
Reasoning About Temporal Faults Using
an Activation Logic

André Didier(B) and Alexandre Mota

Cidade Universitária, Av. Jornalista Anibal Fernandes,
s/n, Recife, PE 50740-560, Brazil

alrd@cin.ufpe.br

Abstract. Faults modelling is essential to anticipate failures in criti-
cal systems. Traditionally, Static Fault Trees (SFTs) are employed to
this end, but Temporal and Dynamic Fault Trees (TFTs and DFTs)
are gaining evidence due to their enriched power to model and detect
intricate propagation of faults that lead to a failure. SFTs structure can
be abstracted to Boolean expressions. An algebra with an operator to
express order is needed to abstract TFT and DFT structures. These
expressions for SFT, TFT, and DFT are called structure expressions.

Architectural modelling languages, such as Architecture and Analy-
sis Design Language (AADL), have been used to model components and
systems relations, including modelling of faults, errors, failures, and fault
propagation. AADL tools can perform Static Fault Tree Analysis, for the
faults modelled using AADL’s Error Model Annex.

In previous work, we showed an Algebra of Temporal Faults to analyse
the order of occurrence of faults extending Boolean algebra to perform
analysis for Temporal and Dynamic fault trees. In this work, we show a
parametrized logic to express nominal and erroneous behaviours, includ-
ing faults modelling, provided an algebra and a set of operational modes.
We show how to use this logic together with the Algebra of Temporal
Faults to analyse the occurrence of faults as well as their order and prop-
agation. The logic created in this work is intended to help analysts to
consider all possible situations in complex expressions with order-related
operators, avoiding to miss some subtle (but relevant) combination.

Keywords: Activation logic · Algebra of temporal faults · Dynamic
fault trees · Boolean algebra

1 Introduction

The development process of critical control systems is based essentially on the
rigorous execution of guides and regulations [1,4,10,11]. Specialised agencies
(like FAA, EASA and ANAC in the aviation field) use these guides and regula-
tions to certify such systems.

Safety plays a crucial role on critical systems and it is the responsibility
of the safety assessment process. ARP-4761 [1] defines several techniques to

c© Springer International Publishing AG 2018
S.H. Rubin and T. Bouabana-Tebibel (eds.), Quality Software Through Reuse
and Integration, Advances in Intelligent Systems and Computing 561,
DOI 10.1007/978-3-319-56157-8 13

288 A. Didier and A. Mota

perform safety assessment. One of them is Fault Tree Analysis (FTA). It is a
deductive process that uses trees to model faults and their dependencies and
propagation. In such trees, the premises are the leaves (basic events) and the
conclusions are the roots (top events). Intermediary events use gates to combine
basic events and each kind of gate has its own combination semantics definition.
For example, the most traditional gates are OR and AND. They combine the
events as at least one shall occur and all shall occur, respectively. To analyse
fault trees, their structures are then abstracted as Boolean expressions called
structure expressions. The analysis with these two traditional gates uses a well-
defined algorithm based on Shannon’s method—which originated the Binary
Decision Diagrams (BDDs) [3,6]—to obtain minimal cut sets from the structure
expressions and a general formula to calculate the probability of top events.

Besides the traditional OR and AND gates, the Fault Tree Handbook defines
other gates. For example the Priority-AND gate, which considers the order of
occurrence of events. Although the work reported in [24] defines these new gates,
there is no algorithm to perform the analysis of trees that contain such new gates.
This motivated the introduction of two new kinds of fault trees: Dynamic Fault
Trees [9] (DFTs) and Temporal Fault Trees [26,27] (TFTs). These variant trees
can capture sequence dependencies of fault events in a system. The difference
from Temporal Fault Tree [26,27] (TFT) to Dynamic Fault Tree [9] (DFT) is
that Temporal Fault Trees [26,27] (TFTs) use temporal gates directly, while
Dynamic Fault Trees [9] (DFTs) do not—Dynamic Fault Trees [9] (DFTs) gates
are an abstraction of temporal gates. To differentiate traditional fault trees from
the other two, we will call traditional fault trees as Static Fault Trees (SFTs).

Both TFT and DFT also use structure expressions ([19,27], respectively)
to abstract the tree to enable their analyses. Despite some limitations related
to spare gates [19], the structure expressions used in TFTs and DFTs can be
formulated in terms of a generic order-based operator.

The NOT operator is absent in the algebras showed in [16,18,25,27]. They
conceptually remove such an operator to avoid incorrect analysis, as there is no
consensus about the relevance of its use: (i) it can be misleading, generating non-
coherent analysis [22], or (ii) it can be essential in practical use [5]. The algebra
created in our previous work [8] defines the NOT operator and allows its use.

In structure expressions, the variables represent fault events and the expres-
sions represent a top event, an operational mode of a system. The combination
of all operational modes is expected to describe the complete behaviour of a
system. For example, if no fault occurs, then the system is in a nominal state;
if all faults occur, then the system is definitely in a faulty state. Possibilities
in between vary accordingly to the fault tolerance strategies employed in a sys-
tem. The analysis of all possibilities is what we call completeness analysis. For
Boolean algebra, it is equivalent to verify if all rows in a truth table (in which
the variables are fault events) are considered in at least one structure expression.

Architecture Analysis and Design Language [12] (AADL) is a standard lan-
guage to model (among other features) system structure and component inter-
action. AADL has several tools to perform different analyses to obtain SFT to

Reasoning About Temporal Faults Using an Activation Logic 289

perform FTA. But AADL’s assertions framework does not express order explic-
itly as needed for TFT and DFT analyses.

On the analyses of systems and its constituents, there is a distinction of
operational modes and error events. Operational modes refer to the behaviour
that is perceived on the boundaries of a system. Error events, on the other
hand, represent the behaviour detected in a constituent of a system. Such error
events may relate to an operational mode, but not necessarily. We abstract these
differences and leave the distinction as a parameter. In this article, we refer to
such a set as operational modes.

Another concern, left untreated in the literature, is the undesirable possibility
of non-determinism in structure expressions. What guarantees can we provide to
detect non-determinism in erroneous behaviour? For example, if a commission
is observed when fault A is active and an omission is observed when faults
A and B are active, then the system may behave non-deterministically with a
commission or omission when both A and B are active (A and B implies A). In
this work we show three different approaches to check the non-determinism: (i)
verify its existence, (ii) indicate which set of operational modes are active for a
combination of faults, or (iii) what is the combination of faults that activates a
set of operational modes.

Writing and analysing expressions with order-related operators is more com-
plex than analysing expressions with Boolean operators only. In this work, we
define a formal Activation Logic (AL) that works together with an inner algebra
to perform analysis of system structure and component interaction with a focus
on fault modelling and fault propagation, tackling the complexity introduced
by order-related operators. AL receives an algebra and the set of operational
modes of a system as parameters. The choice of algebra defines which struc-
ture expressions can be obtained: if Boolean algebra is passed as a parameter,
the AL can generate structure expressions with Boolean operators (SFT); if the
Algebra of Temporal Faults [8] (ATF) is passed as a parameter, the AL can gen-
erate structure expressions with order-related operators (TFT and DFT). The
AL requires that the inner algebras provide a set of properties (tautology and
contradiction) and semantic values. The use of the NOT is essential: besides its
use in expressions, we use the complement to normalise the expressions to pro-
vide healthy expressions. To obtain critical event expressions used in FTs and to
denote faults propagation, the AL provides a predicates notation and verification
of non-determinism.

This paper is organised as follows: in Sect. 2 we show the concepts used as
the basis for this work. Section 3 presents the proposed AL, and Sect. 4 the case
study and the application of the proposed AL. Finally, we present our conclusions
and future work in Sect. 5.

2 Background

Faults modelling depends on which analyses we want to perform. For instance,
in fault trees, even if a fault can be repaired, it is considered as a non-

290 A. Didier and A. Mota

repairable fault. A fault tree is a snapshot1 of a system’s, subsystem’s or com-
ponent’s topology of faults. The time relations on fault events in TFTs and
DFTs allows the analysis of different configurations (or snapshots) of a system,
subsystem or component. We discuss these time relations in Sect. 2.1.

Structure expressions are used to analyse fault trees. In general, a struc-
ture expression is obtained from gates semantics and basic events. Basic events
become variables and gates become operators (a gate may become one or more
operators). In Sect. 2.2 we explain these structure expressions for SFTs, TFTs
and DFTs.

The AL proposed in this work depends on algebraic rules and relies on a
complement operator. Our previous work showed the ATF that extends the
Boolean algebra, thus providing the NOT operator and some properties and
rules to use the algebra. In Sect. 2.3 we show these properties and rules used in
this work.

2.1 Time Relation of Fault Events

The most general case for time relations is to consider that each fault event has a
continuous time duration. They are the basis on how fault events discretization
are defined. The point of view in this work is the analysis of the effects caused
by a combination of faults in a snapshot of a system state. In Fig. 1 we show
all possibilities of events relations in a continuous timeline (from A to B; the
converse relation is similar):

a. A starts before and ends after B has started, but before B has ended;
b. A starts before B and ends after B has ended (A contains B);
c. B starts after A, but they end at the same time;
d. A and B start at the same time, but A ends before B;
e. A and B start and end at the same time;
f. A starts before B and ends when B starts.
g. A starts and ends before B starts;

Considering that fault occurrence corresponds to the start of a fault event
and its duration, from Fig. 1 we clearly identify which event comes first: A comes
before B, except in the cases (d) and (e), where they start exactly at the same
time. If fault events are independent (they are not susceptible to have a common
cause) then the probability of their occurrences starting at the same time is very
low. The relations (f) and (g) shows the case that the system was repaired, thus
A is not active when B starts. In Sect. 2.3 we show that the ATF abstracts the
relation of events in continuous time as an exclusive before relation, based on
fault occurrence (it is similar—at least implicitly—to what is reported in [17,27]).

1 Whether a top event indeed causes a catastrophic or major failure is out of the scope
of this paper; we consider that, if it is possible that such failure occurs, then it will.

Reasoning About Temporal Faults Using an Activation Logic 291

Fig. 1. Relation of two events with duration

2.2 Structure Expressions

Structure expressions in FTA are defined in terms of set theory, using symbols
for fault events occurrence. If a fault event symbol is in a set, then it means that
fault has occurred. A set is a combination of fault events that causes the top-
level event of a tree. A structure expression of a tree is denoted by a set of sets
of fault event combinations. The OR gate becomes the union operator between
sets and the AND gate, the intersection. For example, if a system contains fault
events a, b, and c, fault trees for this system contain at most all these three
events. The occurrence of the fault event a is denoted by a set of sets A, which
contains the following sets:

1. {a}: only a occurs;
2. {a, b}: a and b occur;
3. {a, c}: a and c occur;
4. {a, b, c}: all three events occur.

The fault tree in Fig. 2 contains only two events and the resulting structure
expression for this tree is the expression A ∩ B (TOP), where A and B are the
sets of sets that contain a and b, respectively. The resulting combinations for
TOP are {a, b} and {a, b, c} (fault events a and b occur in all possibilities).

After obtaining structure expressions, the next step is to reduce the expres-
sions to a canonical form to obtain the minimal cut sets. Minimal cut sets are
the sets that contain the minimum and sufficient events to activate the top-level
failure. That is, minimal cut sets are the smallest sets of fault events that, if
all occur, cause the top-level failure to occur. Probabilistic analysis is then per-
formed on these events to obtain the overall probability of occurrence of the top-
level event. The Fault Tree Handbook shows an algorithm based on Shannon’s
method to reduce structure expressions to obtain minimal cut sets. The Boolean
expression of the tree shown in Fig. 2 is TOP = A ∧ B.

Structure expressions are also present in TFTs [25,27,28], through the
Pandora2 methodology. These expressions use the FTA operators OR and AND,
2 Pandora stands for: P-AND-ORA, which translates to Priority AND, Time.

292 A. Didier and A. Mota

TOP

a b

AND

Fig. 2. Very simple example of a fault tree

and three new operators related to events ordering: Priority-AND (PAND),
Priority-OR (POR), and Simultaneous-AND (SAND). The semantics of the
PAND in TFTs is similar to the semantics of the Priority-AND described in
the Fault Tree Handbook. To avoid ambiguous expressions, the semantics in
TFTs is stated in terms of natural numbers (instead of Boolean values), using a
sequence value function. For every possibility it assigns a sequence value to each
fault event. For example, if event A occurs before event B, then the sequence
value of A is lower than the sequence value of B, and one formula to express this
is A PAND B.

In TFTs, an invariant on sequence values is that there are no gaps for assigned
values higher than zero. For example, if faults A and B occur at the same time
and there are only these two events, then they should both be assigned value 1.
On the other hand, if A occurs before B, then the assigned values are 1 and 2,
respectively. Value zero means that the event is not active in the combination.
Table 1 shows the semantics of all TFT operators with sequence values.

Table 1. TFT operators and sequence value numbers

A B AND OR PAND POR SAND

0 0 0 0 0 0 0

0 1 0 1 0 0 0

1 0 0 1 0 1 0

1 1 1 1 0 0 1

1 2 2 1 2 1 0

2 1 2 1 0 0 0

The reduction of TFT expressions is achieved using dependency trees. In a
dependency tree, if all children of a tree node are true, then the node is also
true. Conversely, if a node is true, then all its children are also true. An issue
with dependency trees is that they grow exponentially. Accordingly to the work
reported in [28], it is already infeasible to deal with seven fault events in TFTs.
They use an alternative solution based on modularisation and algebraic laws [27]
to tackle this.

Reasoning About Temporal Faults Using an Activation Logic 293

Structure expressions are also used in DFTs. In [16,17,20] fault events occur
in a specific time and are instantaneous, stated through a date-of-occurrence
function. As the date-of-occurrence function is stated in continuous time, the
probability of two events occurring at the same time is negligible. In fact, useful
information is obtained from the possibilities of relation in time of the occurrence
of the events.

The work reported in [16,17,20] describe an algebra with operators OR and
AND, and three new operators to express events ordering: (i) non-inclusive-
before, (ii) simultaneous, and (iii) inclusive-before. The non-inclusive-before and
the simultaneous operators are similar to TFT’s POR and SAND operators,
respectively (although in [16,17,20] the only true result with the simultaneous
operator happens if the operands are the same). The inclusive-before is a com-
position of the non-inclusive-before and the simultaneous operators.

The work reported in [23,29] shows the top-level events probability calcula-
tion for DFTs by converting them to a simplified version, using only order-based
operators. Such a simplified version, which is based on a modified BDD that
includes an order-based operator, creates Sequential BDDs that are used to per-
form the probabilistic analysis.

From the previous explanation, we can conclude that an order-based operator
is present on the analyses of TFTs and DFTs. Each approach describes a new
algebra (without the NOT operator) based on different representations of events
ordering with similar theorems to reduce expressions to a canonical form.

2.3 The Algebra of Temporal Faults

Recall from Sects. 2.1 and 2.2 that fault events are independent on one another
if the events are not susceptible to a common cause. Also, the simultaneity
of events is probabilistically impossible, so one event occurs exclusively before
or after another one, inducing an order of occurrence of events. Moreover, the
analysis of fault events considers that they have started and are active, as a
snapshot of a system (faulty) state. Thus, the ATF is not used to analyse the
effects of a repairable fault. For example, the cases that are possible to analyse
with the theory shown here are (a), (b) and (c) of Fig. 1, in Sect. 2.1.

The set-theoretical abstraction of structure expressions for SFTs
[24, pp. VI-11] is very close to a Free Boolean Algebra [13, pp. 256–266] (FBA),
where each generator in FBA corresponds to a fault event symbol in fault trees.
In FBAs, as generators are “free”, they are independent on one another and
Boolean formulas are written as a set of sets of possibilities, which are similar
to the structure expressions of SFTs.

The set of sets for FBAs is the denotational semantics for Boolean algebras.
We use the concept of generators to define the denotational semantics of ATF
using a set of lists without repetition (distinct lists). The choice of lists is because
this structure inherently associates a generator to an index, making implicit
the representation of order. These lists are composed by non-repeated elements
because the events in fault trees are non-repairable, thus they do not occur more
than once.

294 A. Didier and A. Mota

In the following, we show the definitions and laws of the ATF used in Sect. 4.
To avoid repetition, let S, T and U be sets of distinct lists. A list xs is distinct
if it has no repeated element. So, if x is in xs, then it has a unique associated
index i and we denote it as x = xsi.

The ATF form a free algebra, similarly to FBAs. Infimum and Supremum
are defined as set intersection (∩) and union (∪) respectively. The order within
the algebra is defined with set inclusion (⊆).

To distinguish the permutations that are not defined in FBA, we need a new
operator. The definition of XBefore (→) is given in terms of list concatenation:

S → T = {zs|∃xs, ys • (setxs) ∩ (set ys) = {}
∧xs ∈ S ∧ ys ∈ T ∧ zs = xs@ys} (1)

where the set function returns the set of the elements of a list, and @ concate-
nates two lists.

In some cases it is more intuitive to use the XBefore definition in terms of
lists slicing because it uses indexes explicitly. Lists slicing is the operation of
taking or dropping elements, obtaining a sublist. In slicing, the starting index is
inclusive, and the ending is exclusive. Thus the first index is 0 and the last index
is the list length. For example, the list xs[i..|xs|] is equal to the xs list, where |xs|
is the list length. We use the following notation for list slicing:

xs[i..j] = starts at i and ends at j − 1 (2a)
xs[..j] = xs[0..j] (2b)
xs[i..] = xs[i..|xs|] (2c)

List slicing and concatenation are complementary: concatenating two con-
secutive slices results in the original list:

∀i • xs[..i]@xs[i..] = xs (3)

There is an equivalent definition of XBefore with concatenation using lists
slicing:

S → T = {zs|∃i • zs[..i] ∈ S ∧ zs[i..] ∈ T} (4)

A variable in ATF is defined by one generator, and denotes its occurrence:

varx = {zs|x ∈ zs} (5)

The following expressions are sufficient to define the ATF in terms of an
inductively defined set (atf):

varx ∈ atf Variable (6a)
S ∈ atf =⇒ −S ∈ atf Complement, Negation (6b)

S ∈ atf ∧ T ∈ atf =⇒ S ∩ T ∈ atf Intersection, Infimum (6c)
S ∈ atf ∧ T ∈ atf =⇒ S → T ∈ atf XBefore (6d)

Reasoning About Temporal Faults Using an Activation Logic 295

Following the definitions, the expressions below are also valid for atf (using
DeMorgan laws):

UNIV ∈ atf Universal set, True (6e)
{} ∈ atf Empty set, False (6f)

S ∈ atf ∧ T ∈ atf =⇒ S ∪ T ∈ atf Union, Supremum (6g)

The following expressions are valid for generators a and b and are sufficient
to show that the generators are independent:

var a = var b ⇐⇒ a = b (7a)
var a �⊆ −var b (7b)
var a �= −var b (7c)
−var a �⊆ var b (7d)
−var a �= var b (7e)

Expressions (6a) to (6g) and (7a) to (7e) imply that the ATF without the
XBefore operator (1) forms a Boolean algebra based on sets of lists. And this is
also equivalent to an FBA with the same generators.

Note that, as the ATF is a conservative extension of a Boolean algebra, the
NOT operator is defined here, so expressions in the ATF can use it.

In the following section, we show properties as a generalisation of the pre-
conditions of laws related to XBefore.

Temporal properties (tempo). Temporal properties give a more abstract and
less restrictive shape on the XBefore laws. These properties avoid the require-
ment that every operand of XBefore should be a variable (5).

The first temporal property is about disjoint split. If the first part of a list
is in a given set, then every remainder part is not. So, if a generator is in the
beginning of a list, it must not be at the ending (and vice-versa).

tempo1S = ∀i, j, zs • i ≤ j =⇒ ¬ (
zs[..i] ∈ S ∧ zs[j..] ∈ S

)
(8a)

tempo2S = ∀i, zs • zs ∈ S ⇐⇒ zs[..i] ∈ S ∨ zs[i..] ∈ S (8b)

tempo3S = ∀i, j, zs • j < i =⇒ (
zs[j..i] ∈ S ⇐⇒ zs[..i] ∈ S ∧ zs[j..] ∈ S

)

(8c)

tempo4S = ∀zs • zs ∈ S ⇐⇒ (∃i • zs[i..(i+1)] ∈ S) (8d)

The second temporal property is about belonging to one sublist in the begin-
ning or in the end. If a generator is in a list, then it must be at the beginning
or at the ending.

The third temporal property is about belonging to one sublist in the middle.
If a generator belongs to a sublist between i and j, then it belongs to the sublist
that starts at first position and ends in j and to the sublist that starts at i and
ends at the last position (both sublists contain the sublist in the middle).

Finally, if a generator belongs to a list, then there is a sublist of size one that
contains the generator.

296 A. Didier and A. Mota

Variables have all four temporal properties. For a generator x, the following
is valid:

tempo1 (varx) ∧ tempo2 (varx) ∧ tempo3 (varx) ∧ tempo4 (varx)

Other expressions also meet one or more temporal properties:

tempo1S ∧ tempo1T =⇒ tempo1 (S ∩ T) (9a)
tempo3S ∧ tempo3T =⇒ tempo3 (S ∩ T) (9b)
tempo2S ∧ tempo2T =⇒ tempo2 (S ∪ T) (9c)
tempo4S ∧ tempo4T =⇒ tempo4 (S ∪ T) (9d)

XBefore Laws. We now show some laws to be used in the algebraic reduction
of ATF formulas. The laws follow from the definition of XBefore, from events
independence, and from the temporal properties.

We define events independence (��) as the property that one operand does
not imply the other. For example, we need to avoid that the operands of XBefore
are var a and var a ∪ var b (it results in {}, see (11e)).

S��T = ∀i, zs • ¬ (
zs[i..(i+1)] ∈ S ∧ zs[i..(i+1)] ∈ T

)
(10)

The absence of occurrences ({}, the empty set of atf) is a “0” for the XBefore
operator.

{} → S = {} left-false-absorb (11a)
S → {} = {} right-false-absorb (11b)

(S → T) ∪ S =S left-union-absorb (11c)
(T → S) ∪ S =S right-union-absorb (11d)

tempo1S =⇒ S → S = {} non-idempotent (11e)
tempo1S ∧ tempo1T∧

tempo1U =⇒
S → (T → U) =(S → T) → U associativity (11f)

The XBefore is absorbed by one of the operands: if one of the operands may
happen alone, thus the order with any other operand is irrelevant. However,
an event cannot come before itself, thus XBefore is not idempotent Finally, the
XBefore is associative.

To allow formula reduction we need the relation of XBefore to the other
Boolean operators. We use the XBefore as operands of union and intersection.

tempo1S ∧ tempo1T =⇒
(S → T) ∩ (T → S) = {} inter-equiv-false (12a)

tempo1−4S ∧ tempo1−4T ∧ S��T =⇒
(S → T) ∪ (T → S) =S ∩ T union-equiv-inter (12b)

Reasoning About Temporal Faults Using an Activation Logic 297

As the XBefore is not symmetric, the intersection of symmetrical sets is empty.
The union of the symmetric is a partition of the intersection of the operands.

There are other laws shown in [8]. We are still working on a syntactical
reduction for tautology and contradiction. Such an analysis for Boolean algebra
uses binary trees for formula reduction. Our initial studies show that the ATF
relies on a ternary tree. Besides such a syntactical analysis, we only need those
laws shown in this section.

3 The Activation Logic

The Activation Logic (AL) proposed in this work emerges from the need to
analyse the behaviour of a system when a subset of the faults is active during
the same time period, and to provide completeness analysis of system behaviour.
There are at least two strategies to use AL to obtain structure expressions of
SFT, TFT, or DFT: (i) model systems directly in AL, and (ii) obtaining oper-
ational mode expressions extracted from failure traces, as shown in the work
reported in [8]. In approaches as those reported in [16,27], behavioural com-
pleteness is left for the analyst. Using tautology and the indication of undefined
nominal values, we ensure that no situation is left forgotten.

The AL associates: (i) an operational mode, and (ii) the expression of fault
events that activates the operational mode or error event. The expressions of
fault events can be written in any algebra that provides tautology and contra-
diction properties. Thus, AL is parametrized by: (i) an algebra that provides at
least tautology and contradiction, and (ii) operational modes. Figure 3 depicts
an overview of AL.

We summarise the properties of the AL as follows:

1. No expression predicate is a contradiction: there are no false predicates in
activation expressions;

2. The predicates in the terms of an expression consider all possible situations:
expression tautology;

3. There are no two terms with exactly the same operational mode: all expression
terms are related to a unique operational mode.

These properties form the healthiness conditions [14] of an expression in the AL.
We show the general form of the AL to model faults in Sect. 3.1, the health-

iness conditions to normalize expressions in Sect. 3.2, how to identify non-
determinism in an expression in Sect. 3.3, and the predicates notation to analyse
systems and model fault propagation in Sect. 3.4.

3.1 The Activation Logic Grammar

Each term in an expression is a pair of a predicate and an operational mode.
The predicate is written in either Boolean algebra, ATF, or any algebra that
provides these properties: tautology and contradiction. We assume that the set

298 A. Didier and A. Mota

AL(,)
{ {

Operational
Mode

+ Omission
+ Commission
+ Early
+ Late
etc.

Non-determinism

Completeness

Predicates &
structure expr.

Algebra of
Temporal
Faults

+ XBefore
> tautology
> contradiction

Boolean
Algebra

Inner
Algebra

+ infimum
+ supremum
+ bottom
+ top
+ complement
> tautology
> contradiction

Fig. 3. Activation Logic (AL) overview

of possible faults on a system is finite and that each variable declared in a
predicate represents a fault event.

The operational mode has two generic values: (i) Nominal, and (ii) Failure.
Nominal values either determine value, or an undefined value (in this case, the
constant value “undefined” is assumed). Failure values denote an erroneous
behaviour, which can be a total failure (for example, signal omission) or a failure
that causes degradation (for example, a signal below or above its nominal range).
The choice of the operational modes depends on the system being analysed and
its definition is generic and is left for the analyst. For the AL, it is sufficient to
specify that it is an erroneous behaviour.

The grammar is parametrized by the syntax of an algebra (Algebra) and
a set of operational modes (OperModes). The initial rules of the grammar are
defined as follows:

AL(Algebra, OperModes) = TERM(Algebra, OperModes)
| TERM(Algebra, OperModes)

‘|’ AL(Algebra, OperModes)
TERM(Algebra, OperModes) = ‘(’ Algebra ‘,’ OM(OperModes) ‘)’
OM(OperModes) = ‘Nominal’ NominalValue

| ‘Failure’ OperModes
NominalValue = ‘undefined’ | Number
Number = Integer | Bool | Decimal

The denotational semantics of the expressions in AL is a set of pairs. The predi-
cate in each term of an expression depends on the semantics of the inner algebra.
Thus the predicate evaluates to either true (�) or false (⊥) depending on the

Reasoning About Temporal Faults Using an Activation Logic 299

valuation in the algebra. In what follows we show a sketch of the denotational
semantics of AL.

(P1, O1) �→ {(P1, O1)}
(P1, O1) | (P2, O2) �→ {(P1, O1) , (P2, O2)}

Nominal 100 �→ Nominal 100
Nominal undefined �→ Nominal undefined

Failure Omission �→ FailureOmission

In an expression, if the ith predicate evaluates to true (�), we say that the ith
operational mode is activated. To simplify the presentation of the expressions and
to ease the understanding, we use the denotational semantics in the remainder
of this article (the right-hand side of the sketch above).

In this section, to illustrate the properties and possible analyses, we use an
example of a system with faults A and B and the following outputs:

O1: when A is active;
O2: when B is active;
O3: when A is active, but B is not;
O4: when A or B are active.

The expression for this example in AL is:

S = {(A,O1) , (B,O2) , (A ∧ ¬B,O3) , (A ∨ B,O4)} (13)

In this example we see that one of the healthiness conditions is not satisfied:
when for instance, A and B are both inactive (¬ (A ∧ B)), there is no explicit
output defined. In Sect. 4 we show a more detailed case study to illustrate the
reasoning about temporal faults. In the next section, we show how to normalise
the expression, so that the three healthiness conditions are satisfied.

3.2 Healthiness Conditions

The healthiness conditions are fix points of a language. The property is defined
as a function of an expression and returns another expression. For example, if a
healthiness condition H is satisfied for an expression Exp, thus H (Exp) = Exp.

In what follows we show the three healthiness conditions for the AL. All
definitions in this section refer to an algebra that has the following properties:

contradiction: the expression always evaluates to false;
tautology: the expression always evaluates to true.

H1: No predicate is a contradiction. This property is very simple and it is
used to eliminate any term that has a predicate that always evaluates to false.

Definition 1. Let exp be an expression in the AL, then:

H1 (exp) = {(P,O) | (P,O) ∈ exp • ¬contradiction (P)} (14)

300 A. Didier and A. Mota

where the operator ∈ indicates that a term is present in the expression.
Applying the first healthiness condition to our example results in:

H1 (S) = S

Thus, we conclude that S is H1-healthy.

H2: All possibilities are covered. This property is used to make explicit that
there are uncovered operational modes. In this case, there is a combination of
variables in the inner algebra that was not declared in the expression. Very often
the focus when modelling faults is the erroneous behaviour, so we assume that
such an uncovered operational mode is nominal, but has an undefined value.

Definition 2. Let exp be an expression in the AL, and τ is:

τ = ¬
⎛

⎝
∨

(P,O)∈exp

P

⎞

⎠

then:

H2 (exp) =

{
exp, if contradiction (τ)
exp ∪ {(τ,Nominal undefined)} , otherwise

(15)

This property states that if the expression is already complete, so all possi-
bilities are already covered, thus the expression is healthy.

Applying the second healthiness condition to our example results in the fol-
lowing expression after simplification:

H2 (S) = S ∪ {(¬A ∧ ¬B,Nominal undefined)}
Thus, we conclude that S is not H2-healthy.

H3: There are no two terms with exactly the same operational mode.
This property merges terms that contain the same operational mode. It avoids
unnecessary formulas and may reduce the expression.

Definition 3. Let exp be an expression in the AL. Then:

H3 (exp) = { (P1, O1) | (P1, O1) ∈ exp∧
∀ (P2, O2) ∈ exp • (P1, O1) = (P2, O2) ∨ O1 �= O2 } ∪
{(P1 ∨ P2, O1) | (P1, O1) , (P2, O2) ∈ exp ∧ O1 = O2}

(16)

Applying H3 in the example in the beginning of the section, we conclude that
S is H3-healthy. On the other hand, if we consider an S′ system being a copy of
S, but making O1 = O2, then:

H3 (S′) = {(A ∨ B,O1) , (A ∧ ¬B,O3) , (A ∨ B,O4)}
Thus, we conclude that S′ is not H3-healthy.

Reasoning About Temporal Faults Using an Activation Logic 301

Healthy Expression. To obtain a healthy expression, we apply all three health-
iness conditions. The order of application of each healthiness condition does not
change the resulting expression. The healthiness function is written as composi-
tion of functions as follows:

H = H1 ◦ H2 ◦ H3 (17)

After applying the three healthiness conditions to S, the resulting expression
is:

H (S) = { (A,O1) , (B,O2) ,

(A ∧ ¬B,O3) , (A ∨ B,O4) ,

(¬A ∧ ¬B,Nominal undefined) }
The healthiness conditions are useful to faults modelling, aiding the faults

analyst to check contradictions and completeness. Also, obtaining safe predicates
is only possible in healthy expressions. In the next section, we show how to verify
non-determinism in AL expressions.

3.3 Non-determinism

The non-determinism is usually an undesirable property. It causes an unexpected
behaviour, so the analysis shall consider the activation of fault even if the fault
might or not be active.

To identify a non-determinism, we can check for the negation of a contradic-
tion in a pair of predicates in the inner algebra.

Definition 4 (Non-determinism). Let exp be an expression in AL.

nondeterministic (exp) =∃ (P1, O1) , (P2, O2) ∈ exp •
¬contradiction (P1 ∧ P2)

(18)

If there is at least one combination that evaluates P1 ∧ P2 to true (it is
not a contradiction), then exp is non-deterministic. Our example is clearly non-
deterministic as at least A ∧ (A ∨ B) is not a contradiction.

To analyse components and systems, and to model faults propagation, a
predicates notation is shown in the next section. The predicates notation offers
more two ways to check non-determinism.

3.4 Predicates Notation

The AL needs a special notation to enable the analysis of: (i) a particular faults
expression, or (ii) a propagation in components. Such a special notation extracts
predicates in the inner algebra given an output of interest.

Definition 5 (Predicate). Let exp be an expression in AL, and Ox an oper-
ational mode. A predicate over exp that matches Ox is then:

〈out (exp) = Ox〉 ⇐⇒ ∃ (P,O) ∈ H(exp) | O = Ox • P (19)

302 A. Didier and A. Mota

The predicate notation function returns a predicate in the inner algebra. For
the example in the beginning of this section, the predicate for O2 is obtained as
follows:

〈out (S) = O2〉 = B

To allow fault propagation of components we need another special notation
that expands the modes of an expression with a predicate in the inner algebra.

Definition 6 (Modes). Let exp be an expression in AL, and P a predicate in
the inner algebra, then:

modes (exp, P) = {(Pi ∧ P,Oi) | (Pi, Oi) ∈ H(exp)} (20)

Finally, to check the possible outputs, we need a function to obtain a set of
outputs given an expression.

Definition 7 (Activation). Let exp be an expression in AL, and Px a predi-
cate in the inner algebra, then:

activation (exp, Px) = {O|(P,O) ∈ H(exp) ∧ tautology (Px =⇒ P)} (21)

The non-determinism can also be checked using the predicates notation and
the activation property:

activation (S,A ∧ ¬B) = {O1, O3} (22a)
〈out (S) = O1〉 ∧ 〈out (S) = O3〉 = A ∧ ¬B (22b)

Equation (22a) shows that both O1 and O3 can be observed if A ∧ ¬B is true.
Equation (22b) states that if the possible operational modes of healthy S are O1

and O3, then the predicate is A ∧ ¬B. In the next section, we show a practical
case study using these properties and notations.

4 Case Study

EMBRAER provided us with the Simulink model of an Actuator Control System
(depicted in Fig. 4). The failure logic of this system (that is, for each of its con-
stituent components) was also provided by EMBRAER (we show some of them in
Table 2). In what follows we illustrate our strategy using the Monitor component.

A monitor component is a system commonly used for fault tolerance [15,21].
Initially, the monitor connects the main input (power source on input port 1)
with its output. It observes the value of this input port and compares it to
a threshold. If the value is below the threshold, the monitor disconnects the
output from the main input and connects to the secondary input. We present
the Simulink model for this monitor in Fig. 5.

Now we show two contributions: (i) using only Boolean operators, thus ignor-
ing ordering, we can obtain the same results obtained in [7], and (ii) using the
order-related operator reported in [8] obtaining an expression in ATF with the

Reasoning About Temporal Faults Using an Activation Logic 303

Fig. 4. Block diagram of the ACS provided by EMBRAER (nominal model)

Table 2. Annotations table of the ACS provided by EMBRAER

Component Deviation Port Annotation

PowerSource LowPower Out1 PowerSourceFailure

Monitor LowPower Out1 (SwitchFailure AND (LowPower-In1 OR
LowPower-In2)) OR (LowPower-In1
AND LowPower-In2)

Fig. 5. Internal diagram of the monitor component (Fig. 4(A)).

304 A. Didier and A. Mota

same results as shown in [8]. To simplify formulas writing, we associate the fault
events as:

B1 = LowPower-In1
B2 = LowPower-In2
F = SwitchFailure

The power source has only two possible operational modes: (i) the power
source works as expected, providing a nominal value of 12V , and (ii) is has an
internal failure Bi, and its operational mode is “low power”. In AL it is modelled
as:

PowerSourcei = {(Bi, LP) , (¬Bi,Nominal 12V)} (23)

where LP is the LowPower failure. The expression PowerSourcei is healthy.
The monitor is a bit different because its behaviour depends not only on

internal faults, but also on its inputs. We will now use the predicates notation
defined in Sect. 3.4 to express fault propagation. As the monitor has two inputs
and its behaviour is described in Fig. 5, then it is a function of the expressions
of both inputs:

Monitorbool (in1, in2) =
modes (in1, 〈out (in1) = Nominal X〉 ∧ ¬F)∪
modes (in2,¬ 〈out (in1) = Nominal X〉 ∧ ¬F) ∪
modes (in2, 〈out (in1) = Nominal X〉 ∧ F)∪
modes (in1,¬ 〈out (in1) = Nominal X〉 ∧ F)

(24)

where X is an unbound variable and assumes any value. The expression states
the following:

– The monitor output is the same as in1 if the output of in1 is nominal and
there is no internal failure in the monitor:

modes (in1, 〈out (in1) = Nominal X〉 ∧ ¬F)

– The monitor output is the same as in2 if the output of in1 is not nominal
and there is no internal failure in the monitor:

modes (in2,¬ 〈out (in1) = Nominal X〉 ∧ ¬F)

– The monitor output is the converse of the previous two conditions if the
internal failure F is active:

modes (in2, 〈out (in1) = Nominal X〉 ∧ F)∪
modes (in1,¬ 〈out (in1) = Nominal X〉 ∧ F)

The operational modes (observed behaviour) of the monitor depend on: (i)
its internal fault, and (ii) propagated errors from its inputs. Composing the

Reasoning About Temporal Faults Using an Activation Logic 305

monitor with the two power sources, we obtain the AL expression of a power
supply subsystem Systembool:

=Monitorbool (PowerSource1, PowerSource2)
=modes (in1,¬B1 ∧ ¬F) ∪ modes (in2,¬¬B1 ∧ ¬F)∪

modes (in2,¬B1 ∧ F) ∪ modes (in1,¬¬B1 ∧ F) by Eq. (19)
=modes (in1,¬B1 ∧ ¬F) ∪ modes (in2, B1 ∧ ¬F)∪

modes (in2,¬B1 ∧ F) ∪ modes (in1, B1 ∧ F) by simplification
= {(Pi ∧ ¬B1 ∧ ¬F,Oi) | (Pi, Oi) ∈ in1} ∪

{(Pi ∧ B1 ∧ ¬F,Oi) | (Pi, Oi) ∈ in2} ∪
{(Pi ∧ ¬B1 ∧ F,Oi) | (Pi, Oi) ∈ in2} ∪
{(Pi ∧ B1 ∧ F,Oi) | (Pi, Oi) ∈ in1} by Eq. (20)

= {(B1 ∧ ¬B1 ∧ ¬F,LP) ,

(¬B1 ∧ ¬B1 ∧ ¬F,Nominal 12V) ,

(B2 ∧ B1 ∧ ¬F,LP) ,

(¬B2 ∧ B1 ∧ ¬F,Nominal 12V) ,

(B2 ∧ ¬B1 ∧ F,LP) ,

(¬B2 ∧ ¬B1 ∧ F,Nominal 12V) ,

(B1 ∧ B1 ∧ F,LP) ,

(¬B1 ∧ B1 ∧ F,Nominal 12V)} replacing vars

Simplifying and applying H1, we obtain:

H1 (Systembool) =
{(¬B1 ∧ ¬F,Nominal 12V) , (B2 ∧ B1 ∧ ¬F,LP) ,

(¬B2 ∧ B1 ∧ ¬F,Nominal 12V) , (B2 ∧ ¬B1 ∧ F,LP) ,

(¬B2 ∧ ¬B1 ∧ F,Nominal 12V) , (B1 ∧ F,LP)}
Applying, H3, we simplify to:

H3 ◦ H1 (Systembool)

=

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

(¬B1 ∧ ¬F)∨
(B1 ∧ ¬B2 ∧ ¬F)∨

(¬B1 ∧ ¬B2 ∧ F)
,Nominal 12V

⎞

⎟
⎠ ,

⎛

⎜
⎝

(B1 ∧ B2 ∧ ¬F)∨
(¬B1 ∧ B2 ∧ F)∨

(B1 ∧ F)
, LP

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

= {((¬B1 ∧ ¬B2) ∨ ¬F ∧ (¬B1 ∨ ¬B2) ,Nominal 12V) ,

(F ∧ (B1 ∨ B2) ∨ (B1 ∧ B2) , LP)}

306 A. Didier and A. Mota

The monitor expression is H2-healthy (the predicates are complete), thus:

H2 ◦ H3 ◦ H1 (Systembool) = H3 ◦ H1 (Systembool)

The resulting expression for the monitor after applying all healthiness con-
ditions is:

H (Systembool) = {((¬B1 ∧ ¬B2) ∨ ¬F ∧ (¬B1 ∨ ¬B2) ,Nominal 12V) ,

(F ∧ (B1 ∨ B2) ∨ (B1 ∧ B2) , LP)} (25)

The operational modes of Systembool is either Nominal 12V or LP (low power).
Finally, we obtain the low power structure expression (see Table 2) using the

predicates notation:

〈out (Systembool) = LP 〉 ⇐⇒ F ∧ (B1 ∨ B2) ∨ (B1 ∧ B2)

The monitor expression also indicates that if the switch is operational (¬F)
and at least one PowerSource is operational (¬B1 ∨ ¬B2), the monitor output
is nominal. But if at least one PowerSource is faulty (B1 ∨ B2) and the monitor
has an internal failure (F) the system is not operational. These two sentences
written in AL using predicates notation are:

activation (Systembool,¬F ∧ (¬B1 ∨ ¬B2))
= {O| (P,O) ∈ H(Systembool) ∧

tautology (¬F ∧ (¬B1 ∨ ¬B2) =⇒ P)} [by Eq. (21)]
= {Nominal 12V } [by simplification](26a)

activation (Systembool, F ∧ (B1 ∨ B2))
= {O| (P,O) ∈ H(Systembool) ∧

tautology (F ∧ (B1 ∨ B2) =⇒ P)} [by Eq. (21)]
= {LP} [by simplification] (26b)

Now, let’s consider the same system but with a subtle modification. As shown
in [8], the order of the occurrence of faults may be relevant, and the qualitative
and quantitative analyses results may be different than those results without
considering the order of the occurrence of faults. Observing Fig. 5, we see that
if F activates before a failure in the first input of the monitor, then it would
display a nominal behaviour, because the internal failure F anticipates switching
to the second input. On the other hand, if the first input fails before F , then the
monitor would switch to the second input, then switch back, due to the internal
failure. We obtain the following expression for the monitor, now using the ATF:

MonitorATF (in1, in2) =
modes (in1, 〈out (in1) = Nominal X〉 ∧ ¬F) ∪
modes (in2,¬ 〈out (in1) = Nominal X〉 ∧ ¬F)∪
modes (in2, 〈out (in1) = Nominal X〉 ∧ F) ∪
modes (in1,¬ 〈out (in1) = Nominal X〉 → F)∪
modes (in2, F → ¬〈out (in1) = Nominal X〉)

(27)

Reasoning About Temporal Faults Using an Activation Logic 307

where X is an unbound variable and assumes any value.
The difference to Systembool (Eq. (24)) is only the finer analysis of the cases

of erroneous behaviour of the first input and an internal failure. Note that the
finer analysis splits the predicate

¬ 〈out (in1) = Nominal 12V 〉 ∧ F (activates in1)

into:

¬ 〈out (in1) = Nominal 12V 〉 → F (activates in1)

and

F → ¬〈out (in1) = Nominal 12V 〉 (activates in2)

We can assure that such a split is complete because the predicate notation evalu-
ates to B1. Thus the operands satisfy all temporal properties (Eqs. (8a) to (8d))
and events independence (Eq. (10)), thus the law shown in Eq. (12b) is valid. For
case (i), the expected behaviour is the same as in1 because the system switches
to in2, but then an internal failure occurs, and it switches back to in1. For
case (ii), it switches to in2 due to an internal failure, then the first input fails,
so the behaviour is similar to the nominal behaviour (see the second modes in
Eq. (27)).

Following the similar expansions of Eq. (24), we obtain:

SystemATF =MonitorATF (PowerSource1, PowerSource2)
= {(B1 ∧ ¬B1 ∧ ¬F,LP) ,

(¬B1 ∧ ¬B1 ∧ ¬F,Nominal 12V) ,

(B2 ∧ B1 ∧ ¬F,LP) ,

(¬B2 ∧ B1 ∧ ¬F,Nominal 12V) ,

(B2 ∧ ¬B1 ∧ F,LP) ,

(¬B2 ∧ ¬B1 ∧ F,Nominal 12V) ,

(B1 ∧ B1 → F,LP) ,

(¬B1 ∧ B1 → F,Nominal 12V)} ,

(B2 ∧ F → B1, LP) ,

(¬B2 ∧ F → B1,Nominal 12V)}

Simplifying and applying H1 to remove contradictions, we obtain:

H1 (SystemATF) =
{(¬B1 ∧ ¬F,Nominal 12V) , (B2 ∧ B1 ∧ ¬F,LP) ,

(¬B2 ∧ B1 ∧ ¬F,Nominal 12V) , (B2 ∧ ¬B1 ∧ F,LP) ,

(¬B2 ∧ ¬B1 ∧ F,Nominal 12V) , (B1 → F,LP) ,

(B2 ∧ F → B1, LP) , (¬B2 ∧ F → B1,Nominal 12V)}

308 A. Didier and A. Mota

Applying H3 to remove redundant terms with identical operational modes
and using the rules shown in Sect. 2.3, we simplify to:

H3 ◦ H1 (SystemATF)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

(¬B1 ∧ ¬F) ∨
(B1 ∧ ¬B2 ∧ ¬F) ∨
(¬B1 ∧ ¬B2 ∧ F) ∨

(¬B2 ∧ F → B1)

,Nominal 12V

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

(B1 ∧ B2 ∧ ¬F) ∨
(¬B1 ∧ B2 ∧ F) ∨

(B1 → F) ∨
(B2 ∧ F → B1)

, LP

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= {((¬B1 ∧ ¬B2) ∨ ¬F ∧ (¬B1 ∨ ¬B2) ∨
¬B2 ∧ F → B1,Nominal 12V) ,

((B1 ∧ B2) ∨ (¬B1 ∧ B2 ∧ F) ∨ (¬B2 ∧ B1 → F) , LP)}
The monitor expression is H2-healthy. Simplifying Boolean operators as

usual, the XBefore expression:

¬B2 ∧ F → B1 ∨ ¬B2 ∧ B1 → F

simplifies to

¬B2∧F ∧ B1 by Eq. (12b)

Thus:
H2 ◦ H3 ◦ H1 (SystemATF) = H3 ◦ H1 (SystemATF)

The resulting expression for the monitor after applying all healthiness con-
ditions is:

H (SystemATF) = {((¬B1 ∧ ¬B2) ∨ ¬F ∧ (¬B1 ∨ ¬B2) ∨
¬B2 ∧ F → B1,Nominal 12V) ,

((B1 ∧ B2) ∨ (¬B1 ∧ B2 ∧ F)∨
(¬B2 ∧ B1 → F) , LP)}

(28)

Finally, we obtain the low power structure expression of the monitor using
the predicates notation:

〈out (SystemATF) = LP 〉 ⇐⇒ (B1 ∧ B2) ∨ (¬B1 ∧ B2 ∧ F) ∨ (¬B2 ∧ B1 → F)

Thus, SystemATF fails with LP if:

– Both power sources fail;
– The monitor fails to detect the nominal state of the first power source and

the second power source is in a failure state;

Reasoning About Temporal Faults Using an Activation Logic 309

– The monitor fails to detect the failure state of the first power source (the
monitor fails after the failure of the first power source).

Note that if the monitor fails before the failure of the first power source, it fails
to detect the operational mode of the first power source and switches to the
second power source, which is in a nominal state (see expression ¬B2 ∧ F → B1

in Eq. (28)).

5 Conclusion

In this work we proposed a parametrized logic that enables the analysis of sys-
tems depending on the expressiveness of a given algebra and a given set of
operational modes. If ATF is used as a parameter, then the order of occurrence
of faults can be considered. Although the logic is not as detailed as AADL,
the predicates notation in conjunction with the ATF provides a richer asser-
tion framework. Also, it is possible to verify non-determinism on the model,
by: (i) verifying its existence with the nondeterministic function, (ii) providing
an expression and obtaining the possible operational modes with the activation
function, or (iii) using the predicates notation to obtain a predicate that enables
two or more operational modes.

The AADL is extensible. The work reported in [2] shows an extension to
perform dependability analysis through state machines and expressions on fault
events and operational modes. Although such an extension captures system
behaviour, operational mode activation conditions are expressed in state tran-
sitions in combination with an extension of Boolean expressions (not related to
order). Our work relates operational modes and fault occurrences order explicitly.

As presented in [8], TFTs and DFTs structure expressions can be written as
formulas in ATF. As the root events of TFTs and DFTs represent operational
modes of a system, the ATF can be used to associate root events with operational
modes, thus allowing the combination of two or more fault trees.

Although the properties of AL require that the inner algebra provides tau-
tology and contradiction, and we used ATF in the case study, we did not show
tautology and contradiction for ATF. Instead, we used a law to reduce the ATF
expression to a Boolean expression. The methodology to check tautology and
contradiction in ATF is a future work.

The original expression shown in the case study was already H2-healthy. The
second healthiness condition about completeness uses the concept of undefined
value to make any expression H2-healthy. Algebraically it is fine, but in prac-
tice, the property should be met originally, thus the initial expression is already
H2-healthy. This property should be used as an alert to the analyst if it not met
originally.

310 A. Didier and A. Mota

Acknowledgements. We would like to thank Alexander Romanovsky, Zoe
Andrews and Richard Payne for all discussions about fault modelling and depend-
ability. This work was funded by CNPq, grants 476821/2011-8, 442859/2014-7, and
246956/2012-7, and by FACEPE grant IBPG-0408-1.03/11. This work was partially
supported by the National Institute of Science and Technology for Software Engineering
(INES, http://www.ines.org.br), funded by CNPq and FACEPE, grants 573964/2008-4
and APQ-1037-1.03/08.

References

1. SAE ARP4761 Guidelines and Methods for Conducting the Safety Assessment
Process on Civil Airborne Systems and Equipment, December 1996

2. SAE Architecture Analysis and Design Language (AADL) Annex Volume 1: Annex
A: ARINC653 Annex, Annex C: Code Generation Annex, Annex E: Error Model
Annex. Technical report, SAE International (2015)

3. Akers, S.B.: Binary decision diagrams. IEEE Trans. Comput. C–27(6), 509–516
(1978)

4. ANAC. Aeronautical Product Certification. DOU No. 230, Seção 1, p. 28, 01
December 2011, (2011)

5. Andrews, J.D.: The use of not logic in fault tree analysis. Qual. Reliab. Eng. Int.
17(3), 143–150 (2001)

6. Boute, R.T.: The binary decision machine as programmable controller. Euromicro
Newslett. 2(1), 16–22 (1976)

7. Didier, A.L.R., Mota, A.: Identifying hardware failures systematically. In: Gheyi,
R., Naumann, D. (eds.) Formal Methods: Foundations and Applications. Lecture
Notes in Computer Science, vol. 7498, pp. 115–130. Springer, Heidelberg (2012)

8. Didier, A.L.R., Mota, A.: An algebra of temporal faults. Inf. Syst. Front. 18, 967–
980 (2016)

9. Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-
tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992)

10. FAA. RTCA, Inc., Document RTCA/DO-178B. U.S. Dept. of Transportation,
Federal Aviation Administration, Washington, D.C. (1993)

11. FAA. Part 25 - Airworthiness Standards: Transport Category Airplanes. report,
Federal Aviation Administration (FAA), USA (2007)

12. Feiler, P.H., Gluch, D.P., Hudak, J.J.: The Architecture Analysis & Design Lan-
guage (AADL): An Introduction. CMU/SEI–2006–TN–011, February 2006

13. Givant, S., Halmos, P.: Introduction to Boolean Algebras. Undergraduate Texts in
Mathematics, vol. XIV. Springer, New York (2009)

14. Hoare, C.A.R., He, J.: Unifying Theories of Programming, vol. 14. Prentice Hall,
Englewood Cliffs (1998)

15. Koren, I., Krishna, C.M.: Fault Tolerant Systems. Morgan Kaufmann Publishers
Inc., San Francisco (2007)

16. Merle, G.: Algebraic modelling of Dynamic Fault Trees, contribution to qualitative
and quantitative analysis. Theses, École normale supérieure de Cachan - ENS
Cachan (2010)

17. Merle, G., Roussel, J.-M., Lesage, J.-J.: Algebraic determination of the structure
function of Dynamic Fault Trees. Reliab. Eng. Syst. Saf. 96(2), 267–277 (2011)

18. Merle, G., Roussel, J.-M., Lesage, J.-J.: Dynamic fault tree analysis based on the
structure function. In: 2011 Proceedings - Annual Reliability and Maintainability
Symposium, January 2011

http://www.ines.org.br

Reasoning About Temporal Faults Using an Activation Logic 311

19. Merle, G., Roussel, J.-M., Lesage, J.-J.: Quantitative analysis of dynamic fault trees
based on the structure function. Qual. Reliab. Eng. Int. 30(1), 143–156 (2014)

20. Merle, G., Roussel, J.-M., Lesage, J.-J., Bobbio, A.: Probabilistic algebraic analysis
of fault trees with priority dynamic gates and repeated events. IEEE Trans. Reliab.
59(1), 250–261 (2010)

21. O’Connor, P.D.T., Newton, D., Bromley, R.: Practical Reliability Engineering.
Wiley, Hoboken (2002)

22. Oliva, S.: Non-coherent fault trees can be misleading. e-J. Syst. Saf. 42(3), 1–5
(2006)

23. Tannous, O., Xing, L., Dugan, J.B.: Reliability analysis of warm standby systems
using sequential BDD. In: 2011 Proceedings - Annual Reliability and Maintain-
ability Symposium, January 2011

24. Vesely, W., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook.
Number NUREG-0492. US Independent Agencies and Commissions (1981)

25. Walker, M.D.: Pandora: a logic for the qualitative analysis of temporal fault trees.
Ph.D. thesis, University of Hull (2009)

26. Walker, M.D., Papadopoulos, Y.: Synthesis and analysis of temporal fault trees
with PANDORA: the time of Priority AND gates. Nonlinear Anal. Hybrid Syst.
2(2), 368–382 (2008)

27. Walker, M.D., Papadopoulos, Y.: Qualitative temporal analysis: towards a full
implementation of the fault tree handbook. Control Eng. Pract. 17(10), 1115–1125
(2009)

28. Walker, M.D., Papadopoulos, Y.: A hierarchical method for the reduction of tem-
poral expressions in Pandora. In: Proceedings of the First Workshop on DYnamic
Aspects in DEpendability Models for Fault-Tolerant Systems, DYADEM-FTS
2010, pp. 7–12. ACM, New York (2010)

29. Xing, L., Tannous, O., Dugan, J.B.: Reliability analysis of nonrepairable cold-
standby systems using sequential binary decision diagrams. IEEE Trans. Syst.
Man Cybern. A 42(3), 715–726 (2012)

	Reasoning About Temporal Faults Using an Activation Logic
	1 Introduction
	2 Background
	2.1 Time Relation of Fault Events
	2.2 Structure Expressions
	2.3 The Algebra of Temporal Faults

	3 The Activation Logic
	3.1 The Activation Logic Grammar
	3.2 Healthiness Conditions
	3.3 Non-determinism
	3.4 Predicates Notation

	4 Case Study
	5 Conclusion
	References

