two examples of PBPK models for interacting pairs of chemicals. Top
portion illustrates a mutual interaction, whereas bottom portion illustrates a one-way interaction
where the chemical on the left is the culprit and the chemical on the right is the victim of the
interaction
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kinetics of the other chemical, both their mathematical descriptions will be modified
according to the mechanism of interaction as a function of the culprit’s appropriate
tissue dose.

12.3.2 Mixtures of Greater Complexity

When pharmacokinetic interactions occur between more than two chemicals, it can
become more complicated to describe the situation. An impact on the tissue dose of
one chemical (chemical A) by the presence of another (chemical B) will affect all
other chemicals with which chemical A interacts. The chemicals with modulated
tissue dose will in turn affect the tissue levels of all chemicals they interact with and
so on.

The situation can become even more complicated when a mixture component is
biotransformed into a metabolite which interacts with its parent compound (e.g.,
product inhibition) or even other mixture components/metabolites. Another hurdle
to tackle in mixture toxicology is that mixture components are not always fully
identified. The following subsections relate to approaches that have been proposed to
deal with these problems.

12.3.2.1 Extrapolating In Vivo Binary Interactions to Complex
Mixtures

To resolve the problem of PBPK modeling of mixtures with more than two
interacting components, Krishnan’s laboratory at Université de Montréal proposed
and validated an approach that allows the interlinkage of the pharmacokinetics of all
interacting chemicals in a single model (Tardif et al. 1997; Haddad et al. 2001;
Haddad and Krishnan 1998; Haddad et al. 1999a, 1998; Krishnan et al. 2002). This
is done by linking each of the chemical models by the description of the binary
interaction, forming a “web of interactions” (Fig. 12.5). This generates a web of
pharmacokinetic interconnections, and all chemicals in that web are affected by a
modulation of tissue dose of one of the mixture components. This also applies to
metabolites that interact with the mixture components. In the latter case, the metab-
olite needs to be added to this chemical web (an additional PBPK model should be
made for this metabolite) and linked appropriately. When a chemical in the mixture
does not interact, it can be in the web but without any linkage to other chemicals.

This binary interaction-based PBPK modeling of mixtures has been validated
in vivo in rats with ternary and quaternary mixtures of aromatic hydrocarbons, i.e.,
toluene, ethylbenzene, and m-xylene by Tardif et al. (1997) and benzene, toluene,
ethylbenzene, and m-xylene by Haddad et al. (1999a) and with the addition of a fifth
component, dichloromethane (Haddad et al. 2000b), as well S-8 and JP-8 jet fuel
mixtures (Martin et al. 2012). Although this approach offers an accurate model to
describe the mixture, it has high data requirements. Because all binary interactions
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must be described between all interacting components, they must all be character-
ized. This task may become time-consuming, animal intensive, and costly when the
mixture components are numerous. The number of binary interactions (N ) to
characterize in a whole mixture of “n” components is determined as follows:

N ¼ n n� 1ð Þ=2 ð12:26Þ
According to this equation, for a mixture of ten interacting chemicals, 45 binary

interactions should be characterized to apply this interaction-based approach. To
overcome this hurdle in mixture PBPK modeling, alternative methods have been
proposed for mixtures with large number of components. In these mixtures, it is
simply currently too costly to characterize all in vivo binary interactions, and
oftentimes the identity of all components has simply not yet been determined.

12.3.2.2 QSAR Approach

Building a mixture PBPK model can prove to be difficult when data on binary
interactions, chemical biotransformation, and partitioning are not fully character-
ized. Instead of going through full parameter characterization to develop a PBPK
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model, a useful initial step can be to use quantitative structure-activity relationships
(QSAR) to estimate the model parameter values. Price and Krishnan (Price and
Krishnan 2011) developed QSAR algorithms for volatile organic chemicals to
estimate partition coefficients, Vmax, and Km based on chemical structures of 53 dif-
ferent chemicals. Using estimated parameters, they predicted the toxicokinetics of
different mixtures by assuming competitive inhibition and assuming Ki values were
equal to Km. The use of QSAR approaches can rapidly give health assessors an idea
of the amplitude of interactions if competitive inhibition is the expected mechanism
between mixture constituents.

12.3.2.3 Unidentified Components: Chemical Lumping

Many or most complex environmental mixtures to which humans are exposed to are
not completely characterized, but some constituents may be of interest to estimate
exposure. Such is the case with gasoline where a few components, such as benzene,
toluene, ethylbenzene, xylene, and n-hexane, are chemicals of toxicological interest,
and thousands of other hydrocarbons (isoalkanes, n-alkanes, aromatic derivatives,
and smaller amounts of alkenes and alkynes) have lesser or no known toxicological
significance. Simulating all constituents of such mixtures would be an enormous task
and is not feasible due to resource and time constraints. In addition to difficulties in
determining all parameter values for all components, validation would also prove to
be nearly impossible because of limitations in chromatographic separation of all
mixture components.

To circumvent such a problem, Dennison et al. (2003) devised an original
strategy for gasoline mixtures. In their study, they proposed to lump most of the
gasoline chemical components together by considering them as a single chemical
entity and leaving the known toxicologically relevant components as separate
entities, assuming competitive inhibition among components. The approach was
similar to the binary mixtures approach assuming competitive inhibition between all
mixture components (Haddad and Krishnan 1998). Known parameter values for
partition coefficients, Vmax and Km, were used (i.e., for benzene, toluene, ethylben-
zene, xylene, and n-hexane), and Ki values were set equal to Km values. All other
parameters related to the chemical lump were mathematically optimized to observed
values, and again Ki was set equal to Km. The characteristics of the lumped
compartment changed with gasoline blend (winter blend vs summer blend). This
study demonstrated the feasibility of reducing the number of model parameters in a
mixture model enabling a targeted focus on toxicologically relevant mixture
components.

12.3.2.4 Physiological Limits of Interactions

An alternative to the interaction-based PBPK model approach is to simply consider
the physiological limits to determine the plausible range of internal exposure
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(Haddad et al. 2000a). The logic is simple: if the sole mechanism of interaction
occurs essentially at the level of hepatic metabolism, then we can determine the
maximal and minimal tissue dose that a mixture component can attain if its phar-
macokinetics are modulated by co-exposure. These limits are determined by fixing
chemical hepatic clearance equal to hepatic blood flow (i.e., maximal impact of
enzyme induction on clearance leading to a hepatic extraction ratio of 1) and to zero
where the biotransformation is totally inhibited (i.e., hepatic extraction ratio ¼ 0)
(Fig. 12.6).

Although this method does not allow the risk assessor to determine with precision
the concentration time profile of mixture constituents, it does allow clear estimation
of the maximal value of tissue dose which would be protective/conservative in terms
of health risk assessment toward potential increased internal exposure due to com-
bined exposures. Furthermore, this method is independent of the number of mixture
components and identity of mixture components. Such an approach would also be
applicable to other types of interactions where physiology can be rate limiting (e.g.,
renal excretion, biliary excretion, extrahepatic metabolism, etc.). A limitation of this
approach is for compounds having only biotransformation as a mode of elimination
and only one metabolic pathway; under such circumstances, the estimated limits
would yield very large concentration intervals. It works well with VOCs because
they are also eliminated by exhalation.

12.3.2.5 IVIVE of Interactions

In vitro to in vivo extrapolations are acknowledged as the way toxicity testing for
environmental agents should be conducted in the twenty-first century (NRC 2007).
Obtaining in vivo data for interactions is not always feasible or desirable because
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(i) the workload and time associated with experiments create practical limitations,
(ii) the associated costs are important, and/or (iii) the number of animals required for
such studies is incompatible with the call for animal reduction in research. In the
pharmaceutical industry, in vitro assays for screening and preclinical research in
drug metabolism and pharmacokinetics are conducted on a routine basis. Large
amounts of in vitro data are collected on drug-drug metabolic interactions using
cell cultures, cell suspensions, or subcellular fractions (e.g., microsomes, S9 frac-
tions, etc.). Metabolic constants Vmax, Km, or intrinsic clearances are often measured
as well as inhibition constants (Ki) for drug-drug interactions for different enzymes
associated with drug clearance rates. Many empirical clearance models have been
proposed to extrapolate in vitro clearance and metabolic interactions data to the
in vivo situation, but they have had varying success rates (Wilkinson 1987; Robin-
son et al. 1991; Robinson 1992; Saville et al. 1992). To increase predictability of
these models, several studies have proposed adjusting equations to account for
in vitro non-specific binding in the incubation medium to better reflect the free
concentrations of substrates and/or inhibitors at enzyme active sites, both in vitro and
in vivo (Obach 1997, 1999; Mclure et al. 2000).

CLinvivo ¼ Qliver � RBP� CLint,met � Fup=Fuinc
Qliver � RBPþ CLint,met � Fup=Fuinc

ð12:27Þ

where Qliver, RBP CLint,met, Fup, and Fuinc, respectively, refer to blood flow in the
liver, blood to plasma ratio, metabolic intrinsic clearance, fraction unbound in
plasma, and fraction unbound in incubation medium.

Recently, a physiologically based model for hepatic metabolic interactions has
been proposed (Theil et al. 2003; Haddad et al. 2010), where the liver is described as
a multicompartmental model, representing the vascular, the interstitial, and the
cellular matrix (Fig. 12.7). Exchanges between these compartments consider active
transport and passive diffusion. Metabolism and metabolic interactions are consid-
ered to occur inside the hepatocytes and are related to unbound concentrations in the
cells. This unbound concentration is a result of different input and output processes
that influence intracellular concentrations (i.e., active efflux, biliary excretion, active
uptake, simple diffusion, metabolism, intracellular and extracellular protein binding,
and solubility in lipids). Additionally, the chemical concentration gradient along the
sinusoids of the liver lobule has also been simulated by representing the liver as
seven segments linked in series. Compared to other models described above, this
model fared best in predictions of drug-drug binary interactions between three
cytochrome 2D1 substrates (i.e., bufuralol, bunitrolol, and debrisoquine) in an
isolated perfused liver system. Accordingly, for extrapolation to work, data taken
from in vitro assays must also be adjusted to eliminate bias from non-specific
binding. A very recent study suggested a more complex hepatic model that incor-
porates hepatic lobule geometry and many of the processes described here in order to
predict the magnitude of metabolic interactions (Cherkaoui-Rbati et al. 2017). These
models should be compared to assess their predictive power.
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Current methods for estimating hepatic clearance have been shown to be quite
ineffective in predicting in vivo clearance of compounds that are highly bound to
albumin (i.e., Fup < 0.05) (Poulin et al. 2012). Recent studies have shown that to
accurately predict the clearance of this category of compounds, it must be assumed
that there is a mechanism facilitating the distribution of the bound drug in the organ
by albumin, hence leading to an apparent unbound fraction in the organ that is
greater than in blood (Poulin et al. 2012). A clearance algorithm (Eq. 12.27) that
adjusted Fup in Eq. 12.28 was proposed and validated for IVIVE of in vitro
metabolic rate from microsomes (Poulin and Haddad 2013) and hepatocytes (Poulin
and Haddad 2013).
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Fig. 12.7 Conceptual representation of the physiologically based pharmacokinetic model of a
binary mixture (compounds A and B) in an isolated perfused liver (IPRL) system. The liver is
separated into seven segments (Z1–Z7) connected in series, and each segment is further subdivided
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by metabolism (5). The rate of metabolism is dependent on the substrate unbound concentration in
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Haddad et al. 2010)
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Fup�adjusted ¼
PLR� Fup � Funionizedplasma

Funionizedcells

1þ PLR� 1ð Þ � Fup � Funionizedplasma

Funionizedcells

ð12:28Þ

where PLR and Funionized refer, respectively, to the plasma to liver albumin
concentration ratio and the chemical’s fraction that is the unionized form in the
matrix.

Although nothing has been published for the impact of albumin binding on the
prediction of metabolic interactions, interactions between naproxen and bisphenol A
for glucuronidation were studied in vitro (Verner et al. 2010) and in isolated perfused
rat liver (IPRL) (Bounakta et al. 2017; Poulin et al. 2017). In this IPRL study, liver
co-exposure to both compounds in the presence and absence of albumin showed that
competitive inhibition was observed. But in the presence of albumin, the clearance
and interaction of these two highly albumin-bound compounds were clearly affected
confirming the occurrence of an albumin-facilitated uptake mechanism, suggesting
that predictions of metabolic interactions for highly albumin-bound compounds
from in vitro data must be treated in a similar fashion (i.e., inhibition constants
should be adjusted by Fup-adjusted).

12.4 PBPK Modeling and Mixture Risk Assessment

PBPK modeling can prove to be practical and useful in mixture risk assessment.
Exposure assessment of mixture components and their potential for toxicokinetic
interactions are among the many challenges that mixtures pose to risk assessors. As
shown above, mixture PBPK modeling can allow for prediction of internal exposure,
or target tissue dose, even in contexts where toxicokinetic interactions occur.

Unless toxicodynamic interactions are known to occur, the PBPK modeling
approaches discussed above can be used in the context of mixture risk assessment.
Haddad et al. (Haddad et al. 1999b, 2001) demonstrated an approach in which risk
assessors could use PBPK modeling to estimate biological/target organ hazard
indices (BHI or THI) in lieu of calculating hazard indices (HI) for mixtures using
external exposures concentrations. This approach consists of summing the internal
doses of mixture constituents that have similar modes of actions or the same target
tissues (refer to Chap. 14). The internal doses of mixture components are normalized
by the internal dose obtained during single exposure to guideline values (e.g.,
Threshold Limit Values, Reference Concentrations). If the sum is greater than
unity, exposure to the mixture is considered to pose a health risk. This allows for
consideration of the pharmacokinetic interactions between mixture components in
the health risk evaluation.

PBPK modeling is also useful in mixture risk assessment because it confers
greater confidence in different types of extrapolations. A lot of data come from
animal studies, and the kinetics of chemicals (mixtures or single) can be translated to
the human situation by changing the animal parameter values to those of humans.
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Tardif et al. (1997) extrapolated a ternary PBPK model for toluene, ethylene, and
xylene from rat to human, and simulations successfully predicted experimental data
from exposed human volunteers.

PBPKmodels incorporating Monte Carlo simulations can also be used to estimate
exposure in the population of interest and determine the range of internal exposure
levels in the population to protect sensitive populations (Niu et al. 2015; Hinderliter
et al. 2011). Additionally, these models can be extrapolated to different lifestages
(e.g., neonates, infants, teenagers, etc.) and sexes and to different polymorphisms to
further characterize exposure in different subpopulations (Haddad et al. 2006;
Verner et al. 2008, 2009; Hinderliter et al. 2011).

12.5 Conclusions, Current Needs, and Research
Perspectives

Although many advances have been made in recent years to predict exposure
resulting from toxicokinetic interactions and to use this information in risk assess-
ment, hurdles still remain. In vivo characterization remains the gold standard for
identifying and characterizing binary interactions but is too costly and time-
consuming. Although not 100% accurate, we can now put more confidence in the
prediction of in vivo metabolic interactions from in vitro data, but toxicokinetic
interactions can still occur at other levels, and we cannot, therefore, solely rely on
metabolic in vitro data. Effects on absorption, distribution, and excretion processes
of chemicals, especially for chemicals that interact with proteins (in binding or
transport processes), are frequent, and additional research emphasis should be put
on IVIVE of these processes to increase capacity in high-throughput data generation
and PBPK model predictions. Development of QSAR for toxicokinetic interactions
is also very much needed, but the generation of such knowledge is limited by the
available data on toxicokinetic interactions. Predictive environmental toxicology
could certainly rely on data available from the pharmaceutical industry to generate
QSAR algorithms, but more data for ADME of environmental contaminants are
required. Data generated from projects such as TOXCAST (Dix et al. 2007; Judson
et al. 2010) offer promise in this context.
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Chapter 13

Mixture Experimental Design

Jane Ellen Simmons, Ingvar Eide, Glenn Rice, and Paul Feder

Abstract There is a general consensus, based on a number of surveys and analytic

efforts, that mixture study designs have historically been lacking. Although there

has been considerable progress over the past decades, further improvement is

necessary both in the development and application of experimental designs to

yield data suitable for quantitative analytic methods and in the implementation of

appropriate statistical analyses. This chapter reviews the state of the science with

regard to the experimental and statistical quality of mixture studies. The importance

of properly powering mixture experiments is emphasized; in particular when the

focus is on the low-dose/low-effect region. Issues with powering defined mixture

and complex mixture experiments are explored. Some designs that have proven

useful in mixture experimentation are reviewed, including full and fractional

factorial designs and statistical mixture designs such as the isobologram and the

fixed ratio ray. General considerations are provided that will aid in the development

of both experimental design and analysis strategies that address the question

(s) being asked.
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13.1 Introduction

The design, conduct, analysis, and interpretation of mixture experiments are a

daunting challenge. Designing the “right” experiment is difficult as the number of

mixtures to which humans are exposed is essentially infinite. Combining the

number of mixtures with the myriad health endpoints and outcomes of interest

reveals the true nature of the problem. This brings out two important points. The

first is that mixture experiments should focus on mixtures of “concern.” Identifica-

tion of priority mixtures is an area of active investigation; Chaps. 5, 6, and 7

describe innovative methods for intelligent design and prioritization of mixtures.

The priority setting process of deciding “which mixture(s) to test” may include

consideration of the frequency of human exposure and the number of individuals

exposed; the level of concern with regard to health effects on the part of decision

makers, health-care providers, risk analysts, risk managers, and stakeholders; the

seriousness of the health concern (e.g., pregnancy loss compared to odor threshold

exceedance); and the characteristics of the affected population, such as young

children or the elderly. The second point is that while there are considerable

challenges facing even the most capable experimentalists and statisticians, design-

ing quality mixture experiments, although not always easy, is an achievable goal.

13.2 State of the Science

13.2.1 Limitations of Currently Available Data

There is considerable interest in understanding the likelihood of chemical mixtures

exhibiting nonadditive toxicity. Greater-than-additive toxicity can be either bene-

ficial or disadvantageous. For example, there is significant motivation to optimize

cancer treatment with “cocktails” of chemotherapeutic agents with greater-than-

additive anticarcinogenic effects (Sun et al. 2015) due to the enhanced therapeutic

effects. In contrast, greater-than-additive effects of environmental chemicals are

generally considered undesirable (Cedergreen 2014). The ability to use the avail-

able literature to understand the potential for nonadditive interactions is hampered

by issues associated with experimental design and analysis. This is a source of

considerable frustration across many disciplines. Chou (2006) succinctly pointed

out the dangers inherent in faulty or erroneous claims of greater-than-additive

interactions in the clinical environment as such claims are frequently the basis of

therapies chosen for patient treatment. Consistent with this, erroneous claims of

greater-than-additive toxicity could result in lower allowable exposure limits that

do not provide additional public health benefit. Such erroneous claims could be
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harmful if, for example, lowered allowable exposure thresholds resulted in substi-

tution with processes or chemicals that are perhaps less studied and either

unintended consequences resulted or costs associated with reduced releases were

incurred that resulted in no health benefit.

Concerns with regard to the state of the science of mixture studies, in particular

with the quality of experimental design, analysis, and interpretation, are long-

standing. This section reviews several pertinent examples of such analytic efforts.

13.2.2 Early Assessments of Clinical Use Applications
of Pharmaceutical Agents

A particular emphasis for pharmaceutical agents is identification of chemicals that

provide greater-than-additive therapeutic benefit when given in combination.

Jawetz and Gunnison (1953) delivered a scathing condemnation of the quality of

publications investigating the joint toxic action of antimicrobial agents. The

strength of their concern is evident in the statement “while it may seem redundant

to mention it, the results arrived at by any method must have quantitative validity in

terms of the criteria chosen by the investigator. It is regrettable that some reports do

not live up to that postulate. It is even more unfortunate that certain articles in

scientific publications read like advertisements for specific commercial prepara-

tions of antimicrobial drug combinations based on most tenuous evidence.”

Noting that several reviews were available that provided summaries of publica-

tions and disagreements in conclusions between them, Jawetz and Gunnison (1953)

questioned the need for another “summary” review of that type and focused instead

on an examination of the possible reasons for disagreement between the claims of

different research groups. They looked at five points, several of which are directly

relevant to the present discussion: definitions of terms and methods of study. The

authors also included interpretations and significance of results, with a particular

focus on correlation between laboratory findings and clinical observations. The

authors concluded that the varying meanings associated with the terms “synergism”

and “antagonism” were partly responsible for the confusion. Additionally, they

noted an argument familiar to many current mixture investigators, i.e., the failure to

consider the shape, particularly in the lower regions, of the individual-agent dose-

response curves. Responses different from control become increasingly difficult to

detect as the dose decreases, and differences from control are either not present or

not detectable under the experimental design being employed.

Several years later, Veldstra (1956) stated in a review on the topic of “syner-

gism” that “a great number of questions with respect to synergism cannot be

answered satisfactorily at the moment” and attributed this, in part, to his perception

that “a purposeful analysis has not yet been carried out.” The following year,

Goldin and Mantel (1957) published a review of combination therapies for neopla-

sia. Observing a common flaw in experimental design, they stated that the
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“underlying” weakness in all the papers reviewed was “the less than comprehensive

way in which they are conducted.” Goldin and Mantel (1957) characterized cover-

age of “sufficient” portions of the dose-response curves for the individual chemicals

and for the mixture as being of prime importance in understanding the joint toxic

action of drugs and noted this deficiency in the studies they reviewed. They brought

out this point again, with regard to testing a drug deemed active in combination with

a drug deemed “inactive” and the failure to test the “inactive” drug across a

sufficient range of doses. The perception or the reality of the issue persisted over

the years, as McInnes and Brodie (1988) noticed that suitable study design was

seldom employed in investigation of drug interactions.

13.2.3 Early Evaluations of Consumer, Industrial,
and Environmental Agents

The emphasis in this section is on combinations of chemicals where the outcome of

interest is adverse (e.g., decreased birth weight, increased liver necrosis, decreased

cholinesterase activity in serum or brain, increased mortality). This includes natu-

rally occurring agents (e.g., arsenic in water, silica); pharmaceutical agents; mix-

tures of chemicals from consumer products, agricultural practices, and industrial

activities (including those associated with energy production); and other anthropo-

genic sources of chemicals in the air, water, or soil.

A technical support document developed by the U.S. EPA (1990) in response to

the Science Advisory Board review of the 1986 Guidelines for Risk Assessment of

Chemical Mixtures (U.S. EPA 1986) provided clear evidence of the historical

magnitude of the problem and highlighted the need for improved design and

analysis of mixture experiments. A twofold analysis of the available peer-reviewed

literature on interactions between and among the chemicals present in chemical

mixtures was conducted. To accomplish this, the EPA Mixture Toxicity Database

(MixTox, no longer available) was used. The first analysis surveyed the statistical

methods used in studies of chemical mixtures. References were deemed relevant if

they included both the experimental methods and the resulting data; this was

intended to remove presentation abstracts and review articles from further consid-

eration. Of the 331 references in the MixTox database, 307 met these criteria. The

authors reported that another 155 studies were included (but did not specify how

these studies were selected for inclusion) for a total of 462 studies. Studies were

then catalogued as to whether they were (a) mechanistic or descriptive and

(b) whether the mixture studied was binary, simple, or complex. A simple mixture

was defined as “a mixture containing more than two identifiable components but

few enough that mixture toxicity can be adequately characterized by a combination

of the component toxicities,” and a complex mixture was defined as “a mixture

containing so many components that any estimation of its toxicity based on its

component toxicities contains too much uncertainty and error to be useful.” Studies
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fell into more than one category if they included either both binary and simple

mixtures or both mechanistic and descriptive elements. Binary mixtures were

evaluated in 96.1% of studies, with simple and complex mixtures in 8.7% and

5.2% of studies, respectively. The vast majority of the studies were acute (73%),

studying either mortality or the influence of one chemical administered at a

nontoxic dose on the toxicity of another chemical. The statistical breakdown was

particularly revealing (see Fig. 13.1) with 26% of studies including no statistical

analysis and another 23% of studies reporting statistical significance levels

(e.g. p values) but not specifying the statistical methods used to derive them.

Among the studies that used statistics, student’s t-test was the most popular choice,

with 34% of researchers employing it.

The second analysis that used the MixTox Database attempted to examine

elements of experimental design quality and included a detailed analysis and

evaluation of the appropriateness of the statistical method used and the correctness

of interpretation of the statistical results. To accomplish these goals, 32 references

contained in the MixTox database were randomly selected. Of these 32, two were

abstracts and were excluded from further consideration. Of the remaining 30 stud-

ies, no statistical analysis appeared to have been conducted in eight (27%), the

statistical analysis was unspecified in seven (23%), and quantitative data were not

presented in one. It is interesting how closely the percentages for studies with either

no- or not-specified statistical analysis mirror those of the population from which

the sample was taken. Considering the remaining 14 papers, four (13% of the total)

were judged inadequate because baseline controls were not included, and nine

(30%) were judged inadequate as the methods were deemed inappropriate. They

found the experimental design, the use of statistics, and the conclusion appropriate

and justified for only one (3%) of the 30 papers.
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Fig. 13.1 Statistical analysis of mixture data state of the science prior to 1990
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13.2.4 More Recent Assessments

Although considerable progress has been made over the past decades in develop-

ment and application of experimental designs yielding data for quantitative analytic

methods, problems still remain. Chou, as recently as 2006, found that there are

many common errors associated with declarations of synergy and cited three

recurring problems: (1) declaring synergy when A þ B is greater than either A

alone or B alone, (2) using effect addition in dose ranges where it is not biologically

plausible to do so, and (3) analyzing toxicologically similar chemicals with a model

designed for toxicologically dissimilar (i.e., independent) chemicals (Chou 2006;

see Chap. 9 for limitations of the use of effect summation and discussion of

toxicological similarity concepts, which guide the researcher to the use of either

dose addition or independent action models). The models of Chou, based on the

combination index, have been published and coded in software (CompuSyn©,

www.combosyn.com/index.html) that is freely available. It is noteworthy that the

articles describing this approach are extremely highly cited, with the article intro-

ducing the key concepts of the combination index (Chou and Talalay 1984)

cited 4281 times (Web of Science, Web of Science Core Collection, accessed

1-10-2018).

A second noteworthy effort was undertaken by Borgert and colleagues (Borgert

et al. 2001) that focused on defined mixture studies, in which dose-response

information from the individual chemicals contained in the mixture are used to

predict the response of the mixture under an explicit definition of additivity. This

predicted response is then compared to the experimentally observed response of the

mixture tested at the same mixing ratio and dose levels. The authors described a set

of five criteria that can be applied to chemical mixture interaction studies to

evaluate the quality of both the data and the interpretations of the data. They

envisioned the criteria would be useful to mixture risk assessors in (1) identification

of studies that can be used in component-based mixture risk assessments which are,

by far, the most commonly used mixture risk assessments (see Chap. 14); (2) deter-

mination of studies that are less useful due to deficiencies in either design, inter-

pretation, or both; and (3) application of a weight of evidence approach to

evaluation of studies that reach opposing conclusions with regard to either the

presence or absence of deviations from additivity or the direction (greater-than-

additive, less-than-additive) of detected deviations. In addition to application to

mixture risk assessment, the authors declared that meaningful criteria would also

serve larger scientific goals and should enable (a) experimentalists to generate data

that are more interpretable, (b) interpretations more consistent with the data, and

(c) generation of testable hypotheses. Further, the authors stated that “the criteria

should provide a basis for better understanding differences between studies and

methods of analysis, and should also facilitate understanding the differences

between various analysts with respect to their assumptions and conclusions. Appli-

cation of the criteria in this context would also lead to better risk assessments

because the quality of published studies would be strengthened overall and because
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uncertainties could be better quantified according to a replicable standard of

measure.”

The five criteria are provided in Table 13.1. The first criterion addresses the need

to characterize relevant portions of the dose-response curves of the component

chemicals. The rationale for this has been clearly explained by many authors,

frequently in the context of the “sham experiment” in which the same chemical is

combined with itself. Berenbaum (1989) and Greco et al. (1995) provide theoretical

discussions of the “sham experiment” concept, and Gennings et al. (1990) describe

a combined experimental and statistical assessment of righting reflex in mice

following exposure to sodium hexobarbital “combined” with sodium hexobarbital.

The second criterion is the requirement that a “no-interaction” hypothesis (i.e., the

null hypothesis) be explicitly stated and then used in the evaluation and interpre-

tation of the data. Although it is obvious that a combination of chemicals cannot be

declared as deviating from additivity without first establishing what would be

expected in the additive state, this is still seen all too frequently. As described

briefly by Borgert et al. (2001) and in more detail in Chap. 9, the null hypothesis is

formed based on a judgement of whether the chemicals are toxicologically similar

or dissimilar.

Criterion 3, the requirement that the mixture be assessed across a sufficient range

of mixing ratios and dose levels to support the goals of the study, might appear at

first glance to overlap with criterion 1. A key difference is that these two criteria

have different focuses; Criterion 1 considers the individual components and Crite-

rion 3 the mixture itself. Borgert et al. (2001) view Criterion 3 as being used to

evaluate the interpretations and inferences made and not being used to judge the

quality of the data itself. Under the conditions of a full factorial, fractional factorial

or response-surface study that covers the entire dose range of interest, global

conclusions about the nature of the interactions can be drawn. Under the much

more common circumstance of experiments that provide less than full coverage of

the entire dose-response range of interest, care must be taken to confine the

interpretation to the conditions actually studied. For example, the results of a ray

design experiment at a 1:1 mixing ratio should not be used as evidence of the effects

Table 13.1 Five criteriaa of Borgert et al. (2001) for evaluating interaction studies for mixture

risk assessment

1. Dose-response curves for the individual components contained in the mixture should be

adequately characterized

2. An appropriate “no-interaction” hypothesis should be explicitly stated and used as the basis

for assessing interactions

3. Combinations of mixture components should be assessed across a sufficient range of dose

combinations to support the goals of the study

4. Formal statistical tests should be used to evaluate whether the response of a mixture dose

combination is distinguishable (larger than or smaller than) from the response expected under the

“no-interaction” hypothesis

5. Interactions should be assessed at relevant levels of biological organization
aReworded from text of Borgert et al. (2001)
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of the combination of the same two chemicals at an environmentally realistic ratio,

where the mixing ratio may be far from 1:1. For example, Moser et al. (2012)

observed different interactive properties for different mixing ratios when studying

the impact of mixing ratio on the joint toxic action of seven carbamates in both

pre-weanling and adult male Long-Evans rats. For one mixture, the mixing ratio

was based on equitoxic doses; the mixing ratio of the second mixture was based on

sales of these pesticides in California. For the three endpoints reported (brain

cholinesterase inhibition, red blood cell cholinesterase inhibition, motor activity),

the equitoxic mixture appeared dose additive for most endpoints at both ages and

only showed marginal deviations from dose additivity for adult brain cholinesterase

inhibition (greater-than-additive, one dose) and red blood cell cholinesterase inhi-

bition (less-than-additive, middle doses) in pre-weanling rats. In contrast, for the

sales-based mixture, greater-than dose-additive responses were observed in both

age groups for all three endpoints.

Criterion 4 focuses on the need to conduct statistical analysis to determine

whether the mixture response predicted from the individual-chemical dose-

response curves deviates significantly from the experimentally observed mixture

response. Borgert et al. (2001) stress that it is important that the statistical model

used and the underlying assumptions do not introduce bias that favors one of the

outcomes. It seems equally important that bias not be introduced that disfavors one

of the outcomes. The need to assure sufficient statistical power is mentioned briefly.

The final criterion, Criterion 5, is that interactions should be assessed at relevant

levels of biological organization. For this criterion, it is emphasized that for

complex biological systems, evaluation at multiple levels of organization may be

required to characterize an interaction and understand its significance in organisms

or populations.

The authors then apply the five criteria to eight studies; three are judged to

satisfy the five criteria and potentially would be useful in risk assessment of the

tested mixtures. Of the remaining five studies, one is deemed to fail all five criteria,

with the other four failing one or more criteria. It is important to note these criteria

are based on the usefulness for risk assessment of mixtures. Thus, the criteria may

not be applicable to experiments conducted for purposes other than to provide data

and interpretations for risk assessment. In a follow-up effort, Borgert et al. (2005)

applied the five criteria to two studies on drug-dietary supplement interactions. In

addition, they presented a scoring algorithm, by which a composite score for the

study is calculated, with zero being the lowest score and one representing a perfect

score for a study where all five criteria were fully satisfied. Both papers (Borgert

et al. 2001, 2005) are informative to the risk assessor, who will likely read papers

with a more informed eye, and the experimentalist, who will be able to incorporate,

as appropriate, aspects of the criteria into their future investigations.
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13.2.5 Evolution of the State of the Science

While focusing on a different research question, the work of a Risk Assessment

Methodologies Technical Committee established by the ILSI (International Life

Sciences Institute) Health and Environmental Sciences Institute provides signifi-

cant insight into the experimental quality of mixture studies conducted primarily

since 1990 (Boobis et al. 2011). This group initially surveyed the literature from

1990 to 2008 and then expanded to earlier studies, identifying mixture studies

relating to “synergism” (i.e., the effect of the mixture was greater than additive)

in the low-dose region. “Low doses” were defined as those near or at point-of-

departure (POD) doses, such as no-observed-adverse-effect levels (NOAELs) or

benchmark dose levels (BMDLs), that could be used in derivation of health-based

guidance values. The survey had an initial emphasis on chronic exposures; how-

ever, as few studies were found, the search was broadened to include studies with

shorter exposure periods where nonlethal endpoints were measured. This resulted in

the inclusion of acute studies with dose levels the authors characterized as “well

above chronic PODs.” A number of scientific article databases and search engines

were searched, such as PubMed, MEDLINE, TOXLINE, Google Scholar, and

Scirus. Additionally, searches were conducted for specific chemicals whose inter-

actions were evaluated as greater-than-additive in either the interaction profiles

developed by the Agency for Toxic Substances and Disease Registry (ATSDR) for

priority mixtures or the MixTox database developed by the U.S. Environmental

Protection Agency. Greater-than-additive combinations of pesticides were

extracted also from Carpy et al. (2000). Boobis et al. (2011) performed a number

of other search activities including a gray literature investigation they termed

“aggressive,” contacting “key” scientists in both toxicology and risk assessment,

and posting in online discussion communities.

Identified papers were compared against multiple inclusion/exclusion rules:

1. Only mammalian systems were included; others, including reptile and fish, were

excluded.

2. Only epidemiology studies with validated exposures were included, whereas

epidemiology studies without validated exposures were excluded.

3. Chemical stressors were preferred; noise was given as an example of an

excluded stressor.

4. In vivo data were preferred over in vitro/in silico studies.

5. Studies were included where the effect of the mixture conformed to greater-than-

additive interactions.

6. Included studies/work were either peer-reviewed or agency produced (e.g.,

ATSDR, EPA, WHO).

After these inclusion/exclusion criteria were applied, the authors asked if “qual-

ity were apparent” (see Boobis et al. (2011), Fig. 1.1); this resulted in identification

of 90 papers. These 90 papers were then reviewed and studies excluded if the

findings were not novel or if it was deemed that the claim of a greater-than-additive

13 Mixture Experimental Design 343

https://doi.org/10.1007/978-3-319-56234-6_1


interaction was not supported by the information provided in the paper. Forty-three

papers remained that met the inclusion criteria and were judged to provide novel

data on greater-than-additive interactions in mammals. Boobis et al. (2011) then

went on to critically examine papers where the magnitude of the greater-than-

additive interaction was quantified.

13.2.6 Conclusions Regarding the State of the Science

Early studies of environmental mixtures were overwhelmingly focused on binary

combinations; for example, more than 90% of MixTox mixtures were binary.

However, the field has begun to include higher-order mixtures ranging from defined

mixtures of 5 (Moser et al. 2005; Howdeshell et al., 2015), 6 (Hass et al. 2017),

7 (Moser et al. 2012; Rider et al. 2008), 10 (Rider et al. 2010), and 18 chemicals

(Crofton et al. 2005) in in vivo studies and 12 (Hadrup et al. 2013), 17 (Ermler et al.

2011), 21 (Scholze et al. 2014), and 30 (Orton et al. 2014) chemicals in in vitro

studies. In these studies, dose/concentration-response relationships determined for

the component chemicals were used to develop the estimated effect of the mixture

under “additivity”; this predicted mixture effect was then compared to the exper-

imentally observed effect of the mixture. The early investigations of both pharma-

ceutical and environmental mixtures provided clear evidence that many studies

were flawed. Common problems included lack of clearly articulated null and

alternative hypotheses, deficient experimental designs, either no statistical analysis

or application of inappropriate statistical analyses, and drawing conclusions

unsupported by the data. These earlier quality reviews provide insight into the

long-standing nature of the problem and indicate that these concerns are not limited

to one type of mixture (e.g., only pharmaceutical mixtures or only industrial or

environmental mixtures). It is also important to note that it is not uncommon for

even highly qualified statisticians to disagree on the appropriateness of a particular

mixture design and statistical analysis. It is very encouraging that of the 90 studies

that met inclusion/rejection criteria that had no bearing on the quality of the work,

almost half (43 out of 90) passed the quality review of Boobis et al. (2011). The

number of quality studies is almost certainly higher as many of the exclusion

criteria did not bear on the quality of the work, and papers that met the inclusion

criteria also had to pass a review of the novelty of the findings. Thus, comparing the

results of Boobis et al. (2011) to the findings of the EPA review of studies in the

MixTox database, substantial progress has been made with regard to the quality of

mixture studies. It is noteworthy that while mixture researchers have been grappling

with issues of study quality for a very long time, the quality and reproducibility of

scientific investigations in general have been a topic of considerable interest in the

scientific community. George et al. (2015) note that the increasing concern about

research reproducibility is not limited to one field of study. Reproducibility issues

have been raised within diverse scientific disciplines, including “omics” (Ioannidis
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and Khoury 2011), computational science (Peng 2011), field biology (Ryan 2011),

and preclinical studies for cancer therapeutics (Begley and Ellis 2012).

13.3 Power

13.3.1 Introduction to Power

Within the context of statistical analysis, the power of a particular analysis or

hypothesis test is defined as the probability of making the correct decision if the

alternative hypothesis, rather than the null hypothesis, is true. Thus, the power of a

hypothesis test is the probability of rejecting the null hypothesis, H0, when the

alternative hypothesis, HA, is the hypothesis that is “true.” Two types of errors may

occur: Type I and Type II. Type I error is sometimes called a false positive, as it

occurs when the null hypothesis of “no statistically detectable effect” is “true,” but

the null hypothesis is rejected. Type II error, sometimes called a false negative,

occurs when the null hypothesis of “no statistically detectable” effect is false, but

the null hypothesis is not rejected. Power and the level of significance impact the

risks of Type I and Type II errors, with the risk of Type I and II errors being

inversely related. With each hypothesis test, both Type I and Type II errors are

possible. The probability of a Type I error is α, the level of significance set by the

investigator. Typical α levels of 0.05 and 0.01 indicate a 5% and a 1% chance,

respectively, that the null hypothesis is incorrectly rejected, i.e., Type I error. The

probability of a Type II error is β, with power defined as 1-β. Traditionally, power
of 0.80 (also referred to as 80% power) is considered adequate. For mixture

experiments, the typical situation appears to be underpowered studies, but it is

noteworthy that “overpowering” is also possible. An undersized/underpowered

study will not yield meaningful or useful results and wastes resources. An over-

sized/overpowered study is more likely to yield statistical significance for effect

size changes that are not biologically or toxicologically meaningful and also wastes

resources as more are used than are necessary.

Although typical levels of Type 1 error (0.05, 0.01) and Type 2 error (0.20)

(1 – power 0.80) are often taken as convention, they are not always most appropri-

ate. Clinical acceptability of error levels depends on the consequences of the errors.

For example, for a screening test for a disease such as tuberculosis, power of 0.80

corresponds to a false-negative rate of 0.20, which would likely be deemed unac-

ceptable. To increase the likelihood of “true” cases being detected, screening tests

often tolerate increased false-positive rates to gain reductions in the false-negative

rates. For tuberculosis screens, if the initial test is positive, the person is assumed to

be more likely to have the disease, and a more sensitive diagnostic test is carried

out. However if the initial test is negative, if there is any possibility that the person

was exposed, the test is repeated several weeks later to reduce the possibility of a

false-negative result. As another example, mammograms have sensitivity (power)

of approximately 0.70 to 0.80. To increase the sensitivity, it is recommended that
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the test be repeated every year. This leads to increased false-positive rates.

According to Cancer.gov “. . .the test also comes with a fairly high false positive

rate: half of women who get annual mammograms each year for 10 years in the

United States will experience a false positive result. . . .” However this is considered
to be an acceptable trade-off for reducing the chances of missing a true positive

result.

It is interesting that the opposite is true for drug screens and for other tests that

have legal consequences. An individual is considered innocent until proven guilty.

Operationally this means that a drug screen needs to have a very low false-positive

rate even at the expense of increasing the false-negative rate. For example, Peace

et al. (2000) in Table III report the overall specificity level in donor specimens for a

“Rapid Drug Screen” of 96.1% (corresponding to a false-positive rate of 0.039). By

contrast the overall sensitivity level is 81.8% (corresponding to a false-negative rate

of 0.182).

Similar considerations would apply to pollution sites to identify pollution

hotspots in need of remediation. A trade-off arises between an increased false-

positive rate which could increase cost and reduce the area that could be screened

and an increased false-negative rate which could result in toxic materials remaining

unidentified, with adverse health consequences.

To assess the power of a hypothesis test, the response(s) being considered, the

response variability, the nature of the model to be fitted, the null and alternative

hypotheses, and the statistical strategy to be implemented need to be specified

quantitatively. Clarity in specification of both the null and alternative hypotheses is

essential. A typical null hypothesis might be “deviation from dose additivity, as

defined according to __________ (here the researcher inserts the reference for their

definition of dose additivity) is not statistically detectable,” with the corresponding

alternative hypothesis being “deviation from dose additivity is statistically detect-

able.” Although these may be the most commonly encountered null and alternative

hypotheses, other hypotheses are credible and likely to be encountered. Most

important is clear specification of the null and alternative hypotheses. Under the

null hypothesis of additivity, dose-response relationships are fitted to each compo-

nent. The expected response for the joint doses and the variability in this estimate

are determined from the individual component responses under the additivity

hypothesis being evaluated. This is compared to the experimentally observed

response and its associated variability, based on either an unsmoothed response

or on a smoothed model-based response. The deviations that can be detected with

specified power are determined.

When carrying out such comparisons to assess additivity, it is essential to

distinguish between statistical significance and toxicological importance. (Note

that the “type” of additivity is not specified here as the concepts apply equally to

additivity models based on toxicological similarity and those based on independent

action). Statistical significance is a mathematical concept that specifies differences

in responses that can be detected with specified power based on the amount of data

available, its variability, the test design used, and the statistical test carried out. In

contrast, toxicological importance is a biological concept. It pertains to the extent of
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difference in response that is important from a health or toxicological standpoint

(e.g., a decrease in body weight that indicates declining health or a change in

hormone levels that are known to be associated with “downstream” health effects).

If there are insufficient amounts of test data, if the data are too variable, or if data

collection efforts are inappropriately allocated, the test may be “underpowered.” In

this case, toxicologically meaningful deviations from additivity may not be statis-

tically significant, because of low power. If power calculations suggest that such is

the case, (i.e., the study is underpowered to detect statistically significant deviations

from additivity), then even though the hypothesis of additivity is not rejected, it

cannot be concluded that important deviations from additivity do not exist. It can

only be stipulated that the test is not powerful enough to detect toxicologically

important additivity deviations, if present. The opposite situation occurs if the test

is “overpowered.” In that case, toxicologically “trivial” deviations from additivity

may be highly statistically significant because the large amounts of data allow

statistically significant deviations from additivity to be detected that are not toxi-

cologically meaningful. If power calculations suggest that such is the case, then

even though the hypothesis of additivity is rejected, it cannot be concluded that

toxicologically important deviations exist. What can be said with certainty is that

the test is more than powerful enough to detect small effects; these small deviations

from additivity should be acknowledged along with the interpretation of the study

team with regard to their toxicological meaning or lack thereof. In either case, both

notions, of statistical significance and toxicological importance, need to be consid-

ered together. The objective when designing a study is to choose sample sizes, large

enough to be able to detect toxicologically meaningful deviations with high statis-

tical power but not so large as to detect small, toxicologically unimportant devia-

tions. It is important to report estimates of observed effect size, in addition to

statistical significance/nonsignificance. This helps indicate whether the study is

underpowered, overpowered, or properly powered to meet toxicological objectives.

13.3.2 Importance of Power to Study of Low-Dose/Low-
Effect Region

Researchers studying mixtures (whether defined or complex) are increasingly

encouraged to examine the low-effect/low-dose region where having sufficient

statistical power to detect effects, when present, becomes increasingly important.

In 2002, both the Expert Working Group, formed in response to a call by the

Society of Toxicology and the Society for Environmental Toxicology and Chem-

istry (Teuschler et al. 2002), and the EPA’s Four Lab Steering Committee (Simmons

et al 2002) emphasized the importance of the low-dose/low-effect region. An

organizing principle used by EPA’s Four Lab team for their experimental design

was that “mixtures studies should be conducted, to the extent feasible, in the

low-dose region of health effects dose-response curves” (Simmons et al. 2002).
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The Expert Working Group noted that “toxicology experiments on whole mixtures

or mixture components should include doses at or below the no observed (adverse)

effect levels (NOELs/NOAELs) for individual mixture components,” further mak-

ing the strong statement that “experimental paradigms characterizing only the

interactions of chemicals at high doses relative to actual environmental exposures

will not provide the necessary data to support scientifically informed health policy

decisions” (Teuschler et al. 2002). A summary of the outcomes of the 2005

Contemporary Concepts in Toxicology workshop, “Charting the Future: Building

the Scientific Foundation for Mixtures Risk Assessment,” identified the need to

rethink risk assessments for chemical mixtures, in particular how to add the

respective risks of low concentrations/dose levels of chemicals in a mixture, and

called for identification of the data requirements for improved assessments (Mason

et al. 2007). The workshop participants agreed that the development of useful

experimental data sets was both important and technically challenging. Risk asses-

sors and experimental scientists relayed their frustrations with the use of high-dose

studies to estimate the risks posed by exposure to actual environmental concentra-

tions and mixtures. As a result, the workshop encouraged development of experi-

mental data sets to improve low-dose risk evaluations of mixtures (Mason et al.

2007). Before (Simmons, 1995) and since then, agencies and advisory groups (e.g.,

IGHRC 2008; Kortenkamp et al. 2009) have either noted the difficulty in assessing

the risks resulting from low-level exposure to mixtures from high-dose experimen-

tal data or have made calls for efforts in the low-dose/low-effect region.

The importance of considering power is increased when studies are not

conducted according to accepted guideline protocols. Guideline studies typically

include considerations of power (e.g., see Crosier 1984; U.S. EPA 1998; National

Toxicology Program standard study protocols found at https://ntp.niehs.nih.gov/

testing/types/cartox/protocols/perinatal/index.html; and Organization for Eco-

nomic Cooperation and Development (OECD) Guidelines for the Testing of

Chemicals found at http://www.oecd-ilibrary.org/content/package/chem_guide_

pkg-en). The sample size per treatment group and group placement/dosage selec-

tion with regard to the regions of the dose-response curve may not be appropriate

for studies of chemical mixtures, in particular when assessing the low-effect/low-

dose region. As important as power considerations are for mixture studies, there are

few examples of power being considered explicitly as an element of study design.

Statistical power can be increased through consideration of the number of

experimental units (e.g., rodents for an in vivo study, number of wells for an

in vitro study), the number of dose groups, selection of dose levels, assignment of

experimental units to dose groups, sources of variability, and the use of blocking

designs to reduce variability of comparisons (Cochran and Cox 1992). An addi-

tional important element is the degree of departure from additivity (i.e., the effect

size) specified in the alternative hypothesis, where the null hypotheses is consistent

with the type of additivity specified by the investigator. The smaller the difference

the investigator desires to detect between the experimentally observed mixture

effect and the predicted mixture effect under an assumption of additivity, the

greater the number of experimental units per treatment group will be required;
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i.e., holding power constant, the sample size/group to detect a 10% difference

between the predicted and observed mixture effect will be 16 times larger than

the sample size/group required to detect a 40% difference.

13.3.3 Powering Defined Mixture Experiments

Given the importance of properly powering experiments to avoid a false negative

(failing to detect a nonadditive interaction due to insufficient statistical power),

relatively little research has been conducted in this arena. Several collaborative

efforts between statisticians and toxicologists are reported here.

An example of how considerations of power can influence the experimental

design for defined mixture studies is provided by a collaborative effort between

Virginia Commonwealth University statisticians and U.S. Environmental Protec-

tion Agency toxicologists (Coffey et al. 2005). The purpose of the investigation was

assessment of the impact on power of both mixture dosage and allocation of

experimental units within the dose groups. The endpoint was inhibition of cholin-

esterase activity in erythrocytes of adult, male Long-Evans rats administered an

acute oral dose of either one of two pesticides or the binary pesticide mixture. A

particular advantage was the availability of both individual chemical and binary

mixture data for the effects of chlorpyrifos alone, carbaryl alone, and a 2:1 mixture

of chlorpyrifos-carbaryl on cholinesterase activity in red blood cells (Gordon et al.

2006). It is important to note that inferences about dose additivity and associated

power were restricted to combinations along the 2:1 ratio ray. Although individual

chemical data may be available, mixture data in advance of the experiment being

designed are rare but, as can be seen in this case study, allow for extremely valuable

insights into the usefulness of various designs. Similar to the majority of in vivo

studies that are constrained due to technical and resource limitations, the design

under construction was constrained by a maximum of 50 animals in the study.

Because nonadditive interactions may result in greater-than or less-than expected

toxicity, experimental designs were optimized for these opposing situations and for

“mixed interactions,” in which greater-than-additive interactions occur in one

mixture dose region, and less-than-additive interactions occur in another mixture

dose region. A D-optimal design strategy, based on a specified parametric dose-

response model, was selected in which the design is optimized to decrease the

variability associated with the model parameters. (Note: D-optimal designs are

computer-aided designs, that result in generated experimental designs with mini-

mized variance of the model parameter estimates under model assumptions (NIST/

SEMATECH, accessed 1-10-18). The definition of dose additivity provided by

Berenbaum (1985, 1989) (see Chap. 9), based on Loewe and Muischnek (1926),

was adopted by the authors.

For detection of a 33% change in the dosage resulting in a 20% effect level

(ED20) based on either greater-than-dose-additive or less-than-dose-additive inter-

actions, the authors found that equal spacing of dose groups combined with equal
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allocation of animals to dose groups resulted in low power. Table 13.2 provides

examples of the designs considered by the authors. Comparing Designs A and B

with equally spaced doses and equal allocation of animals to groups, it can be seen

that neither resulted in acceptable power. For less-than-additive effects, power was

quite low for both Designs A and B; for greater-than-additive effects, more power

was achieved for Design B (0.39) than for Design A (0.08). For the less-than-

additive design options, inequality in spacing of both mixture doses and in alloca-

tion of animals to groups (Designs E and F) achieved small increases in power;

however, power never exceeded 0.27. In contrast, for the greater-than-additive

design options, both designs shown in Table 13.2 with unequal dose spacing and

unequal allocation of animals to groups (Designs C and D) achieved higher power,

with the four dose group alternative (Design D) achieving almost 0.80 power.

Unequal dose spacing and unequal allocation of animals to dose groups yielded

0.78 power for Design H and 0.84 power for Design I, although the equally spaced/

allocation designs (A and G) had poor power. It seems unlikely that any reasonable

alteration in experimental design would result in the less-than additive design

achieving 0.80 power. Although not discussed by the authors (Coffey et al.

2005), several potentially feasible design adjustments may have resulted in achiev-

ing 0.80 power for the greater-than-additive design. If an extra five animals (10%

Table 13.2 D-optimal experimental designs for detection of departure from dose additivity

Study design Mixture dosage (mg/kg) N/group Powera Varianceb

Detection of greater-than-additive toxicity

A 0, 5, 10, 15, 20 10, 10, 10, 10, 10 0.08 72,720

B 0, 3, 6, 9, 12 10, 10, 10, 10, 10 0.39 1.50

C 0, 0.74, 2.1, 14.0, 17.9 8, 13, 15, 7, 7 0.64 0.00054

D 0, 0.74, 2.46, 16.4 7, 11, 26, 6 0.74 0.00044

Detection of less-than-additive toxicity

A 0, 5, 10, 15, 20 10, 10, 10, 10, 10 0.05 0.32

B 0, 3, 6, 9, 12 10, 10, 10, 10, 10 0.08 0.0028

E 0, 1.57, 3.8, 4.2, 16.9 7, 11, 12, 13, 7 0.26 0.00032

F 0, 1.57, 4.2, 18.3 7, 13, 23, 7 0.27 0.00030

Detection of dose-dependent mixed nonadditivityc

A 0, 5, 10, 15, 20 10, 10, 10, 10, 10 0.10 773.7

G 0, 4, 8, 12, 16 10, 10, 10, 10, 10 0.14 5.02

H 0, 1.75, 3.2, 11.6, 13.4 9, 11, 15, 7, 8 0.78 0.00068

I 0, 1.75, 3.2, 12.0 9, 15, 19, 7 0.84 0.00056

Adapted from Coffey et al. (2005)
aPowered for the effect size of a 33% change in the experimentally observed mixture ED20 relative

to the predicted mixture ED20 estimated from the individual chemical dose-response curves under

an assumption of dose additivity
bThe variance of the model parameters, in this case the slope, and intercept parameters of the

statistical additivity model
cThe dose-dependent mixed nonadditivity model was for the case where less-than-additive inter-

actions are observed at lower doses and greater-than-additive interactions are observed at higher

doses
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increase in total experimental sample size) would increase power to 0.80, the

experimentalists may have been able to accommodate the increased sample size.

If the rate limiting factor were the number of animals that could be handled on the

day of tissue collection, perhaps a blocked design, in which a second cohort of

animals increased the overall experimental sample size, may result in the desired

power. Or, perhaps the investigators could consider whether the goals of the study

would be compromised if the effect size were increased. If one or more of these

alternatives were acceptable to the experimentalists and the goals of the project, the

study team could determine: how many animals would need to be added to the

study, whether blocking would be required to accommodate the extra animals, and

the effect size increase necessary to achieve 0.80 power (e.g., compared to a 33%

change, would a 40% change improve power?).

An example of sample size and power calculations for conducting tests of

additivity on parameter estimates is found in Casey et al. (2006). The experimental

design was a fixed ratio ray of a mixture of five organophosphate (OP) pesticides at

a mixing ratio of 0.040 acephate, 0.002 diazinon, 0.031 chlorpyrifos, 0.825 dimeth-

oate, and 0.102 malathion. Dose-response curves for the individual chemicals and

the five OP mixtures were developed in adult, male Long-Evans rats. In addition to

the control group, six mixture dose groups were included in the experiment design,

to ensure coverage of the dose-response space, with total mixture dose levels

ranging from 10 to 450 mg/kg (for a total of seven experimental groups). Rats

were dosed acutely by oral gavage; assessment of motor activity, measured as the

total activity count for the duration of the session, began 15 min after dosing and

lasted 20 min. Employing a threshold dose additivity model based on the

Berenbaum definition of dose addition (Berenbaum 1985, 1989) and parameter

estimates derived from the individual chemical dose-response curves, an additivity

model for the five OP mixtures was constructed. Sample size and power calcula-

tions were made for two different types of changes in the mixture dose-response

function that might occur as the result of nonadditive interactions: change in

threshold and change in slope. For illustration and convenience in simulation, the

two situations were dealt with as isolated events – i.e., it was assumed that the

change in threshold occurred without a change in slope and that the change in slope

occurred without a change in threshold. In both cases, the effect size remained the

same, a mean total motor activity of 125 activity counts. First, the authors consid-

ered the situation where a change in the intercept of the mixture dose-response

curve resulted in a 25% shift to the left in the mean total motor activity, at an effect

level of 125 activity counts. The shift to the left indicates that the effect (in this case

125 activity counts) is achieved at a lower dosage of the mixture (see Fig. 13.2,

panel A). Under this scenario, equal allocation of 18 animals/group resulted in 0.77

power to detect a 25% shift to the left in mean total activity, where the null

hypothesis is no change in threshold, and the alternative is a threshold change

resulting in a 25% activity shift. Unequal allocation, as shown in Table 13.3,

resulted in 80% power.

The second situation considered was a change in slope. In this scenario (illus-

trated in panel B of Fig. 13.2), the investigators determined the change in slope
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required for a 25% shift to the left at a motor activity count of 125, where the null

hypothesis is no change in slope, and the alternative hypothesis is a change in slope

sufficient to result in a 25% shift to the left in mean total activity. With unequal

allocations, weighted toward the upper end of the dose range, power of 79.9% was

achieved (see Table 13.3). Under approximately equal allocation of the same

number of animals, power was estimated to be 64.8%. This study assumed that

the mixture dose levels were fixed, could not be altered, and still meet the objectives

of the study. Such a scenario might occur where the study is intended to match

exposure scenarios that are known and of interest with regard to additivity;
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Fig. 13.2 Conducting tests of additivity on model parameter estimates (from Casey et al. 2006)

Table 13.3 Powering for changes in model parameter estimates

Shift in threshold resulting in a 25%

shift to the left at 125 activity counts

Shift in slope resulting in a 25%

shift to the left at 125 activity

counts

Total mixture

dose N/group N/group

0.0 30 1

10 31 1

55 14 11

100 19 3

200 20 39

300 13 44

450 1 51

Total Na 128 150

Estimated power 0.800 0.799

Estimated

power, equal

allocation

0.770 0.648

From Casey et al. (2006)
aThe total N is the number of animals required to achieve ~80% power under unequal allocation, as

for this example, unequal allocation of the same total number of animals resulted in more power
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examples would be consumer use of a commercial product containing a blend of

pesticides present in invariant ratios or patients infected with antibiotic-resistant

bacteria being dosed with multiple antimicrobial agents at set dose levels at fixed

time intervals. The results illustrate that the allocation of subjects to treatment

groups differs based on the type of change expected in the experimentally derived

mixture dose-response curve and that reasonable power can be achieved even when

the actual dose levels are fixed. Without preliminary experimental data or informa-

tion that enables the study team to develop expectation(s) of the type of change

expected in the mixture dose-response function, the experimentalist may wish to

examine whether increasing the total sample size, sufficient to increase power to

80% under both scenarios (change in slope, change in threshold), is feasible. If so,

running the experiment in multiple blocks, without confounding, could be explored

to accommodate the extra animals.

13.3.4 Powering Complex Mixtures

Consideration of power appears to be even more rarely mentioned in complex

mixture toxicology studies than in defined mixture studies. Complex mixture

experiments share the constraints outlined above for defined mixture studies and

are further constrained by limitations of sample volume. Studies that strive to use

environmentally realistic complex mixtures have further practical constraints on the

sample concentration factors that can be achieved as well as the sample volume that

can be produced. Dingus et al. (2011) described methodology for calculation of

statistical power for nonindependent observations for a multi-generational rat

reproductive/developmental bioassay being conducted as part of the EPA’s Four
Lab study (Simmons et al. 2002, 2008; Pressman et al. 2010; Narotsky et al. 2013).

It was recognized (Simmons et al. 2002, 2008) that the sample sizes typically

associated with traditional experimental designs would likely not be adequate to

detect effects resulting from exposure to environmental exposure levels of the

complex mixtures formed during oxidant disinfection of water. As a multi-

generational rat bioassay was being conducted, the extent that water could be

concentrated while conserving the volatile and nonvolatile organic chemicals

initially present in the water and retaining palatability, so that the animals would

not voluntarily restrict their consumption of the water concentrates (Simmons et al.

1994), were important design considerations. Although a dose-response study was

desirable, this objective was not possible due to the limited amount of water

concentrate available. The study team decided it was better to have one well-

powered treatment group compared to the control than to have multiple underpow-

ered treatment groups, where it would not be possible to discern if failure to detect

was due to “there being no effect to detect” or due to the lack of statistical power

resulting in a false negative (Type II error).

Pup weight at birth and prenatal loss were the primary endpoints for the complex

mixture multi-generational bioassay (Narotsky et al. 2013). Data for these
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endpoints were available from a previous study (Narotsky et al. 2008) in which

pregnant Sprague-Dawley rats were exposed during gestation days 6–16 to chlori-

nated water concentrated ~130-fold by reverse osmosis membrane techniques with

volatile DBPs lost during the concentration process spiked back into the concen-

trates. Data from Narotsky et al. (2008) were used to establish effect sizes for pup

weight and prenatal loss. Power calculations for pup weight were based on a

two-sided test. In contrast, as it was deemed biologically implausible for exposure

to water concentrates to decrease the level of prenatal loss in the exposed group, a

one-sided hypothesis was constructed and powered. As statistical tests were to be

performed independently for these two endpoints, the Type I error rate was set at

0.05 for each of the two tests. For both endpoints, the experimental unit was the

litter.

For pup weight, each pup within a litter represented a repeated measurement.

Weights of pups from different litters were assumed to be independent, i.e.,

uncorrelated, while a constant correlation was assumed between pups from the

same litter. Expected control group and treatment group means, variances and intra-

litter correlations, were estimated from the earlier study (Narotsky et al. 2008).

Although not biologically realistic, a simplifying approximation was an equal

number of repeated measures per experimental unit, so it was assumed that an

equal number of live pups would be produced in each litter. Several designs were

considered, examining power and technical constraints with different approaches

that varied the number of study blocks, the number of dams in the parental

generation, and the number of females per litter selected for breeding in the next

generation. Greater than 0.80 power would be achieved for pup weight for each

design, except when the unlikely assumption was made that the intra-litter corre-

lation would be zero (Dingus et al. 2011).

Although any of the considered designs would meet the desired objectives with

regard to pup weight, none of the designs appeared to provide sufficient power for

prenatal loss. A two-block design, with unequal allocation of first-generation dams

to control (40 dams) and treatment (60 dams) groups yielded the highest power

estimates for prenatal loss, providing 0.57 power when assuming 13 implants per

dam. Despite the continued concern with regard to inadequate power for prenatal

loss, the decision was made to proceed with the design that afforded the best power

estimate for this endpoint. Interestingly, when analyzing the prenatal data from the

experiment, it was noticed that the original power calculations (Dingus et al. 2011)

used untransformed prenatal data, rather than arcsine-square root transformed data,

the transformation that was used in the statistical analysis of the collected data

(Narotsky et al. 2013). A retrospective analysis was conducted to detect the same

prespecified effect size (Thomas 1997), with arcsine square-root transformed data.

The result showed that the study design had more than 99% power to detect

prenatal loss.
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13.3.5 Conclusions Regarding Power

Power is frequently neglected in toxicological investigations of mixtures. This may

be a result of many toxicologists having experience with guideline studies, where

frequently the number of dose groups and the number of animals per dose group are

specified, as is the top dose level. Consideration of power is “built into” these types

of study designs. Having specific designs used coherently by multiple laboratories

enables comparisons between chemicals that are not confounded by differences in

study design and analysis schemes. However, as discussed above, these types of

“guideline” experimental studies are generally not feasible for complex mixtures

and often are less than desirable for defined mixture studies. For both defined

mixture and complex mixture toxicological experiments, the increasing call to

consider the low-effect/low-dose region leads to experimental designs tailored to

specific mixtures and specific hypotheses and the need to power them properly.

Achieving adequate power in mixture studies often requires consideration and use

of non-equal group sizes. For experiments examining an assumption of additivity,

designing the experiment to achieve sufficient power requires not only specification

of the form of additivity (concentration addition or independent action) but whether

the investigator is interested in greater-than-additive or less-than-additive interac-

tions. In addition to clear specification of the null and alternative hypotheses, the

importance of preliminary or pilot data cannot be overemphasized.

13.4 Types of Experimental Designs

13.4.1 Defined and Complex Mixtures

Defined mixtures are often constructed by experimentalists under controlled con-

ditions to be used for various types of testing, such as toxicological, medical,

physical, or other chemical applications. Mixtures of pharmaceuticals as adminis-

tered to patients are an example of a defined mixture, with very tightly controlled

constituent proportions. In contrast, the constituent proportions of mixtures of

pharmaceuticals present in wastewaters or surface waters are much more variable.

Since the constituents of experimentally constructed defined mixtures are well

controlled, studies can be designed to determine the relative contributions of

individual constituents (main effects) and specified combinations of constituents

(interactions) to the overall mixture effect. This is accomplished by varying the

mixture constituent proportions as specified by the design matrix and comparing the

effects of different mixtures. Sometimes complex mixtures are treated as if they

were defined mixtures by focusing on a specified subset of components and

characterizing this subset mixture. Effects due to individual constituents or combi-

nations of constituents can be determined from these subset defined mixtures if the

variation in component proportions among the data set of mixtures is sufficiently
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large and if the components selected for analysis account for nearly all the effect

under investigation. Nearly all the designed experiments involving mixtures

reported in the literature pertain to defined mixtures.

Examples of complex mixtures are effluents from wastewater treatment plants,

industrial effluents, seepage from hazardous waste disposal sites, emissions from

the burning of wood or coal, and emissions from gasoline-powered and diesel-

powered vehicles. These mixtures may exhibit apparently random variation across

neighboring water treatment or industrial plants or across time within plants

(e.g. wastewater treatment, industrial facilities) or across different sites

(e.g. hazardous waste sites) or across time within the same location (e.g. wastewater

treatment, industrial facilities, hazardous waste sites), due to burning of different

varieties of fuel or from different types of engines and running conditions (gasoline-

powered and diesel-powered vehicles). Designing tests and carrying out inferences

with complex mixtures is more difficult than with defined mixtures.

13.4.2 Designs for Defined Mixtures

The composition of mixtures made in the laboratory may be based on statistical

experimental design (e.g., Groten et al. 1991; Johnsen et al. 1994; Eide 1996; Eide

and Zahlsen 1996). Factorial designs (Box et al. 2005) imply complete indepen-

dence between the variables (orthogonality). Factorial designs may be expanded to

response surface designs to describe nonlinearity. Fractionated factorial designs

and complete and incomplete block designs (Box et al. 2005; Cochran and Cox

1992) are alternatives with many variables. Other classes of designs are ray designs

(Stork et al. 2007) and statistical mixture designs (Cornell 2002), the latter if the

variables are proportions of a blend. Statistical experimental design is a structured

and systematic way of combining a number of variables with as few combinations

as needed for meeting statistical power objectives and simultaneously maximizing

the variation in mixture composition. In mixture toxicology, the purpose is to make

a number of mixtures with variation in both composition and concentration of

predefined chemical compounds (variables).

13.4.2.1 Factorial Designs

Among factorial designs, the two-level factorial design is the simplest and the most

commonly used, implying complete independence between the variables (orthog-

onality). Figure 13.3 illustrates a two-level full factorial design with three

chemicals (termed a 23 design, with the first number indicating the number of

dose levels and the second number the number of chemicals in the mixture). Each

chemical (variable) is varied between a low and a high value (�1,1) giving eight

different combinations (mixtures). In addition, the center point is often added to the

design with all three variables at an intermediate (average) level. The center point
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implies that all variables are at three levels, providing the ability to identify

departures from linear dose trends. The center point may also be valuable for

measuring repeatability in the tests or analyses to estimate pure error. This can be

achieved by making and testing, for example, three center point mixtures indepen-

dently. However, to describe nonlinearity individually for each chemical, more

observations are required, e.g., by selecting combinations of variables such that all

chemicals are tested at five levels instead of three (response surface design). This

involves samples representing the center of each surface as shown in the central

composite face design in Fig. 13.3. Alternatively, the full factorial design may be

expanded with “star points” extending with a factor outward from the center of each

surface. To have some desirable mathematical properties, it is recommended that

this factor is taken as [number of factorial runs]1/4. Based on a full factorial 23

design with 8 runs, the factor becomes [8]1/4 ¼ 1.68. The six star points would

therefore be at a distance �1.68 along the axis for each chemical. Statistical

experimental design is described in more detail by Box et al. (2005).

The design matrix corresponding to Fig. 13.3 can be drawn up manually. In

addition, there are options for statistical design in most software for multivariate

data analysis. The use of software is particularly useful with many variables and

with designs with more than two levels and also when there are constraints in the

possible combinations. However, for practical reasons, the application of complete

statistical experimental designs is only possible with a limited number of chemicals

(variables). For example, a full factorial design at two levels requires a significant

increase in the number of dose combinations as the number of chemicals increases:

3 chemicals: 23 design ¼ 8 mixtures (þ center point þ replicates)

5 chemicals: 25 design ¼ 32 mixtures (þ center point þ replicates)

10 chemicals: 210 design ¼ 1024 mixtures (þ center point þ replicates)

An alternative to the full factorial design is the fractional factorial design, which

is a structured way of selecting a fraction of the mixtures from a full factorial design

Fig. 13.3 Illustration of

factorial design with three

variables at two levels plus

center point (black dots) for

linear models and additional

combinations (open circles)

for nonlinear models
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and testing only those with respect to toxicity. The disadvantage is some

confounding, as described by Box et al. (2005).

Cochran and Cox (1992, Chapter 6) discuss and present tables of factorial

designs run in blocks of manageable size and the associated confounding structure

of effects with blocks. The blocks are designed so that main effects and low-order

interactions (e.g., two-factor interactions) can be estimated independently of block

effects. For example, for a 23 design, Cochran and Cox present a plan that includes

two blocks of four test runs each (see Plan 6.1, Cochran and Cox 1992). The blocks

are organized so that only the three-factor interaction is confounded with block

effects and all the main effects, and two-factor interactions are determined inde-

pendent of block effects. As a more complicated example, a 26 design (six

chemicals, each at two-dose levels) has 64 combinations. This may be too many

dose groups to test at one time. Cochran and Cox present a plan to test the 64 dose

combinations in four blocks of 16 dose groups per block (see Plan 6.3, Cochran and

Cox 1992). The blocks are constructed so that only four-factor interactions are

confounded with block effects. The main effects and two-factor and three-factor

interactions are determined independent of block effects.

An advantage with factorial design of defined mixtures is that the mixture

composition can be controlled, and the different variables can be combined as

desired, to estimate the desired effects with predicted precision. There are always

more observations than test conditions (i.e. dose combinations), and regression

analysis may provide empirical models with linear, interaction (cross), and square

terms (Box et al. 2005) describing cause-effect relationships and not just

correlations.

A full factorial design (23) was used in the evaluation of mixtures of three

polychlorinated organic compounds followed by in vitro toxicity testing (Søfteland

et al. 2009). The design matrix (X) corresponds directly to the eight corners and the

center point in Fig. 13.3. An example with a central composite face design (i.e.,

response surface design) corresponding to all points in Fig. 13.3 was used by

Figueiredo et al. (2015). The data from both of these studies were interpreted by

partial least squares regression (see Chap. 15 for a discussion of PLS).

A fractional factorial design was used to combine five fractions of produced

water in various proportions prior to toxicity testing (Johnsen et al. 1994). Frac-

tional factorial design was also used in a study in which organic extracts of diesel

exhaust particles were spiked with four individual PAHs prior to mutagenicity

testing (Bostrøm et al. 1998). The purpose was to evaluate possible interactions

between the individual PAHs and the organic extract. These two approaches

described above make it possible to treat the complex mixtures as simple mixtures.

However, neither of these approaches gives information about all the individual

compounds in the complex mixture.
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13.4.2.2 Statistical Mixture Design

Statistical mixture design (Crosier 1984; Cornell 2002), rather than factorial design,

may be preferred or required when the variables are proportions of a blend. A

statistical mixture design for three chemicals is illustrated by the triangle (simplex)

shown in Fig. 13.4. In such a mixture design, there is not complete independence

between the chemicals. For example, in a three chemical mixture, at given percent-

ages of x1 and x2, x3 is fixed to give a total of 100%. Statistical mixture design is

particularly useful when blending liquid chemicals or solutions. Statistical mixture

design has been used in combination with bioassay-directed fractionation (Østby

et al. 1997). After fractionation of organic extracts of diesel exhaust particles, three

fractions were recombined in different proportions based on the design and then

tested with respect to mutagenicity to identify interactions between the fractions. A

similar design was used by Eide and Zahlsen (1996) in inhalation experiments with

three hydrocarbons. Both the X and Y matrices are shown in these articles.

13.4.2.3 Isobolograms

An experimental approach that directly applies to the dose additivity definition of

binary mixtures is the isobolographic analysis which actually represents the sim-

plest form of mixture design (Plackett and Hewlett 1952; K€onemann and Peters

1996). For a binary mixture, an isobologram is a two-dimensional graph with the

doses of agents A and B along coordinate axes and with one or several lines,

isoboles that connect different dose combinations producing the same magnitude

of effect (Fig. 13.5). Dose additivity is characterized by straight lines in an

isobologram with linear dose scales touching the dose axes at the single-agent

doses DA and DB. Deviations from this straight line directly indicate greater-than-

additivity or less-than-additivity as shown in Fig. 13.5. Examples of the isobole

approach are presented by Bernhoft et al. (2004). Combined effects of selected

Penicillium mycotoxins on in vitro proliferation of porcine lymphocytes were

Fig. 13.4 Illustration of mixture design with three variables
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studied in binary mixtures. Dose-response curves for each mycotoxin and myco-

toxin combinations were generated. The combined effects of toxin pairs based on

IC20 were illustrated in isobolograms.

Although isobolograms usually are made for binary mixtures, multidimensional

isobolograms may in principle be used implying statistical mixture designs with

equipotent doses or concentrations (Eide and Johnsen 1998).

13.4.2.4 Ray Designs

An alternative, simple design strategy is based on using “ray designs” (e.g.,

Gennings et al. 2004; Moser et al. 2005; Hertzberg et al. 2013). In this design,

dose-response relations are determined for individual mixture components as well

as for mixtures of the components tested with graded total (sum across components)

doses tested along a fixed ray. A ray is a one-dimensional surface in high-

dimensional space along which the component doses are in fixed proportion, but

the total dose varies. For example, if there are three components, then along the ray,

the relative component doses are fixed (e.g., 0.3, 0.5, 0.2), with the absolute

component doses varying. Ray mixture designs require many fewer test points

than factorial designs, but their inferences are more limited. If the individual

components have the same mode of action and can be thought of as dilutions or

concentrations of one another with respect to toxic effects, then the responses along

the ray can be predicted from the individual component responses as the effects

associated with a specified linear combination of the component doses. A limitation

of ray designs is that if departures from dose additivity are detected, there is no

direct indication which component or combinations of components are responsible.

In their paper, Hertzberg et al. (2013) provide a method, termed the expected

component contribution score, that calculates the percentage of the mixture

response under dose addition that is expected from each component. This involves

Fig. 13.5 Isobologram.

Line 1, dose additivity; line

2, greater-than additivity;

lines 3 and 4, less-than

additivity
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additional exploratory analysis steps in which components are examined one at

a time.

13.4.3 Summary

Factorial designs, response surface designs, statistical mixture designs,

isobolograms, and ray designs are each useful for studying the joint toxicity of

mixtures of chemicals, but they have different advantages. Factorial designs lead to

more general inferences. Response surface designs are good for identifying joint

mixture conditions resulting in maximum (minimum) response or in moving toward

the direction of the extreme response. Ray designs are much simpler to carry out

since they involve mainly single-component tests, but their utility is limited to the

detection of dose additivity or departures from it and do not provide an obvious path

forward for the next stage of statistical analysis in the absence of dose additivity.

Statistical mixture designs may be preferred when the variables are proportions of a

blend. For detailed explanations of these various designs, the reader is referred to

Box et al. (2005), Cochran and Cox (1992), Crosier (1984), and Cornell (2002).

13.5 What is the Right Experiment?

Although it might be easy to be discouraged after reading the chapter to this point, it

is important to keep several points in mind. First, the recent widespread concerns

with reproducibility of studies and concerns with design, power, and reproducibility

extend far beyond mixtures. With the increased emphasis in many scientific disci-

plines for studies that are well designed, properly powered, appropriately

conducted, analyzed, and interpreted, all fields of science, including mixtures,

will benefit.

It is also important to note that appropriate experimental designs and associated

statistical methods for mixture analyses are now more widely implemented. The

right experiment is often one that is best if designed by a multidisciplinary team,

with the experimentalist, the statistician, and the consumer of the results being the

essential trio, with other expertise included as appropriate. Examples of common

“consumers of the results” include risk assessment and risk management practi-

tioners, as well as regulatory agencies and decision makers, pharmaceutical man-

ufacturers, medical professionals, and the chemical industry.

The right experiment is one that is tailored to address the question being asked.

Careful and clear articulation of both the effects to be examined (e.g., mutagenicity

in Salmonella strain TA100 in the presence of metabolic activation or change in pup

weight on postnatal day 6) and the null and alternative hypotheses are crucial to

conducting the right experiment. The optimal design will vary based on the purpose

of the experiment; in turn, the purpose of the experiment drives the elements of the
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null and alternative hypotheses. The experimental design should optimize the

accuracy and precision of the values being estimated; the optimal design depends

on the values being estimated and the “true” nature of the underlying dose-response

relationship, i.e., the shape of the underlying dose-response curve(s) and variability.

The total number of experimental units is important as is the number of dose

groups, the selection of doses, and the allocation of experimental units within

dose groups. Developing the analysis plan is important as the most elegant design

will not be successful if the analysis is not appropriate; conversely a superior

analysis strategy will flounder if the data collected are not suitable for that type

of analysis.

Consideration of power in advance of conducting the experiment is vital.

Neglect of power considerations appears to be one of the most common mistakes

in mixture experimental design. The importance of advance power analysis

increases as investigators move into the low-effect/low-dose region of dose-

response curves. As shown in this chapter, different designs are likely to be required

dependent on the complexity of the dose-response trend, the complexity of the

interactions, and whether the focus is on detection of a greater-than-additive, less-

than-additive, or a dose-dependent interaction. The utility of a pilot experiment

cannot be overemphasized as it provides highly useful data to use in planning the

more definitive experiment, including determination of the sources and degree of

variability, the selection of an appropriate design (e.g., isobole vs ray vs response

surface vs factorial), power calculations, dose selection decisions, the allocation of

experimental units per dose group, and optimization of experimental design.

In sum, the right experiment:

• Addresses an important question

• Focuses on mixtures of concern

• Uses relevant levels of biological organization for evaluation of the mixture

• Includes relevant mixing ratios for defined mixture investigations and environ-

mentally realistic mixtures for complex mixture investigations

• Is planned by cross-disciplinary teams with essential expertise in mixtures

toxicology, experimental design, and statistical analysis and draws freely on

other expertise based on the purpose of the experiment and the use of the

resulting data/information

Finally, the experimental design and the analysis should always match the

question being asked.
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Chapter 14
Component-Based Risk Assessment
Approaches with Additivity
and Interactions

Richard C. Hertzberg and M. Moiz Mumtaz

Abstract Mixture risk assessments are most often based on toxicology information
for the component chemicals, primarily because dose-response information on the
mixture of concern is inadequate. The most widely used component methods in
mixture risk assessment are based on dose addition or response addition. Two
methods described here are derived from dose addition: the hazard index and the
relative potency factor method. The hazard index informs safety decisions for
specific environmental exposures, while the relative potency factor formula actually
estimates the health risk for specific environmental exposures. Use of dose addition
is supported when chemicals are toxicologically similar (see Chap. 9). The hazard
index is motivated by dose addition and is applied to chemicals having a common
toxicological target organ, which is fairly weak evidence of toxicological similarity.
A weight of evidence system for binary mixtures allows the hazard index to be
modified to incorporate toxicological interactions. Relative potency factors are
applied in a dose addition formula and are developed for chemicals that have good
evidence of toxicological similarity, e.g., chemicals that share a common adverse
outcome pathway (AOP) and are assumed not to elicit toxicological interactions.
Two other methods described here are related to response addition, both requiring
the assumption of toxicological independence (see Chap. 9). When response is a risk
(probability), response addition follows the statistical formula for independent
events. When response is a measured effect, the addition is called effect summation,
where the component incremental effects are added. This chapter reviews the history
and concepts related to component-based methods for health risk assessment of
chemical mixtures, illustrates commonly used methods and some modifications, and
discusses strengths, limitations, and likely future development.
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Keywords Dose addition · Hazard index · Relative potency factors · Toxicity
equivalence factors · Binary weight of evidence · Interaction-based hazard index
· Toxicological similarity · Toxicological independence · Response addition · Effect
summation · Integrated addition

List of Abbreviations

AOP Toxicological adverse outcome pathway
ATSDR U.S. Agency for Toxic Substances and Disease Registry
BMD Benchmark dose
BMR Benchmark response
DBP Drinking water disinfection by-product
DVFA Danish Veterinary and Food Administration
ECJRC European Commission Joint Research Centre
EDx Effective dose causing x response, usually x%
EFSA European Food Safety Authority
U.S. EPA U.S. Environmental Protection Agency
FQPA U.S. Food Quality Protection Act
ICED Index chemical equivalent dose
IRIS U.S. EPA’s Integrated Risk Information System
MOA Toxicological mode of action
NOAEL No-observed-adverse-effect level
PBPK Physiologically based pharmacokinetic
QSAR Quantitative structure-activity relationship
RfD Reference dose
RIVM Dutch National Institute for Public Health and the Environment
SF Carcinogenicity slope factor (U.S. EPA)
UF Uncertainty factor
WHO World Health Organization

14.1 Background

The main purpose of a chemical mixture risk assessment is to provide scientific
support to inform a risk management decision concerning multichemical exposure.
With regulatory agencies that protect public health, that decision often relates to
determinations of safety, and if the exposure is deemed unsafe, it leads to consider-
ation of priorities and consequent action. Because a regulatory risk management
decision can be mandated by the courts to occur by a certain date, a risk assessment
strategy is needed that can proceed even when the scientific information is incom-
plete; that usually results in the establishment of several default methods to fill those
information gaps. Nonregulatory risk management can have similar safety goals and
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time constraints but might also be able to incorporate into the mixture assessment
more extensive information on the full dose-response curve, to use in comparative
evaluations such as cost-benefit prioritization. Particularly for occupational settings,
such assessments might have specific information on the exposures and character-
istics of the human population of concern.

Risk assessment is then not the same as quantitative toxicology, and approaches
suitable for research on joint toxicity, such as those in other sections in this book on
dose-response analysis from mathematical and toxicological perspectives (Chaps. 8,
9, 10, 11, 12, and 13), are often not suitable for regulatory or safety decision-making.
Mixture risk assessment methods in particular involve several compromises and
approximations, where the desirable characteristics are that they are feasible, roughly
correct, and able to be improved. For mixture exposures, the common lack of dose-
response information on the whole mixture itself has led to assessments based
primarily on information for the component chemicals, with occasional enhance-
ment by information on pairwise toxicological interactions (ATSDR 2004a; Meek
et al. 2011; SCHER et al. 2012; U.S. EPA 2000b). Chemical mixture exposures can
easily become very complex with multiple types of uncertainty. Consequently, many
safety and regulatory approaches include simplifications, often resulting in dramatic
reduction in the dimensionality (number of variables) but usually with a
corresponding increase in assumptions.

This chapter reflects the practice of health risk assessment for chemical mixtures,
and so is limited to methods contained in official regulatory risk guidance or
methods used in public health risk assessments. Regulatory guidance often empha-
sizes consistency and transparency of the risk assessment approach. Consequently,
such guidance usually includes proscriptive lists of assessment steps and criteria for
evaluating the approaches (U.S. EPA 2000a, 2001b, 2002a). Agency reports that
focus more on concepts are often called frameworks (Meek et al. 2011; U.S. EPA
2003c). The governmental guidance summarized in this chapter reflects that of the
U.S. EPA, U.S. ATSDR, WHO, EFSA, DVFA, RIVM, and some European Union
commissions (see Kortenkamp et al. 2009 and Kienzler et al. 2014 for summaries of
approaches for different agencies and various EU regulations). The focus of this
chapter is on component-based risk assessment approaches for chemical mixtures,
along with their attendant uncertainties. While the application is primarily to public
health, most principles and approaches also work well with ecological populations.
Several examples are included that are motivated by actual environmental mixture
risk assessments.

14.1.1 Scope

Most of the methods developed for mixture risk assessment involve dose-response
formulas, and consequently this section focuses on dose-response assessment. The
other steps in risk assessment, namely, hazard identification and exposure assess-
ment, are only briefly discussed (Sect. 14.1.2). For mixture dose-response
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assessment, the translation from experimental results to human risk estimation is
similar to that process used for individual chemicals, where main concerns involve
cross-species extrapolation (or scaling) of equitoxic dose and duration and relevance
of animal results to human health. The dominant extrapolation and assumption with
mixture risk estimation are that the observed experimental toxicity results, whether
whole-mixture response or evidence for toxicological interaction, also apply to
humans. The quantitative integration of animal and human dose-response data on
mixtures into a mixture risk assessment is rarely performed and can be considered
still in the early stages of development. Some concepts and examples do exist of
comparing and combining toxicological and epidemiological studies (see Chap. 10).

14.1.2 Exposure Assessment and Hazard Characterization
of Mixtures

The bulk of the exposure assessments and toxicological hazard characterizations for
environmental chemicals have been performed for individual chemicals, not mix-
tures (Egeghy et al. 2012; Meek et al. 2011). Some work has considered exposure
assessment of chemical combinations by focusing on those most commonly encoun-
tered, e.g., those included in the ATSDR HazDat database for hazardous waste sites
in the USA (Fay andMumtaz 1996). Other work has targeted combination exposures
in specific media, e.g., U.S. EPA characterizations of disinfection by-product con-
centrations in finished drinking water systems (Miltner et al. 2008) and exposure
research on ambient air quality including the U.S. EPA Cumulative Exposure Project
(Fox et al. 2004) and the Cumulative Communities Research Program (Zartarian and
Schultz 2010). Another targeted combination exposure is to specific chemical
groups, e.g., multimedia exposure to organophosphate pesticides for specific geo-
graphic regions and populations (U.S. EPA 2002b). Other work has focused on
specific subpopulations, e.g., the Detroit area (Fann et al. 2011; Morello-Frosch and
Shenassa 2006; Wesson et al. 2010), or has developed exposure grouping by
common media and exposure time (i.e., concurrent or nearly so) in order to assume
that members of a specific population are all exposed to the mixture of chemicals in
that exposure group (MacDonell et al. 2017 (in press); Rice et al. 2008; U.S. EPA
2007a). Research on exposure measurement and modeling of multiple chemicals is
evolving, such as investigations into potential application of ecosystem approaches
to include economics and geolocation into estimates of likely coexposures (Tornero-
Velez et al. 2012). Other concepts and approaches point the way toward improved
exposure assessments for mixture risk (see Chaps. 2, 3, and 4).

The hazard characterization step includes descriptions of the nature of observed
effects, which for human data with mixtures has mostly been performed for whole
mixtures, often commercial (intentional) combinations or compositionally consistent
by-products (e.g., diesel engine exhaust emissions in urban air). The exception is the
hazard descriptions from binary mixture research on toxicological interactions,
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exemplified by the many references summarized in the ATSDR interaction profiles
(ATSDR 2004a). A main limitation of many interaction studies is the focus on
mechanistic understanding with less information on interaction magnitude or poten-
tial exposure levels and often involves a limited dose range. To address such
limitations with binary interactions, U.S. EPA and ATSDR have developed struc-
tured evaluations of the weight of evidence for pairwise interactions that includes
both scientific quality and the relevance to human health (see Sect. 14.4).

14.1.3 Focus on Dose-Response Assessment

Dose-response assessment is a focus of this chapter, reflecting the dominance of that
assessment step in the research literature and in the regulatory guidance dealing with
mixtures of chemicals. Similarly, the methods in this chapter focus on those using
only information on the mixture component chemicals, reflecting the relatively wide
availability of dose-response information on individual chemicals. Dose-response
assessment for complete mixtures can be performed. For high-priority mixtures with
widespread exposure, such as diesel engine emissions and aroclors (commercial
mixtures of polychlorinated biphenyls), especially complex mixtures of hundreds of
components, the evaluations of the whole mixtures often treat the mixture as if it
were an individual chemical substance, with only minor changes from individual
chemical dose-response methods (see Chap. 15). For example, one can determine a
mixture’s virtually safe dose for chronic oral exposures by following the approach
for the individual chemical oral reference dose (RfD) that is in the U.S. EPA IRIS
database, e.g., dividing a lower bound on the benchmark dose (e.g., ED10) by a
product of uncertainty factors, as detailed in Chap. 15, and U.S. EPA (2000b).

The two most common component-based biological concepts for mixture dose-
response assessment are toxicological similarity and toxicological independence
(Teuschler et al. 2002). The preferred initial step in selecting the mixture prediction
model is to determine which biological concept is most appropriate for the mixture
component chemicals. The next step is to decide on the particular quantitative
approach that reflects the chosen concept and corresponds to the available data. In
contrast to research approaches to mixture dose-response modeling, in risk assess-
ment the calculation method selected is also strongly influenced by the risk assess-
ment goal. For example, when the goal is prioritization of waste sites for
remediation, the level of toxicological information related to similarity can be
quite general, such as same target organ. With stronger goals and more detailed
information, more precise mixture risk formulas can be used. For toxicological
similarity, the most commonly used assessment approach is dose1 addition (see
Chaps. 9, 10, and 11), with the more common implementations using the hazard

1
“Dose” is used in this section to represent exposure in general. Thus, discussions of dose addition
can usually be applied to concentration addition; any exceptions will be identified.
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index (HI), often a screening method to decide safety, and relative potency factors
(RPFs), often used to estimate the expected toxic effects from the mixture. For
toxicological independence, the most common risk assessment approach is called
response addition (more often called independent action in the toxicology literature;
see Chap. 9), with implementation using formulas based on probabilities of response
or the fraction of population responding. Those common approaches and some
variants, including modification to reflect evidence on interactions, are described
and illustrated in this section.

The HI, RPF, and response addition approaches are particularly attractive for
regulatory risk assessment because they are easy to apply and because official sets of
risk-based values for individual chemicals have been published, promoting use and
consistency across the mixture assessments, at least for those chemicals of higher
concern that have been formally evaluated. For example, U.S. EPA’s IRIS database
contains risk-reference values on over 500 chemicals including the oral reference
doses (RfDs) and inhalation reference concentrations (RfCs) that can be used in the
HI formula and cancer unit risk values that can be used in response addition formulas
(U.S. EPA 2017). The U.S. EPA has published RPF values for a few groups of
pesticides (U.S. EPA 2002b, 2006, 2007d), and both the U.S. EPA and the World
Health Organization (WHO) have published RPF values, called toxicity equivalence
factors (TEFs; see Sect. 14.2.3.2) for the dioxin-like chemicals (U.S. EPA 2010; van
den Berg et al. 2006, 2013).

14.2 Risk Assessment Methods for Toxicologically Similar
Chemicals

14.2.1 Background on Use of Toxicological Similarity in Risk
Assessment

The first extensive regulatory guidance on risk assessment of chemical mixtures was
published by U.S. EPA in 1986 (U.S. EPA 1986b). That report noted that several
agencies and organizations had been addressing risk or safety assessments of
mixtures, citing the American Conference of Governmental Industrial Hygienists,
the U.S. Occupational Safety and Health Administration, the World Health Organi-
zation, and the U.S. National Research Council. Those that recommended a specific
calculation approach adopted some form of a dose-additive formula, primarily for
application to mixtures of toxicologically similar chemicals. For example, ACGIH
(ACGIH 1983) applies their concentration-additive formula to combinations of
volatile organic compounds. The U.S. EPA’s guidance for chemicals to be addressed
under the 1996 Food Quality Protection Act (FQPA) focuses on establishing a
common toxicological mechanism or mode of action (MOA) as the basis for
including chemicals, mainly pesticides, in a similarity group (U.S. EPA 1999).
The U.S. EPA’s detailed supplementary guidance on mixture risk assessment
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expands that consideration to include similarity of other processes affecting chem-
ical toxicity, such as pharmacokinetics. Instead of specific criteria for deciding
toxicological similarity, the guidance notes the implicit assumptions when similarity
methods such as dose addition are used (U.S. EPA 2000b p. 68):

In the simplest terms, two chemicals are dose additive if chemical B is functionally a clone of
chemical A. In this ideal case, the chemicals are assumed to behave similarly in terms of the
primary physiologic processes (uptake, metabolism, distribution, elimination) as well as the
toxicological processes.

While several research articles have evaluated the biological evidence supporting
dose addition for mixtures of varying degrees of component similarity, no more
extensive criteria have yet been published by U.S. regulatory agencies (Lambert and
Lipscomb 2007). In determining the dose-additive prediction model for a mixture,
some methods have been previously published that bypass the component RPFs and
estimate the model directly from the component dose-response information
(Gennings 1995; Hertzberg et al. 2013). The methods presented in this chapter are
constrained to those described in official risk assessment guidance and related
publications.

14.2.2 Hazard Index

The original U.S. EPA guidance for using the HI was quite limited; however the
application to specific groups of chemicals clearly conveyed an assumption of
toxicological similarity, e.g., solvents that caused neurotoxicity. The HI has been
used most often in the risk assessment of hazardous waste sites to implement the
National Oil and Hazardous Substances Pollution Contingency Plan (NCP) of 1988
and the Comprehensive Environmental Response, Compensation, and Liability Act
(CERCLA) of 1980, the latter also called the Superfund Act.

The main concept behind the HI is toxicological similarity across the mixture
component chemicals. The formula for the HI is motivated by dose addition, where
the toxicity of the mixture exposure can be represented by the toxicity of the sum of
the component doses, each scaled by its relative toxic potency. For the HI, however,
the relative potency of a chemical is replaced by the inverse of an estimate of a risk-
based reference level, an acceptable level, or exposure of minimal risk, e.g., the
U.S. EPA’s RfD and RfC values and ATSDR’s similarly determined minimal risk
levels (MRLs). In the following, the U.S. EPA version of the HI formula is used to
illustrate the approach. For hazardous waste sites, each component exposure is
scaled by its RfD (oral exposure) or RfC (inhalation exposure). For example, with
oral exposures to J chemicals, the HI formula is:
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HI ¼
XJ
j¼1

Ej=RfDj
ð14:1Þ

where both the exposure level, E, and RfD are in the same units so that the HI is
dimensionless. Thus the same formula can be used to evaluate soil contamination
levels where the scaling uses values such as the U.S. EPA’s soil screening level
instead of the RfD (U.S. EPA 2016). The dimensionless requirement also means that
chemicals can be included even if their exposures use different units, such as oral
intake of mg/kg per day for cadmium (Cd) and blood levels of μg/dL for lead (Pb).
One short-hand presentation of this formula uses the hazard quotient (HQ) for the
ratio of exposure to reference level. For oral exposure, Eq. 14.1 then becomes:

HI ¼
XJ
j¼1

HQj ð14:2Þ

where HQ ¼ E/RfD for each component. With individual chemicals, for both the
U.S. EPA and ATSDR reference levels, the interpretation is that individual chemical
exposures at or below those levels pose minimal or no health risk (ATSDR 2016;
U.S. EPA 2017). The mixture exposure has a similar interpretation: acceptable
mixture exposure when HI equals or is less than unity.

The HI is mostly used as a decision index (U.S. EPA 1989b) to determine which
sites or scenarios require further action, i.e., focusing on situations where HI > 1. In
those instances, the mixture exposure is usually judged to have the potential to pose
unacceptable risk, often leading to further investigation or to controls that can lower
the exposures until HI ¼ 1. For an initial screening assessment by U.S. EPA of
hazardous waste (“Superfund”) sites, all chemical exposures are included in the
HI. If HI > 1, then the next step is to calculate separate target organ specific HI
values, i.e., one for each effect or target organ (U.S. EPA 1989b). That means a liver
HI would only include chemicals that affect the liver. That refinement is more
aligned with the assumption that the included chemicals are roughly toxicologically
similar.

14.2.2.1 Characteristics of the Hazard Index

The principal strength of the HI approach is its ease of use. As long as HI<1, usually
no further action is deemed necessary. When HI >1, the information used in
calculating the HI should be carefully examined, both for relevance and uncer-
tainties. Because the HI is conceptually derived from dose addition (Svendsgaard
and Hertzberg 1994; U.S. EPA 2000b), its use is better justified if the toxicological
similarity assumptions are roughly met. The formula in Eq. 14.1 looks similar to that
of dose addition, where the exposure is multiplied by a measure of toxic potency, in
this case the inverse of the RfD. Because of the common lack of information on
MOA and pharmacokinetics, the evidence for toxicological similarity for the HI is
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usually relaxed to that of similarity of target organs, which allows application to a
wider variety of scenarios. This less rigorous interpretation is similar to the recom-
mendations of the NRC where chemicals to be included can share an AOP without
requiring the same exact sequence of toxicological steps (NRC 2008). When animal
studies are the basis of the toxicity assessment, however, additional information on
MOA or on other factors that could affect tissue exposure (e.g., deposition pattern in
the nose) should be reviewed to ensure that toxicological similarity is still roughly
supported. If that desirable characteristic is not present and the HI is applied anyway,
important errors and difficulties can arise. For example, for a discussion of the HI
when interactions exist and when one chemical is toxicologically inert, see
Svendsgaard and Hertzberg (1994).

There are many indices used in environmental assessment, usually to condense
complex information into a simpler form both for decision-making and for commu-
nication (Kienhuis et al. 2015; Ott 1978). The decision focus for the HI is on values
near unity, where the dose-response complexity for multiple chemicals is reduced to
a single number that indicates acceptable vs. unacceptable exposure, e.g., a site poses
no significant risk of toxic effects if HI �1. When HI >1, conclusions are less clear
and often inconsistent. For some serious effects, mitigating action might be indicated
if HI >5, while for other less serious effects, action might be deferred.

Contaminated Soil Example Consider the case of exposure to soil contaminated
by heavy metals (Table 14.1). Assume that soil reference values for lead (Pb) and
cadmium (Cd) are 400 and 70 ppm, respectively. The motivation for the HI from
dose addition implies that for a given mixture, a specific value for HI should indicate
the same level of concern, regardless of the individual chemical exposure levels. The
different exposures in ppm to Pb and Cd of (1000, 35) at location A and (600, 105) at
location B, respectively, would both give HI ¼ 3 and so should be interpreted the
same, even though the individual levels of Pb and Cd differ between the two sites.

When mixtures of different components are involved, their HI values should not
be compared. Thus if HI¼ 7 for site 1 that has four pesticides in its groundwater and
HI ¼ 3 for site 2 that has seven solvents in its groundwater, site A is not necessarily
of greater concern than site B. A similar uncertainty applies when considering
different endpoints, even for the same mixtures. HI values are strongly dependent
on the data used in deriving the reference values, requiring judgment in each case.

This decision-oriented focus on doses where HI ¼ 1 is visually similar to the
definition of dose addition by Berenbaum (1985):

XJ
j¼1

dj
EDx, j

¼ 1 ð14:3Þ

where dj is the dose of chemical j in the mixture with a specific joint effect (x) and
EDx,j is the dose of that chemical alone that produces the same effect as the mixture.
Under Berenbaum’s definition, chemicals are said to be dose additive when Eq. 14.3
is true (see Chaps. 9 and 11). For both the HI and Berenbaum formulas, the
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evaluation is at a single-dose combination. The key difference is that the HI value
provides an indication of the potential for health risk using only component infor-
mation, while the Berenbaum formula is a test for consistency with dose addition
using information on both the components and the mixture. While the HI can be
easily interpreted for different doses of the same mixture, the Berenbaum formula
only is applied to a single mixture and single set of doses.

14.2.2.2 Uncertainties with the Hazard Index and Improvements

The commonly used HI method of Eq. 14.1 is useful and simple, but it does have
important uncertainties and potential biases. For some of these, there are refinements
and modifications. The main issues discussed here include:

• No statistical test for HI accuracy
• Bias toward overestimation because of reference value in the denominator
• Focus on a single exposure pathway
• Inclusion of chemicals with very low exposure levels
• Lack of consideration of toxicological interactions

14.2.2.2.1 Issue: No Statistical Test for Accuracy. Improvement – Use EDx
Instead of RfD

Numerically, the HI is only interpreted well for HI ¼ 1 and is only a decision index
for higher or lower values. That is, if evidence is good for toxicological similarity
among the component chemicals and HI <1, then a conclusion that the mixture
exposure is safe seems reasonable. Because the HI is an index of concern, not an
estimate of probabilistic risk, the statistical evaluations related to its scientific
support usually focus on empirical support for its basis concept of dose addition.
There is a way that HI can be calculated directly from dose additivity. Consider the
case where both the doses and responses are in the same organism, say the rat, and
the response level of interest is the ED10 for some specified effect. If the ED10 for the
rat is used in the denominator in Eq. 14.1 instead of the RfD, then when the mixture
component doses give HI¼ 1 and dose addition is assumed, the mixture should be at
its ED10 value for the rat (Svendsgaard and Hertzberg 1994). This is easily shown by

Table 14.1 Hazard index example of two sites with different exposure levels but the same HI

Chemical Soil ref level ppma Site A ppm HQ A Site B ppm HQ B

Cd 70 35 0.5 105 1.5

Pb 400 1000 2.5 600 1.5

HI 3.0 3.0
aAssumed RfD values for this example; always obtain current regulatory risk values for specific
environmental risk assessment calculations
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starting with the Berenbaum definition of dose addition for two chemicals, slightly
rewritten from Eq. 14.3 as:

1 ¼ d1
ED10,1

þ d2
ED10,2

ð14:4Þ

This is conceptually the HI formula for the rat with HI ¼ 1. In this case, we set
each reference value to the rat ED10 value for that chemical. When dose addition is
valid, then the mixture combination dose (d1, d2) produces the same effect as the
denominators, so the test is whether that combination dose produces a 10% response.
Let the total mixture (d1 + d2) dose be represented by dmix. For a fixed mixture
composition (fixed fractions or ratios), each component dose can be replaced by the
product of the total mixture dose and the mixture fraction (qi ¼ di/dmix). When dose
addition is valid, Eq. 14.4 is true, and the total mixture dose is the mixture ED10; thus
ED10,mix¼ d1+d2. Replacing each dose by its fraction multiplied by the mixture dose
(dmix) and then dividing Eq. 14.4 by dmix give:

1
dmix

¼
q1 � dmix

ED10,1
þ q2 � dmix

ED10,2

� �
dmix

¼ q1
ED10,1

þ q2
ED10,2

ð14:5Þ

and inverting both sides gives an estimate of the mixture ED10. This is well known as
the harmonic mean formula, historically used for estimating common measures of
joint toxicity such as the mixture LD50 (Finney 1971; Smyth Jr. et al. 1969). Thus we
have another test for dose additivity: one compares the observed ED10 for the
mixture with the ED10 predicted from Eq. 14.5. That would provide quantitative
support for dose addition for that particular mixture of concern. Note that Eq. 14.5
applies only to a mixture of a specified composition (the fractions q1, q2 are fixed). A
different mixture (different component fractions) of the same total mixture dose
would not be expected to elicit a 10% response. With these results in mind, if the
reference value (e.g., RfD) in the HI formula could be given an EDx interpretation,
then a corresponding quantitative interpretation for HI ¼ 1 is therefore possible by
invoking dose addition. For higher exposures, where HI >1, a quantitative interpre-
tation is more difficult.

14.2.2.2.2 Issue: Bias Toward Overestimation. Improvement – TTD

In general applications to human exposures, when HI ¼ 1 or less, the mixture
exposure is assumed to carry no health concern. Such an interpretation is deemed
plausible based on the view that the HI is a rough application of dose addition, which
relies on an interpretation of the reference values (e.g., RfDs) as being roughly
equitoxic doses. That latter interpretation is generally incorrect and at best highly
uncertain (Hertzberg and Teuschler 2002). More specifically, even when HI ¼ 1, no
precise quantitative interpretation can be given, partly because most reference levels
are derived from animal studies and partly because the reference levels

14 Component-Based Risk Assessment Approaches with Additivity and Interactions 379



(denominators in Eq. 14.1) are usually not derived from probabilistically determined
values such as an ED20. When RfD values are used instead of EDx values, there can
be increased uncertainty. Because the RfD is based on the most sensitive toxic effect,
there can be a bias toward overestimation of the mixture health concern beyond that
usually attributed to RfDs for individual chemical assessments. The first refinement,
calculation of a target organ-specific HI, differs only by including just the chemicals
affecting that target organ; even so, one or more reference values (e.g., RfDs) could
be for a different and more sensitive target organ, again resulting in an overestimate
of the HI. In the example depicted in Fig. 14.1, a combined exposure to arsenic
(As) and cadmium (Cd) evaluated for joint neurotoxicity would give a HI using
reference values for other effects (see dashed circles), namely, dermal and renal
toxicity, respectively. In the second refinement, ATSDR has improved the target
organ HI method by using an HI based on target organ toxicity doses (TTDs), which
ATSDR defines as a risk-reference value derived in a similar fashion to ATSDR
MRLs or U.S. EPA RfDs but only using data on the target organ of concern
(Mumtaz et al. 1997). Because the RfD is defined by the U.S. EPA as representing
the critical effect (first toxic effect seen with increasing dose), it will be equal to or
smaller than the corresponding TTD for the effect being assessed. ATSDR has
gradually been developing TTD replacement values for other effects as needed,
e.g., the health assessment for the Conrail Rail Yard (ATSDR 2005a). Other
examples are in some of the ATSDR interaction profiles (ATSDR 2017). Although

AsCancer   (skin, bladder, liver, kidney)

Hematopoetic 
system (blood) 

Cardiovascular
system

As,  Cd,
Pb

As,  Cd,
Cr,  Pb

Nervous 
system

Cd,
Cr,  Pb

Cd,  CrLiver

Skin As

Reproductive 
system: male

Kidney As,  Cd,
Cr,  Pb

As,  Cd,
Cr,  Pb

For mixtures of Cd and As, the HI for the nervous 
system uses RfDs or MRLs on the wrong effects.

Fig. 14.1 Multiple target organs result in uncertainties with the hazard index when using the
reference values for the critical effect. Chemical is boldface when aligned with its critical effect,
e.g., Cd for kidney and As for skin (Adapted from MacDonell 2014)
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TTD values are only available for a few chemicals, the substitution of the RfD with
the TTD can make a significant difference: Mumtaz et al. (1997) show some
examples where the chemical HQ is reduced by a factor of 10–100 by replacing
the RfD by the TTD. In its 2012 report to Congress, U.S. EPA announced its plans to
include toxicity values for multiple effects associated with the chemical being
evaluated (U.S. EPA 2012). Those planned toxicity values seem similar in concept
to the ATSDR TTD values.

14.2.2.2.3 Issue: Focus on a Single Exposure Route.
Solution – Multiroute HI

Many multichemical exposures involve several exposure routes (e.g., oral and
inhalation), also described as exposures by multiple pathways or media (e.g.,
water, air). The HI formula can be slightly modified to address such exposures.
The resulting multiroute HI is calculated by simple summing of HIs across the
exposure routes (U.S. EPA 1989b, 2007a). Specific guidance exists from
U.S. EPA for multiroute assessments for individual pesticides (U.S. EPA 2001a)
and for Superfund sites (U.S. EPA 2001b), including the full characterization of
exposure pathways from source to population. The multiroute HI (MHI) is simply
the sum of HQs across all chemicals and exposure routes.2 For K exposure routes
and J chemicals, the formula is:

MHI ¼
XK
k¼1

XJ
j¼1

HQjk

 !
ð14:6Þ

Similar to the single-route HI in application, a screening assessment MHI can
include all chemicals, and a second level MHI can be restricted to a common target
organ.

The MHI can be calculated in two equivalent ways with different intermediate
steps that can assist priority setting by the regulator or decision-maker. When the
interest is on which media to control first, such as ambient air, Eq. 14.6 is useful. The
first calculation (inner sum) in Eq. 14.6 yields the HI value for each exposure route
(e.g., inhalation), easily showing which route poses the highest concern and thus
which media should be controlled first. If the interest is on which chemicals to
control first, then the order of summation is reversed. First, the multiroute HQ is
calculated for each chemical (for j ¼ 1, ..., J ):

HQj ¼
XK
k¼1

HQjk ð14:7Þ

2The MHI has also been called a cumulative HI (U.S. EPA 2007b).
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easily showing which chemical has the multiroute exposure of most concern. Those
multiroute HQs are then summed across all J chemicals to give the MHI for all
chemicals by all routes. The example in Fig. 14.2 is devised to represent residential
exposure to a contaminated river, which is the source of fish and drinking water.
Because of showering and other indoor volatilization sources, the exposure involves
inhalation as well as oral intake and thus has four chemicals and two exposure
routes. The oral route has two sources: fish and tap water. The combined oral HI, 4.1,
then reflects the four chemicals via the two sources. The sum of the multiroute HQs
(right column) equals the sum of the two route-specific HIs (bottom row), giving the
multiroute HI of 4.5.

14.2.2.2.4 Issue: Inclusion of Chemicals with Very Low Exposure Levels.
Solution – Screen Out Chemicals Likely to Have Insignificant
Exposures

Encountered mixtures, such as at hazardous waste sites or with urban air, often
contain many chemicals, with some at or near detection limit exposure levels where

Chemicals:

Contaminated

Media

Exposure

Level and

Route

Noncancer

Toxicity 

Reference
Value

a

--------------

Tap Water

Oral

HQ 

Fish 

Oral

-------------

Air

Inhalation

Multiroute

HQ or

HI

Methyl mercury:

Fish

3.5 x 10
-5

Oral mg/kg-d
1 x 10

-4

mg/kg-d
- 0.35 -

Aroclor1254:

Fish

4.4 x 10
-6

Oral mg/kg-d
2 x 10

-5

mg/kg-d - 0.22 -

BDCM
b
: 

Tap water

Tap water

1.0 x 10
-2

Oral mg/kg-d
2 x 10

-2

mg/kg-d
0.50 - -

Air

Air

8.7 x 10
-3

Inh mg/m3
2 x 10

-2

mg/kg-d - - 0.44

DCA: 1.2 x 10
-2

Oral mg/kg-d
4 x 10

-3

mg/kg-d
3.00 - -

1.0 x 10
-2

Inh mg/m3
Not

available
- - -

4.5

0.22

0.35

0.94

3.00

4.10 0.44

Route-specific HIs Multiroute HI

Fig. 14.2 Example of multiroute hazard index for exposure to four chemicals by two routes.
Missing (�) entries indicate the value is not applicable (e.g., oral column and inhalation row).
Dermal absorption, such as during bathing, is not considered in this example. Final MHI rounded to
two significant figures. BDCM, bromodichloromethane; DCA, dichloroacetic acid; inh, inhalation
route. a These chronic reference values are based on those available from U.S. EPA. For regulatory
applications, always obtain the latest official reference values. b BDCM has only a subchronic
reference concentration, which might overestimate the chronic value and thus underestimate the HQ
for inhalation
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those limits are well below apparent toxicity thresholds. Those small exposures may
contribute little to the overall mixture risk. One further simplification in the
approach for Superfund waste sites is to remove a chemical from the list of chemicals
of concern (CoC’s) if its HQ <0.1 or if a lifetime component cancer risk is less than
10�6 (U.S. EPA 1993). By using the HQ and not merely the exposure level, the toxic
potency of the chemical is automatically considered. Clearly, complex mixtures of
100 chemicals could be of concern if all chemicals had HQ ¼ 0.09 (so HI ¼ 9). This
approach to screen out chemicals should then be limited to assessments involving
defined mixtures of only a few chemicals.

14.2.2.2.5 Issue: Lack of Consideration of Toxicological Interactions.
Solution – Weight of Evidence Judgment

As a rough application of the dose addition concept, the HI includes chemicals that
are toxicologically similar and assumes no toxicological interactions. Yet some
chemicals have strong evidence of interaction, including greater than dose-additive
joint response (see example of lead (Pb) and cadmium (Cd) in Table 14.9), so
ignoring such interactions can be another uncertainty and possible bias. As discussed
in Chap. 13, most interaction studies only involve two chemicals (Mumtaz and
Hertzberg 1993; Svendsgaard and Hertzberg 1994). The U.S. EPA and ATSDR have
thus developed categorical weight of evidence (BINWOE) schemes for binary
interactions and modifications of the HI to incorporate those BINWOE designations
(ATSDR 2004a; U.S. EPA 2000b). Details are shown in Sect. 14.4.

14.2.3 Relative Potency Factor and Toxicity Equivalence
Factor

In this section, dose addition is defined by the dilution concept (Bliss 1939) where
the components behave as toxicological clones of each other, though with differing
toxic potencies (see Chap. 9 for extended discussion of this and other versions of
dose addition). Thus exposure to one chemical can be converted into an equivalent
exposure of another chemical by simple potency-weighted scaling. Evidence for
toxicological similarity is required for chemicals to be considered for such toxicity
scaling (U.S. EPA 1999, 2000b, 2002a). The relative potency factor (RPF) approach
is the more general of the two discussed here. As used by the U.S. EPA and the
European Commission, usually a single RPF value is set for each chemical and
assumed to be constant over the dose range of interest (SCHER et al. 2012;
U.S. EPA 2000b). If information so indicates, different RPF values can be developed
for different scenarios: exposure routes (e.g., oral vs. inhalation), durations (e.g.,
acute vs. lifetime), effects or target organs (e.g., hepatic vs. renal effects), or dose
ranges. That potential scenario-specific option is one way U.S. EPA differentiates
the RPF definition from that of the TEF. The toxicity equivalence factor (TEF)

14 Component-Based Risk Assessment Approaches with Additivity and Interactions 383

https://doi.org/10.1007/978-3-319-56234-6_13
https://doi.org/10.1007/978-3-319-56234-6_9


approach requires more extensive evidence of essentially complete toxicological
similarity because each TEF is assumed to apply to any exposure setting and to any
effect (U.S. EPA 2000b, 2010). The TEF is then considered to be a special case of
the RPF. The U.S. EPA has only used TEFs with dioxins and dioxin-like chemicals,
where a key assumption is that the aryl hydrocarbon receptor mediates most if not all
of their biologic and toxic effects.

One consequence of the dilution definition is that all components of the mixture
should have geometrically congruent dose-response curves, which means that once
each component dose (on the x-axis of a dose-response plot) has been scaled for
toxic potency, the component response curves will be identical in shape (Hertzberg,
et al., 2013). This leads to another consequence: that the component dose-response
models are the same, except for each one’s potency-based dose coefficient. For
example, with a mixture of two toxicologically similar chemicals, if the model for
chemical 1 is a simple exponential function:

y1 ¼ γ þ exp αþ β1d1ð Þ ð14:8Þ
then the model for chemical 2 is also a simple exponential function:

y2 ¼ γ þ exp αþ β2d2ð Þ ð14:9Þ
where only the dose coefficient, β, has changed. A related consequence is that the
prediction model for the mixture response is the same dose-response model as for the
components but with the dose term replaced by a linear combination of the compo-
nent doses. This prediction model is the dose addition formula. For this exponential
example, the dose-additive mixture prediction model is:

ymix ¼ γ þ exp αþ β1d1 þ β2d2ð Þ ð14:10Þ
Once dose addition is assumed, the dose coefficients from the individual chemical

models in Eqs. 14.8 and 14.9 are plugged into the prediction model (Eq. 14.10) to
calculate the estimated mixture response. The above properties are key to the
applications of relative potency factors discussed in the next section.

14.2.3.1 Relative Potency Factors

The most often used direct application of the dose addition model in health risk
assessment is the relative potency factor (RPF) approach. In contrast to the HI
approach, which is used as a decision index, the RPF approach actually estimates
the mixture risk or response and is a direct application of dose addition as defined by
the concept of simple similar action and discussed previously in Eqs. 14.8, 14.9, and
14.10. Once toxicological similarity has been decided, then dose addition needs the
constants representing the proportional differences in toxic potency. While one
could estimate the RPFs as the ratio of the mixture model coefficients (e.g., the βs
in Eq. 14.10 if developed from mixture data), mixture data are usually lacking, so the
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most common component-based application uses the ratio of individual chemical
toxicity-specific values of the mixture component chemicals. If the application is to
fairly low doses, then each chemical’s toxicity-specific value might be set at, say, the
ED10. Then the RPF is the ratio of ED10 values:

RPF21 ¼ ED10,1

ED10,2
ð14:11Þ

That ratio of equitoxic doses is the potency of chemical 2 compared with
chemical 1. To see how this calculation works, if chemical 2 is more toxic than
chemical 1, then RPF21 should be>1; in Eq. 14.11 its ED10 will be smaller than that
of chemical 1, and so indeed RPF21 > 1.

In an RPF-based assessment as presently applied (U.S. EPA 2003a), actual
exposure levels are potency-weighted by the set of RPFs, often official values set
by regulatory agencies. Those RPFs are assumed to be constant across all response
levels. Specifically, the exposure levels of the component chemicals are converted
into equivalent exposure levels of another chemical, usually called the index chem-
ical (IC), using the RPFs. The index chemical is usually selected to be the chemical
in the group or mixture that has the most robust dose-response data and is most
representative of the toxicological profile of the other chemicals in the group or
mixture being assessed. Because the more toxic chemicals are often better funded for
research than weakly toxic chemicals, in many cases the index chemical is also the
most toxic component (e.g., benzo(a)pyrene for polycyclic aromatic hydrocarbons).
Each RPF is the ratio of a chemical’s toxic potency to that of the index chemical, so
in Eq. 14.11 chemical 1 is the IC. Several toxicological and statistical methods have
been described for estimating RPFs (Altenburger et al. 2005; Budinsky et al. 2006;
Chen et al. 2003; Dinse and Umbach 2011, 2012; Wolansky et al. 2006). The
following example uses the ED10 as the toxicity value.

Carbamate Example The U.S. EPA has published RPFs for carbamate pesticides
along with the oral ED10 values for rat brain cholinesterase inhibition used in their
calculation (U.S. EPA 2007d). In this example, the RPF is effect-specific, applying
here to the primary effect of concern, brain cholinesterase inhibition. Values for the
index chemical, oxamyl, and for two other carbamates, carbaryl and propoxur, are in
Table 14.2 along with the resulting RPF values. For carbaryl, its oral ED10 is larger
than that of oxamyl so carbaryl is less toxic, and its RPF is correspondingly less than
1.0. An oral dose of 5 mg/kg of carbaryl is then roughly equitoxic to an oxamyl oral
dose of 0.75 (¼ 5*0.15) mg/kg.

This relationship between the similar chemicals allows the toxic response for a
poorly studied chemical to be predicted from that of a well-studied chemical merely
by scaling the dose. In a strict interpretation of the dilution concept, not only is the
mean response predicted from the index chemical but also the response variance, i.e.,
the data spread for the poorly studied chemical should be the same as the data spread
observed for the well-studied index chemical and depend only on the response level,
not the chemical in the exposure (Hertzberg et al. 2013). More common is for just the
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mean effect to be so estimated. For example, an ED05 for the dioxin 1,2,3,7,8,9-
HxCDD could be estimated from the ED05 for the dioxin index chemical, 2,3,7,8-
TCDD, by multiplying the latter dose by 10, which is the inverse of the HxCDD’s
TEF of 0.1 (van den Berg et al. 2006). The RPFs (and TEFs) are not always
developed from EDx values or other derivatives of in vivo dose-response data, so
much of the uncertainty in such extrapolations could be in the RPF value itself.

The most common use of the RPFs is in estimating a mixture response. The
exposure levels of all the mixture components are scaled (multiplied) by their RPF
values and then summed to give the mixture exposure level as the equivalent index
chemical’s exposure level. For oral exposure as a daily dose, the index chemical
equivalent dose (ICED) is then the weighted sum of the component doses (di):

ICEDmix ¼
Xn
i¼1

di
∗RPFi ð14:12Þ

Note that the dose for the index chemical does not change in Eq. 14.12 because its
RPF by definition is 1. For an exposure (mg/kg) of 2.0, 3.5, and 2.2 to carbaryl,
propoxur, and oxamyl (the three pesticides in Table 14.2), the equivalent dose of
oxamyl is calculated, using Eq. 14.12, as:

ICEDoxamyl ¼ 2:0∗0:15þ 3:5∗0:11þ 2:2 ¼ 2:9 mg=kgð Þ
This concept of summing the equivalent doses is shown in Fig. 14.3 for a

two-chemical example, with the ICED on the x-axis. The incremental exposure
from each component increases the ICED but still follows the same dose-response
curve of the index chemical, which is chemical 1 in that figure.

14.2.3.2 Toxicity Equivalence Factors

The toxicity equivalence factor (TEF, also called toxic equivalency factor) is math-
ematically similar to the RPF (ratio of equitoxic doses), and the associated mixture
methods are mathematically equivalent, including that the TEF is assumed to be
constant across the dose range of interest. Thus far, the TEF method has been used to
assess mixtures of chlorinated and brominated dioxins and dioxin-like compounds

Table 14.2 Example oral RPF values for three carbamates with oxamyl as the index chemical for
brain cholinesterase inhibition

Chemical ED10 (mg/kg) RPF

Carbaryl 1.58 0.15

Propoxur 2.09 0.11

Oxamyl 0.24 1.00

Adapted from U.S. EPA (2007d)
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(DLCs), and values have been developed for humans and for wildlife (Alexeeff et al.
2007; U.S. EPA 2001c; van den Berg et al. 1998, 2013). Because the TEF approach
assumes essentially complete similarity, where each component acts as a true
dilution or concentration of any other component, that allows one TEF to be
calculated for each chemical and applied to any endpoint, any response level, and
any exposure setting (duration, route). Such an interpretation requires a high degree
of evidence for toxicological similarity. The rationale for the TEFs to be applicable
to multiple endpoints is that the endpoints are all assumed to result from a common
mechanism of action or causal pathway, that is, the DLC binding to the aryl
hydrocarbon receptor or AhR. For the dioxins and dioxin-like chemicals,
U.S. EPA (2010) on p. 14 explains the evidence supporting use of TEFs:

The EPA recommends these TEFs be used for all cancer and noncancer effects that appear to
be mediated through AhR binding by the DLCs. EPA recognizes that this issue will require
further evaluation as additional toxicity data become available. Eventually, endpoint specific
TEFs or separate TEFs for systemic toxicity and carcinogenicity endpoints may need to be
developed.

This extent of understanding and consistency of the mechanism of action rarely
exists, and so TEFs are expected to apply to only a few chemical groups

0 d1

0

DoseRPF2*d2

R1

Rmix
Rmix = f1(ICEDMIX )

Response 

ICEDmix = d1 + RPF2*d2

R1 = f1(d1 )

Fig. 14.3 Dose addition using RPFs to determine the mixture’s response from its index chemical
equivalent dose (ICED). U.S. EPA’s dilution concept means both chemicals follow the same dose-
response model, once the non-index chemical doses are scaled by their RPFs. Curve is for chemical
1. Red-dashed portion indicates response from chemical 1 alone. The dose of chemical 2 has been
scaled to its equivalent dose of chemical 1
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(Table 14.3). This strict interpretation of the TEF is mainly endorsed by U.S. EPA
and is a useful short-hand notation for a decision that the chemicals in the group are
highly similar in their toxicological processes. When mixture component chemicals
show toxicological differences in some aspects, such as different potencies by
endpoint or by exposure route, the RPF designation should be used to clearly denote
this lack of complete toxicological similarity.

14.2.3.3 Uncertainties with RPFs and TEFs

The RPF and TEF approaches can have significant uncertainties, both toxicologi-
cally and quantitatively. Evidence for toxicological interaction, i.e., departure from
dose additivity, is not reflected in the numerical values for the RPF or TEF. While
some of the uncertainty is reflected by the custom of only assigning order of
magnitude values (e.g., 0.1, 10) or one or two significant digits, it is common,
especially with official regulatory values, for the numbers to be incorporated into
an index chemical equivalent dose (ICED) that is presented alone, with no quanti-
tative uncertainty discussion or representation as a range (e.g., confidence interval).
While TEF values are described as based on strong understanding of a common
toxicological pathway across the components, information on some components
could be much less than desired, e.g., from in vitro studies, different exposure routes,
or quantitative structure-activity relationship (QSAR) extrapolation. Many such
examples are in the original U.S. EPA dioxin report (U.S. EPA 1989a). Even if
the same endpoint measure is used for RPF estimation across all components, the
value depends on the specific response level (e.g., EDx) chosen. When EDx values
are used for the endpoint measure, the ED50 is usually considered more statistically
robust, while those for lower responses, e.g., ED10 or ED05, are usually considered
more relevant to exposures used in environmental assessments. The RPF values can
also vary with the dose metric used, e.g., administered dose rate, cumulative dose
over a time frame (area under the curve), or concentration in target tissue. Only a few

Table 14.3 Comparison of TEF and RPF characteristics

Toxicity equivalence factor Relative potency factor

Specific type of RPF Generalized case

All health endpoints May be limited (e.g., reproductive toxicity)

All routes May be limited (e.g., oral)

All time frames of exposure May be limited (e.g., acute)

Encompasses all doses May be limited to specific dose range

Implies more abundant data are available May be based on lower quality/fewer data

Implies greater certainty that mechanism of
action is common to all effects

Assumes similar MOA or AOP
May be more accurate because application can be
constrained to the available data

One TEF set for all scenarios Can generate different RPF sets for various sce-
narios (e.g., exposure route, duration)

Adapted from U.S. EPA (2000b)
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researchers have investigated the potential for alternative values and the sensitivity
of the final assessment (Budinsky et al. 2006; Parvez et al. 2013; U.S. EPA 2007b).

Numerical uncertainties can arise from inconsistent data (high variance) or from
dependence on the specific statistical method used. Some consideration should
always be given to statistical approaches deemed most applicable to the data being
analyzed. Regulatory consistency would improve, however, if official statistical
methods were listed, if not required, such as those in the U.S. EPA benchmark
dose procedure as implemented in their BMDS project (U.S. EPA 2016). Some
uncertainties derive from policy decisions, such as numbers being outdated because
of official values remaining unchanged pending formal revision and review
processes.

Both the RPF and TEF approaches use an index chemical. Once component doses
are scaled to their ICED values, the predicted mixture response is determined from
the dose-response model for the index chemical. Because of variations in the
underlying data across the component chemicals, a change of choice of index
chemical could lead to changes in the predicted mixture risk even though concep-
tually they should be the same (Chen et al. 2003; Chen et al. 2001). The sensitivity to
choice of index chemical is also affected by any dissimilarity of the component dose-
response curves, e.g., when isoboles are curvilinear (Bosgra et al. 2009).

14.2.3.4 U.S. EPA Margin of Exposure

The Office of Pesticide Programs (OPP) in U.S. EPA has developed conceptual and
risk estimation guidance for addressing mixtures of pesticides under the Food
Quality Protection Act (FQPA) of 1996. This section discusses some of that guid-
ance as it pertains to the interpretation and application of dose addition. While
developed for pesticides, the following concepts and approaches (common mecha-
nism group and margin of exposure) can also be applied to mixtures of other
toxicologically similar chemicals.

CommonMechanism Group Toxicological guidance was published for determin-
ing which chemicals should be included in a common mechanism group, with the
first application to the organophosphates (U.S. EPA 1999, 2002a). That guidance is
fairly detailed and carefully written including clear definitions of key terms and
should be applicable to any set of chemicals under consideration for grouping by
toxicological similarity. Only a very brief summary of the steps is given here. The
guidance stresses that “mechanism,” the term explicitly used in the FQPA text, is not
always well defined and so interprets that term as similar to the term “mode of
action” (MOA) that is used elsewhere. To be consistent with the U.S. EPA risk
guidance for pesticide mixtures, this section uses the term “mechanism,” even
though MOA might be more appropriate.

Step 1. Identify a candidate set of substances that might cause a common toxic effect
by a common mechanism of toxicity.
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Step 2. Definitively identify those substances from Step 1 that cause a common
effect.

Step 3. Determine the toxic mechanism(s) by which each substance causes a
common toxic effect.

Steps 4 and 5. Comparison of mechanisms of toxicity (step 4) and refined grouping
of substances (step 5).

As practiced by U.S. EPA, this grouping process also includes literature searches
and, when deemed necessary, external reviews.

Margin of Exposure Calculation for Pesticide Mixtures The margin of exposure
(MOE) construct is a hybrid dose-response approach that uses RPFs in the calcula-
tion but results in a decision index similar to the HI. The MOE for a single pesticide
is the ratio between a toxicity benchmark or point of departure (POD) and a human
exposure level. The POD is typically a no-observed-adverse-effect level (NOAEL),
lowest-observed-adverse-effect level, or a lower bound on the benchmark dose
(BMDL) from an animal bioassay. In general, as the MOE decreases below a
specified value called the “target MOE,” the concern for toxicity increases. That
“specified value” depends on the POD and the way uncertainty and extrapolation
factors are used. For example, if the POD is a NOAEL from a chronic rodent assay,
then the target MOE is typically 100, similar to the two tenfold uncertainty factors of
intraspecies and interspecies that are associated with scaling from a rodent assay to
humans (see Chap. 15 for discussion of the basic uncertainty factors used by
U.S. EPA). For this example, an exposure with MOE > 100 would then be
considered of no cause for concern. The target MOE for an individual chemical is
then chemical specific. MOEs higher than the target value are considered more
health protective.

For mixtures of pesticides that are in a common mechanism group, a similar
POD-to-human exposure ratio is used but is based on the relative potency factor
(RPF) approach. First, the component exposures (E) are converted into their equiv-
alent exposure levels for the index chemical (E � RPF). For a single exposure route,
the J-chemical mixture MOE is calculated as the ratio of the index chemical POD
and the human index chemical equivalent exposure for that route (U.S. EPA 2002a).
In Eq. 14.13, the denominator sum is the mixture exposure expressed as the
equivalent index chemical exposure:

MOE ¼ PODIndexPJ
j¼1

Ej � RPFj

ð14:13Þ

For multiroute exposures, the route-specific MOE values are combined into a
total MOE. For example, with combination exposures by oral, dermal, and inhala-
tion routes, the total MOE is:
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MOETotal ¼ 1
1

MOEOral
þ 1

MOEDermal
þ 1

MOEInhalation

ð14:14Þ

With the MOE in Eq. 14.13, the POD represents the toxicology study value for
the index chemical. The specific uncertainty factors for the individual chemicals in
the mixture are compared (e.g., interspecies compared to interspecies, intraspecies
compared to intraspecies). Pesticide assessments by U.S. EPA under the FQPA also
can include an additional uncertainty factor, one for child sensitivity, called here the
FQPA factor. When the values of a specific uncertainty factor vary across the
assessment group, the uncertainty factor value specific to each chemical is incorpo-
rated into the “adjusted RPF” value for that chemical. For example, consider a
mixture where most components have chronic data but chemical 2 only has
subchronic data. Then the RPF for chemical 2 using subchronic data for chemical
2 but chronic data for the index chemical would be multiplied by a duration
uncertainty factor; the resulting ratio approximates a chronic RPF for that chemical,
making the adjusted RPF conceptually equivalent to the RPF for chemical 1. When
the value of an uncertainty factor within a group is the same for each chemical, it is
used in setting the target MOE (U.S. EPA 2007d).

Carbamate Example Four carbamates were evaluated for dermal exposure and
had differing uncertainty factors for interspecies and child sensitivity (see
Table 14.4). The only uncertainty factor in common is the intraspecies factor (10),
sometimes called the extrapolation from healthy to sensitive people, and is the only
factor not accounted for in the adjusted RPFs; thus the target MOE for that mixture
is 10.

Strengths and Weaknesses of the MOE Approach The similarity to the HI is the
interpretation, where the mixture MOE is compared with a decision value and so
provides an indication of risk to inform decisions. Thus, even though RPFs are used
in the calculation, the MOE is not an explicit estimate of either probabilistic risk or of
the measured effect from the mixture, as could be obtained with the standard RPF
approach described in Sect. 14.2.3.1. On the other hand, the mixture MOE formula
as used by the U.S. EPA/OPP for pesticide combinations is restricted to common
mechanism chemicals, and so is more akin to the TTD-based HI, albeit with more
extensive requirements of evidence about toxicological similarity (U.S. EPA 1999,

Table 14.4 Adjusted dermal relative potency factors for four carbamates, for children and adults
based on interspecies and Food Quality Protection Act (FQPA) specific factors

Chemicala
Dermal
RPF

Interspecies
factor

Adjusted RPF
adults

FQPA factor
children only

Adjusted RPF
children

Carbaryl 0.71 10 7.1 1.8 13

Methiocarb 0.09 10 0.9 10 9

Oxamyl 1.00 3 3 3.48 10

Propoxur 0.03 10 0.3 10 3

Adapted from U.S. EPA (2007d)
aOxamyl is the index chemical for this group
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2002a, 2007d). Because the MOE approach described here uses RPFs, it more
closely reflects the dose addition concept than does the HI approach. The MOE
approach as used by U.S. EPA/OPP is more flexible than the usual RPF approach
because, if dose-response data are not adequate for the index chemical formula (i.e.,
for modeling and estimating RPFs), the mixture MOE can be calculated using
NOAEL or LOAEL values for the individual pesticides. One weakness is in risk
communication. Unlike the HI, which is always compared with 1.0, the MOE has no
fixed comparison value because the target MOE varies with the data. As with any
dose-additive approach, evidence of toxicological interaction would increase the
uncertainty in the mixture MOE assessment and should be included in the uncer-
tainty discussion.

14.3 Risk Assessment Methods for Toxicologically
Independent Chemicals

Toxicological independence is perhaps the simplest concept of joint action:
chemicals in a joint exposure have no influence on each other’s toxicity. Of course,
all effects interact when they become severe, such as liver failure resulting in damage
and dysfunction of virtually all other organs. For most chemical risk assessments, the
potential for affecting multiple organs and tissues is acknowledged and sometimes
reflected in the risk assessment. In this section, the focus is on chemicals that have
some aspect of toxicity in common but where the sequences of steps from exposure
to effect are considered independent across the chemicals. Usually the commonality
is expressed by a general category of toxicity (e.g., liver pathology) and the
independence evidenced by differing types of cellular damage or toxic mechanisms.
For example, if several chemicals cause cancer but in different target organs, the
overall cancer assessment might assume that at low doses, the chemicals’ toxic
actions are independent. To help clarify the difference between toxicological
research and risk assessment, this section focuses on the formulas and terminologies
used in risk assessment. Mixture risk assessment formulas that reflect the concept of
independent toxicological processes are called “response addition” for probabilities
and “effect summation” for measured endpoints; those terms (defined below) may
not have the same use and definitions in other publications.

14.3.1 Background on Use of Toxicological Independence
in Risk Assessment

Risk assessment formulas based on toxicological independence have been used in
safety and regulatory practice for many years. In fact, the first mixture risk estimates
for cancer published by the U.S. EPA used simple addition of the individual
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chemical risks (U.S. EPA 1986b). The easiest implementation is where the predicted
mixture toxicity is merely the collection of the component toxic effects, often
assuming only one effect per chemical. The next simplest approach is the summation
of individual responses, regardless of the response measure, and is often called effect
summation. The next and most common approach is response addition where
response is a probabilistic risk (or fraction of population affected). The three
formulas for these approaches are, for a simple mixture of two chemicals:

ymix d1; d2ð Þ ¼ y1; y2ð Þ ð14:15Þ
ymix d1; d2ð Þ ¼ y1 d1ð Þ þ y2 d2ð Þ ð14:16Þ

ymix d1; d2ð Þ ¼ p1 d1ð Þ þ p2 d2ð Þ � p1 d1ð Þ � p2 d2ð Þ ð14:17Þ
where yi is the response (however measured) caused by the ith chemical. Note that pi
is used in Eq. 14.15 to clarify if the response is a probability or population fraction
(thus bounded by [0,1]). As an example of the collection approach in Eq. 14.13, if
one chemical causes cancer (risk p1) and the other reproductive effects (risk p2), then
the joint risk could be described by the pair, p1 (cancer) and p2 (reproductive effects),
with possible concern for different population groups. In all three formulas, the
prediction is usually considered plausible for small incremental effects and for
chemicals with distinct critical effects (thus no other effects seen until a much higher
dose). The collection approach of Eq. 14.13 is trivial to implement and was previ-
ously used by U.S. EPA and other agencies for simple mixtures of a carcinogen with
a noncarcinogen; the result was an estimate of cancer risk (from the first chemical)
and an HQ for the noncancer effect (from the second chemical). With more emphasis
now on multiple effects, it is rarely used and is not further discussed here. The
assumptions and uncertainties for response addition and effect summation are
discussed in more detail in the corresponding subsections that follow.

14.3.2 Response as Probability

Risk assessments using probability as the response measure are relatively rare when
based on mammalian experiments because the measured dose-response information
is usually not expressed using probability. The most well-known exception in
toxicology literature is where mortality is the endpoint, especially that of the target
species of various pesticides (Bliss 1939). For human risks, the most common
probabilistic endpoints have been mortality and cancer, but the concept can be
applied to any toxic endpoint where the response data include probabilities or
population fractions. The term “risk” is used here as a synonym for response
probability.

When exposures are low and toxicological independence can be assumed, the
mixture toxicity risk is the statistical combination of the component toxicity risks.
The risk from exposure to the mixture then follows the probabilistic formula for
independent events (see Chap. 9 for a more complete discussion, including several
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variations on the concept). The general formula uses the assumption that the
individual chemical survival events are independent. For a mixture of two chemicals,
if w(d) is the survival probability from dose d, then:

wmix d1; d2ð Þ ¼ w1 d1ð Þ � w2 d2ð Þ ð14:18Þ
The risk of toxic effects, p, is then 1�w:

pmix ¼ 1� wmix

¼ 1� 1� p1ð Þ � 1� p2ð Þ
¼ p1 þ p2 � p1p2ð Þ

ð14:19Þ

where each pi is the risk (or dose-response) function for chemical i evaluated at dose
di. Equation 14.19 is the same as those shown in Chap. 9 (Sect. 9.3 on independent
action). The general response addition formula for J chemicals is:

pmix ¼ 1�
YJ
j¼1

1� pj
� � ð14:20Þ

In contrast to the dilution definition of dose addition (Sect. 14.2.3), for response
addition, there is no constraint on the shape of the component dose-response curves.
For example, a three-chemical mixture could have component dose-response curves
of quite different shapes (Fig. 14.4) because the only values entering the formula are
the risks at the component doses, whether a component curve has a threshold dose; is
nonlinear, convex, or concave; and has no bearing on the mixture risk calculation.
The expected response for the mixture is calculated with Eq. 14.20 using only the
three response values indicated: where each vertical line crosses the curve (0.08,
0.13, 0.29).

Cancer risk assessments by the U.S. EPA during the agency’s early years
involved multiplying the exposure level by a cancer potency value (U.S. EPA
1986a). Those potency values are still determined for many chemicals and are

Fig. 14.4 Response addition for probabilities showing that with independence-based formulas,
curve shape does not matter. Doses and probabilities at vertical lines are (a) d1¼ 15, p1¼ 0.08; (b)
d2 ¼ 10, p2 ¼ 0.13; and (c) d3 ¼ 10, p3 ¼ 0.29. Mixture estimated response uses Eq. 14.20:
pmix ¼ 1�(1�0.08)(1�0.13)(1�0.29) ¼ 1�(0.92*0.87*0.71) ¼ 0.43
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included in the U.S. EPA’s IRIS database of risk values as plausible upper-bound
estimates of the increased cancer risk from lifetime exposure to one exposure unit of
the chemical. Those estimates include the oral slope factor (SF) for oral intake of
1 mg/kg/day and unit risk value (UR) for inhalation exposure to a concentration of
1 μg/m3 or ingestion exposure to a water concentration of 1 μg/L. For one chemical,
U.S. EPA can then have three cancer potency values depending on the exposure
route and units used. For example, application of Eq. 14.17 to a combination
exposure of two cancer-causing chemicals, one by oral intake with dose d1 (thus
p1¼d1*SF1) and one by inhalation at concentration c2 (thus p2 ¼ c2*UR2), is then
calculated as:

pmix d1; c2ð Þ ¼ SF1 � d1ð Þ þ UR2 � c2ð Þ � SF1 � d1ð Þ UR2 � c2ð Þ ð14:21Þ
Note that the units of each potency estimate are the inverse of the corresponding

exposure units, so that each term in parentheses in Eq. 14.21 is dimensionless,
allowing their combination into a dimensionless risk value for the mixture.

14.3.3 Effect Summation

Effect summation is infrequently used for mixture response estimation. It has been
strongly criticized on theoretical grounds but for reasons not related to the usual
setting for environmental health risk assessment (Berenbaum 1989; Muska and
Weber 1977; Plackett and Hewlett 1948). All criticisms located thus far focus on
the implausible estimates for high-component response levels (see Chap. 9, Sect.
9.5). For example, with measured responses, such as changes in relative liver weight,
the simple sum could exceed physiological limits. For response such as the popula-
tion fraction showing adverse effects, the simple sum could exceed 100%. Effect
summation can be useful if it is restricted in application in a similar way as is done
for cancer risk (e.g., risk less than 1% per chemical) and noncancer effects (e.g., less
serious effects, well below doses causing frank or lethal effects), that is, to the dose
range where component effects are small. With such a restriction, effect summation
can be plausible both numerically and in terms of the assumption of toxicological
independence. Because of inadequate investigation into extrapolation issues, such as
cross-species concordance of the percent incremental change for some endpoints, the
U.S. EPA guidance recommends restricting effect summation to the toxic effects and
dose ranges in the cited studies. The risk estimate for the mixture then is determined
using the estimated risk for the study mixture and its scenario (U.S. EPA 2000b). For
example, if a study on rats used effect summation for cholinesterase inhibition by
three pesticides, with raw effect measures of 3%, 5%, and 1%, then the estimated
response for the mixture is 9% reduction in cholinesterase activity from the control
activity. That estimate would then be translated into a human mixture risk estimate
using standard approaches for rat to human extrapolation and any other quantitative
adjustments applied to animal studies.
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14.3.4 Uncertainties with Independence Methods

The key biological uncertainty in application of the risk formulas in this section is
their underlying assumption of toxicological independence. Rarely is that assump-
tion statistically tested and rarely is there adequate AOP information on all of the
mixture chemicals to support such independence as a biological concept. At present,
no guidance from regulatory agencies has been found for determining whether
multiple chemicals are toxicologically independent, a complicating factor in mixture
risk assessment (Lambert and Lipscomb 2007; McCarty and Borgert 2006). Conse-
quently the choice of an independence formula is usually based on judgment, such as
being selected because of the lack of sufficient evidence for toxicological similarity
or other contrary information.

Regulatory applications of response addition raise a concern similar to that of the
HI: each chemical’s risk estimate is conservatively calculated, so combining many of
them will exacerbate that bias into a gross overestimate of the mixture risk. Response
addition is easier to address because its dose-response data are numerical, e.g., the
fraction of a dose group with adverse effects. For example, individual chemical
cancer risk estimates by U.S. EPA have often been described as upper bounds where
the true risk can be lower (U.S. EPA 2005). Statistical research has shown that the
extent of the overestimate is not large. For mixtures of up to 20 chemicals, one
theoretical statistical study showed that if each potency estimate were a statistical
upper 95% confidence limit, the true 95% upper bound potency estimate for the
mixture was likely to be 1.6-fold or less below the sum of the upper-bound potency
estimates (Cogliano 1997). While that suggests a simple correction factor could be
used, the U.S. EPA’s human cancer potency value is not a statistical limit. Instead,
several conservative steps are involved to ensure that the true risk is unlikely to be
higher than the estimate. The statistical results, however, do provide some indication
of the degree of conservatism in the mixture risk estimate. More of such results
should be obtained, involving a wider variety of carcinogens, before quantitative
modifications to the mixture risk estimation can be recommended.

14.4 Interactions Using Qualitative and Quantitative
Approaches

14.4.1 Weight of Evidence Approach for Binary
Toxicological Interactions

The HI is an exposure-based decision approach. While the HI is loosely based on
dose additivity (see Sect. 14.2.2), when applied to site assessments, it is used in
conjunction with biomedical judgment, community-specific health outcome data,
and community health concerns to assess the degree of public health hazard. The HI
approach is most useful when augmented by information on toxicological
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interactions. Although quantitative estimates of interaction are rare, a feasible
approach is a weight of evidence evaluation of the potential for interactions (depar-
tures from dose addition) among the components in the mixture. Several methods
have been proposed to incorporate interaction data into chemical mixture risk
assessment that use dose additivity. The goal has been to express the available
interaction and experimental data in a sufficiently simple way for use in the risk
assessment process but also to be both scientifically plausible and procedurally
practical (Arcos et al. 1995; Mumtaz and Durkin 1992). The idea is to initially use
the information qualitatively and then if possible quantitatively (Fig. 14.5). Both of
these methods, qualitative and quantitative, are based on the use of binary (pairwise)
interaction data, the most common type of interaction data found in scientific
literature.

A binary weight of evidence (BINWOE) scheme for use of interaction data from
studies of systemic toxicity has been described in guidelines and used for chemical
mixtures risk assessment (ATSDR 2004a; Mumtaz and Durkin 1992; Pohl et al.
2009; U.S. EPA 2000b). It is a subjective/judgmental method, motivated by the
International Agency for Research on Cancer (IARC) classification scheme for
carcinogens (International Agency for Research on Cancer (IARC) 1982), that can
be used to integrate the interaction data into the overall risk assessment of the
mixture. The process starts with a thorough literature search and review of all
relevant information on all possible binary combinations of chemicals in the mixture

Interaction 
Data

Compound 
Identification

Qualitative 
Interaction Matrix

Quantitative 
Interaction Values

Hazard Index possibly modified
qualitatively or quantitatively for 

interactions

…

Fig. 14.5 Steps in developing a hazard index and modifying it by incorporating information on
toxicological interactions. The qualitative interaction matrix (ATSDR) and quantitative interaction
values (ATSDR and U.S. EPA) are described in Sect. 14.4.1. The U.S. EPA’s interaction-based HI,
where each HQ is adjusted by the interaction values, is described in Sect. 14.4.2
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of interest. This review considers, in addition to available binary interaction data,
information on the toxicity and pharmacokinetics of the individual compounds as
well as interaction data on related compounds. All pertinent information is collapsed
into a qualitative weight of evidence determination using defined criteria.

The U.S. EPA BINWOE classification is simple (Table 14.5), mainly involving
judgment of the extent of extrapolation required. Scores are assigned based on the
quality and direction of the interaction. The associated scores are biased toward
health protection in that less-than-additive interaction has a lower absolute score than
greater-than-additive interaction (unless evidence is very strong, where both have
absolute values ¼ 1). The scores modify the hazard quotients in the additive HI to
reflect the likely pairwise interactions (see details in Sect. 14.4.2), e.g., strong
evidence of greater-than-additive interactions and no evidence for less-than-additive
interactions would increase the HI value.

For each pair of chemicals in the mixture of concern, two BINWOEs can be
derived: one for the effect of the first chemical on the toxicity of the second chemical
and another for the effect of the second chemical on the toxicity of the first chemical.
This is because the interactions of a pair are not always bidirectional and usually
consist of varying quality and degrees of detail. For example, a substantial amount of
information could be known that PCBs will enhance the toxicity of carbon tetra-
chloride and the mechanisms of this enhancement are well understood. Much less,
however, could be known about the effect of carbon tetrachloride on the toxicity of
PCBs. For some binary chemical combinations, upon the availability of data,
multiple BINWOEs can then be developed, including for multiple target organs or
multiple specific effects.

The BINWOE classification of ATSDR is quite detailed (Table 14.6) and will be
used for the remainder of this section. As illustrated in Fig. 14.6, each BINWOE

Table 14.5 U.S. EPA’s BINWOE classification

Category Description

Score for
greater than
D-A

Score for
less than
D-A

I The interaction has been shown to be relevant to
human health effects, and the direction of the inter-
action is unequivocal

1.0 �1.0

II The direction of the interaction has been demon-
strated in vivo in an appropriate animal model, and
the relevance to potential human health effects is
likely

0.75 �0.5

III An interaction in a particular direction is plausible,
but the evidence supporting the interaction and its
relevance to human health effects is weak

0.50 0.0

IV The assumption of additivity has been demonstrated
or must be accepted because of insufficient interac-
tion data

0.0 0.0

Adapted from U.S. EPA (2000b)
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classification consists of a symbol indicating the direction of the interaction followed
by an alphanumeric expression (Mumtaz et al. 1994). That expression can contain up
to five components, but what was found to be more useful in actual applications is
the direction and two major categories (mechanistic understanding, toxicological
significance) along with target organ (Mumtaz et al. 2007; Pohl et al. 2009).

Table 14.6 ATSDR’s BINWOE classification

Direction of interaction
¼ additivity, > greater than additivity, < less than additivity

Mechanistic understanding
I. Direct and unambiguous mechanistic data: the mechanism(s) by which the interactions could

occur has been well characterized and leads to an unambiguous interpretation of the direction of
the interaction
II. Mechanistic data on related compounds: the mechanism(s) by which the interactions could

occur has not been well characterized for the chemicals of concern, but structure-activity rela-
tionships, either quantitative or informal, can be used to infer the likely mechanisms(s) and the
direction of the interaction
III. Inadequate or ambiguous mechanistic data: the mechanism(s) by which the interactions

could occur has not been well characterized, or information on the mechanism(s) does not clearly
indicate the direction of the interaction

Toxicological significance
A. The toxicological significance of the interaction has been directly demonstrated
B. The toxicological significance of the interaction can be inferred or has been

demonstrated for related chemicals
C. The toxicological significance of the interaction is unclear

Modifiers
1. Anticipated exposure duration and sequence
2. Different exposure or sequence

a. In vivo data
b. In vitro data

i. Anticipated route of exposure
ii. Different route of exposure

Adapted from Mumtaz and Durkin (1992) and ATSDR (2004a)

<IIA2bii

Mechanistic 
data on related 

compounds

Different 
duration or 

sequence of 
exposure Different route

Less than 
additive

Direct 
toxicological 
significance

In Vitro data

Fig. 14.6 Example
interaction weight of
evidence categorization
used by ATSDR (Adapted
from Mumtaz et al. 1994)

14 Component-Based Risk Assessment Approaches with Additivity and Interactions 399



The BINWOE determination is an endpoint-specific classification that indicates
the expected direction of an interaction (greater than dose-additive, less than dose-
additive, dose-additive, or indeterminate) and categorizes the data qualitatively by
using an alphanumeric scheme that considers mechanistic understanding, toxicolog-
ical significance, and relevance of the exposure duration, sequence, bioassay
(in vitro versus in vivo), and route of exposure (ATSDR 2004a). The first two
components are major factors that capture the mechanistic information that supports
the assessment and its toxicological significance. The first component expresses the
level of understanding of the potential interaction, while the second determines the
health impact of the interaction. Examples of these two BINWOE components are
given below in the subsection, “Mixtures Evaluated.”

The rating based on mechanistic understanding could be I, II, or III reflecting the
quality of the available mechanistic information supporting the observation or
assumption of a toxicological interaction and the extent to which the information
supports its direction. A rating of I is given for the greatest confidence, i.e., the
mechanism by which the interaction that occurs is well characterized and leads to a
clear direction. A rating of II is given for the next level of confidence, e.g., the
mechanism of interaction is not well understood, but structure-activity relationships
(SAR) may be used to infer the mechanism. This rating is mainly intended to
encourage the use of qualitative, quantitative, or informal SAR relationships. A
rating of III is given for weakly understood interactions that have supporting
mechanistic information that is poor.

The ratings for toxicological significance (A, B, or C) are parallel to the above
ratings (I, II, or III) and are used to express confidence that the chemicals will interact
in a way that will have significant impact on health. The highest rating (A) is given
when the chemical interaction has been observed directly and is linked to a toxico-
logically significant endpoint. The B rating is given to those interactions that can be
inferred. Finally, a rating of C is given to unclear interactions. The last three
components of the BINWOE are modifiers that express the closeness of the available
data to the conditions of the specific risk assessment in terms of the duration,
sequence, routes of exposure, as well as the experimental models.

Once all of the qualitative BINWOE determinations have been made for each pair
of compounds in the mixture, these are arrayed in a qualitative BINWOE matrix
(Fig. 14.7). This matrix shows the 12 binary evaluations for four metals, lead,
manganese, zinc, and copper, with the chemicals in each binary classification
along the two axes (ATSDR 2004c). The diagonal line running from the upper
left-hand corner to the lower right-hand corner corresponds to chemical identities,
which are, by definition, dose additive and are left blank in the interaction matrix.
The column headings indicate the chemicals that are affected by the compounds
listed in the row headings. For example, the classification “<IIA” for the effect of
copper on the toxicity of zinc is given in row four (copper) of column three (zinc).
Similarly, the classification for the effect of lead on the toxicity of copper is “¼IIIC,”
given in row one (lead) of column four (copper). Pairwise interactions are not always
symmetric, e.g., the circled cells in Fig. 14.7 for Mn þ Pb.
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The qualitative BINWOEmatrix may then be used as a tool for qualifying the risk
assessment for a particular site. Certainly, if all the individual BINWOE determina-
tions indicated a high degree of confidence in one type of interaction – e.g., all the
BINWOEs were “>I.A.1.a.i” – the risk assessor would have a strong indication that
interactions that increased the toxicity were likely to be important for this mixture.
Often, however, the qualitative BINWOE matrix will show a variety of potential
interactions and degrees of confidence in the interactions, including several combi-
nations with inadequate or missing data.

Mixtures Evaluated ATSDR performs health assessment of waste sites across the
USA (ATSDR 2005b). Of the 1706 hazardous waste sites assessed, 743 have been
found to have one or more completely characterized exposure pathways (Fay and
Mumtaz 2004; Pohl et al. 2009). About 588 of these sites (79%) have at least two
chemicals in a completed exposure pathway, and 475 sites (64%) have at least three.
The most frequently found binary, tertiary, and quaternary combinations of
chemicals have become the subject of interaction profiles (Table 14.7), documents
that capture all pertinent information and assess the weight of evidence for interac-
tions for these mixtures (ATSDR 2017; Mumtaz and Durkin 1992). Using the weight
of evidence scheme, as of 2009, a total of 380 BINWOE evaluations were deter-
mined for target organ toxicities (Pohl et al. 2009). Of these, 156 (41%) indicated
possible dose-additivity of effects (“¼“), 76 indicated synergism (greater than dose-
additive effects “>“), and 57 indicated antagonism (less than dose-additive effects
“<“). But a substantial number, 91, lacked the minimum information needed for
making any assessments and, hence, were undetermined, thus highlighting data

Pb Mn Zn Cu

Pb =IIICii n 0.0 =IIB h 0.0 =IIIC p 0.0

Mn >ICii n 0.25
>IIB2ii h 0.31

?  h 0.0 ?  p 0.0

Zn <IB n -0.71
<IA h -1.0

?  n 0.0 <IB p -0.71

Cu <IC n -0.32
<IB h -0.71

?  n 0.0 <IIA h -0.71

<,  =,  >  indicate interaction direction from dose additivity
Toxicity types: n=neurological, h=hematological, p=hepatic

EF
FE

C
T 

O
F

ON THE TOXICITY OF

Fig. 14.7 Example results for four metals of their interaction weight of evidence categories and
scores. Other types of toxicity were included in the evidence search; these three types were the most
important. Note multiple toxicity types and lack of symmetry of interaction in circled cells for
Mn þ Pb. A zero value can show evidence of dose additivity (¼) or lack of information (?)
(Adapted from ATSDR 2004c)
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gaps. Of the 76 that indicated possible greater than dose-additive effects, only
16 pairs were ranked in Group I for mechanistic understanding, i.e., there was a
good confidence in the data to determine the mechanism of interaction. These pairs
include arsenic:benzo(a)pyrene (and vice versa); arsenic:chloroform (and vice
versa); arsenic:polychlorinated biphenyls (PCBs); benzene:chloroform; benzo(a)
pyrene:benzene; benzo(a)pyrene:chloroform (and vice versa); cadmium:chloroform
(and vice versa); manganese:lead; PCBs:benzene; PCBs:benzo(a)pyrene; and PCBs:
vinyl chloride (and vice versa). Of the 57 determinations that indicated possible less
than dose-additive effects, only 12 pairs are in Group I for mechanistic understand-
ing. These pairs include aspirin:butyl hydroxyanisole; copper:lead; nitrate:cyanide;
zinc:cadmium; zinc:chloroform; zinc:lead; zinc:mercury; chloroform:trichloroethy-
lene; 1, 1-dichloroethylene:trichloroethylene (and vice versa); and trichloroethylene:
vinyl chloride (and vice versa). From all of the BINWOEs, only 46 were categorized
as Group I for mechanistic understanding and 35 as Group A for toxicological
significance.

As an example, the explanation of the hematotoxic effect of zinc (Zn) on lead
(Pb) shown in Fig. 14.7 can be given as follows (ATSDR 2004c). A code of “<IA”
determination indicates that mechanistic understanding and toxicological signifi-
cance are well established for the interaction between these two chemicals and the
evidence is substantiated from the published literature. The direction of interaction
between zinc and lead is predicted to be less than additive based on a study in orally
exposed children indicating a protective effect of zinc on the hematopoietic effects of
lead and several intermediate-duration oral studies in rats that show protection by
supplemental zinc against a number of hematological effects of lead related to heme
synthesis, particularly at higher lead doses. The evidence for zinc inhibition of lead
hematotoxicity is clear and toxicologically significant and is supported by clear
mechanistic understanding that excess zinc protects and reactivates lead-inhibited

Table 14.7 Mixtures evaluated in ATSDR interaction profiles using the BINWOE approach

Year Chemicals in mixture

2004 Chlorinated dibenzo-p-dioxins (CDDs), hexachlorobenzene, dichlorodiphenyl dichloro-
ethane (p,p0-DDE), methyl mercury, and polychlorinated biphenyls (PCBs)

2004 1,1,1-Trichloroethane, 1,1-dichloroethane, trichloroethylene, and tetrachloroethylene

2004 Arsenic, cadmium, chromium, and lead

2004 Copper, lead, manganese, and zinc

2004 Cesium, cobalt, PCBs, strontium, and trichloroethylene

2004 Arsenic, hydrazines, jet fuels, strontium, and trichloroethylene

2004 Cyanide, fluoride, nitrate, and uranium

2006 Atrazine, deethylatrazine, diazinon, nitrate, and simazine

2006 Chlorpyrifos, lead, mercury, and methylmercury

2007 Carbon monoxide, formaldehyde, methylene chloride, nitrogen dioxide, and
tetrachloroethylene

2007 Chloroform, 1,1-dichloroethylene, trichloroethylene, and vinyl chloride

Adapted from http://www.atsdr.cdc.gov/interactionprofiles/index.asp
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ALAD (delta-aminolevulinic acid dehydratase), decreases the absorption and tissue
distribution of lead, and may induce proteins that sequester lead and donate zinc to
ALAD and for other tissue needs. For risk communication with the public, this can
be simply summarized as follows: oral administration of Zn could mitigate blood
effects induced by Pb, and the confidence is high in this assessment.

The BINWOE process is different for atrazine and diazinon (Table 14.8). No
studies were found that studied atrazine and diazinon interactions, but data were
available for interaction between atrazine and chlorpyrifos, another organophos-
phate. It is known that all organophosphates cause toxicity by the same mechanism
of action. Based on this structure-activity relationship understanding, the weight of
evidence of atrazine and diazinon interaction was determined to be “>IIB,” which is
weaker in comparison to the zinc and lead interaction data (“<IA”) where direct test
results exist of the pairwise interaction. Explanation of the effect of atrazine on
diazinon can be given as follows (ATSDR 2006). A code of “>IIB” indicates a
greater than dose-additive effect for this interaction. Diazinon is a phosphorothioate
organophosphorus insecticide that is metabolically activated through oxidative
desulfuration to diazoxon by cytochrome P450. Diazoxon binds to acetylcholines-
terase, inhibiting its ability to hydrolyze the neurotransmitter acetylcholine. The
resulting accumulation of acetylcholine at the nerve endings causes continual neu-
rological stimulation. This mechanism of action applies to both invertebrates and

Table 14.8 ATSDR’s BINWOE narrative for four organics common in rural well water

Effect of

On toxicity of

Atrazine Simazine Diazinon Nitrate

Atrazine Additive Greater than
additive

Greater than
additive

Reproductive
effects

Neurological
effects

Cancer effects

High confidence Medium
confidence

Low confidence

Simazine Additive [Lack of
information]

Greater than
additive

Reproductive
effects

Cancer effects

High confidence Low confidence

Diazinon Greater than
additive

Greater than
additive

[Lack of
information]

Neurological
effects

Neurological
Effects

Medium
confidence

Medium
confidence

Nitrate Greater than
additive

Greater than
additive

[Lack of
information]

Cancer effects Cancer effects

Low confidence Low confidence

Adapted from ATSDR (2006)
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mammals. Atrazine induced the metabolic activation of a similar phosphorothioate
organophosphorus insecticide, chlorpyrifos, and potentiated its acute neurotoxicity
to midges. Based on the similarity in structure and mechanism of action of diazinon
and chlorpyrifos, a similar mechanism (induction of metabolic activation) can be
inferred for atrazine’s potentiation of the acute neurotoxicity of diazinon to midges
in the same study. Because the mechanism of interaction is inferred from a similar
chemical, a rating of II is chosen for mechanistic understanding, and because it is
based on a similar structure and it is inferred, the rating of B is given for significance.
Because of the many technical issues in inference and extrapolation of the interaction
evidence, for the public, the “>IIB” might be more effectively communicated in
words, such as the following: greater than dose-additive toxicity is possible when
these two chemicals are present together, but the confidence is only medium in this
assessment.

Experience shows that this kind of binary interaction determination can be
successfully used in health assessments at hazardous waste sites, and the methodol-
ogy works particularly well for chemicals with similar mechanism of action as
demonstrated by laboratory confirmation of predictions for some nephrotoxicants
(Mumtaz et al. 1998). Major data gaps do exist in our understanding of joint toxicity
of many component mixtures. Hundreds of chemicals are introduced into the
marketplace on a weekly basis, and the number of structure-searchable chemicals
is in the millions (Demchuk et al. 2008). Testing all chemicals and their combina-
tions is not economically feasible, so relying on expert judgment and computational
methodologies (e.g., PBPK, QSAR modeling) will be increasingly used in future
risk assessment. To facilitate this process, toxicological interaction data need to be
assembled into a database that can be used to characterize the consistency of
interactions and to define classes of compounds that display similar toxicological
interactions (Durkin et al. 1995).

At ATSDR, the BINWOE determinations are used to qualitatively adjust the
HI. For example, if the analysis indicates several binary combinations will have
more than dose-additive joint toxic action, the HI is further analyzed. Conversely, if
the analyses indicate several binary combinations will have less than dose-additive
joint toxic action, the HI is considered adequate for the hazard presented by the
exposure scenario. Such results are used for potential public health actions, including
surveillance, health studies, community education, exposure investigations, and
research.

14.4.2 Interaction-Based Hazard Index

The advantages of the HI include its simplicity and its practicality, mainly its easily
met information requirements. Its main disadvantage is its constrained application to
toxicologically similar chemicals that show no evidence of toxicological interaction.
Most environmental exposures involve several types of chemicals, many with well-
known demonstrated interactions, such as the greater than dose-additive joint
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toxicity of Pb and Cd (ATSDR 2004b). In this chapter, we use the U.S. EPA
definition of toxicological interaction as a deviation from dose additivity (Hertzberg
et al. 2013). With the goal of broader applicability and more realistic mixture risk
estimates, U.S. EPA developed a modification to the HI that incorporates interac-
tions. The interaction-based HI adjusts each HQ in the HI formula to account for data
on toxicological interactions among all pairs of chemicals in the mixture (Hertzberg
et al. 1999; Hertzberg and Teuschler 2002; U.S. EPA 2000b, 2007a). For n
chemicals, this modified HI is:

HIINT ¼
XJ
j¼1

HQj

XJ
i 6¼j

f jiMji
Bjigji

 !
ð14:22Þ

The factors in this formula are described in detail in those references. In summary,
for a binary mixture of chemicals j and i:

Mji ¼ Pairwise interaction magnitude, the ratio of the expected to observed isotoxic
dose (e.g., ED10), where “expected” refers to the dose-additive prediction. If that
ratio � 1, then the inverse should be used so that M � 1. U.S. EPA’s default
assumption is that, for a specified target organ, the binary interaction magnitudes
are symmetric, so Mji ¼ Mij.

Bji ¼ The binary weight of evidence score (see Sect. 14.4.1 for details).
fji ¼ The index of toxic hazard (per its HQ) of the ith chemical relative to the total

hazard from all chemicals potentially interacting with the jth chemical. Using
HIadd to clarify that it represents the usual additive HI:

f ji ¼
HQi

HIadd � HQj
ð14:23Þ

gji ¼ The degree to which chemicals j and i are present in equitoxic amounts, as
indicated by their HQ values. Using an assumption that interaction magnitude is
higher when chemicals are present at equitoxic levels, g is the ratio of the
geometric mean to the arithmetic mean of the two HQ values:

gji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HQj � HQi

p
HQj þ HQi

� �
=2

ð14:24Þ

The exponent Bji is the BINWOE score (described in the previous subsection) for
interactions involving those two chemicals. Interaction magnitude (M ) is included,
defined as the ratio of equitoxic doses. Specifically,M is the larger of the ratio of the
observed mixture response-specific dose (e.g., ED10) to the isotoxic dose predicted
by dose addition and its inverse ratio, so that M � 1. When pairwise interaction
magnitude is not available, the default value of 5 is used by U.S. EPA. That value is
not empirically based but is close to the very rough estimate for low-dose synergy of
4 found in a study by the International Life Sciences Institute (Boobis et al. 2011).
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An example of how the HI changes with the inclusion of interaction evidence is
based on exposure levels estimated for the Superfund site in Palmerton, Pennsylva-
nia (USA), involving a huge zinc waste pile. The main chemicals were lead,
cadmium, and zinc. The levels summarized (Table 14.9) are close to the upper
range of reported levels for soil contamination (U.S. EPA 2007c) and are compared
with the U.S. EPA’s soil screening levels (SSLs) used with Superfund sites
(U.S. EPA 1996). The binary interaction evidence is fairly strong for Zn inhibiting
Pb, is strong for Pb and Cd enhancing each other’s toxicity, is weak for dose
additivity of Pb affecting Zn, and is unknown for Zn with Cd. Because of the high
levels of both Pb and Cd, their greater than additive interaction dominated the
antagonistic interaction influence of Zn, resulting in an interaction-based HI almost
threefold higher than the additive HI without interactions (Table 14.9).

The U.S. EPA’s interaction-based HI is a fairly simple modification to an already
simple mixture risk approach. In addition to U.S. EPA applications, it has been
suggested as a default method (Sarigiannis and Hansen 2012) appropriate for the first
level assessment in tiered approaches such as those of WHO/IPCS (Meek et al.
2011).

14.4.3 Uncertainties

A main uncertainty when incorporating interactions is the lack of interaction infor-
mation for many chemical pairs of concern, as indicated by the “?” notation in the
ATSDR BINWOE matrices (e.g., Fig. 14.7). Another uncertainty occurs when the
BINWOE evaluations are applied to exposure levels much lower than those tested or
are based on extensive extrapolations, e.g., if the studies were in vitro assays or for a
different exposure duration and route than the assessment scenario. An uncertainty
specific to the U.S. EPA interaction-based HI formula relates to the dependence of
interaction magnitude on the degree of equitoxicity of the component ratios in the
mixture (the g function in Eq. 14.24). That function is not an empirical deduction but
an assumption based on judgment by toxicologists. For example, a study on
phthalates was intentionally designed to involve a mixture of near equitoxic

Table 14.9 Example results for the HI and interaction-based HI

Chemical High exposure (ppm) SSL (ppm)

HQ or HI

Additive Interaction-baseda

Pb 3600 400 9.0 25.3

Cd 800 70 11.4 32.3

Zn 32,200 23,000 1.4 1.4

Mixture 21.8 59.0

Adapted from ATSDR (2004b, c)
aThe interaction-based HI in this example is calculated using the U.S. EPA formula (Eq. 14.22) but
the ATSDR BINWOE scheme with results from two interaction profiles
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components: “We employed a mixture dose with equipotent contribution from each
individual phthalate, as opposed to using an environmentally-relevant ratio, so that
we would be more likely to observe unexpected interactions of the phthalate mixture
on postnatal reproductive endpoints” (Howdeshell et al. 2015). The uncertainty in
that assumption could be reduced somewhat by more binary mixture studies with
varying component ratios that represent different types of chemicals and endpoints.

Both the ATSDR and U.S. EPA BINWOE schemes focus on credibility of the
interaction evidence and relevance to human health. What is missing in both those
schemes is any consideration of toxicological importance of the magnitude of the
observed interaction. While Table 14.9 shows results when interactions are included
in the formula, it lacks any indication of whether the change in mixture toxicity from
that indicated by dose addition is toxicologically important. A similar weakness is
prevalent in the many articles on detecting and quantifying interactions using
statistical models: statistical significance is reported but not biological significance.
Reporting biological significance of interactions in some standard fashion is not
simple. For example, consider an approach that is similar to how the individual
chemical benchmark response is often calculated: use the response of some incre-
mental change, say 1 standard deviation (SD), away from the control mean (Crump
2002). If a greater than dose-additive interaction was measured by a mean response
at least 1 SD away from the response estimated under dose addition, one could
perhaps define that interaction as toxicologically important. The difficulty with such
a definition is that “interaction” is a relative term, e.g., a departure from dose
addition. The extent of departure that is toxicologically meaningful most likely
depends on the response expected under dose addition. Consequently, unlike the
benchmark response for individual chemicals, there would not be a corresponding
standard criterion for a toxicologically meaningful interaction, suggesting instead a
case-by-case evaluation. On rare occasion, researchers have evaluated the observed
mixture response relative to the expected variability for that toxic response. For
example, Crofton et al. (2005) decided that the observed, statistically significant
greater than dose-additive response in a mixture of polyhalogenated aromatic hydro-
carbons was not very important toxicologically: “... the magnitude of underestima-
tion of the experimental data by the additivity model is not large. ... even in the high
mixture-dose region, the effects of this mixture are predicted by additivity with a fair
degree of accuracy.”

Another key uncertainty in using interaction BINWOE results is the lack of
standardization of methods for determining and describing interactions. Many
reported interactions are only qualitatively determined and often use different
phrases, e.g., “supra-additive” or “greater than dose additive,” based on the audience
and the authors’ scientific backgrounds (see Chap. 9). Even quantitative determina-
tions can vary because of differing definitions of the expected “noninteractive”
response. Many statistical methods exist for evaluating departure from dose addition,
including refinements to address different toxicological scenarios, such as mixtures
with partial agonists and mixture data from a fixed ratio ray design (see Chap. 11). In
contrast, comparatively few methods have been developed for departure from
response addition. Further, conclusions based on apparent evidence of no interaction
(e.g., statistical consistency with dose addition) could be weak because of poor
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statistical power to detect such an interaction. As discussed in Chap. 13, statistical
power is rarely reported (Meadows-Shropshire et al. 2005; Stork et al. 2007).

14.5 Future Directions for Mixture Risk Assessment

The component-based approaches to mixture assessment that are based on or derived
from dose addition are highly appealing. There are obvious tiers of assessment
(HI-based decisions to RPF-based estimates of response), and for the chemicals
identified as sufficiently toxicologically similar, the required information is usually
available, often with official endorsement by governmental agencies. Several
research articles and government reports have identified important uncertainties
with these approaches and in some cases have suggested ways for improvement.
Most of the arguments have identified issues with data analysis and modeling, but
recently they have focused on toxicological understanding and experimental design.
This section includes a specific enhanced approach to address combinations of both
similar and independent chemicals, followed by general discussion of new directions
that take advantage of better toxicological understanding of the joint toxicity path-
way and of more sophisticated quantitative concepts and tools.

14.5.1 Combining Concepts: Integrated Addition

Several publications have presented dose addition and response addition as the two
alternative concepts for component-based mixture risk assessment, placing impor-
tance on toxicological MOA for deciding between the two and sometimes compar-
ing the corresponding results from those two formulas. Many if not most real
exposures to environmental chemicals include both toxicologically similar
chemicals and independently acting chemicals. Such a scenario arose with the
evaluation of the feasibility of a health risk assessment of mixtures of disinfection
by-product (DBP) chemicals in drinking water, which led to the development of a
hybrid additivity approach that incorporated both dose addition and response addi-
tion for dichotomous endpoints (U.S. EPA 2000a, 2003b). That approach is here
termed “integrated addition” to comport with similar published methods applied to
other chemical combinations (Altenburger et al. 2005; Kim et al. 2014; Mwense
et al. 2004; Olmstead and LeBlanc 2005; Rider et al. 2009; Teuschler et al. 2004).
Integrated addition is yet to be officially defined in any agency or regulatory
guidance documents, but it is mentioned as a theoretically sound option for mixture
risk assessment in U.S. EPA methodology documents published from 2000 to 2007
(Teuschler et al. 2004; U.S. EPA 2000a, 2003b, 2007a). Of the examples of
integrated addition presented in those U.S. EPA and the journal publications cited
above, the DBP example is shown here because it includes clearly identified steps
and requires only standard risk-based component information, similar to what is

408 R. C. Hertzberg and M. M. Mumtaz

https://doi.org/10.1007/978-3-319-56234-6_13


described for the dose addition and response addition approaches discussed in Sects.
14.2 and 14.3.

The integrated addition approach begins with partitioning the mixture chemicals
into nonoverlapping subgroups of toxicologically similar chemicals. For the exam-
ple here, each subgroup is assumed to share a common MOA distinctly different
from the other subgroups. The assumption is that while all chemicals in the assess-
ment share a common health endpoint, the subgroups differ in the AOP leading to
that common endpoint. A risk estimate is then calculated for each subgroup using
methods based on similarity: the RPF method is used in this example. The subgroups
are considered to be toxicologically independent of each other so that response
addition is used to combine risks from all subgroups. The specific steps for applying
integrated addition that we suggest are adapted from those of Teuschler et al. (2004).
“Dose” is used here to generally represent exposure: it can be external exposure
(e.g., mg/kg/day in drinking water) or internal dose (e.g., target tissue concentration).
While only oral exposure is used in this example, those original U.S. EPA publica-
tions address multiroute exposures along with more enhanced characterizations of
dose (Teuschler et al. 2004). An index chemical for each subgroup (for the RPF
method) is used here to simplify the separation of the dose addition and response
addition steps:

1. Partition the chemicals into subgroups by common toxicological MOA.
2. Develop exposure estimates for every chemical.
3. Develop dose-response models for every chemical.
4. For each subgroup, convert the doses to toxicologically equivalent doses for the

same animal species (e.g., rats), and, if not already so, convert the response
measure into a probabilistic risk measure.

5. Identify an index chemical for each subgroup and calculate the ICED for that
subgroup mixture and then the subgroup risk estimate for the chosen animal
species.

6. Convert each subgroup risk estimate into a human risk estimate, and using
response addition, sum up the subgroup human risks to estimate the total mixture
risk; develop a full risk characterization, including an analysis of uncertainty.

For a mixture of J chemicals divided into S similarity subgroups, the final step
uses the response addition formula:

pmix

�
d
*� ¼ 1�

YS
s¼1

 
1� psðICEDsÞ

!
ð14:25Þ

The dose d
*
is the vector of all J component doses. For the sth similarity subgroup,

ps(*) is the dose-response model for the index chemical, and ICEDs is the index
chemical equivalent dose for that subgroup mixture (see Eq. 14.12).

The example is adapted from Teuschler et al. (2004), which uses a mixture of six
carcinogenic DBP chemicals divided into two similarity subgroups: genotoxic
vs. nongenotoxic MOA. The RPFs are estimated from the ratio of cancer slope
factors (SFs). One chemical (CHCl4) has an RfD instead of a cancer slope factor.
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Because its dose was below its RfD, it was assumed to contribute no cancer risk to
the mixture, and so it is not included in our example (Table 14.10). The published
example is much more complex and includes details on the nuances considered in
the estimates of slope and absorbed dose (Teuschler et al. 2004).

Application of integrated addition to mixture risk assessment requires three
conditions:

1. A common adverse effect can be caused by multiple toxicological processes (i.e.,
mechanisms, MOAs, AOPs).

2. The chemicals can be partitioned into several nonoverlapping subgroups, each of
which composed of toxicologically similar chemicals.

3. The subgroups are toxicologically independent of each other.

Those conditions usually would only be assumed to exist; while supporting
evidence could range from poor to good, most likely it would be minimal. The
appeal to risk assessment is that integrated addition allows a reasoned, structured
judgment to be made about safety for those mixtures previously not addressed, i.e.,
those that involve combinations of similar and dissimilar chemicals. To become
practical, decision criteria are needed for when those conditions can be assumed.
While considerable guidance exists related to toxicological similarity, little exists at
present for toxicological independence, particularly when applied to multiple sub-
groups of chemicals.

14.5.2 Discussion and Conclusions

Improvements to mixture risk assessment, particularly regulatory assessment, are
expected to be slow but possibly dramatic. Three interconnected processes are
involved: toxicological understanding, data analysis and modeling, and regulatory

Table 14.10 Example of integrated addition approach for cancer risk of five DBPs

DBP
RPF (SFi/
SF1)

Total absorbed dose for
70 kg male

Component
ICED

Subgroup
ICED

Subgroup
riska

Genotoxic subgroup

BDCM 1.00 1.20E�03 1.20E�03

DBCM 1.35 7.84E�04 1.06E�03

CHBr3 0.13 4.29E�04 5.46E�05

2.32E�03 1.32E�05

Nongenotoxic subgroup

DCA 1.00 4.49E�04 4.49E�04

TCA 0.84 4.77E�04 4.01E�04

8.50E�04 1.19E�06

Total mixture expected cancer risk 1.44E�05

Adapted from Teuschler et al. (2004)
aSubgroup risk ¼ ICED*(index chemical SF). Genotoxic subgroup index chemical, BDCM:
maximum likelihood estimate (MLE) of cancer SF ¼ 5.7E�3. Nongenotoxic subgroup index
chemical, DCA: MLE of cancer SF ¼ 1.4E�3

410 R. C. Hertzberg and M. M. Mumtaz



operations. Dramatic changes in the science are possible if regulatory policy
changes. The first policy shift toward mixture risk occurred with passage of
CERCLA in 1980, which forced such consideration at Superfund sites. The second
policy shift came with FQPA in 1996, where similarity of toxicological processes
and pathways was encoded in pesticide risk guidelines. These three interconnected
processes are now discussed in terms of mixture risk improvements.

14.5.2.1 Improved Toxicological Study and Understanding

The use of the HI approach with adjustment for nonlinear deviation from dose-
additivity gives a reasonable approximation of the toxic potency of a chemical
mixture and is the most practical approach currently available. Our experience at
ATSDR and U.S. EPA shows that this approach can be successfully used in health
assessments at hazardous waste sites and the methodology works particularly well
for mixture components with fairly similar toxicological action. Major data gaps do
exist in our understanding of joint toxicity, particularly of more complex mixtures
(more than ten components). However, testing even a representative sample of all
environmental chemical mixtures is resource limiting and is not feasible. The U.S.
National Academies have recommended a new systems biology approach, using
experimental high-throughput screening studies and alternative testing protocols of
human cell lines, tissues, or in vitro systems to gain insights into happenings at
molecular and cellular levels (NRC 2007). That approach, when pragmatically used,
could allow testing of biologically effective dose of the mixture components in the
target tissues. All the data thus generated need to be captured in strategically
designed, curated, and searchable databases to allow exploration of appropriate
questions and assumptions leading to new testable hypotheses about joint toxicity
mechanisms (Kienzler et al. 2014). A prudent way forward in the near term would be
the increased use of presently available computational methodologies (e.g., PBPK,
QSAR modeling) in mixture risk assessment to increase the number of mixtures
addressable by component methods.

14.5.2.2 Improved Modeling and Data Analysis

Many of the quantitative approaches for component methods were developed years
ago. Some risk-based values are primarily judgment, and most are deterministically
set. The newer reference values are more likely based on dose-response models and
statistical descriptions. For the HI approach, federal agencies such as the U.S. EPA,
ATSDR, and NIOSH have transitioned to reference values based on the benchmark
dose, usually an ED10 from modeling the full-dose range, as a replacement for the
no-observed-adverse-effect level (NOAEL), which was merely a single data point
(U.S. EPA 2014). RPF values have also been improved by several statistical
estimation methods (U.S. EPA 2003a). Judgments about similarity of dose-response
curves in support of dose additivity have been recast as statistical comparisons using
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response estimates for general and specific dose-response models, including mix-
tures with partial agonists (Altenburger et al. 2000; Hadrup et al. 2013; Hertzberg
et al. 2013; Howard and Webster 2009; Kienhuis et al. 2015).

The RPF and TEF approaches remain among the preferred implementations of
dose addition and in many cases are the mixture risk approaches with the strongest
toxicological support. Many of the uncertainties discussed in this chapter are not
routinely considered in mixture risk assessments. As more detailed information,
including data and concepts of dosimetry and toxicodynamic pathways, becomes
more widely available, the RPF and TEF approaches should evolve. Arguments and
examples have been published supporting a variable RPF, i.e., one that is not a
constant but a function of the dose and/or response level (Dinse and Umbach 2011,
2012). When data are extensive (though rarely available with in vivo mammalian
studies), the variable RPF approach can be implemented totally empirically
(Altenburger et al. 2000). In general, a preferable and likely more feasible approach
would be a biologically based response-dependent RPF model.

14.5.2.3 The Role of Governmental Regulatory Approaches
and Numbers

A different issue arises from the official nature of governmental databases, in this
case, the collection of risk-based reference values (e.g., RfD, MRL), relative potency
values (e.g., RPF, TEF), and interaction evidence (e.g., BINWOE classifications and
scores). The availability of such official resources promotes their use, and their
official stature improves consistency across scenarios and over time. That consis-
tency, however, is also a weakness, because governmental updates to reflect new
information are notoriously slow and underfunded. In addition, adoption of new
methods for experiment and analysis is often slow because of the corresponding
revision of so many existing regulatory numbers, reports, and conclusions.
Recommended changes in risk assessment methods and formulas are unlikely to
occur soon, in spite of theoretical merits. For example, changes to the U.S. EPA
version of dose addition suggested by two National Academies reports are not
feasible because they require direct testing of each mixture or full dose-response
curves for every component on every endpoint, neither of which is economically
feasible. At the least, the conclusions about predicted mixture response in govern-
mental assessments should include when possible the numerical impact of variations
in those underlying values (e.g., RfDs in a HI calculation), especially if comparisons
included values based on new research results with those using the existing, official
regulatory values.

Those changes to the conclusions are likely to be minor. What could dramatically
change mixture risk assessment is a shift in regulation toward more realistic expo-
sures and concomitant risks, especially to specific population groups. For
population-centric assessments that include chemicals and nonchemical exposures
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or factors, the U.S. EPA calls that activity “cumulative” risk assessment3 and
emphasizes the role of population characteristics, such as nutrition and psycholog-
ical stress, in altering sensitivity to chemical toxicity (U.S. EPA 2003c). Once
regulatory policy changes to require the so-called twenty-first century approaches
(NASEM 2016), including in silico modeling and collection of high-throughput
screening data that quantitatively describe fairly complete AOPs involving multiple
chemicals, then corresponding research will expand, and risk methods will adapt to
incorporate the new information.

References

ACGIH. 1983. TLVs: theshold limit values for chemical substances and physical agents in the work
environment with intended changes for 1983–1984, Cincinnati.

Alexeeff, S.E., A.A. Litonjua, H. Suh, D. Sparrow, P.S. Vokonas, and J. Schwartz. 2007. Ozone
exposure and lung function: Effect modified by obesity and airways hyperresponsiveness in the
VA normative aging study. Chest 132 (6): 1890–1897.

Altenburger, R., T. Backhaus, W. Boedeker, M. Faust, M. Scholze, and L.H. Grimme. 2000.
Predictability of the toxicity of multiple chemical mixtures to Vibrio fischeri: Mixtures com-
posed of similarly acting chemicals. Environmental Toxicology & Chemistry 19 (9):
2341–2347.

Altenburger, R., H. Schmitt, and G. Schuurmann. 2005. Algal toxicity of nitrobenzenes: Combined
effect analysis as a pharmacological probe for similar modes of interaction. Environmental
Toxicology and Chemistry 24 (2): 324.

Arcos, J.C., M.F. Argus, and Y. Woo. 1995. Chemical induction of cancer: Modulation and
combination effects. An inventory of the many factors which influence carcinogenesis. Boston:
Birkhäuser.

ATSDR. 2004a. Guidance manual for the assessment of joint toxic action of chemical mixtures,
agency for toxic substances and disease Registry. Atlanta: U.S. Department of Health and
Human Services, Public Health Service.

———. 2004b. Interaction profile for: Arsenic, cadmium, chromium, and lead, agency for toxic
substances and disease registry. Atlanta: U.S. Department of Health and Human Services,
Public Health Service.

———. 2004c. Interaction profile for: Lead, manganese, zinc, and copper, agency for toxic
substances and disease registry. Atlanta: U.S. Department of Health and Human Services,
Public Health Service.

———. 2005a. Public health assessment for Conrail Rail Yard, Elkhart, Elkhart County, Indiana,
EPA Facility ID: IND000715490 agency for toxic substances and disease registry,
U.S. Department of Health and Human Services, Atlanta: Public Health Service. https://www.
atsdr.cdc.gov/HAC/pha/ConrailRailYd/ConrailRailYardPHA081105.pdf.

———. 2005b. Public health assessment guidance manual (2005 update). Atlanta: Agency for
Toxic Substances and Disease Registry, U.S. Department of Health and Human Services, Public
Health Service.

3Note that previous “community based” assessments by U.S. EPA also focused on the population,
but could involve exposure to only one chemical, and often include recommendations for commu-
nity action. A cumulative risk “population” in contrast could be the entire U.S. population.

14 Component-Based Risk Assessment Approaches with Additivity and Interactions 413

https://www.atsdr.cdc.gov/HAC/pha/ConrailRailYd/ConrailRailYardPHA081105.pdf
https://www.atsdr.cdc.gov/HAC/pha/ConrailRailYd/ConrailRailYardPHA081105.pdf


——— (2006) Interaction profile for: Atrazine, deethylatrazine, diazinon, nitrate, and simazine,
agency for toxic substances and disease registry, U.S. Department of Health and Human
Services, Public Health Service., Atlanta.

———. 2016. Minimal risk levels.Atlanta: U.S. Department of Health and Human Services. http://
www.atsdr.cdc.gov/mrls/index.asp.

———. 2017. Interaction profiles for toxic substances. U.S. Department of Health and Human
Services. https://www.atsdr.cdc.gov/interactionprofiles/index.asp. Accessed October 2017.

Berenbaum, M.C. 1985. The expected effect of a combination of agents: The general solution.
Journal of Theoretical Biology 114 (3): 413–431.

———. 1989. What is synergy? Pharmacological Reviews 41 (2): 93–141.
Bliss, C.I. 1939. The toxicity of poisons applied jointly. Annals of Applied Biology 26 (3): 585–615.
Boobis, A., R. Budinsky, S. Collie, K. Crofton, M. Embry, S. Felter, R. Hertzberg, D. Kopp,

G. Mihlan, M. Mumtaz, P. Price, K. Solomon, L. Teuschler, R. Yang, and R. Zaleski. 2011.
Critical analysis of literature on low-dose synergy for use in screening chemical mixtures for
risk assessment. Critical Reviews in Toxicology 41 (5): 369–383.

Bosgra, S., J.C.H. van Eijkeren, and W. Slob. 2009. Dose addition and the isobole method as
approaches for predicting the cumulative effect of non-interacting chemicals: A critical evalu-
ation. Critical Reviews in Toxicology 39 (5): 418–426.

Budinsky, R.A., D. Paustenbach, D. Fontaine, B. Landenberger, and T.B. Starr. 2006.
Recommended relative potency factors for 2,3,4,7,8-pentachlorodibenzofuran: The impact of
different dose metrics. Toxicological Sciences 91 (1): 275–285.

Chen, J.J., Y.-J. Chen, G. Rice, L. Teuschler, K. Hamernik, A. Protzel, and R. Kodell. 2001. Using
dose addition to estimate cumulative risks from exposures to multiple chemicals. Regulatory
Toxicology and Pharmacology 34: 35–41.

Chen, J., Y.-J. Chen, L. Teuschler, G.E. Rice, K. Hamernik, A. Protzel, and R.L. Kodell. 2003.
Cumulative risk assessment for quantitative response data. Environmetrics 14 (4): 339–353.

Cogliano, V.J. 1997. Plausible upper bounds: Are their sums plausible? Risk Analysis 17 (1): 77–84.
Crofton, K.M., E.S. Craft, J.M. Hedge, C. Gennings, J.E. Simmons, R.A. Carchman, W.H. Carter

Jr., and M.J. DeVito. 2005. Thyroid-hormone disrupting chemicals: Evidence for dose-
dependent additivity or synergism. Environmental Health Perspectives 113 (11): 1549.

Crump, K.S. 2002. Critical issues in benchmark calculations from continuous data. Critical Reviews
in Toxicology 32 (3): 133–153.

Demchuk, E., P. Ruiz, J.D. Wilson, F. Scinicariello, H.R. Pohl, M. Fay, M.M. Mumtaz, H. Hansen,
and C.T. De Rosa. 2008. Computational toxicology methods in public health practice. Toxicol-
ogy Mechanisms and Methods 18 (2–3): 119–135.

Dinse, G.E., and D.M. Umbach. 2011. Characterizing non-constant relative potency. Regulatory
Toxicology and Pharmacology 60 (3): 342–353.

———. 2012. Parameterizing dose-response models to estimate relative potency functions directly.
Toxicological Sciences 129 (2): 447–455.

Durkin, P., R. Hertzberg, W. Stiteler, and M. Mumtaz. 1995. The identification and testing of
interaction patterns. Toxicology Letters 79 (1–3): 251–264.

Egeghy, P.P., R. Judson, S. Gangwal, S. Mosher, D. Smith, J. Vail, and E.A. Cohen Hubal. 2012.
The exposure data landscape for manufactured chemicals. Science of the Total Environment
414: 159–166.

Fann, N., H.A. Roman, C.M. Fulcher, M.A. Gentile, B.J. Hubbell, K. Wesson, and J.I. Levy. 2011.
Maximizing health benefits and minimizing inequality: Incorporating local-scale data in the
design and evaluation of air quality policies. Risk Analysis 31 (6): 908–922.

Fay, R.M., and M.M. Mumtaz. 1996. Development of a priority list of chemical mixtures occurring
at 1188 hazardous waste sites, using the hazdat database. Food and Chemical Toxicology
34 (11–12): 1163–1165.

Fay, M., and M. Mumtaz. 2004. Frequency of exposure to contaminant mixtures at hazardous waste
sites. Toxicology 78 (108): 522.

Finney, D.J. 1971. Probit analysis. 2nd ed. Cambridge: Cambridge University Press.

414 R. C. Hertzberg and M. M. Mumtaz

http://www.atsdr.cdc.gov/mrls/index.asp
http://www.atsdr.cdc.gov/mrls/index.asp
https://www.atsdr.cdc.gov/interactionprofiles/index.asp


Fox, M.A., N.L. Tran, J.D. Groopman, and T.A. Burke. 2004. Toxicological resources for cumu-
lative risk: An example with hazardous air pollutants. Regulatory Toxicology and Pharmacol-
ogy 40 (3): 305–311.

Gennings, C. 1995. An efficient experimental design for detecting departure from additivity in
mixtures of many chemicals. Toxicology 105 (2–3): 189–197.

Hadrup, N., C. Taxvig, M. Pedersen, C. Nellemann, U. Hass, and A.M. Vinggaard. 2013. Concen-
tration addition, independent action and generalized concentration addition models for mixture
effect prediction of sex hormone synthesis in vitro. PloS One 8 (8): e70490.

Hertzberg, R.C., and L.K. Teuschler. 2002. Evaluating quantitative formulas for dose-response
assessment of chemical mixtures. Environmental Health Perspectives 110 (Supplement 6):
965–970.

Hertzberg, R.C., G.E. Rice, and L.K. Teuschler. 1999. Methods for health risk assessment of
combustion mixtures. In Hazardous waste incineration: Evaluating the human health and
environmental risks, ed. S. Roberts, C. Teaf, and J. Bean, 105–148. Boca Raton: CRC Press.

Hertzberg, R.C., Y. Pan, R. Li, L.T. Haber, R.H. Lyles, D.W. Herr, V.C. Moser, and J.E. Simmons.
2013. A four-step approach to evaluate mixtures for consistency with dose addition. Toxicology
313 (2–3): 134–144.

Howard, G.J., and T.F. Webster. 2009. Generalized concentration addition: A method for examin-
ing mixtures containing partial agonists. Journal of Theoretical Biology 259 (3): 469–477.

Howdeshell, K.L., C.V. Rider, V.S. Wilson, J. Furr, C.R. Lambright, and L.E. Gray. 2015. Dose
addition models based on biologically-relevant reductions in fetal testosterone accurately
predict postnatal reproductive tract alterations by a phthalate mixture in rats. Toxicological
Sciences 148: 488–502.

International Agency for Research on Cancer (IARC). 1982. IARC Monographs on the evaluation
of' the carcinogenic risk of chemicals to humans, Supplement 4, Lyon.

Kienhuis, A.S., W. Slob, E.R. Gremmer, J.P. Vermeulen, and J. Ezendam. 2015. A dose-response
modeling approach shows that effects from mixture exposure to the skin sensitizers isoeugenol
and cinnamal are in line with dose addition and not with synergism. Toxicological Sciences
147 (1): 68–74.

Kienzler, A., E. Berggren, J. Bessems, S. Bopp, S. van der Linden, and A.P. Worth. 2014.
Assessment of mixtures – Review of regulatory requirements and guidance. Luxembourg:
European Commission.

Kim, J., S. Kim, and G.E. Schaumann. 2014. Development of a partial least squares-based
integrated addition model for predicting mixture toxicity. Human and Ecological Risk Assess-
ment 20 (1): 174.

Kortenkamp, A., T. Backhaus, and M. Faust. 2009. State of the art report on mixture toxicity.
London: University of London.

Lambert, J.C., and J.C. Lipscomb. 2007. Mode of action as a determining factor in additivity
models for chemical mixture risk assessment. Regulatory Toxicology and Pharmacology 49 (3):
183–194.

MacDonell, M. 2014. Grouping stressors by exposure factors for cumulative risk assessment. In
workshop: Cumulative risk assessment: addressing combined environmental stressors. Society
for Risk Analysis annual meeting, Denver, CO, Dec. 7, 2014.

MacDonell, M.M., R.C. Hertzberg, G.E. Rice, J.M. Wright, and L.K. Teuschler. 2017. Character-
izing risk for cumulative risk assessments. Risk Analysis. https://doi.org/10.1111/risa.12933.

McCarty, L.S., and C.J. Borgert. 2006. Review of the toxicity of chemical mixtures: Theory, policy,
and regulatory practice. Regulatory Toxicology and Pharmacology 45 (2): 119–143.

Meadows-Shropshire, S.L., C. Gennings, and W.H. Carter. 2005. Sample size and power determi-
nation for detecting interactions in mixtures of chemicals. Journal of Agricultural, Biological,
and Environmental Statistics 10 (1): 104.

Meek, B., A. Boobis, K.M. Crofton, G. Heinemeyer, M. Van Raaij, and C. Vickers. 2011. Risk
assessment of combined exposure to multiple chemicals: A WHO/IPCS framework. Regulatory
Toxicology and Pharmacology 60 (Supplement (2)): S1–S14.

14 Component-Based Risk Assessment Approaches with Additivity and Interactions 415

https://doi.org/10.1111/risa.12933


Miltner, R.J., T.F. Speth, S.D. Richardson, S.W. Krasner, H.S. Weinberg, and J.E. Simmons. 2008.
Integrated disinfection by-products mixtures research: Disinfection of drinking waters by
chlorination and ozonation/postchlorination treatment scenarios. Journal of Toxicology and
Environmental Health, Part A 71 (17): 1133–1148.

Morello-Frosch, R., and E.D. Shenassa. 2006. The environmental "riskscape" and social inequality:
Implications for explaining maternal and child health disparities. Environmental Health Per-
spectives 114 (8): 1150–1153.

Mumtaz, M., and P. Durkin. 1992. A weight of evidence scheme for assessing interactions in
chemical mixtures. Toxicology and Industrial Health 8: 377–406.

Mumtaz, M., and R.C. Hertzberg. 1993. The status of interaction data in risk assessment of
chemical mixtures. In Hazard assessment of chemicals, ed. J. Saxena, vol. 8, 47–79.
Washington: Hemisphere.

Mumtaz, M.M., C. DeRosa, and P.R. Durkin. 1994. Approaches and challenges in risk assessments
of chemical mixtures. In Toxicology of chemical mixtures: Case studies, mechanisms, and novel
approaches, ed. R.S.H. Yang, 565–597. San Diego: Academic Press.

Mumtaz, M., K. Poirer, and J.T. Colman. 1997. Risk assessment for chemical mixtures: Fine-tuning
the hazard index approach. Journal of Clean Technology Environmental Toxicology and
Occupational Medicine 6: 189–204.

Mumtaz, M.M., C.T. De Rosa, J. Groten, V.J. Feron, H. Hansen, and P.R. Durkin. 1998. Estimation
of toxicity of chemical mixtures through modeling of chemical interactions. Environmental
Health Perspectives 106 (Suppl 6): 1353–1360.

Mumtaz, M.M., P. Ruiz, and C.T. De Rosa. 2007. Toxicity assessment of unintentional exposure to
multiple chemicals. Toxicology and Applied Pharmacology 223 (2): 104–113.

Muska, C.F., and L.J. Weber. 1977. An approach for studying the effects of mixtures of environ-
mental toxicants on whole organism performances. In Recent advances in fish toxicology,
ed. R.A. Tubb, 71–87. Corvallis: Corvallis Environmental Research Laboratory, U.S. EPA.

Mwense, M., X.Z. Wang, F.V. Buontempo, N. Horan, A. Young, and D. Osborn. 2004. Prediction
of noninteractive mixture toxicity of organic compounds based on a fuzzy set method. Journal
of Chemical Information and Computer Sciences 44 (5): 1763–1773.

NASEM. 2016. Using 21st century science to improve risk-related evaluations. 978-0-309-45348-
6. Washington: National Academies of Sciences, Engineering, and Medicine, The National
Academies Press. https://www.nap.edu/catalog/24635/using-21st-century-science-to-improve-
risk-related-evaluations.

NRC. 2007. Toxicity testing in the 21st century: A vision and a strategy. 9780309151733.
Washington: National Academies Press. http://www.nap.edu/openbook.php?record_id¼11970.

———. 2008. Phthalates and cumulative risk assessment: The tasks ahead. Washington: National
Academies Press.

Olmstead, A.W., and G.A. LeBlanc. 2005. Toxicity assessment of environmentally relevant
pollutant mixtures using a heuristic model. Integrated Environmental Assessment and Manage-
ment 1 (2): 114–122.

Ott, W.R. 1978. Environmental indices: Theory and practice. Ann Arbor: Ann Arbor Science.
Parvez, S., A.M. Evans, M. Lorber, B.S. Hawkins, J.C. Swartout, L.K. Teuschler, and G.E. Rice.

2013. A sensitivity analysis using alternative toxic equivalency factors to estimate U.S. dietary
exposures to dioxin-like compounds. Regulatory Toxicology and Pharmacology 67 (2):
278–284.

Plackett, R.L., and P.S. Hewlett. 1948. Statistical aspects of the independent joint action of poisons,
particularly insecticides. I. The toxicity of a mixture of poisons. Annals of Applied Biology
35 (3): 347–358.

Pohl, H.R., M.M. Mumtaz, F. Scinicariello, and H. Hansen. 2009. Binary weight-of-evidence
evaluations of chemical interactions–15 years of experience. Regulatory Toxicology and Phar-
macology 54 (3): 264–271.

416 R. C. Hertzberg and M. M. Mumtaz

https://www.nap.edu/catalog/24635/using-21st-century-science-to-improve-risk-related-evaluations
https://www.nap.edu/catalog/24635/using-21st-century-science-to-improve-risk-related-evaluations
http://www.nap.edu/openbook.php?record_id=11970
http://www.nap.edu/openbook.php?record_id=11970


Rice, G., M. MacDonell, R.C. Hertzberg, L. Teuschler, K. Picel, J. Butler, Y.-S. Chang, and
H. Hartmann. 2008. An approach for assessing human exposures to chemical mixtures in the
environment. Toxicology and Applied Pharmacology 233 (1): 126–136.

Rider, C.V., V.S. Wilson, K.L. Howdeshell, A.K. Hotchkiss, J.R. Furr, C.R. Lambright, and
L.E. Gray. 2009. Cumulative effects of in utero administration of mixtures of “Antiandrogens”
on male rat reproductive development. Toxicologic Pathology 37 (1): 100–113.

Sarigiannis, D.A., and U. Hansen. 2012. Considering the cumulative risk of mixtures of chemicals –
A challenge for policy makers. Environmental Health: A Global Access Science Source
11 (Suppl 1): S18.

SCHER, SCCS, SCENIHR. 2012. Opinion on the toxicity and assessment of chemical mixtures.
Brussels: European Union.

Smyth Jr, H.F., C.S. Weil, J.S. West, and C.P. Carpenter. 1969. An exploration of joint toxic action:
Twenty-seven industrial chemicals intubated in rats in all possible pairs. Toxicology and Applied
Pharmacology 14 (2): 340–347.

Stork, L.G., C. Gennings, W.H. Carter, R.E. Johnson, D.P. Mays, J.E. Simmons, E.D. Wagner, and
M.J. Plewa. 2007. Testing for additivity in chemical mixtures using a fixed-ratio ray design and
statistical equivalence testing methods. Journal of Agricultural, Biological, and Environmental
Statistics 12 (4): 514–533.

Svendsgaard, D., and R.C. Hertzberg. 1994. Statistical methods for the toxicological evaluation of
the additivity assumption as used in the EPA chemical mixture risk assessment guidelines. In
Toxicology of chemical mixtures: Case studies, mechanisms, and novel approaches,
ed. R.S.H. Yang, 599–642. San Diego: Academic Press.

Teuschler, L., J. Klaunig, E. Carney, J. Chambers, R. Conolly, C. Gennings, J. Giesy, R. Hertzberg,
C. Klaassen, R. Kodell, D. Paustenbach, and R. Yang. 2002. Support of science-based decisions
concerning the evaluation of the toxicology of mixtures: A new beginning. Regulatory Toxi-
cology and Pharmacology 36 (1): 34–39.

Teuschler, L.K., G.E. Rice, C.R. Wilkes, J.C. Lipscomb, and F.W. Power. 2004. A feasibility study
of cumulative risk assessment methods for drinking water disinfection by-product mixtures.
Journal of Toxicology and Environmental Health, Part A 67 (8–10): 755–777.

Tornero-Velez, R., P.P. Egeghy, and E.A. Cohen Hubal. 2012. Biogeographical analysis of
chemical co-occurrence data to identify priorities for mixtures research. Risk Analysis 32 (2):
224–236.

U.S. EPA. 1986a. Guidelines for carcinogen risk assessment. EPA/630/R-00/004. Washington:
Risk assessment Forum.

———. 1986b. Guidelines for the health risk assessment of chemical mixtures. EPA/630/R-98/002.
Washington: Risk Assessment Forum.

———. 1989a. Interim procedures for estimating risks associated with exposures to mixtures of
chlorinated dibenzo-p-dioxins and -dibenzofurans (CDDs and CDFs) and 1989 update. EPA//
625/3-89/016. Washington: Risk Assessment Forum.

———. 1989b. Risk assessment guidance for superfund. vol. 1. Human health evaluation manual
(Part A). EPA/540/1-89/002. Washington: Office of Solid Waste and Emergency Response.

———. 1993. Technical guidance manual, risk assessment. In Selecting exposure routes and
contaminants of concern by risk-based screening. U.S. EPA/903/r-93-001, Region III Philadel-
phia: Hazardous Waste Management Division, Office of Superfund Programs. https://www.epa.
gov/risk/selecting-exposure-routes-and-contaminants-concern-risk-based-screening.

———. 1996. Supplemental guidance for developing soil screening levels for superfund sites.
OSWER 9355.4–24. Washington: Office of Emergency and Remedial Response.

———. 1999. Guidance for identifying pesticide chemicals and other substances that have a
common mechanism of toxicity. Washington: Office of Pesticide Programs.

———. 2000a. Conducting a risk assessment of mixtures of disinfection by-products (DBPs) for
drinking water treatment systems. EPA/600/R-03/040. Cincinnati: Office of Research and
Development, National Center for Environmental Assessment.

14 Component-Based Risk Assessment Approaches with Additivity and Interactions 417

https://www.epa.gov/risk/selecting-exposure-routes-and-contaminants-concern-risk-based-screening
https://www.epa.gov/risk/selecting-exposure-routes-and-contaminants-concern-risk-based-screening


———. 2000b. Supplementary guidance for conducting health risk assessment of chemical
mixtures. EPA/630/R-00/002. Washington: Risk Assessment Forum. http://ofmpub.epa.gov/
eims/eimscomm.getfile?p_download_id¼4486.

———. 2001a. General principles for performing aggregate exposure and risk assessments.
Washington: Office of Pesticide Programs.

———. 2001b. Risk assessment guidance for superfund. In Vol. I. Human health evaluation
manual (Part D), standardized planning, reporting, and review of superfund risk assessments.
9285.7-47, Washington: Office of Solid Waste and Emergency Response.

———. 2001c. Workshop report on the application of 2,3,7,8-TCDD toxicity equivalence factors
to fish and wildlife. EPA/630/R-01/002. Washington: Risk Assessment Forum.

———. 2002a. Guidance on cumulative risk assessment of pesticide chemicals that have a
common mechanism of toxicity. Washington: Office of Pesticide Programs.

———. 2002b. Revised organophosphorous pesticide cumulative risk assessment. Washington:
Office of Pesticide Programs.

———. 2003a. Developing relative potency factors for pesticide mixtures: Biostatistical analyses
of joint dose-response. EPA/600/R-03/052. Cincinnati: Office of Research and Development,
National Center for Environmental Assessment.

———. 2003b. The feasibility of performing cumulative risk assessments for mixtures of disinfec-
tion by-products in drinking water. EPA/600/R-03/051. Cincinnati: Office of Research and
Development, National Center for Environmental Assessment.

———. 2003c. Framework for cumulative risk assessment. EPA/600/P-02/001F. Washington:
Risk Assessment Forum.

———. 2005. Guidelines for carcinogen risk assessment. EPA/630/P-03/001F. Washington: Risk
Assessment Forum.

———. 2006. Organophosphorus cumulative risk assessment – 2006 update. EPA-HQ-OPP-
2006-0618-0002. Washington: Office of Pesticide Programs.

———. 2007a. Concepts, methods, and data sources for cumulative health risk assessment of
multiple chemicals, exposures and effects: a resource document. EPA/600/R-06/013F. Cincin-
nati: Office of Research and Development, National Center for Environmental Assessment.

———. 2007b. Considerations for developing a dosimetry-based cumulative risk assessment
approach for mixtures of environmental contaminants. EPA/600/R-07/064. Cincinnati: Office
of Research and Development, National Center for Environmental Assessment.

———. 2007c. Palmerton zinc pile: compost/biosolids application to revegetate defoliated areas.
Washington: Abandoned Mine Lands Program.

———. 2007d. Revised n-methyl carbamate cumulative risk assessment. Washington: Office of
Pesticide Programs.

———. 2010. Recommended Toxicity Equivalence Factors (TEFs) for human health risk assess-
ments of 2,3,7,8- tetrachlorodibenzo-p-dioxin and dioxin-like compounds. EPA/100/R-10/005.
Washington: Office of Research and Development, Risk Assessment Forum.

———. 2012. EPA's integrated risk information system program: Progress report and report to
congress. Washington: Office of Research and Development. https://www.epa.gov/sites/produc
tion/files/2015-06/documents/iris_report_to_congress_2012.pdf.

———. 2016. Benchmark Dose Software (BMDS) User Manual, National Center for Environ-
mental Assessment, Research Triangle Park.

———. 2016. Regional screening levels for chemical contaminants at superfund sites. Office of
Land and Emergency Management. https://www.epa.gov/risk/regional-screening-levels-rsls.
Accessed October 2017.

———. 2017. Integrated Risk Information System (IRIS). Office of Research and Development.
Available via U.S. EPA Office of Research and Development, National Center for Environ-
mental Assessment. https://www.epa.gov/iris/. Accessed October 2017.

van den Berg, M., L. Birnbaum, T. Bosveld, B. Brunstrom, et al. 1998. Toxic Equivalency Factors
(TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environmental Health Perspectives
106 (12): 775–792.

418 R. C. Hertzberg and M. M. Mumtaz

http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=4486
http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=4486
http://ofmpub.epa.gov/eims/eimscomm.getfile?p_download_id=4486
https://www.epa.gov/sites/production/files/2015-06/documents/iris_report_to_congress_2012.pdf
https://www.epa.gov/sites/production/files/2015-06/documents/iris_report_to_congress_2012.pdf


van den Berg, M., L.S. Birnbaum, M. Denison, M. De Vito, W. Farland, M. Feeley, H. Fiedler,
H. Hakansson, A. Hanberg, L. Haws, M. Rose, S. Safe, D. Schrenk, C. Tohyama, A. Tritscher,
J. Tuomisto, M. Tysklind, N. Walker, and R.E. Peterson. 2006. The 2005 world health
organization reevaluation of human and mammalian toxic equivalency factors for dioxins and
dioxin-like compounds. Toxicological Sciences 93 (2): 223–241.

van den Berg, M., M.S. Denison, L.S. Birnbaum, M.J. DeVito, H. Fiedler, J. Falandysz, M. Rose,
D. Schrenk, S. Safe, C. Tohyama, A. Tritscher, M. Tysklind, and R.E. Peterson. 2013.
Polybrominated dibenzo-p-dioxins, dibenzofurans, and biphenyls: Inclusion in the toxicity
equivalency factor concept for dioxin-like compounds. Toxicological Sciences 133 (2):
197–208.

Wesson, K., N. Fann, M. Morris, T. Fox, and B. Hubbell. 2010. A multi-pollutant, risk-based
approach to air quality management: Case study for Detroit. Atmospheric Pollution Research
1 (4): 296–304.

Wolansky, M.J., C. Gennings, and K.M. Crofton. 2006. Relative potencies for acute effects of
pyrethroids on motor function in rats. Toxicological Sciences 89 (1): 271–277.

Zartarian, V.G., and B.D. Schultz. 2010. The EPA's human exposure research program for
assessing cumulative risk in communities. Journal of Exposure Science and Environmental
Epidemiology 20 (4): 351–358.

14 Component-Based Risk Assessment Approaches with Additivity and Interactions 419



Chapter 15

Assessing Human Health Risks Using

Information on Whole Mixtures

Glenn E. Rice, Ingvar Eide, Paul I. Feder, and Chris Gennings

Abstract This chapter discusses whole mixture approaches to assessing the risks

of potentially hazardous chemical mixtures in the environment within the context of

the risk assessment paradigm. Here, “whole mixtures” represent the combination of

chemicals in the exposure being assessed. For risk assessment purposes, the envi-

ronmental mixtures considered as a whole mixture can range from complex mix-

tures, consisting of perhaps hundreds of component chemicals, to less complex

whole mixtures, such as all of the members (i.e., components) of a defined class of

compounds. Whole mixture approaches are preferred to component approaches in

mixture risk assessments. Because of the variability of whole mixtures encountered

in the environment and the paucity of health effect studies, including dose-response

studies, conducted on whole mixtures, if toxicity data are not available for an

environmental mixture, the risk assessment could be based on surrogate toxicity

information obtained from testing a sufficiently similar mixture. Biostatistical

approaches for evaluating whether mixtures are sufficiently similar are included

here as potential approaches that may, with further evaluation, prove useful in

regulatory risk assessment contexts. The chapter concludes with a discussion of

future directions for whole mixture risk assessment research.
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15.1 Introduction

In assessments of potentially hazardous chemical mixtures in the environment,

analyses of human health risks can be conducted on the components of the mixture

or the “whole mixture,” depending on the available exposure information and

health effect (e.g., dose-response) data. This chapter explores risk assessment

approaches and describes important considerations when analyzing the risks

using whole mixture data.

Risk assessments are conducted to help inform decisions faced by risk managers,

sometimes referred to as decision-makers. Ideally, risk assessments are conducted

in a decision-relevant context, conveying to a risk manager both what is known and

not known about the risks associated with the exposures in the populations of

interest. In addition to evaluating health risks when forming their decisions, risk

managers often consider other factors including cost, feasibility, and social

acceptance.

Human health risk assessments for environmental chemicals generally are com-

prised of the following series of interdependent steps (U.S. EPA 1998, 2000;

NRC 1983):

• Problem formulation

• Hazard identification

• Exposure assessment

• Dose-response assessment

• Risk characterization

For environmental mixtures, risk assessments based on whole mixtures are

preferred to those using component approaches (U.S. EPA 2000). Relative to risk

assessments based on component data, risk analysts typically are more confident in

assessments based, in part, on whole mixture toxicological or epidemiological

studies, because such whole mixture studies account for interactions among mix-

ture components and for the toxicity of unidentified compounds in the mixture. U.S.

EPA (2000) also offered that whole mixture approaches should be used when

component approaches are unlikely to estimate a health risk accurately. If the

whole mixture is evaluated in an epidemiology study, its relevance to human health

risk assessment is potentially increased, because the evidence of toxicity is in a

human population, and the exposure route(s), exposure levels, exposure patterns,

and observed dose-response could be pertinent to other human populations.

A major limitation of using whole mixture health effect data is that their applica-

bility may be limited to other mixtures judged “similar”; further, the health effects

data may not be useful if the mixtures are judged to be not similar. If components of

a mixture are known, component-based toxicology testing can be performed, but

information on the mode of action and interactions among chemicals are either

needed or assumed in order to assess the type of combined action applicable (e.g.,

independent action or similar action) and to estimate risk.
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The meaning of the term “whole mixtures” is important when conducting a risk

assessment on an environmental chemical mixture. “Whole mixtures” typically

represents the combination of chemicals in the exposure being assessed. The

composition of the mixture including the component chemicals and their propor-

tions might be fully known, partially known, or unknown. The mixture can still be

uniquely specified for the latter two cases when the process is known that caused the

mixture exposure.

Often, the term “complex mixture” is used to describe a combination of expo-

sures to chemical substances that involves significant uncertainty when addressed

by component-based approaches. That uncertainty can arise from the large number

of components or the large fraction of the mixture that is of unknown composition.

Because of the uncertainty, the risks posed by exposures to such mixtures are often

assessed as a single entity and described by the exposure scenario or source process

and not by the component chemicals. Complex mixtures can consist of perhaps

hundreds of component chemical substances and can occur in different phases (i.e.,

gas, liquid, solid). There are other definitions of complex mixtures; for example,

some contend that mixtures are complex when ten or more chemicals are included

(Feron et al. 1998; Feron and Groten 2002).

15.1.1 Polycyclic Aromatic Hydrocarbons: A Motivating
Example of a Complex Mixture

As they occur in environmental media, the class of chemicals identified as the

polycyclic aromatic hydrocarbons (PAHs) provide examples of some attributes of

complex whole mixtures and illustrate some of the challenges associated with

conducting risk assessments on such mixtures (Dybing et al. 2013). PAHs occur

naturally in coal, crude oil, and gasoline. They also are produced when substances

such as coal, gas, wood, garbage, and tobacco are burned. Sources that release PAH

mixtures to the environment include wild fires, industrial processes, domestic

heating, and motor vehicle emissions. PAH mixtures also can be formed during

the cooking of food.

When they occur in the environment, PAH mixtures are not a single entity

exhibiting the same components at fixed component ratios, rather, the composition

of PAH mixtures differs over time and place; their composition also depends on the

source and the medium in which they are encountered. PAH mixtures in the

environment can consist of hundreds of components; some components of these

PAH mixtures may not be identified chemically (i.e., the PAH mixture includes an

unidentified fraction). PAHs can occur in different phases; for example, PAHs in

the atmosphere can be measured bound to particulates (solid phase) and in the gas

phase. PAH mixtures can occur in multiple media; in addition to being present in

the air, PAH mixtures can contaminate soils, sediments, and water bodies, as well

as aquatic and terrestrial food webs.
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Considering this variability in occurrence, the composition of PAH mixtures to

which individuals are exposed can vary based on the different conditions in which

the mixture is produced or released to the environment, over time, or by location;

the composition of PAH mixtures also can vary depending on the environmental

medium (e.g., air, water, soil, food web) through which exposure occurs. Exposures

to PAH mixtures can occur through multiple routes of exposure (i.e., oral, inhala-

tion, and transdermal absorption). These differences pose challenges when consid-

ering the analysis of risks posed by PAH mixtures, including when deciding which

PAH mixtures to evaluate in toxicological studies (Flowers et al. 2002) and

evaluating PAH exposures in epidemiology studies.

15.1.2 Whole Mixture Risk Assessment: Considering
Environmental Fate

Generally, chemical mixtures can be released to the environment from many

different human activities. These include the following:

• Emissions from fixed sources (industrial emissions, municipal incinerators) and

mobile sources (cars, airplanes)

• Releases and products from engineering processes (drinking water disinfectant

by-products)

• Sources related to lifestyle (food, smoking, sprays, fuels)

• Occupational processes (workplace dusts)

• Product applications (pesticides and herbicides)

In addition to human activities, natural events in the environment can also

release chemical mixtures (e.g., forest fires, decaying plant, or animal tissues).

In addition to releases into specific environmental media, some mixtures can

occur in specific environmental media due to the properties of the chemicals. For

example, urban air and indoor air typically contain mixtures of chemicals. Such

mixtures might include volatile and semi-volatile chemicals, particulates released

from human activities (see above list), and natural sources. Similarly, terrestrial and

aquatic food webs might be contaminated with chemicals that partition to and are

preferentially retained in adipose tissues (e.g., polychlorinated biphenyls [PCBs]

and dioxin-like compounds) or other tissues. The composition and human health

risks associated with these mixtures that co-occur in environmental media could

differ markedly from the mixtures as released (e.g., Lorber et al. 1994; Fries 1995;

Cogliano 1998).

Mixtures of chemicals also can co-occur in human tissues as a consequence of

previous and current exposures and toxicokinetics. The levels of such chemicals or

residues from these chemicals can be estimated through toxicokinetic studies or

measured in biomonitoring studies; the chemicals present in these tissues could be

considered a whole mixture.
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Finally, the compositions (including the constituents and their proportions) of

many mixtures are altered in the environment following their release (e.g.,

weathering of pesticides, photodegradation of volatile organic compounds

[VOCs] in the atmosphere, partitioning of some components of a mixture into

other media). The health risks associated with exposures to these altered mixtures

may differ markedly from the risks posed by the original mixture (ATSDR 1996).

For example, technical-grade toxaphene, an organochlorine insecticide heavily

used in the United States until the 1980s, illustrates a complex mixture that changes

markedly following release in the environment. Although originally applied to

soils, technical-grade toxaphene contains over 670 chemicals, some of which

have degradation products that can be transported into water bodies where they

accumulate in fish that people eat (Simon and Manning 2006).

15.1.3 Chapter Overview

The remaining sections of this chapter discuss issues of concern when evaluating

the risks using data on whole mixtures, focusing on the exposure assessment and

dose-response assessment steps as they are conducted as part of a whole mixture

risk assessment. (See Chaps. 2, 3, and 4 in this book for additional discussions of

exposure assessment and dose-response assessment for chemical mixtures.)

Section 15.2 provides a brief overview of problem formulation and hazard identi-

fication from a whole mixture perspective. Section 15.3 addresses exposure assess-

ment issues for whole mixtures, including both qualitative and quantitative

approaches. Section 15.4 addresses the selection of mixture studies for developing

dose-response assessments. Section 15.5 discusses dose-response assessment and

presents examples of reference doses (RfDs) and cancer slope factors that have

been developed by regulatory bodies for whole mixtures. Section 15.6 proposes

approaches for evaluating sufficient similarity. Using this concept, when suitable

dose-response information regarding the mixture of concern (e.g., a mixture that

people are exposed to when it occurs in the environment) is not available, surrogate

data might be used from a sufficiently similar mixture or a group of similar

mixtures. Consequently, determining whether the mixture of concern is sufficiently

similar to a tested mixture or a group of tested mixtures is central to using whole

mixture methods. This method is employed because, often, dose-response data are

developed for very few environmental mixtures, often due to resource constraints.

Finally, Sect. 15.7 addresses future research directions.

The statistical methods described throughout are described initially as

the discussion warrants instead of within a statistical methods section to aid in

the organization of the chapter focusing on risk assessment methods of whole

mixtures.
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15.2 Problem Formulation and Hazard Identification

Although this chapter on whole mixtures focuses on exposure assessment and dose-

response assessment, to provide a complete discussion of such human health risk

assessments, this section briefly considers conducting the first two steps of the risk

assessment paradigm, problem formulation, and hazard identification. The goals of

problem formulation include developing an initial understanding of key relation-

ships between the types of health outcomes associated with the chemical mixtures

of interest and potential human exposures. This entails analyzing the problem,

defining the risk assessment objectives, and developing plans for data collection

and analysis and risk characterization. The goal of hazard identification is to

determine whether exposure to a mixture can cause an increase in the incidence

of an adverse health outcome and whether that outcome likely occurs in humans

(U.S. EPA 2017).

Collection and analysis of samples can be among the early steps in hazard

identification. Such activities generally require preliminary identification of the

chemical mixtures potentially of concern, because the appropriate collection prac-

tices and laboratory analysis methods often depend on the chemical properties of

the mixture. Following chemical identification of the mixture in environmental

media, risk assessors typically gather information from epidemiological and toxi-

cological sources to help discern whether the mixture or an individual chemical

potentially poses a human health risk and the nature of the health hazard (e.g.,

cancer, hepatotoxicity). Exposure data, such as measures of mixture concentrations

in exposure media, can then be collected. The available exposure and toxicity

information could indicate whether sufficient whole mixture or component health

data are available to conduct a risk assessment. Generally, if sufficient toxicity and

exposure information are available on the whole mixture, then such approaches are

typically utilized. For a quantitative risk assessment, sufficient toxicity information

could include data to develop a dose-response function or derive a health reference

value. Sufficient exposure information could include measures of the chemical

mixture concentration in environmental media and exposure information that

characterizes human contact rates with the media or other exposure measures

such as measures of the mixture in human tissues. If such quantitative exposure

and dose-response data are not available, then a component-based assessment or a

qualitative assessment could be conducted.

15.3 Exposure Assessment: Considering Whole Mixtures

U.S. EPA (1992) describes exposure assessment as “the determination or estimation

(qualitative or quantitative) of the magnitude, frequency, duration, and route of

exposure.” People are generally exposed to chemical mixtures in environmental

media through the oral, inhalation, and ingestion routes. These exposures
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continually change over the course of a day and over longer time periods as human

activities and chemical concentrations in environmental media change. Even when

such exposures occur to the “same mixture,” the chemicals comprising the mixture

and the relative proportions of the chemicals in these mixtures can differ depending

on an individual’s exposure patterns and changing chemical occurrence patterns.

(For additional discussion of exposure assessment issues, see Chaps. 2, 3, and 4 of

this book.)

15.3.1 Using Drinking Water Disinfection By-Products
to Illustrate Exposure Assessment Issues for Whole
Mixtures

The following discussion on human drinking water disinfectant by-product (DBP)

exposure assessments highlights the many complexities encountered in character-

izing exposures to mixtures. It is followed by four example exposure assessment

approaches.

Most U.S. public drinking water is disinfected using oxidants (e.g., chlorine

compounds). While oxidants are deleterious to potentially infectious microorgan-

isms in water, reactions between oxidizing agents and organic and other materials

in source waters result in the formation of complex mixtures of chemical DBPs in

potable drinking waters (Rook 1974). More than 600 DBPs have been identified in

drinking waters (Richardson et al. 2007). The trihalomethanes (THM) and

haloacetic acids (HAA) are typically the most abundant classes (by mass) present

in these complex mixtures. Haloacetonitriles and haloketones, among other classes,

are also routinely detected. Despite significant resources targeting identification of

DBPs, much (often 50% or more) of the total organic halogen (TOX) formed during

disinfection remains unidentified chemically (Richardson et al. 2007). For example,

in a drinking water DBP study, Pressman et al. (2010) chemically identified the

halogenated DBPs associated with approximately 60% of the TOX (by mass) that

was present in the mixture; approximately 40% of the halogenated organic mass

was not identified.

Chemical disinfection of drinking water appears to be a risk-risk tradeoff. While

the reduction in pathogenic microorganisms has significantly decreased the number

of diseases attributed to exposures to pathogen-contaminated drinking water, mul-

tiple epidemiological and toxicological studies suggest that there may be

countervailing health effects in humans. Epidemiological studies examining the

relationship between exposure to DBPs and human health risks report several

different adverse pregnancy outcomes, including increased risk of the child being

small for gestational age and increased risk of still birth, as well as increased risk of

bladder and colon cancers, among other effects, although the underlying biological

mechanisms that cause these effects are incompletely understood (e.g., see Cantor

et al. 1987; Colman et al. 2011; Richardson et al. 2007; Villanueva et al. 2007;
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Nieuwenhuijsen et al. 2009; Rahman et al. 2010; Wright et al. 2004). Thus,

assessing exposures to DBPs is an important public health concern.

The concentrations of DBPs produced during drinking water treatment, as well

as the individual classes of DBPs produced, vary with the disinfectant used,

differences among source waters, as well as changes in source water composition

(seasonal changes in levels of organic matter), and season/temperature fluctuations,

among other factors. Within a drinking water distribution system, additional vari-

ation occurs due to degradation of some DBPs and DBP classes and enrichment of

others, as both time and temperature can affect those DBP levels. DBP exposure

assessments are further complicated by the varying water-use behaviors of individ-

uals. DBP exposures occur through the following three exposure routes: water

ingestion, inhalation, and dermal absorption (Weisel and Jo 1996; Lynberg et al.

2001; Wilkes 1998). Individual water use-behaviors, as well as those by other

individuals in a household, can change daily, seasonally, and over the course of

an individual’s life. These behaviors affect the intensity, duration, and frequency of
the DBP exposures as well as the primary routes of exposure and the composition of

the DBP mixture (e.g., mixes of DBPs encountered in inhalation exposures likely

differ substantially from those mixes of DBPs encountered in drinking water.)

Because the composition of some mixtures is variable in the environment and

whole mixture exposures also can be variable due to human activity patterns, it is

critical to ensure that the dose-response data are consistent with the dose-response

data for whole mixture risk assessment.

15.3.2 Qualitative and Semiquantitative Approaches

Subjects of environmental epidemiological studies are generally exposed to whole

mixtures encountered in their environments. Sometimes these whole mixtures can

be specifically measured and exposures estimated; other approaches evaluate whole

mixture exposures by inference. Garshick et al. (1988) provides an example of an

inferred exposure to a complex mixture based on occupational activities. The study

objective was to investigate the association between lung cancer and regular

occupational exposures to diesel exhaust, a complex mixture that includes both a

vapor and particulate phase,1 from diesel locomotives in white U.S. male railroad

workers aged 40–64 years in 1959. Interest in this objective arose from epidemio-

logical and rodent bioassay data in which exposures to relatively high concentra-

tions of diesel exhaust were associated with lung cancer. The outcome of interest

was fatal lung cancer listed as either the primary or a secondary cause of death on a

death certificate from those who worked at least 10 years for U.S. railroads. Death

1Vapor phase constituents of diesel exhaust typically include the following: PAHs, hydrocarbons,

aldehydes, nitrogen and sulfur oxides, and carbon monoxide; particulate phase constituents

include PAHs, elemental carbon, sulfates, and hydrocarbons.
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certificates obtained from the Railroad Retirement Board were searched through

1980 for all subjects who had died. Death certificates were obtained for 88% of all

19,396 deceased subjects. Lung cancers on death certificates were identified by

ICD8 codes. Exposure to diesel exhaust from railroad locomotives occurred after

1945 when diesel locomotives were introduced. By 1959, 95% of all locomotives in

the United States were diesels. Job groups with significant diesel exhaust exposures

(i.e., train crews and locomotive repair shop workers) and without significant diesel

exhaust exposures (i.e., clerks, ticketing assistants, station attendants, and signal

maintainers) were identified through industrial hygiene evaluation. Worker job

codes helped distinguish between the “exposed” and “unexposed” groups of

workers. This study did not quantify the actual workplace exposures to diesel

exhaust.

Other types of studies utilize surrogates to estimate exposure to the whole

mixture using semiquantitative approaches, for example, approaches that catego-

rize exposures based on total number of cigarettes that the subject smokes per day.

Studies quantifying some components of whole mixture exposures are described in

the next section.

15.3.3 Quantitative Approaches

In addition to qualitative and semiquantitative exposure assessment approaches,

Paustenbach (2000) identified the following three general approaches for quantify-

ing human exposures: exposure scenario, direct measurement, and biomonitoring.

Some important considerations for quantitative approaches are listed in the follow-

ing questions:

• Are all potential sources of the mixture well characterized?

• Are the environmental media in which the mixture occurs identified and the

concentrations of the mixture in these media characterized?

• Are all potential routes of exposure and rates of contact with the relevant media

well characterized?

• How well is the composition of mixtures characterized in the relevant environ-

mental media at the point of human contact? Are all components measured? If

not, how well characterized are the mixture components that are not identified

chemically?

• Does the exposure assessment approach accurately characterize interindividual

differences in the proportions of chemicals in the mixture that can be differen-

tially encountered?

This section describes three approaches used to quantify exposures to mixtures.

In each case, the study authors quantified exposures to a subset of the “whole

mixture.” The mixture subsets were typically selected as they are thought to include

the most toxic components of the whole or they encompass much of the mass or a

significant portion of the mass of the whole mixture.
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15.3.3.1 Exposure Scenario

We draw on DBP exposure assessments to provide examples of exposure scenario

development and direct measurement. Using predictive mathematical models,

Teuschler et al. (2004) estimated lifetime daily exposures to four trihalomethanes,

components of DBP mixtures. They estimated human contact rates for these DBPs

through an exposure model (Wilkes 1998) and internal doses of these DBPs using a

physiologically based pharmacokinetic (PBPK) model (U.S. EPA 2002). For many

DBP mixtures, THMs are the identified class with the highest mass. The exposure

modeling was based on the following information:

1. Human activity pattern studies that examined human contact time with drinking

water as well as their indoor environments (e.g., time spent in the bathroom)

2. DBP physical-chemical properties that influence the fate of these individual

components of the mixture in the indoor environment

3. Building characteristics that influence indoor air concentrations of volatile DBPs

The development of internal dose estimates for the DBPs allowed for the

integration of exposures to the DBPs across oral, dermal, and inhalation exposure

routes. The authors estimated internal doses for an adult female of reproductive age,

as there are concerns about reproductive and developmental effects from DBP

exposures. This scenario-based study has a number of limitations, including the

small number of DBPs simulated relative to the number of DBPs comprising these

mixtures in the environment. Sarigiannis and Karakitsios (this book) provide

additional examples for other mixtures.

15.3.3.2 Direct Measurement

Exposure to the THMs or other specific classes of DBPs often serves as a surrogate

for whole DBP mixture exposures in direct measurement studies. For example,

DBP exposure measures in epidemiological studies often consist of a combination

of THM measurements from water samples collected during distribution system

monitoring of THM levels and the subjects’ residential addresses (e.g., Bove et al.
2002). Rivera-Nunez et al. (2012) suggest that blood and tap water THM concen-

trations are correlated. This indicates that, although many studies using these

approaches cannot account for spatial and seasonal variability in the concentration

of these four DBPs within a distribution system and interindividual variability in tap

water usage, these concentrations are reasonably correlated with human exposures,

at least for this class of DBPs. Some studies refine exposure estimates by

questioning subjects to obtain information on tap water usage and detailed resi-

dence information (e.g., Savitz et al. 1995; Waller et al. 1998).
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15.3.3.3 Biomonitoring

For some chemical mixtures, previous exposures can be estimated based on the

levels of chemicals (or chemical metabolites) present in body tissues or being

eliminated from the body (e.g., via exhaled breath, feces, or urine). While individ-

uals with chemicals present in their tissues have clearly been exposed to these

mixtures, additional information, including contact rates with contaminated sub-

stances and toxicokinetic data, is needed to estimate previous intake rates associ-

ated with biomonitoring data and potential sources of exposures to these chemicals.

The ongoing National Health and Nutrition Examination Survey (NHANES)

conducted by the Centers for Disease Control and Prevention (CDC) is among the

most extensive collection efforts of biomonitoring data. The survey of

noninstitutionalized U.S. civilians can be evaluated to reflect exposures in the

U.S. population. In the most recent studies, over 250 chemical biomarkers were

measured. The biomarkers evaluated include multiple chemical groups, including

the PCBs, PAHs, VOCs, dioxins and furans, fungicides, herbicides, insecticides

(e.g., organophosphates [OPs]), metals, phthalates, and DBPs. The measured bio-

markers include only a subset of the chemicals comprising most complex environ-

mental mixtures. Calafat (this book) provides additional information regarding the

use of biomonitoring data to assess exposures.

15.4 Selecting Mixtures

This section describes strategies for selecting mixtures with different but

overlapping composition, which subsequently may be tested with respect to toxicity

in order to provide dose-response data for use in risk assessment. A prerequisite is

that the chemical composition is known. Principal component analysis (PCA, Sect.

15.5.3) can be carried out on the compositional data to evaluate similarities and

dissimilarities among the different samples, visualized in score plots. PCA provides

the possibility to select a limited number of samples that are different in both

composition and concentration for more extensive examination, such as toxicity

testing. The selection can be carried out according to Kennard and Stone (1969)

selecting a subset of samples which provide uniform coverage over the data set and

includes samples on the boundary of the data set. The chemical characterization

may be either detailed identification or quantification of the mixtures as compre-

hensively as possible or chemical “fingerprinting” (providing spectra or chromato-

grams) as described in Sect. 15.5.3. The goal is to carry out toxicity testing on as

few mixtures as possible, to correlate measured toxicological responses to mixture

composition, and later use compositional data of new mixtures to predict their

toxicity and dose-response relationship, provided the new mixtures are sufficiently

similar or within calibration domain of the regression model.
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A structured approach for selecting field samples with sufficient variation in

composition and concentration based on PCA is to some extent analogous to

statistical experimental design, although there may be intercorrelations between

x-variables. Statistical experimental design may be useful also in a whole mixture

perspective, for example, to create mixtures mimicking mixtures of concern (e.g.,

Groten et al. 1991; Eide and Zahlsen 1996; Eide and Johnsen 1998; Softeland et al.

2009) and to combine fractions (Ostby et al. 1997) or to spike mixtures with

individual compounds (Pressman et al. 2010; Bostrom et al. 1998). An important

advantage with statistical experimental design is that the mixture composition can

be controlled, and the different variables can be combined as desired. These

approaches are particularly important in order to identify major contributors to

toxicity or biological impact.

What mixtures to test? Risk assessments of complex mixtures are preferably

based on toxicity and exposure data on the whole mixture. In such situations where

the toxicologically important chemical constituents of the mixtures cannot be fully

characterized, an alternative approach is to characterize more homogeneous subsets

of the mixture based on physical characteristics, such as molecular weight, density,

solubility, and boiling point, and estimate the toxicity of the entire mixture by

aggregating the toxicities of the subsets. This has been used to develop a unified

approach to evaluate the toxicities of a class of complex mixtures resulting from

crude oil refining, the so-called high boiling point petroleum substances (HBPS),

which have a boiling point greater than 650�F and that contain a wide variety of

polycyclic aromatic compounds (PAC). “A Supplement: Assessing the Mammalian

Toxicity of High-boiling Point Petroleum Substances” (Gray et al. 2013) presents a

unified approach to evaluating toxicity of HBPS. The approach discussed in the

supplement involves testing representative mixtures within the class (reference set)

with various types of in vivo and in vitro toxicity tests and predicting the toxicity of

untested members of the class based on their aromatic hydrocarbon content,

represented as their “aromatic ring class” (ARC) profile. Aromatic ring classes

fall into seven classes with successively higher boiling point in each group. These

classes can be characterized analytically. The ARC profile is the percent by weight

within each class. The toxicities observed in the reference set of mixtures are used

to predict the toxicities of new mixtures as long as the ARC profiles fall within the

range of the ARC profiles of the reference substances (i.e., are interpolations within

the range of reference set ARC profiles used to develop the prediction models). The

proximity of the ARC profile of the new mixture to the ARC profiles of the

reference set mixtures constitutes an operational definition of “sufficient similarity”

for HBPS containing PAC. The predictive models combine the ARC profiles of the

mixtures with dose, biological characteristics (e.g., gender, weight) of the test

animals, and test conditions to predict toxicological dose-response trends or muta-

genic potential. Models have been developed to predict subchronic toxicological

endpoints such as changes in selected organ weights and hematology parameters,

reproductive and developmental endpoints such as fetal body weight and percent

resorptions per litter, as well as mutagenic effects based on the Ames assay.
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Nicolich et al. (2013) developed a class of models to predict repeated-dose,

reproductive, and developmental toxicity responses for HBPS with no toxicity test

information based on the toxicity test information of HBPS in the reference set. The

models include terms that reflect characteristics of the animal (sex, body weight,

control group response, test chemical dose, and the ARC profile and its interactions

with dose). Nicolich et al. (2013) discuss their model validation procedure, which

included, among other things, getting predictions based on training sets and

validation sets.

Gray et al. (2013) discuss the application of this class of models to predict the

relationship between subchronic endpoints and ARC profile of the HBPS. They

demonstrate by example that the models result in very good agreement between

toxicity predicted by their models and observed toxicity for multiple toxicity

endpoints.

15.5 Dose-Response Assessment of Complex Chemical

Mixtures

For whole mixture risk assessments, in the dose-response assessment step, the

analyst investigates and quantifies the relationship between the magnitude of a

mixture dose and a biological response. Response can be expressed as the measured

or observed incidence or difference in level of response in a population of study

subjects (U.S. EPA 2012). Dose is typically measured as the quantity of a mixture

administered over time or, in epidemiological studies, by the concentration of a

mixture in an environmental medium and the population’s contact rate with that

medium (e.g., in studies of contaminated drinking water, the dose would be

computed as the product of the volume of drinking water consumed over time

and the concentration of the mixture). The mixture dose is typically treated as a

single entity. Typically, as the total dose increases, the measured response also

increases. At low doses, there may be no response. Both the dose at which response

begins to appear and the rate at which it increases (given increasing doses) can vary

across different mixtures, populations, and exposure routes.

An important consideration for whole mixture dose-response studies is that

many whole mixtures are only partially characterized with respect to constituent

chemical mass per unit mass or volume of mixture, for example, mass of drinking

water DBPs per liter of drinking water (see Sect. 2.1). In such cases, dose can be

specified based on those chemical components that have been characterized chem-

ically. This is just a subset of the total composition of the mixture but, if carefully

selected, can account for most of the mixture toxicity. These known constituents

can be controlled for in laboratory toxicity studies by appropriately spiking or

diluting mixture components. If only observational data can be obtained (e.g.,

from an epidemiological study), then the amount of known constituents exposed

to or ingested can be determined and observed but not controlled. In either the
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controlled laboratory test situation or the “uncontrolled” epidemiological study,

there can be an uncharacterized portion of the mixture composition that contributes

to the toxicity, but which cannot be observed or controlled.

U.S. EPA (2000) published a procedure to estimate toxicity values based on

dose-response assessments of whole mixtures. When considering the dose-response

data, the procedure “treats” the whole mixture as a single entity. The procedure has

the following five steps:

1. Collect and evaluate available epidemiological and toxicological data on the
mixture. Generally, epidemiological data are preferred over toxicological data

for human health risk assessments—a limitation of such data is that the mixture

composition associated with the exposure may differ across individuals, poten-

tially increasing the variability of the response.

2. Evaluate the stability of the mixture. Because variation in the composition of the

mixture can affect its toxicity, examine variability in components and their

relative proportions both over time within an environmental medium and across

environmental media. The examination of variability in mixture composition

across media may need to consider multiple media; for example, the composi-

tion of mixtures of dioxin-like congeners varies among air, plant tissues, and

beef tissues as a consequence of uptake and retention of dioxin-like congeners

from the air into plants and, subsequently, plant tissues to beef tissues.

Another important aspect of mixture stability is to analyze the stability of the

tested mixture, as samples are prepared and administered to test subjects over time

within a study. The composition of a mixture can vary due to (1) natural variations

of the mixture in the environment where the mixture is collected, (2) concentration

procedures, (3) preparation of the mixture for administration in a toxicological

study, and (4) on-going chemical reactions of components (e.g., degradation)

during storage prior to or use in a toxicological study.

3. Decide which mixture to test (if examining an assortment of comparable mix-

tures). See discussion in Sect. 15.4.

4. Conduct dose-response assessment on the tested whole mixture using single
chemical procedures (e.g., slope factors (see Sect. 15.5.1) and RfDs (see Sect.

15.5.2).

5. Characterize uncertainties (e.g., relevance of health effects to environmental

exposures and stability of the mixture composition [proportions and chemical

concentrations] and dose over time).

15.5.1 Deriving Cancer Slope Factors for Whole Mixtures

The cancer risks associated with exposures to whole mixtures can be evaluated in

epidemiological and toxicological studies. Data from these studies can be used

directly to estimate cancer risks. In this section, we describe an example that
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illustrates the use of whole mixture toxicology data to derive an oral slope factor.

The data were obtained from a study of toxaphene. As discussed previously (see

Sect. 15.1), technical-grade toxaphene, which was first introduced in 1947, contains

over 670 chemicals. In the United States, toxaphene was banned for most uses in

1982 and was banned for all uses in 1990 (U.S. EPA 1999).

The slope factor was derived from a long-term mouse carcinogenicity bioassay

(U.S. EPA 1991; Litton Bionetics 1978). Toxaphene was administered in test

animals’ diets for 18 months at doses of 0, 7, 20, and 50 ppm; the test animals

were then observed for 6 months posttreatment. An increased incidence of hepato-

cellular carcinomas and adenomas was observed in the male mice (see Table 15.1).

Using the linearized multistage model, the U.S. Environmental Protection Agency

(EPA) estimated the oral cancer slope factor to be 1.1 per (mg/kg-day). Table 15.1

presents the original study data and the modeled human exposure estimates devel-

oped by EPA.

As toxaphene applications have been banned in the United States for decades

and few people in the United States are now likely exposed to technical toxaphene,

U.S. human health concerns have focused on exposures to weathered toxaphene.

Because some components of technical-grade toxaphene may volatilize to air and

others have limited solubility in water, the composition of the mixture will differ

depending on whether the toxaphene is encountered in soil at a contaminated site,

the air around the site, or in nearby lake sediments (ATSDR 1996). Further, some

components of technical-grade toxaphene have been measured in shellfish and fish

(ATSDR 1996). In fact, after analyzing the toxicokinetics of toxaphene for a dose-

response analysis, Simon and Manning (2006) proposed a component approach for

estimating cancer risk from eating fish contaminated with toxaphene congeners.

15.5.2 Deriving and Applying Reference Doses for Mixtures
of PCBs

PCBs occur as mixtures in the environment, although they are no longer

manufactured in the United States. PCB mixtures are comprised of different ratios

of the 209 individual PCB congeners. Chemical properties among congeners vary

Table 15.1 Summary of technical-grade toxaphene dose-response study performed by Litton

Bionetics (1978) in B6C3F1 male mice and further analyzed by U.S. EPA (1991)

Administered dose Human equivalent

dose (mg/kg-day) Tumor incidence(ppm) (mg/kg-day)

0 0.0 0 10/53

7 0.91 0.051 10/54

20 2.6 0.144 12/53

50 6.5 0.361 18/51

Source: Litton Bionetics (1978) and U.S. EPA (1991)
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widely; some of these properties are due to the different number of chlorines on the

different PCB congeners. After release into the environment, PCB mixture compo-

sitions change over time through the following processes:

• Partitioning

• Chemical transformation

• Preferential bioaccumulation

When assessing risks from environmental PCBs, consideration of how environ-

mental processes alter mixture composition is critical because such changes could

alter the toxicity of the mixture.

Based on several reports describing reproductive studies in monkeys, U.S. EPA

(1996) published RfDs for several commercial PCB mixtures known as Aroclors.

Each Aroclor has a different level of chlorination. In one set of studies, Aroclor

1016 was administered to adult female monkeys for 22 months, beginning 7 months

prior to breeding and continuing until offspring were weaned at age 4 months.

Relative to control animals, there was a significant decrease in the birth weights of

the offspring of the high-dose group that was estimated to have received 0.028 mg/

kg-day of Aroclor 1016. EPA identified the low-dose group that received 0.007 mg/

kg-day Aroclor 1016 as a no-observed-adverse-effect-level (NOAEL) for the mix-

ture. The EPA reference dose was based on the following formula:

RfDm ¼ NOAELm

UFm
ð15:1Þ

where

RfDm ¼ reference dose for the mixture

NOAELm ¼ no-observed-adverse-effect level for the mixture;

UFm ¼ uncertainty factors for the mixture

U.S. EPA (1996) applied four uncertainty factors. An uncertainty factor of 3.16

was applied to account for extrapolating from experimental rhesus monkeys to

humans (uncertainty factors are based on a log scale and the actual value is 100.5). A

second uncertainty factor of 3.16 was applied to account for sensitive populations.

A third uncertainty factor of 3.16 was applied to account for a subchronic-to-

chronic exposure duration, and a fourth uncertainty factor of 3.16 was applied to

account for the lack of a two-generation reproductive study and of reproductive

studies in adult males. The total uncertainty factor for the RfD was 100; this is the

product of these four individual factors (UFm ¼ 100� 3.16 � 3.16� 3.16� 3.16).

U.S. EPA (1996) described the confidence in this RfD as medium because the

congener pattern of mixtures of PCBs in the environment does not match those

observed in Aroclor 1016. For environmental applications where it is known that

Aroclor 1016 is the only form of PCB contamination, EPA recommended that this

RfD could be used with high confidence; however, all other applications only

merited medium confidence.
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Cogliano (1998) addressed the issue of characterizing the risks posed by envi-

ronmental PCB mixtures that exhibited differences in composition due to transfor-

mation in the environment. He considered the cancer slope factors for Aroclors

1260, 1254, 1242, and 1016 that have been derived by the EPA from different rat

cancer bioassays. He recognized that the cancer potency of these mixtures differed

markedly. Considering the composition of environmental PCBs encountered

through various environmental media, he categorized three levels of PCB mixtures,

each with a markedly different estimated cancer potency. Cogliano suggested that

the highest slope factor among the tested Aroclors be applied to the high-risk,

persistent environmental PCB mixtures that resulted from the following: food web

exposures, sediment or soil ingestion, or dust or aerosol inhalation. He assigned one

of the lower slope factors among the tested Aroclors to the second level that

included low-risk, low-persistent environmental PCB mixtures that would result

from ingestion of water-soluble congeners and inhalation of volatile congeners. For

the third level that included the lowest risk and least persistent mixtures where the

congeners with more than four chlorines comprise less than 0.5% of total PCBs, he

assigned the lowest factors among the tested Aroclors for this group. In this way,

Cogliano addressed the environmental processes that alter the cancer potential of

PCB mixtures.

15.5.3 Multivariate Data Analysis

Multivariate data analysis may be useful in whole mixture risk assessment, first of

all to evaluate similarities and differences between mixtures, to relate biological

endpoints to chemical composition, and to predict dose-response relationships.

Generally, multivariate data analysis can be used to obtain the structured informa-

tion inherent in large data sets with many variables. In mixture toxicology and risk

assessment, there will be an X-matrix describing the chemical composition of a

number of samples and the Y-matrix the biological effects or toxicity of the same

samples. This implies that in such examples, an x-variable corresponds to a

chemical compound, and a y-variable corresponds to a biological parameter or

toxicological response.

Frequently used multivariate data analysis techniques for obtaining the struc-

tured information in X- and Y-matrices include the following:

• PCA for exploratory data analysis (Jackson 1991), for example, in order to

evaluate whether mixtures are sufficiently similar and also to select a subset of

samples for further investigation

• PLS regression (Wold et al. 1983; Martens and Næs 1992) to correlate mixture

composition (X-matrix) to measured properties such as toxicity (Y-matrix) and

to predict dose-response relationships for new mixtures within calibration

domain
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PLS finds the relationship between the matrix Y (response variables) and the

matrix X (predictor variables) by simultaneous projections of both the X- and Y-

spaces to a plane or hyperplane. This is analogous to PCA; however, PCA is

performed on one data matrix (X or Y), and PLS evaluates both (X and Y)

simultaneously to develop a predictive model (e.g., predict Y from X) and to

evaluate relationships between specific x- and y-variables (e.g., which chemicals

covary with toxicity).

Statistically designed mixtures enable the identification of cause-effect relation-

ships (i.e., the relative contribution from the different compounds in the mixture).

Environmental samples, on the other hand, are not statistically designed, which

usually implies intercorrelations between individual measured compounds and

influential background factors that may not be measured or even identified. PLS

regression will therefore identify compounds that may be associated (i.e., corre-

lated) with toxicity, but not necessarily having cause-effect relationships with

toxicity.

A limitation in the ability to use multivariate data analysis, for example, to

evaluate similarity of whole mixtures is that, with complex mixtures, a detailed and

complete characterization may be a challenge. Consequently, sometimes only a

limited number of a priori selected compounds are identified and quantified.

Chemical “fingerprints” (spectra, chromatograms) may be used as alternatives to

the detailed identification and quantification of individual compounds for a first

screening of similarities between mixtures. This screening identifies the important

lines or peaks in the spectra or chromatograms for subsequent detailed identifica-

tion and quantification.

Multivariate data analysis was used to predict the composition-response rela-

tionship between particle and semi-volatile organic chemical constituents in gaso-

line and diesel vehicle exhaust samples and toxicity as measured by inflammation

and tissue damage in rat lungs and mutagenicity in bacteria (McDonald et al. 2004).

Exhaust samples were collected from “normal” and “high-emitting” gasoline and

diesel light-duty vehicles, and a large number of chemical compounds were iden-

tified and quantified. PCA was used to group the different endpoints, showing that

the lung toxicity data and bacterial mutagenicity responded to different chemical

components. The PLS regression revealed the chemical constituents covarying

most strongly with toxicity and produced models predicting the relative toxicity

of the samples with good accuracy. The specific nitro-PAHs important for muta-

genicity were the same chemicals that have been implicated from decades of

bioassay-directed fractionation. These chemicals were not related to lung toxicity,

which instead was associated with organic carbon and select organic compounds

that are present in lubricating oil. The results demonstrate the utility of the

PCA/PLS approach for evaluating composition-response relationships in complex

mixture exposures and for providing a starting point for confirming causality and

determining the mechanisms of the lung effects.

In another study (Eide et al. 2002), pattern recognition and multivariate regres-

sion were used in assessing complex mixtures by correlating chemical fingerprints

to the mutagenicity of the mixtures. The mixtures were 20 organic extracts of
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exhaust particles, each containing 102–170 individual compounds such as PAHs,

nitro-PAHs, oxygenated PAHs, and saturated hydrocarbons. The mixtures were

characterized by full-scan gas chromatography-mass spectrometry (GC-MS). The

data were resolved into peaks and spectra for individual compounds by an auto-

mated curve resolution procedure. Resolved chromatograms were integrated,

resulting in a predictor matrix that was used as input for PCA to evaluate similar-

ities between mixtures (i.e., classification). Furthermore, PLS regression was used

to correlate the GC-MS data to mutagenicity, as measured in the Ames Salmonella

assay (i.e., calibration). The regression model can be used to predict mutagenicity

from GC-MS chromatograms of other organic extracts provided they are suffi-

ciently similar or at least within calibration domain.

Synthetic mixtures of three C9 n-paraffinic, naphthenic, and aromatic hydrocar-

bons (n-nonane, trimethylcyclohexane, and trimethylbenzene, respectively) were

studied in rats after inhalation for 12 h (Eide and Zahlsen 1996). The hydrocarbons

were mixed according to principles for statistical experimental design to support an

empirical model with linear, interaction, and quadratic terms (Taylor polynomial).

Immediately after exposure, concentrations of hydrocarbons were measured by

headspace gas chromatography in the blood, brain, liver, kidneys, and perirenal

fat. The best PLS regression models were obtained after removing all interaction

terms, suggesting that there were no interactions between the hydrocarbons with

respect to absorption and distribution. Uptakes of paraffins, and particularly aro-

matics, were best described by quadratic models, whereas the uptake of the

naphthenic hydrocarbons was nearly linear. All models exhibited good fits with

high correlation coefficients (r2) and prediction properties (Q2), the latter after cross

validation (Wold, 1978). The PLS models were used to create curves for tissue and

blood concentrations versus exposure. The approach may be useful in risk assess-

ment of combinations of these hydrocarbons provided the relationship between

tissue or blood concentration and health impact is known.

15.5.4 Estimating Mixture Effects by Weighting Components

Another strategy for identifying the relative contributions from different com-

pounds in a mixture is weighted quantile sum (WQS) regression, which is a

weighted sum of quantiles of the components in the mixture (Carrico et al. 2015;

Czarnota et al. 2015). For example, if quartiles are used, the concentrations of the

jth component in the lowest quartile are scored qj ¼ 0, in the second quartile qj ¼ 1,

in the third quartile qj ¼ 2, and the highest quartile qj ¼ 3. The sum of quantiles is

used to represent exposure to multiple chemicals by binning exposure levels

relative to the sample of concentrations for each chemical so that extreme values

are bounded and the range of concentrations across chemicals is standardized. The

approach is motivated by the fact that standard regression methods are challenged

with complex correlated variables—commonly the case in environmental mixtures

due to exposure patterns, human behavior, and metabolic effects. In short, WQS
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regression determines an empirically weighted index of chemical concentrations

with weights determined by the association with a specified health outcome.

Thereby, generally, components least associated with the outcome are

downweighted and those highly associated are upweighted. The constraints

imposed by the model (namely, that the weights sum to one and that there is a

single regression coefficient associated with the index either in a positive or

negative direction) improve the ill-conditioning due to the complex correlation

pattern among the variables. The advantage of reducing the dimensionality to a

unidimensional index is that the test for the significance of the mixture effect is a

single degree-of-freedom test, which has increased power. The approach focuses

inference in a single direction—for example, increasing risk. When interest is in

both an increasing and decreasing direction, two separate analyses may be

conducted constraining the regression coefficients in each direction.

To illustrate the strategy, we use a study of the suspected risk factors for

non-Hodgkin lymphoma (NHL). Czarnota et al. (2015) used WQS regression to

model the association of a mixture of 27 correlated environmental chemicals

measured in household dust, with the risk of NHL in a case-control study conducted

in four geographic locations in the United States (Detroit, MI, several agricultural

communities in Iowa, Los Angeles, CA and Seattle, WA). The estimated WQS

index was a sum of weighted quartiles for 5 PCBs, 7 PAHs, and 15 pesticides.

Chemical weights and a mixture effect were estimated for all study sites combined

and for each site separately. For comparison, risk estimates for individual chemicals

were computed using logistic regression. Models were adjusted for age, gender,

race, education, and study site. The chemical exposures showed a complex corre-

lation pattern, with pairwise correlations ranging from slightly negative to near-

perfect correlation. There was a high degree of intragroup correlation among the

PAHs (range 0.87–0.96) and PCBs (range 0.69–0.91), whereas the pesticides

generally exhibited weaker correlation (interquartile range 0.06–0.26). An increase

in the WQS index was significantly associated with increased risk of NHL in the

full study population ( p ¼ 0.006). Specifically, a one-quartile increase in the index

was associated with a multiplicative increase of 1.30 (95% confidence interval:

1.08, 1.56) in NHL risk. The WQS index placed non-negligible weight on several

chemicals that displayed elevated and potentially meaningful odds ratios (ORs) in

traditional single chemical analysis but were not found to be significant, likely due

to a lack of power. The only single chemical significantly associated with increased

risk of NHL was PCB 180 ( p < 0.01), which received 32% of the weight in the

WQS index. Three other PCBs received 7% of the weight and had multiplicative

increases in NHL risk (4th versus 1st quartiles) of at least 1.2 but with nonsignif-

icant p values ( p ¼ 0.07, 0.12, 0.27). Exposures in the highest quartile for

α-chlordane (OR ¼ 1.40; p ¼ 0.06), γ-chlordane (OR ¼ 1.35; p ¼ 0.09), propoxur

(OR ¼ 1.27; p ¼ 0.18), and DDE (OR ¼ 1.26; p ¼ 0.19) were associated with

increased risk of NHL in the mixture, with 37% of the weight. Since all chemicals

with non-negligible weights factor positively into the WQS index, the additional

chemicals contributing to the mixture effect, not found significantly associated in

single chemical analyses, were considered to be important.
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15.6 Developing Approaches to Evaluate Sufficient

Similarity

Complex mixtures typically include those mixtures whose constituents are so

numerous that they cannot be fully characterized. This is in contrast to pure

chemicals or simple mixtures whose content can be characterized exactly. One

way to regard complex mixtures is that the portion that can be well specified can be

modeled as fixed components and the portion that cannot be specified can be

modeled as random components. Thus, a specified complex mixture is not a single

entity, but would exhibit random variation around a central value. Sources of

random mixture variation could be due to variation over time, laboratory, treatment

facility, processing procedures, or ambient conditions. This would affect the fixed

components to a limited extent and the random components that would be

expressed as random variation in outcomes. This implies that health outcomes are

associated with complex mixture regions rather than single entities. Characterizing

those regions entails testing families of mixtures exhibiting natural variation in

outcomes. By limiting the extent of variation within the family, one can obtain

toxicities or health outcomes within specified tolerances around the central value.

These are termed “similar regions.” One would then determine whether a new

mixture falls within this “similar region,” preferably based on toxicity or health

outcomes but alternatively based on closeness of the known portion of the chemical

constituents if toxicity or health information is not available. Thus the analysis of

complex mixtures is completely intertwined with sufficient similarity and tolerance

regions.

Testing multiple doses of complex mixtures in test species and evaluating the

responses are resource intensive. In addition to routine resources required to

conduct a single chemical animal bioassay, preparing or purifying the mixture,

characterizing the chemical composition, and analyzing the stability of such com-

plex mixtures generally require further resources (e.g., Pressman et al. 2010;

Pressman et al. 2012). As a consequence, limited numbers of complex mixtures

can be tested in this manner.

Considering these limitations in resources and the variability of whole mixtures

in the environment, few dose-response studies are conducted on whole mixtures.

U.S. EPA (2000) offered that, if toxicity data are not available for a mixture of

concern, the risk assessment could be based on surrogate toxicity information

obtained from testing a sufficiently similar mixture. This condition assumes that

the toxicological consequences of exposure to the two mixtures are nearly identical.

Mixtures judged to be sufficiently similar would exhibit relatively few differences

in toxicological effects between the mixtures or their components. A mixture would

likely be sufficiently similar to another when its components are not very different,

and the components are roughly in the same proportions. Further, similar mixtures

would likely have few differences in environmental fate, bioavailability, and

pharmacokinetics. U.S. EPA (2000) did not propose a specific method by which

similarity could be judged. While in some cases expert toxicological or
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epidemiological judgments regarding similarity among mixtures have been made,

this section reviews several biostatistical studies that have developed approaches

that examine similarity among mixtures. These approaches offer the advantage that

they are repeatable, and the criteria and approach used to evaluate similarity among

mixtures are clearly articulated.

15.6.1 Evaluating Sufficient Similarity Using Multivariate
Data Analysis

The example described in Sect. 15.5.3 on the statistical relationship between

particle and semi-volatile organic chemical constituents in exhaust samples and

toxicity and mutagenicity (McDonald et al. 2004) can also be used to illustrate

evaluation of similarities among mixtures depending on whether similarity is based

on chemical composition or, for example, toxicological responses. The three score

plots in Fig. 15.1 illustrate that the seven exhaust samples group differently if they

are based on the chemical composition (184 compounds), lung toxicity (11 param-

eters), or mutagenicity (4 parameters). The corresponding loading plot shown in

Fig. 15.2 (from McDonald et al. 2004) demonstrates that the mutagenicity and lung

toxicity parameters group differently because they respond to different compounds

in the samples. This was also verified by PLS regression.

15.6.2 Evaluating Sufficient Similarity Using Multivariate
Distance Functions (Mahalanobis D2)

Feder et al. (2009) illustrate the application of multivariate statistics to evaluate

sufficient similarity for DBP mixtures. Multivariate graphical and analytical

methods are applied to assess the degree of similarity of input water supplies and

output water supplies from five treatment plants using data from Schenck et al.

(2009). The input water is drawn from ground water (one treatment plant) and from

surface water (four treatment plants). For each treatment plant, the output water

sampled is either “finished water” that has just left the treatment plants or “distri-

bution water” at various locations along the distribution pipelines, removed from

the treatment plants.

To characterize similarity among treatment plant/water source process combi-

nations, a “reference set” needs to be determined. The treatment plants/water

sources within the reference set are relatively homogeneous, are characterized

with respect to toxicological effects and/or chemical composition, and are consid-

ered to have been sampled from a reference distribution. For treatment plants/water

sources not in the reference set, statistical methods are used to determine whether

their chemical/toxicological characteristics can be treated as having been drawn
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from the same reference distribution as the reference set. If so, they can be

considered sufficiently similar to the reference set, and risk assessment for these

water sources can be based on risks associated with the reference set. Note that the

similarity of water sources with respect to toxicological effects is of principal

interest from a public health perspective. Similarity of chemical composition

among water sources is of interest to the extent that similarity of chemical

Fig. 15.1 Score plots obtained after PCA of data on 184 chemical compounds (top), 11 lung

toxicity (middle), and 4 mutagenicity responses (bottom) of gasoline and diesel vehicle exhaust

samples (Recalculated fromMcDonald et al. (2004)). The vehicles: gasoline (G), diesel (D), white

(WG) or black (BG) smoke gasoline, high-emitting diesel (HD), gasoline and diesel operating at

30 �F (G30, D30)
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characteristics leads to the similarity of toxicological characteristics. Since detailed

toxicological characteristics of sources outside the reference set are usually not

known, the similarity of chemical characteristics within the reference set is the best

available and is adopted as a surrogate criterion.

The treatment plants/water sources for the Schenck et al. (2009) data are

represented by six broad chemical characteristics and mutagenic activity, a toxico-

logical characteristic:

• Total organic carbon (TOC)

• Total organic halogens (TOX)

• Mutagenic activity (revertants/L equivalent)

• Total trihalomethanes (TTHM)

• Six haloacetic acids (HAA6)

• Percent brominated TTHM

• Percent brominated HAA6

Let X denote the chemical and mutagenic characteristics for a treatment plant/

water source within the reference set. Denote the reference set as X1, . . ., XM, and let
�X, S denote the mean vector and covariance matrix of the X’s, for the mth treatment

plant/water source outside the reference set. Let Xm denote the measured charac-

teristics, and let Dm
2 denote the Mahalanobis D2 statistic (Morrison 1976):

D2
m � �

Xm � �X
�0
S�1

�
Xm � �X

� ð15:2Þ
The Mahalanobis D2 is the square of the distance of each observation to the

center of the distribution, accounting for the variances and the covariances in the

data. An observation Xm is classified as potentially dissimilar if Dm
2 is statistically

significant.

The ordered Dm
2 values are plotted in a chi-square probability plot. Treating the

overall mean vector and covariance matrix as approximately known, as M gets

Fig. 15.2 Correlation loading plot showing the groupings among the 11 lung toxicity measure-

ments and the 4 mutagenicity responses (TA98 � S9 and TA100 � S9). Separation of mutage-

nicity and lung toxicity groups suggested that they responded to different chemical components

(Recalculated from McDonald et al. (2004))
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large, the distances are distributed approximately as chi square with degrees of

freedom equal to the dimension of the vector, p. Under normality assumptions, if

the Xm’s are drawn from the reference distribution, the plot should resemble a

straight line with slope 1. If some of the X’s are not drawn from the reference

distribution, their distances would be expected to lie above the curve through the

majority of the chi-square values.

In the analysis of the Schenck et al. (2009) data, the Xm’s were taken from the

reference set of values as was used to calculate �X, S. To approximate the situation

where the Xm’s were taken from independent distributions, a robust version of the

Mahalanobis D2 statistic involves removing one observation at a time when calcu-

lating the mean vector and the covariance matrix. For each observation Xm, let

X(�m) and S(�m) represent the mean vector and the covariance matrix, respectively,

of the M–1 observations that remain after omitting Xm. Repeating this for each Xm,

the robust version of the Mahalanobis D2 statistic is calculated for m ¼ 1, . . ., M,

where one observation is removed for each calculation. Denote the robust version

of the above distance function D2
m as RD2

(�m):

RD2
�mð Þ ¼ Xm � �X �mð Þ

� �0
S �mð Þ
� ��1

Xm � �X �mð Þ
� � ð15:3Þ

An observation is classified as potentially dissimilar if RD2
(�m) lies above the

curve through the majority of the values. Figure 15.3 displays the robust

Mahalanobis D2 distances versus percentiles from the chi-square distribution with

p degrees of freedom for the Schenck et al. data ( p¼ 7). The reference line through
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Fig. 15.3 Robust chi-square plot of Mahalanobis square distance. Symbols A–E represent

finished water, and symbols 1–5 represent distribution water. Reference line corresponds to the

chi-square distribution CDF with p ¼ 7 degrees of freedom
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(0,0) with slope 1 corresponds to the cumulative distribution function (CDF) of the

chi-square distribution with p ¼ 7 degrees of freedom. Two distribution water

samples, from sources 1 and 3, deviate substantially from the chi-square line. These

treatment plant/water source combinations would not be sufficiently similar to the

reference set to carry out risk assessments based on the reference set toxicity

determinations.

15.6.3 Evaluating Sufficient Similarity Using Principal
Component Analysis

As discussed previously, PCA is a data analytic procedure often used for explor-

atory purposes that represents relatively high-dimensional response vectors in

lower-dimensional space, such that most of the variation in high-dimensional data

is reflected in the lower-dimensional representation. Feder et al. (2009) applied

PCA to the Schenck et al. (2009) data. The analysis was carried out on the

studentized residuals (i.e., scaling variance to 1 [unit variance]) after adjusting for

treatment plant and water type (finished water or distribution water). The first and

second principal components (PC) are those orthogonal directions that have the

greatest variation among the observations. Successive PCs reflect less and less

variation among the observations.

Representing the data in the space of the PCs with the largest variances reflects

major relationships in the original responses, in particular if the responses cluster

into subsets rather than coming from a single homogeneous distribution.

Representing the data in the space of the PCs with the smallest variances, in

which the reference set is most highly bunched, facilitates the detection of outlying

processes corresponding to dissimilar mixtures. Donnell et al. (1994) and Jolliffe

(2004, Chap. 10) discuss applications of the PCs with the smallest variances.

Jolliffe states “. . .by examining. . .the last few PCs we may be able to detect

observations that violate the correlation structure. . .imposed by bulk of the data,

but that are not necessarily aberrant with respect to individual variables. . . .”
For each treatment plant and output water sample type, the normalized mean

responses expressed in PC coordinates were added back to the studentized residual

scores. Figure 15.4 displays the recentered normalized values in the space of the

first and second PCs. These PCs explain 60.7% and 21.3% of the total variance,

respectively. Figure 15.5 displays the recentered normalized values in the space of

the sixth and seventh PCs. These PCs explain 1.0% and 0.6% of the total variance,

respectively. In each plot, the letter plotting symbols A, B, . . ., E correspond to the

five finished water samples from the five water treatment plants. The number

plotting symbols 1, 1, 2, 2,. . .5, 5 correspond to the ten distribution water samples

from the five water treatment plants.

The first and second PCs are the dimensions in which the individual data points

exhibit the greatest variation. Together they explain 82.0% of the total variation in
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the data. Figure 15.4 displays the structure of the primary variability in the data. The

sixth and seventh PCs are the dimensions in which the individual data points exhibit

the least variation (i.e., they are most tightly clustered). Together they explain just
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1.6% of the total variability in the data. It is not the objective of studying these PCs

to explain variability in the data. Rather, because the data are so tightly clustered, in

these dimensions, individual data points that do not conform to the correlation

structure of the remainder of the data points (i.e., multidimensional outliers) and

finer structure in the variability of the data are magnified. Figure 15.5 illustrates

more subtle contributions to the variability in the data.

Figure 15.4 shows that the characteristics of both the finished water and the

distribution water from treatment plant 1 (with a groundwater source) differ

considerably from those from treatment plants 2–5 (with surface water sources).

Figure 15.5 shows that the output water characteristics from the five treatment

plants are separated from one another. For each plant, the finished water samples

and the distribution water samples cluster together. Within each cluster, the sixth

PC scores for the finished water samples fall below those for the distribution water.

The scores for the sixth PC are positive for total trihalomethanes and six haloacetic

acids and are negative for TOC and mutagenic activity. This suggests that the

finished water has higher TOC and mutagenic activity and/or lower TTHM and

HAA6 than the distribution water.

Figures 15.6 and 15.7 display the loadings for the first and second PCs and for

the sixth and seventh PCs, respectively. In Fig. 15.6, the coefficients of PC-1 and

PC-2 for A through E are clustered and are distinct from the coefficients for percent

G
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bromination F and G. In Fig. 15.7, the coefficients of PC-6 and PC-7 for percent

bromination F and G are close to 0. The coefficients for the chemical groups and

mutagenicity are scattered and contrast with one another. PC-1 is essentially an

equi-weighted sum of the four chemical groups and mutagenicity. Percent bromi-

nation has essentially no contribution. PC-2 is essentially a contrast between

percent bromination of the TTHM components and the percent bromination of

the HAA6 components. The other components have little contribution. PC-6 is a

contrast between the sum of TTHM and HHA6 versus TOC. The other components

have little contribution. PC-7 is a contrast between TOX, mutagenicity, and to a

lesser extent TTHM versus TOC and HAA6. The percent bromination components

have little contribution. Percent bromination enters primarily into PC-2, which

separates the single ground water source from the surface water sources.

15.6.4 Evaluating Sufficient Similarity Using
an Equivalence Testing Approach

Marshall et al. (2013) developed a test for sufficiently similar mixtures using

equivalence testing methods. The approach is in contrast to that discussed in

Sect. 15.6.2 where a distance measure was used among observed mixtures. Here,

exposure/epidemiology data are used to identify environmentally relevant
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mixtures, and representative reference mixtures are experimentally evaluated using

toxicity dose-response data. The idea is to determine the distance between bench-

mark doses (BMDs) (in terms of total dose) of different mixtures: a reference

mixture and candidate mixtures, where dose-response data are available on the

reference mixture. The analysis strategy is developed for the data-rich case where

dose-response data is also assumed available for the candidate mixtures. Under

simplifying assumptions, the strategy can be used when only mixing proportions

are available on candidate mixtures. When the distance between BMDs is within a

predetermined similarity region, the mixtures are claimed to be sufficiently similar.

In essence, the similarity is based on the dose-response effect of the specified

benchmark response (BMR). Statistical details are provided below.

Let c be the total number of chemicals in the candidate and reference mixtures.

Consider a BMR is set and associated BMDs are estimated for both mixtures. Let θr
be the BMD for the reference mixture and θi be the BMD for the ith candidate

mixture. The test for similarity between two mixtures is based on a weighted

distance between the BMDs for the two mixtures. Define W as a diagonal matrix

with respective weights of assumed relative potency of the mixture components, wj,

subject to the constraint,
XC

i¼1
wi ¼ C. The weighted distance (dw) is constructed

in the following manner:

dw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
θr � θið Þ0W θr � θið Þ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc

j¼1

wj θjr � θji
� �2s ð15:4Þ

Using relative potencies to calculate the weighted distance is preferred to the

unweighted distance (where wj ¼ 1 for all j ¼ 1, . . ., c), which may be used when

relative potencies are not available. Relative potency values are obtained from

external sources; for example, Marshall et al. (2013) described single chemical

toxicity data where potency factors were determined.

Two BMDs are considered to be sufficiently similar when dw � Δ, where Δ is a

positive number, set a priori. Using equivalence testing methodology, we test the

following hypothesis:

H0 : dw > Δ
H1 : dw � Δ

This can be tested using the principle of confidence interval inclusion (Berger and

Hsu 1996); that is, an alpha-level test rejectsH0 when the upper limit of the one-sided

confidence interval on dw does not exceed Δ. For example, assuming bdw has a bell-

shaped distribution,

bdw þ t1�α;N�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

�bdw

�q
� Δ ð15:5Þ
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wherebdw is estimated from available dose-response data

t1–α;N–p is the critical value from the t distribution, associated withΔ (e.g., 5%) in

the upper tail, with N � p degrees of freedom (i.e., total sample size minus number

of model parameters in the dose-response data for the mixtures)

Var
�bdw

�
is the variance of the estimate for distance, estimated from the dose‐

response data

In the usual data-poor case, dose-response data are only available on a reference

mixture. To set notation, define Tr as the BMD in terms of total dose (i.e., the

summed doses of each mixture component in θr). For the reference mixture with

proportions of each chemical given in the c-dimensional vector of proportions ar,

(arj 	 0, ∑jarj ¼ 1), the BMD is the proportion ar times the total dose, Tr, for each
chemical; that is, using vector notation, θr ¼ Trar.

In this data-poor case, we assume we know the mixing ratio weights, ai, for the

ith mixture, but as there are no studies available to estimate the BMD (in terms of

total dose) for this mixture, we cannot estimate Ti or θi. Thus, we cannot estimate dw
(from Eq. 15.3) without simplifying assumptions.

Without loss of generality, consider a two-chemical mixture with mixing pro-

portions of, say, 0.3 and 0.7 and total dose for the BMD of, say, 10 units (i.e., 3 units

of chemical 1 and 7 units of chemical 2). It is reasonable to expect that when the

mixing proportions are, for example, 0.31 and 0.69, the total dose BMD should be

close to 10 units. Thus, it is reasonable to assume that mixtures with similar mixing

proportions have similar BMDs, that is, Ti � Tr. Thus, in the data-poor case, we

propose to estimate the BMD for the ith mixture by adjusting the total dose of the

mixture to that of the reference mixture; that is,

θ adj
i ¼ Trai ð15:6Þ

where

Tr is the total dose of BMD for the reference mixture.

In this scenario, the distance measure is

dw ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc

i¼1

wj θjr � θ adj
ji

� �2

s
¼ Tr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc

i¼1

wj ajr � aji
� �2s

ð15:7Þ

which can be estimated as

bdw ¼ bTr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXc

i¼1

wj ajr � aji
� �2s

ð15:8Þ

The distance estimate increases as the difference between corresponding mixing

proportions increases. The variance of distance estimate is
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Var
�bdw

� ¼ Var
�bTr

� Xc
i¼1

wj ajr � aji
� �2( )

ð15:9Þ

Thus, the variance is the product of a term that accounts for biological variability

and the sum of weighted squared differences between the mixing proportions. The

estimate for Var
� bTr

�
is found using the delta method in the analysis of the mixture

dose-response data for the reference mixture.

To illustrate the method, Marshall et al. (2013) use pesticide residue data from the

Child Care Center Study, a nationally representative survey of pesticide concentra-

tions from floor wipes in rooms where children spend most of their time in day care.

Fifteen pesticides were measured from 168 child care centers; residue concentrations

from roughly 25% of the centers were all below the limit of detection of the assay.

The centers with the top 10% of total concentrations were used to identify a mixing

proportion used in a toxicity study of neurodevelopment using motor activity as the

endpoint. The BMD and lower confidence limit were estimated from this study. The

objective was to determine the proportion of candidate mixtures from the 126 centers

with detectable concentrations that were sufficiently similar to the BMD from the

toxicity study. The authors outlined their strategy for determining the similarity

region for the motor activity assay, which, in short, was based on the change in

total dose with a 20 percentage point change in response from the benchmark

reference. Potency weights were used to calculate the weighted distance (Eq. 15.8)

between observedmixing proportions and the reference mixture with 95% confidence

intervals on each (from Eq. 15.5). On the weighted total dose scale, the BMD of the

reference mixture was 4.2 mg/kg; the critical value for the similarity region was

determined to be the difference in the estimated BMD (from an effective dose

[ED] for the reference mixture at which 20% of the subjects respond [ED20] BMR)

and the ED40 (6.3 mg/kg)—a 20 percentage point shift in response. Thus, the critical

value was 2.1 in units of the weighted total dose. There were 114 centers with the

upper confidence limit on the distance between BMDs (in the data-poor case) less

than the similarity boundary of 2.1. In this study, the authors concluded that 90% of

the child care centers with detectable pesticide concentrations were sufficiently

similar to the reference mixture.

15.7 Future Directions for Assessing Risks Posed by Whole

Mixtures

Evaluating the risks associated with exposures to whole mixtures can be accom-

plished using information from the fields of epidemiology, toxicology, cell biology,

and biochemistry that inform the scientific understanding of responses to chemical

mixture-mediated insults at subcellular, cellular, and tissue levels. The types of

toxicology data can include in vitro and in vivo data, as well alternative information

platforms.
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Human exposure-response data from epidemiology studies play an increasingly

important role in the risk assessment of whole mixtures through the use of

biomonitoring data and increasingly sophisticated exposure and toxicokinetic

models that relate chemical concentrations measured in internal matrices (e.g.,

blood, urine, hair, toe/fingernails, teeth) to concentration measures collected in

environmental media (e.g., air, water, foods, and dust). While biomonitoring

measures reflect “actual” human exposures, additional information and, typically,

mathematical models are required to account for complexities, such as the sources

of the exposures and the actual magnitude of mixture intake, when studying the

potential impact on human health. Matrices, such as hair, nails, urine, and teeth,

provide opportunities for measuring retrospective exposures for evaluation of

health effects. For example, concentrations measured from the growth rings in

teeth (e.g., Andra et al. 2015) allow for estimates of prenatal and postnatal early-

life exposures to be linked with health effects later in life (e.g., autism spectrum

disorder).

15.7.1 Using Toxicity Data on Whole Mixtures from
Alternative Information Platforms

In the near future, risk assessors will have opportunities to consider toxicity data on

whole mixtures based on high-throughput platforms (HTP), in addition to “tradi-

tional” sources of toxicity information. Prior to testing a whole mixture in such

platforms, the mixture may need to be isolated and concentrated. The whole

mixture toxicity information from these platforms would likely be more useful in

risk assessments, if the tested mixture is characterized chemically, to the extent

possible; for example, see discussions of the chemical characterization of a DBP

mixture analyzed in a toxicological study by the EPA (Simmons et al. 2002, 2008;

Pressman et al. 2010; Speth et al. 2008). Alternatively, the chemical mixture could

be treated with metabolizing enzymes prior to treatment. Dose-response assess-

ments and sufficient similarity could be examined using data generated through

such high-throughput platforms, which potentially include toxicogenomics, prote-

omics, metabolomics, chemoinformatics, bioinformatics, and cell-based bioactivity

screening assays, although, at this time, information from these sources is more

useful qualitatively rather than quantitatively in risk assessments. To utilize HTP

data for dose-response assessment in humans, the relationship between the test

outcome (e.g., receptor-binding) and human disease would need to be addressed

(e.g., what is the toxicity pathway from the endpoint measured in the HTP assay to

the health outcome of concern?). When evaluating similarity among mixtures, how

informative the HTP data are likely will depend on the overall understanding of the

relationship between the HTP endpoint being tested and the human disease.

Chemical characterization is essential in exposure assessment of whole mixtures

and also in the evaluation of similarities between mixtures. With complex mixtures, a
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detailed and complete characterization may be a challenge. Chemical “fingerprints”

(spectra, chromatograms) may be used as alternatives to the detailed identification

and quantification of individual compounds for a first screening of similarities

between mixtures. Generally, modern analytical instruments and particularly hyphen-

ated techniques (e.g., GC-MS, ESI-MS) generate huge amounts of data. These data

can provide great opportunities for insights into toxicity and toxicity pathways

through the actions of chemical mixtures on specific targets and potentially through

the propagation of such interactions through cellular-level, tissue-level, or organ-

level responses. When considering data generated from such techniques, data han-

dling and analysis become increasingly important. The study described in Sect.

15.5.3 (Eide et al. 2002) on correlating chromatograms to the mutagenicity of a

number of mixtures is one example of using chemical “fingerprints” instead of

identifying and quantifying numerous compounds. Only important peaks may sub-

sequently be subject to detailed characterization. In addition to chromatograms,

spectra obtained by, for example, electrospray ionization-mass spectrometry

(ESI-MS) or Fourier-transform infrared spectroscopy (FTIR) can be used to evaluate

similarities between mixtures. This kind of fingerprinting and subsequent multivar-

iate data analysis has been used on biofuels and fossil fuels (Eide and Zahlsen 2007;

Eide and Neverdal 2014); however, these studies did not include toxicological

parameters.

Additionally, automated online multivariate analysis of data from multiple

sensors may be useful, for example, in long-term exposure assessment. The time

series provide basis for risk assessment and in addition the possibility for early

detection of changes, not necessarily a significant change in one parameter, but

minor changes in several parameters simultaneously. One example, although

related to the marine environment, illustrates the possibilities. At the LoVe Ocean

Observatory (http://love.statoil.com), a total of 91 parameters are measured fre-

quently, and data are submitted online for automated interpretation using PCA over

intervals spanning a few minutes. In the future perspective, this same concept will

be used to monitor the impact of discharges and emissions and may also include

analysis of spectra and chromatograms. The software used are the Unscrambler X

and Process Pulse from Camo Software, Oslo, Norway.

15.7.2 Biomonitoring Data

The U.S. Army Center for Environmental Health Research has developed and

implemented an aquatic biomonitoring system to monitor drinking water quality

from water treatment plants and effluent water discharges from industrial plants.

The system uses blue gills as sentinels to identify changes in fish ventilatory and

movement patterns. Fish are held in individual chambers under flow-through

conditions, and electrical signals generated by reflexes of individual fish to water

conditions are continuously monitored. Ventilatory responses are measures includ-

ing ventilatory rate, ventilatory depth, gill purge (cough) frequency, and whole
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body movement. The ventilatory responses are compared against a reference

distribution based on blue gills exposed to water that meets health and environ-

mental standards for drinking or for industrial effluent. The system alarms when a

specified percentage of the sentinel fish exhibit ventilatory response deviations

from reference values beyond a statistically tuned baseline threshold. An important

characteristic of this biologically based biomonitoring system is that it responds to

specified levels of biological response, with criteria invariant to the nature of the

toxicant. This work has been carried out for many years by Dr. W.H. van der

Schalie and has been widely published, for example, van der Schalie et al. (2004).

The above biomonitoring system can be extended to provide quantitative com-

parisons of different water sources or of a single water source over time. Namely,

the biomonitoring system can be augmented with positive and negative control

water. The time to response of the test water relative to the time to response of the

positive control water provides a metric to quantify the degree of toxicity of the test

water.

15.7.3 Sufficient Similarity Based on Tolerance Intervals
and Components of Variation

It was stated at the beginning of Sect. 15.6 on sufficient similarity that the principal

distinguishing characteristic between simple or component mixtures and whole or

complex mixtures is that the chemical makeup of complex mixtures cannot be fully

characterized, and the uncharacterized portion can be regarded as varying in a

random fashion among samples of the complex mixture separated spatially or

temporally. This section illustrates how tolerance interval methodology accounting

for multiple sources of random variation can be used to develop similarity regions

for toxicity or health outcomes based on a reference sample of similar “sources”

that can be used to characterize the similarity or dissimilarity of future “sources.”

These “sources” could well be complex mixtures from water treatment plant

finished water, from industrial effluents, from diesel exhaust, or many other

sources.

As discussed in earlier sections, the ability to carry out complex mixture risk

assessment analyses at sources for which toxicity results are not available requires

the availability and use of sufficiently similar sources for which toxicity results are

available. The extent of natural variability among sources is characterized by

establishing a reference set of sources whose toxicity levels are considered to be

acceptable and assessing the variability of responses among sources within the

reference set. The reference set is considered to be a random sample of sources from

a homogeneous population of sources. The use of such reference sets is illustrated

in Sect. 15.4 with respect to the prediction of various toxicity endpoints for new

petroleum HBPS’s based on the toxicity levels observed in a reference set of

HBPS’s and their associated ARC profiles. Variability among sources in the
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reference set includes systematic factors and random factors. Systematic factors are

determinable values and enter into comparisons among sources as covariates to

adjust for and reduce the variability among them. They are characterized by their

individual levels. For example, for comparisons among water treatment plants,

systematic factors might include water source type (ground water versus surface

water), season, type of treatment (chlorination versus chloramination), water stage

(finished, distribution), or sampling time/distance from treatment, and concentra-

tions of measurable constituents. Random factors cannot be controlled and are

considered to be components of variation among sources. They are characterized

by the variability among replicate sources within the reference set, for example,

water sources within type, treatment plants, longer-term time-to-time variation

within treatment plant, and short-term replication variation.

Variation among sources within the reference set can be characterized in terms

of toxicological characteristics or chemical concentrations of selected components

of the mixtures. As discussed earlier, it is more physically meaningful to define

sufficient similarity in terms of toxicological endpoints such as mutagenic activity.

This requires that these endpoints are available for the sources in the reference set

as well as the new sources to be compared with those in the reference set. In the

event that these toxicological endpoints are not available for the new sources,

sufficient similarity can be defined in terms of chemical concentrations and

would be anticipated to imply similarity of the toxicological endpoints of interest.

The variability among replicate sources within the reference set is determined

and used to set bounds on acceptable values for new sources in order to consider

them sufficiently similar to the reference set. Such bounds are based on “tolerance

intervals,” which are constructed to include a specified portion of the population

(e.g., 90%) from which the reference set is drawn with high probability. Rode and

Chinchilli (1988) and Krishnamoorthy and Mathew (2009) discuss the construction

and application of tolerance intervals for univariate and multivariate endpoints.

Tolerance interval methodology has been extended to account for multiple compo-

nents of variation.

Although not involving mixtures, the illustration below of the application of

tolerance intervals in toxicology with multiple components of variation is informa-

tive. In this example, an in vitro assay has been established at multiple laboratories

(the reference set), and one wants to determine whether the results obtained in

several additional laboratories are sufficiently similar to those from the reference

set laboratories. In this example, the reference set of laboratories is analogous to the

reference set of treatment plants or petroleum samples. Components of variation

include those among laboratories, among tasks within laboratories, among runs

within tasks, and within runs. Figure 15.8 below shows a two-sided tolerance

interval to contain at least 80% of the reference set population of test runs with

95% confidence.2

2See U.S. EPA (2009) and OECD (2015) for discussion of statistical methods underlying

Figure 15.8.
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15.8 Conclusions

Whole mixture approaches are preferred to component approaches when assessing

risks and hazards associated with exposures to potentially hazardous chemical mix-

tures in the environment. Approaches have been developed for conducting exposure

assessments and dose-response assessments based on whole mixture data. These

approaches typically treat the mixture as a single entity. Developing the underlying

mixture data to implement these assessment approaches can be resource intensive.

Given the resources needed to develop whole mixture toxicology or epidemiology

data and considering the variability of mixtures in the environment, the use of whole

mixture data in risk assessments from a mixture judged to be sufficiently similar is

appealing. Addressing whether two mixtures (i.e., the tested mixture and the mixture

in the environment that is of concern) are sufficiently similar is a critical question for

furthering the applicability of whole mixture methods. Several biostatistical

approaches for evaluating whether mixtures are sufficiently similar are presented in

this chapter, but additional case studies are needed to increase the frequency with

which such approaches are used in mixture risk assessments. Finally, three potential

future directions are discussed. These include the following: (1) examining dose-

response and sufficient similarity for whole mixtures using data generated through

such high-throughput platforms, which potentially include toxicogenomics, proteo-

mics, metabolomics, chemoinformatics, bioinformatics, and cell-based bioactivity

screening assays, although, at this time, information from these sources is more useful

qualitatively rather than quantitatively in risk assessments, (2) using biomonitoring
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data in whole mixture assessments, and (3) using tolerance intervals and components

of variation to evaluate sufficient similarity among whole mixtures.
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Chapter 16

Consideration of Physical Stressors

in Cumulative Risk Assessment

Cynthia V. Rider, Thais Morata, MaryJane K. Selgrade,

and Kenneth Sexton

Abstract Physical stressors represent an important class of factors that can affect

the health of humans or ecosystems and should be considered in cumulative risk

assessment. Physical stressors are defined here as biological agents (e.g., bacteria,

viruses) or external forces (e.g., radiation, noise) that can modify exposure and/or

elicit a physiological response from the exposed organism. Physical stressors can

intersect with chemical stressors in at least three ways: (1) by directly interacting

with chemicals to modify exposure (e.g., photoreactions of sunlight with air

pollution), (2) by interacting with the same target system as a chemical stressor to

elicit joint effects (e.g., noise and chemicals can both affect the physiological

mechanism leading to hearing disorders), and (3) by interacting with the target

system to alter its susceptibility or response to chemical exposure (e.g., virus-

initiated disease leading to hyper-responsiveness to chemical insult). In this chap-

ter, physical stressors will be discussed in terms of their actions on biological

systems, modification of exposure or effects of chemical stressors, and suggestions

for incorporation into cumulative risk assessment.
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16.1 Introduction

The inclusion of both chemical and nonchemical stressors in human health risk

assessments is required to better reflect real-world exposures and protect vulnerable

populations that face disproportionate exposure to multiple stressors (Gallagher

et al. 2015; Sexton 2012). This represents a significant paradigm shift from previous

human health risk assessments, which overwhelmingly addressed single chemicals

and only occasionally included clearly defined classes of chemicals (e.g., organo-

phosphates (U.S. EPA 2002a)). Although there are an increasing number of exam-

ples of cumulative risk assessment efforts that include nonchemical stressors (Fox

et al. 2017), challenges remain in their successful incorporation. In contrast,

ecological risk assessments often include consideration of nonchemical stressors

in addition to chemical stressors, albeit with a focus on protection at a population

level, not an individual level (Heugens et al. 2001; U.S. EPA 1984).

The term “nonchemical stressors” is broad and includes physical factors (bio-

logical agents or external forces), as well as psychosocial influences that can

modify exposure, susceptibility, or response to chemical stressors. Whereas phys-

ical stressors are often amenable to quantitative measurement (e.g., virus titers,

radiation intensity), animal and mechanistic studies, and tend to have a direct

impact on chemical exposure or biological response; psychosocial stressors involve

perception and often have a more nuanced role in influencing biological responses

to chemical stressors. Therefore, physical stressors could offer a promising starting

place for including nonchemical stressors in cumulative risk assessment. Cumula-

tive risk assessment refers to the process of estimating the risk associated with

exposure to more than one stressor. In this chapter, the focus is on incorporating

physical stressors into component-based cumulative risk assessment approaches

(see Chap. 14). Despite the complexity involved, psychosocial stressors should also

be accounted for in cumulative risk assessment and will be covered in detail in later

chapters (see Chaps. 17 and 18).

Although physical stressors have not routinely been included in cumulative risk

assessments, there are some important historical examples of the consideration of

physical and chemical stressor interactions and their impact on human health. One

such example can be found in combined radiation and chemotherapy (Rubin 1977).

In a 1977 paper reviewing the topic, Rubin suggests that quantitative dose-response

relationships in animal models are needed for radiation in order to protect against

unnecessary long-term harm from combined radiation/chemotherapeutic treatment

(Rubin 1977). A second classic example illustrating the need for considering

physical stressors in cumulative risk is that of radon and smoking and their

combined effects on lung cancer (Reif and Heeren 1999).

There are many, often complicated, ways for physical stressors to modify the

toxicity of chemical stressors (Fig. 16.1), and vice versa. As illustrated in Fig. 16.1,

physical stressors can interact with chemical stressors at the level of exposure,

target, or biological response. Indeed, a single physical stressor can interact at

multiple levels. For example, sunlight can modify a chemical prior to inhalation
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exposure (see discussion below), contribute to phototoxicity of an orally adminis-

tered chemical at a dermal target site, and elicit damage to skin, which could, in

turn, alter absorption of or response to concurrent dermal chemical exposures. It is

important to emphasize that chemicals can also modify exposure and/or response to

physical stressors.

This chapter will discuss a range of physical stressors in terms of quantifying

their toxicity, identifying interactions with chemical stressors, and incorporating

them into cumulative risk assessment. Some examples of physical stressors are

provided in Table 16.1. They fall into two major categories – biological agents and

external forces. In general, the biological agents exhibit indirect effects by influenc-

ing the health status of individuals and thereby altering their response to chemical

stressors (e.g., bacteria and viruses interacting with chemical stressors). The second

major category is forces, which can interact directly and indirectly at both the

exposure and response levels. Therefore, several different forces (e.g., sunlight,

heat, noise) will be discussed to demonstrate potential issues to consider in

accounting for the impact of these stressors on cumulative risk. Although there is

a history of including some physical stressors in ecological risk assessment, the

focus of this chapter will be on human health.

Fig. 16.1 Graphic

depiction of the different

mechanisms by which

physical stressors can

impact chemical stressor

exposures and responses
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16.2 Biological Agents: Microbial Disease and Chemical

Stressors

As mentioned in the introduction, biological agents or factors interact indirectly

with chemicals by changing the health status of the target subject and potentially

increasing their susceptibility to chemical injury. Alternatively, chemical exposures

can affect health status leading to a modified response following exposure to the

biological agent. The diseases induced by different biological stressors (e.g., lack of

sleep versus allergens) are varied. However, many biological stressors ultimately

involve immune system modulation (Jain and Walker 2015). Microbial diseases are

perhaps the most well-studied biological agents within the physical stressor spec-

trum and will be used to illustrate the process of exploring potential interactions

with chemical stressors.

There are at least four types of mechanisms that underlie potential interactions

between chemical stressors and infectious disease. The best understood is suppres-

sion of immune responses, resulting in increased incidence and/or severity of

infectious disease. Alternatively, certain immune/inflammatory mediators that are

activated during infection affect metabolic enzymes and transporters, resulting in

increased chemical toxicity. Chemical exposure may enhance inflammation and

immune pathology associated with an infection. Conversely, infection may enhance

chemical-induced lesions (e.g., p53 mutations, inflammation, cell proliferation).

Table 16.1 Examples of potential physical stressors to human health

Biological agents/factors Forces

Viruses Electromagnetic radiation

Radio waves

Visible light

Ultraviolet light (ionizing)

X-rays (ionizing)

Pathogenic bacteria Particle radiation

α-Radiation
β-Radiation
γ-Radiation (ionizing)

Neutron radiation

Allergens – pollen, dander, dust mites Acoustic radiation

Ultrasound

Sound

Physical health status Thermal radiation (heat)

Nutritional status

Disease status

Microbiome

Lack of sleep

Hypothermia
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These mechanisms are not necessarily comprehensive, distinct, or mutually exclu-

sive. However, they provide a starting place for evaluating interactions between

infectious disease and chemical stressors. Each mechanism will be discussed in

more detail below with the goal of illustrating options for incorporating biological

stressors into cumulative risk assessments.

Substantial data from animal models, and more limited data in humans, suggest

that a number of chemicals suppress a variety of immune responses (Selgrade

2010), which can lead to increased risk of bacterial infection. For example, select

air pollutants (e.g., chloroform, toluene, ozone) have been demonstrated to decrease

the function of alveolar macrophages, which are the first line of defense against

some bacterial species (e.g., Streptococcus zooepidemicus) (Selgrade and Gilmour

2006). Research on this model provides both qualitative and quantitative

approaches to describe the associated risk. Data comparing human and murine

alveolar macrophages exposed to similar doses of ozone in vitro and in vivo

indicate that cells from both species respond almost identically as measured by

macrophage phagocytic capability. Thus, these data suggest that (1) the effects of

ozone exposure on murine alveolar macrophage function are predictive of effects

on human alveolar macrophage function and (2) effects of in vitro exposure of

macrophages to ozone are predictive of effects that result from in vivo exposure

(Selgrade et al. 1995). Application of inhalation dosimetry methods eliminates the

need for the uncertainty factor that is typically applied to account for animal to

human extrapolation in the absence of toxicokinetic data (U.S. EPA 2012). Fur-

thermore, the lack of difference in sensitivity observed in studies with mice and

humans eliminates the need to apply a factor for toxicodynamics. In addition to air

pollution and alveolar macrophage function that demonstrate at least a qualitative

relationship between immune function and disease, developmental exposures to

arsenic, polychlorinated biphenyls, and cigarette smoke also have been linked to

immune suppression. In the cases of arsenic (Soto-Pena et al. 2006) and PCBs

(Heilmann et al. 2010), a quantitative relationship exists between exposure to the

chemical and suppression of the immune system in humans. However, predicting

the impact of immune suppression on the incidence or severity of infection in a

population (i.e., risk) is difficult. Immunocompetence (i.e., the ability to mount a

normal immune response) in a population may be represented as a bell-shaped

curve including individuals with little or no immune reserve (response capacity)

available (e.g., the very young and old and those who are immunocompromised by

disease or medications) and very robust individuals. The proportion of the popula-

tion at risk of infection depends on the level of immune competence, as well as the

dose and virulence of infectious agents, with increasing risk of infection

corresponding to increasing dose or virulence. In populations exposed to immuno-

suppressive agents, the distribution curve would be expected to shift, putting a

larger portion of population at risk for disease development.

Although the effects of toxicants on host defenses against infection have

received the most attention, it is also possible for infections to affect host defenses

against toxicants, by interfering with metabolic enzymes and transporters. There are

many examples of increased chemical/drug toxicity with infections or other
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inflammation-related diseases (Morgan et al. 2008). For example, an influenza

epidemic resulted in decreased clearance of theophylline, an asthma medication

with a narrow therapeutic window, resulting in toxicity in children (Kraemer et al.

1982). Interestingly, many other factors can influence theophylline dose, including

smoking, drugs (e.g., phenobarbital, erythromycin), and disease (e.g., heart failure,

liver disease) (Kraemer et al. 1982). Other examples involve murine cytomegalo-

virus infection increasing the toxicity of parathion (Selgrade et al. 1984) and

sodium pentobarbital-induced sleeping time and decreasing cytochrome P450

(CYP) levels in liver microsomes in mice (Catignani et al. 1989). In multiple tissue

types, infection and inflammatory diseases have demonstrated downregulation of

ATP binding-cassette (ABC) drug transporters involved in cellular efflux of xeno-

biotics (Petrovic et al. 2007). The proposed pathways underlying these effects begin

when infections and other inflammatory stimuli cause the release of inflammatory

cytokines from monocytes, macrophages, and stromal cells (the acute phase

response), resulting in the modulation of transcription factor activities in the

liver. These changes ultimately lead to a downregulation of CYP and ABC trans-

porter genes. The production of cytokines also activates nitric oxide synthase 2 to

form nitric oxide that inhibits CYP enzyme activities directly and/or leads to the

downregulation of CYP proteins via destabilization (Morgan et al. 2008). Risk

assessment procedures account for these enzyme-related changes by applying a

tenfold intraspecies uncertainty factor (U.S. EPA 2002b). This uncertainty factor is

meant to capture differences in individual susceptibility within the population.

However, use of a default uncertainty factor does not accurately reflect what is

known about the effects of infection/inflammation on chemical toxicity. As risk

assessments begin to use adverse outcome pathways to characterize the risk asso-

ciated with multicomponent mixtures (see Chap. 7), infection and inflammation

may be incorporated into that process.

The third type of interaction between chemicals and infection involves

chemical-mediated exacerbation of inflammation and pathology resulting from

infection. Examples include effects on influenza infection by ozone (Selgrade

et al. 1988), ultraviolet radiation (Ryan et al. 2000, 2002), TCDD (Burleson et al.

1996; Lawrence and Vorderstrasse 2004; Warren et al. 2000), and acrolein (Ong

et al. 2012). In all cases, mortality is enhanced by exposure to the toxicant without

increased viral load. Although all of these chemicals have immunosuppressive

potential, reduced viral clearance resulting from immune suppression does not

appear to be responsible for the increase in mortality. Instead, morbidity and

mortality occur very early in infection before involvement of adaptive immunity,

and surviving mice develop protective immunity that prevents subsequent reinfec-

tion (Lawrence and Vorderstrasse 2004; Ryan et al. 2000). Increased inflammatory

responses appear to be responsible for observed mortality (Head and Lawrence

2009). Both pathogens and tissue damage trigger similar receptors and signaling

pathways that lead to innate inflammatory responses (Kono and Rock 2008; Tolle

and Standiford 2013). A systems biology approach that integrates these triggers at

the pathway level is needed to account for the joint effects of these immune system

modulators.
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The fourth, and final, type of interaction involves enhancement of chemical

induced lesions (e.g., p53 mutations, inflammation, and cell proliferation) by

infection. This interaction might explain the joint effects of hepatitis B virus

infection and aflatoxin on liver cancer (Kensler et al. 2010). In nested, case-control

data within a cohort study of 18,000 men in Shanghai, Qian et al. (1994) demon-

strated a statistically significant increase in the relative risk (95% confidence limits)

of 3.4 (1.1, 10) for hepatocellular carcinoma cases with detectable urinary bio-

markers for aflatoxin, 7.3 (2.2, 24.4) for individuals without evidence of aflatoxin

exposure but seropositive for hepatitis B antigen, and 59.4 (16.6, 212.0) for

individuals exhibiting both urinary aflatoxin markers and positive hepatitis B status.

The results strongly suggest an interaction between aflatoxin and hepatitis B in the

development of hepatocellular carcinoma. Hepatitis B infection and the resulting

chronic inflammation may promote DNA lesions leading to P53 mutations and may

promote cell proliferation, contributing to chronic hepatitis and/or cirrhosis and

ultimately carcinoma. It is plausible that similar interactions may exist between

other infections and toxicants that target the liver. Again, as we begin to use systems

biology to work through cumulative risk, an understanding of the pathways under-

lying this interaction could be applied. However, in this instance, decisions to

decrease risk by promoting public health interventions such as limiting exposure

to aflatoxin and vaccinating against hepatitis B are recommended.

In summary, the chemical/infection interactions described here involve joint

action of chemicals and immune/inflammatory responses (the biological forces).

Superimposed on all of this are genetic differences which affect both susceptibility

to infection and toxicity. Existing information regarding molecular pathways

involved in immune activation and inflammation should be applied using a systems

approach to understand the cumulative risk that results from exposure to chemicals

and infectious agents.

16.3 Forces: Modification of Exposure by Sunlight

As discussed in the previous section exploring microbial disease, there are multiple

pathways by which a physical force can interact with chemicals to affect health. In

the case of sunlight, there is a clear primary target – the skin – which is subject to

direct damage, leading to aging and cancer of the skin or photodermatosis (immune

reaction to sunlight). It follows that chemicals that elicit skin toxicity could interact

with sunlight to increase skin damage. While acknowledging that there are many

opportunities for sunlight to interact with chemicals at a common target site, the

focus of this section is not on interaction of sunlight and chemicals at the adverse

outcome level but at the exposure level.

Sunlight, along with other climatic characteristics (e.g., temperature, humidity),

has the potential to modify both the concentration and form of chemicals present in

the air. The criteria air pollutants (ozone, particulate matter, carbon monoxide,

nitrogen oxides, sulfur dioxide, and lead) are of particular interest, as these are the
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six common air pollutants for which EPA is mandated by the Clean Air Act to set

National Ambient Air Quality Standards. Sunlight together with temperature can

trigger photochemical reactions of air pollutants. Examples of these reactions

include production of ozone from hydrocarbons and nitrogen oxides, nitrogen

dioxide from oxidation of nitrogen oxide, carbon monoxide from oxidation of

hydrocarbons, and many well-known toxic compounds such as formaldehyde,

acetaldehyde, acrolein, and other carbonyl and nitrate-containing products from

oxidation of hydrocarbons and nitrogen oxides, as well as reduction of primary

emitted pollutant concentrations (Finlayson-Pitts and Pitts 1999). In addition, these

reactions contribute to air pollution in the form of secondary organic aerosols

(SOA), which are present in fine particulate matter (PM).

Atmospheric transformation processes affect the relative composition and

resulting cumulative health effects of contaminants, including criteria pollutants.

It is important to understand how atmospheric transformations affect air pollution

mixtures and PM composition and resulting toxicological risk. Evidence of the

importance of these issues can be found in the ongoing efforts at the U.S. Environ-

mental Protection Agency to develop a framework for addressing multipollutant

risk assessment (Johns et al. 2012).

In terms of research into atmospheric pollutant mixtures, smog chambers have

been used to prepare consistent, controlled mixtures of various primary pollutants

to study how different conditions (e.g., natural or simulated sunlight, different

temperatures, or humidity levels) change mixture composition. Smog chambers

facilitate the study of sunlight and temperature effects in the absence of interference

from changing weather patterns and unexpected emissions from nontarget sources.

They can interface with in vitro or in vivo models to provide direct exposure in

toxicity studies (e.g., direct air-to-tissue or air-liquid-interface inhalation expo-

sures) (Lichtveld et al. 2012). This method avoids pre-collection with filters and

liquids, thereby offering a significant advantage over methods that require sample

preparation, which can alter component concentration ratios and toxicological

responses (Lichtveld et al. 2012). There are many examples of photochemical

experiments using smog chambers, such as industrial compounds and nitrogen

oxide mixtures and complex mixtures of motor vehicle exhaust in urban atmo-

spheres. These experiments often demonstrate enhanced toxicity following photo-

chemical reactions, as measured by markers of inflammation and other biological

endpoints (e.g., cytotoxicity) (Doyle et al. 2007). Confirmatory experiments can be

conducted with observed secondary products to link particular species with effect.

More recently, Gas In Vitro Exposure Systems (GIVES) have been used in the field

to expose cells directly to ambient air (Vizuete et al. 2015). Following field

exposure, cells can be evaluated for cytotoxicity and gene expression changes

(Vizuete et al. 2015).

Modification of various parameters (e.g., pollutant sources, mixture composi-

tion, component concentrations, or atmospheric conditions) can also aid in inter-

pretation of the mechanism or mode of action of air pollution determined through

toxicity testing. For example, a primary pollutant mixture representing the average

volatile organic compounds (VOCs) observed in 40 U.S. cities can significantly
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change after 1 day of “aging,” which could affect ozone concentrations, presence of

co-pollutants, and toxicity. The degree of aging can be influenced by meteorolog-

ical conditions (e.g., cloud cover, sunlight intensity) (Sexton et al. 2004). Based on

this type of study, models can be developed to predict ozone concentration (Sexton

et al. 1988). Information gained from these approaches can be used to identify toxic

secondary products, which can be included in air quality simulation models for

multipollutant risk assessments.

Cytotoxicity and inflammation markers are endpoints that have been used to

explore the effects of sunlight and temperature on atmospheric transformations of

air pollutants (Lichtveld et al. 2012; Sexton et al. 2004). However, numerous

biological models and endpoints could be used in the same context. For example,

novel genomic analyses of cell-based exposure to an urban mixture demonstrated

transcriptional changes in a subset of genes, with increased expression alterations

resulting from mixture irradiation (19–709 following a 1-day sunlight irradiation)

(Rager et al. 2011). This type of study offers promise for elucidating the effects of

atmospheric conditions on complex mixtures and health. Additionally, biomarkers

identified in in vitro studies could be explored for their utility in an epidemiological

context.

Sunlight and temperature can influence the toxicity of air pollutants. Fortunately,

both of these physical stressors can be easily quantified (Jeffries et al. 1989) and

incorporated into air quality simulation models to estimate air pollution exposure

concentrations and distribution in a target area (Vizuete et al. 2010). Results from

these simulation models can be used to estimate total exposure within a population

and integrated with health information (e.g., excess deaths) (Li et al. 2010). In order

to better characterize risk associated with ambient exposures, studies that incorpo-

rate sunlight and temperature should be considered. These studies capture potential

transformations of primary pollutants and resulting changes in their toxicity. With-

out consideration of these processes, there is the potential to underestimate risk

from exposure to air pollution mixtures.

16.4 Forces: Heat and Chemicals

Increasing global temperatures associated with climate change have focused atten-

tion on potential health effects associated with heat (Spector and Sheffield 2014;

Patz et al. 2014; Kovats and Hajat 2008). Thermal stress encompasses temperatures

that fall above (heat stress) or below (cold stress) the normal range and require a

physiological response in order to maintain homeostasis of the internal body

temperature (Wilson et al. 2014). While both heat stress and cold stress can impact

health, heat stress will be used as an illustrative example. Heat is a complex actor –

it can have a direct effect on health (e.g., heat strain, heat stroke) and exacerbate

existing disease conditions both alone and in concert with chemicals, and it can

interact with chemicals by modifying their absorption or effect.
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A complicating factor in the study of heat stress is the differences in thermo-

regulation strategies between small rodents typically used in toxicity studies and

humans (Gordon et al. 2014). For example, mice and rats rely on a metabolic

strategy to balance heat loss and production, while humans depend more on

regulation of peripheral blood flow (Gordon et al. 2014). Furthermore, laboratory

animal studies are typically conducted at temperatures that are below ideal ambient

temperatures for rodents, causing a mild hypothermic response that may distort

their response to chemical exposure (Gordon et al. 2014). Fortunately, many

epidemiology studies have addressed the role of heat in disease and will be the

focus of this section.

A wide array of diseases are associated with heat stress including mental health

disorders (Berry et al. 2010), reproductive system dysfunction (Strand et al. 2012),

kidney disease (Tawatsupa et al. 2012; Garcia-Trabanino et al. 2015), cardiovas-

cular disease (Braga et al. 2002; Schwartz et al. 2004), and respiratory disease

(Braga et al. 2002; Michelozzi et al. 2009). It follows that heat stress has the

potential to act together with chemicals and other nonchemical stressors to disrupt

normal function or exacerbate disease. Incorporating heat stress into cumulative

risk assessment could be motivated by co-occurrence, as in the case of agricultural

workers that are occupationally exposed to both heat stress and pesticides (see case

study below). Alternatively, for an assessment aimed at evaluating the cumulative

risk of exposures contributing to an observed disease (effects-based risk assessment

or disease-based risk assessment), heat stress could be included when it is identified

as a risk factor. If heat stress is identified as a risk factor that should be included in a

cumulative risk assessment, quantifying the contribution of heat stress is the

next goal.

The two internationally recognized methods for rating the level of heat stress are

the Wet Bulb Globe Temperature (WBGT) index (ISO 7243) and the Predicted

Heat Strain (PHS) model (Alfano et al. 2014). The method for assessing the WBGT

index is currently undergoing revision, but generally a combination of air temper-

ature, black globe temperature, and natural wet bulb temperature is used to approx-

imate heat stress. For a detailed review of the history and limitations of this method,

see Budd (2008). As recommended in Budd (2008), plotting the WBGT against an

adverse effect to generate a “dose”-response relationship would allow for an

assessment of the heat stress dose response. Examples of heat stress dose response

include heat exhaustion (Yaglou and Minard 1957) (Fig. 16.2) and heat stroke

(Schickele 1947). Unfortunately, this type of dose-response data will not be avail-

able for every endpoint of interest. However, data in the literature for a general

heat-related adverse outcome (e.g., heat exhaustion) could be used to identify

situations where heat stress may play a significant role in shaping cumulative

risk. Furthermore, it is well known that certain populations (e.g., pre-existing

conditions such as asthma, elderly) are more acutely affected by heat stress.

Therefore, in cumulative risk assessments where heat stress has been identified as

an important risk factor, an additional uncertainty value could be applied to account

for increased risk to vulnerable populations.
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16.4.1 Case Study for Estimating Cumulative Risk from
Occupational Exposure to Heat Stress and Pesticides

This case study is meant to illustrate potential considerations and decision points for

conducting a cumulative risk assessment that includes both chemical and physical

stressors and does not represent an accurate analysis of risk from the model

stressors. Consider an agricultural community in North Carolina. The community

is concerned about the combination of heat stress and pesticide exposure and would

like to better understand relative contributions to overall risk in order to decide how

to focus advocacy efforts. For example, they could advocate for more personal

protective clothing or greater pesticide use oversight, if pesticides are driving risk,

or they could advocate for implementation of cooling measures (longer breaks,

greater availability of shaded areas and personal cooling devices, etc.), if heat is

driving risk.

Step 1: Scoping

The first step of assessing risk from stressors present in a community is to scope the

problem. This is necessarily an iterative process, as it involves identifying potential

stressors and health endpoints that are of concern and exploring availability of data

on exposures and outcomes. Although it would be ideal to include all relevant

stressors for a particular health outcome, exposure data may limit the number and

type of stressors that can be included. Additionally, the questions can be interrelated

– a decision about which stressors to include could influence which risk assessment

method is selected. Table 16.2 provides examples of the types of questions and

potential answers that could be considered in scoping efforts related to heat and

Fig. 16.2 Example of a dose-response relationship for heat stress. Heat stress data from military

personnel was used to generate the dose-response relationship. Circles and bars represent the

average and standard error values from three populations: Junior Platoon Leader (PLC) candidates

on 6-week training, new reservists on 2-week training, and recruit trainees on 12-week training.

The raw data used in the calculations described above were extracted roughly from Yaglou and

Minard (1957). The solid line represents a four-parameter logistic fit to the data using GraphPad

Prism
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pesticide exposure. For this case study, stressors will be limited to heat and select

pesticides (diazinon, parathion, chlorpyrifos, and permethrin) known to be applied

on crops in the area. Three of the pesticides selected (diazinon, parathion, and

chlorpyrifos) have the same mechanism of action – acetylcholinesterase inhibition

– while permethrin has a different mechanism of action. All four pesticides target

the nervous system and represent common agricultural exposures, while heat stress

targets cardiovascular function. The set of stressors were selected based on their

co-occurrence, not a common mechanism of action or target.

Step 2. Evaluating Exposure

Evaluating chemical exposures is fairly straightforward and is the same as in a

single chemical risk assessment. In this example, biomonitoring data from the

published literature will be used to characterize exposure to pesticides using the

following equation:

IC ¼ uC � ecreatinine
ucreatinine � bw

� 1mg

1000μg
, ð16:1Þ

where IC is the intake of chemical C with units of μg-g/kg body weight/day, uC is

the measured concentration of chemical C (μg-g/L urine), ucreatinine is the measured

concentration of creatinine in the urine (g creatinine/L urine), ecreatinine is the daily
creatinine excretion (g/day), and bw is body weight (kg). (See Table 16.3 for values

of the four pesticides measured in urine.) For the purposes of this example, a daily

creatinine excretion rate of 1.5 g/day, a concentration of creatinine in the urine of

1 g/L, and a body weight of 70 kg were used.

Table 16.2 Scoping questions and answers for a risk assessment of heat stress and pesticide

exposure in an agricultural community

Questions Examples of potential answers

Is there a particular health out-

come of concern?

Yes (e.g., cardiovascular disease, asthma)

No (e.g., hospital visits, morbidity – any cause)

Who is in the population of

interest?

Agricultural workers only

Agricultural workers and their families

Rural community in proximity to agricultural activities

What pesticides should be

included?

All pesticides to which the population is exposed (exposure-

based decision)

Pesticides that are of concern based on toxicity information

(disease-based decision)

Pesticides with a particular mechanism of action (chemical

class-based decision)

What other stressors should be

included?

Heat only

Heat and psychosocial stressors (e.g., socioeconomic status,

exposure to violence)

All stressors potentially linked to disease of interest

What risk assessment method is

appropriate?

Dose-addition model (e.g., Hazard Index approach)

Independent-action model
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Physical stressors present greater challenges. As discussed throughout this

chapter, there are not widely accepted measurement tools and methods for charac-

terizing exposure to physical stressors. In this example, we will use the WBGT

index as a measure of effective temperature. Next, consideration of how to capture

the data is required. For example, temperatures could be presented as weekly or

monthly averages. Alternatively, lowest and highest temperatures could be used to

present a range of possible risk values. Finally, temperature variability has recently

been shown to play a role in increased risk from heat and cold (Shi et al. 2015). (See

Table 16.4 for sample data on heat stress exposure in North Carolina.) The exposure

options used in the risk characterization step should be selected based on the goals

of the risk assessment, i.e., capturing a worst-case exposure or the most common

(e.g., average) exposure level.

Table 16.3 Biomonitoring data on pesticide exposure of farmworkers in North Carolina

Pesticide

Mean � SD

(ng/ml)a
Max

(ng/ml)a

Estimated mean

intake (μg/kg/d)
b

Estimated max

intake (μg/kg/d)
b

Reference

dose (μg/kg/d)
Diazinon 2.76 � 6.72 7.16 0.06 0.15 0.09c

Parathion 7.67 � 42.03 457.00 0.16 9.79 6d

Chlorpyrifos 5.37 � 3.70 20.70 0.12 0.44 10e

Permethrin 3.34 � 4.49 30.70 0.07 0.66 50f

aUrinary data from (Raymer et al. 2014)
bMean and max intake values calculated using Eq. 16.1 in text
cReference dose for diazinon from Teuschler et al. (1999)
dProvisional reference dose calculated by EPA (https://www.epa.gov/sites/production/files/2016-

09/documents/parathion.pdf)
eReference dose for chlorpyrifos from Zhao et al. (2006)
fReference dose for permethrin from IRIS (2017)

Table 16.4 Heat stress data for summer months in North Carolina

Week (2015) Heat stress average over week (WGBTa)

Heat stress

max temp (WGBTa)

June 28–July 4 86 �F 92 �F
July 5–July 11 91 �F 94 �F
July 12–July 18 88 �F 93 �F
July 19–July 25 89 �F 93 �F
July 26–Aug 1 91 �F 94 �F
Aug 2–Aug 8 90 �F 97 �F
Aug 9–Aug 15 88 �F 91 �F
Aug 16–Aug 22 89 �F 95 �F
Aug 23–Aug 29 87 �F 92 �F
aTemperature was used as an estimate for WGBT. Source: weather history for Raleigh-Durham

International Airport (weatherunderground.com)
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Step 3: Dose-Response Analysis

Dose-response analyses for the pesticides used in this example have been conducted

elsewhere (see example in Teuschler et al. 1999). These analyses are used to

estimate reference values, which represent a daily exposure to a human population

that is not likely to be associated with appreciable risk of harmful effects over a

lifetime (Table 16.3; see Chap. 14 for more on Risk Assessment). The oral

reference dose for diazinon is based on cholinesterase inhibition in the plasma of

rats fed diazinon (Teuschler et al. 1999), which represents the mechanism of action

involved in nervous system effects of organophosphate pesticides. The two other

organophosphate pesticides, parathion (https://www.epa.gov/sites/production/files/

2016-09/documents/parathion.pdf) and chlorpyrifos (Zhao et al. 2006), reference

dose estimates were both based on erythrocyte cholinesterase inhibition in humans.

Finally, the permethrin reference dose was based on increased liver weight in rats

(IRIS 2016). A dose-response relationship for heat stress is presented in Fig. 16.2.

The determination of a reference dose for a chemical differs in many ways from

determining a “safe temperature” for use in a cumulative risk assessment that

includes heat as a stressor. The application of uncertainty, for example, would

differ. In this example, the OSHA guidelines for permissible heat exposure thresh-

old limit values (TLVs) are used as a reference point. The OSHA TLVs for heat

stress also include different work levels – continuous, 75% work to 25% rest, 50%

work to 50% rest, and 25% work to 75% rest per hour. In addition, different TLVs

are provided depending on the work load (light, moderate, and heavy). Assuming a

75% work to 25% rest level per hour and a heavy work load for the agricultural

setting, the TLV is 78 �F (OSHA 2016). This TLV agrees with the dose-response

data in Fig. 16.2 showing a lack of heat stress at temperatures of 80 �F and below.

Step 4: Risk Characterization

A Hazard Index approach can be used to combine the individual hazard quotients

for the different stressors (see chapter on risk assessment for a detailed discussion of

the Hazard Index). As mentioned in the exposure section, this step also involves

many decision points as to which exposure data should be used. For comparison, a

Hazard Index can be calculated for the lowest weekly average temperature and

highest recorded temperature over the period. The Hazard Index is calculated by

summing the hazard quotients for the individual stressors. The hazard quotient for

each stressor is calculated by dividing the exposure by the acceptable limit (i.e.,

reference dose for pesticides and TLV for heat stress). A Hazard Index less than

1 indicates no expectation of adverse health effects. As the Hazard Index increases

above one, there is increasing concern for adverse health effects. In this case, the

Hazard Index calculation would be:

HI ¼ HQHeat þ HQDiazinon þ HQParathion þ HQChlorpyrifos þ HQPermethrin

For the lowest temperature and mean pesticide exposure case, the Hazard Index

would be:
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HI ¼ 86

78
þ 0:06

0:09
þ 0:16

6
þ 0:12

10
þ 0:07

50
HI ¼ 1:10þ 0:67þ 0:03þ 0:012þ 0:001

HI ¼ 1:81

In this low exposure case, it is apparent that the pesticides are contributing less to

the overall Hazard Index score, and heat stress is driving the value above 1.

Alternatively, the Hazard Index for the worst-case scenario would be:

HI ¼ 97

78
þ 0:15

0:09
þ 9:79

6
þ 0:44

10
þ 0:66

50
HI ¼ 1:24þ 1:67þ 1:63þ 0:04þ 0:01

HI ¼ 4:60

In the high-exposure case, heat stress continues to contribute to the >1 Hazard

Index, but the values of diazinon and parathion represent larger contributions.

Step 5: Risk Management

The case study provided above illustrates how incorporating heat stress into an

evaluation of risk can help in understanding relative contributions of different

stressors. These exercises can help communities and policymakers in deciding

between different risk mitigation strategies. It is interesting to note that whereas

pesticide exposure can vary widely from average exposure to maximum, temper-

ature has a less dynamic range. As more physical (and other nonchemical stressors)

are incorporated into cumulative risk assessments, a better understanding of their

impact will be gained.

16.5 Forces: Noise and Chemicals

Noise presents another multifaceted physical stressor that can enhance chemical

toxicity indirectly via activation of stress hormones and directly by acting jointly at

a common target. Diseases associated with co-occurring exposure to noise and

chemicals include hearing loss, as well as respiratory and cardiovascular diseases.

The indirect pathway is often referred to as “noise annoyance” because it involves

perception of noise as a stress (Babisch et al. 2013). Both acute and chronic studies

with noise exposure have demonstrated stress hormone responses. For example, a

study with 3950 middle-aged men exploring factors contributing to incidence of

ischemic heart disease found that participants who were highly annoyed by noise

had a higher chance of developing heart disease (odds ratios ¼ 1.7–3.0) (Babisch

et al. 2003). Less information is available on the interaction of noise with respira-

tory tract disease, which represents an emerging area of study (Recio et al. 2016).

Noise pollution and air pollution tend to co-occur in urban environments. Fre-

quently heard in urban settings, noises associated with danger (e.g., sirens) have the

potential to trigger a stress response even during sleep. Commonly, studies

16 Consideration of Physical Stressors in Cumulative Risk Assessment 481



exploring road traffic pollution have focused on either air or noise pollution, but not

the combination. However, many diseases (e.g., asthma, bronchitis, skin disease)

display increased incidence in areas with high noise pollution (Ising et al. 2003,

2004).

Occupational settings (e.g., construction, machine operation) can have particu-

larly elevated and prolonged noise exposures. There is also the potential for

relatively high chemical exposures in occupational settings (e.g., chemical

manufacturing, oil and gas industry, agriculture). Noise exposure can cause both

auditory and nonauditory effects alone and in combination with other factors. There

are common features in auditory dysfunction caused by noise and some ototoxic

chemicals (Fechter 1995; Johnson and Morata 2010). Degeneration of the sensory

hairs in the cochlea is one of the most common findings in sensorineural hearing

loss. Animal studies have demonstrated loss of hair cells from exposure to both

noise and solvents with reactive oxygen species hypothesized to play a role in the

hair cell damage (Henderson et al. 2006; Chen et al. 2007). Other chemicals such as

metals (e.g., lead, mercury) may affect both the cochlea (Rice 1997) and the central

auditory pathways (Discalzi et al. 1993; Lasky et al. 1995; Otto and Fox 1993)

depending on the substance. Le Prell et al. (2007) reported that the formation of free

radicals after noise trauma continued up to 10 days after cessation of the exposure,

which could explain why the loss of hair cells worsens after exposure. Toxic insults

on the cochlea have also been shown to continue after cessation of exposure to

solvents (Johnson and Canlon 1994).

More recently, it has been reported that some aromatic solvents reduce the

protective role played by the middle-ear acoustic reflex (Venet et al. 2011). A

dysfunction of this reflex would increase risks to hearing by allowing higher

acoustic energy levels to penetrate the inner ear (Maguin et al. 2009; Campo

et al. 2007). This would make co-exposure more dangerous than exposure to

noise or to styrene alone. Other chemicals such as metals (e.g., lead, mercury)

and pesticides may affect the hearing function (Choi et al. 2012; Shargorodsky et al.

2011) by acting on both the cochlea (Rice 1997) and the central auditory pathways

(Discalzi et al. 1993; Lasky et al. 1995; Otto and Fox 1993) depending on the

substance.

Solvent exposures have the potential to affect hearing in the absence of exposure

to occupational noise, or they can enhance the effects of noise on hearing loss.

Carbon monoxide (CO) exposure has also been shown to potentiate noise-induced

hearing loss (Rao and Fechter 2000). Fechter et al. (2000) characterized the joint

effects of CO and noise on hearing loss using a benchmark-dose approach for risk

assessment (U.S. EPA BMDS version 1.3). They found that an exposure of 194 ppm

CO represented the lower bound of the benchmark dose that would yield a 10%

increase in noise-induced hearing loss. Notably, these levels of CO are less than one

order of magnitude higher than the permissible exposure level (PEL) of 50 ppm set

by the Occupational Safety and Health Administration (OSHA). It is also important

to note that periods of recovery following exposure did not abrogate the effects (i.e.,

changes from co-exposure to noise and CO were permanent) (Chen and Fechter

1999; Rao and Fechter 2000). Furthermore, the dose response was not monotonic
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for noise, with the smaller noise exposure resulting in maximal hearing loss in

combination with CO. In more recent work, co-exposure to styrene and different

types of noise (6-h continuous noise of 85 dB Sound Pressure Level (SPL) or

impulse noise of 80 dB) was evaluated, and impulse noise was found to elicit

greater damage (Venet et al. 2015; Campo et al. 2014). The characteristics of the

noise exposure and solvents like toluene and styrene can disrupt the natural

protective mechanisms of the ear such as the middle-ear acoustic reflex. This was

a demonstration of a second mechanism of solvent-induced damage, beyond the

cochleotoxic mechanism described earlier. It consists of a rapid pharmacological

impact on the central nervous system by the inhibition of the protective reflex

(Campo et al. 2001). Finally, studies have also demonstrated that as the number of

stress factors increase, the lowest observable adverse effect level (LOAEL) for

hearing loss decreases.

The evidence presented above represents a small portion of the literature

describing the link between occupational chemical exposure and hearing loss. To

address this concern, OSHA and other groups have published comprehensive

evaluations of ototoxic substances, as well as documented hazards associated

with workplace exposure to noise and ototoxic chemical substances (EU-OSHA

2009; Johnson and Morata 2010). These references include qualitative information

on noise and chemical interactions and highlight policies from specific countries

and multinational agencies.

In an example of incorporating physical stressors into cumulative risk assess-

ment in a quantitative manner, Evans et al. (2014) developed a case study charac-

terizing risk for hearing impairment from combined exposures to noise and volatile

organic compounds (VOCs). They used data from the 1999–2000 U.S. National

Health and Nutrition Examination Survey (NHANES) to estimate VOC exposures

and modeled street-level noise data (i.e., a noise map) to estimate block group-level

noise categories (45–60 dB, 61–65 dB, 66–70 dB, and 71–75 dB). The cumulative

risk for potential hearing loss from co-exposure to noise and VOCs was calculated

using a Hazard Index approach (see the heat and pesticide case study above and

Chap. 14 for a discussion of HI). Hazard Indices ranged from 0.8 (lowest noise

category and 10th percentile for total VOCs) to 1.7 (highest noise category and 90th

percentile for total VOCs). Although the authors noted limitations of the approach

(e.g., issues with combining heterogeneous data), it did demonstrate the feasibility

of combining chemical and nonchemical stressors using an established cumulative

risk assessment approach. Furthermore, it identified noise as the driver of risk in the

case study, which could help inform decision-makers in how to invest limited

resources to provide the greatest impact to public health.

Currently, the French Institut National de Recherche et de Sécurité (INRS) is

working to incorporate information on noise damage risk-criteria into the web-tool

Mixie. The original web-tool was created by the University of Montreal and the

Institut de Recherche Robert-Sauvé en Santé et en Sécurité du Travail (Vyskocil

et al., 2007) to assess the risks associated with exposure to a mixture of airborne

chemical substances in the workplace (http://www.irsst.qc.ca/en/publications-

tools/tool/i/100037/n/mixie-mixtures-of-substances-in-the-workplace-computer-
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based-tool-for-evaluating-the-chemical-risk-calculation-of-the-rm). Toxicological

effects are considered additive and the multiple exposure index is used for assessing

the risk encountered by people exposed to several substances present in the

workplace. The sum of the fractions of measured individual exposure concentra-

tions and their Time-Weighted Average Exposure Value (TWAEV) for each

substance results in a percentage of the recommended dose of the mixture. A

percentage of 100 indicated that exposures are at their recommended exposure

limit according to Canadian Occupational Exposure Limits (OELs). The planned

additions would incorporate information on the interaction of chemicals with noise,

to alert those conducting risk assessment.

16.6 Challenges and Recommendations for Incorporating

Physical Stressors into Cumulative Risk Assessment

Although it is an accepted fact that physical stressors can impact human health, they

have not typically been included in cumulative risk assessment efforts, which have

focused almost exclusively on chemicals. There are multiple factors that present

obstacles to the inclusion of physical stressors into cumulative risk assessment.

However, there are also options for working around or overcoming these challenges

using available tools.

16.6.1 Challenge: Deciding Which Physical Stressors
to Include in Cumulative Risk Assessments

There are numerous potential physical stressors available for consideration. For

example, a risk assessment in an urban environment could reasonably include

traffic noise, heat stress, microbial load, and ultraviolet radiation, among other

risk-contributing factors. Determining which physical stressors to include can

increase the complexity of the scoping phase. Another challenge may be that data

are not available for all of the potential physical stressors that are relevant.

16.6.1.1 Recommendations

There are two considerations that could help to guide inclusion of physical stressors

into cumulative risk assessment. The first consideration is which physical stressors

are relevant to the goals of the risk assessment. For example, if the risk assessment

is targeted toward understanding relative contributions of stressors to a particular

disease outcome, only physical stressors that could plausibly contribute to the

disease should be included. The same types of methods that are useful in
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prioritizing chemicals for study and assessment (see Part II on prioritizing mix-

tures) can also be applied to physical stressors. The second consideration that will

drive inclusion decisions is data availability. It should be noted that exposure to

some physical stressors (e.g., radio waves, microbes) may be more difficult to

measure in populations than others (e.g., temperature). However, the data needs

for these physical stressors will become more apparent as researchers and risk

assessors continue to work through examples.

16.6.2 Challenge: Lack of Physical Stressor Data

The lack of available “dose”-response data for physical stressors is often cited as an

impediment to their incorporation into cumulative risk assessments. Typical toxic-

ity studies with physical stressors or combinations of physical and chemical

stressors tend to include one level of exposure (e.g., with or without a particular

microbe). However, many of the available cumulative risk assessment approaches

that have been applied to multiple chemicals require dose-response information.

Additionally, there is a lack of data on interactions between physical and chemical

stressors. Although examples of interaction data have been presented in this

chapter, joint action of the vast majority of physical and chemical stressor combi-

nations has not been evaluated.

16.6.2.1 Recommendations

To overcome the real deficit in traditional toxicological (i.e., dose-response) data

for physical stressors and data on physical and chemical stressor interactions,

research in these areas needs to be prioritized. This is likely to be an iterative

process. As more case studies are developed and cumulative risk assessments that

include physical stressors are performed, researchers will gain a better understand-

ing of the types of physical stressor data that will be most useful to risk assessors,

which in turn will guide study design. In addition to generating more toxicological

data on physical stressors, making better use of existing databases (e.g., NHANES)

and creatively using data from nontraditional sources (e.g., meteorological data

combined with hospital visits for respiratory disease) are recommended. The case

study by Evans et al. (2014) exploring the use of secondary data on exposure to

noise and VOCs in a cumulative risk assessment for hearing loss provides an

excellent template for replication with other physical/chemical stressor combina-

tions and health outcomes.
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16.6.3 Challenge: Heterogeneity of Data on Physical Versus
Chemical Stressors

While doses of chemicals are typically presented in route-specific standard format

(e.g., mg/kg for oral or dermal exposure and ppm for food-based or inhalation

exposure), there is no consensus on “dose” units for physical stressors (e.g., for

heat, the WBGT index is preferred; however, ambient temperature could be more

widely available), and physical stressor “dose” units are not likely to align with

chemical dose units (e.g., temperature versus chemical dose).

16.6.3.1 Recommendations

Although there is potential for confusion from combining factors across different

data types, this does not pose a significant obstacle in calculating risk. Common

dose units are not required in the HI approach (see Evans et al., (2014) example and

the case study on heat and pesticides presented in this chapter) or the independent

action approach. However, increased research attention on physical stressors and

their dose-response relationships should inform selection of an appropriate “dose”

measure.

16.6.4 Challenge: Categorical Differences

A common concern in cumulative risk assessment discussions is how to deal with

stressors that fall under different regulatory jurisdictions. There are multiple argu-

ments for including only stressors that fall under a single regulatory umbrella.

There is the possibility of a legislative mandate guiding this decision (e.g., the

1996 Food Quality Protection Act [FQPA] charges the U.S. EPA’s Office of

Pesticide Programs to address pesticide mixtures). Due to the specificity of the

FQPA, there is an assumption that stressors outside the scope of the legislation

should be excluded from cumulative risk assessments addressing the mandate.

Alternatively, the argument can be made on pragmatic grounds. For example,

because there is not a clear path toward exposure reduction for some physical

stressors, they should not be included in cumulative risk assessments. Finally, it

could be argued that including stressors outside of the regulatory scope of an

agency could result in the unintended consequence of decreasing action on chem-

ical exposure. For example, if a cumulative risk assessment concludes that the risk

from specific chemical exposures is dwarfed by a nonchemical factor such as low

socioeconomic status, it might decrease political will to mitigate the chemical

exposures.
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16.6.4.1 Recommendations

The argument for limiting the scope of cumulative risk assessment based on

legislative mandate or practical considerations brings up an often-cited goal of

conducting cumulative risk assessments tailored to the question at hand. For

example, if the goal is to make decisions about chemical remediation (i.e., deter-

mine which chemicals require resource-intensive cleanup efforts), limiting the risk

assessment to chemicals may be in order. However, the inclusion of a broad range

of potential stressors (both chemical and nonchemical) is recommended in

addressing more global public health issues, such as determining stressors that

are most likely to impact public health in communities-of-concern and using

cumulative risk assessment information to determine how to direct limited

resources to best protect public health. Furthermore, inclusion of both chemical

and nonchemical stressors allows for comparison of relative contribution of the

various stressors. In other words, the stressors that are likely to drive the adverse

outcome of interest could be identified and targeted for intervention.
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Chapter 17

Psychosocial and Chemical Stressors

Jane E. Clougherty and Jonathan I. Levy

Abstract Psychosocial stress has been consistently linked with alterations in

immune, endocrine, and metabolic function, and growing evidence indicates that

psychosocial stressors—including noise, poverty, and exposure to violence—may

alter human susceptibility to environmental chemical exposures. As a result, there

is a growing need for methods to disentangle patterns in chemical and non-chemical

exposures and to quantify their independent and interacting effects on health.

Here, a framework is presented for integrating psychosocial stressors into a

traditional risk assessment approach, with attention to exposure assessment for

non-chemical stressors and to statistical methods for incorporation of very disparate

exposures into a risk assessment. Finally, an illustrative case example is presented,

to demonstrate an approach for incorporating a psychosocial stressor (here, expo-

sure to violence, a key stressor in urban U.S. communities) into a cumulative risk

assessment aiming to quantify air pollution effects on health.

Keywords Non-chemical · Psychosocial stressors · Epidemiology

17.1 Introduction/Framework

17.1.1 Psychosocial Stressors in Mixtures Analysis
and Cumulative Risk Assessment

The rapidly growing interest in characterizing the combined effects of chemical and

non-chemical stressors on health outcomes and in cumulative risk assessment has

stemmed from a few key observations. First, significant chemical and non-chemical

stressors are often spatially or demographically correlated, clustered in lower-
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income communities near highways or industrial corridors (Bullard 1993). Second,

there is growing epidemiological and toxicological evidence that chronic psycho-

logical stress (oftentimes driven by poverty, exposure to violence, and other

community-scale non-chemical stressors) may alter individuals’ susceptibility to

environmental pollution (Clougherty et al. 2007, 2010a, 2014; Clougherty and

Kubzansky 2010; Virgolini et al. 2006). This heightened susceptibility may be

mediated through a suite of immune, endocrine, and metabolic changes that occur

under chronic stress, a condition collectively referred to as allostatic load (McEwen

1998). Together, these observations suggest that the most pollution-exposed com-

munities also may be the most susceptible (Lipfert 2004). Thus, disentangling the

effects of chemical and non-chemical exposures and identifying their potential for

greater than additive effects are increasingly becoming research and policy prior-

ities, recognized as critical toward identifying and protecting susceptible

populations as well as reducing health disparities (U.S. EPA 2003). While numer-

ous non-chemical stressors may either cause harm directly or increase vulnerability

to harm by other stressors, the focus of this chapter is on the role of psychosocial

stressors in cumulative risk assessments for physical or chemical environmental

exposures.

A cumulative risk assessment may be motivated by observed disease patterns

(effects-based risk assessment), interest in a specific set of exposures present in a

given community (stressor-based risk assessment), or a defined subpopulation of

concern within a community (receptor-based risk assessment). Although this third

category is likely to overlap procedurally with either an effects-based or stressor-

based assessment, given the nature of cumulative risk assessments, it would include

a more explicit characterization of the community including elements such as

demographics, geographic boundaries, and health. For any of these applications,

psychosocial stressors may be hypothesized either to directly influence health

outcomes or to modify health response to chemical/physical exposures. The issues

at hand in accurately characterizing psychosocial stressors and their potential role

in cumulative risk assessment apply equally to any assessment type, including such

significant questions as:

• How does cumulative risk assessment integrate insight from epidemiology,

given that (1) toxicological evidence may not fully capture human psychosocial

stressors, (2) epidemiological evidence is currently lacking for the vast majority

of chemicals, and (3) the vast majority of chemicals also do not currently have

toxicological data sufficient for traditional risk assessment processes? Relatedly,

can either toxicology or epidemiology adequately inform the distribution of

stressors or vulnerability in a population, given relatively homogeneous

populations in toxicology, and challenges in determining effects across differing

subpopulations in epidemiology?

• How can exposures to psychosocial stressors be appropriately and jointly quan-

tified and represented, given relatively little data beyond demographic informa-

tion in most settings? Can defaults be established that are both meaningful and

interpretable in a variety of settings?
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• Can a cumulative risk assessment meaningfully include both chemical and

psychosocial stressors, if interventions typically target chemical stressors? Is

the process different if a non-chemical stressor happens to be influenced by risk

management activities (e.g., if cleaning up a pollution source in a community

alleviates psychosocial stress)?

• Which psychosocial stressors are potentially relevant for specific settings,

chemical exposures, or outcomes?

The focus of this chapter is on the role of psychosocial stressors in human health

cumulative risk assessment, with attention to a few key steps (i.e., exposure

assessment, dose-response modeling). Available databases and metrics that could

allow for characterization of exposure to psychosocial stressors are discussed,

considering both ideal parameters and proxy measures and default assumptions

that could be useful in the absence of detailed population-specific data. For dose-

response modeling, strategies that could be used for epidemiological or toxicolog-

ical evidence are considered, and similarities and differences from chemical mix-

tures are discussed. Finally, an illustrative case example is presented that

emphasizes the viability of including psychosocial stressors using epidemiological

evidence.

17.1.2 Background and Terminology

Psychosocial stressors (i.e., perceived stressors in our social environment) are

hypothesized to lead to negative health outcomes directly, or through stress-related

alterations in immune, neuroendocrine, or metabolic function, collectively referred

to as ‘allostatic load’ (McEwen 1998). Through these multiple stress-related path-

ways, chronic stress may serve to damage the individual’s health directly (Evans

2003) or may alter the individual’s susceptibility to exposures in the physical

environment, such as air pollutants (Clougherty et al. 2014) or cold viruses

(Cohen et al. 1991).

The psychosocial stressor pathways can be best understood in that psychological

stress, regardless of the perceived stressor (social or otherwise), results when

external demands exceed an individual’s perceived abilities and resources to meet

those demands (Cohen et al. 1995). This may be best characterized as a three-phase

process:

1. Stressor (i.e., event, condition, or stimuli which pose a challenge)

2. Appraisal (i.e., an individual’s perception or interpretation of the stressor)

3. Response (e.g., psychological and physiological sequelae)

These phases are not independent, and all phases are required in order to exert a

psychological or biological stress response; a stressor perceived as benign or

beneficial generally produces no psychological stress response. Thus, exposure

assessment for psychosocial stressors would ideally not simply catalog stressors
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(e.g., life events, community violence), but would rather emphasize total perceived

stress (capturing response to multiple differently appraised stressors) or negative

affect (e.g., anxiety, depression) as a cumulative indicator of mental distress and

psychosocial stress (Kubzansky et al. 1999; Seeman et al. 2002). In cumulative risk

assessment, it can be very challenging to quantify the appraisal and response

phases, especially across large populations, though these factors influence the

accuracy and interpretability of many psychosocial stressors. It is a topic of ongoing

research to validate associations between community-level stressors (e.g., crime)

and individual perceived stress and to identify factors which strengthen or weaken

associations between stressor indicators and stress responses.

17.2 Exposure Assessment

Although much discussion on psychosocial stressors in cumulative risk assessment

focuses on dose-response modeling, characterizing human exposures to psychoso-

cial stressors is a critical step. It is extremely challenging to accurately characterize

exposures to chemicals, especially in a community context where there is a need to

account for multiple chemicals simultaneously. Psychosocial stressors can be even

more challenging and cannot be quantitatively measured or modeled using only the

same methods used for chemical exposures. In large part, this is because responses

to psychosocial stressors vary with individual perception (i.e., “appraisal”), often

influenced by history and context. Here, we briefly address four key dimensions of

exposure assessment for psychosocial stressors:

1. The need to characterize the mechanism(s) of action and hypothesized pathways

of effect

2. The need to carefully assess proxy variables for psychosocial stressors, consid-

ering the level of operation (i.e., community or individual level) and validating

measures

3. The need to consider correlations among psychosocial and chemical exposures,

which influence the accurate development of statistical models for epidemiology

and accurate interpretations of measures of association

4. The need to establish default assumptions for psychosocial stressor exposures, in

the absence of population-specific exposure data

17.2.1 Characterizing Mechanism(s) of Action/Pathways
of Effect

Measuring psychosocial stressors is particularly challenging because many can act

through multiple pathways. Some exposures can operate (simultaneously) as both a

physical and psychological stressor. For example, noise can physically damage the
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inner ear but also can be a psychological stressor. The appropriate exposure

assessment for the physical pathway would be direct measures of sound, while

the appropriate exposure assessment for the psychosocial pathway would require

measures of perceived annoyance. Although these measures may correlate, sub-

stantial exposure misclassification would occur where using physical measures

alone for the psychosocial pathway. Likewise, heat may be a physical stressor,

leading to heat exhaustion or hypertensive outcomes, and is also uncomfortable and

therefore psychologically stressful over extended periods (one of many causes

believed to contribute to greater urban violence during summer months and heat

waves). Again, the optimal measure depends on the hypothesized pathway [i.e.,

apparent temperature (physical), or perceived discomfort (psychological)].

A related challenge is the possibility that some pollution sources may also be

psychosocial stressors if, for example, residents perceive substantial risk from a

local source or if the source’s presence suggests to residents that their health and

well-being are not valued by the larger society (Bullard 1990). As such, it is often

challenging to disentangle the physical and psychological aspects of pollution

which impact communities near toxic sites (Elliott et al. 1993; Eyles et al.

1993)—and, again, the appropriate measure for each pathway would differ. It has

been argued that having exposure assessment be homologous with dose-response

modeling is a critical feature of risk assessment (National Research Council 2009,

2011), which is especially true for psychosocial stressors. Thus, we recommend that

any exposure assessment begin with a clear conceptual model for hypothesized

direct and indirect pathways to health effects, which, in turn, would drive the

selection of exposure measures.

Because individual stress responses vary over time, and because individuals

respond differently to most community-level stressors, there is increasing interest in

developing biomarkers of stress. In theory, a well-characterized biomarker could

facilitate epidemiological analysis and provide a comprehensive indicator of the

response of an individual to multiple stressors. Stress is, however, by definition, a

non-specific condition impacting a wide range of bodily systems (Selye 1936),

many of which (e.g., inflammation) are also impacted by chemical and physical

exposures, and the effects of which may vary with co-exposures, comorbidities, or

other facets of individual physiologic susceptibility. Further, the timing of stressor

exposure can greatly influence response (e.g., acute vs. chronic stress have very

different physiologic sequelae). Taken together, it is unlikely that a single bio-

marker—or even a resolved suite of biomarkers—will reliably and meaningfully

capture all stress responses, for all periods of interest.

Nevertheless, substantial research has examined the physiology of stress and the

search for “biomarkers” of both acute and chronic stress. To date, most “bio-

markers” identified have been immune or neuroendocrine markers associated

with physiological stress responses—e.g., cytokines and glucocorticoids (Miller

et al. 2002)—and an important emphasis has been on distinguishing biomarkers of

acute stress (e.g., cortisol as an indicator of hypothalamic-pituitary-adrenal (HPA)-

axis activity) from those of chronic stress (e.g., endocrine disruption or NF-κB
signaling as an indicator of HPA-axis regulation) (Miller et al. 2007).
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Formerly, corticosteroids (e.g., cortisol) in blood or saliva were emphasized as

markers of HPA-axis activity, although stress-related HPA function changes lead to

cortisol dysregulation (via glucocorticoid resistance and HPA regulation), not

simply increased cortisol production. As such, cortisol can be difficult to interpret

and generally better indicates acute, rather than chronic, stress. Importantly, it

remains unknown how acute stress response may differ under chronic stress

scenarios, and thus some more recent research emphasizes indicators of glucocor-

ticoid resistance and neuroendocrine signaling (Miller et al. 2007). Other evidence

suggests that C-reactive protein (CRP) may reasonably capture chronic stress;

however, CRP is a non-specific immune marker also elevated in response to air

pollution and other exposures (Clougherty et al. 2010a). Although no single bio-

marker is appropriate for all applications (Brunner 2007), suites of physiologic

parameters have been developed to represent chronic “allostatic load” in humans

and include indicators of cardiovascular function, metabolism, cholesterol, glucose

metabolism, HPA-axis function, and sympathetic nervous system activity

(Kubzansky et al. 1999; Seeman et al. 2002). Several studies document chronic

stress effects on cardiovascular risk indicators (abdominal obesity, elevated serum

triglycerides, lower levels of high-density lipoprotein (HDL) cholesterol, glucose

intolerance, elevated blood pressure) (Brunner 2007), known collectively as “met-

abolic syndrome,” and this may provide a method for capturing cumulative stress

effects on cardiovascular and systemic function.

It is important to recognize that biomarkers representing physiological responses

to stress may provide insights that are more relevant to dose-response modeling, or

to determining the mechanism of action, than to exposure measurement per

se. There may be utility in characterizing some biomarkers for effects-based

cumulative risk assessments, as multiple chemical and psychosocial stressors may

influence cardiovascular function or other endpoints. Currently, however, these

biomarkers do not necessarily inform exposure characterization. Following the

stressor-appraisal-response model, commonly available exposure databases (e.g.,

census demographic data or community crime rates) may represent stressors, and

biomarkers may capture aspects of stress response, but it is arguably individual

appraisals that are most specific and germane to accurate assessment of psychoso-

cial stress.

17.2.2 Use and Validation of Proxy Variables
for Psychosocial Stressors

Many psychosocial stressors are difficult to measure or model directly, especially

across all individuals in a large population. Thus, there is often value in identifying

or constructing proxy variables to capture geographic patterns in stressor preva-

lence (e.g., community crime rates, school quality indicators), due to limited

individual-level data. In many contexts, however, even characterization of relevant
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community-level stressors may not be viable, and risk assessors may wish to use

relatively simple aggregate-level data on socioeconomic positon (SEP) or similar

proxy measures. In such cases, validation of associations between stressor indica-

tors and a representative sample of individual stressor perceptions would be

encouraged.

In this case, analysts should also carefully describe the hypothesized pathways,

differentiating to the degree possible between compositional vs. contextual vari-

ables. Compositional variables refer to measures that reveal information about the

distribution of individuals within a community, whereas contextual variables reveal

information about the setting in which individuals live. For example, community-

level poverty measures could serve as a proxy for the likelihood of individual

poverty (a compositional variable) or as an indicator of processes which function

solely at the aggregate (or community) level (e.g., collective efficacy, social capital,

disinvestment in a community). These latter community-level features which

impact multiple individuals are contextual variables. For example, the percent of

households under the poverty line could be a compositional variable reflecting

individual-level likelihood of poverty or a contextual variable reflecting negative

neighborhood attributes.

The impact of SEP on health has been extensively explored in many settings:

using wealth or income as an index of status within and across countries

(Subramanian and Kawachi 2004), in communities using measurements of per-

ceived social standing (Singh-Manoux et al. 2005), and in workplace settings using

job grade (Clougherty et al. 2010b; Marmot et al. 1991). Given numerous measures

of SEP, and potential confusion about what these proxy variables capture for

cumulative risk assessment, key definitions and concepts are described briefly

here. SEP refers to the individual or family’s relative position in a society, partic-

ularly where economic and cultural factors determine resource access, or in hier-

archical societies where psychosocial goods such as social influence or security are

largely determined by social stature. SEP influences human health through a highly

complex mix of many social and physical factors accumulating and interacting over

the life course, including diet and health behaviors, healthcare access, and working

and housing conditions. Increasingly, psychosocial stress appears to be one

extremely important aspect of SEP influencing health, though SEP should not be

assumed to be synonymous with psychosocial stress.

Wherever possible, validation studies should be performed to ensure that an

aggregate-level indicator (especially when used as a compositional variable, to

proxy for individual-level data) accurately captures intra-community contrast in the

construct (and pathway) of interest. For example, community crime statistics used

to proxy for crime-related stress could be validated using intra-community surveys

on perceived crime exposures and chronic stress, then comparing crime indicators

to the individual-level measures. While such validation studies may not always be

practical, looking to existing validation and multilevel studies on stressor exposures

and characterization may aid in accurately interpreting potential proxy variables, at

both the individual and aggregate levels.
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17.2.3 Incorporating Exposure Correlations

Exposure characterization in cumulative risk assessment should explicitly consider

possible correlations among stressor exposures, both positive and negative, as these

may impact exposure measurement error or apparent interaction effects. For exam-

ple, if proximity to major roadways is associated with increased exposures to both

traffic-related air pollutants and noise, then the exposure assessments should aim to

differentiate these spatially and temporally confounded exposures to the extent

possible.

Correlations could exist at the aggregate level (i.e., among contextual variables)

or only as a function of individual behaviors or activities (individual-level compo-

sitional variables). For psychosocial stressors associated with multiple individual or

contextual factors, especially for a community-scale cumulative risk assessment,

simulation approaches to characterize multivariable demographic attributes with

high geographic resolution may be warranted (Levy et al. 2014). Inclusion of

geographic and demographic predictors of physical or chemical exposures, time

activity patterns, and other exposure-relevant behaviors would facilitate modeling

of psychosocial exposures.

It is recommended that each conceptual model be as clear and simple as can

reasonably capture the key exposure(s) and pathway(s) of interest—even within a

cumulative risk assessment which may ultimately include many interacting expo-

sures or a complex disease outcome. Overloading the conceptual model may

obscure the specific hypothesized pathways, and lead to overly complicated (and

less meaningful) “kitchen-sink” analyses.

17.2.4 Establishing Default Assumptions

For psychosocial stressors, often difficult to characterize directly in a cumulative

risk assessment, default distributions can be derived from administrative data (e.g.,

census variables, large-scale population surveys, surveillance data, or the peer-

reviewed literature, depending on the stressor of interest). Understanding the

readily available factors that correlate with psychosocial stress, and thereby could

serve as proxies or predictors of individual stress or stressor exposures, would be

crucial in conducting assessments that are both meaningful and comparable across

applications. Risk assessors would greatly benefit from an exposure factors hand-

book or analogous database that extended to non-chemical stressors, as has been

recommended by expert committees on risk assessment (National Research Council

2009).
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17.3 Dose-Response Modeling

Dose-response modeling for cumulative risk assessment presents significant meth-

odological challenges, including but not limited to the complexities of incorporat-

ing non-chemical stressors. For psychosocial stressors, insight may be derived from

epidemiological or toxicological evidence (or a combination), but the evidence

must be systematically evaluated to ensure meaningful outputs.

In general, psychosocial stressors can be evaluated comparably to chemical

stressors, provided that the requisite exposure data and health evidence are avail-

able. For example, the concept of “sufficient similarity” is being explored for

complex mixtures of chemicals, wherein major chemical components are found

in similar proportions and similarities in health effects and dose-response relation-

ships are also considered (see Chap. 15). For psychosocial stressors, similarities in

the type and magnitude of health effects may fulfill “sufficient similarity” and

suggest groupings of psychosocial stressors (or psychosocial and physical/chemical

stressors) that could be beneficial to the cumulative risk assessment process. Similar

to chemical groupings, psychosocial stressors may be reviewed for their

co-occurrence, joint action, and mode of action. Psychosocial stressors may also

contribute to dose-response modeling through an improved understanding of back-

ground exposures influencing the shape of the dose-response function for other

stressors. In general, existing guidelines on chemical mixtures can be modified to

include psychosocial and other non-chemical stressors, potentially through a focus

on common adverse outcomes, rather than on common mode of action.

17.3.1 Centrality of Epidemiological Evidence
for Psychosocial Factors/Developing Dose-Response
Functions Using Epidemiology

In many cases, epidemiological evidence will be the only viable strategy for

incorporating psychosocial stressors into cumulative risk assessment. If the expo-

sure assessment relied on proxy variables for SEP or demographic attributes, these

proxies do not translate readily into a toxicological context. More generally, there

may not be animal models to represent the types of psychosocial stressors of

interest. This raises considerable challenges given that relatively few epidemiolog-

ical studies are able to fully characterize effects of multiple chemical and psycho-

social stressors. If adequate epidemiology is available for all stressors of interest,

developing dose-response functions for cumulative risk assessment may be rela-

tively straightforward, though several key diagnostic questions still need to be

answered before dose-response functions can be fully characterized.

First, the ideal evidence would involve studies examining all risk factors simul-

taneously and reported dose-response functions derived from multivariable models,

controlling for co-exposures and testing for effect modification. Many
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epidemiological studies, however, are underpowered for such investigations or do

not use statistical methods needed to discern the effects of stressors with common

sociodemographic predictors or operating at multiple levels. Structural equation

models have increasingly been used to evaluate the joint influence of multiple risk

factors in epidemiological studies, allowing for direct and indirect effects to be

simultaneously estimated (Peters et al. 2014). These and other statistical techniques

for multi-exposure epidemiology require large sample sizes and are limited in the

types of data they can adequately incorporate but can offer considerable insight on

both proximal and distal causes.

In many situations, however, not all stressors of interest will have been included

in a single epidemiological study. Extracting dose-response functions for different

stressors from different studies, generally from regression models that do not

include all relevant stressors, is a viable approach only where confounding is

shown to be limited. While most epidemiological studies likely omit some candi-

date confounders, insight on the likelihood of significant correlations between

exposures can be included based on external evidence and first principles. For

example, two predominantly indoor pollutants, highly correlated with air exchange

rates, would likely be positively correlated, whereas an ambient air pollutant and a

foodborne exposure may be less correlated. Combining insights from different

studies also requires judgments on the distribution of vulnerable individuals in

the population and presence of potential modifiers.

Another complexity arises from epidemiological studies using socioeconomic

and demographic covariates as proxies for non-chemical or lifestyle factors (includ-

ing but not limited to psychosocial stress). For example, SEP may be included in a

regression model linking lead with IQ decrements, with the idea that SEP could

proxy for psychosocial stress, nutritional factors, presence of a stimulating home

environment, or a number of other risk factors associated with neurodevelopment.

Using the findings for SEP, either as a main effect or effect modifier, would require

a careful judgment about what the term captures in the study population, and

whether the same association is present in the population of interest for the

cumulative risk assessment. Development of a detailed conceptual model that

includes both proximal and distal effects on health, as described earlier, will

facilitate this process.

17.3.2 Developing Dose-Response Functions Using
Toxicology

Despite the centrality of epidemiological evidence for psychosocial stressors, often

only toxicological information is available for many chemical stressors. For

non-cancer risk assessments, where the question of cumulative exposures is rather

less well-studied than for cancer risk assessments, psychosocial stressors can be

considered in three different places. First, if there is direct toxicological evidence
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on the psychosocial stressor illustrating a similar mode of action as a chemical

stressor, it can be treated similarly to a chemical mixture. For example, in rat

models of lead and chronic stress (Cory-Slechta et al. 2004, 2010), or concentrated

air pollution and chronic stress (Clougherty et al. 2010a), the psychosocial stressor

is considered in the same bioassay with well-characterized chemical or physical

exposures. As proposed in the NRC report on cumulative risk assessment for

phthalates (National Research Council 2008), dose addition can be applied in

contexts other than congruent dose-response functions, allowing for a broader

application. The NRC report also proposes approaches to establish benchmark

dose (BMDL) values for chemical mixtures under an assumption of dose addition,

which can be directly applied to psychosocial stressors as well if the analogous

toxicological data are available and if the dose metrics are relevant to human

populations. This is a viable approach in limited contexts where exposures to

psychosocial stressors can be readily characterized in toxicological studies.

Second, psychosocial stressors can also contribute toward a general understand-

ing of the appropriate conceptual model for chemical stressors evaluated toxico-

logically. In Science and Decisions (National Research Council 2009), the

committee proposed that the functional form of a dose-response model could only

be determined once a series of diagnostic questions were asked, related to the mode

of action, relevant background exposures and endogenous processes, and vulnera-

ble populations. Depending on the responses, the population dose-response func-

tion would reflect one of three conceptual models: (1) low-dose linear responses for

individuals, with low-dose linear responses for the population; (2) non-linear

responses for individuals with low-dose linear population responses with back-

ground dependence, and (3) non-linear responses for individuals with low-dose

non-linear population responses independent from background. Historically,

non-cancer responses have been considered to be of the third category (nonlinear

for individuals with nonlinear population responses at low doses), although signif-

icant background exposures or other processes could be sufficient to linearize an

otherwise nonlinear population dose-response function.

Practically speaking, this means that improved mechanistic knowledge for some

psychosocial stressors could inform the shape of the dose-response function for

those chemical stressors with adequate toxicological evidence. For example,

increased risk of hypertension or elevated systolic/diastolic blood pressure has

been associated with psychosocial stress, diet, and other non-chemical stressors,

though perhaps not in toxicological data, in a manner necessary to follow the

second approach above. The non-chemical stressors are associated with the out-

come of interest and prevalent in the general population. This would imply that the

toxicological evidence associating a chemical stressor with hypertension would be

assumed to follow the second conceptual model above, with the point of departure

(POD) used to develop a slope term and an estimated risk-specific dose. This

approach is conceptually viable but has two significant challenges. First, as men-

tioned previously, it may be unclear whether the background processes are suffi-

cient in magnitude to conclude that a low-dose linear model would be appropriate.

Experience with some case studies would help to formalize this step. Second, one
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would not be able to quantify risks attributable to non-chemical stressors incorpo-

rated in this manner. While this would be problematic in contexts where these

non-chemical stressors were the targets of risk management efforts, they would

only be included in this manner if there were no adequate toxicology or epidemi-

ology, in which case they would be omitted from traditional quantitative analysis

regardless of the approach.

Third, psychosocial stressors could be captured within physiologically based

pharmacokinetic (PBPK) or pharmacodynamic models that provide insight about

how these stressors would influence delivered dose or pharmacodynamic outcomes

that could be the endpoints of cumulative risk assessments. For example, evidence

has shown that chronic psychosocial stress can influence metabolism and cause

hormonal changes (Agarwal and Marshall 1998), which could be incorporated into

PBPK models. So, even lacking direct toxicological evidence on the influence of

psychosocial stressors, these stressors could be incorporated into cumulative risk

assessments via an adjustment of either the delivered doses from the toxicological

study or the interpretation of the pharmacodynamic outcome.

17.3.3 Combining Insights from Epidemiology
and Toxicology

In some cases, there will be epidemiological evidence for a small number of

stressors, toxicological evidence for other stressors, and perhaps a subset of

stressors with both toxicological and epidemiological evidence. Developing a

systematic approach to incorporate psychosocial stressors in this context will

therefore be key to cumulative risk assessment.

Depending on the nature of the available evidence, a hybrid of the two

approaches above would be warranted. In a situation where the preponderance of

the evidence is toxicological and the epidemiology is not directly applicable, the

more limited epidemiological information could help establish whether the toxi-

cants should be considered as linear or non-linear at low doses. In situations where

multiple compounds are well-characterized toxicologically and at least one is well-

characterized epidemiologically, approaches can be used to establish dose equiva-

lence within toxicological studies to allow for interpretation of the epidemiological

evidence. For example (Benignus et al. 2005), toxicological studies have linked

both toluene and alcohol with similar neurobehavioral effects. Epidemiological

evidence is robust for alcohol but not available for toluene. The toxicological

studies can be used to estimate the dose of toluene that is functionally equivalent

to a dose of alcohol for a defined outcome, and this could be used as a bridge to

interpret the alcohol epidemiology with respect to toluene exposure. This clearly

involves a number of assumptions regarding comparable dose-response function

shapes, but the approach can be generalized in a variety of ways.
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Developing comparable dose-response models across epidemiological and tox-

icological studies, in a manner that would allow for the models to be quantitatively

combined, would only be possible in a limited number of situations. The adverse

outcomes would need to be comparable to one another, which may be possible for

some physiological measures but would be challenging for outcomes such as

asthma attacks, hospitalizations, and other common epidemiological endpoints.

There would also need to be detailed understanding of the vulnerability character-

istics of both the human and animal populations, to ensure that adequate adjust-

ments were made to account for the presumed greater heterogeneity in the human

population. It is likely that these criteria would be met very infrequently, so that

more often, cumulative risk assessment would be primarily based on either epide-

miological or toxicological evidence, using the other to help inform the conceptual

model or determination of mode of action.

17.4 Illustrative Case Example

To illustrate some of these approaches for incorporating psychosocial stressors, a

case study example is presented, drawing on the epidemiological literature

suggesting significant effect modification of associations between urban air pollut-

ants and childhood asthma by chronic stressors prevalent in urban environments,

notably exposure to violence (ETV). A process by which cumulative risk assess-

ment could include this psychosocial stressor in the presence of chemical/ physical

stressors is described, intending that the structure could extend to other stressors in

a specific risk management context.

Asthma is a multifactorial illness impacted by a host of social, environmental,

and genetic risk factors. As such, it serves as an appropriate case study for

considering the interplay among two (or many more) risk factors—acting sepa-

rately or in tandem—toward shaping patterns of asthma etiology and exacerbation

in the urban environment.

This example may be conceptualized as within either a stressor-based or effects-

based cumulative risk assessment (Menzie et al. 2007). For example, an analysis

might consider the health benefits of multiple stressors reduced through traffic

mitigation efforts and would need to take into account the modifying influence of

key psychosocial stressors. Similarly, an analysis might be focused on geographic

areas with elevated asthma prevalence or rates of exacerbation, determining key

contributors to these patterns, in which case ETV and air pollution may be impor-

tant to consider.

Air pollution and chronic stressors have been explored together in several

epidemiological studies (e.g., Shankardass et al. 2009; Chen et al. 2008), and

common distributions have been explored due to concerns about spatial correlations

and potential confounding (e.g., traffic-related air pollution is spatially confounded

by traffic-related noise) (Allen et al. 2009). ETV is explored here due, in part, to a

small but growing literature on the salience of urban violence as a key chronic
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stressor which may modify pollution effects on health. A study of asthmatic

children in Boston public housing reported altered response to indoor allergen

exposures with caregiver-reported fear of violence (Clougherty et al. 2006). A

longitudinal study of childhood asthma etiology in East Boston reported significant

associations with nitrogen dioxide (NO2) exposures, but only among children with

above-median prior lifetime exposure to violence (Clougherty et al. 2007). This

model also informed one toxicological study exploring the effect of an aggressor

stress (Social Dominance Paradigm), as a modifier of concentrated particulate air

pollution (CAPs) effects on respiratory function in rats (Clougherty et al. 2010a);

the authors reported substantively different responses to CAPs by stress group, with

only stressed animals breathing more frequently and shallowly (e.g., hyperventila-

tion) in response to increased CAPs exposures.

A few studies have explored other chronic stressors as modifiers of air pollution

effects on asthma outcomes, though issues related to exposure measurement and the

relative temporality between stress and pollution exposures have proven challeng-

ing. Aside from this small epidemiological literature suggesting a strong effect,

there are several reasons why ETV is an appropriate stressor to examine in a

cumulative risk assessment context:

1. Most importantly, violence is one of the few stressors that is rarely positively

appraised. As described in the Exposure Assessment section above, under Char-
acterizing mechanism(s) of action/ pathways of effect, perceived or psychosocial
stress is strongly mediated through individual perception (appraisal). Unlike

ETV, most other stressors may be appraised either positively or negatively

(e.g., one may view losing a job as a good or bad thing, depending on whether

one enjoyed the job or needed the financial benefit). A positive appraisal can

render the stressor null; as such, most other stressors lend themselves to expo-

sure misclassification. Exposure to violence, however, is almost never charac-

terized as a positive exposure.

2. Outside of the rare instances of physical altercation, most of the impact of

“exposure to violence” is through fear, hypervigilance, or stress-related path-

ways. (And, indeed, the experience of “fear of violence” can vary by gender,

age, race, class, and other personal or community-level factors.) But, because

most ETV impact occurs via psychosocial pathways, unlike other urban com-

munity stressors (e.g., housing quality), the hypothesized psychosocial pathway

is relatively unconfounded by co-occurring physical impacts.

3. Analyses of spatial patterning in urban exposures suggest that ETV is not always

spatially confounded by poverty and other stressors (Shmool et al. 2014). Thus,

the health impacts of ETV conceivably can be disentangled from those of SEP,

which is a much more complicated construct entailing a broad array of physical

(e.g., diet) and psychosocial (e.g., discriminatory experience) exposures, at both

the individual and community level, accumulating over the life course.

4. Crime data, albeit an imperfect community-level ETV indicator, is collected

systematically by every police department nationwide, often according to stan-

dard criteria (i.e., felony crimes). Reporting bias remains a challenge—and

506 J. E. Clougherty and J. I. Levy



certainly differs by jurisdiction and type of crime—but the data are collected and

publicly available nationwide.

While the details listed above are specific to ETV, the logic used to validate its

inclusion is generalizable. Any psychosocial stressor under consideration would

require a logical exposure metric that can be reasonably and systematically col-

lected, evidence for a causal effect on a defined health outcome, and a systematic

determination that the exposure metric is reasonably sensitive and specific for the

health outcome in question.

To incorporate interaction effects in a cumulative risk assessment, we first

recommend careful development of a conceptual model for the hypothesized

relationships among the exposures of interest, with attention to modes of action

(MOA) or common adverse outcomes. Here, our relatively simple conceptual

model captures some of the key constructs of interest:

1. A psychosocial stressor (e.g., ETV) and air pollution exposures may separately

influence childhood asthma etiology or exacerbation.

2. Perceived ETV (as a chronic stressor) may, through “allostatic load” pathways,

alter individual susceptibility to air pollution exposures in the progression of

asthma.

Notably, many more conceptual models are possible, considering the myriad of

exposures that impact upon childhood asthma. Here, we restrict our analysis to the

one key exposure (air pollution) and one key hypothesized psychosocial effect

modifier (ETV). A typical conceptual model likely would be more complex, with

explicit consideration of multiple causal pathways and both proximal and distal risk

factors for health.

Here, a community-level indicator (e.g., crime rates) serves to proxy (albeit

imperfectly) for individual-level perceived ETV. For analyses in which both

community-level and individual-level data are available, it would be preferable to

use the individual data as the primary exposure metric and to explore the

community-level indicator as a predictor of the individual-level variable or as a

contextual variable interacting (in a hierarchical model) with the individual-level

variable. It is recommended that each conceptual model be as clear and simple as

can reasonably capture the key exposure(s) and pathway(s) of primary interest.

It may be determined that solely of interest are community-level stressors, which

may act primarily through psychosocial pathways and are captured reasonably

through aggregate data. If so, the construct of interest (e.g., ETV) is first defined,

then existing data are catalogued that may reasonably indicate the construct (e.g.,

felony crimes, murders, robberies, at police precinct level). For community-scale

metrics and environmental exposures (e.g., air pollution), it can be valuable to

apply spatial methods in Geographic Information Systems (GIS) to evaluate rela-

tive spatial distributions within and among exposures. Here, it would be valuable to

understand:

1. Spatial (neighborhood-to-neighborhood) variability in crime rates—this extent

of spatial “clustering” (or spatial autocorrelation) within a stressor can be
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formally tested using GIS-based methods such as geographically weighted

regression (GWR) or local indicators of spatial association (LISA). This analysis
indicates how each exposure, separately, varies across the region of interest. In

an ongoing investigation of social stressor patterning across New York City,

significant spatial variation was found within all stressors examined, across

multiple domains (e.g., economic stressors, crime and violence exposures,

resource access, school-based stressors, etc.) (Shmool et al. 2014).

2. Spatial correlations between and among psychosocial stressors and pollutant

exposures (e.g., correlation between ETV and air pollution) may be examined by

comparing spatial distributions, and quantified using spatial autoregressive

modeling (SAR). This analysis indicates the potential for confounding and/or

effect modification between exposures. In New York City, social stressors were

found to vary substantially in their spatial patterning, and not all stressors were

correlated with poverty or pollution exposures (Shmool et al. 2014).

Developing the conceptual framework would normally involve initial screening-

level quantification of health risks to determine whether the stressors are significant

enough to merit inclusion. In this case, the relative risks of air pollution and ETV,

from the epidemiological literature, are high enough, and the exposures sufficiently

ubiquitous, to substantiate their inclusion. While the focus here is on epidemiolog-

ical evidence, toxicological insights enhance the plausibility of the observed inter-

action (Virgolini et al. 2005, 2006; Cory-Slectha et al. 2004, 2010).

It is generally preferable to determine relative risks that consider both stressors

simultaneously (whether as main effects or effect modifiers). Conceptually, the

underlying epidemiological models would primarily be of two broad structures:

1. Direct effect of psychosocial stressor on the outcome:

Asthma outcomes ¼ best metric sð Þ of ETV½ � þ confounders

2. Direct effect of a physical/chemical exposure on the outcome:

Asthma outcomes ¼ best metric sð Þ of air pollution½ � þ confounders

In each case, the confounders could include the other exposure, though effect

modification likely would not be considered at this stage. Importantly, the best

available metrics of each exposure may differ significantly in sensitivity and

specificity (if, for example, the best available metric of ETV is a community-

level index, and the best available metric of air pollution is a modeled residence-

specific estimate). Thus, differential exposure misclassification needs be consid-

ered, both when comparing separate models that examine two different exposures

on a common health endpoint, and when merging both exposure metrics into the

same epidemiological model.

At this stage, the underlying epidemiological study often would use GIS

methods to visualize and assess spatial relationships among exposures (stressors)
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of interest. These associations can be examined by comparing spatial maps of each

stressor with that of the outcome variable (e.g., asthma hospitalizations) and

quantified using SAR, to quantify these separate (unadjusted) associations. This

step assumes that each stressor/exposure of interest carried forward should have a

significant independent association with the outcome of interest, regardless of

co-exposures or effect modifiers. In some cases, however, this may not be true; in

one longitudinal study of childhood asthma etiology (Clougherty et al. 2007),

significant associations between traffic-related NO2 and asthma etiology were

observed solely among children with above-median ETV. In cases of strong effect

modification, the effect of the physical exposure of interest (air pollution) may be

diluted to non-significance, if the sample has a high enough prevalence of

low-susceptibility individuals. This concern may be alleviated through sensitivity

testing wherein potential modifiers and exposures are considered iteratively prior to

final exclusion. The heuristic epidemiologic model for such analyses would be:

Asthma ¼ best metric sð Þ of ETV½ � þ best metric sð Þ of air pollution½ �
þ confounders

Statistical tools, such as multiple and logistic regression and process models, can

be used to explore the contributions of various stressors to the health endpoint of

interest.

At this stage, GIS-based spatial approaches can be used to visualize and examine

the overlay of stressors with the observed health effects. As above, maps of each

exposure and outcome can be compared and formally tested using SAR or similar

models, to assess the extent of spatial autocorrelation. A refinement that may be

useful at this stage is examining the combined (joint) spatial distributions in ETV

and air pollution (or the spatial distribution in a composite index that combines

these exposures) against the spatial distribution in the health outcome of interest

(e.g., maps of asthma hospitalizations). Unaccounted-for nonlinear or other com-

plex joint distributions (such as that observed in Shmool et al. 2015) can lead to

mis-specification or misinterpretation of epidemiological results, particularly when

incorporating multiple exposures or interactions into the model.

Finally, an epidemiologic model would explore the possibility of interactions.

Knowledge reflected in conceptual models should provide a grounding (and some

limits on) the interactions considered. Clear mechanistic hypotheses indicating

which stressor is hypothesized to modify each exposure are needed for useful,

interpretable epidemiological analyses and related cumulative risk assessment

output. Conceivably, this could lead to some stressors being considered only as

effect modifiers, because no plausible mechanism exists for a main effect absent

another stressor of interest. The incorporation of too many interactions, or interac-

tions not supported by a plausible mechanistic pathway, however, can complicate

the analysis, reduce statistical power, and lead to uninterpretable results (especially

as the number of stressors under consideration increases). Of note, the interaction

between the chemical and psychosocial stressor may not be a simple linear associ-

ation, and statistical techniques that allow for multidimensional smoothed functions
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of health response associated with multiple stressors may be informative. The

heuristic epidemiological model that would support this interaction analysis is:

Asthma ¼ best metric sð Þ of ETV½ � þ best metric sð Þ of air pollution½ �
þ best metric sð Þ of ETV½ � � best metric sð Þ of air pollution½ �
þconfounders

Epidemiological models being developed for cumulative risk assessment appli-

cations could also be designed to be responsive to the ultimate risk management

decisions. For example, if the risk management strategies in question focused on air

pollution exposures, it may be most salient to explicitly consider the influence of

ETV as an effect modifier. Understanding the main effect of ETV would be less

relevant, although it does contribute to an understanding of background rates of

disease and characteristics of high-risk subpopulations. Although this is not an

appreciable reduction in effort for a two-stressor analysis, an analysis of numerous

stressors would benefit greatly from the analytical boundaries created through an

appropriately focused set of risk management options.

Uncertainty analysis is emphasized as a key component of any cumulative risk

assessment. For the epidemiology that may underlie a cumulative risk assessment,

this goes beyond reported confidence intervals to include sensitivity analyses for

the parameters included in the final models. It is strongly recommended that any

cumulative risk assessment extract information on the sensitivity of epidemiolog-

ical findings to some key assumptions. Similarly, researchers conducting epidemi-

ological studies aiming to inform cumulative risk assessment should explicitly

report uncertainties.

Because some important modifiers and predictors may be lost by omitting vari-

ables prior to testing interactions (i.e., researchers and risk assessors may miss

effects that only become apparent through effect modification), some sensitivity
testing on covariate selection is needed. This can be done by:

• Swapping order of terms/interactions tested in models

• Identifying key hypothesized predictors and modifiers carried throughout the

analysis, regardless of significance

• Using automated variable selection procedures using both predictors and mod-

ifiers (e.g., regression trees)

• Using automated variable selection procedures that do not assume linearity or

specific interaction structures (e.g., random forest), to identify underutilized

stressor(s) for which data are available, but the relationships of such exposures

with the outcome of interest have not been recognized fully in the main model

Finally, there remains significant utility in establishing that available exposure

metrics accurately capture variability in the stressor(s) of interest. An effective way

to do so, for aggregate-level indices (e.g., community violence rates), is to imple-

ment surveys (questionnaires) on individual’s perceived stress (1) to systematically

determine whether community-level indices accurately capture community-to-

community variation in mean individual-level violence exposures and (2) to select
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those aggregate-level metrics that best reflect individual variation in stressor

exposures.

In summary, this case example illustrates that a psychosocial stressor such as

exposure to violence can be incorporated reasonably into cumulative risk assess-

ments including air pollution, as there is a biologically plausible linkage with a

common adverse outcome (supported by some findings from both toxicology and

epidemiology), an approach for exposure characterization that involves reasonable

proxies from public databases, and empirical evidence supporting main effects and

effect modification for both key stressors. Other non-chemical stressors can be

evaluated and included through analogous approaches.

17.5 Conclusions

Data on psychosocial stressors indicate important effects on health that can interact

with chemical environmental exposures. For psychosocial stressors, challenges

arise with exposure assessment, dose-response modeling, and risk characterization

in the context of risk management. In general, the exposure assessment phase of

cumulative risk assessment requires increased attention, given both the need to

characterize effects of simultaneous exposure to multiple chemical stressors and the

need to develop meaningful proxies of exposure to psychosocial and other

non-chemical stressors that are challenging to characterize directly. Development

of a strong conceptual model including proximal and distal effects on health will

help in determining the appropriate constructs for the analysis. This step is key, as

many psychosocial stressors can influence health through multiple pathways, and

many proxies for psychosocial stressor exposures can represent multiple stressors.

Dose-response modeling using epidemiological data can benefit from systematic

modeling approaches tied to well-developed conceptual models and using tech-

niques such as structural equation modeling to identify associations with proximal

and distal factors. Toxicological evidence may be more limited for psychosocial

stressors, but even where evidence is insufficient to incorporate a psychosocial

stressor into a mixtures analysis, consideration of psychosocial stressors can con-

tribute toward selecting a conceptual dose-response model and may be incorporated

into PBPK models or other analyses related to delivered doses or pharmacodynamic

outcomes. The case example illustrates that it is viable to incorporate selected

psychosocial stressors into cumulative risk assessment, following a systematic

logic for well-structured exposure characterization and epidemiological modeling.
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Chapter 18
Community-Based Cumulative Impact
Assessment: California’s Approach
to Integrating Nonchemical Stressors into
Environmental Assessment Practices

Shannon R. Murphy, Shankar B. Prasad, John B. Faust,
and George V. Alexeeff

Abstract Risk assessment is complex and challenges assessors to expand its utility
and bridge data gaps to better account for human health risk. Mixtures complicate
the assessment landscape because cumulative chemical exposures occur at the nexus
of nonchemical stressors that can influence adverse health outcomes. Traditional risk
assessment approaches typically use comprehensive data sources and quantitative
methods but have a limited capacity to account for or include nonchemical stressors.
In contrast, community-based cumulative impact assessments utilize different types
of data and apply both quantitative and semiquantitative methods. Recently, multiple
approaches for cumulative impact assessment have been developed. One such
example is the California Communities Environmental Health Screening Tool:
CalEnviroScreen. CalEnviroScreen has been successful in evaluating the cumulative
pollution burden at a census tract scale across the state, based on 12 pollution
indicators. It also characterizes population vulnerabilities at the same scale, based
on intrinsic and extrinsic factors (three health and four socioeconomic status indi-
cators). The two indices are combined in a way that allows one to screen and identify
communities across California at above or below various thresholds in the scale.
CalEnviroScreen allows one to understand the similarities and differences between
the most disadvantaged communities having similar scores. CalEnviroScreen has
been instrumental in (a) identifying the disadvantaged communities across Califor-
nia that receive prioritized funding from Greenhouse Gas Reduction Funds derived
from the cap-and-trade program, (b) prioritizing areas for targeted multimedia
enforcement action, and (c) assisting California Environmental Protection Agency
boards and departments with planning community engagement and outreach efforts.
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18.1 Introduction

California was the first state to define environmental justice in law as “the fair
treatment of people of all races, cultures, and incomes with respect to the develop-
ment, adoption, implementation and enforcement of environmental laws, regulations
and policies” (Cal Gov Code §65040.12(e) 1999). This definition, coupled with the
California Environmental Protection Agency’s (CalEPA) leadership and commit-
ment to promote environmental justice, led the Agency to recognize that under-
standing cumulative impacts (CI) in a specific area or within a community would be
a critical first step. In 2005, CalEPA integrated the “working definition” from the
CalEPA Interagency Working Group Report (CalEPA 2003), along with input from
multiple stakeholders, and adopted a common working definition of CI as meaning
“exposures, public health or environmental impacts from the combined emissions
and discharges, in a geographic area, including environmental pollution from all
sources, whether single or multi-media, routinely, accidentally, or otherwise
released. Impacts will take into account sensitive populations and socio-economic
factors, where applicable and to the extent data are available” (CDPR 2005; OEHHA
2010). Stakeholders included representatives from local and federal government,
academia, environmental justice and community-based organizations, industry, and
the general public.

Environmental Justice
Under California law “means the fair treatment of people of all races, cultures,
and incomes with respect to the development, adoption, implementation, and
enforcement of environmental laws and policies.”

California Government Code §65040.12(e)

CalEPA’s Office of Environmental Health Hazard Assessment (OEHHA) was
designated as the lead in developing guidance on incorporating CI into the decision-
making process. The CI analysis evaluates the intersections of multiple chemicals,
multiple sources, public health, and environmental effects with characteristics of the
local population that could influence an adverse health outcome. In 2010, OEHHA
finalized a framework documenting the scientific evidence for disproportionate CI as
a first step (OEHHA 2010). This framework described factors that make up a
comprehensive measure of impacts in a community and a scientific methodology
that can be pursued to evaluate CI in a given community. As early as in 2004, U.S.
EPA’s National Environmental Justice Advisory Council (NEJAC) had
recommended a similar conceptual framework known as the “Pollution Burden
Matrix” for “developing a screening tool, which would rely primarily on analyses
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of existing or readily available sources of data, to identify the most burdened census
tracts within a specified region” (U.S. EPA 2003; NEJAC 2004). NEJAC’s Pollution
Burden Matrix served as a guiding construct during OEHHA’s cumulative impact
framework development.

Cumulative Impacts
Exposures, public health or environmental effects from the combined emis-
sions and discharges, in a geographic area, including environmental pollution
from all sources, whether single or multimedia, routinely, accidentally, or
otherwise released. Impacts will take into account sensitive populations and
socioeconomic factors, where applicable and to the extent data are available.

California Environmental Protection Agency

While efforts were in progress by various institutions to evaluate and develop
different approaches or methods to estimate CI in a community, the landmark
California Legislation Assembly Bill 32 (AB 32) – Global Warming Solutions Act
of 2006 (Nunez, Chapter 488, Statutes of 2006) – was passed. The bill language
included the term “disadvantaged communities,” referred to as “communities with
minority populations or low-income populations, or both,” and also contained a
directive to “consider the potential for direct, indirect, and cumulative emission
impacts from these mechanisms, including localized impacts in communities that
are already adversely impacted by air pollution” (Nunez 2006).

Although disadvantaged community was not defined in AB 32, subsequent
legislation Senate Bill 535 (SB 535) – Global Warming Solutions Act of 2006:
Greenhouse Gas Reduction Fund (De Leon, Chapter 830, Statutes of 2012) –

provided both a clear direction and proposed factors for consideration in identifying
disadvantaged communities such as those “based on geographic, socioeconomic,
public health, and environmental hazard criteria, and may include, but are not limited
to, either of the following:

(a) Areas disproportionately affected by environmental pollution and other hazards
that can lead to negative public health effects, exposure, or environmental
degradation.

(b) Areas with concentrations of people that are of low income, high unemployment,
low levels of homeownership, high rent burden, sensitive populations, or low
levels of educational attainment.” (De Leon 2012)

Thus, in California, in addition to traditional risk assessment, a community or
place-based CI assessment has been developed. This approach augments the tradi-
tional concept of “risk” with the inclusion of a broader concept, “impact.” Risk
indicates a largely quantifiable approach to assessment, whereas impact implies a
broader scope of both quantitative and semiquantitative information, including
nonchemical stressors (Alexeeff et al. 2012).
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This chapter focuses on place- or community-based cumulative impact assess-
ment in the context of integrating pollution burdens and health vulnerabilities with
psychosocial nonchemical stressors. For the purposes of this chapter, any discussion
of cumulative impacts aligns with CalEPA’s definition. The scope of discussion
topics includes departures from traditional risk assessment, differences between risk
and impact and their assessment methodologies, environmental health and/or justice-
focused screening tools, community expectations for assessors, and future direc-
tions. The central focus of this chapter is to understand how the concept of
community-based cumulative impacts has been successfully integrated in
CalEnviroScreen. CalEnviroScreen is used to effectively characterize and combine
measures of impact that are of greatest concern and contribute to cumulative impacts
in communities across the state. This approach has enabled CalEPA to target
multimedia enforcement action, prioritize areas for investment in emission reduction
programs, and assist CalEPA and local entities with planning community engage-
ment and outreach efforts.

18.1.1 Traditional Risk Assessment

Traditional risk assessment (TRA) is a predominantly quantitative approach that
evaluates a source and/or chemical(s) on the primary steps of hazard identification,
dose-response assessment, exposure assessment, and risk characterization (NAS
1983; Faustman and Omenn 2008). This approach is widely applied and has been
instrumental in identifying and reducing both human and environmental health risks
by (1) evaluating sources or chemicals to estimate cancer and non-cancer risk levels,
(2) controlling media-specific exposures (e.g., chemicals in drinking water), and
(3) creating decision-making processes that establish risk thresholds to minimize the
amount of emissions or discharges of chemicals from a specific source (U.S. EPA
1991, 1992, 1996, 2005a, b). However, the TRA approach has a limited ability to
account for sensitivities of subpopulations beyond those based on physiologic
characteristics, such as children and the elderly (Miller et al. 2002; Alexeeff and
Marty 2008). Additionally, TRA requires specific knowledge of exposures, includ-
ing chemical characterization, dose levels, and routes of exposure. An understanding
of these parameters is essential to establishing health guidance values or benchmarks
of harm for individual chemicals (Salmon 2010).

18.1.2 Community-Based Cumulative Impact Assessment

Community characteristics, including area-specific information (e.g., water quality,
pesticide use), proximity to multiple nearby pollution sources, and socioeconomic or
health vulnerability, cannot be readily incorporated into the traditional paradigm.
Risk assessments conducted for regulatory purposes at individual facilities or sites
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may include some area-specific considerations, including community notifications
for site cleanups or facility permitting, but these factors are incorporated in a very
limited context. TRA is a quantitative methodology that relies heavily on scientific
data, including well-characterized exposure levels and dose-response relationships
for environmental contaminants (NAS 1983). Even with robust data, these tradi-
tional approaches are useful in estimating the risk to individuals but are not well-
suited to provide an estimate of cumulative impacts confronting a community in a
specific location (ATEB 2008, 2009).

With the increasing concern for exposures to multiple pollutants from multiple
sources, assessors are often tasked with evaluating highly complex scenarios with
significant data gaps. An example of such an exposure scenario would be a mixture
of chemicals emitted from a single site (e.g., oil refinery), combined with emissions
from local factories and road traffic. Data gaps include poor characterization of the
environmental contaminants, and little understanding of how these multiple contam-
inants interact with humans and the environment in a specific area, or the relative
contributions of existing and emerging sources (ATEB 2008, 2009; Lee et al. 2011).
Consideration of these factors, combined with vulnerability factors in the local
community, such as source proximity to schools, hospitals, or elder care facilities,
set the foundation for developing methodologies to perform assessments at the
community level (Dunn and Alexeeff 2010).

Thus, the community-based concept establishes a framework for designing tools
that allow assessors and decision-makers to identify communities that are disadvan-
taged with regard to environmental and personal health. Such communities include
those areas and populations disproportionately burdened by pollution, as influenced
by both intrinsic biological (e.g., age, genetic characteristics, preexisting health
conditions, sex) and extrinsic socioeconomic factors (e.g., socioeconomic status,
education, race/ethnicity, access to health care, housing) (Gee and Payne-Sturges
2004). Considering these nonchemical stressors in the context of environmental
justice is a critical first step that enables regulatory agencies to evaluate and address
community-based concerns and meet expectations to consider cumulative impacts in
decision-making (Alexeeff et al. 2012). Additionally, engaging community mem-
bers, including local decision-makers, to participate in and understand key elements
of the assessment process may be essential to positive public health outcomes
(Hallgren et al. 2014). Community outreach and education can facilitate communi-
cation, risk reduction strategy development, and chemical source identification
(Dunn and Alexeeff 2010; McCloskey et al. 2011; Abara et al. 2014).

18.1.3 It’s Impact, Not Risk

Often, the terms risk and impact are used synonymously, suggesting that they
describe the same outcome. The term risk means a chance of injury or loss.
Historically, in the two hemispheres of human and environmental health, risk entails
a quantifiable approach to assessment that includes a wide spectrum of assumptions,
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modeling, uncertainties, and extrapolation to fill data gaps (NAS 1983). Such
assessments are useful in estimating the risk to a population, based on theoretical
exposure paradigms estimated for a “central tendency exposure” for a “maximally
exposed individual,” and are only feasible with contaminants or chemicals that are
well-characterized with respect to exposure levels and their dose-response relation-
ships (U.S. EPA 1989). However, the data required to adequately characterize the
large number of sources of environmental contaminants in a community cannot be
easily generated and may not be practical in the foreseeable future (Faust 2010).
These limitations have hindered agencies at the local, regional, and state levels when
initiating actions to achieve environmental justice since cumulative risk cannot be
ascertained in a given community or a specific area. Hence, multiple institutions are
pursuing alternate approaches to evaluate CI (OEHHA 2010). Impact is interpreted
to mean potential effects or influences of stressors or sources that do not necessarily
result in an identifiable level of injury or loss, but are known to have an influence.

Risk Versus Impact
Risk indicates a largely quantifiable approach to assessment of injury or loss,
whereas impact implies a broader scope of both quantitative and semiquanti-
tative factors that enhances the risk.

18.1.4 Cumulative Impact Assessment Tools

Community-based cumulative impact assessment approaches use scientifically jus-
tifiable, quantitative, and semiquantitative methods that permit comparisons between
communities or census tracts. Current methods, including CalEnviroScreen, facili-
tate the relative ranking of communities with scoring systems that also allow
comparisons between communities with the same score to understand the relative
contributions of individual indicators representing factors that influence the cumu-
lative impact in a community. This ability to prioritize or rank communities based on
cumulative impact indicators enables assessors to more effectively represent the
complex relationships between health outcomes, psychosocial stressors, and envi-
ronmental exposures (Alexeeff et al. 2012).

18.1.4.1 CalEnviroScreen

The California Communities Environmental Health Screening Tool, abbreviated
CalEnviroScreen, was developed by the California Environmental Protection
Agency’s (CalEPA) Office of Environmental Health Hazard Assessment
(OEHHA) as a science-based tool for evaluating the cumulative impacts of multiple
pollutants and stressors in communities (Alexeeff and Mataka 2014). The working
tool reflects stakeholder input and the collaborative efforts of OEHHA and the
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Cumulative Impacts and Precautionary Approaches Work Group, a collective of
representatives from the private, academic, nongovernmental, and government sec-
tors (CalEPA 2005; OEHHA 2014a).

In support of CalEPA’s environmental justice mission, CalEnviroScreen assists
the Agency and its departments by identifying those communities disproportionately
burdened by cumulative impacts. Identifying these vulnerable communities helps
the Agency and its departments to support the fair treatment of all Californians.
CalEnviroScreen analyses:

• Aid decision-makers in making determinations about administering environmen-
tal justice grants.

• Inform targeted environmental law compliance and enforcement initiatives.
• Provide insight on potential implications of department activities and decisions.
• Help decision-makers prioritize site-cleanup activities and identify opportunities

for sustainable economic development in heavily impacted neighborhoods
(OEHHA 2014a).

Beyond its valuable uses in CalEPA, CalEnviroScreen potentially could be
adapted by local and regional governments to include more precise data sets, for
example, those from air and water districts or transit agencies, to facilitate commu-
nity planning, engagement, and outreach efforts. CalEnviroScreen interactive maps
are available on OEHHA’s website. Results can be filtered by location, individual
indicator, or class of indicators (i.e., pollution burden or population characteristics).

CalEPA describes CalEnviroScreen as a model that “is place-based and provides
information for the entire State of California on a geographic basis.” The geographic
scale selected is intended to be useful for a wide range of decisions” (OEHHA
2014a). The model is comprised of two key components and four subcategories as
follows: pollution burden (exposures and environmental effects) and population
characteristics (sensitive populations and socioeconomic factors) (see Fig. 18.1). A
suite of statewide indicators that describe pollution burden and population charac-
teristics are assigned to each subcategory. CalEnviroScreen is a fairly simple model
with a limited set of indicators. Each indicator in a given area is assigned a score that
is weighted according to a scoring system. The sum of pollution indicator scores
(maximum value of 10) is multiplied by the sum of population characteristic

Pollution Burden

Exposures

Environmental 
Effects

Population
Characteristics

Sensitive 
Populations

Socioeconomic 
Factors

Fig. 18.1 CalEPA
CalEnviroScreen tool
components (OEHHA
2014a)
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indicator scores (maximum value of 10) to produce a final CalEnviroScreen score
with a maximum of 100. This score permits ranking of all places evaluated through-
out the state relative to each other, a concept that will be discussed in more detail
later in the chapter (OEHHA 2014a).

18.1.4.2 Additional Environmental Health Screening Methods

Considering cumulative impacts at the local or regional level is a practice that is
gaining popularity among many decision-makers because most planning and per-
mitting decisions take place on a local scale (Johnson Thornton et al. 2013; Corburn
2015). CI assessment leads to more informed decision-making by adding another
layer of information to traditional risk assessment. Decision-makers at the statewide,
regional, and community levels can utilize environmental health screening methods
to guide their decision process and weigh potential impacts within a specific area or
community. In the following section, we briefly describe additional approaches used
to assess community-based cumulative impacts.

Environmental Justice Screening Method (EJSM) The University of Southern Cal-
ifornia Program on Environmental and Regional Equity (PERE) received a research
contract from the California Air Resources Board, to develop an Environmental
Justice Screening Method (EJSM) (Sadd et al. 2011). The EJSM is described as a
screening approach and not as a tool because of its flexibility to include or exclude
indicators or metrics, such as climate vulnerability or drinking water quality, in a
given scenario (Pastor et al. 2013). EJSM incorporates data from approximately
30 metrics to generate geographic information system (GIS)-based maps of com-
munities at the census tract scale, similar to CalEnviroScreen (Sadd et al. 2014).

The mapping approach utilizes spatial polygons that denote land use within a
neighborhood such as residences, schools, health-care facilities, and playgrounds.
The metrics are categorized and scored on a scale of 1 to 5 in consideration of
(1) proximity to hazards, such as chrome platers and industrial emission sites; (2) air
quality and estimated health risk measures, such as relative cancer risk or ambient
concentration rates of ozone and particulate matter; and (3) social vulnerability
measures such as poverty, race, age, home ownership rate, and birth outcomes
within a community (English 2013; Sadd et al. 2011). EJSM scoring differs from
CalEnviroScreen because it does not have a multiplier in the model and all indicators
are weighed equally. GIS maps for the eight EJSM California regions with versions
for both cumulative impact scores and select component layers are publicly available
on PERE’s website.

Cumulative Environment Vulnerabilities Assessment (CEVA) The University of
California Davis Center for Regional Change (CRC) developed CEVA as a screening
tool with the primary aim of providing a suitable framework for evaluating place-
based cumulative environmental hazards that can effectively support decision-makers
and environmental justice advocates in developing policy and allocating resources that
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assist environmentally vulnerable communities (Huang and London 2012). Similar to
the EJSM, CEVA distributes pollution and population metrics into three indices or
categories labeled as (1) environmental hazards that include toxic release inventory
sites and refineries; (2) social vulnerability that includes locations of health-care
facilities, race, and education level; and (3) health effects that include low birth weight
and asthma hospitalization rates (Huang and London 2012). Each index generates a
score with the higher scores indicating those communities within a census block group
that are most vulnerable to adverse environmental or hazard effects. CEVA, as with
the earlier versions of CalEnviroScreen, utilizes data at the ZIP code scale for some
measures. Interactive Regional Opportunity Index maps are available on CRC’s
website to assist decision-makers in identifying regions with disproportionately dis-
advantaged communities.

Similar to CalEnviroScreen and EJSM, CEVA generates a spatial analysis that
illustrates place-based findings that allow communities to be ranked relative to one
another. CEVA’s goal was to account for “both the highest concentrations of
cumulative environmental hazards and the fewest social, economic and political
resources to prevent, mitigate, or adapt to the conditions” (Huang and London 2012).
CEVA was initially developed with a focus on Central California and Eastern
Coachella Valley communities selected for their diversity in agriculture, socioeco-
nomic status, education, language, political influence, and hazard sources (London
et al. 2011, 2013).

EJSCREEN The U.S. Environmental Protection Agency created the EJSCREEN
tool to assist EPA staff and managers in considering environmental justice issues.
EJSCREEN uses nationwide data sets and methods to “screen for areas that may be
candidates for additional consideration, analysis, or outreach as the agency develops
programs, policies and activities that may affect communities” (U.S. EPA 2014).
Similarly, EJSCREEN uses information at the census block group or user-defined
area level and considers both demographic and environmental indicators.
EJSCREEN generates an EJ index or summary of demographic information com-
bined with a single environmental indicator (e.g., air toxics respiratory hazard).
These indices generate maps, charts, and reports using a web interface. EJSCREEN
contains many different environmental indicators, but only one environmental
indicator is evaluated at a time in a given scenario, limiting its capacity for evaluating
cumulative impacts from multiple environmental indicators. EJSCREEN is publi-
cally available, and its interactive tool can be accessed at www.epa.gov/ejscreen.

U.S. EPA continues to provide guidance for national, state, and local agencies for
considering and implementing environmental justice actions in planning and
decision-making. Entities such as the Federal Interagency Working Group on
Environmental Justice National Environmental Policy Act (NEPA) Committee,
whose members represent federal agencies subject to NEPA, aspire to design and
optimize best practices for addressing environmental justice issues (U.S. EPA 2013).
In addition to California, New Jersey and other states are building on U.S. EPA’s
example to form commissions and develop tools to facilitate the consideration and
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implementation of environmental justice conscious policies, such as the New Jersey
Smart Growth and Environmental Justice State Planning Commission and the
interactive NJ-GeoWeb environmental information tool (New Jersey 2014, 2016).

18.1.4.3 Limitations of Screening Tools

Overall, environmental health screening approaches demonstrate how the data from
multiple sources can be combined and characterized to make comparisons between
different geographic areas and provide helpful insights into identifying “disadvan-
taged communities.” Evaluating information at the census tract scale, both in the
context of cumulative and individual metrics, allows decision-makers to consider
area- or community-specific actions that would reduce the pollution burden or
decrease the vulnerability in a community. Inherent limitations to these approaches
vary with the degree of accuracy, precision, and uncertainty associated with the data
for each of the indicators. As tools improve and more robust data sets become
available, it may be possible to reduce uncertainty by applying additional statistical
analyses. This concept is similarly applied to traditional risk assessment whereby
more sophisticated tools, such as benchmark dose modeling of dose-response that
facilitates understanding of response levels at low doses, continue to improve and
overcome current analytical limitations (U.S. EPA 2012). Other approaches to
characterizing these limitations should also be explored. One current limitation is
that some areas in a state or a county may have more and better quality data than
others, requiring approximation or modeling to fill the data gaps. An example of this
would be drinking water quality monitoring data. Densely populated areas tend to
have more sophisticated drinking water systems with enhanced monitoring and quality
control measures to detect contamination.More rudimentary systems or individual well
sites often serve less populated areas and have very limited capabilities for monitoring
drinking water contamination. Several California governmental agencies maintain data-
bases that provide and inform decision-making tools like CalEnviroScreen.

In spite of these constraints, evidence suggests that impact assessment tools are
highly beneficial in distinguishing higher-impacted from lower-impacted communi-
ties, in identifying factors that are the primary contributors to the community’s
cumulative impact, and in assisting regulatory agencies in allocation of resources
and more effective prioritization of area-specific mitigation efforts. Evaluation of the
accuracy of these tools and the value of the results is ongoing. One example of this is
with EJSM and the Los Angeles Collaborative for Environmental Health and Justice
(LACEHJ 2010). This cooperative of community organizations and academic
researchers serves as a “frontline” team that assesses the merits and limitations of
applying the Environmental Justice Screening Method in communities throughout
the Greater Los Angeles Area (Sadd et al. 2011, 2014). CalEPA and OEHHA
continue to hone and evaluate CalEnviroScreen, soliciting stakeholder input
throughout the process. In this chapter, the focus is on CalEnviroScreen as a
model screening tool because it encompasses a robust number of indicators, includes
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communities across the state, and is currently used by decision-makers within the
California government.

18.2 CalEnviroScreen: California Communities
Environmental Health Screening Tool

18.2.1 Design Factors and Considerations: Modeling
Environmental Justice Concepts

CalEnviroScreen is a tool that combines multiple sets of data on pollutants and
stressors in a geographic area to screen for places with the highest cumulative
burdens. The tool creates one combined measure, the CalEnviroScreen score, for
visualizing geographies in California that are most burdened. This combined index,
as well as the underlying data sets, is made publicly available through OEHHA’s
website. Users of the tool can view the information as both static and interactive web
maps and can download the results in various formats. The tool is not updated
continuously but rather represents a snapshot of the data at the time of the release.
Each version of CalEnviroScreen is the product of extensive public input and reflects
the concerns of many stakeholders in California, including community-based orga-
nizations and the general public. Users, however, cannot add data to
CalEnviroScreen after a version is released, but can submit feedback on additional
data sets or gaps that may be addressed in the next revision. OEHHA updates
CalEnviroScreen as additional relevant, statewide data sets emerge.

The early CalEnviroScreen versions (1.0 and 1.1) utilized data organized by ZIP
code and included fewer indicators. The 2.0 version analysis1, released in October
2014, contains additional indicators and now analyzes community data at the census
tract scale because census tract data (approximately 8000 tracts in California) pro-
vides a finer scale of resolution for many California regions (U.S. Census Bureau
2010). Tracts are comprised of multiple block groups that contain several blocks
each, with a block being the smallest geographic unit for which population data are
available. In California, not all census blocks are populated. Independent of the
version, CalEnviroScreen (OEHHA 2014a):

• “Produces a relative, rather than absolute, measure of impact.
• Provides a baseline assessment and methodology that can be expanded upon and

updated periodically as important additional information becomes available.

1A subsequent version of CalEnviroscreen (3.0) with additional indicators and some modifications
has been released since this chapter was authored. CalEnviroScreen 3.0 can be accessed at https://
oehha.ca.gov/calenviroscreen/report/calenviroscreen-30.
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• Demonstrates a practical and scientific methodology for evaluating multiple
pollution sources and stressors that takes into account a community’s vulnerabil-
ity to pollution.”

The next section expands on the CalEnviroScreen methodology, including indi-
cator selection, indicator scoring, and the relative ranking scheme. These indicators
model stressors or factors that contribute to the pollution burden or vulnerability
within a community. Indicator selection and the data that accompany these indica-
tors determine the total CalEnviroScreen score. The final CalEnviroScreen scores
provide the basis for the ranking scheme that ultimately models the community-
based cumulative impact.

18.2.2 Indicator Selection: Translating Environmental
Justice Concepts into Operation

18.2.2.1 Indicator and Component Scoring

CalEnviroScreen indicators are selected based on two general considerations,
(1) “information that will best represent statewide pollution burden and population
characteristics” and (2) “the availability and quality of such information at the
necessary geographic scale statewide” (OEHHA 2014a). These indicators are prox-
ies for the characteristics they model. CalEnviroScreen models California commu-
nities at the census tract scale, so indicator data should be available statewide and
translate to census tracts. This approach poses considerable challenges for assessors
to evaluate those regions with significant data gaps for a potential indicator of
interest. Hence, it is important to select data sets that are as accurate, complete,
and current as possible at the state level.

The following is an overview of the indicator selection and scoring process
(OEHHA 2014a):

1. “Identify potential indicators for each component.
2. Find sources of data to support indicator development.
3. Select and develop indicator, assigning a value for each geographic unit.
4. Assign a percentile for each indicator for each geographic unit, based on the rank-

order of the value.
5. Generate maps to visualize data.
6. Derive scores for pollution burden and population characteristics components.
7. Derive the overall CalEnviroScreen score by combining the component scores.
8. Generate maps to visualize overall results.”

CalEnviroScreen is applied to the entire state, but it is worth emphasizing that
modeled data sets provide a “broad environmental snapshot of a given region”
(OEHHA 2014a). A specific indicator, such as toxic cleanup sites, may be a robust
marker of pollution burden, but any given region may not have any toxic cleanup
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sites. In such cases, this indicator is scored as zero. Alternatively, when there are not
enough data to conclusively identify the presence or absence of an indicator in a
specific area, such as the lack of an air monitoring station within a certain distance, it
is removed from the calculation, and no score is assigned for that indicator. Next,
census tract indicator raw values above zero are ordered from highest to lowest
values. These ordered values are used to calculate a percentile for all areas that have
a score.

Generally speaking, the percentile indicator for a select geographic area describes
the percentage of California with lower values for that indicator. For example, a 75th
percentile for that indicator or suite of indicators means a select geographic area is
higher or more impacted compared to 75% of all other geographic areas in Califor-
nia. The magnitude of difference between two or more areas cannot be calculated
from the difference in percentiles because of the shape of the distribution of the data.
For example, the difference between the 75th and 50th percentile may not be the
same as the difference between the 50th and the 25th percentile.

Pollution Burden Indicators Gathering information about direct environmental
exposures poses a significant challenge as such data sets are limited and not readily
available on a statewide level. Evaluating how individuals or populations come in
contact with chemicals from air, water, food, or soil sources can be indirectly
modeled by considering data sets relating to pollution sources, releases, and envi-
ronmental concentrations. CalEnviroScreen takes this approach and includes seven
exposure indicators: ozone concentrations in air, PM2.5 concentrations in air (par-
ticulate matter or particles with a diameter measuring less than 2.5 microns), diesel
particulate matter emissions, certain high-hazard/high-volatility pesticide use, toxic
releases from facilities, traffic density, and drinking water contaminants (see
Table 18.1).

When evaluating environmental effects, it is important to consider several con-
cepts. Effects reflect a process, whether immediate or delayed, and can include
environmental degradation, ecological system changes, and human lifestyle or
activity changes for individuals or populations (Fan et al. 2010; Howd 2010).
Communities and the environment can experience a myriad of effects when phys-
ical, biological, and chemical pollutants are released into the environment (Alexeeff
et al. 2012). These effects vary by the nature, degree, and prevalence of environ-
mental harm. Whether directly impacted through contact exposure or indirectly
affected by shifts in routine practices, including restricted swimming or fishing in
local waterways or changes in local traffic patterns, environmental effects can lead to
elevated stress that results in adverse human health impacts (Gee and Payne-Sturges
2004). CalEnviroScreen incorporates the following five indicators to model envi-
ronmental effects: toxic cleanup sites, groundwater threats from leaking under-
ground storage sites and cleanups, hazardous waste facilities and generators,
impaired water bodies, and solid waste sites and facilities (see Table 18.1).

Population Characteristic Indicators The process of identifying sensitive
populations with increased vulnerability to the effects of pollution can be
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challenging. Within a given area, factors such as health status and age can predispose
individuals to adverse health outcomes and vary widely, independent of pollution
(August et al. 2012; English 2013). CalEnviroScreen incorporates three indicators
that may suggest increased health vulnerabilities associated with toxic chemical
exposures. Robust data sets are available statewide for the following three sensitive
population indicators: prevalence of children and elderly populations, asthma emer-
gency department visit rates, and the rate of low-birth-weight infants (see
Table 18.2).

Emerging research supports the finding that socioeconomic status, including
education level and employment status, is a significant factor in gauging the vulner-
ability of populations to pollutants (LACEHJ 2010; English 2013). Language
barriers, prevalence of individuals with less than a high school education, and
disproportionate unemployment rates can reduce a community’s ability to adapt to
or cope with pollution (LACEHJ 2010; Ramey et al. 2015). CalEnviroScreen
integrates four socioeconomic factors that link pollution with adverse health impacts.
Socioeconomic factor indicators include educational attainment, linguistic isolation,
poverty, and unemployment (see Table 18.2).

Table 18.1 CalEPA CalEnviroScreen pollution burden indicators

Indicator Description

Exposures PM2.5 concentrations Annual mean concentration of PM2.5 over 3 years
(2009–2011)

Ozone concentrations Daily maximum 8-h ozone concentration over the
California 8-h standard (0.070 ppm), averaged over
3 years (2009 to 2011)

Diesel PM emissions Diesel PM emissions from on-road and non-road
sources for a 2010 summer day in July (kg/day)

Drinking water
contaminants

Drinking water contaminant index for selected
contaminants

Pesticide use Pounds of selected active pesticide ingredients used
in production-agriculture per square mile

Toxic releases from
facilities

Toxicity-weighted concentrations of modeled chem-
ical releases to air from facilities

Traffic density Vehicle-kilometers per hour divided by total road
length (kilometers) within 150 meters of the census
tract boundary

Environmental
effects

Cleanup sites Sum of weighted DTSC* cleanup sites

Groundwater threats Sum of weighted SWRCB** groundwater cleanup
sites

Hazardous waste
facilities and
generators

Sum of weighted permitted hazardous waste facilities
and large quantity hazardous waste generators

Impaired water bodies Sum of number of pollutants from water bodies des-
ignated as impaired

Solid waste sites and
facilities

Sum of weighted solid waste facilities

*Data acquired from the Department of Toxic Substances Control
**Data acquired from the State Water Resources Control Board
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Collectively, CalEnviroScreen integrates these seven exposures and five environ-
mental effect indicators to model relative pollution burden impacts and three sensi-
tive population and four socioeconomic factor indicators to model relative
population characteristics. The methodology and rationale for each specific indicator
are described in detail in the CalEnviroScreen document California Communities
Environmental Health Screening Tool, Version 2.0 (CalEnviroScreen 2.0) Guidance
and Screening Tool (OEHHA 2014a).

18.2.2.1.1 CalEnviroScreen Score and Maps

The final CalEnviroScreen score is the product of the indicator value of the pollution
burden and the indicator value of the population characteristics (see Fig. 18.2). The
pollution burden component is composed of seven exposure and five environmental
effect indicators. The environmental effect indicator values are multiplied by
one-half (noted by an asterisk *) to weight them half as much as the exposure
indicators because exposure sources generally contribute more than environmental
effects to total pollution impact (OEHHA 2014a) (see Fig. 18.2 and Table 18.1). The
population characteristic component is comprised of three sensitive population and
four socioeconomic factor indicators with all seven indicators weighted equally (see
Fig. 18.2 and Table 18.2).

The final scores for both components are calculated as follows (OEHHA 2014a):

1. Average the percentiles for all individual indicators in a group (group: exposure
and environmental effects). Environmental effects are weighted half as much as
exposure indicators, making the pollution burden a weighted average.

Table 18.2 CalEPA CalEnviroScreen population characteristic indicators

Indicator Description

Sensitive
populations

Age (children and
elderly)

Percentage of the population under age 10 or over age
65

Asthma emergency
department visit rate

Age-adjusted rate of emergency department visits for
asthma per 10,000, spatially modeled (2007–2009)

Low-birth-weight
rates

Percentage of low-birth-weight infants under 2500
grams, spatially modeled (2006–2009)

Socioeconomic
factors

Educational
attainment

Percentage of the population over age 25 with less
than a high school education

Linguistic isolation Percentage of households in which no one age 14 and
over speaks English “very well” or speaks English
only

Poverty Percentage of residents below two times the national
poverty level

Unemployment Population over age 16 that is unemployed and eli-
gible for the labor force
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2. Pollution burden and population characteristic percentile averages are scaled with
a maximum value of 10 and a range of 0.1–10. Each average is divided by the
maximum value observed in the state and multiplied by 10. Scaling ensures that
the pollution and population components contribute equally to the final
CalEnviroScreen score.

3. The final CalEnviroScreen score for an area is calculated as the final pollution
burden score multiplied by the final population score with a possible total of 100.
This final CalEnviroScreen score for each area is then used to rank all the areas
from highest to lowest, based on their overall score. The percentile for the overall
score is calculated. Geographic maps are generated to illustrate the percentiles for

Pollution Burden X Population          
Characteristics

= CalEnviroScreen
Score

Exposures Sensitive Populations

+
Environmental Effects

+
Socioeconomic Factors

Ozone 
concentrations

PM2.5 
concentrations

Diesel PM emissions
Drinking water 

contaminants
Pesticide use
Toxic releases from 

facilities
Traffic density

Prevalence of 
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elderly

Low birth-weight 
births

Asthma emergency 
department visits

*Cleanup sites
*Groundwater 

threats 
*Hazardous waste 
*Impaired water 

bodies
*Solid waste sites 

and facilities 

* Indicators 
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Educational 
attainment

Linguistic isolation
Poverty
Unemployment

Fig. 18.2 CalEPA CalEnviroScreen model

530 S. R. Murphy et al.



all census tracts statewide. Highest ranking percentiles are generally brightly
colored to indicate the area of greatest impact.

18.2.2.1.2 Uncertainty and Error

Even with careful data set selection, assessors must account for uncertainties. Such
uncertainties can develop for any number of reasons, including database gaps or
inaccuracies, changing environmental conditions over time, and the limited capacity
of selected indicators to measure outcomes or exposures of interest. Despite these
uncertainties, CalEnviroScreen remains a powerful tool in identifying those com-
munities most adversely impacted due to its ranking function, particularly when
modeling data sets where the highest or lowest 15–20% of communities is of great
interest.

Identifying Community Profiles and Key Drivers By taking a look at the indi-
vidual component and indicator scores, one can understand the similarities and
differences between two communities having similar scores. Communities can
have nearly equivalent overall scores but be comprised of vastly different scoring
for pollution burden and population characteristic profiles. For example, a census
tract in Lamont, near Bakersfield in the Central Valley, and a census tract in Long
Beach in the Los Angeles region, both have overall scores of 48, placing them
among the top 10 percent of the most impacted census tracts in California (see
Fig. 18.3 and Tables 18.3 and 18.4).

The Lamont tract has very high scores for ozone, particulate matter, drinking
water contaminants, and pesticides while scoring only moderately among the other
pollution burden indicators. In contrast, the Long Beach tract has very high scores
for diesel, toxic releases, traffic density, groundwater threats, and impaired water
bodies while scoring only moderately for indicators for which Lamont scored highly.
The Long Beach tract scores slightly higher for the overall pollution score, while the
Lamont tract scores higher for the overall vulnerable population and socioeconomic
score. The two components combine to yield a very similar overall score, meaning
that the two tracts are viewed as equally disadvantaged in CalEnviroScreen.

A third census tract in Richmond near the San Francisco Bay Area, compared
here, demonstrates that despite scoring slightly lower in the overall pollution score
when compared to the other two tracts, a very high population characteristic com-
ponent still yields a relatively high overall score. The Richmond tract scores highly
in the diesel indicator as well as for several environmental effect indicators while
scoring extremely high in the vulnerable population and socioeconomic indicators.
The overall score of 45 (compared to the other two with a score of 48) places the tract
among the top 15 percent of the most impacted census tracts in California
(Fig. 18.3).
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18.2.3 Applying Community-Based Concepts to Decision-
Making

CalEnviroScreen was developed through a highly public and interactive process that
aligns well with the U.S. EPA’s Guidance on Considering Environmental Justice

Fig. 18.3 Census tracts with similar CalEnviroScreen scores
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During the Development of Regulatory Actions (Alexeeff and Mataka 2014; U.S.
EPA 2015). CalEPA and OEHHA held multiple meetings with stakeholders which
included community and environmental justice organizations, academia, other gov-
ernment agencies, and industry groups, then released interim CalEnviroScreen drafts
for public comment, and conducted a dozen workshops that solicited extensive
written and oral comment feedback (OEHHA 2013; OEHHA 2014b). During the
conceptual phase of CalEnviroScreen’s development, CalEPA and OEHHA began
devising general principles that gauge and strategize efforts in the context of
assessing chemical hazards from multiple sources within communities. Many stud-
ies, including individual community-based studies, served as a training ground for
honing both the principles and practices of community-based cumulative impact
assessment (Dunn and Alexeeff 2010).

18.2.3.1 Community-Based Studies in Decision-Making

Four general principles were derived from examining several case studies and are
discussed in detail by Dunn and Alexeeff (2010). These principles can be summa-
rized as follows: (1) consider exposure patterns and cultural practices, (2) identify
populations with increased susceptibility, (3) understand the cumulative impacts,
and (4) involve the community in all phases of an assessment (Dunn and Alexeeff
2010). These guiding principles were drawn from an evaluation of four diverse case
studies. These included a study of traffic-related air pollution and childhood respi-
ratory diseases around San Francisco Bay Area schools, sport fishing advisories
related to chemical contamination of fish in general and in specific water bodies
throughout California, a risk assessment of a chromium “hot spot” in a poor Latino

Table 18.3 Identifying major drivers from CalEnviroScreen scores in three census tracts

Location
Lamont, Kern
County

Long Beach, Los
Angeles County

Richmond, Contra Costa
County

Census tract (6029006401) (6037572201) (6013379000)

Population 8,320 6,197 6,117

CalEnviroScreen
score

48.14
(91–95th percentile)

47.93
(91–95th percentile)

45.49
(86–90th percentile)

Pollution burden Medium-high
(78th percentile)

Very-high
(92nd percentile)

Medium
(57th percentile)

Population
characteristics

Very-high
(90th percentile)

Medium-high
(74th percentile)

Very-high
(98th percentile)

Main drivers
(�80th
percentile)

Ozone, PM2.5, drink-
ing water, pesticides,
education, linguistic
isolation, poverty

Diesel, toxic releases,
traffic density, ground-
water threats, impaired
water, asthma, low birth
weight

Diesel, cleanup sites,
groundwater threats,
hazardous waste,
impaired water, asthma,
low birth weight, educa-
tion, poverty
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community of San Diego known as Barrio Logan, and a study of lead exposure in
Latino children throughout San Diego County.

In the sport fishing advisories case, OEHHA approached the development of
advisories with an awareness of cultural practices that may increase the risks of
exposure and adverse health effects that arise from eating fish contaminated with
chemicals, including methylmercury and polychlorinated biphenyls (PCBs)

Table 18.4 Percentile ranking of individual indicators in three census tracts

LOCATION Lamont,                       
Kern County

Long Beach,                  
Los Angeles County

Richmond,             
Contra Costa County

Ozone 95 0 0

PO
L

L
U

T
IO

N
 B

U
R

D
E

N

PM2.5 99 67 17

Diesel 21 93 86

Drinking     
Water

100 24 3

Pesticides 95 29 0

Toxic Releases 25 95 77

Traffic Density 9 86 46

Cleanup Sites 76 56 98

Groundwater 
Threats

16 88 90

Hazardous 
Waste

0 39 89

Impaired     
Water

0 90 86

Solid Waste 0 73 0

Age 66 73 73

PO
PU

L
A

T
IO

N
 

C
H

A
R

A
C

T
E

R
IST

IC
S

Asthma 36 81 98

Low Birth 
Weight

71 94 98

Low Education 98 55 82

Linguistic    
Isolation

94 44 75

Poverty 94 40 80

Unemployment 60 60 77
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(OEHHA 2001). Fish consumption is much greater among some minority
populations, namely, Southeast Asians, and low-income subsistence sport fishers,
groups that rely on sport fishing as a major source of dietary protein (Dunn and
Alexeeff 2010). These groups may also engage in practices that increase the risk for
exposure, including consumption of the entire fish (OEHHA 2001). Subpopulations
within these communities, including children and pregnant women, were identified
as susceptible subpopulations with increased risk for adverse effects from exposure
to multiple contaminants, such as methylmercury and PCBs, due to their harmful and
cumulative effects on neural development (U.S. EPA 2004; Davis et al. 2012).

OEHHA evaluated the potential harmful effects from exposure to contaminants
common in fish along with the health benefits of eating fish. OEHHA developed fish
advisories for California sport fishers that provided guidance on fish cooking and
preparation methods and recommendations for fish consumption, especially for
sensitive groups such as children and pregnant women. To further enhance commu-
nity outreach, OEHHA created signs and pamphlets in multiple languages to better
inform communities that may not otherwise be aware of potential adverse health
effects associated with eating contaminated fish. These recommendations help
individuals reduce their exposure risk by modifying consumption practices based
on the species, size, and number of fish consumed. The principles derived from this
case study and the consideration of additional factors that influence the vulnerability
within a population contributed significantly to the development of
CalEnviroScreen, particularly when selecting population characteristic indicators.

18.2.3.2 CalEnviroScreen in State Regulatory Activities

Each case study highlights not only the diversity of exposure sources but also the
complex factors that affect individual communities. Cultural practices and lifestyle,
not just how close a population is to a pollution source, influence how and to what
extent individuals within a community can be exposed (CDC 2002). Understanding
the biological characteristics or types of preexisting conditions that increase the
vulnerability of certain individuals to adverse pollution impacts helps to identify
susceptible subpopulations within a community (de Fur et al. 2007; Medina-Ramon
and Schwartz 2008; Zanobetti and Schwartz 2011). These concepts contributed to
the development of CalEnviroScreen and helped focus its original purpose which
was to assist CalEPA departments and the state of California in carrying out its
environmental justice mission, and to continue to be a useful tool for this end.

In addition, as discussed in Alexeeff and Mataka (2014), CalEnviroScreen is a
valuable resource in many additional ways. One important way CalEnviroScreen is
being used is to identify disadvantaged communities for allocation of cap-and-trade
funds generated under the Global Warming Solutions Act of 2006 (De Leon 2012).
Of the total monies allocated from the Greenhouse Gas Reduction Fund, 25 percent
“must go to projects that provide a benefit to disadvantaged communities,” and a
“minimum of 10 percent of the funds must be for projects located directly within
disadvantaged communities” (CalEPA 2014). Another use of CalEnviroScreen is by
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other state entities, including the Strategic Growth Council, who use
CalEnviroScreen results to select communities where resources allotted under sus-
tainable community grant funding can be most effectively distributed. An example
of statewide CalEnviroScreen results is illustrated in Fig. 18.4. CalEnviroScreen
facilitates collaboration between CalEPA departments, like OEHHA and the Air

Fig. 18.4 CalEPA CalEnviroScreen statewide results
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Resources Board (ARB), in adapting monitoring and health benefit programs for
those communities disproportionately impacted. These communities are highlighted
by a specific indicator, such as air pollution hot spots (Dunn and Alexeeff 2010).
Ultimately, the success of the state’s application of CalEnviroScreen has led to
inquiries from smaller regulatory entities about how the tool can be further scaled
to provide relevant information to more effectively assist in decision-making at the
city or county level. For example, decision-makers for the Greater Los Angeles Area
can use CalEnviroScreen results for both population characteristics and pollution
burden, such as those presented in Fig. 18.5, to identify which smaller communities
may warrant a more refined scale of analysis.

18.3 Challenges and Next Steps: Future Directions
in Community-Based Cumulative Impact Assessment

Risk assessment as currently practiced in environmental regulatory programs at the
federal, state, and local levels is typically designed to evaluate a single contaminant
or source, in one media type, and is based on the concept of risk thresholds that are
considered either safe or acceptable (NAS 1983). An acceptable risk level is often set
as a target and considers several factors associated with meeting the target level
(ATEB 2008, 2009). These factors include evaluating the pollution control technol-
ogy available in the foreseeable future, potential costs to the owners of the source,
and costs subsequently passed on to the consumer. Thus, traditional quantitative risk
assessment and the practices and policies that develop in response to assessment
findings play a decisive role in our society. Risk assessment is evolving, particularly
at the federal level. U.S. EPA, with guidance from the National Research Council
Committee on Improving Risk Analysis, is broadening traditional concepts to
improve both the utility and technical approaches used in risk analysis (NAS 2009).
One key shift is to involve input from stakeholders early in the planning process.
However, these expanded approaches still focus primarily on risk, not impact.

In contrast to the traditional assessment paradigm, people face scenarios with
exposure to multiple contaminants from multiple sources. The resulting risks and
impacts are also influenced by nonchemical factors and require additional
approaches to integrate both chemical and nonchemical stressors. The relative
ranking of communities, expressed as percentiles in CalEnviroScreen, provides a
snapshot of the existing conditions, not a measure of potential risk. Increased
pollution burden and poor socioeconomic status frequently go hand in hand. How-
ever, the underlying causes for this collinearity can differ significantly in different
parts of state.

To design adequate and effective strategies to reduce the observed disparities, it is
important to evaluate the causes that influence variability, depending on the location.
Urban sprawl and zoning flaws can contribute to the formation of source clusters and
resource limitations in some neighborhoods (LACEHJ 2010; Schwartz et al. 2015).
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Fig. 18.5 CalEPA CalEnviroScreen results for (a) pollution burden and (b) population character-
istics for the Greater Los Angeles Area
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For example, past efforts to minimize expenses involved in freeway and major
roadway expansion or building new roadways to meet the transportation needs of
urban sprawl could have been responsible for the observed increased risk to people
living near these structures. Similarly, major economic fluctuations could have led to
gentrification that brings lower socioeconomic status population segments closer to
sources (Pohanka and Fitzgerald 2004; Porebski et al. 2014; Shmool et al. 2015). In
some multi-source clusters, individual sources may comply with the “safe” or
“acceptable” set emission/discharge limit, but collectively the area or the community
could be exceeding these safe or acceptable levels of risk or impacts (Batterman et al.
2014).

Although people living in such communities have demanded that cumulative
impact assessments be included and considered in the context of siting, permitting,
zoning, and other decision-making processes, researchers have stated that both
regulatory agencies and legislative bodies have yet to take specific actions to move
in that direction (Johnson Thornton et al. 2013; Corburn 2015). In addition, reluc-
tance among some business and industry groups to support a move toward CI
assessments often stems from the contention that such “redlining” could economi-
cally isolate or harm those communities (Pager and Shepherd 2008; Tso et al. 2011;
Gase et al. 2014). In some instances, reconciling the realities of cumulative impacts
with the potential scale of economic impacts involved to take remedial action seems
to pose major challenges for any near-term legislative or regulatory action in the
current political climate at the federal level. Yet, the bold step taken by the California
legislature to incentivize investment in these disadvantaged communities with the
allocation of cap-and-trade funds is noteworthy.

Methodological challenges that face CalEnviroScreen and other environmental
health screening tools include (1) the influence of the number of indicators that are
proxies for sources or media and how those are modeled, (2) capturing the strength
of skewed data sets that are often associated with pollution levels and population
characteristics, (3) evaluating how regional variations in cost of living may affect
estimates of socioeconomic vulnerability, and (4) providing a format of quantitative
information to track area-specific changes over time. Assessors confront these
challenges in attempts to meet the expectations of communities throughout Califor-
nia. Through improved data quality, better statistical approaches, the addition of
valid indicators, and constructive feedback from CalEnviroScreen users, this tool
can be further modified and adapted to increase its utility.

The momentum to include cumulative impact assessment in the decision-making
process is building across the country, and more methods are likely to evolve in the
near future. Many are of the view that CI assessment at a local or regional level is
critical since most of the growth planning, siting, and permitting decisions take place
at the regional or local level (Johnson Thornton et al. 2013; Corburn 2015). A list of
actions that can be considered in cumulatively impacted areas could include
(1) requiring alternate buffer zone limits for new buildings from sources like
refineries, landfills, oil and gas operations, agricultural lands, major roadways, and
ports; (2) including permit conditions that limit the days, timing, or methods of
pesticide application to reduce drift exposure; and (3) modifying area-specific risk
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thresholds for new and existing sources, if necessary (Prasad and Murphy 2016).
Thus, CI assessment provides an additional layer of information to traditional risk
assessment, leading to more informed decision-making.
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