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Chapter 6
Neuroprotective Properties of Glutamate 
Metabotropic Glutamate Receptors 
in Parkinson’s Disease and Other Brain 
Disorders

Gunasingh Jeyaraj Masilamoni and Yoland Smith

Abstract  Because of their modulatory role, cell-type-specific expression in the CNS, 
and anti-inflammatory properties, the metabotropic glutamate receptors (mGluRs) 
have generated significant interest as potential therapeutic targets for various brain 
disorders. In addition, preclinical studies in animal models of Parkinson’s disease 
have revealed that specific mGluR subtypes mediate significant neuroprotective 
effects that reduce midbrain dopaminergic neuronal death. Although the underlying 
mechanisms of these effects remain to be established, there is evidence that intracel-
lular calcium regulation, anti-inflammatory effects, and glutamatergic network regu-
lation contribute to these properties. These protective effects extend beyond midbrain 
dopaminergic neurons for some mGluRs. In this review, we discuss recent evidence 
for mGluR-mediated neuroprotection in PD and highlight the challenges to translate 
these findings into human trials.

Keywords  Dopamine • Inflammation • Huntington • Striatum • Substantia nigra 
 • MPTP • Excitotoxicity

6.1  �Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative disorder clinically charac-
terized by bradykinesia (slowness), rigidity (stiffness), resting tremor, and gait dys-
function with postural instability. The major pathological hallmark of PD is the 
degeneration of dopaminergic (DA) nigrostriatal neurons in the substantia nigra pars 
compacta (SNC) and the presence of cytoplasmic α-synuclein-positive inclusions 
(Lewy bodies) (Fearnley and Lees 1991; Forno 1996; Spillantini et al. 1998; Giasson 
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et al. 2000; Dauer and Przedborski 2003). This progressive degeneration of the nigros-
triatal system results in complex pathophysiological changes of neuronal activity and 
neurochemical imbalance in neurotransmitter release throughout the basal ganglia cir-
cuitry and their projection targets (Albin et al. 1989; DeLong 1990; Gerfen et al. 1990; 
Wichmann and DeLong 2006). The onset of parkinsonian motor symptoms appears 
only when a critical threshold of 50–60% DA neurons loss in SNC and 70–80% degen-
eration of striatal DA terminals have been reached (Hornykiewicz 1975, 1998).  
This lag between the development of motor deficits and the protracted extent of the 
nigrostriatal degenerative process provides an opportunity for neuroprotective inter-
vention that could slow down the degeneration of the dopaminergic system and delay 
or prevent the development of parkinsonian motor symptoms.

Significant effort has, indeed, been devoted at identifying disease-modifying 
therapeutics in different animal models of PD. Unfortunately, despite encouraging 
preclinical data, none of these compounds were found to be neuroprotective when 
tested in human trials (Siderowf and Stern 2008; Schapira 2009a, b, c; Smith et al. 
2012). Various potential explanations have been raised to explain the failure of 
these trials, including the lack of PD biomarkers and the late start of the neuropro-
tective therapy (Mandel et al. 2003, Schapira 2004, Siderowf and Stern 2008, Lang 
2009, Olanow 2009, Rascol 2009, Schapira 2009a, c). Thus, the need for effective 
neuroprotective drugs that could alter the progressive degeneration of the dopami-
nergic nigrostriatal system and the development of PD biomarkers are key inter-
related attributes to the successful development of effective neuroprotective 
therapy in PD.

Although the mechanisms that underlie nigral DA degeneration in PD remain 
poorly understood, evidence suggests that glutamate excitotoxicity contributes to 
the cascade of events that lead to DA cell death in the SNc (Fornai et  al. 1997; 
Sonsalla et al. 1998; Greenamyre et al. 1999; Golembiowska et al. 2002; Blandini 
et al. 2004; Przedborski 2005). Glutamate elicits its action through the activation of 
ionotropic (iGlu) and metabotropic glutamate receptors (mGluRs). The use of com-
pounds blocking iGlu, particularly of the N-methyl-D-aspartate (NMDA) subtype, 
has shown significant neuroprotective effects of midbrain dopaminergic neurons in 
experimental models of parkinsonism (Turski et al. 1991; Zuddas et al. 1991; Storey 
et al. 1992; Nash et al. 1999; Konitsiotis et al. 2000). However, the use of these 
compounds failed human trials because of narrow therapeutic windows and marked 
CNS side effects (Montastruc et al. 1992; Muir 2006). An alternative approach to 
the development of glutamate-mediated therapies with a good profile of safety and 
tolerability for brain disorders is the targeting of glutamate receptors that “modu-
late” rather than “mediate” fast excitatory synaptic transmission. Because the 
G-protein-coupled mGluRs meet these criteria, they have generated significant 
interest as new therapeutic targets for brain diseases, including symptomatic and 
neuroprotective agents in PD (Lovinger et al. 1993, Conn et al. 2005, Bonsi et al. 
2007, Ossowska et  al. 2007, Gasparini et  al. 2008, Niswender and Conn 2010, 
Nicoletti et al. 2011, Finlay and Duty 2014, Nickols and Conn 2014, Williams and 
Dexter 2014, Amalric 2015, Nicoletti et al. 2015).
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6.2  �MGluR Localization in the Basal Ganglia Circuitry

Eight mGluR subtypes (mGluR1–mGluR8) have been cloned and divided into three 
groups (groups I–III) on the basis of sequence homologies, signal transduction path-
ways, and ligand-binding patterns (Pin and Duvoisin 1995; Conn and Pin 1997; 
Nakanishi et al. 1998; Anwyl 1999; Pin and Acher 2002). Members of these three 
groups of mGluRs are strongly expressed throughout the basal ganglia circuitry, 
where they regulate neuronal excitability and synaptic transmission via pre- and post-
synaptic mechanisms (Calabresi et  al. 1992, Lovinger et  al. 1993, Lovinger and 
McCool 1995, Conn and Pin 1997, Pisani et al. 1997, Rouse et al. 2000, Smith et al. 
2000, Pisani et al. 2001, Corti et al. 2002, Marino et al. 2002, 2003a, Gubellini et al. 
2004, Conn et al. 2005, Johnson et al. 2009, Lovinger 2010). Furthermore, midbrain 
dopaminergic neurons in the SNc also express specific mGluRs which represent 
potential therapeutic targets for neuroprotection in PD (see below). Thus, the founda-
tion of preclinical studies that have been performed so far to assess the potential rel-
evance of mGluR-mediated neuroprotection in PD has been based on the assumption 
that excitotoxic effects upon midbrain dopaminergic neurons can be mediated either 
directly through overactivation of calcium-dependent postsynaptic glutamate recep-
tors or via overactivity of glutamatergic inputs onto SNc neurons (Battaglia et al. 
2002, 2004; Johnson et al. 2009; Masilamoni et al. 2011). In either case, drugs aimed 
at postsynaptic (i.e., group I) or presynaptic (i.e., groups II and III) mGluRs may have 
beneficial effects in reducing toxic insults upon midbrain dopaminergic neurons and 
possibly other vulnerable populations of neurons in PD (Johnson et al. 2009).

Group I mGluRs (mGluRs 1 and 5) are mainly expressed postsynaptically, couple 
to Gq proteins, and positively modulate neuronal excitability through activation of 
phospholipase C leading to an increase in intracellular Ca2+ and protein kinase C (Kim 
et al. 1994; Pin and Duvoisin 1995; Conn and Pin 1997; Fiorillo and Williams 1998; 
Nakanishi et al. 1998; Sala et al. 2005; Zhang et al. 2005), while group II (mGluRs 2 
and 3) and group III (mGluRs 4, 6, 7, and 8) mGluRs are mainly localized presynapti-
cally, classically couple to Gi/o, and negatively modulate neuronal excitability (Conn 
and Pin 1997). Group I mGluRs are largely expressed postsynaptically in dendrites 
and spines, where they enhance excitability through various postsynaptic mechanisms 
that involve regulation of intracellular calcium, functional interactions with NMDA 
receptors, and modulation of voltage-gated calcium channels (Conn and Pin 1997; 
Nakanishi et al. 1998; Alagarsamy et al. 1999; Pisani et al. 2001; Sala et al. 2005; 
Zhang et al. 2005)

On the other hand, group III mGluRs are predominantly located in the presynap-
tic active zones of glutamatergic and non-glutamatergic synapses, where they act as 
autoreceptors or heteroreceptors that reduce neurotransmitter release (Cartmell and 
Schoepp 2000; Ferraguti and Shigemoto 2006). Although mGluRs 4, 7, and 8 are 
expressed to a variable degree in different brain regions, mGluR6 is restricted to the 
retina (Vardi et al. 2000).

The two members of the group II mGluR subtypes, mGluR2 and mGluR3, are 
differentially expressed in neurons and astrocytes, respectively (Mineff and 
Valtschanoff 1999; Geurts et al. 2003). At the neuronal level, mGluR2 is located 
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presynaptically in glutamatergic and non-glutamatergic terminals, but its pattern of 
subcellular expression is different from that of group III mGluRs; instead of being 
aggregated at the active zones close to the transmitter release sites, as is the case 
from group III mGluRs, mGluR2 is most commonly expressed away from the syn-
apses, often in preterminal axonal segments, of glutamatergic and GABAergic 
afferents (Schoepp and Conn 1993; Pin and Duvoisin 1995; Conn and Pin 1997; 
Cartmell and Schoepp 2000; De Blasi et al. 2001; Galvan et al. 2006; Ferraguti et al. 
2008; Niswender and Conn 2010). Thus, upon activation, groups II and III mGluRs 
can reduce glutamatergic signaling and dampen neuronal excitability giving them 
potential neuroprotective properties (Nicoletti et al. 1996). On the other hand, group 
I mGluR antagonists display neuroprotective properties, likely through reduced cal-
cium release from intracellular stores and decreased neuroinflammation (Kim et al. 
1994; Pin and Duvoisin 1995; Conn and Pin 1997; Nakanishi et al. 1998; Sala et al. 
2005; Zhang et al. 2005).

In this review, we will discuss evidence for neuroprotective properties of differ-
ent subtypes of mGluRs in PD. We will also summarize findings of mGluR-mediated 
neuroprotection in other brain diseases (Table 6.1). These will be followed by a 
brief discussion of the subtype-selective mGlu receptor ligands that still hold the 
promise to become disease-modifying drugs in neurodegenerative disorders.

6.3  �Neuroprotective Effects of Group I mGluRs

There is evidence that mice treated with the mGluR5 antagonist 2-methyl-6-
(phenylethynyl) pyridine (MPEP) or mice that lack mGluR5 receptors show 
increased survival of nigrostriatal DA neurons after administration of the dopami-
nergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (Battaglia 
et al. 2004; Aguirre et al. 2005; Armentero et al. 2006; Vernon et al. 2007). mGluR5 
receptor antagonists are also protective against nigrostriatal dopamine denervation 
in the methamphetamine model of parkinsonism (Battaglia et al. 2002). The mGluR5 
antagonist, MTEP, was also found to be neuroprotective against the loss of midbrain 
DA neurons and norepinephrine neurons in the locus coeruleus (LC) in a chronic 
MPTP-treated monkey model of PD (Masilamoni et  al. 2011) (Fig.  6.1). In this 
study, we showed that neurons in the SNc and LC of monkeys chronically treated 
with low doses of MPTP over a period of over 20 weeks were significantly spared in 
animals that received daily administration of MTEP (Masilamoni et  al. 2011). 
Altogether, these rodent and monkey data suggest that the use of mGluR5 receptor 
antagonists may be a useful strategy to reduce degeneration of catecholaminergic 
neurons in PD. Taking into consideration evidence that mGluR5 antagonists also 
have significant anti-dyskinetic effects in rodent and nonhuman primate models of 
PD (Dekundy et al. 2006; Mela et al. 2007; Gravius et al. 2008; Levandis et al. 2008; 
Rylander et al. 2009; Johnston et al. 2010; Morin et al. 2010; Rylander et al. 2010; 
Gregoire et  al. 2011) and some antiparkinsonian effects in 6-OHDA-treated rats 
(Breysse et al. 2002), these findings provide additional support for the potential use 
of mGluR5 antagonist as PD-relevant therapeutic.

G.J. Masilamoni and Y. Smith
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Fig. 6.1  Neuroprotective effects of MTEP towards MPTP-induced neurotoxicity of the midbrain 
dopaminergic nigrostriatal system in rhesus monkeys. (a–c) Coronal sections at the level of the pre-
commissural striatum showing binding of the 18F-FECNT dopamine transporter ligand at baseline 
(a) and after chronic treatment with MPTP/vehicle (b) or MPTP/MTEP (C). (d–f) show correspond-
ing levels of the striatum in the same groups of animals immunostained with a DAT antibody. (g–l) 
Coronal sections showing 18F-FECNT binding (g–i) or TH immunostaining (j–l) at the level of the 
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The evidence that various mGluR5 antagonists (AFQ056-mavoglurant; ADX-
48621-dipraglurant) currently being tested in human trials as anti-dyskinetic drugs 
are well tolerated and do not worsen PD motor symptoms (Berg et al. 2011; Stocchi 
et al. 2013) is encouraging and provides further supports toward the chronic use of 
mGluR5-related compounds as potential neuroprotective drug in PD.

Although the exact mechanisms by which mGluR5 antagonists mediate their neu-
roprotective effects upon catecholaminergic neurons in toxin-based models of PD 
remain to be established, some interesting possibilities have been raised. In light of 
evidence that calcium dysregulation, mitochondrial respiration impairment, and exci-
totoxic insults contribute to the degeneration of nigral dopaminergic neurons in PD 
(Sherer et al. 2002; Maesawa et al. 2004; Wallace et al. 2007; Caudle and Zhang 
2009; Chan et al. 2009; Cannon and Greenamyre 2010; Winklhofer and Haass 2010; 
Van Laar et al. 2011), the blockade of mGluR5 may provide its protective effects 
through reduction of intracellular calcium levels in dopaminergic neurons via 
decreased mGluR5-mediated activation of intracellular IP3 receptors (Kim et  al. 
1994; Pin and Duvoisin 1995; Conn and Pin 1997; Nakanishi et al. 1998; Sala et al. 
2005; Zhang et al. 2005) and/or reduction of the potentiating effects of mGluR5 upon 
NMDA receptor function (Calabresi et al. 1992; Alagarsamy et al. 1999; Tu et al. 
1999; Awad et al. 2000). An alternative mechanism could involve the reduction of 
overactive glutamatergic inputs from the subthalamic nucleus (STN) to SNC neurons 
in the PD state (Bezard et al. 1998; Rodriguez et al. 1998; Awad et al. 2000; Breysse 
et al. 2003; Fazal et al. 2003; Shimo and Wichmann 2009; Piallat et al. 2011). Finally, 
because glial mGluR5 expression is upregulated in some inflammatory processes 
(Byrnes et al. 2009a; Loane et al. 2009, 2012; Drouin-Ouellet et al. 2011), the block-
ade of these receptors may reduce these harmful effects and attenuate MPTP-induced 
toxicity toward midbrain dopaminergic neurons (see further discussion below).

6.4  �Neuroprotective Effects of Group II mGluRs in PD

Results from several groups reveal a moderate neuroprotective effect of Group II 
mGluR agonists in rodent models of PD, the magnitude of which was dependent on 
lesion severity (Battaglia et al. 2002, 2003, Murray et al. 2002; Vernon et al. 2005; 
Battaglia et al. 2009). Both mGluR2 and mGluR3 are expressed in the BG circuitry 
including in STN neurons (Testa et  al. 1994). Activation of presynaptic group II 

Fig 6.1 (continued) ventral midbrain of the three animal groups used in this study. Abbreviations: PA 
associative putamen, CA associative caudate nucleus, AL limbic nucleus accumbens, SNC substantia 
nigra, PM motor putamen, CA associative caudate nucleus. Scale bar: 10 mm (applies to a–c and 
g–i) and 5 mm (applies to d–f and j–l). M: Densitometry analysis N. Stereological estimate of the 
total number of TH-positive neurons (means ± SD) in SNC-v, SNC-d and VTA regions of control, 
MPTP/vehicle and MPTP/MTEP treated monkeys. **p < 0.001 and *p< 0.05 for differences from 
control and MPTP/vehicle. #, p < 0.05 for differences between the vehicle and MTEP-treated ani-
mals. There were no significant difference found in the SNCd and VTA between control and MPTP/
MTEP treated monkeys (see Masilamoni et al. 2011 for details)
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mGluRs at the STN-SNc synapse reduces excitatory postsynaptic current amplitudes 
in rat SNc neurons (Bradley et al. 2000; Wang et al. 2005). In line with these observa-
tions, systemic treatment or intranigral administration of the group II mGluR ago-
nists LY379268 and (2R,4R)-4-aminopyrrolidine-2,4-dicarboxylate (2R,4R-APDC) 
reduces the extent of 6-OHDA-induced toxicity of dopaminergic neurons in the rat 
SNc (Murray et al. 2002; Vernon et al. 2005; Chan et al. 2010). In addition, activation 
of group II mGluRs by dual mGlu2/3 receptor agonist LY379268 or DCG-IV reduces 
SNc degeneration in mice after intrastriatal MPP+ or systemic MPTP administration, 
further supporting a role for group II mGluRs as disease-modifying agents in PD 
(Battaglia et al. 2003). Activation of mGluR2/3 could also contribute to neurorestora-
tion via the production and release of neurotrophic factors from glial cells in vitro 
(Bruno et al. 1998a; D’Onofrio et al. 2001) and in vivo (Matarredona et al. 2001; 
Corti et al. 2007; Battaglia et al. 2009). Through the use of the mGluR2/3 receptor 
agonist LY379268  in mGluR2 and mGluR3 receptor knockout mice, Corti et  al. 
(2007) suggested that the neuroprotective properties of the mGluR2/3 receptor ago-
nist LY379268  in MPTP-treated mice were entirely mediated by activation of the 
astrocytic mGluR3 receptor and that these effects were amplified in the absence of 
neuronal mGluR2 receptors, suggesting that mGluR2 activation might be harmful to 
toxin exposure (Corti et al. 2007). The studies of the neuroprotective properties of the 
selective mGluR3 receptor agonist, N-acetylaspartylglutamate (NAAG) (Orlando 
et al. 1997; Wroblewska et al. 1997; Bruno et al. 1998a; Bergeron et al. 2005), have 
been limited by the poor blood-brain barrier permeability for this compound 
(Westbrook et al. 1986; Sekiguchi et al. 1992).

6.5  �Neuroprotective Effects of Group III mGluRs in PD

Several lines of evidence based on cellular and physiological data predict that acti-
vation of group III mGluRs in the BG could have neuroprotective effects in PD 
(Wigmore and Lacey 1998; Valenti et al. 2002, 2003, 2005). These Gi/Go-coupled 
auto- or heteroreceptors regulate GABAergic and glutamatergic synaptic transmis-
sion, most likely through inhibition of voltage-gated calcium entry required for trig-
gering transmitter release (Trombley and Westbrook 1992; Conn and Pin 1997).  
In regard to neuroprotection in PD, activation of mGluR4 at the striatopallidal syn-
apse reduces the activity of the indirect pathway, which attenuates hyperactivity of 
the STN, and thereby reduces its excitotoxic effects toward SNc dopaminergic neu-
rons (Valenti et al. 2005). Group III mGluRs activation protects against NMDA-
induced toxicity in cultured neurons and in vivo, neuroprotection against excitotoxic 
insult (Gasparini et al. 1999; Bruno et al. 2000; Flor et al. 2002).

Consistent with the prediction that group III mGluRs activation might have neu-
roprotective effects in PD, both acute and subchronic intranigral infusion of the 
group III mGluRs agonist L-AP4 reduce the extent of 6-OHDA toxicity in the rat 
SNc (Vernon et al. 2005, 2007, 2008; Jiang et al. 2006; Betts et al. 2012). Furthermore, 
systemic or intrapallidal administration of the mGluR4 allosteric potentiator, 
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PHCCC (Phenyl-7-(hydroxyimino) cyclopropa [b] chromen-1a-carboxamide), 
reduces the extent of nigrostriatal MPTP toxicity in wild-type mice, but not in mice 
lacking mGluR4, further supporting the selective activation of mGluR4 as a neuro-
protective approach in PD (Battaglia et al. 2006). The study of mGluR7 and mGluR8 
receptor subtypes in neuroprotection awaits the development of specific compounds 
that selectively regulate these receptors.

6.6  �Neuroprotective Effects of mGluR-Related Drugs 
in Other Brain Diseases

Chronic treatment with the prototypic mGluR5 receptor antagonist, MPEP, attenu-
ates cell death, delays the onset of motor symptoms, and prolongs survival in mutant 
mice carrying a mutation of SOD1 associated with familiar ALS (Rossi et al. 2008). 
There is evidence that modulation of mGluR1 and mGluR5 on oligodendrocytes is 
protective in a rodent model of periventricular leukomalacia during the develop-
mental peak of vulnerability to hypoxia/ischemia, and modulation of these recep-
tors is protective in a rodent model of periventricular leukomalacia (Jantzie et al. 
2010). Recent evidence from Huntington’s disease (HD) mouse model indicates 
that the mGluR5 allosteric potentiator, CDPPB, protects striatal neurons against 
excitotoxic neuronal death, maybe through activation of Akt pathway, without trig-
gering increased intracellular Ca2+ concentration (Ribeiro et al. 2010; Doria et al. 
2013, 2015). There is also evidence that the mGluR5 antagonist MPEP might reduce 
disease progression in HD mouse models (Schiefer et al. 2004; Ribeiro et al. 2011).

6.7  �Anti-inflammatory Properties of mGluRs: Implications 
for Neuroprotection

In the normal brain, microglia, the resident CNS macrophages, are found in a rest-
ing state with ramified morphology, but when chronically activated in response to 
insults, they display an amoeboid morphology (Kreutzberg 1996; Nimmerjahn et al. 
2005) and exacerbate neurodegeneration by releasing glutamate and neurotoxic 
pro-inflammatory cytokines and cytotoxic factors (Barger and Basile 2001; Parker 
et al. 2002; Cunningham et al. 2005; Barger et al. 2007; McCoy and Tansey 2008; 
Lee et al. 2009; Tansey and Goldberg 2010). In addition, prolonged activation of 
microglia prevents them from carrying out their neuro-supportive functions such as 
the release of key growth factors (Benoit et al. 2008). Microglial toxicity toward 
midbrain dopaminergic neurons is well documented in a number of cell culture 
studies and animal models of PD (Gao et al. 2002a, b; Liu and Hong 2003; McCoy 
and Tansey 2008; Lee et al. 2009; Tansey and Goldberg 2010; Barnum et al. 2014). 
It has been postulated that both the initiation and progression of PD are triggered by 
neuroinflammation (Qin et al. 2007a, b; McCoy and Tansey 2008; Lee et al. 2009; 
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Tansey and Goldberg 2010) and there is a growing body of evidence that in some 
cases, PD is linked to head trauma, viruses, and infections which subsequently trig-
ger microglial activation (Liu and Hong 2003; Herrera et al. 2005). Inflammation is 
also heavily implicated in the pathogenesis of other neurodegenerative diseases 
including AD, ALS, MS, and HD (McGeer and McGeer 2002; Kutzelnigg et  al. 
2005; Solomon et al. 2006; Gao and Hong 2008; Hickman et al. 2008; Jimenez et al. 
2008; Moller 2010).

As discussed above, glia (astrocytes, microglia, and oligodendrocytes) express 
mGluRs to variable degrees. Although mGluR3 is the most abundant subtype of 
glial mGluRs, there is evidence that groups I and III mGluRs also display light glial 
expression. These glial receptors are activated under normal and pathophysiological 
conditions (Loane et al. 2012). The selective mGluR5 orthosteric agonist, (RS)-2-
chloro-5-hydroxyphenylglycine (CHPG), reduces microglial activation and the 
associated release of pro-inflammatory mediators following stimulation with either 
lipopolysaccharide (LPS) or interferon-γ (IFNγ) (Byrnes et  al. 2009a, b; Loane 
et al. 2009). CHPG treatment also attenuates NADPH oxidase (NOX2) activity lev-
els and abolishes the neurotoxic potential of activated microglia in microglia/neu-
ron co-culture models. The anti-inflammatory effects of CHPG are abolished in 
mGluR5 knockout mice or by addition of the mGluR5 antagonist, MTEP, demon-
strating selective mGluR5-mediated neuroprotective effects through microglia 
(Byrnes et al. 2009a; Loane et al. 2009). Recently, mGluR5 positive allosteric mod-
ulators were found to significantly attenuate both LPS- and IFNγ-induced nitric 
oxide (NO) and tumor necrosis factor-α (TNFα) release in cultured microglia with 
higher potency compared to the orthosteric agonist, CHPG (Xue et  al. 2014).  
These data support the use of mGluR5 PAMs as anti-inflammatory neuroprotective 
agents. MGluR5 PAMs are currently being investigated as potential treatment for 
various CNS conditions ranging from schizophrenia and anxiety disorders (Kinney 
et al. 2003, 2005; Homayoun et al. 2004; Lecourtier et al. 2007; Gravius et al. 2008) 
to learning and cognition-related problems (Gravius et al. 2008; Ayala et al. 2009; 
Gass and Olive 2009; Cleva et al. 2010; Reichel et al. 2011). Whether their neuro-
protective/anti-inflammatory properties contribute to the potential benefit of these 
compounds in these disorders remain to be established.

Activation of group III mGluRs also mediates anti-inflammatory effects. For exam-
ple, LPS-induced microglial activation in vitro is attenuated by the group III mGluR 
agonists L-AP4 and RS-PPG (Taylor et al. 2003). Activation of glial mGluR4 reduces 
the production of RANTES, a chemokine involved in neuroinflammation that circu-
lates at higher levels in humans with PD compared with age- and sex-matched controls 
(Besong et al. 2002; Rentzos et al. 2007). L-AP4 is similarly protective against myelin-
induced microglial neurotoxicity in cell culture, a finding attributable to the mGluR-
mediated inhibition of soluble toxin production by activated microglia (Pinteaux-Jones 
et al. 2008). Similarly, oligodendrocyte precursor cells found in lesion sites are par-
ticularly vulnerable to cytotoxic and pro-inflammatory factors released by activated 
microglia, and stimulation of group III mGluRs by L-AP4 prevents microglial-induced 
inhibition of oligodendrocyte precursor cell proliferation (Taylor et  al. 2010).  
These studies suggest that targeting microglia by group III mGlu receptors has the 
potential to encourage neuroprotection and regeneration of lost myelin in MS.

6  Neuroprotective Properties of Glutamate Metabotropic Glutamate Receptors…



114

Activation of mGluR2/3 stimulates the production and release of neurotrophic 
factors from glial cells in  vitro (Bruno et  al. 1998b; D’Onofrio et  al. 2001) and 
in vivo (Matarredona et al. 2001; Corti et al. 2007; Battaglia et al. 2009). Results 
from several groups reveal a moderate neuroprotective effect of group II mGluR 
agonists in rodent models of PD, the magnitude of which was dependent on lesion 
severity (Battaglia et al. 2002, 2003, 2009, Murray et al. 2002; Vernon et al. 2005; ).

6.8  �mGluR-Mediated Neuroprotection vs Disease 
Biomarkers

The mGluRs are therapeutic targets of great interest for various brain diseases 
(Conn et  al. 2005; Marino and Conn 2006; Johnson et  al. 2009; Niswender and 
Conn 2010). Their beneficial symptomatic effects are further amplified by their 
potential neuroprotective properties in PD and other brain diseases. However, cau-
tion must be exercised in translating the promising preclinical neuroprotective data 
discussed in this review to human trials (Olanow 2009; Smith et al. 2012; Schapira 
et al. 2014). The constant failure of previous neuroprotective human trials in PD 
patients (Olanow 2009) indicates that the effective assessment of mGluR neuropro-
tective properties in PD must await the development of biomarkers that will allow 
to identify at-risk candidates for the disease prior to the appearance of motor symp-
toms. We hope that the current effort of the Parkinson Progression Marker Initiative 
(PPMI) multicenter study (Parkinson Progression Marker 2011) will help identify 
reliable progression biomarkers that could be used toward the future assessment of 
the disease-modifying properties of mGluRs in PD.
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