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Chapter 10   
mGlu5 Receptors in Parkinson’s Disease 
and MPTP-Lesioned Monkeys: Behavior 
and Brain Molecular Correlates
             

Nicolas Morin and Thérèse Di Paolo

Abstract  Glutamate overactivity is well documented in Parkinson’s disease (PD) 
and dyskinesias induced by L-3,4-dihydroxyphenylalanine (L-DOPA), the gold-
standard treatment for this disease. The contribution of metabotropic glutamate 
receptors type 5 (mGlu5 receptors) in PD and L-DOPA-induced dyskinesias (LID) 
was the topic of investigations in human PD patients and in 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) monkeys.

Behaviorally, it has been shown that the prototypical mGlu5 antagonist 2-methyl-
6-(phenylethynyl)pyridine (MPEP) as well as the mGlu5 receptor antagonists 
3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) and mavoglurant (AFQ056) 
acutely attenuated LID in MPTP monkeys. Moreover, a chronic 1-month adminis-
tration of MPEP to previously drug-naïve MPTP monkeys (de novo treatment) 
attenuated the development of LID. Acute and chronic MPEP treatments of MPTP 
monkeys maintained the antiparkinsonian effect of L-DOPA. Mavoglurant was also 
shown in some clinical studies to reduce LID in PD patients.

Using the selective mGlu5 receptors ligand [3H]ABP688, mGlu5 receptor-
specific binding was measured by autoradiography in brains slices of normal and 
PD patients in relation to motor complications associated with an L-DOPA treat-
ment. PD patients with motor complications (either LID or wearing-off) had higher 
[3H]ABP688-specific binding compared to those without motor complications and 
controls in putamen, external and internal globus pallidus. In monkeys with a MPTP 
lesion and controls, [3H]ABP688- and [3H]MPEP-specific bindings were elevated in 
the striatum of dyskinetic L-DOPA-treated MPTP monkeys but not in MPTP mon-
keys without LID compared to controls.

The brain molecular correlates of the long-term effect of a 1-month administra-
tion of MPEP with L-DOPA that attenuated the development of LID were shown to 
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extend beyond mGlu5 receptors. In the basal ganglia, it has been showed that the 
L-DOPA-induced changes of NMDA and AMPA ionotropic glutamate receptors as 
well as mGlu2/mGlu3 receptors were prevented with the addition of MPEP. Moreover, 
MPEP normalized the L-DOPA-induced changes of dopamine D2 receptors, their 
associated signaling (ERK and Akt) and neuropeptides (preproenkephalin, prepro-
dynorphin), as well as the serotonin receptors 5-HT2A and 5-HT1B.

In conclusion, these results have shown in humans and in a nonhuman primate 
model of PD reduction of LID with mGlu5 antagonism. In the basal ganglia, LID 
were associated with changes of various glutamatergic, dopaminergic, and sero-
toninergic markers that were normalized with adjunct treatment with an mGlu5 
antagonist supporting the mGlu5 receptor as a good target for the treatment of LID.

Keywords  Parkinson’s disease • L-DOPA-induced dyskinesia • Motor complica-
tions • Glutamate receptor • Basal ganglia • Direct pathway • Indirect pathway • 
Receptor interaction

�Abbreviations

5-HT	 serotonin
6-OHDA	 6-hydroxydopamine
Akt	 protein kinase B
AMPA	 α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
cAMP	 cyclic adenosine monophosphate
DA	 dopamine
DHA	 docosahexaenoic acid
dipraglurant	 ADX-48621
ERK	 extracellular signal-regulated kinase
GABA	 γ-aminobutyric acid
GAD	 glutamic acid decarboxylase
GSK3β	 glycogen synthase kinase-3 β
GP	 globus pallidus;
iGlu	 ionotropic glutamate
KA	 kainate
L-DOPA	 levodopa (L-3,4-dihydroxyphenylalanine)
LID	 L-DOPA-induced dyskinesias
MAPK	 mitogen-activated protein kinase
mavoglurant	 AFQ056
mGlu	 metabotropic glutamate
MPEP	 2-methyl-6-(phenylethynyl)pyridine
MPTP	 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
MTEP	 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine
NAM	 negative allosteric modulator
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NMDA	 N-methyl-D-aspartate
PD	 Parkinson’s disease
PI	 polyphosphoinositide
SERT	 serotonin transporter
STN	 subthalamic nucleus

10.1  �Introduction

Parkinson’s disease (PD) is the most common neurodegenerative movement disor-
der and is likely to increase due to the aging population (Siderowf and Stern 2003). 
The cardinal motor manifestations of PD, tremor, bradykinesia, and rigidity are 
secondary to a loss of dopamine in the striatum (Olanow et al. 2009; Toulouse and 
Sullivan 2008). PD is principally attributed to the death of dopamine (DA) neurons 
in the substantia nigra, but other neurotransmitters and neuromodulators, such as 
glutamate, serotonin (5-HT), and adenosine, are also affected (Toulouse and Sullivan 
2008). Gene mutations in familial PD are reported, but the cause for the majority of 
PD cases remains unknown (Olanow et al. 2009). There is currently no cure for 
PD. Neuroprotection or disease modification defined as an intervention that would 
protect or rescue vulnerable neurons, thereby slowing, stopping, or reversing dis-
ease progression, is not yet available for PD, but laboratory studies are finding 
promising agents (Olanow et al. 2009).

Restoring lost DA with its precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), 
introduced 50 years ago still remains a very effective and commonly used treatment 
for PD (Mercuri and Bernardi 2005). However, up to 80% of PD patients will 
develop motor complications after 10 years of treatment with L-DOPA (Olanow and 
Koller 1998). These motor complications include motor fluctuations and abnormal 
involuntary movements, such as L-DOPA-induced dyskinesias (LID), and contrib-
ute to limit the quality of life in PD patients and can be very difficult to manage 
(Fabbrini et al. 2007). Motor fluctuations such as “wearing-off” are also common. 
Wearing-off is defined as a reduced duration of benefit from an individual L-DOPA 
dose and a recurrence of parkinsonian symptoms before the next normal dose of 
L-DOPA (Fahn et  al. 2004). Hence, most PD patients initiated with DA agonist 
monotherapy will eventually require L-DOPA as disease progresses, and after 
10  years their motor complications appear similar as they would have if started 
initially on L-DOPA therapy (Katzenschlager et al. 2008; Parkinson Study Group 
2009). This suggests that disease progression plays the major role in the onset of 
dyskinesia rather than the type of dopaminergic drug treatment used. Involuntary 
movements such as LID are paralleled by aberrant forms of plasticity characterized 
by changes in various neurotransmitter systems and their intracellular signaling 
pathways (Jenner 2008).

Aside from some benefit of amantadine, that has anti-glutamatergic properties, 
no drug is yet available for LID (Meissner et al. 2011). Glutamate neurotransmis-
sion is increased in the basal ganglia in PD and LID (Klockgether and Turski 1993; 
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Chase and Oh 2000; Calon et al. 2003a). The pathophysiology and the mechanisms 
involved in the development of LID are still not fully understood. However, altered 
dopaminergic and nondopaminergic neurotransmission in the basal ganglia is 
observed in LID (Blandini and Armentero 2012). Treating LID with adjunct drugs 
targeting nondopaminergic neurotransmitter systems is proposed such as glutamate 
to indirectly modulate basal ganglia DA neurotransmission (Brotchie 1998; Morin 
et al. 2014a). Much emphasis has therefore been placed on finding alternative non-
dopaminergic drugs that could circumvent some or all these problems. The design 
of novel agents to prevent dyskinesias requires elucidation of the adaptive changes 
produced in the parkinsonian brain by repeated administration of L-DOPA. The use 
of adjunct drugs to modulate basal ganglia DA neurotransmission is an important 
strategy to treat LID ( Brotchie 1998, 2003; Henry et al. 2001; Calon and Di Paolo 
2002; Blanchet et al. 1999; Grondin et al. 1999).

LID are typically observed at the peak of the effect of L-DOPA in PD patients. 
There is also diphasic dyskinesia at the beginning and at the end of the L-DOPA 
dosing cycle appearing with the rise and fall of DA levels in the brain (Luquin et al. 
1992) and off-dystonia (Marsden et al. 1982). LID occur in 30–80% of PD patients 
treated with L-DOPA (Barbeau 1980; Nutt 1990). Two conditions are necessary for 
their appearance: (1) the loss of DA in the nigrostriatal pathway and (2) treatment 
with L-DOPA or DA agonists. The development of dyskinesias in man usually 
requires daily treatment for 3–5 years in idiopathic PD (Klawans et al. 1977), and 
for parkinsonism induced in man by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP), it occurs after only weeks or months of treatment (Ballard et al. 1985). The 
same applies to MPTP monkeys where only weeks of L-DOPA therapy are enough 
before dyskinesias appear (Falardeau et al. 1988; Bedard et al. 1986). MPTP pri-
mates respond to DA therapies in a similar manner than idiopathic PD patients 
(Jenner 2003a, b) and are currently the best model for studying LID.

Glutamate is involved in many physiological functions through its interactions 
with ionotropic glutamate (iGlu), ligand-gated channel, and metabotropic G-protein-
coupled glutamate (mGlu) receptors. iGlu receptor drugs suppressing glutamate 
excitatory transmission often create undesirable side effects (Johnson et al. 2009), 
whereas acting on mGlu receptors could lead to a subtler and/or circuit-selective 
modulation of excitatory transmission (Conn et al. 2005). Pharmacologic character-
ization of mGlu5 receptors and its selective negative allosteric modulators (NAMs) 
shows therapeutic potential in animal models of PD (Grégoire et al. 2011; Johnston 
et al. 2010; Morin et al. 2010) and recently efficacy in human PD (Berg et al. 2011; 
Stocchi et al. 2013). mGlu5 receptors have been shown to play a crucial role in regu-
lating L-DOPA-induced motor behavior, but the mechanisms involved remain 
unclear (Gasparini et al. 2013).

This review will cover relevant studies investigating mGlu5 receptor subtypes in 
the pathophysiology of PD and LID.  Brain biochemical correlates of motor 
complications in PD patients and MPTP-lesioned monkeys will be reviewed (Morin 
et al. 2014a).
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10.2  �Nonhuman Primate Models of L-DOPA-Induced 
Dyskinesias

Similar etiology and functions of a particular human disease are two important char-
acteristics to model a disease. The neurotoxin MPTP closely mimics both behav-
ioral changes and cellular loss as seen in PD (Albanese et  al. 1993). The 
administration of MPTP in primates promotes the development of rigidity, bradyki-
nesia, and tremor, which are the primary motor features of PD. MPTP induces neu-
ronal death of dopaminergic cells through a cascade of intracellular reactions by 
targeting specifically cells expressing the DA transporter (Smeyne and Jackson-
Lewis 2005). MPTP-treated primates remain after nearly 30 years the gold standard 
for the study of PD and LID, as well as to evaluate the efficacy of novel compounds 
(Morin et al. 2014a). Acute and de novo experimental approaches are used to test 
new antiparkinsonian and antidyskinetic pharmacological agents. In acute 
approaches, animals are rendered parkinsonian with the administration of MPTP 
and then chronically treated with L-DOPA for several weeks, until they express 
well-established, constant, and stable LID. Then, the acute effects of compounds 
are tested with the co-administration of L-DOPA, and the motor behavior of the 
animals is evaluated (Grégoire et al. 2009, 2011; Bezard et al. 2004). This approach 
allows rapid testing of new compounds and its tolerability, and animals may be used 
for several studies (Morin et al. 2014a). These animals can also be used in a chronic 
treatment paradigm to measure possible development of tolerance to the investi-
gated drug. In the de novo approach, two or more groups of never treated animals 
are rendered parkinsonian and then treated with L-DOPA alone or in combination 
with the new agent. This approach allows verifying if the compounds tested can 
reduce or prevent the development of LID and evaluating if the duration of the 
L-DOPA effect decreases over time, a motor complication also called “wearing-off” 
(Morin et al. 2012; Samadi et al. 2006; Rylander et al. 2010; Grégoire et al. 2008; 
Hadj Tahar et al. 2004). Moreover, measurements of biochemical changes in the 
brains are made possible if the animals are euthanized at the end of the protocol 
(Morin et al. 2012; Samadi et al. 2008a; Ouattara et al. 2010).

As observed in PD patients, the macaque monkey model will display its own 
pattern of parkinsonian symptoms (Rajput et al. 2009). Indeed, LID involves one or 
more parts of the body, and each of them should therefore be quantified separately 
(Hadj Tahar et al. 2000). Several scales are currently available to measure and quan-
tify dyskinesia and were recently reviewed (Fox et al. 2012). Objective measures of 
bradykinesia with specific motor tasks are also important to separate the antidyski-
netic from antiparkinsonian activity of compounds tested (Jourdain et  al. 2013). 
Finally, monkeys will tend to exhibit a worsening of motor symptoms before and 
after an acute L-DOPA challenge (Kuoppamäki et al. 2002), as seen in some PD 
patients (Evans et al. 2012). Thus monkey model can replicate PD conditions and 
underlines their usefulness in the study of new treatments (Morin et al. 2014a).

Individual titration of L-DOPA is often needed to elicit the same amount of LID 
among the animals (Grégoire et al. 2011; Johnston et al. 2010) even if these animals 
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are equally denervated (Guigoni et al. 2005). However, positive correlations between 
L-DOPA dose and the duration and the severity of LID were observed (Kuoppamäki 
et al. 2007). Moreover, in dyskinetic macaques, the administration of L-DOPA after 
drug holiday lasting few weeks will trigger the same LID as measured before. The 
same observation was made in PD patients in whom L-DOPA was stopped (Goetz 
et al. 1982; Mayeux et al. 1985). This supports the feasibility of acute studies with 
the same animals therefore keeping the number needed and consequently reducing 
the costs.

The reappearance of LID after a withdrawal indicates that permanent or at least 
long-term changes are occurring in the brain basal ganglia and these changes may 
be studied in postmortem brain tissues. Wearing-off, described as shortening in the 
duration of response to L-DOPA with gradual reappearance of parkinsonian symp-
toms, is another important motor side effect of chronic L-DOPA administration 
(Fahn et al. 2004). Parkinsonian patients usually experience such end-of-dose dete-
rioration after several months or years of treatment (Pahwa and Lyons 2009). 
Wearing-off can be also replicated in de novo MPTP monkeys with a shortening of 
the antiparkinsonian effect of L-DOPA as reported after 2  weeks of treatment 
(Morin et al. 2013a). Thus, the MPTP-lesioned monkey model is probably one of 
the best models for studying LID and PD in humans, and this model has brought 
significant advances for the treatment of LID. For example, docosahexaenoic acid 
(DHA) and cabergoline were shown to reduce the severity or delay the development 
of LID in MPTP-lesioned monkey in chronic and de novo treatments (Samadi et al. 
2006; Belanger et al. 2003).

10.3  �Glutamate Neurotransmission in PD and L-DOPA-
Induced Dyskinesias

Glutamate is the brain most abundant excitatory neurotransmitter mediating as 
much as 70% of synaptic transmission in the central nervous system, and its over-
activity is well documented in PD and LID (Klockgether and Turski 1993; Morin 
and Di Paolo 2014; Samadi et al. 2007). Amantadine, a noncompetitive antagonist 
at N-methyl-D-aspartate (NMDA) receptors, is currently the only drug used in the 
clinic shown to reduce the severity of LID in some PD patients without worsening 
parkinsonian symptoms (Meissner et  al. 2011; Verhagen Metman et  al. 1998a; 
Sawada et  al. 2010). Amantadine also improves akinesia, rigidity, and tremor 
(Olanow et al. 2009). However, the antidyskinetic effect of amantadine may be tran-
sient and is often lost within the first year of treatment (Stocchi et al. 2008). In addi-
tion, many PD patients cannot tolerate high doses of amantadine because of 
cognitive impairment, which significantly limits its use (Stocchi et al. 2008).

Riluzole, a nonselective inhibitor of glutamate neurotransmission, was shown to 
reduce the severity of L-DOPA-induced motor complications in 6-hydroxydopamine 
(6-OHDA)-lesioned rat model of PD (Papa et  al. 1995; Marin et  al. 1996;  
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Engber et al. 1994; Marin et al. 2000). Moreover, in the same animal model, the 
glutamate transporter GLT1 was reported to be increased (Oueslati et  al. 2007; 
Robelet et al. 2004). However, riluzole was not effective in humans to reduce the 
expression of LID (Braz et al. 2004; Bara-Jimenez et al. 2006). Despite intensive 
search, no drug other than amantadine has demonstrated in the clinic an antidykine-
sic effect that is not associated with a worsening of parkinsonism (Olanow et al. 
2009) underlying the complexity of brain changes associated with dyskinesias. 
mGlu receptors are topics of more recent interest in PD (Samadi et al. 2007).

Inhibiting glutamate neurotransmission in PD can also be neuroprotective since 
glutamate overactivity is excitotoxic (Planells-Cases et al. 2006; Gardoni and Di 
Luca 2006). Motor complications are in part L-DOPA dose related; protecting DA 
neurons could delay motor complications by using less L-DOPA. Moreover, non-
motor features of PD such as depression and anxiety are common (Olanow et al. 
2009) and could benefit from mGlu receptor drugs such as mGlu5 receptor antago-
nists that show anxiolytic and antidepressant activity (Palucha and Pilc 2007;  
Witkin et al. 2007).

10.4  �Ionotropic Glutamate Receptors and L-DOPA-Induced 
Dyskinesias

iGlu receptors are classified into NMDA, α-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA), and kainate (KA) receptors (Finlay and Duty 
2014; Michaelis 1998; Dingledine et  al. 1999), and they mediate fast excitatory 
neurotransmission, whereas mGlu receptors mediate slower modulatory neuro-
transmission (Samadi et al. 2007). The blockade of NMDA and AMPA receptors 
with specific antagonists was shown to reduce the development of L-DOPA-induced 
motor complications in 6-OHDA-lesioned rat model (Marin et al. 2000). Moreover, 
in both parkinsonian patients with LID (Calon et al. 2003a) and dyskinetic MPTP 
monkeys (Calon et al. 2002; Huot et al. 2013), important increases in striatal NMDA 
and AMPA receptor-binding levels were observed. The NMDA antagonist, CI-1041, 
is reported to prevent the development of LID in parkinsonian monkeys (Hadj Tahar 
et  al. 2004) and associated brain molecular changes (Morissette et  al. 2006). 
Interestingly, in these monkeys, CI-1041 also prevented the increase of striatal 
mGlu5 receptor levels (Ouattara et al. 2011). Clinical trials also show the antidyski-
netic profile of dextrorphan, dextromethorphan, and amantadine, known to block 
NMDA receptors (Meissner et al. 2011; Sawada et al. 2010; Blanchet et al. 1996, 
1997; Verhagen Metman et al. 1998b, 1999; Snow et al. 2000; Rajput et al. 1998; 
Ruzicka et al. 2000; Luginger et al. 2000).

Kynurenic acid antagonizes glycine B site of AMPA, NMDA, and KA receptors 
(Schwarcz and Pellicciari 2002; Hilmas et  al. 2001; Stone 1993, 2000; Moroni 
1999) and inhibits glutamate release (Carpenedo et al. 2001; Nemeth et al. 2006). 
RO 61-8048 an inhibitor of kynurenine hydroxylase activity increases kynurenic 
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acid levels (Stone 2001). In MPTP monkeys, an acute treatment with RO 61-8048 
reduced the severity of LID (Samadi et al. 2005); chronically in de novo treated 
MPTP monkeys, it reduced their development (Grégoire et al. 2008).

Recent studies have explored the role and the implication of NMDA and AMPA 
receptor subunits in rodent and nonhuman primate models of PD in LID including 
the glycine site, NMDA GluN2D subunits, AMPA receptor subunit composition, 
and NMDA/AMPA receptor ratio (Finlay and Duty 2014; Bagetta et  al. 2012; 
Kobylecki et al. 2010; Zhang et al. 2014; Errico et al. 2011; Heresco-Levy et al. 
2013). Nevertheless, significant adverse effects such as cognitive impairment in 
many patients can occur which limit the use of an iGlu receptor antagonist (Stocchi 
et al. 2008b; Stayte and Vissel 2014). Recent efforts were devoted to pharmacologi-
cally manipulate glutamate transmission with selective mGlu receptor ligands.

10.5  �Metabotropic Glutamate Receptors and L-DOPA-
Induced Dyskinesias

The mGlu receptors constitute a family of G-protein-coupled receptors comprising 
eight subtypes that are classified into three groups based on the signal transduction 
pathway, homology of the amino acid sequence, and receptor pharmacology (Pisani 
et al. 2003; Conn and Pin 1997). Group I (mGlu1, 5) couples to Gq and stimulates 
polyphosphoinositide (PI) hydrolysis, while groups II (mGlu2, 3) and III (mGluR4, 
mGluR6, mGluR7, mGluR8) couple to Gi/Go and inhibit increase in cyclic adenos-
ine monophosphate (cAMP) (Conn and Pin 1997). All mGlu receptor subtypes are 
mainly located in the brain basal ganglia, except mGlu6 receptor found primarily in 
the retina (Niswender and Conn 2010) (Fig. 10.1). Presynaptically localized group 
II and group III mGlu receptors are thought to represent the classical inhibitory 
autoreceptor mechanism suppressing excess glutamate release from presynaptic ter-
minals (Schoepp 2001). The majority of group I mGlu receptor, including mGlu5, 
is located postsynaptically on the perisynaptic annulus of dendritic spines, which 
lead to enhanced neuronal excitation (Lujan et al. 1997).

While the term “antagonist” is widely used when applied to ligands that inhibit 
the function of specific mGlu receptors, the more appropriate term is “negative allo-
steric modulator” (NAM), since they inhibit the function of the receptor at a site 
distal to the actual orthosteric ligand-binding domain of the receptor and only in the 
presence of glutamate (Olive 2009). Group I NAM may also function as inverse 
agonists; in cell-based assays they can inhibit the basal (constitutive) activity of 
group I mGlu receptors in absence of any orthosteric agonist or even when the 
glutamate-binding domain is removed or mutated (Olive 2009). Moreover, mGlu 
receptors have a higher affinity for glutamate than iGlu receptors (Conn et al. 2005; 
Marino et al. 2002). On the basis of these considerations, combined with the rich 
distribution and diverse physiological roles of mGlu receptors within the basal gan-
glia, recent attention has been placed on these receptors as alternative targets to 
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modulate glutamate hyperactivity in PD and LID (Conn et  al. 2005). Studies in 
animal models and PD patients indicate that antagonists of group I mGlu receptor, 
especially mGlu5 receptor, could be considered as a suitable therapeutic approach 
in PD and LID.

mGlu5 receptor levels were shown to be increased in the putamen of dyskinetic 
compared to non-dyskinetic MPTP monkeys (Samadi et al. 2008) and parkinsonian 
patients with motor complications (LID or wearing-off) compared to those without 
motor complications (Ouattara et  al. 2011). Moreover, the prototypal mGlu5 
receptor antagonist, 2-methyl-6-(phenylethynyl)pyridine (MPEP), and a more 
selective analog 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine (MTEP) (Carroll 
2008) improved motor performance (Breysse et al. 2002) and showed antidyski-
netic activity in 6-OHDA rat model (Levandis et  al. 2008; Mela et  al. 2007). 
However, the other group I mGlu receptor drugs were not effective (Dekundy et al. 
2006; Rylander et al. 2009). In acute treatment in already dyskinetic MPTP-lesioned 

Fig. 10.1  (a) Schematic representation of the localization of metabotropic glutamate receptor 
subtypes (groups I, II, and II) in the basal ganglia motor circuit. mGlu6 receptor subtype (group 
III) is absent from the figure since it is present only in the retina (Conn et al. 2005; Rascol et al. 
2014; Amalric 2015). In the classical and simplified pathophysiological model (not mentioning the 
collateral projections from the direct to indirect pathway) of the basal ganglia in PD, reduced 
dopamine input by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) 
has a dual effect on the striatal efferents that project to the GPe (indirect pathway) and the GPi 
(direct pathway). Increased or facilitated neuronal activity of the indirect pathway, via decrease of 
the D2 receptor inhibition, increased activity of striatal GABA neurons projecting to the GPe. 
Over-inhibition of GABA neurons in the GPe disinhibits the STN, which, in turn, overdrives inhib-
itory output neurons in the GPi and SNr projecting to the thalamus, overall resulting in a decrease 
in thalamocortical input. (b) Postsynaptic receptors on striatal GABA efferences susceptible to be 
antagonized to counteract excessive corticostriatal glutamate transmission (absence of glutamate 
release regulation by D2 autoreceptors on corticostriatal neurons) seen in PD state in order to 
normalize activities of the direct and indirect pathway. Among these, mGlu5 seems to be a relevant 
target since this receptor acts primarily as modulator of synaptic activity. The double arrow indi-
cates that these receptors can form complexes (heteroreceptor) providing a high degree of com-
plexity and plasticity at different levels of basal ganglia circuitry (Fuxe et al. 2015)
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monkeys, the mGlu5 receptor antagonists MPEP, MTEP, fenobam, and AFQ056 
(mavoglurant) were found effective to reduce the severity of LID (Morin et al. 2010; 
Rylander et al. 2010; Gregoire et al. 2011; Johnston et al. 2010). In a de novo treat-
ment, MPEP reduced the development of L-DOPA-induced motor complications 
(~70%) in a chronic administration of 1  month (Morin et  al. 2013a). Similarly, 
chronic administration of fenobam to drug-naïve monkeys attenuated the develop-
ment of dyskinesia without compromising the antiparkinsonian effect of L-DOPA 
(Rylander et al. 2010). Moreover, the mGlu5 receptor antagonists, mavoglurant and 
ADX-48621 (dipraglurant), were shown to reduce LID in parkinsonian patients and 
were well tolerated without worsening motor symptoms (Addex Therapeutics 2012; 
Stocchi et al. 2013; Berg et al. 2011). For more information the reader is referred to 
a recent review on the use of mGlu5 antagonists for treatment of L-DOPA-induced 
dyskinesias including a comparison the clinical trials with mavoglurant and dipra-
glurant. (Rascol et al. 2014).

Group II mGlu receptor agonists have also proven effective in animal models of 
PD (Pisani et al. 2003). Moreover, an important decrease in mGlu2/mGlu3 receptor 
density in dyskinetic compared to non-dyskinetic MPTP-lesioned monkeys was 
observed (Morin et al. 2013b). Furthermore, changes in mGlu2/mGlu3 receptors 
were only observed in relation to wearing-off in postmortem brains of parkinsonian 
patients (Samadi et al. 2009).

More recently, agonists of group III receptors were also shown effective in rodent 
models of PD (Niswender and Conn 2010). In 6-OHDA-lesioned rat model, the 
administration of mGlu4 receptor agonist Lu AF21934 combined with L-DOPA 
treatment reduced the effective dose of L-DOPA and reduced the development of 
LID (Bennouar et al. 2013). mGlu4 receptor agonists can reduce γ-aminobutyric 
acid (GABA)ergic neurotransmission at striato-pallidal synapse that is overactive in 
PD (Macinnes and Duty 2008; Matsui and Kita 2003).

mGlu8 receptor is expressed at lower levels than mGlu4 and mGlu7 receptors but 
widely distributed in the brain; mGlu7 receptor has low affinity for glutamate only 
becoming active when glutamate levels are high thus serving as a brake for gluta-
mate overstimulation (Niswender and Conn 2010). AMN082, an mGlu7 receptor 
agonist, was shown to reverse motor dysfunction associated with reduced DA activ-
ity in rodent models (Greco et al. 2010). However, the contribution of mGlu7 and 
mGlu8 receptors in LID is not yet reported.

10.6  �The Effect of a Chronic Treatment with MPEP 
on L-DOPA-Induced Dyskinesias and Brain 
Biochemical Borrelates

The mechanisms underlying the development of LID are still unknown, but evi-
dence suggests that LID is the result of maladaptive plasticity at striatal synapses 
(Cenci and Lundblad 2006; Jenner 2008; Calabresi et al. 2010; Iravani et al. 2012). 
Altered dopaminergic and nondopaminergic neurotransmission in the basal ganglia 
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is observed in LID (Blandini and Armentero 2012). Glutamate neurotransmission 
plays a crucial role in the modulation of corticostriatal inputs and striatal output to 
downstream nuclei of the basal ganglia circuit (Blandini and Armentero 2012). 
Increased glutamate transmission involves presynaptic changes, such as increased 
striatal concentration of extracellular glutamate (Dupre et al. 2011) or changes in 
mGlu2/mGlu3 receptors (Samadi et al. 2008; Gregoire et al. 2009). Postsynaptic 
changes in AMPA, NMDA, and mGlu5 receptors also seem to play a major role in 
the development of LID (Duty 2012). mGlu5 receptors are highly expressed in the 
striatum and other basal ganglia nuclei including subthalamic nucleus (STN), sub-
stantia nigra, and globus pallidus (GP) (Ferraguti and Shigemoto 2006). Numerous 
interactions between mGlu5 receptor and NMDA, D1 DA, D2 DA, and A2A adenos-
ine receptors suggest that these receptors may function together as closely associ-
ated signaling partners in the appearance of LID (Samadi et  al. 2007). mGlu5 
receptor activation of NMDA receptors (Pisani et al. 2001) as well as NMDA and 
mGlu5 receptor co-localization is described (Perroy et al. 2008). The blockade of 
mGlu5 receptors leads to antidyskinetic actions, which is associated with normal-
ization of firing of striatal signals (Duty 2012). Moreover, chronic mGluR5 NAM 
treatments are reported to protect DA neurons from MPTP toxicity in mice (Battaglia 
et al. 2004) and monkeys (Masilamoni 2009). Moreover, Norbin, a neuron-specific 
protein, can physically interact in  vivo with mGlu5 receptors, increases the cell 
surface localization of the receptor, and positively regulates mGlu5 signaling while 
maintaining the total amount of this receptor unchanged (Wang et  al. 2009). 
Intracellular mGlu5 receptor was reported to activate signaling cascades distinct 
from cell surface counterparts (Jong et  al. 2009). Thus there is still much to be 
learned on mGuR5 receptors and their regulation.

We reported that development of LID over a month of treatment was lower by 
overall ~70% with addition of MPEP to the L-DOPA treatment in de novo MPTP 
monkeys (Morin et al. 2013a), and this was associated with a normalization of glu-
tamate (Morin et al. 2013b), DA (Morin et al. 2014b), and 5-HT neurotransmission 
(Morin et al. 2015).

More precisely, in the brain basal ganglia of these monkeys (Morin et al. 2013a), 
the addition of MPEP to L-DOPA treatment prevented the increase of postsynaptic 
mGlu5, NMDA NR1/NR2B, and AMPA glutamate receptors, while this treatment 
prevented the decrease of mGlu2/mGlu3 presynaptic autoreceptors (Morin et  al. 
2013b). The mGlu5 receptor subtype is highly expressed in striatal medium spiny 
neurons (Conn et al. 2005; Testa et al. 1994; Paquet and Smith 2003) and plays a 
key role in modulating the responses mediated by NMDA receptors and L-type 
calcium channels (Gubellini et  al. 2004). In addition, an antagonistic interaction 
between the D2 DA receptor and mGlu5 receptors is reported (Fuxe et al. 2008). In 
rodent models of PD, striatal molecular changes relevant to LID are reported to be 
reversed by MPEP or MTEP, including delta FosB protein (Jimenez et al. 2009), 
prodynorphin mRNA (Mela et al. 2007), glutamic acid decarboxylase (GAD65 and 
GAD67) mRNA (Yamamoto and Soghomonian 2009), and phosphorylated extra-
cellular signal-regulated kinases 1 and 2 (ERK1/ERK2) protein levels (Rylander 
et  al. 2009). Hence, mGlu5 receptor antagonists reverse hyperactive GABAergic 
transmission in the basal ganglia in rodent models of PD and its downstream 
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molecular changes associated with LID. Hence, mGlu5 receptor antagonist reversed 
hyperactive glutamate transmission in the basal ganglia of a primate model of PD 
thus showing the widespread normalization activity of mGlu5 receptor antagonists 
in the basal ganglia in PD animal models (Morin et al. 2013a).

Moreover, a chronic treatment with MPEP prevented the decrease of D2 DA recep-
tors, but it did not affect the D1 DA receptors (Morin et al. 2014b). MPEP also pre-
vented the increase of striatal preproenkephalin/preprodynorphin mRNA levels and 
phosphorylated proteins ERK1/ERK2 as well as protein kinase B (Akt) and glycogen 
synthase kinase-3 (GSK3β) (Morin et al. 2014b). Denervation-induced supersensi-
tivity of D1 and D2 receptors was initially recognized as a plausible mechanism of 
LID (Creese et al. 1977; Lee et al. 1978). Numerous studies measured the density of 
D1 and D2 receptors in the brain of human and animal models, but no general consen-
sus emerged. Postmortem studies have shown that striatal DA receptors particularly 
the D2 subtype were increased in PD patients (Lee et al. 1978; Guttman et al. 1986) 
or unchanged (Quik et al. 1979; Rinne et al. 1981), while both D1 and D2 receptor 
subtypes were increased in MPTP monkeys (Falardeau et  al. 1988; Bedard et  al. 
1986; Gagnon et al. 1990). Administration of L-DOPA was shown to reverse these 
increases in PD patients (Lee et al. 1978; Guttman et al. 1986) and primates in many 
studies (Falardeau et al. 1988; Gagnon et al. 1990; Berretta et al. 1997). No general 
consensus also emerged for DA receptor mRNA ( Goulet et al. 1997, 2000; Morissette 
et al. 1996; Aubert et al. 2005; Herrero et al. 1996). These reports support that LID 
are more complex than hypersensitivity due to a simple increase in the density of 
striatal DA receptors and its mRNA. MPEP did not affect D1 receptor levels and its 
mRNA but was associated with an increased in D2 receptors levels, its mRNA, and its 
associated signaling proteins (Morin et al. 2014b). Furthermore, mGlu receptors also 
have the potential to regulate the mitogen-activated protein kinase (MAPK) pathway. 
It has been shown that intracaudate injection of a group I mGlu receptor agonist 
upregulates ERK1/ERK2 phosphorylation (Choe and Wang 2001). mGlu5 receptor 
stimulation was also reported to lead to activation of other signaling pathways impor-
tant for cell survival/proliferation, such as ERK and Akt (Mao et al. 2005).

The antidyskinetic effect of MPEP was associated with lower levels of 5-HT2A 
(Morin et al. 2015) and 5-HT1B (Morin et al. 2015) serotonin receptors, while 5-HT1A 
receptors and brain serotonin transporter (SERT) remained unaffected (Morin et al. 
2015). LID are probably the result of an abnormal adaptation in the striatum due to 
faulty interaction between glutamate/5-HT and DA inputs in the nigrostriatal path-
way. 5-HT neuron terminals in the striatum are suggested to participate in the mech-
anisms of action of L-DOPA (Navailles and De Deurwaerdere 2012). 5-HT axon 
terminals can release DA, which is considered as a false neurotransmitter and is 
probably one of the main presynaptic determinants of LID (Carta et  al. 2007). 
Multiple changes in the basal ganglia glutamate and serotoninergic systems and their 
specific receptors have been observed (Huot et al. 2013). 5-HT receptor drugs are 
reported to reduce LID in PD patients (Fox et al. 2009), but changes in 5-HT activity 
and 5-HT receptors in the brain caused by PD and its pharmacological treatment are 
not completely understood, and further studies are needed.

Stimulation of 5-HT1B receptors was also shown to reduce dyskinesias induced 
by D1 DA receptor agonists (Jaunarajs et al. 2009). This observation suggests that in 

N. Morin and T. Di Paolo



195

order to prevent activation of D1-expressing neurons, an increase of the inhibitory 
5-HT1B heteroreceptors might represent another compensatory phenomenon to pre-
vent activation of the direct pathway neurons, thought to be involved in the expres-
sion of LID (Greengard 2001). Moreover, an increase of 5-HT1B autoreceptors 
might also play a crucial role to regulate or inhibit the release of DA by 5-HT axon 
terminals. 5-HT axon terminals have been suggested to release DA in a nonphysio-
logical manner following L-DOPA treatment, leading to the development of LID 
(Carta et al. 2007). Hence, 5-HT neurons can take up L-DOPA and convert it into 
DA where it is sequestered and stored for subsequent release (Maeda et al. 2005). 
However, 5-HT neurons lack a DA transporter and D2 DA autoreceptors, thus lead-
ing to excessive nonphysiological DA efflux that promotes LID (Navailles and De 
Deurwaerdere 2012). Hence, multiple changes in the basal ganglia dopaminergic, 
glutamate and serotoninergic systems, and their specific receptors have been 
observed such as modulation in the expression and the activity of subtypes of recep-
tors, G proteins, effectors, transcription factors, and protein kinases (Samadi et al. 
2007; Huot et al. 2013).

Moreover, functional interactions between 5-HT1B receptors and GABA should 
also be considered in the molecular mechanisms of LID.  It was reported that 
L-DOPA administration or stimulation of D1 receptors in 6-OHDA-lesioned ani-
mals increases GABA levels in the substantia nigra pars reticulata (Aceves et al. 
1992; Ochi et al. 2004; Yamamoto et al. 2006). GABA concentrations were reported 
to be high in the striatum of PD patients compared to controls (Kish et al. 1986), and 
changes in GABAA and GABAB receptor levels were also previously observed in 
the same PD patients, as presented in the present study, with motor complications as 
compared to those without and controls (Calon et al. 2003b). Hence, 5-HT1B inhibi-
tory receptors located on GABAergic axons of striatal neurons are probably impli-
cated in the alterations of GABA receptors and GABA concentrations measured in 
these brain areas (Castro et al. 1998). Hence, activation of 5-HT1B receptors could 
reduce GABA release (Morikawa et al. 2000; Stanford and Lacey 1996). Thus, this 
upregulation of 5-HT1B receptors in the basal ganglia of dyskinetic monkeys and PD 
patients with motor complications could be a compensatory mechanism in order to 
normalize GABA concentrations.

Thus, these reported results suggest that the prevention of the development of 
motor complications with an mGlu5 receptor antagonist was associated with the 
normalization of important markers and receptors of glutamate, DA, and 5-HT neu-
rotransmission, supporting the therapeutic use of an mGlu5 receptor antagonist to 
treat LID.

10.7  �Conclusion

Overall, these studies suggest that glutamate receptor stimulation is involved in 
the pathogenesis of L-DOPA-induced motor complications in PD, and some recep-
tor subtypes, such as mGlu5 receptor subtypes, are potential selective targets for 
treatment of these adverse effects (Blanchet et  al. 1997; Chase and Oh 2000; 
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Verhagen Metman et al. 2000; Montastruc et al. 1997). mGlu5 receptor antagonists 
are very promising drugs for the management of various brain disorders, and one of 
its potential applications is LID therapy. Therefore, it is essential to know the long-
term behavioral effects of this class of compounds, and ensuing possible biochemi-
cal adaptations of the brain, it is critical to learn as much as possible from MPTP 
primate models, which closely mimic human PD conditions (Morin et al. 2014a). 
The mGlu5 antagonist treatment in parkinsonian primates and rats affects not only 
glutamate receptors but also DA and 5-HT receptors. This may be indirect by restor-
ing glutamate neurotransmission but could also involve the direct interactions of the 
trio mGlu5-D2-A2A receptor cross talk (Fiorentini et  al. 2013; Fuxe et  al. 2007). 
Moreover, supporting a close mGlu5-A2A receptor interaction, MTEP treatment was 
reported to decrease mice brain A2A receptor-specific binding and regulate the con-
ditioned effects of cocaine (Brown et al. 2012). The implication of these receptor 
interactions in mental and neurodegenerative diseases and more specifically in the 
development and expression of PD symptoms and LID needs further investigation 
to find novel targets and, ultimately, novel pharmacological treatments.
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