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Preface

The idea of improving software quality through reuse is not new. After all, if
software works and is needed, just reuse it. What is new and evolving is the idea of
relative validation through testing and reuse and the abstraction of code into
frameworks for instantiation and reuse. Literal code can be abstracted. These
abstractions can be made to yield similar codes, which serve to verify their patterns.
There is a taxonomy of representations from the lowest level literal codes to their
highest level natural language descriptions. The quality of software is improved in
proportion to the degree of all levels of reuse.

Any software, which in theory is complex enough to allow for self-reference,
cannot be assured to be absolutely valid. The best that can be attained is a relative
validity, which is based on testing. Axiomatic, denotational, and other program
semantics are more difficult to verify than the codes, which they represent! But, is
there any limit to testing, and how does one maximize the reliability of software
through testing? These are the questions, which need to be asked. Here are the
much sought-after answers.

Randomization theory implies that software should be broken into small
coherent modules, which are logically integrated into the whole. These modules are
designed to facilitate specification and may be optimized through the use of
equivalence transformations. Moreover, symmetric testing (e.g., testing a sort
routine using (3, 2, 1) (4, 3, 2, 1) (5, 4, 3, 2, 1)…) has minimal value beyond the
first test case. Rather, the test cases need to cover all combinations and execution
paths, which defines random-basis testing (e.g., (3, 2, 1) (3, 1, 2) (1) (2, 1, 2)…).

It is virtually impossible to generate a complete random-basis test for complex
software. Hence, reuse in diverse applications serves as a substitute. Also, the more
coherent the software modules, the greater their potential for reuse and integration,
and the proportionately less the propensity for software bugs to survive as a con-
sequence. Such an approach implies not only the use of integration testing, but the
definition and application of true optimizing compilers as well.

For example, routines for reading data, iteratively bubbling the data to the list
head to create a lexicographic order, and printing the result of the iterations (e.g.,
the O (n**2) bubble sort) can be iteratively transformed, by an optimizing compiler,
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into an O (n log n) sort (e.g., Quicksort). Such coherent optimizations may be
self-referentially applied to the optimizing compilers themselves for further effi-
ciencies of scale.

The aforementioned ways for optimizing literal software quality extend to all of
its abstract patterns—only here testing applies to framework instances. It can be
seen that software quality is properly dependent upon the scale of the effort. Scale,
in turn, is defined by the embodied knowledge (i.e., including frameworks) and
processor power, which can be brought to bear. Randomization theory and
applicative experience converge as software is written for coherency, integrated for
functionality, optimized for efficiency, executed to realize its latent potential for
massive parallelism, and reused in diverse applications to maximize its validity (i.e.,
through random-basis testing).

One final note is appropriate. It should be possible to create domain-general
higher-level (i.e., context-sensitive) languages through the inclusion of dialog, for
disambiguation, and the capture of knowledge in the form of software frameworks.
The higher the level of software, the more reusable it is on account of one central
human factor—readability. That is why components are reusable—because their
descriptive characterizations are understandable. This also follows from random-
ization theory although this theory does not address how to achieve such
context-sensitive languages in practice—only the result of doing so.

Combining the key points herein leads to the inescapable conclusion that soft-
ware productivity—including quality attributes—is not bounded, combines the best
of theory and practice, and when realized, as described, will transform the software
industry, as we know it, for the better.

The traveling salesman problem (TSP) is one of the most studied problems in
optimization. If the optimal solution to the TSP can be found in polynomial time, it
would then follow that every NP-hard problem could be solved in polynomial time,
proving P=NP. In Chapter 1, it will be shown that the proposed algorithm finds
P*NP with scale. Machine learning through self-randomization is demonstrated in
the solution of the TSP. It is argued that self-randomizing knowledge bases will
lead to the creation of a synthetic intelligence, which enables cyber-secure software
automation. The work presented in Chapter 2 pertains to knowledge generalization
based on randomization. Inductive knowledge is inferred through transmutation
rules. A domain-specific approach is properly formalized to deal with the trans-
mutation rules. Randomized knowledge is validated based on the domain user
expertise.

In order to improve software component reuse, Chapter 3 provides a mechanism,
based on context-sensitive code snippets, for retrieving components and showing
how the retrieved components can be instantiated and reused. This approach utilizes
semantic modeling and ontology formalisms in order to conceptualize and reverse
engineer the hidden knowledge in library codes. Ontologies are, indeed, a standard
in representing and sharing knowledge. Chapter 4 presents a comprehensive
methodology for ontology integration and reuse based on various matching tech-
niques. The approach is supported by an ad hoc software framework, whose scope
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is easing the creation of new ontologies by promoting the reuse of existing ones and
automating, as much as possible, the entire ontology construction procedure.

Given ever-increasing data storage requirements, many distinct classifiers have
been proposed for different data types. However, the efficient integration of these
classifiers remains a challenging research topic. In Chapter 5, a novel scalable
framework is proposed for a classifier ensemble using a set of generated adjudi-
cations based on training and validation results. These adjudicators are ranked and
assembled as a hierarchically structured decision model. Chapter 6 presents a
graph-based solution for the integration of different data stores using a homoge-
neous representation. Schemas are transformed and merged over property graphs,
providing a modular framework.

In chapter 7, heterogeneous terminologies are integrated into a category-
theoretic model of faceted browsing. Faceted browsing systems are commonly
found in online search engines and digital libraries. It is shown that existing ter-
minologies and vocabularies can be reused as facets in a cohesive, interactive
system. Controlled vocabularies or terminologies are often externally curated and
are available as a reusable resource across systems. The compositional reuse of
software libraries is important for productivity. However, the duplication and
modification of software specifications, for their adaptation, leads to poor main-
tainability and technical debt. Chapter 8 proposes a system that solves these
problems and enables the compositional reuse of software specifications—inde-
pendent of the choice of specification languages and tools.

As the complexity of the world and human interaction grows, contracts are
necessarily becoming more complex. A promising approach for addressing this
ever-increasing complexity consists in the use of a language having a precise
semantics—thus providing a formal basis for integrating precise methods into
contracts. Chapter 9 outlines a formal language for defining general contracts,
which may depend on temporally based conditions. Chapter 10 outlines the design
of a system modeling language in order to provide a framework for prototyping
complex distributed system protocols. It further highlights how its primitives are
well-matched with concerns, which naturally arise during distributed system design.
An operational semantics for the designed language, as well as results on a variety
of state-space exploration techniques, is presented.

Chapter 11 addresses the integration of formalisms within the behavior-driven
development tooling, which is built upon semi-formal mediums for specifying the
behavior of a system as it would be externally observed. It presents a new strategy
for test case generation. Chapter 12 focuses upon model checking Z specifications.
A Z specification is preprocessed, where a generic constant is redefined as an
equivalent axiom, and a schema calculus is expanded to a new schema definition.
Chapter 13 presents a parameterized logic to express nominal and erroneous
behaviors—including faults modeling, given algebra and a set of operational modes.
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The created logic is intended to provide analysts with assistance in considering all
possible situations, which may arise in complex expressions having order-related
operators. It enables analysts to avoid missing subtle (but relevant) combinations.

January 2017 Stuart H. Rubin
Thouraya Bouabana-Tebibel
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On the Tractable Acquisition of Heuristics
for Software Synthesis Demonstrating

that P~NP

Stuart H. Rubin1(&), Thouraya Bouabana-Tebibel2,
and William K. Grefe1

1 Space and Naval Warfare Systems Center Pacific,
San Diego, CA 92152-5001, USA

{stuart.rubin,william.grefe}@navy.mil
2 Ecole nationale Supérieure d’Informatique, LCSI Laboratory, Algiers, Algeria

t_tebibel@esi.dz

Abstract. The Traveling Salesman Problem (TSP) was first formulated in 1930
and is one of the most studied problems in optimization. If the optimal solution
to the TSP can be found in polynomial time, it would then follow that every NP-
hard problem could be solved in polynomial time, proving P = NP. It will be
shown that our algorithm finds P*NP with scale. Using a d� e proof, it is
straightforward to show that as the number of cities goes to infinity, P goes to
NP (i.e., d[ 0). This was demonstrated using a quadratic number of parallel
processors because that speedup, by definition, is polynomial. A fastest parallel
algorithm is defined. Six distinct 3-D charts of empirical results are supplied. For
example, using an arbitrary run of 5,000 cities, we obtained a tour within
0.00001063 percent of the optimal using 4,166,667 virtual processors (Intel
Xenon E5-1603 @ 2.8 GHz). To save the calculated extra 209 miles would take
a quantum computer, the fastest possible computer, over (5,000!/(2**4,978 *
22!)) * 267,782 centuries. Clearly, the automated acquisition of heuristics and
the associated P*NP solutions are an important problem warranting attention.
Machine learning through self-randomization is demonstrated in the solution of
the TSP. It is also shown, in the small using property lists, for an inductive logic
of abduction. Finally, it is argued that self-randomizing knowledge bases will
lead to the creation of a synthetic intelligence, which enables cyber-secure
software automation.

Keywords: Heuristics � NP-Hard � P*NP � Randomization � Software
automation � Synthetic intelligence � TSP

1 Introduction

SSC-Pacific is constructing and testing a new approach to cybersecurity and automatic
programming for its cost-effective realization. The approach has already proven to be
effective for a game-theoretic program [1]. Here, the intent is to show that it can work
in the absence of deterministic feedback. Thus, equivalent semantics, selected at

© Springer International Publishing AG 2018
S.H. Rubin and T. Bouabana-Tebibel (eds.), Quality Software Through Reuse
and Integration, Advances in Intelligent Systems and Computing 561,
DOI 10.1007/978-3-319-56157-8_1



random, will be demonstrated to be cyber-secure. This makes it possible to protect all
but purely and inherently random codes (e.g., the Mersenne Twister).

1. The core Traveling Salesman Problem (TSP) was selected because not only is it
intractable – requiring a heuristic solution, but for this reason is notoriously difficult
to cyber-secure (Fig. 1).

2. Our solution to the TSP problem involves highly-efficient sorting and comparison
with a random path for Phase I. Alternatively, a comparison of two random walks
may be elected (e.g., where a nearest-first solution is known not to be or not
expected to be optimal) for Phase I. In Phase II, the better solution, found in the
previous phase, is iteratively improved by way of pairwise exchange. These com-
ponents are amenable to parallel processing and have already demonstrated a 94
percent improvement over the intuitive nearest-first solution using random data!
They will be manually cyber-secured; and, will allow a user to attempt to infect
them and/or steal cycles. It should not be possible to do this; and, early detection of
attack is another expected feature.

3. A methodology, for creating and programming semantic code variants, will need to
be automated to minimize the cost of cyber protection. This will be possible using
randomization-based cyber-secure symmetric automatic functional programming.

4. Cyber security and automatic programming, in general, are predicated on the sci-
ence of randomization. This essentially means reusing and transforming that which
worked in the past and adapting it for the current situation. Novel requirements are
satisfied by random codes. Everything else is related by transformation, which
entails heuristic search. Heuristic search is realized by effective computer codes.
The P*NP problem is fundamental to tractable automatic programming. Thus, the
larger the heuristic system, the more cost-effective it becomes. It follows that the
near-optimal heuristic solution to the TSP problem can have enormous impact, in
this regard, down the line.

Our belief is that cyber-attacks are spurring-on the development of automatic pro-
gramming for cyber security as well as for automation in general. The impact here goes

Fig. 1. Role of the TSP in cybersecurity and automatic programming
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far beyond cyber security; and, it includes autonomous vehicles, fighting machines,
design machines, and everything in between. It is good science and only good science
that can bring these desirable outcomes about. It all starts with randomization-based
cyber security.

2 The Heuristic TSP Algorithm

The best-found recursively enumerable heuristic solution to the TSP problem follows.
It empirically demonstrates that the set of problems solvable in polynomial time is as
close as desired, other than strictly equal to, the set of problems not solvable in
polynomial time, or P*NP.

1. The TSP asks the following question: Given a list of cities and the distances
between each pair of cities, what is the shortest possible route that visits each city
exactly once and returns to the origin city? Even though the problem is
NP-complete, heuristic methods are known, which enable problems even with
millions of cities to be approximated within a small fraction of 1 percent (e.g.,
within 0.05% of the optimal solution for the world tour problem). Again, for 5,000
cities (the limits of our PC’s memory) we obtained a tour within 0.00001063
percent of the optimal. It is reported that for many other instances with millions of
cities, solutions can be found that are within 2–3 percent of an optimal tour.
Removing the condition of visiting each city “only once” does not remove the
NP-hardness, since it is easily seen that in the planar case there is an optimal tour
that visits each city only once (otherwise, by the triangle inequality, a shortcut that
skips a repeated visit would not increase the tour length).

2. Any problem in the NP class can actually be reduced to the decision version of the
travelling salesman problem. This means that any algorithm that solves the decision
travelling salesman problem can be translated into one that solves all other problems
in the NP class. Thus, suppose that one finds a polynomial-time algorithm for the
decision travelling salesman problem. This would then mean that every problem in
NP could be solved in polynomial time. This would prove that P = NP. Then, one
could collect the offered $1 million prize from the Clay Mathematics Institute (i.e.,
d ¼ 0). Again, we do not think this possible. Rather, it will be shown that our algo-
rithm finds P*NP, d[ 0 with scale, which is charted in the results section below.

3. Initialize the number of cities, n, and populate the distances between each pair of
cities at random – between [1, n*(n-1)/2] miles (corresponding to the number of
undirected edges). The distance between an arbitrary pair of cities need not be
unique. Some non-symmetric duplication among the inter-city distances anneals the
TSP problem by making it more complex to heuristically solve. This is the mini-
mum number (i.e., corner point) allowing a distinct mileage assignment to each
undirected edge.

4. The Quicksort algorithm is used to order the cities. It is faster than merge sort
because the distances are stored in RAM. A test of 1,000,000 random elements was
sorted in 156 ms by Quicksort vs. 247 ms for Merge sort. Quicksort performs well
if the data is random. We maximize its speed by using the iterative (not recursive)

On the Tractable Acquisition of Heuristics 3



version of Quicksort, where arrays of size less than 17 (based on empirical results)
are sorted using insertion sort. The sort is used to order the inter-city distances from
nearest to furthest in a second array (see sample runs in the results section below).
A starting city is selected at chance, which will be the same as the goal city. The
nearest-first tour begins at the starting city and follows the path of minimal distance
in the selection of each successive un-visited city. Ties are resolved by iterative
optimization – in the second or heuristic phase.

5. Cities are tested for having been visited in sequence from nearest to furthest. The
nearest not visited and previously visited cities are found by comparing what is
stored at a vector position. If vector [position] = position, then city = position was
visited – otherwise not. The first column is skipped as it refers to the minimal
distance, which is from a city to itself. Equidistant cities are resolved FIFO (this will
be optimized in the second phase of search). Visited cities are stored, in sequence, in
a second vector. Upon conclusion, the residue, which comprises this vector, defines
a random tour for purposes of comparison. That is, the nearest-first and random
tours are compared and the shorter one serves as the initial iterate for Phase II.
When all of the cities have been visited, return to the starting city and exit –
completing the first phase of the tour. Again, the best-found tour is initialized by the
minimum of the random tour and the nearest-first tour. The second-best tour is set to
the remaining tour. These assignments appear to be equally likely in the absence of
characterizing knowledge. An option allows for the use of a second random tour in
lieu of the nearest-first tour. This option is faster and is to be selected whenever a
nearest-first tour is known to be suboptimal (e.g., when the cities are not arranged
like the equidistant end-spokes on a bicycle wheel). Selecting a good initial iterate
in Phase I will speed-up the solution of the TSP in Phase II.

6. The required time to find an optimal solution can be estimated from n! tours based
on the known time that it takes to do m tours, where m << n!. This allows much
larger TSP problems to be estimated for optimality than could otherwise be sear-
ched. It was found that an optimal tour of 8 cities takes about 16 s, which is about
the same time as a strictly random heuristic tour of 700 cities. Such search is based
on n = 8 nested for loops running on one Intel Xenon E5-1603 chip @ 2.8 GHz.
Random search provides a better estimate of the optimal solution, where the
solution space is much larger than can be explored because it uniformly samples the
space. The optimal tour is based on the cyber-secure differential (i.e., the optimal
tour may be expected to be the minimal percentage improvement between the pairs
of iteratively-improved tours better than the best-found tour). If the distinct
second-best tour covers the same distance as the best-found tour, then the tours are
said to be optimal. These tours are discovered using heuristic (subinterval)
optimization as they would otherwise be intractable. (Note that the identity,
log2 x = (log10 x)/(log10 2), where the bases and x are positive real numbers and the
bases are not equal to one, may be used for calculations).

7. The system is allowed to iterate, without yielding an improved tour, for a defined
time or number of iterations. It was found that about five million iterations is
appropriate for 5,000 cities, or equivalently 1,000 * |cities|. This reduced the tour
distance by 94 percent over Phase I. The limiting defined time or iterations is
configured using NL for exploration. A starting and ending city are randomly
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selected from [1, |cities-1|], where the starting and goal city are immutable. The
entrance and exit distances, for the pair of cities, are subtracted from the best tour
distance. The random pair of cities is swapped (i.e., pairwise exchange) and the
entrance and exit distances, for the swapped pair of cities, are added to the best tour
distance to replace the subtracted distances. If the resulting tour covers less distance,
a new next-best tour and best tour are saved. Otherwise, the swap is reversed to
restore the evaluation vector for the best found tour so far; and, the process of
swapping cities begins anew. No relaxation technique can be faster.

8. The capability for iterative parallel heuristic optimization is what sets this algorithm
apart from other good solution methodologies. Random pairwise exchanges and
comparisons require semaphore protection for two groups of three-contiguous
cities, or six cities at a time. However, the overhead associated with assigning,
tracking, and releasing these blocks will approximately double the swap time.
Given, n cities, this SIMD speedup is thus given as n = 2� 6b c. Thus, for 120 cities
for example, up to 20 SIMD processors will allow for a speedup by a factor of ten.
A MIMD speedup may be included on top of the SIMD speedup. Here, up to n!
processors (realistically n processors) independently solve the problem, where the
overhead occurs in communicating the best solution found with the other proces-
sors. This communication overhead is O(n). Thus, the MIMD speedup will be a
factor of n-1 times. Statistical redundancy is given by n! = 2ðn� 2Þ!. Given 5,000
cities, only one in 12,497,500 pairwise exchanges will be redundant as a result,
which is insignificant. Combining SIMD and MIMD speedups, using n2 = 6

� �

processors, the maximum realistic parallel speedup is nðn� 1Þ = 12b c, which is
O(n2Þ. The use of more processors can further reduce the runtime, but with
ever-decreasing efficiency.

9. Cyber-Secure Application Note: The small subinterval problems are run using the
same diverse semantically equivalent algorithms as for the larger intervals. How-
ever, the selected random order of cities is passed to semantically diverse algorithms
to check cyber security as the sub-problems arise (i.e., different codes must produce
identical outputs as is the case with Quicksort and insertion sort for example). Note
that the symmetric half of these algorithms can be automatically programmed. They
may steal up to half of the computational resources. The goal is to tractably check
cyber security at defined frequent intervals. The minimum and maximum subin-
terval sizes are parameterized and configured using natural language – demon-
strating our automatic symmetric programming methodology on a small scale.
The smaller the interval, in general, the more likely optimizations are to be found
(i.e., down to some minimal block size) and the more reliable the cybersecurity (i.e.,
since checks for cyber-attacks will be proportionately more frequent).

3 TSP Results

3.1 Graphic Presentation

The six charts below summarize, in visual form, the results of running the above algo-
rithm on different hardware substrates. They make it clear that heuristic optimization and

On the Tractable Acquisition of Heuristics 5



parallel hardware are fundamental to scientific and engineering advancement – some-
thing, which extends far beyond the confines of optimization and even cybersecurity and
is based on symmetric automatic heuristic programming.

To begin, the time taken for the heuristic and optimal tours running on the Intel
Xenon E5-1603 chip @ 2.8 GHz, a parallel machine based on the number of cities
running the heuristic and optimal tours, and a quantum computer based on the number
of cities (i.e., a 2n theoretical speedup, which will be practically reduced) running the
optimal tour – showing that P*NP, are compared. The computed distances from
optimality are also shown. (Note that quantum computers might be able to factor large
numbers, which is not possible using heuristic methods. Furthermore, n! = 2n ¼
n = 2ð Þ!� n� 1 = 2ð Þ!, where 3.5! = 3.5 � 2.5 � 1.5 � 0.5).

Figure 2 presents the runtimes for the above algorithm running on an Intel Xenon
E5-1603 chip @ 2.8 GHz. These runtimes are on the order of two seconds for up to
100 cities. It then jumps to 42 s for 500 cities, 291 s for 1,000 cities, and 13,710 s for
5,000 cities. This characteristic quadratic climb in runtimes can be completely offset by
having on the order of a quadratic number of processors, which is not always practical,
or by relaxing the optimality requirements from a small fraction of one percent to say a
few percent, or any combination thereof. Still, the spreadsheet shows that for just 17
cities, it will take 3.705075E + 10 times as long to compute the optimal as the heuristic
tour on the same machine! Clearly, heuristic methods are inherently necessary.

Figure 3 presents the runtimes required by the above algorithm running on a
(massively parallel) collection of virtual Intel Xenon E5-1603 chips @ 2.8 GHz. These
runtimes are on the order of half a second using 6 processors for 6 cities, half a second
using 9 processors for 7 cities, 1/8th of a second using 17 processors for 10 cities, 1/12th
of a second using 38 processors for 15 cities, 1/50th of a second using 81 processors for
22 cities, 1/500th of a second using 1,667 processors for 100 cities, 1/2,000th of a
second using 41,667 processors for 500 cities, 1/600th of a second using 166,667
processors for 1,000 cities, and 1/150th of a second using 4,166,667 processors for
5,000 cities. The spreadsheet shows that the runtime non-uniformly goes towards zero as
the number of processors grows quadratically as defined by the number of cities.

Fig. 2. Single processor heuristic runtimes for the TSP
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Figure 4 shows that as the number of cities increases, the heuristic algorithm
converges on the increasingly-near optimal solution. Even here, this is not practical for
single processors as the number of cities grows without bound and is only practical
using parallel processors, which can grow quadratically as a function of the number of
cities. Again, the program allows optimality to be sacrificed for the sake of tractability
should a sufficient number of processors not be available. The deviation from optimal is
7.7 percent for 5 cities, 10.42 percent for 7 cities, 3.4 percent for 10 cities, 0.9 percent
for 15 cities, 0.09 percent for 22 cities, 0.01 percent for 100 cities, 0.0009 percent for
500 cities, 0.00007 percent for 1,000 cities, and 0.00001 percent for 5,000 cities.

Figure 5 presents the runtimes required by the O (n!) optimal algorithm running on
an Intel Xenon E5-1603 chip @ 2.8 GHz. The runtime is 16 s for 8 cities, 151 s for 9
cities, 1,512 s for 10 cities, 16,632 s for 11 cities, 199,584 s for 12 cities, 2,594,592 s
for 13 cities, 36,324,288 s for 14 cities, 544,864,320 s for 15 cities, 5,564,229,120 s
for 16 cities, 1.48203E + 11 s for 17 cities, and (5,000!/20!) * 321,445 centuries, 6
years, and 334 days to compute for 5,000 cities. This characteristic exponential climb

Fig. 3. Parallel processor heuristic runtimes for the TSP

Fig. 4. Optimality of the heuristic runs
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in runtimes can only be offset by relaxing the optimality requirements from a small
fraction of one percent to say a few percent. Again, heuristic methods are inherently
necessary.

Figure 6 presents runtimes required by the O (n!) optimal algorithm running on a
(massively parallel) collection of virtual Intel Xenon E5-1603 chips @ 2.8 GHz. The
runtime is 4 s using 11 processors for 8 cities, 25 s using 14 processors for 9 cities,
216 s using 17 processors for 10 cities, 1,848 s using 21 processors for 11 cities,
18,144 s using 24 processors for 12 cities, 199,584 s using 29 processors for 13 cities,
2,421,619 s using 33 processors for 14 cities, 32,050,842 s using 38 processors for 15
cities, 435,891,456 s using 43 processors for 16 cities, 6,736,504,320 s using 49
processors for 17 cities, and (5,000!/20!) * 15 years, 157 days, 20 h, 18 min, and 12 s
to compute using 4,166,667 processors for 5,000 cities. The spreadsheet shows that
while the runtime is less by a factor of 22 using parallel processors for 17 cities and by
a factor of 2,082,933 using parallel processors for 5,000 cities, it nonetheless increases
exponentially with the number of cities. This is expected.

Fig. 5. Single processor optimal runtimes for the TSP

Fig. 6. Parallel processor optimal runtimes for the TSP
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Figure 7 presents runtimes required by the O (n!) optimal algorithm running on a
quantum computer, where the number of qbits equals the number of cities. Note that
this is not meant to imply that such a machine will be built or even can be built. The
runtime is less than 1 s for less than 10 cities, 5 s for 10 cities, 37 s for 11 cities, 309 s
for 12 cities, 3,014 s for 13 cities, 34,286 s for 14 cities, 450,013 for 15 cities,
6,750,204 s for 16 cities, 114,753,474 s for 17 cities, and (5,000!/(2**4,978 * 22!)) *
267,782 centuries, 20 years, 269 days, 7 h, 6 min, and 41 s to compute for 5,000 cities.
The spreadsheet shows that while the runtime is less by a factor of 59 than for parallel
processors for 17 cities and by a factor of >> 1.0E + 99 using a 5,000-qbit quantum
computer for 5,000 cities, it nonetheless increases exponentially with the number of
cities. Again, this does not differ from expectations.

Next, we present actual executions to demonstrate the workings of the algorithm.
All text is computer generated.

3.2 Five-City Tour

Fri Feb 12 08:10:25 2016

WELCOME TO THE CYBER SECURE AMERICAN AUTOMATED
HEURISTIC TRAVELING SALESMAN

Enter the number of distinct cities (i.e., between 2 and 5,000)
? 5

The tour will be comprised of 5 distinct cities numbered from 1 to 5.
Without loss of generality, the distance between the arbitrary pairs of 5 distinct

cities is set to randomly vary between 1 and 10 miles (or equivalent).
The starting and ending city will be city number 1.

Fig. 7. Quantum computer optimal runtimes for the TSP
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STARTING PHASE I OPTIMIZATION:

CITY TRAVERSAL MILEAGE (OR EQUIVALENT)

FROM NEAREST (LEFTMOST) TO FURTHEST (RIGHTMOST) CITY

The distance covered by the Phase I nearest-first tour is 24 miles.
The distance covered by the Phase I random tour is 30 miles.
The Phase I nearest-first tour covers the minimal distance.
The nearest-first tour covers 80 percent of the distance covered by the random tour.

STARTING PHASE II ITERATIVE OPTIMIZATION:

Fri Feb 12 08:10:28 2016
The optimized tour of city numbers follows from left to right.

{START, 1, 2, 3, 5, 4, 1, GOAL}

The distance covered by the optimized tour is 24 miles.
Phase II optimization was not able to improve upon the results of Phase I.
The optimized tour is predicted to be an optimal tour.
This completes the tour of 5 cities.

On this computer, the heuristic optimization of the TSP for a 5-city tour took, 2 s to
compute.

Using this algorithm, an optimal 5-city tour, on a 5-qbit quantum computer, will
take 12.50000000 ms(s) to compute.
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3.3 Twenty-Two-City Tour

Fri Feb 12 08:14:31 2016

WELCOME TO THE CYBER SECURE AMERICAN AUTOMATED
HEURISTIC TRAVELING SALESMAN

Enter the number of distinct cities (i.e., between 2 and 5,000)
? 22

The tour will be comprised of 22 distinct cities numbered from 1 to 22.
Without loss of generality, the distance between the arbitrary pairs of 22 distinct

cities is set to randomly vary between 1 and 231 miles (or equivalent).
The starting and ending city will be city number 1.

STARTING PHASE I OPTIMIZATION:

The distance covered by the Phase I nearest-first tour is 2,303 miles.
The distance covered by the Phase I random tour is 2,571 miles.
The Phase I nearest-first tour covers the minimal distance.
The nearest-first tour covers 90 percent of the distance covered by the random tour.

CITY TRAVERSAL MILEAGE (OR EQUIVALENT)
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FROM NEAREST (LEFTMOST) TO FURTHEST (RIGHTMOST) CITY

STARTING PHASE II ITERATIVE OPTIMIZATION:

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 2,223 miles.
This iteration reduced the tour distance by 3.47372992 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 2,013 miles.
This iteration reduced the tour distance by 9.44669366 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 1,831 miles.
This iteration reduced the tour distance by 9.04123199 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 1,778 miles.
This iteration reduced the tour distance by 2.89459312 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 1,590 miles.
This iteration reduced the tour distance by 10.57367829 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 1,519 miles.
This iteration reduced the tour distance by 4.46540881 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 1,449 miles.
This iteration reduced the tour distance by 4.60829493 percent.
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Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 1,434 miles.
This iteration reduced the tour distance by 1.03519669 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 1,396 miles.
This iteration reduced the tour distance by 2.64993026 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 1,211 miles.
This iteration reduced the tour distance by 13.25214900 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 1,160 miles.
This iteration reduced the tour distance by 4.21139554 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 1,056 miles.
This iteration reduced the tour distance by 8.96551724 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 1,030 miles.
This iteration reduced the tour distance by 2.46212121 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 906 miles.
This iteration reduced the tour distance by 12.03883495 percent.

Fri Feb 12 08:14:33 2016
The distance covered by the iteratively optimized tour is 857 miles.
This iteration reduced the tour distance by 5.40838852 percent.

Fri Feb 12 08:14:33 2016
The optimized tour of city numbers follows from left to right.

{START, 1, 12, 2, 7, 21, 5, 15, 9, 11, 16, 8, 13, 3, 18, 19, 22, 17, 14, 20, 10, 4, 6, 1,
GOAL}

The distance covered by the optimized tour is 857 miles.
The Phase I tour was optimized by 63 percent in Phase II.
The optimal tour is predicted to be 1.03519669 percent better, or 848 miles.
That represents a potential improvement of 9 miles.
This completes the tour of 22 cities.

On this computer, the heuristic optimization of the TSP for a 22-city tour took, 1 s
to compute.

Using 81 processors, the runtime for this heuristic tour of 22 cities will take
48.94736842 ms(s) to compute.
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On this computer, an optimal 22-city tour, of the TSP, will take (22!/20!) * 321,445
centuries, 6 years, and 334 days to compute.

Using 81 processors, the runtime for an optimal tour of 22 cities will take (22!/20!)
* 8,459 centuries, 8 years, and 28 days to compute.

Using this algorithm, an optimal 22-city tour, on a 22-qbit quantum computer, will
take 267,782 centuries, 20 years, 269 days, 7 h, 6 min, and 41 s to compute.

4 A Synthetic Intelligence for Secure Software Construction

4.1 Code Automation for Information Dominance

It is becoming increasingly rare for software to run in isolated environments. Rather,
the software of the future will need to support the fleet in distributed heterogeneous
computing environments connected by secure networks. Insuring the quality of that
software provides the fleet with Information Dominance. Conversely, we seek to deny
adversaries the capability to depend on their software.

It follows that the automatic programming (software automation) of quality software
is a military objective towards achieving Information Dominance. Randomization [1]
can provide the means by which the human on the loop realizes a high-level specifi-
cation in effective code. Conventional compilers are essentially context-free translators.
They are thus realizable through the use of context-free grammars with the translation of
a few context-sensitive features through the use of attribute grammars. Nevertheless,
progress in automatic programming hinges on the use of context-sensitive specification
languages (e.g., structured English). Such languages are effectively compiled through
the actions of rule bases. In fact, the first compilers were rule-based.

The design of rule-based compilers is not a theoretical problem. Rather, it is an
economical process for the acquisition of knowledge for these compilers that has
evaded solution. It follows that the solution of the automatic programming problem,
including attendant cybersecurity, can be reduced to the efficient and cost-effective
solution of the knowledge acquisition bottleneck. However, the more complex the
knowledge, the more its’ efficient acquisition depends on the acquisition of a salient
knowledge base. This (second) knowledge base serves as heuristics for guiding the
acquisition of the first one.

4.2 Auto-Randomized Learning for the TSP

If knowledge did not beget knowledge, there would be no need for heuristics, which
was shown early on by Dendral and Meta-Dendral to not be the case [6]. It logically
follows that the focal problem here is how to apply knowledge-based systems to their
knowledge-acquisition bottleneck. The solution of this problem necessarily entails
self-reference with scale (e.g., daisy-chained self-reference). A practical implication
here is that secure networks will play a critical role in facilitating daisy-chained
self-reference.

Self-reference implies the use of heuristics to prevent inherent incompleteness
[7, 8]. The science of randomization offers a new way forward in the application of
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knowledge bases to themselves in order to extend them. For a real-world example,
consider the following set of five rules pertaining to the solution of the TSP (Fig. 8).

Rules are self-contained coherent algorithms containing one or more entrance pre-
conditions, a coherent action, and one or more exit post-conditions, which are often used
to update a blackboard. Next, R1, R3, and R4 may be applied to R2 to randomize the
rule base and in so doing extend its capability for finding a best heuristic solution. Here
is the self-referentially randomized rule base, consisting of just two rules (Fig. 9). It is
more general (capable) than the base from which it was derived. Appeal is made to
Church’s Thesis [7] to show that the mechanics of self-referential randomization are
effectively realizable. These mechanics can be extended by inductive and abductive
discovery through the use of schema-based search and I/O constraints [9]. The impli-
cations for cyber-secure automatic programming follow from previous discussions.

It follows from previous results that automatic programming and hence knowledge
acquisition is an NP-hard problem. It also follows that the quadratic-time solution to
this problem entails the use of heuristics. Furthermore, it has been empirically
demonstrated that self-reference is the key to successful heuristic acquisition, based on
transferring results for the n-puzzle [3]. However, the results shown above make it clear
that while this works, it can be arbitrarily difficult to acquire a set of appropriate
heuristics. It then follows that the search for such heuristics must be pruned through the
application of appropriate knowledge, which is to state that self-reference is key.

The need for search heuristics is inherent. This follows because, like the TSP,
automatic programming is NP-hard. Even a full-scale programmable quantum computer
could do no better than reduce the search by O(2**n). The TSP, as previously discussed,
is O(n!), where O(n!) >> O(2**n). This differential is even more pronounced for true

city may be visited twice.) Increase the tour length by the 
distance to this city.

R2: Traverse to the closest city on Open and then to the 
closest city to it on Open. No city may be visited twice. 
Compute all path lengths. Visit cities on the shortest path 
length, resolving ties arbitrarily, and remove them to Closed. 
Increase the tour (length) by the shortest path (length).

R3 (heuristic pruning): If the search-ply, at any city, ex-
ceeds t, execute R1.

R4: If no city remains on Open, return to the starting city 
and exit with the found solution.

R5: Run rule base with t = 1, 2, 4, …, 2**n, fitting a 
curve using the Newton Forward Difference Formula until 
the predicted runtime for t exceeds the allowance.

R1: Visit the closest city on Open, resolving ties arbitrari-
ly, and remove it to Closed. (Closed is used to insure that no 

Fig. 8. A simple rule base for a heuristic solution of the TSP
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automatic programming, which is as complex as O(n**n), where O(n**n) >> O(n!).
Heuristics, heuristic acquisition, and heuristic transference [3] are inherently better
enablers of machine learning through self-randomization than can quantum computers
be. However, this is not to be interpreted as an argument to preclude the development of
quantum computers to the extent possible. Rather, it puts priorities in perspective.

Clearly, this self-randomization of a knowledge base cannot be limited to any
domain-specific set of problems. It is evidently more general than that. If the domain is
set to that of any type of knowledge-based software associate (i.e., software whose
purpose is to help the programmer in creating software – including itself), then
cyber-secure automatic programming will likewise benefit. This follows because if any
NP-hard problem (e.g., the TSP) can be shown to benefit from the approach, it then
follows that every NP-hard problem will likewise benefit (e.g., even the very NP-hard
problem of automatic programming).

It follows from the results of [2] that knowledge can grow to be of unbounded
density by process of generalization. Maximizing the quantity of applicable knowledge
can be shown to minimize the mean time for discovery, while maximizing the mean
quality of the knowledge, which may be discovered.

The attainable density of knowledge is also dependent upon its representation
(e.g., the missionaries and cannibals problem) [4]. Translating the representation of
knowledge, in general, requires search and control knowledge to constrain that search.
It follows that search, self-reference, and randomization are inherent to automatic

R1: While Open <> {}
Begin

While the search-ply ≤ t
Begin

Traverse to the closest non-visited city on Open.
Resolve ties arbitrarily.
Increase the path length by the distance to this city.
Visited cities in a loop are treated the same as those on 

Closed.
End

Removed visited cities, on the minimal path length, to 
Closed. (Closed is used to insure that no city may be visited 
twice.)

Resolve ties arbitrarily.
Increase the tour (length) by this path (length).

End
Exit with the solution.

R2: Run rule base with t = 1, 2, 4, …, 2**n, fitting a curve using the 
Newton Forward Difference Formula (interpolating polynomial) until 
the predicted runtime for t exceeds the allowance.

Fig. 9. A more general self-randomized rule base
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programming in the large. The result is that automation, and hence intelligence, derives
from effective very-high level representations (e.g., natural language) of context-
sensitive knowledge.

This is not knowledge acquisition as portrayed in the literature. Rather, it takes the
view that candidate knowledge stems from abductive questions that ask, “What would
have to be true to obtain a further state randomization?” For example, helium balloons
rise and hydrogen balloons rise. What would have to be true for gasses less dense than
air to cause a balloon to rise? The answer is that hot air balloons must rise. Conven-
tional expert system shells do not have access to this knowledge, unless it is literally
supplied. Here, one sees how self-referential randomization can be driven by
question-asking and/or experiment – leading to the creation of new and valid knowl-
edge, which can be quite different from anything in the knowledge base(s), but which
may be abduced from it.

4.3 Auto-Randomization Through Property Lists

Figure 9 demonstrates that the process of self-randomizing a rule base can be quite
arduous and thus require an economy of scale to be effective. Nevertheless, there are
inductive logics of abduction, which can be quite effective for self-randomization –

even in the small. One such inductive logic of abduction involves the normalization
and randomization of property lists. We will use our balloon example to illustrate the
basic workings of the abductive process as follows. Consider the following two rules
and their associated property lists (Fig. 10).

Next, a fixed approximation of applying the rule base to itself, or self-randomization,

is to find for (a) R1(P1) \ R2 (P2) and (b) R1(P3) \ R2(P4). In a larger rule-base
segment, there can be many more rules. Here, temporal locality, based on recentness or
frequency of reference, is used to determine the candidate rules and properties to be
intersected. For example, a child may study a blue helium balloon and then a red train
with no randomization ensuing. Conversely, he/she might then study a red helium
balloon and abduce that the color of the balloon is of no consequence by randomizing
the associated rule base.

Intersection (a) shows that the property of having color is common to rising bal-
loons. Intersection (b) shows that an odorless, tasteless, gas, which also has the

R1: If red hydrogen balloon, then it will rise.
R2: If orange helium balloon, then it will rise.
P1: Property (red) = {color, sunrise, sunset, blood, hot, …}
P2: Property (orange) = {color, fruit, hotter than red, …}
P3: Property (hydrogen) = {gas, flammable, less dense than helium, odorless, 

tasteless, …}
P4: Property (helium) = {gas, inert, less dense than air, odorless, tasteless, …}

Fig. 10. Rules and associated property lists

On the Tractable Acquisition of Heuristics 17



(transitive) property of being less dense than air is common to rising balloons. The
density property is arrived at through the use of a transitive logic (i.e., hydro-
gen < helium and helium < air ! hydrogen < air). Thus, R1 and R2 are replaced
(randomized) by:

R1’: If {color} and {odorless, tasteless, gas, less dense than air}, then it will rise.

At this point, suppose the child acquires the rule:

R3: If red air balloon, then it will fall.

and the associated property list:

P5: Property (air) = {gas, oxidizer, more dense than helium, odorless, tasteless, …}

In R3, red is found to have the property of color. However, R1’ and R3 have
consequents, which are not subsets of one another. In fact, these consequents are
contradictory. Thus, if the balloon rises or falls cannot be attributed to color alone. It
must be due to some variance in the properties of air and the unified gas properties
found in R1’. That is, the hydrogen/helium balloon may rise because it is less dense
than air and the air balloon may fall because air is an oxidizer and/or more dense than
helium. Formally, (c) = ((b) – R3(P5)) = {less dense than air} and (d) = (R3(P5) –
(b)) = {oxidizer, more dense than helium}. At this point, we have the rules:

R1’’: If {color} and {less dense than air}, then it will rise.
R3’: If {color} and {oxidizer, more dense than helium}, then it will fall.

You might remember, as a kid, seeing transparent helium balloons and being
somewhat astonished that they would rise (R4). I know that I was. The property of
transparent = {no color}. The self-randomization here is (e) = R1’’ (color) \ R4(no
color) = Ri(). Thus, the property of color is dropped from all rules pertaining to rising
balloons (i.e., R1’’ and R4). Similarly, experience with a transparent air balloon would
result in the property of color being dropped from all rules pertaining to falling balloons
(i.e., R3’).

Alternatively, general self-randomization allows for a (common-sense) rule that
states if color does not cause a balloon to rise, then it does not cause a balloon to fall, to
be applied and thus cancel the need for this last experiment. It should be noted that this
rule is not at all obvious to a machine and would need to be acquired. After all, a lead
weight does not cause a balloon to rise, but it will cause a balloon to fall. At this point,
we have the rules:

R1’’’: If {less dense than air}, then it will rise.
R3’’: If {oxidizer, more dense than helium}, then it will fall.

Next, consider the process for asking questions, which is driven by the goal of
obtaining a randomization. This too is a form of learning. Here, one might ask, “Are
there any non-oxidizers more dense than helium; and, if so what would happen to a
balloon filled with one?” The conveyed answer is that Freon (dichlorodifluoromethane)
is such a substance; and, it causes the balloon to fall. This creates a tautology and thus
the rule:
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R3’’’: If {more dense than helium}, then it will fall.

Of course, this rule is not exactly correct as written. The following question, driven
by randomization is thus posed, “Are there any gasses denser than helium that will not
fall?” The conveyed answer is that pure nitrogen is denser than helium and will cause a
balloon to rise in the air. This fact contradicts the rule; and, it thus leads to a question
seeking to elicit the reason for a gas balloon falling; or, in the absence of such feed-
back, an iterative convergence on the same. Here, the next step in such a convergence
would be:

R3’’’’: If {more dense than nitrogen}, then it will fall.

Alternatively, R1’’’ can serve as the basis of a more-informed question; namely,
“If Not {less dense than air} will it fall?” A table lookup may or may not be available to
show that Not {less dense than air} ! {equal to or more dense than air}. This can also
lead to the deduced property that pure nitrogen is less dense than air. Notice that as
properties and rules are updated, there is a cascading of such similar updates.

At this point, we have the following rules.

R1’’’: If {less dense than air}, then it will rise.
R3’’’’’: If {equal to or more dense than air}, then it will fall.

The novel question being posed for this rule base is what will happen if a balloon is
filled with hot air? In order to answer this question, one needs to obtain the property list
for hot air. If this is not available, or the specific property of density is not present, one
needs to generate a query. This query is not directly for the purpose of randomization.
Rather, it seeks to enable future randomizations, as well as higher-quality random-
izations, through property extensions. Since hot air has the property of being less dense
than air, the system can respond that hot air balloons will rise – despite having no literal
rule to that effect.

Notice that as the system tends towards the capability for understanding natural
language, it can interact with other knowledge-based segments in a daisy chain to
answer, or at least learn to answer, questions that will be posed. These arguments
provide a rather informal proof that a randomization-based synthetic intelligence is
indeed possible. Note too how inquisitive the operational system becomes. This is not
only very human-like, but suggestive that our own questions may indeed be driven by
the need for randomization.

4.4 State and Representation Randomization

The case for representation is similar. For example, the representation of an image, in
terms of edges, can greatly facilitate its correct characterization. Then, the represen-
tation of a human x-ray, in terms of edges, can similarly greatly facilitate a diagnosis.
What would have to be true of a sonar image to facilitate its characterization? The
answer is that its representation, in terms of edges, must facilitate its correct charac-
terization. Here, the randomization of representation leads to the creation of new and
valid knowledge. This knowledge is symmetric, which allows the abductive process of
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randomization to be applied. Again, such abduced knowledge can be very different
from that embodied by the knowledge base(s).

Of course, state and representation randomization can co-occur. One will find that
just because this is the theoretical answer, does not necessarily or adequately address its
empirical realizations. The empirical KASER [5] was a first step in demonstrating that
such an intelligent system – one enabling automatic programming, or intelligent
problem solving in its own right, could be constructed with great practical success. It
remains to develop technologies for representation randomization as well as more
capable technologies towards unbounded state and representation randomization. Not
only do these define true (i.e., synthetic) intelligence, but non-trivial software
automation as well. Just as complex variables play a role in the solution of real-world
equations, schemas coupled with I/O constraints can play a role in the randomization of
real-world knowledge bases (e.g., for software associates).

4.5 On Self-randomization for Generalization

One of the problems with property sets is that combinations of variables are, in general,
what is enabling generalization, which involves n choose r possibilities – exponential.
Thus, while it is relatively simple (and eminently practical) to induce that lighter than
air gasses are what causes a balloon to rise, it is far more arduous to determine say what
are the properties of TiO2 that enable it to crack water in the presence of sunlight (i.e.,
in the search for better catalysts). Clearly, the only hedge against this inherent com-
binatorics problem is knowledge; and, the best way to acquire such knowledge is
through self-randomization. Minton [10] applied knowledge to the inference of
knowledge using explanation-based learning (EBL). However, EBL could not account
for the context of where and when to properly apply that knowledge.

In the solution of this problem, we first provide a conceptual account of
self-randomizing explanation-based learning (SREBL). Then, we will proceed to
address some more formal aspects of the algorithm. SREBL conceptually operates as
shown in Fig. 11.

The result of SREBL is not only maximally generalized domain-specific rules (e.g.,
rules for interpreting NL), but maximally generalized meta-rules for maximally gen-
eralizing domain-specific rules, including themselves, as well.

The utility of this approach follows from the combinatorics of rule application. If a
generalization is defined to amplify rule applicability by a mean factor of m and the
average segment comprises n rules, then the knowledge amplifies its utility by a factor
of mn. Furthermore, this is not a static factor, but m and n grow with rule acquisition.
Thus, acquired knowledge grows exponentially!

At least two salient points need to be made. First and foremost, representation is
defined and limited by the programming language used. It is possible to bootstrap that
language (e.g., towards NL) to yield far more capable generalization rules. This pro-
vides for the attainment of unbounded state and representation randomization, or
information-theoretic black holes [2]. Here, randomization is not due to information
compression so much as it is attributable to the generalization of knowledge.
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Second, the previously demonstrated need to ask questions takes the form of
iteratively asking the user (or another domain-specific segment) to supply a rule, in the
programming language, which generalizes a rule, if possible, or which maps a
domain-specific rule to its specified generalization. As the system learns, the sequence
of queries becomes increasingly high-level and never redundant. This is attributable to
randomization. The system must test that specified rules are not over-generalized,
which can be autonomously detected because it results in contradiction. The system
must also test that generalization rules are not overly general, which can be detected
because they map a specific rule to one having a contradictory instance(s).

Biermann [11] at Duke University wrote a non-creative expert system that synthe-
sized “impressive”LISP programs using rules. Themain inefficiencywas the knowledge-
acquisition bottleneck, or rule-discovery process. Self-randomizing rule bases can mit-
igate that bottleneck and enable the creation of cyber-secure synthetic software. This
software can be represented in the form of an expert system running coherent rules, or in
the form of functional programs. The point is that not only are all manner of software
associates possible, but the high-level codes themselves can also be synthesized with the
human on the loop, which again follows from the work of Biermann [11].

Self-randomizing knowledge bases define more intelligent systems. These knowl-
edge repositories will drive software associates and synthesizers, where the larger the
scale, the more capable the system. Fortunately, a proof of concept is possible in the
small.

1. Start with a rule base of domain-specific rules. Fired rules are logically moved 
to the head from where they may be selected as candidates for generalization.
Generalizations are context-sensitive tags based on evolving set memberships.
The contexts provided by predicate instances are recursively defined by non-
monotonic acquired rules.

2. Map this rule base to one comprised of more-general rules, ultimately written in 
a bootstrapped NL, which subsume their instantiations and are found by query.
The presence of a single contradictory rule indicates an overgeneralization error. 
Subsumed rules may be logically moved to a dynamic cache, or simply ex-
punged.

3. For each categorically new generalized rule, create a domain-specific meta-rule 
base segment, which is comprised of rules, ultimately written in a bootstrapped 
NL, which are found by query and iteratively generalize a domain-specific rule.

4. Meta-rule base segments are augmented with specific meta-rules to complete the 
generalization of new domain-specific rules. If no segment properly applies, a 
new segment is created and populated.

5. Take the meta-rule base segments to be the aforementioned domain-specific 
rules and map those from the logical head to their generalizations.

6. Self-referentially apply the meta-rule base segments to their own generaliza-
tions.

7. This process ends when no meta-rule base segment can be further generalized at 
this time.

Fig. 11. Boostrapping self-randomizing rule bases for generalization
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If and when such machines become capable of unbounded state and representation
randomization [2], they again will necessarily create information-theoretic black holes.
We postulate that the physics of information may define self-awareness. Convergent
creativity and intelligent life may very well be inseparable. Einstein was in agreement,
based on his assertion, “Imagination is more valuable than knowledge.”

5 Conclusion

Running the algorithm for up to 5,000 cities, the Phase I tour was optimized by up to
94 percent in Phase II. This was found to be within 0.00001063 percent of optimal (i.e.,
209 miles). This suggests, in decreasing order of likelihood, that (a) pairwise exchange
cannot globally optimize the TSP solutions (e.g., Each of two adjacent pairwise
exchanges would increase the global distance slightly, but taken together they would
reduce it – however, finding such ordered pairs, ordered triplets, and so on is clearly
intractable for exponentially diminishing returns. Hence, (c) follows.), (b) the random
number generator has an abbreviated period and/or is not uniform, and/or (c) P = NP,
where P is quadratic and the scale tends towards infinity. At least one thing is certain;
namely, P*NP for all practical applications, where P is quadratic. One need not await
the awarding of the Clay $1 million mathematics prize to practically solve every
NP-hard problem (again, not just the TSP) within quadratic time! Here, solving implies
getting arbitrarily close to, but not necessarily at, optimal. While quadratic time is not
practical for all applications, it opens the door for automatic program synthesis through
heuristic search and discovery [3] – something of enormous practical import.

Machine learning through self-randomization was shown to be practical through
inductive logics of abduction. Daisy-chained randomization benefits from scale and
was shown in the discovery of heuristics for the practical solution of the NP-hard
TSP. Furthermore, it was informally shown how an inductive logic of abduction could
be developed using property lists to enable machine learning, in the small, through the
self-randomization of the associated knowledge base(s). This capability is amplified by
an allowance for query. Here, the capability for machine learning is proportionate to the
capability for the knowledge base to randomize itself. As this capability grows, it
ultimately defines an information-theoretic black hole [2]. This is what makes possible
the development of a synthetic intelligence. A capability for unbounded cyber-secure
software automation is reducible to this development.
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Abstract. Case-Based Reasoning (CBR) interests the scientific community,
whom are concerned with scalability in knowledge representation and pro-
cessing. CBR systems scale far better than rule-based systems. Rule-based
systems are limited by the need to know the rules of engagement, which is
practically unobtainable. The work presented in this paper pertains to knowledge
generalization based on randomization. Inductive knowledge is inferred through
transmutation rules. A domain specific approach is properly formalized to deal
with the transmutation rules. Randomized knowledge is validated based on the
domain user expertise. The approach is illustrated with an example and is seen
to be properly implemented and tested.

Keywords: Case-Based Reasoning � Contextual search � Randomization �
Transmutation

1 Introduction

The performance of a Case-Based Reasoning (CBR) system is highly correlated with
the number of cases that it imbues. This is evidenced by the resolution process which
seeks the most similar cases found in the case base to solve new (sub-)problems. Each
case represents a situational experience already saved by the system. Solutions related
to the most similar problems are retrieved for reuse. They are proposed to the user who
may revise them according to the current situation. The more similar the experience is
to the encountered case (situation), the more likely an adaptation is to be valid. The
case base is enriched by the acquisition of revised new cases.

The size of the knowledge base, as source of the primitive knowledge and as a
warehouse to the generated cases, is worthy of consideration. On one hand, the more and
the richer base, the more accurate the system is with regard to resolution. On the other
hand, too large knowledge base slows down the reasoning process. The main purpose
served by this paper is to define how to integrate knowledge generation in a CBR system.

Implicit knowledge can be present in the case base through dependencies and
similarities between cases. When dependencies are strong, they allow for knowledge
derivation by transformation based on equivalence. When they are weak, knowledge
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derivation is obtained by randomization based on analogy. In this paper, we define an
approach to infer knowledge by materializing the implicit knowledge through newly-
generated cases. Knowledge inference will be inductive and based on randomization.

Randomization is a new trend in CBR processing with many pioneering works by
Rubin et al. [1–7]. These works show that hybridization of CBR and fuzzy methods
leads to compromise solutions with respect to accuracy and computational complexity.
Randomization is used for case retrieval in CBR.

However, recent work in Case-Based Reasoning [3, 4] has evidenced that while
cases provide excellent representations for the capture and replay of plans, the suc-
cessful generalization of those plans requires far more contextual knowledge than
economically sound planning will allow. The approach to randomization, proposed
herein, enables the dynamic extraction of transformative cases, which permits the
inference of novel cases through the substitution of problem/solution cases along with a
check of case validity. It is based on the work proposed in [6] which proposes an
approach to derive knowledge by randomization using analogy among the segments of
information. The approach proposed in [8] first extends the previous work with new
conditions on the randomization process.

In this paper, we propose to formalize the cases semantics, to better handle ran-
domization and validate the randomized cases. We also show how such a randomization
may be applied to a case-based reasoning system, and how the latter may benefit from
randomization with respect to the problem and solution parts, which define a given case.

An appropriate application illustrates the approach. It consists of a travelling robot.
The robot has as its mission to move between two points with the obligation of passing
through a number of checkpoints. Such an application finds utility in many areas, like
road transportation and office environments. For the latter area, some tasks of the robot
could be: mail delivery, document exchange between offices, guest orientation, etc.

The remainder of the paper is structured as follows. Section 2 presents works
related to randomization, especially for case-based reasoning systems. Section 3 pre-
sents the proposed transmutation approach. Section 4 develops the technical aspect of
the approach integration into a CBR system. Section 5 applies the approach to a
specific domain and Sect. 6 validates it. Finally, Sect. 7 illustrates the approach
through an appropriate application.

2 Related Work

Case-based reasoning has been useful in a wide variety of applications. Health science
is one of its major application areas [9]. In addition, financial planning, decision
making in general [10, 11], and the design field [12–14] are representative of important
application areas for case-based reasoning.

Indeed, many CBR systems have been developed in the past two decades. While
increased interest in the application of CBR is observed, the design and development
process of the CBR system itself is still the subject of many studies in the literature.
The focus is on the theories, techniques, models, algorithms and the functional capa-
bilities of the CBR approach. For example, in the retrieval phase, authors of [15] argue
that how to best design a good matching and retrieval mechanism, for CBR systems, is
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still a controversial issue. They aim to enhance the predictive performance of CBR and
suggest a simultaneous optimization of feature weights, instance selection, and the
number of neighbors that can be combined using genetic algorithms (GA). The best
method to index cases is still an open issue. Fuzzy indexing is one of the approaches,
which that have been successfully applied by previous researchers in different appli-
cations, such as presented by the works in [16, 17].

Generalization and fuzzification of similar cases comprises the basis for search
improvement and case-base size reduction. Randomization is used for case retrieval in
CBR. In [18–20] fuzzy similarity measures are applied to range and retrieve similar
historical case(s). In [18], a fuzzy comprehensive evaluation is applied for the similarity
measure within the CBR approach proposed for reusing and retrieving design infor-
mation for shoes. In [21], a k-NN clustering algorithm is proposed.

Fuzzy logic is advantageous in knowledge transfer as shown in [22], where
uncertainty and vagueness characterize the target domain. An example of the use of
fuzzification can be found in [23]. In this work, a framework for fuzzy transfer learning
is proposed for predictive modeling in intelligent environments.

Hybridization of multiple techniques is adopted in many applications. In [24] a
hybrid decision model is adopted for predicting the financial activity rate. The
hybridization is performed using case-based reasoning augmented by genetic algo-
rithms (GAs) and the fuzzy k nearest neighbor (fuzzy k-NN) methods.

Randomization is also used in the reuse phase of CBR to make a decision on whether
or not the most similar case should be reused. In [25], a random function is applied on a
special category of users that have made similar requests to compute their mean opinion.

Similarly, in [26], decision making on knowledge handling within a CBR system is
based on fuzzy rules – thus providing consistent and systematic quality assurance with
improvement in customer satisfaction levels and a reduction in the defect rate. In [27], a
scoring model based on fuzzy reasoning over identified cases is developed. It is applied
to the context of cross-document identification for document summarization.

3 Transmutation Approach

A methodology for the induction of knowledge based on randomization is proposed in
[6]. The methodology introduces an approach to derive knowledge by transmutation
using analogy among the base cases. We dedicate, in this paper, the approach to an
exclusive use in CBR systems. This application is given in the two following sub-
sections, which respectively deal with the problem and solution transmutation.

In the CBR base, a case is represented by a grammatical production in the form of:
Problem Situation ! Solution Action; where the left-hand side of the production
expresses the problem part, and the right-hand side is the solution part. The case base is
defined to be domain- specific. The problem is composed of multiple descriptors {A, B,
C…} and the solution is composed of multiple components (X, Y, Z…).

Transmutation on the grammatical production is based on analogies between cases
and provides new productions, thus enriching the case base. Two types of transmu-
tation may be considered. The first one consists in a problem substitution; whereas the
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second one is a substitution of the solution part. Both types of transmutation require
three specific cases, which we will call transmutation trio or trio for short.

3.1 Problem Substitution

The first type of transmutation is based on a trio composed of: (1) two cases with the
same solution part, but different problem parts; they will be called primary cases; (2) a
third case on which the substitution can apply; thus a case whose problem part includes
the problem part of one of the primary cases. It is called a substitution case. For
example, we consider the following trio:

C1 : A;B;Cð Þ ! Xð Þ
C2 : A;Eð Þ ! Xð Þ
C3 : A;B;C;Dð Þ ! X;Vð Þ
We note that C1 and C2 have the same solution (X). Thus (A, B, C) and (A, E) can

substitute for each other in the context of (X), since they have the same solution
part. We notice that (A, B, C) is included in the problem part of C3 and (X) in its
solution part. From these cases we can derive a new case:

C30 : A;E;Dð Þ ! X;Vð Þ

3.2 Solution Substitution

The second type of transmutation is based on a trio composed of: (1) two cases, called
primary cases, with the same problem part, but different solution parts; (2) a third case,
called substitution case, on which the substitution can apply; thus a case whose solution
part includes the solution part of one of the primary cases. We consider, for example,
the following trio:

C30 : A;E;Dð Þ ! X;Vð Þ

C4 : A;E;Dð Þ ! Uð Þ

C5 : A;E;D;Fð Þ ! U; Tð Þ

We note that C3ʹ and C4 are non-deterministic; the same problem (A, E, D) is
mapped to distinct solutions. Thus (X, V) and (U) can substitute for each other in the
context of (A, E, D), since they have the same problem part. The newly generated case
C5ʹ will be:

C50 : A;E;D;Fð Þ ! X;V ; Tð Þ

Note that these transformative substitutions are often, but not always valid. This
follows because there can be complex latent contextual interactions. For example, it
may be that my stove can burn alcohol and simple contextual transformations tell us
that it should also burn kerosene. However, here the latent context is that kerosene is
more viscous than alcohol, which serves to interfere with the fuel-injection mechanism.
Clearly, such transformations require the application of domain-specific knowledge to
insure validity.
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4 Knowledge Induction in a CBR System

The process of knowledge generation based on the proposed approach serves to
amplify the case base with new knowledge, thus enhancing the capability of search in
CBR systems for delivering more potentially similar cases. Such knowledge amplifi-
cation [2] relies on the built transmutation trios. The more the transmutation trios are
well-structured the faster will be their retrieval. For this purpose, we propose a
case-based segmentation driven by the trios.

4.1 Knowledge Structuration

To speed up retrieval of the transmutation trios, we structure the case base around the trio.
We split the knowledge base into segments, where a segment serves to gather cases
forming transmutation trios. Trios that belong to the same segment share, necessarily, at
least one common case. Each segment is represented by a delegate. The delegate concerns
only the problem part. It is a generic description that best represents problems within the
same segment. It also can be defined as a generalization yielding the most significant part
of a problem. A case is added to the segment if its problem matches the delegate.

For example, let (C1, C2, C3, C4, C5, C6, C7, C8, C9, C10) be the cases of the
base. We suppose that we can form the trios {(C1, C2, C3); (C2, C4, C5); (C6, C7,
C8)}. We, thus obtain four segments. The first one comprises the trio (C1, C2, C3) and
(C2, C4, C5), thus, the cases C1, C2, C3, C4 and C5. Thus, the cases C6, C7 and C8
will have their own segment as they do not share any case with the other segments. The
cases C9 and C10 are not included in any randomization trio; thus, each of them will
have its own segment.

In order to perform the partitioning, we use a variant of the k-medoids classification
algorithm [28]. The k-medoids is a classical partitioning technique that splits a set of n
objects into k clusters, each of which is represented by an element. In the classification
we propose, k is initially unknown. The segmentation is as follows (Fig. 1):

• The knowledge base will be partitioned in an undefined number of segments.
• Each segment will have a delegate that is the most representative element in the

segment.

Fig. 1. Knowledge base structure.
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• To be included in a segment, a new case is compared with the delegate; if they
match, then the case is added; otherwise, it is compared with the other delegates.

• If a case does not match any delegate, it founds a new segment and becomes its
delegate.

Figure 1 shows the structure of the knowledge base after segmentation.
We note that the cases are not physically inserted into the segments. They only are

indexed. Thus, a case is saved once in the case base; but, it may be indexed several
times in a segment.

While structuring the case base into segments, the latter are filled with the trans-
mutation trios. Only trios generating valid cases are saved in the segments. Case
validation is domain-specific. It is performed by domain experts. Furthermore, the
inducted cases are not stored in the segments. This aims at preventing the explosion of
the knowledge base. Thus, the transmutation process will be executed at every problem
resolution as an alternative.

The case base segmentation is performed as given by Algorithm 1. No segment
exists a priori.

Algorithm 1

For each case C
For each segment S of the case base

Compare the case C with the delegate of S
If (comparison is true)

Add the case to segment and choose 
Browse the segment and for each case C’

If (C’ is similar to C in either its problem 
or solution part)

Form a pair of primary cases with C
And C’ and then save it

End If
End For
Browse the segment a second time and for

each case C’’
If (C’’ is a “substitute case” for the 

Primary cases formed above)
Save C’’ with the associated primary
cases (C and C’) if a valid trio

End If
End For

End If
End For
If no segment can contain C

Create a new segment S’
Add C to S’ and define it as its delegate.

End If
End For
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4.2 Search for Accurate Knowledge

Figure 2 shows a CBR system integrating the proposed knowledge induction tech-
nique, which consists in the trios transmutation.

The user interface allows a user to specify the problem part of the searched case.
Once the problem resolution is completed, it restores the solution part for the user. It
also permits the system to interact with the user by giving him more detailed infor-
mation about the problem or showing him the problems resolution steps.

The processing layer is based on the classical case-based reasoning process aug-
mented with the knowledge induction process. The case-based reasoning process
consists of 3 main phases: (1) description of the problem, (2) search of a solution
among the cases relevant to solve the problem, and (3) reuse of a potential solution.

At the search phase, for a given problem resolution, a comparison is first made with
the segment delegates. Only the segments whose delegate matches the problem to solve
are retained. Next, prior to any search for the most similar case, we first generate more
cases by running the transmutation on the trios of the retained segments. This may help
finding a solution from the generated cases. It at least improves the chances for
obtaining more similar cases than the ones previously entered into the knowledge base.
Next, similarity is calculated between the problem to be solved and all cases of the
retained segments. Search is given by Algorithm 2.

Fig. 2. CBR system architecture integrating knowledge induction
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Algorithm 2

For each segment S of the case base
Compare the case C with the delegate of S
If (comparison is true)

Add cases in S to the set SetOfCases
For each trio T in S

Generate new cases by transmutation on T
Add the generated cases to SetOfCases

End For

End If
End For
Apply similarity measurement between the 
problem of case C and all cases in SetOfCases

The reuse phase permits one to build the solution based on the most similar case
found in the knowledge base. The more the cases that are similar, the simpler reuse will
be, since the modifications will be relatively few. When similarity among the cases is
not complete, there is need for adapting the retrieved solution so that it best fits the
corresponding problem. Thus, validity of the retrieved solution is checked first. Next,
the solution is possibly revised and the new case is saved to be reused in future problem
resolutions.

We note that while the inducted cases, resulting from the transmutation process, are
not saved in the case base, the revised cases are. Indeed, while the inducted cases can
be re-derived, the revised cases will be lost if not stored.

5 Illustration of the Transmutation Approach

In order to best highlight the approach proposed in this paper, an appropriate domain of
application is required. The application must have an intuitive solution in order to help to
properly evaluate the approach. The degree of similarity between our intuitive knowledge
about the results and the results obtained will reflect upon the validity of the approach.

As stated in the introductory section, we will apply our approach to a travelling
robot that moves from point A to point B by going through a number of checkpoints.
The problem to resolve will be the route described by the user. It consists of the start
and end points plus all of the required checkpoints. The solution part must be a route
including all checkpoints specified by the user. It is represented by a set of lines:
Vertical Line (VL), Horizontal Line (HL) and Diagonal Line (DL).

Thus, each case will be represented as follows:

(Problem Situation) ! (Solution Action); where:
Problem Situation: (start point (S), {checkpoints R1, R2, … Rn}, end point (F))
Solution Action: ({HL(S,A), VL (A,B), DL (B,R1), …,})
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The segment delegates must be designed to best represent the segment cases. Thus,
they should contain the pertinent points allowing for a good compromise between the
number of segments and their size. A delegate composed of the start and end points as
well as the checkpoints will provide a huge number of segments; whereas a delegate
composed of only one point, for example the start point, will generate a large segment
size. As a compromise, we suggest to compose the delegate of the start and end points.

In what follows, we note prbi and soli, respectively, the problem and solution parts
of Casei.

5.1 Domain Analysis

Trios construction relies on similarity between the cases, especially those composing
pairs of primary cases; whereas similarity depends on the domain we consider, i.e. the
problem/solution semantics. An adequate semantics-based similarity function is usually
more significant than a syntactic-based one, yielding the sought analogy between cases.
A syntactic evaluation, through an integral comparison, may not provide accurate
results. Herein, analogy depends on the chosen problem/solution granularity, expressed
in terms of points to go through.

More specifically, in the retained domain, the problem part provides the situation,
i.e. the points that must be crossed. Given the nature of the application, it means that at
least the mentioned points must be visited. This is a hard constraint that must be
satisfied by the solution; whereas, the solution action may be released by including
more lines. We can intuitively understand that a route contains other points than those
specifically indicated. As a result, we can affirm that any route (solution action)
including all points mentioned in the problem is a solution for this problem. On the
other hand, any situation whose points form concatenated stretches of a route (solution
action) may be a problem for this solution. However, in this case, observance of strong
sequencing is required.

A substitution case must include, within its problem (resp. solution) part, the
problem (resp. solution) part of one case from the primary pair. Inclusion is released
with regard to sequencing outside the checkpoints for the problem and solution parts.
Points/lines may be added before and/or after the checkpoints, but never inside these
latter.

In what follows, we will explore and discuss in detail how a new case is inferred.

5.2 Domain Semantics

Based on the domain analysis developed for the considered application, it follows that a
precise semantics need be defined for the problem and solution parts. This semantics
must support the necessary elements to express aspects related to route designation and
route construction. Routes are traced by rectilinear movements. Hence, they respond to
properties handling sequencing actions and/or states. We distinguish, hereafter,
between three sequencing types.
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Definition 1. Free sequencing
The free sequencing property is defined as a disordered sequencing of the elements of a
set. It is expressed by means of the structural operator “;” to separate the elements of
the set.

Definition 2. Weak sequencing
The weak sequencing property is defined as an ordered, but not necessarily joint
sequencing of the elements of a set. Extra-set elements may be inserted between the
elements of the set. This sequencing is expressed by means of the structural operator “|”.

Definition 3. Strong sequencing
The strong sequencing property is defined as an ordered and joint sequencing of the
elements of a set. None extra-set elements may be inserted between the elements of the
set. This sequencing is expressed by means of the structural operator “||”.

Definition 4. Sequencing substitution
Free sequencing substitution, weak sequencing substitution and strong sequencing
substitution are substitutions where the substitute respectively satisfies free sequencing,
weak sequencing, and strong sequencing.

Definition 5. Substitute
The substitute is the set of checkpoints, respectively lines, of a primary case, which
replace the set of checkpoints, respectively lines, of the other primary case within a
substitution case; e.g., in Sect. 3.1, the substitute is (A, E).

In terms of connection, the operator “||” is stronger than the operator “|” which is
stronger than the operator “;”.

For example, in S1 = (A; B; C | D | E || F || G), the sequence E||F||G is strongly
connected, the sequence C|D|(E||F||G) may be separated by extra-set elements, and the
elements A, B and (C|D|(E||F||G)) may appear in any order.

5.3 Transmutation Based on Problem Substitution

Let us consider the following cases:

Case1: (S1 || R1 || R2 || R3 || F1) ! (HL(S1,R1), DL(R1,R2), DL(R2,R3), HL(R3,
F1))
Case2: (S1 || R1 | R3 || F1) ! (HL(S1,R1), DL(R1,R2), DL(R2,R3), HL(R3,F1))

Case1 and Case2 compose a pair of primary cases that can be involved in trans-
mutation by problem substitution as defined in Sect. 3.1. They have the same solution
action for two different problem situations.

An appropriate substitution case would be Case3. Its problem situation includes all
points specified by Case2. It is structured as follows.

Case3: (S1 || R1 | R3 || R4 || R5 || F1) ! (HL(S1,R1), DL(R1,R2), DL(R2,R3), HL
(R3,R4), HL(R4,R5), HL(R5,F1))
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Transmutation of the trio Case1, Case2 and Case3 yields the case Case3ʹ.

Case3ʹ: (S1 || R1 || R2 || R3 || R4 || R5 || F1) ! (HL(S1,R1), DL(R1,R2), DL(R2,
R3), HL(R3,R4), HL(R4,R5), HL(R5,F1))

Now, let us consider the following cases:

Case1: (S1 || R1 || R2 || R3 || F1) ! (HL(S1, R1), DL(R1, R2), DL(R2, R3), HL
(R3, F1))
Case2ʹ: (S1 | R1 | R3 | F1) ! (HL(S1, R1), DL(R1, P), DL(P, R3), HL(R3, F1))

Case1 and Case2ʹ do present integral similarity neither for the problem nor for the
solution parts. However, this does not mean that no similarity exists between the two
cases. We notice that sol1 is a solution of prb1, but also a solution of prb2ʹ. It provides
a route that crosses all the points declared by prb2ʹ, namely, the start and end points S1
and F1 as well as all the checkpoints (R1 and R3). Thus, prb2ʹ may be substituted for
prb1. However, sol2ʹ does not resolve prb1. Thus, prb1 cannot be substituted for prb2ʹ.

Thereby, Case1 and Case2ʹ compose a pair of primary cases, which can be involved
in a transmutation by problem substitution. Case3 cannot constitute an appropriate
substitution case for that pair of primary cases, since prb1 cannot be substituted for
prb2ʹ. Case4 does; its problem situation includes all points specified by prb1. It is
structured as follows:

Case4: (S1 || R1 || R2 || R3 || R4 || R5 || F1) ! (HL(S1,R1), DL(R1,R2), DL(R2,
R3), HL(R3,R4), HL(R4,R5), HL(R5,F1))

Transmutation of this new trio Case1, Case2ʹ and Case4 yields Case4ʹ.

Case4ʹ: (S1 || R1 | R3 || R4 || R5 || F1) ! (HL(S1,R1), DL(R1,R2), DL(R2,R3), HL
(R3,R4), HL(R4,R5), HL(R5,F1))

We note that R2 is no more a checkpoint in the generated case, but only a point
included in the route.

5.4 Transmutation Based on Solution Substitution

Now, let us suppose that we have the following cases:

Case2: (S1 || R1 | R3 || F1) ! (HL(S1, R1), DL(R1, R2), DL(R2, R3), HL(R3,
F1))
Case2ʹ: (S1 || R1 | R3 || F1) ! (HL(S1, R1), DL(R1, P), DL(P, R3), HL(R3, F1))

Case2 and Case2ʹ compose a pair of primary cases that can be involved in a
transmutation by solution substitution as defined in Sect. 3.2. They have the same
problem situation for two different solution actions.

An appropriate substitution case for this pair of primary cases would be Case5. Its
solution action includes all stretches specified by Case2. It is structured as follows:

Case5: (S1 || R1 | R3 || R4 || F1) ! (HL(S1, R1), DL(R1, R2), DL(R2, R3), HL
(R3, R4), HL(R4, F1))
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Transmutation of the trio Case2, Case2ʹ and Case5 yields the new case Case5ʹ. It is
equal to:

Case5ʹ: (S1 || R1 | R3 || R4 || F1) ! (HL(S1, R1), DL(R1, P), DL(P, R3), HL(R3,
R4), HL(R4, F1))

Next, let us consider similarity between Case1 and Case2ʹ with regard to problem
situations. We notice that both sol1 and sol2ʹ are solutions for prb2ʹ. They both pass
through R1 and R3 checkpoints and have the same start and end points S1 and F1. This
implies that sol1 may be substituted for sol2ʹ. However prb1 is not resolved by sol2ʹ.
Thus, sol2ʹ cannot be substituted for sol1.

Case1 and Case2ʹ thus compose a pair of primary cases, which can be involved in a
transmutation by solution substitution. Case5 cannot be an appropriate substitution case
for that pair of primary cases, since sol2ʹ cannot be substituted for sol1. But Case6
does; its solution action includes all lines specified by Case2ʹ. It is given by:

Case6: (S1 || R1 | R3 || R4 || F1) ! (HL(S1, R1), DL(R1, P), DL(P, R3), HL(R3,
R4), HL(R4, F1))

Transmutation of this new trio Case1, Case2ʹ and Case6 yields Case6ʹ.

Case6ʹ: (S1 || R1 | R3 || R4 || F1) ! (HL(S1, R1), DL(R1, R2), DL(R2, R3), HL
(R3, R4), HL(R4, F1))

6 Validation of the Randomized Knowledge

6.1 Validation Rules

Consistency of the generated cases must be verified, since these latter cases have been
generated using weak dependencies that cannot assure valid resulting cases. Hence,
each generated case must be checked for solution consistency, problem consistency and
case consistency. If consistency of a generated case is proved, then the latter can be
used by the system. This means that its related trio is saved in the case base.

• Solution consistency, i.e. is the generated solution syntactically and semantically
correct with regard to the domain of interest? For example, a non-continuous path
from a source to a destination is an invalid solution.

• Problem consistency, i.e. does the generated problem contain an incoherence with
regard to the domain of interest? For example, the problem has two start points.

• Case consistency, i.e. does the solution correspond to the associated problem?
Does it achieve the goals targeted by the problem and satisfy its constraints? The
problem and solution must have been previously validated.

6.2 Application to Strong Sequencing

Validation of the problem part consists in checking that: (i) the start and end points are
the same as those of the delegate; (ii) substitute points are linked with the connector ||.

An Approach Transmutation-Based in Case-Based Reasoning 35



This is true with prb3ʹ, since it includes the delegate’s start and end points, namely
S and F; and its sustitute points are linked with ||.

Validation of the solution part consists in checking that: (i) the first point of the first
line is the start point of the delegate, and the last point of the last line is the end of the
delegate; (ii) all lines are connected, thus forming a continuous route.

This is true with sol5ʹ, since the first point of the first line is S, the start point of the
delegate, and the last point of the last line is F, the end of the delegate; besides, all lines
are connected, thus forming a continuous route.

Validation of a case consists in checking the following: (i) all points of the problem
part must appear in the lines of the route composing the solution part; (ii) only those
points must apear in the lines of the route; (iii) the order of these points must be kept
the same in the lines composing the route as that of the problem part.

This is true with Case3ʹ and Case5ʹ, since all points of their problem part appear in
the lines of their routes; only those points apear in the lines of the routes; the order of
these points is kept the same in the lines composing the route as that of the problem
part.

6.3 Application to Weak Sequencing

Validation of the problem part consists in checking that: (i) the start and end points are
the same as those of the delegate; (ii) all points are linked with the connector |.

This is true with prb4ʹ, since it includes the delegate’s start and end points, namely
S and F; and its points are linked with |.

Validation of the solution part consists in checking that: (i) the first point of the first
line is the start point of the delegate, and the last point of the last line is the end of the
delegate; (ii) all lines are connected, thus forming a continuous route.

This is true with sol6ʹ, since the first point of the first line is S, the start point of the
delegate, and the last point of the last line is F, the end of the delegate; besides, all lines
are connected, thus forming a continuous route.

Validation of a case consists in checking the following: (i) all points of the problem
part must appear in the lines of the route composing the solution part.

This is true with Case4ʹ and Case6ʹ, since all points of their problem part appear in
the lines of their routes; and the order of these points is kept the same in the lines
composing the route as that of the problem part.

6.4 Application to Free Sequencing

Validation of the problem part consists in checking that: (i) the start and end points are
the same as those of the delegate; (ii) all points are linked with the connector “;”.

This situation does not appear in our application.
Validation of the solution part consists in checking that: (i) the first point of the first

line is the start point of the delegate, and the last point of the last line is the end of the
delegate; (ii) all lines are connected, thus forming a continuous route.
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Validation of a case consists in checking the following: (i) all points of the problem
part must appear in the lines of the route composing the solution part; (ii) the order of these
points may be different in the lines composing the route from that of the problem part.

7 Transmutation in Case Based-Reasoning

In this section, we will show how randomization is applied to case-based reasoning. It
should increase the probability to retrieve the searched case by improving retrieval of
new problems and/or retrieval of the pertinent solutions. We will show how knowledge
induction either by problem transmutation and solution transmutation benefit, each one
on its side, to case-based reasoning.

7.1 Problem Transmutation in CBR

Knowledge generation by problem transmutation provides new cases with novel
problems and their corresponding solutions. We are, for example, interested in
searching a route including the following points: (S1||R1||R2||R3||R4||R5||F1). This
succession of points composes the problem part of the case, which we note prb. To
retrieve prb in the case base, we proceed as follows.

First, the segment whose delegate is given by S1-F1 is retrieved. We note that the
problem prb does not match with any problem part of the cases belonging to the
segment. Transmutation is performed on every trio within the segment to generate new
cases with a problem that would match the searched problem prb. Especially, the
following trio provides a new case case3ʹ, whose problem matches prb:

Case1: (S1 || R1 || R2 || R3 || F1) ! (HL(S1,R1), DL(R1,R2), DL(R2,R3), HL(R3,
F1))
Case2: (S1 || R1 | R3 || F1) ! (HL(S1,R1), DL(R1,R2), DL(R2,R3), HL(R3,F1))
Case3: (S1 || R1 | R3 || R4 || R5 || F1) ! (HL(S1,R1), DL(R1,R2), DL(R2,R3), HL
(R3,R4), HL(R4,R5), HL(R5,F1))
Case3ʹ: (S1 || R1 || R2 || R3 || R4 || R5 || F1) ! (HL(S1,R1), DL(R1,R2), DL(R2,
R3), HL(R3,R4), HL(R4,R5), HL(R5,F1))

Since the solution of case3ʹ has already been validated as a good solution in the
phase of randomization, it will be retained for the searched problem prb.

7.2 Solution Transmutation in CBR

Knowledge induction by solution transmutation cannot help retrieving a searched
problem, as problem transmutation does. Rather, it may help improving retrieval of the
good solution by providing more than one solution for the searched problem. The user
will be offered to choose the most convenient one to his problem.

We are, for example, interested in searching a route including the following points:
(S1||R1|R3||R4||F1). This problem search involves a solution transmutation on the
following trio:
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Case2: (S1 || R1 | R3 || F1) ! (HL(S1,R1), DL(R1,R2), DL(R2,R3), HL(R3,F1))
Case2ʹ: (S1 || R1 | R3 || F1) ! (HL(S1,R1), DL(R1,P), DL(P,R3), HL(R3,F1))
Case5: (S1 || R1 | R3 || R4 || F1) ! (HL(S1,R1), DL(R1,R2), DL(R2,R3), HL(R3,
R4), HL(R4,F1))

This results in a new case5ʹ, whose problem is the same as that of case5; but, their
solutions are different.

Case5ʹ: (S1 || R1 | R3 || R4 || F1) ! (HL(S1,R1), DL(R1,P), DL(P,R3), HL(R3,
R4), HL(R4,F1))

It follows that the user will be provided with a double solution for the searched
problem.

8 Implementation

Figure 3 shows the user interface and the result for a transmutation by problem
substitution of the trio Case7-Case8-Case9, thus inducting Case9’. Here, the comma
repre-sents a weak sequencing. The trio is structured as follows:

Case7: (S1, R1, R2, R3, F1) ! (VL(S1,R1), HL(R1,A), VL(A,B), HL(B,R2), VL
(R2,C), HL(C,R3), VL(R3,D), HL(D,G), VL(G,H), HL(H,F1))
Case8: (S1, R1, R3, F1) ! (VL(S1,R1), HL(R1,A), VL(A,B), HL(B,R2), VL(R2,
C), HL(C,R3), VL(R3,D), HL(D,G), VL(G,H), HL(H,F1))
Case9: (S1, R1, R3, R4, R5, F1) ! (VL(S1,R1), HL(R1,A), VL(A,B), HL(B,R2),
VL(R2,C), HL(C,R3), VL(R3,D), HL(D,R4), DL(R4,E), HL(E,R5), VL(R5,F), HL
(F,F1))
Case9ʹ: (S1, R1, R2, R3, R4, R5, F1) ! (VL(S1,R1), HL(R1,A), VL(A,B), HL(B,
R2), VL(R2,C), HL(C,R3), VL(R3,D), HL(D,R4), DL(R4,E), HL(E,R5), VL(R5,
F), HL(F,F1))

Fig. 3. Transmutation by problem substitution
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Induction of Case9ʹ allows for providing a solution for the searched problem (S1,
R1, R2, R3, R4, R5, F1). It generates a new case, with an additional checkpoint R2, in
the path between S1 and F1, through the known checkpoints R1, R3, R4, R5.

Figure 4 shows the result for a transmutation by solution substitution of the trio
Case10-Case11-Case12, thus inducting Case12ʹ. The trio is structured as follows:

Case10: (S1, R1, R2, F1) ! (HL(S1,A), DL(A,R1), DL(R1,R2), VL(R2,B), DL
(B,F1), VL(R3,F1))
Case11: (S1, R1, R2, F1) ! (HL(S1,A), DL(A,R1), DL(R1,R2), VL(R2,C), DL
(C,F1), VL(R3,F1))
Case12: (S1, R1, R2, R3, F1) ! (HL(S1,A), DL(A,R1), DL(R1,R2), VL(R2,B),
DL(B,D), VL(D,R3)), HL(R3,E), VL(E,F1))
Case12ʹ: (S1, R1, R2, R3, F1) ! (HL(S1,A), DL(A,R1), DL(R1,R2), VL(R2,C),
DL(C,D), VL(D,R3)), HL(R3,E), VL(E,F1))

Induction of Case10ʹ allows for providing a new route passing through the three
checkpoints R1, R2 and R3.

9 Conclusion

The approach proposed in this article allows for an enhancement of problem resolution
in case-based reasoning systems by amplifying knowledge while saving space and
speeding up search. Knowledge amplification is based on a technique of trios trans-
mutation. Space saving is deduced from the key idea around case transmutation.
Implicit knowledge within the case base is materialized, every time it is necessary -
without the need to be saved. Only the relevant information, namely the valid trans-
mutation trios, allowing for this materialization is saved. Knowledge materialization is
obtained by transmutation, which scales well with CBR systems. Time gains are
obtained through the proposed segmentation strategy based on delegates generalizing
the problem description.

Fig. 4. Transmutation by solution substitution.
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However, the inducted knowledge is not necessarily valid. It necessitates valida-
tion. This validation is domain- specific. We proposed to formalize the semantics of a
domain specific application and validate the randomized knowledge.
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Abstract. Reusing large software systems, including libraries of
reusable components, is often time consuming. While some core library
features can be well-documented, most other features lack informative
API documentation that can help developers locate needed components.
Furthermore, even when needed components are found, such libraries
provide little help in the form of code examples that show how to instan-
tiate these components. This article proposes a system that provides two
features to help combat these difficulties. Firstly, we provide a mecha-
nism for retrieving reusable components. Secondly, we provide support
for generating context-sensitive code snippets that demonstrate how the
retrieved components can be instantiated and reused in the programmer’s
current project. This approach utilizes semantic modeling and ontol-
ogy formalisms in order to conceptualize and reverse-engineer the hid-
den knowledge in library code. Empirical evaluation demonstrates that
semantic techniques are efficient and can improve programmer’s produc-
tivity when retrieving components and recommending code samples.

Keywords: Component retrieval · Code recommendation · Software
reuse · Semantic inference · Ontology models

1 Introduction

Code reuse provides many benefits during the development and maintenance of
large-scale software systems. Nowadays, their exist a myriad of object-oriented
reuse libraries. However, the ability to understand and reuse these libraries
remains a challenging problem. The size and complexity of these libraries often
inflict a significant burden on developers as they have to simultaneously grapple
with multiple formidable learning curves during the reuse process. On one hand,
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Application Programming Interfaces (APIs) provided by libraries are not intuitive
and often lack a well-defined structure and rich documentation. Thus, complicat-
ing the process of discovering and searching for reusable components. On the other
hand, most libraries are not backed by enough source-code examples that would
explain their features and the services they provide to potential reusers.

In this chapter, we propose an approach that assists developers in reducing
these burdens. In order to demonstrate the utility of our approach, we have
designed and implemented an integrated semantic-based system that can be
used for component search and discovery. In order to further maximize the reuse
potential, this tool can also be used to automatically construct personalized code
examples that would show the proper usage of library components. As such, the
tool is quite comprehensive as it provides two functionalities that complement
each other. Thus, reducing the efforts of switching between tools and helping
users stay focused on the current task.

To illustrate the system’s capabilities, consider a developer who is trying
to reuse Apache Jena [1], a Java open-source framework for building Semantic
Web and Linked Data applications. In this scenario, the developer wishes to
programmatically obtain an Ontology Class view of a Resource identified by a
given Uniform Resource Identifier (URI). This view can be used to determine
if an Ontology Class with the same URI exists in the Ontology Model. The
developer would invoke our tool to find a Jena component that represents the
ontological property (i.e. Property) and another component that represents the
ontology class (i.e. OntClass). Users can use the tool to search for components
by describing their functionality, signatures, or any role they play in the library.
However, finding these components provides a partial solution because the next
natural step would require the developer to write a code snippet that transforms
an object of type Property into OntClass. A programming task of this kind
can be seen as an object instantiation task of the form (Property �−→OntClass).
The following code snippet shows a sample solution for this query:

Property pr = ..... ;
Model model = pr.getModel();
OntModel ontModel = (OntModel) model;
OntClass ontClass = ontModel.getOntClass(pr.getURI());

Accomplishing this conceptually simple task should not be time consuming.
However, due to the need of type casting and some intermediate steps, writing
this short code snippet can be problematic, especially for novice programmers.
Even worse, some other snippets would require complex call sequences for getting
a handle of an object by invoking static methods from other hidden classes.
Nevertheless, the proposed system provides a facility for retrieving the needed
components as well as automatically constructing the code snippet.

In order to tackle our two interconnected program understanding and reuse
features that are supported by our system, an effective approach must guide the
construction of a mental model needed by software engineers in performing their
daily development or maintenance activities [2]. Building a mental model that
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promotes software comprehension and captures the structure and organization
of software systems requires a formal, explicit, and semantic-based represen-
tation of the conceptual knowledge of source-code artifacts provided by these
systems. This article explores this hypothesis by providing an ontology-based
representation of software knowledge.

Due to its solid formal and reasoning foundation, an ontology provides a data
model that explicitly describes concepts, objects, properties and other entities in
a given application domain. It also captures the relationships that hold among
these ontological entities. Our previous work [3] explores the idea of using ontolo-
gies to retrieve software components and recommend code snippets. The work
presented in this article, however, delves into the details and extends the pre-
vious work with updated ontologies and new experiments and case studies for
testing both features supported by our system combined.

The rest of this chapter is organized as follows: In the following section, we
position this approach within the context of current state of the art in code
recommendation and component retrieval. In Sect. 3, we introduce the concepts,
ontology languages, and Semantic Web technologies that are used in this app-
roach. Section 4 discusses the details of the proposed mechanism for component
identification and retrieval. In particular, we provide a component search sce-
nario that explains how a reasoning system can operate on the semantic knowl-
edge representation of software components in order to achieve better precision
when retrieving components. Similarly, Sect. 5 discusses the essence of our app-
roach for code recommendation. Specifically, we use a recommendation scenario
to show how we can formulate a recommendation problem as query of the form
Source �−→Destination, and how our tool answers such query by utilizing the
graph-based semantic representation of a software system. In Sect. 6, we present
and discuss the results of two experiments that we have conducted to evaluate
the proposed approach. In particular, we present the results of a component
and code search experiment and another human experiment we conducted in
controlled settings. Finally, we conclude in Sect. 7.

2 Related Work

There is a significant body of research related to software reuse; much of this
has been implemented into useful tools. However, we could not find a proposal
that combines component search and code recommendation in one unified envi-
ronment. Therefore, we discuss these efforts separately.

2.1 Example Code Recommendation

Many recommendation approaches are based on analyzing a large corpus of
sample client code collected either via Google Code Search (PARSEWeb [6]),
or by searching in a pre-populated local repository (Satsy [7], Strathcona [8],
Prospector [9], and XSnippet [10]). Strathcona for example uses heuristics to
match the structure of the code under development to the structure of the code
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in the repository. Satsy is a Java application that uses symbolic execution to
generate a repository by indexing a large collection of programs and stores them
in a MySQL database. PARSEWeb, Prospector, and XSnippet, on the other
hand, are more focused on answering specific object instantiation queries.

Our approach differs in several ways, specifically when dealing with issues
related data gathering, data processing, and most importantly, knowledge rep-
resentation. Firstly, with the exception of Prospector, other approaches rely
on a repository populated with client code that expresses good usages of the
framework. Prospector does analyze API signatures, but it relies on such repos-
itory to handle downcasts. Handling downcasts in our system as well as Code-
Hint [11] is done by evaluating code at runtime and hence can improve search
accuracy by precisely finding the dynamic type of method calls. Effectiveness of
the approaches that rely on repositories can be improved when a larger corpus
of good samples of client code is analyzed.

2.2 Component Retrieval

Many component retrieval approaches such as [12] use traditional knowledge
representation mechanisms with either signature matching or keyword-based
retrieval. Similar to the proposed tool, other research tools (e.g., [13,14]) have
been designed to be embedded in the user’s development environment. However,
these tools rely on the existence of a repository of sample code to perform the
search. For example, CodeBroker [13] uses a combination of free-text and sig-
nature matching techniques. In order to retrieve appropriate matches, the user
writes comments that precisely describe component’s functionality. If comments
did not retrieve satisfactory results, the system considers the signature of the
method immediately following the comments.

Sugumaran and Storey [15] proposed an approach that utilizes a domain
ontology used primarily for term disambiguation and query refinement of
keyword-based queries; these keywords are then mapped against the ontology to
ensure that correct terms are being used. Other proposals ([16] and [17]) employ
ontologies to address the knowledge representation problem found in previous
approaches. In [17], software assets are classified into domain categories (I/O,
Security, etc.) and indexed with a domain field as well as other book-keeping
fields to facilitate free text search. Although SRS [16] uses similar indexing mech-
anism, it maintains two separate ontologies; an ontology for describing software
assets and a domain ontology for classifying these assets. However, the structure
of source-code assets and the semantic relationships between these assets via
axioms and role restrictions were not fully utilized.

3 Ontology-Based Software Representation

In this section, we introduce the concepts, ontology languages, and Semantic
Web technologies that are used in this proposal. We further show how we utilize
these technologies to build a structure of ontology models that serves as a basis
for building a semantic-rich Knowledge Base (KB) that facilitates code reuse.
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The ontologies we use in this approach were authored using the Web Ontol-
ogy Language (OWL-DL)1. OWL is a knowledge representation and modeling
language that formally captures semantic relationships among domain concepts.
OWL-DL is a subset of OWL that is based on Description Logic (DL) and
therefore it provides maximum expressiveness while maintaining computational
completeness and decidability. OWL-DL’s reasoning support enables inferring
additional knowledge and computing the classification hierarchy (subsumption
reasoning).

Figure 1 shows the modular structure of our ontology models linked via
the owl:imports mechanism, which imports contents from an ontology into
the current one. SCRO is a OWL-DL source-code ontology that describes the
source-code’s structure. SCRO is the base ontology model for understanding the
relationships and dependencies among source-code artifacts. It captures major
concepts and features of object-oriented programs, including class and interface
inheritance, method overloading and overriding, method signatures, and encap-
sulation mechanisms.

Fig. 1. Ontologies for code recommendation and component retrieval

SCRO defines various OWL classes and subclasses that map directly to
source-code elements. It also defines OWL object properties, sub-properties,
and ontological axioms that represent the various relationships among ontologi-
cal concepts. SCRO is precise, well-documented, and freely available online [4],
which allows it to be reused or extended by interested ontology reusers.

COMPRE is a component retrieval ontology. It inherits all definitions and
axioms defined in SCRO. This ontology defines an API component as a distinct
entity that is enriched with additional component-specific descriptions.

SWONTO is a domain specific ontology we developed in order to pro-
vide semantic annotations of component structures. Domain ontologies describe

1 http://www.w3.org/TR/owl2-overview/.

http://www.w3.org/TR/owl2-overview/
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domain concepts and their relationships concisely such that concepts are under-
standable by both computers and developers. COMPRE and SWONTO offer
formalisms that collectively provide a semantic-based component retrieval mech-
anism that alleviates the current problems with signature-based and keyword-
based approaches.

3.1 Knowledge Base Creation

After having these ontologies developed, we generate two distinct knowledge-
bases that can be used as basis for automatic code recommendation and com-
ponent retrieval as shown in Fig. 1. These KBs are generated by a subsystem we
have developed for Java. This subsystem parses the Java bytecode and captures
every ontology concept that represents a source-code element and automati-
cally generates semantic instances for all ontological properties defined in SCRO
for those program elements. The generated instances are serialized using the
Resource Description Framework (RDF)2, a language used to enable concep-
tual description of resources and provides an extensible model for representing
machine-processable semantics of data. For each software library we parse, an
RDF ontology that represents the instantiated KB for that library is created by
our tool.

As we shall see in Sect. 4, capturing the metatdata modeled by some of
COMPRE’s datatype properties requires direct parsing of the framework’s
source-code. Therefore, we also capture and normalize identifiers, method signa-
tures, comments, and Java annotations in order to obtain meaningful descrip-
tions of software components. These descriptions are lexically analyzed and
indexed using the tokenization and indexing mechanisms provided by Lucene3,
a high-performance full-featured text search engine.

In the following sections, we show how the generated KBs are used for com-
ponent search and code recommendation. For viewing KB samples, we refer the
reader to our ontologies website [4].

4 Component Retrieval

As discussed in Sect. 3 of this chapter, COMPRE captures component-specific
descriptions and the interrelationships between library components. We further
utilize domain-specific ontologies to provide semantic annotations of component
structures. Domain-specific ontologies have been widely recognized as effective
means for representing concepts and their relationships in a particular domain
such as finance or medicine. SWONTO is a domain ontology that we have built
for the “Semantic Web Applications Domain”. It provides a common vocabulary
with unambiguous and conceptually sound terms that can be used to annotate
software components in this domain.

2 http://www.w3.org/TR/rdf-primer.
3 http://lucene.apache.org/.

http://www.w3.org/TR/rdf-primer
http://lucene.apache.org/


48 A. Alnusair et al.

To this end, we were able to generate an enhanced KB that describes library
code as specified by SCRO and COMPRE and its application domain as speci-
fied by SWONTO. Semantic search for components is accomplished by matching
user’s requests expressed as terms from the domain ontology against component
descriptions in the populated KB. As discussed in Sect. 3, the process of gener-
ating semantic instances for the concepts and relations specified in SCRO and
COMPRE’s datatype properties is completely automatic. However, the process
of annotating components according to COMPRE’s object properties is currently
done manually as it is the case for semantic annotations in general. Our tool,
however, provides a view that allows users to enter these annotations right into
the KB.

4.1 Component Search Scenario

The components KB we discussed earlier provides multi-faceted descriptions of
components, including their interfaces and their relationships with each other.
Since this is an ontology-based KB, it enables semantic reasoning. As such, we
utilized a sound OWL-DL reasoner to enrich our KB with additional logical
consequences from the existing facts and axioms that are already stated in the
KB. The result is a RDF-based KB that we can use to execute pure semantic-
based queries.

RDF represents knowledge using a labeled directed graph that is made from
the set of KB triples. Figure 2 shows a partial RDF description of the Jena’s
read(..) method, which reads a query from a file. Unlike traditional graph-
representations, RDF graphs provide precise description of resources and they
are capable of encoding metadata in their nodes (represented by OWL classes)
and edges (represented by OWL object properties). As such, RDF graphs provide
flexible means for semantic reasoning and deductive querying.

Fig. 2. Partial RDF multi-faceted graph representation of the Jena’s read[..] method
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The graph of the read(..) method uses the hasInputType SCRO property
to assert that this method has an input parameter of type Syntax. The graph
also shows descriptions that associates the method’s input parameters with some
terms that explain their purposes. This is done using the hasInputTerms OWL
property from the COMPRE ontology. In order to complete the description of
this method’s inputs, we tag it with domain concepts from the SWONTO domain
ontology using swonto:QueryLanguageSyntax. The full graph representation of
this method is large to be shown here but it also associates this method with
domain concepts that describe its purpose, its return type, and other component
descriptions.

This representation of components overcomes known problems with keyword-
based or type-based component search. It also allows us to execute different
kinds of searches against the KB, including multi-faceted search. For example,
let’s search for a component with a domain input of type ExtendedQuery and
one of its input types is Syntax. Additionally, let’s assume that we are not
sure about other input types so we provide few terms as filters to limit the
recommendations. This search scenario can be expressed using the following
query in DL-like syntax:

Query ≡ compre : Component �
(∃compre : hasDomainOutput . swonto : ExtendedQuery) �
(∃scro : hasInputType . kb : Syntax) �
(∃compre : hasInputTerms value ′′url file′′)

A large number of components can be retrieved when executing some searches
against the KB. Therefore, our system uses efficient ranking heuristics to reorder
the results. We initially rely on Lucene’s scoring mechanisms. We further improve
this ranking based on context-sensitive measures. In this regard, we use context
parameters based on parsing and analyzing the code in the user’s project -
especially visible data types that are currently declared by the user and those
that appear in the retrieved component’s signatures. As such, recommended
items that do not introduce additional types are ranked higher. These simple
heuristics are easy to implement and work surprisingly well.

5 Automatic Code Recommendation

Most libraries are shipped with few code examples that are not enough to estab-
lish a solid basis for comprehension and reuse. Our system tries to overcome
this problem by providing a recommendation mechanism for constructing rel-
evant code examples based on user’s requests. We particularly emphasize the
automaticity, relevancy, and accuracy of the recommended code examples.

As outlined in Sect. 1, our approach for code recommendation focuses on
answering user queries of the form Source �−→Destination. In the special case
where the Source object is not stated, the object instantiation problem is reduced
to either a simple constructor call or a static method invocation. The procedure
we use to recommend code uses ontology formalisms to describe software assets
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by building a RDF knowledge base that conforms to the SCRO ontology. We
thus construct a code example by traversing the RDF graph that represent the
framework in question. The RDF graph that we use for code recommendation is
similar to the one we presented in Sect. 4.1. However, since this graph is based
on the code-example KB, we use only representations from our SCRO ontology.

5.1 Code Recommendation Scenario

Consider a developer who wishes to programmatically execute a Jena SELECT
query. The developer typically starts with a String reference representing the
query and wishes to obtain a ResultSet object representing the solution. For
a developer who is unfamiliar with Jena, accomplishing this task may not be
easy because there are some intermediate steps and various method invocations
for instantiating the desired ResultSet object. These steps are outlined in the
following code snippet:

String queryString ="...";
Query query = QueryFactory.create(queryString);
QueryExecution qe = QueryExecutionFactory.create(query);
ResultSet rs = qe.executeSelect();

Our system recommends such code example by viewing it as an object-
instantiation task, which shows how to get a handle of the ResultSet refer-
ence. This is accomplished using the semantic representations and RDF graph
representation.

Figure 3 shows a partial RDF graph of the code example described above.
The hasOutputType is a SCRO functional property that represents the method’s
return type. hasInputType represents the type of a method’s formal parameter.

Given this directed RDF graph, we construct the needed code snippet by
performing brute-force traversal starting at the node that represents the source
type (Query) and systematically enumerating all possible paths to the destina-
tion type (ResultSet). For each path candidate, we automatically generates a
code snippet and present it to the user.

Generating a code snippet in this manner may produce a large number of
potential candidates. Therefore, we use heuristics to rank the results based on
relevancy and user’s context. In particular, we use the path size heuristic and
user context heuristics. The path size represents the number of RDF statements
that are necessary to compose the code example. This heuristic assigns top rank
to the shortest path in the graph. On the other hand, similar to component
search, context-based heuristics assigns higher ranks to paths that better fit
within the user context in terms of the code that has already been developed
by the user. These two heuristics are simple, yet helped improve the ranking of
code examples.

5.2 Dealing with Downcasts

Some complex libraries do not usually provide type-specific methods that relief
the developer from having to use downcasts. Unlike other approaches that handle
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Fig. 3. Subset of the RDF graph for constructing: Query �−→ResultSet

downcasts by analyzing a corpus of carefully selected client code, we instead
rely on the hasActualOutputType OWL property from SCRO. This property
represents the actual runtime return type of a given method. Therefore, we
enrich the graph with an edge labeled with hasActualOutputType that leaves
a given method and enters every possible runtime type of this method. When
we construct a code example, hasActualOutputType is treated as an expression
casting the result of the method down to its actual return type. Obtaining the
precise return type of methods is accomplished using interprocedural points-to
and call graph analysis techniques [5], a set of static program analysis techniques
that analyze a given program in order to obtain precise reference and call-target
information.

Suggesting a code snippet with a downcast is not the norm. In fact, the need
to downcast reveals hidden complexities in the underlying framework. Consider
a programmer coding for the Eclipse API who wishes to obtain a handle of
JavaInspectExpression, which represents the currently selected expression in
the debugger from an object of type IDebugView. The code below details a
sample solution:

IDebugView debugger = ...
Viewer viewer = debugger.getViewer();
IStructuredSelection sel =

(IStructuredSelection) viewer.getSelection();
JavaInspectExpression expr =

(JavaInspectExpression) sel.getFirstElement();
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In order to construct such snippet, we rely on points-to-analysis. Figure 4(a)
shows part of the RDF graph where the dead end is reached. ISelection has
in fact a single method of no relevance, isEmpty(), and there is no way for the
traversal algorithm to proceed further. We thus infer the runtime return type
of method getSelection() by using flow-insensitive points-to analysis on the
partially constructed snippet.

Upon completion, this analysis concludes that IStructuredSelection is the
actual return type of getSelection() at that particular call site (dashed lines
represent the hasActualOutputType property). The same process is repeated for
getFirstElement() as shown in Fig. 4(b). As such, we avoided using a static
corpus of client code that may in fact have no answer for this query.

Fig. 4. IDebugView �−→JavaInspectExpression

6 Evaluation

Our tool was developed as a plugin for the Eclipse IDE and it is available
online [4]. This tool is supported by radically optimized set of ontologies,
extended parsing support, and enhanced reasoning and inference support. It
is also supported by enhanced interprocedural points-to analysis measures using
Soot4, a program analysis and instrumentation framework commonly used to
improve the performance of Java and AspectJ programs.
4 https://sable.github.io/soot/.

https://sable.github.io/soot/
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When using this tool, users can formulate queries using Eclipse views that
are designed as simple data entry forms. The component search view provides
entry boxes for entering search restrictions and the code recommendation view
provides an entry box for the source object and another for the destination
object. Once the form is filled out, the tool automatically generates a query and
executes it against the KB.

Although we have tested both of the features supported by our tool individ-
ually, the following subsections discuss two primary experiments that we have
conducted to evaluate both features combined. We used the Jena framework in
these experiments because the domain ontology described in Sect. 4 is created
for the Jena’s application domain.

6.1 Component and Code Search Experiment

This experiment is designed to ensure that our system helps programmers when
they attempt to reuse software libraries. In particular, we hypothesized that
ontology formalisms with reasoning support improve precision and program-
mer’s productivity when searching for components and constructing valid code
examples that effectively utilize these components. We have designed 10 Jena
programming tasks and carefully selected another 10 from the Jena developers
forums, newsgroups, and stackoverflow.com. Each task requires searching for two
distinct components that solve an object instantiation problem. The descriptions
of these tasks are not shown here for space constraints. However, based on our
extensive experience with Jena, we believe that these tasks represent good sam-
ples of common Jena programming issues and would fully exercise our ontologies,
including the domain ontology.

We instructed our system to parse the Jena library and create the RDF
ontology as explained in Sect. 3.1. We then loaded the generated KB and the
domain ontology into the plugin. This experiment was performed on a 2.4 GHz
machine with 4 GB RAM running MS Windows 7.

Table 1 presents experiment results. Precision is defined as the ratio of the
number of relevant component instances that are recommended by the system
to the total number of recommended components.

On average, component search retrieved 3.4 matches when searching for two
components, ranging from 1 (exact match) to 8 components as shown in PT18.
In the last two tasks, PT19 and PT20, only one query was needed per task to
search for the destination component. The system found and retrieved a single
component in response to each query.

Consider PT18, the query for Op found 7 matches and Op itself was found at
position 6. The query for the source component, QueryIterator, retrieved only
one component and it was the correct match. The tool performed poorly when
searching for Op because this component and its methods were not annotated
properly with appropriate mappings between COMPRE’s object properties to
precise SWONTO domain concepts. In this experiment, component search with
domain-aware semantic search performs well in terms of ranking and precision as
it encodes the necessary information about each component’s internal structure
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Table 1. Experiment results: searching for components and constructing code examples

Programming tasks Component retrieval (CR) Code examples (CE) Running time

Rank1 Num.2 Prec.3 Rank4 Size5 Total6 CR7 CE7

PT1: EnhGraph �−→Profile 4 7 0.29 2 6 13 16 9

PT2: Model �−→Resource 2 2 1 1 2 7 10 6

PT3: Query �−→ResultSet 2 2 1 2 5 12 12 5

PT4: Model �−→Property 3 3 0.67 1 3 12 12 5

PT5: InfModel �−→Resource 2 2 1 1 3 15 10 5

PT6: OntModel �−→Profile 3 3 0.67 1 2 20 6 8

PT7: Graph �−→ModelCom 4 4 0.5 1 2 20 6 9

PT8: Model �−→InfGraph 2 2 1 3 6 10 14 9

PT9: ResultSet �−→Literal 3 3 0.67 2 5 8 8 10

PT10: Model �−→Individual 2 2 1 1 5 20 10 10

PT11: Query �−→Model 2 2 1 1 4 18 10 6

PT12: Dataset �−→QueryExecution 2 2 1 5 6 20 6 12

PT13: MyQueryEngine �−→Plan 3 7 0.28 1 2 6 8 3

PT14: QueryExecution �−→StageGenerator 2 2 1 1 6 10 12 5

PT15: QuerySolution �−→RDFNode 2 2 1 1 2 20 10 10

PT16: OntClass �−→Individual 3 3 0.67 1 3 20 10 10

PT17: BasicPattern �−→OpBGP 4 6 0.34 1 3 20 12 13

PT18: QueryIterator �−→Op 7 8 0.25 5 7 15 16 9

PT19: Null �−→DataSource 1 1 1 1 2 20 3 4

PT20: String �−→Model 1 1 1 0 0 20 4 12

Averages 2.8 3.4 0.77 1.6 3.7 15.3 10.2 8

1 Rank of desired components: combined value for both src and dest components
2 Total number of retrieved components: combined value for both src and dest
3 Precision value per component (2/Num.) or (1/Num.) in last two tasks
4 Rank of desired code example if found or 0 if not found
5 Path size: number of RDF statements in the sub-graph between src and dest
6 Total number of generated code examples. The tool produces 20 at the most
7 Time in seconds to search for both components (CR) and to construct the code example (CE)

and its precise relationships with other components. In most cases, the tool
achieved good results in terms of ranking components due to its capabilities of
incorporating the context in which the component was searched for.

The system achieved 0.77 precision value on average. This high rate is due
to precise annotations of domain concepts in the domain ontology and due to
the use of reasoning support. In situations where precision suffers, either the
components were not annotated properly or the query was not precise enough
to point out the proper description of the component. Regardless, the results
we obtained were good enough to show the value of semantic annotations in
component search, which in turns supports our hypothesis.

In terms of code recommendation, our system achieved good ranking scores.
On average, the required snippet was among the top two. Once again, the system
performed quite poorly in task PT18. This is because the algebra expression
needed to be transformed using a reference of type Transform. Also, there were
multiple references that must be included in the context to produce this quite
long code example of 7 RDF statements. However, when the query was issued,
there were only 2 of these references, DataSetGraph and Binding, included in
the user’s project. The code for PT12 was also ranked low. This is in part
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due to the fact that in order to execute the given query, a Query object was
needed in addition to the source component, Dataset. This reference was not
yet introduced in the user’s project when the code example was requested.

Utilizing points-to analysis to resolve runtime type information was also
assessed. Tasks PT1, PT6, PT10, and PT14 require casting. For these tasks,
the tool ranked the required code example high, but in most cases the path
size was considerably larger than other examples due to the need of traversing
more graph nodes via the hasActualOutputType property. In PT10 for example,
pointer analysis has determined that the actual type of the given Model reference
was in fact OntModel and therefore it was safe to do the casting before invoking
createIndividual() to create the needed anonymous individual reference.

Our system accepts Null �−→Destination queries (e.g., PT19). These queries
are quite useful when instantiating objects using a class constructor or a sta-
tic method call, or when the source object is unknown. Since we rely on API
signatures, the number of generated examples for these tasks can be large.

PT20 involves object instantiations with strings. In this task, the user starts
with a String object representing a query and wishes to obtain a model object
that represents the results of executing this query. Precision suffers when tasks
require the highly polymorphic string objects. In this case, it was not clear to the
tool that the string contains a query and therefore the query must be executed
first via a Query object before being transformed to an ontology model. As such,
the tool returns no valid code example among the first 20 recommendations.
However, if the task was formulated as Query �−→Model, the tool would have
found the solution much more easily.

We have also timed our tool. As shown in the last two columns, on average, it
took 5.1 s to retrieve a single component and 8 seconds to traverse the RDF graph
and generate the required code example. Mostly, the time shown here is spent
by the reasoning engine to process the KB and compute logical consequences
from its statements and axioms. Due to recent advances of reasoners, the results
shown here demonstrate a good improvement over similar experiments we have
conducted in the past.

6.2 Human Experiment

In this section we report the results of a human experiment we conducted in
controlled settings. The goal is to evaluate the proposed system’s utility and
performance, and how well potential users perform real-world tasks when reusing
or maintaining an unfamiliar library. This experiment also intended to compare
semantic code search with other search practices.

Participants
Our human subjects include 4 Java developers and 4 senior CS undergraduate
students. All participants reported that they program on a daily basis and search
for code quite frequently. On average, participants have had three years of Java
experience, but no experience with the Jena framework. We divided participants
into two groups. The System Group includes two randomly selected developers
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and two students. This group was allowed to use only our system to solve pre-
defined programming tasks. The Control Group consists of the remaining four
participants who were not allowed to use our tool, but they can use their own
typical search practices.

Tasks and method
We have designed five Jena programming tasks. Each task requires a novice Jena
user to search for source and destination components and write a code snippet that
solves an object instantiation problem. The chosen tasks are consistent with the
goals of this experiment. In particular, among the 10 tasks we have designed our-
selves and used previously, we chose PT3, PT9, and PT12. Additionally, we added
two other tasks, QueryIterator �−→Node (PT21), and QuerySolution �−→Literal
(PT22). These tasks vary in scope and difficulty, would exercise the domain ontol-
ogy, and casting was required.

We provided our subjects with a brief training session that introduces basic
Semantic Web terminology, the domain ontology, and the Jena ARQ API. We
also provided a sample training task that explains the nature of the experiment.
For each task, we provided a working wrapper code that participants could use
to develop their final solution. Finally, we asked each subject to record the com-
ponents he/she identified for each task. This way we can track the percentage of
component retrieval rate in case the participant has not fully solved the assigned
problem.

The primary hypothesis we set out to test in this experiment is that the pro-
posed system yields better outcome and shortens development time. In other
words, the System Group will solve the given programming problems more
quickly and more reliably. In order to test this hypothesis, we observed subjects
and collected quantitative performance data, which include the time needed by
each participant to either complete or abandon each task and the number of
participants who successfully complete the tasks. Qualitative data was also col-
lected in the form of a post-experiment questionnaire that was presented to the
System Group. This 5-point Likert-scale questionnaire intended to find out how
users feel about using the proposed system in terms of learnability, usefulness,
and how helps programmers understand the recommended code. Furthermore, a
semi-structured interview followed to learn more about the usability and value
of this system.

Experiment results
In this experiment we tracked weather a participant fully completed the task, par-
tially completed the task (i.e., identified the proper components but failed to write
the code snippet) or not completed the task at all. Figure 5 shows an overview
of the completion rates for each of the assigned five programming scenarios. For
example, programmer P1 in the System Group has successfully completed all five
tasks while programmer P2 in the same group has completed only PT3 and PT9,
found the required components to complete PT12 and PT22, but was unable to
write the code snippet, and he was unable to complete task PT21.
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Fig. 5. User study: task completion data in the System Group (P1–P4) and Control
Group (P5–P8). A task is either fully completed (100%), half completed (50%), or not
completed at all (0%)

In the System Group, all participants were able to fully complete PT3 and
PT9, only two programmers completed PT12 and PT21, and three programmers
completed PT22. Thus, the System Group’s overall completion rate for the entire
task (searching for components and writing the code) is 75% and the search for
components success rate is 95%. In the Control Group, however, the overall
completion rate is 40% and the search success rate is 70%. Task PT3 was the
first task programmers have to complete. This task was obtained from Jena
documentation, which shows a standard way to obtain the results of executing
a query and therefore all subjects have completed this task successfully.

It was relatively easy to find the components for PT12 except programmer
P7, but only two programmers in the System Group and one programmer in
the Control Group was able to write the code. This is due to the fact that
a Query object was required in addition to the Dataset object to instantiate
the destination object. This task in fact reveals a limitation of our approach.
In particular, if the components have been more functionally related to each
other, the snippet ranking would have been improved. This can be accomplished
perhaps via semantic annotations or attaching a domain ontology to refine the
choice and improve the ranking of the recommended code snippets.

PT21 and PT22 are examples of scenarios that require casting. 62% of pro-
grammers in the System Group were able to complete both tasks successfully,
while only 12% (programmer P5 solved PT21) in the Control Group were suc-
cessful. The remaining three programmers in the Control Group have arrived at
bad casts that introduced more errors. This higher success rate in the System
Group is achieved in part by the use of points-to analysis techniques that the
system provides. As such, this experiment provided strong and conclusive sup-
port for the value of program analysis when coupled with semantic modeling in
handling complexities in software libraries.
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Figure 6 shows an overview of the time taken by each participant to com-
plete each scenario. The time shown represents the overall time taken by each
participant to successfully complete and test the solution for each API task.
This includes searching for components and generating a valid code snippet that
completes the program under construction. The graph shows average comple-
tion time for only those tasks that have been fully completed (i.e., times for
incomplete or partially completed tasks were discarded).

Fig. 6. User study: average task completion time in the system group and control group

In the vast majority of cases, programmers in the System Group fared better.
As described above, PT12 was the most time consuming for participants. Tasks
PT21 and PT22 took quite more time than others. The need for casting under-
lies a complication of any framework and therefore participants reported that
they had to try multiple recommendations before finally selecting the correct
code snippet. Participants also reported that the time to select the correct code
snippet was minimal compared to the time needed to test the code. We believe
that the system’s ability to incorporate user’s context in code search has helped
shortening the development time.

Although the number of participants and the number of tasks used in this
study are not very large to provide conclusive data with statistical evidence
about development times, the averages shown in Fig. 6 suggest that the proposed
system can help programmers to become more productive by completing their
programming tasks faster.

Overall, this user study shows that the system can enhance programmer’s
learnability and efficiency when reusing unfamiliar frameworks. Most program-
mers in the System Group provided complimentary remarks regarding the sys-
tem’s usability and its techniques for delivering reusable components and rec-
ommending valid and concise code examples.

This study, however, did not provide decisive evidence that the use of the
domain ontology helps programmers greatly in understanding the Jena domain.
Two programmers argued that they have not given enough time to learn the
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taxonomy presented in the domain ontology, which otherwise could make them
more productive in formulating more complex search queries during component
search. Also, this study did not provide strong evidence that our system’s ranking
techniques are very efficient. Two subjects suggest that better ranking could have
shortened the development time, especially in tasks PT12 and PT22 as they had
to test multiple recommendations before arriving at the correct code that they
could copy to complete the task. Three subjects agreed that in order to make
the tool more usable, it should provide quick means in which programmers can
insert snippet recommendations in the editor and test it out automatically in
order to quickly filter out invalid snippets.

It was evident to us that while subjects in the Control Group were spending
time searching documentations and the web for code examples, subjects in the
System Group were more focused on the tasks by studying and understanding the
tool’s suggestions while gradually learning the Jena API. At the exit interview,
control subjects indicated that a solid API should be equipped with enough
code examples that explains its features and therefore a reliable recommendation
system would make them more efficient in their daily programming activities.

6.3 Threats to Validity

There exists several external threats to the validity of these experiments. In par-
ticular, the validity of both experiments is limited by the choice and number of
the software libraries used. Firstly, unlike most other frameworks, Jena is well-
documented. Secondly, although we have obtained similar results by informally
experimenting with other frameworks, including the JDBC library, the GEF plu-
gin for Eclipse, and Apache Ant, these two experiments reported results about
only selected Jena packages. Performing a more comprehensive evaluations with
other libraries may further strengthen our conclusions and reduce some of these
threats. Furthermore, although we have used frameworks of varying sizes and
complexities, we are unable to establish the scalability of the reasoner’s perfor-
mance without testing it on more large-scale libraries.

Ontology development is usually subjective and therefore whoever creates the
domain ontology is not the end user of our tool. As such, it would be interesting
to experiment with other domain ontologies created by others. SWONTO is
precise and reliable, but we are yet to experiment with other domain ontologies
with lesser depth and breadth.

Finally, although the human experiment provided good insight about the
tool’s usability, this experiment is limited by the number of programmers in the
System Group and the number of tasks used. A larger scale user study may give
us better insight on how easy to learn the domain ontology. Ideally, we would like
to have the same group of programmers experimenting with tasks that use our
tool and other tasks that use typical search procedures. However, it was quite
difficult to come up with tasks that have exact complexity levels. Furthermore,
the order in which tasks are completed is quite significant as we expect users
gain more experience with a given API with every task they complete. If such
user experience evaluation is possible, it would certainly mitigate many threats.
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Finally, since user studies involve human subjects, they tend to introduce an
internal threat as programmers display varying degrees of proficiency in pro-
gramming techniques. Another study that involves considerably larger number
of programmers can certainly reduce this threat.

7 Conclusion

The notion of Program Understanding as described in this paper is quite a broad
one. It encompasses the many processes and activities undertaken by software
engineers to build effective mental models during the development of new soft-
ware systems as well as maintaining and evolving existing ones. Similarly, this
paper addressed the broad aspect of the notion of Software Reuse. Current reuse
practices range from copying and pasting simple code fragments to utilizing
complex domain-specific libraries when building or evolving large-scale software
systems. A systematic approach to reuse is, however, encompasses the whole life-
cycle of the development process and it is indeed essential to any domain-specific
reuse practice. To this end, this paper proposed a semantic-based solution that
exploits the formal and explicit semantics provided by ontologies to code rec-
ommendation and software components retrieval. This work uniquely combines
these two areas in one environment that is based on semantic representations of
software knowledge.

Our approach for automatic code recommendation assists programmers who
try to reuse an unfamiliar framework by constructing and delivering personal-
ized code examples. Our research tool creates code candidates, ranks them based
on the user’s context, and delivers these code examples for immediate insertion
into the user’s current project. In constructing such examples, the tool combines
a RDF graph-based representation of a framework’s classes and methods, aug-
mented with information about potential targets of polymorphic calls, to pro-
duce the needed code example for object instantiation queries. It also employs
interprocedural points-to and call graph analysis techniques to resolve run-time
type information, which leads to proper handling of special Java features (e.g.,
type cast legality). This approach neither requires a carefully crafted corpus of
sample code to mine for examples, nor it requires a source-code search engine to
obtain these samples. Furthermore, precision is improved due to the underlying
RDF graph representation. On the other hand, ranking of the recommended can-
didates is improved because of the context sensitive measures that have been used.

An approach for software component search has also been proposed in this
paper. This approach supports different kinds of search mechanisms: users can
perform pure semantic-based search, keyword-based search, and signature-based
search. However, we focused the discussion on pure semantic search because
based on our experiments, this mechanism tends to be the most precise of all
supported search mechanisms. This semantic search relies on a vocabulary spec-
ified in a domain-specific ontology that can be used for tagging the components
in the repository with unambiguous term descriptions of the component’s func-
tionality. Precision improvement and flexibility in formulating and refining user
queries are the main strengths of this approach.
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The work presented in this paper uniquely contributes to the proper linking
of the established field of information integration and reuse and the emerging
field of semantic web by developing a set of ontologies for the problems that
programmers face when reusing software libraries. Our ontology models are pre-
cise, continuously updated, exhibit a certain depth and breadth that makes them
good candidates to be reused in solving several other related problems. This is
also true for the knowledge population parser that we have developed and con-
tinue to enhance so it can capture even hidden aspects of software dependencies
and higher levels of source-code analysis in object-oriented libraries.

The work presented in this paper opens new doors for further enhancements
and new research perspectives. Investigating the application of semantic anno-
tations and domain ontologies to provide more guidance during code example
construction as well as refining the choice among candidates is foreseen as a
promising new direction. We have not yet investigated how could one motivate
library providers to ship domain ontologies with their software. Such ontologies
can certainly be created as a community effort. Therefore, a systematic way of
creating and sharing these ontologies among a community of users would be an
interesting future work. Ranking reuse candidates has been always a challenge
for both code recommendation and component retrieval. It would be interesting
to investigate the potential of using complex approximation techniques that are
based on, for example, Natural Language Processing or Machine Learning, to
improve ranking by capturing complex user patterns. Finally, we are currently
studying the possibility of enhancing search by utilizing Collaborative Filter-
ing and social tagging. These techniques emphasize community collaboration in
order to improve search and artifact recommendation.
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Abstract. The new revolutionary web today, the Semantic Web, has
augmented the previous one by promoting common data formats and
exchange protocols in order to provide a framework that allows data
to be shared and reused across application, enterprise, and community
boundaries. This revolution, together with the increasing digitization of
the world, has led to a high availability of knowledge models, i.e., more or
less formal representations of concepts underlying a certain universe of
discourse, which span throughout a wide range of topics, fields of study
and applications, mostly heterogeneous from each other at a different
dimensions. As more and more outbreaks of this new revolution light up,
a major challenge came soon into sight: addressing the main objectives of
the semantic web, the sharing and reuse of data, demands effective and
efficient methodologies to mediate between models speaking different lan-
guages. Since ontologies are the de facto standard in representing and
sharing knowledge models over the web, this paper presents a compre-
hensive methodology to ontology integration and reuse based on various
matching techniques. The approach proposed here is supported by an
ad hoc software framework whose scope is easing the creation of new
ontologies by promoting the reuse of existing ones and automatizing, as
much as possible, the whole ontology construction procedure.

Keywords: Ontology · Ontology integration · Ontology matching ·
Ontology reuse · Semantic network · WordNet

1 Introduction

Throughout the last decade, a more revolutionary web has emerged just when
the main ideas and concepts behind the Web 2.0 were starting to enter into the
main stream. The new web (the Semantic Web) has augmented the previous one
by promoting common data formats and exchange protocols in order to provide
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a common framework that allows data to be shared and reused across applica-
tion, enterprise, and community boundaries [50]. In this scenario, a new term
has rapidly become a buzzword among the computer scientists, i.e., Ontology .
Originally introduced by Aristotle, an ontology is a formal specification of a
shared conceptualization of a domain [21], i.e., a formal definition and repre-
sentation of the concepts and their relations belonging to a certain domain of
interest. Once a knowledge domain or some aspects of it are formally represented
using a common and shared language, they become understandable not only
by humans but also by automated computer agents [7]. As a result, for exam-
ple, web services or search engines can improve their performances in terms of
exchange of information or accuracy in searching results, exploiting the seman-
tically enriched representation of the information they share. For these reasons,
ontologies are increasingly considered also as a key factor for enabling interop-
erability across heterogeneous systems [9], improve precision in retrieval process
[38] and enhance efficient and effectiveness of document management and rep-
resentation [39,40]. This revolution has led companies of all sizes and research
groups to produce a plethora of data or conceptual models for many applica-
tions such as: e-commerce, government intelligence, medicine, manufacturing,
etc. This, together with the increasing digitization of the world, has made avail-
able a huge amount of disparate information, raising the problem of managing
heterogeneity among various information sources [46]. One of the most challenge
consists in integrating heterogeneous models in a unified (homogeneous) concep-
tualization of a specific knowledge or application domain, which allows the reuse
of existing knowledge models. This is not an easy task to face due to ambigui-
ties, inconsistencies and heterogeneities, at different levels, that could stand in
the way. The ability to effectively and efficiently perform knowledge reuse is a
crucial factor in knowledge management systems, and it also represents a poten-
tial solution to the problem of standardization of information and a viaticum
towards the realization of the Semantic web. Furthermore, available ontologies
in the literature are becoming increasingly large in terms of number of concepts
and relations to such an extent that technical solutions belonging to the Big
Data landscape can be adopted in order to make scalable ontology operations
like storage, visualization and matching [5,6]. One of the most notable applica-
tions of ontology integration is the ontology reuse. In the context of ontology
engineering, reuse of existing knowledge models is recommended as a key factor
to develop cost effective and high quality ontologies, since it reduces the cost
and the time required for creating ontologies ex novo increasing the quality of
newly implemented ones by reusing components that have already been vali-
dated [1,3]. Finally, it avoids the confusion and the inconsistencies that may be
generated from multiple representations of the same domain; thus, it strengthens
the orchestration and harmonization of knowledge.

Taking into account the above considerations and acknowledging that ontolo-
gies are the de facto standard in representing and sharing knowledge models over
the web, this paper presents a multi-strategy methodology to ontology integra-
tion and reuse, based on different matching techniques. Starting from a literature
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review of the main existing approaches and methodologies, we will show how the
adoption of a multi-strategy approach based on existing techniques and on an ad
hoc software framework can improve and simplify the creation of new ontology
models, automatizing as much as possible the ontology creation task and pro-
moting the knowledge reuse. Although the proposed approach tries to reduce the
human intervention in all ontology integration phases, does not neglect it, neither
considers it as en element of weakness; on the contrary, user involvement is con-
sidered an essential tuner for the whole strategy as it incorporates precious user
knowledge in the framework making it more effective. The proposed approach
will be applied to the food domain, specifically the food production domain, by
collecting and subsequently analysing some of the most spread knowledge models
available in the literature. Nevertheless, the approach does not loose generality
and can be applied to other knowledge domains. What described here extends a
previous work by the authors [4] as follows:

– more explanations have been added for the process of normalization and
adaptation of heterogeneous reference knowledge models by describing the
types of different model formats and the strategies used to homogenize such
formats;

– the matching techniques within the matching phase have been also detailed
by describing how the matcher acts in order to obtain an effective alignment
between the reference models and the target model;

– the integration phase is also detailed describing the strategy used to merge
equivalent concepts and construct the is-a hierarchy of concepts starting from
the integrated input ontologies;

– a more complete characterization of the reference models is given by providing
some metrics referred to the main models;

– some considerations are added regarding the scalability of the whole frame-
work w.r.t. the volume of reference models outlining the strategies that can
be used to face this issue.

The reminder of the paper is structured as follows. After a clarification of
the terminology related to the discussed research areas provided in the next sub-
section, Sect. 2 reviews the main ontology integration and reuse methodologies
existing in the literature. A description of the proposed approach is provided
in Sect. 3 and a detailed outline of the matching methodologies is provided in
Sect. 4. Section 5 applies the entire approach to a specific case study, the food
production, highlighting results and strengths. Finally, Sect. 6 shows the exper-
imental results in terms of efficiency and effectiveness of the entire procedure
while the last section draws the conclusion summarizing the major findings and
outlining future investigations.

1.1 Ontology Matching and Integration Background

Welcoming the suggestion for a clarification of the terminology contained in
[17], we provide here some definitions about the key concepts used in this work
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in order to establish a solid background for the successive sections. According
to some related works in the literature [15,35], we define ontology matching as
the process of finding relationships or correspondences between entities of dif-
ferent ontologies; ontology alignment, as a set of correspondences between two
or more ontologies; ontology mapping, as the oriented, or directed, version of
an alignment, i.e., it maps the entities of one ontology to at most one entity of
another ontology. More formally, the ontology mapping can be defined according
to [24] as the task of relating the vocabulary of two ontologies that share the
same domain of discourse in such a way that the ontological signatures and their
intended interpretations, as specified by the ontological axioms, are respected.
Ontology integration and merging are defined as the construction of a new ontol-
ogy based on the information found in two or more source ontologies; and finally,
ontology reuse as the process in which available ontologies are used as input to
generate new ontologies. Less used but with a broader meaning is the term ontol-
ogy change [17], which refers to any type of modification that it is needed over
an ontology in response to particular needs. Its sense includes changes due to
heterogeneity issues, ontology engineering updates, ontology maintenance, etc.

2 Related Works

It is a common practice in the literature to consider heterogeneity resolution
and related ontology matching or mapping strategies to be an internal part of
ontology merging or integration [22]. Several works have been addressed in the
last decade to ameliorate the ontology mapping and matching strategies for an
effective and efficient data integration. According to Choi [9], ontology map-
ping can be classified into three categories: (1) mapping between an integrated
global ontology and local ontologies, (2) mapping between local ontologies and
(3) mapping on ontology merging and alignment. The first category of ontology
mapping supports ontology integration by investigating the relationship between
an integrated global ontology and local ontologies. The second category enables
interoperability by providing a mediation layer to collate local ontologies distrib-
uted between different nodes. The third category is used as a part of ontology
merging or alignment in an ontology reuse process. Some of the most spread
tools belonging to this category will be described as follows. SMART [33] is an
algorithm that provides a semi-automatic approach to ontology merging and
alignment assisting the ontology developer by performing certain tasks. It looks
for linguistically similar class names through class-name matches, creates a list
of initial linguistic similarity (synonym, shared substring, common suffix, and
common prefix) based on class-name similarity, studies the structures of rela-
tion in merged concepts, and matches slot names and slot value types. SMART
also determines possible inconsistencies in the state of the ontology that may
result from the user’s actions, and suggests ways to remedy these inconsisten-
cies. Another semi-automatic ontology merging and alignment tool is PROMPT
[34]. This performs some tasks automatically and guides the user in perform-
ing other tasks for which his intervention is required. It is based on an general



A Multi-strategy Approach for Ontology Reuse 67

knowledge model and therefore can be applied across various platforms. Anchor-
PROMPT [32] takes a set of anchors (pairs of related terms) from the source
ontologies and traverses the paths between the anchors in the source ontologies.
It compares the terms along these paths to identify similar terms and gener-
ates a set of new pairs of semantically similar terms. OntoMorph [8] provides a
rule language for specifying mappings, and facilitates ontology merging and the
generation of knowledge-base translators. It combines two powerful mechanisms
for knowledge-base transformations: syntactic rewriting and semantic rewriting.
The first one is done through pattern-directed rewrite rules for sentence-level
transformation based on pattern matching, while the latter is done through
semantic models and logical inference; FCA-Merge [48], which is a method for
ontology merging based on Ganter and Wille’s formal concept analysis, lattice
exploration, and instances of ontologies to be merged; and finally, CHIMAERA
[29], which is an interactive merging tool based on Ontolingual ontology editor.
It makes users affect merging process at any point during merge process, ana-
lyzes ontologies to be merged, and if linguistic matches are found, the merge is
processed automatically, otherwise, further actions can be made by the user. It
uses subclass and super class relationship. A survey of the matching systems is
also provided by Shvaiko and Euzenat in [46], where, in addition to an analytical
comparison of the recent tools and techniques, the authors argue on the oppor-
tunity to pursue further researches in ontology matching and propose a list of
promising directions for the future. Particularly, some recent trends and future
challenges suggested by the authors are: large-scale knowledge bases integration
and mediation and ontology matching using knowledge background [31]. The first
challenge is also subject of interesting studies conducted by Wiederhold [51], who
has defined the services (or functions) a domain-specific mediator module must
guarantee in order to collect and mediate information coming from increasing
large-scale information systems. It is worth investigating the second challenge
that consists in matching two ontologies by discovering a common context or
background knowledge for them and use it to extract relations between ontolo-
gies entities. Adding context can help to increase the recall but at the same
time may also generate incorrect matches decreasing the precision, thus, a right
tradeoff must be found. As background knowledge, it is common to use generic
knowledge sources and tools, such as WordNet, Linked Open Data (LOD) like
DBpedia, or the web itself, when the ontologies to be matched are common sense
knowledge model, i.e., non specialistic knowledge bases. On the contrary, if they
are low-level ontologies focused on a particular field of studies, domain specific
ontologies can be used as background knowledge. The semantic matching frame-
work S-Match [20], for example, uses WordNet as a linguistic oracle, while the
work in [45] discusses the use of UMLS (Unified Medical Language System),
instead of WordNet, as a knowledge background in medical applications.

2.1 Ontology Reuse

As mentioned in the introductory section, ontology integration is mainly applied
when the main concern is the reuse of ontologies. In this regard, it is worth to
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note that several knowledge management methodologies consider the reuse of
knowledge as an important phase of the entire knowledge management process.
Common KADS methodology [43], for instance, makes use of a collection of
ready-made model elements (a kind of building blocks) which prevent the knowl-
edge engineer to reinventing the wheel when modeling a knowledge domain.
Moreover, the European research project NeOn [49] proposed a novel methodol-
ogy for building ontologies, which emphasizes the role of existing ontological and
non-ontological resources for the knowledge reuse. Reuse is also a key require-
ment of OBO Foundry ontology [47], a collaborative effort to establish a set of
principles for ontology development with the eventual goal of creating a set of
interoperable reference ontologies in the domain of biomedicine [19]. The goal
is to ensure that ontology developers reuse term definitions that others have
already created rather than create their own definitions, thereby making the
ontologies orthogonal, which means that each term is defined in only one ontol-
ogy. Some recent works in the literature, mainly in the life sciences domain, still
consider reuse as an important aspect of ontology construction or generation.
OntoFox [53] is a web-based system that provides a timely publicly available
service with different options for users to collect terms from external ontologies,
making them available for reuse by import into client OWL ontologies. In [25]
a semi-automatic ontology development methodology is proposed to ease the
reusing phase in the development process, while [44] proposes a guiding frame-
work for Ontology Reuse in the biomedical domain and [18] shows an approach
to extract relevant ontology concepts and their relationships from a knowledge
base of heterogeneous text documents. From a methodological point of view,
Pinto and Martins [35] have analysed the process of knowledge reuse by intro-
ducing an approach that comprises several phases and activities. In particular
they identify three meanings of ontology integration: when building a new ontol-
ogy by reusing (assembling, extending, specialising or adapting) other ontologies
already available; when building an ontology by merging several ontologies into
a single one that unifies all of them; when building an application using one or
more ontologies [24]. However, some open issues remain, especially concerning
the difficulty of dealing with the extreme formalisms heterogeneity of the increas-
ing number of models available in the literature. The absence of an automatic
framework for the rigorous evaluation of the knowledge sources is also a severe
limitation to overcome.

The proposed methodology distances the approaches described above since
it represents a comprehensive framework for ontology integration and reuse,
not focused on a specific task. In fact, it helps the developer from the early
phases of the methodology (knowledge sources and domain identification) by
suggesting guidelines, to the final, more specialized and technical phases, by
providing a software framework for automatically accomplishing the matching
and integration tasks.



A Multi-strategy Approach for Ontology Reuse 69

3 The Proposed Framework for Ontology Integration and
Reuse

This section describes a high-level architecture of the proposed framework for
ontology integration and reuse. As shown in Fig. 1, our framework presents four
main functional blocks, which, starting from the identification of the existing
knowledge models in the literature (hereafter referred to as reference models),
along with the reconciliation and normalization of such models, obtain a compre-
hensive and integrated representation of the domain under study, by an effective
and efficient reuse of selected reference models existing in the literature.

Fig. 1. High-level view of the proposed framework

3.1 Reference Models Retrieval

The first component of the framework is the Reference Models Retrieval function
block. This model is responsible for retrieving the reference models corresponding
to the domain of interest. In order to search for proper reference models, it is
needed to identify the knowledge domain and the related sub-domains covering
the specific topic under study. The contribution of users with domain expertise is
essential in this phase. They clarify the meaning of some poorly defined concepts
and help knowledge engineers moving among the existing knowledge sources over
the Internet or other legacy archives. Some of the available resources for domain
identification are:

– Wordnet [16], a freely and publicly available large lexical database of English
words;
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– General purpose or content-specific encyclopedia, e.g., Wikipedia and The
Oxford Encyclopedia of Food and Drink in America;

– Web directories, e.g., DMOZ (from directory.mozilla.org) and Yahoo! Direc-
tory;

– Standard classifications, e.g., the International Classification for Standards
(ICS) compiled by ISO (International Standardization Organization);

– Other electronic and hard-copy knowledge sources, including technical man-
uals, reports and any other documentation that the domain experts may
consider useful to identify the knowledge domains.

Once the domain of interest has been properly defined, a corpus of selected
reference models is populated by collecting them manually or using ad hoc search
services from different knowledge sources:

– Specialized portals and websites within public or private organizations;
– Search engines (e.g., Google, Bing, etc.), directory-based engines, e.g., Yahoo!,

BOTW (Best of the Web Directory), DMOZ, etc., specialized semantic-based
engines, e.g., Yummly (specialized on food), True Knowledge, etc.;

– Ontology repositories including: BioPortal, Cupboard, Schemapedia, Knoodl,
etc., and search engines for semantic web ontologies, e.g., Swoogle and the
Watson Semantic search engine;

– Available standards and non-standard reference models. The former are cre-
ated by standardization organizations like ISO, while the latter are created
by private or public research groups without being internationally accepted
reference standards. In this source category can be included knowledge model
providing requirements, specifications, guidelines and characteristics of a ser-
vice or a product (ISO standards, the IFC Industry Foundation Classes,
Ansi/ISA-95, STEP, mentioned above, and the Core Product Model).

To make a first screening of reference models, a set of qualitative criteria can
be adopted:

– Language formality (C1) which describes the formality of the conceptual
model representation that can range from plain text with no formalism to
formal languages like the first-order logic-based languages;

– Domain specificity (C2) which evaluates the model type from the viewpoint
of its generality (upper-level or abstract domain model or application specific
model);

– Model structuring (C3) which evaluates the model type from the viewpoint
of its structure (simple classifications or taxonomies versus representation
language based model like UML and EXPRESS);

– Model language (C4) which describes the language used to represent
the conceptual model, including RDF/OWL (Resource Description Frame-
work/Ontology Web Language), graphic-based languages and pure text;

– Model provenance (C5) which evaluates the model from the viewpoint of its
origin, thus giving higher rates to standards or conceptual models authored
by influential scientific groups. Finally,

http://www.directory.mozilla.org
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– Model availability (C6) which evaluates the availability of the conceptual
model (open data-model versus proprietary and licensed models).

A higher rate will be given to formal models written in OWL/RDF language
because this is the format in which all input models will be converted through
the adaptation stage. Concerning the domain specificity, it is preferable to avoid
highly abstract or too specific models. For example, the application of this
methodology to the case study described in the Sect. 5, i.e., the Food produc-
tion, has led us to consider only ontologies with an average level of granularity
for the concepts definition. We have discarded ontologies which have only few
and generic concepts and ontologies which are linked to a specific application
or a specific disciplinary sector (e.g., biochemistry, biomedical, etc.). Finally,
only publicly available models have been taken into consideration and/or model
provided by standardization organizations.

3.2 Reference Model Reconciliation and Normalization

The second component of the framework is the format and syntax adapter. It
is responsible for adapting the collected reference models to a common repre-
sentation format. This step is mandatory due to the heterogeneity of languages
used to represent and formalize existing reference models in the literature. These
can be represented using plain text, semi-structured text (like XML, EXPRESS,
etc.), graphical languages (like UML, (E-R) Entity-Relationships models, etc.)
or ontology languages with different levels of expressiveness (RDF, OWL-Lite,
OWL-DL, OWL-Full, etc.). The idea behind this component is to create an adpa-
ter for each reference model retrieved from the Internet that access the model
and transform it in a simple ontology, preserving the is-a hierarchy between
the classes and all available linguistic annotations (labels and comments). Each
adapter creates an OWL-Lite ontology in a memory based model using the Jena
APIs [28]. This model use a transitive reasoner that allows transitive inference in
the model itself. In general, if an ontological model (serialized in RDF or OWL
language) is available as source model, it is imported in a Java class that loads
it inside a Jena ontology model. In other cases, if the source model has an high
volume of classes, the adapter modules acts as a kind of crawler searching for
ontology fragments specifically regarding the domain under study. Once the frag-
ments have been scraped from the source model, they are transformed in a OWL

Fig. 2. Text processing pipeline in the normalization phase
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Lite model and serialized in a OWL file like for the previous described cases. If
source models are expressed through UML or other graphical-based modelling
languages, the transformation from the former models to an OWL model can
be automatized at a meta-model level. In [54], authors analyse the similarities
between UML and OWL, investigating transformation rules from one model to
the other using the QVT (Query/View/Transformation) language.

Once the reference models have been converted in proper adapted OWL
ontologies, they go through the text-processing pipeline. Figure 2 shows the main
phases of the pipeline:

– Sentence Segmentation phase is responsible for breaking up documents (entity
description, comments or abstract) into sentences (or sentence-like) objects
which can be processed and annotated by “downstream” components;

– Tokenization breaks sentences into sets of word-like objects which represent
the smallest unit of linguistic meaning considered by a natural language
processing system;

– Lemmatisation is the algorithmic process of determining the lemma for a
given word. This phase substantially groups together the different inflected
forms of a word so they can be analysed as a single item;

– Stopwords elimination phase filters out stop words from analysed text. Stop
words usually refer to the most common words in a language, e.g. the, is, at,
which, and so forth in english;

– Part-of-speech tagging attaches a tag denoting the part-of-speech to each word
in a sentence, e.g., Noun, Verb, Adverb, etc.;

– Named Entity Recognition phase categorizes phrases (referred to as entities)
found in text with respect to a potentially large number of semantic cate-
gories, such as person, organization, or geopolitical location;

– Coreference Resolution phase identify the linguistic expressions which make
reference to the same entity or individual within a single document – or across
a collection of documents.

The linguistic normalization also involves resolving multi-languages mis-
matching automatically or manually by translating metadata description from
whatever languages into English.

3.3 Reference Model Matching

The main component of the framework is the Reference Model Matching function
block. It is responsible for obtaining an alignment (A), i.e., a set of correspon-
dences between the matched entities from the reference models (in this section
and in the next one referred also as input models) and the target model (defined
in Sect. 5). In this version of the framework, we mean as entities only ontology
classes, so the framework does not apply to ontological individuals. This function
block is also responsible for helping domain experts to select reference models
from the Corpus by performing the extended linguistic analysis described later.
Since the proposed approach is a multi-strategy based, the matcher involves three
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types of matching operations: string, linguistic and extended linguistic match-
ing (see Fig. 1). It may use several sources as background knowledge, such as
general background knowledge bases like WordNet and domain specific knowl-
edge bases. All the matching subcomponents will be detailed in Sect. 4. Based
on the similarity measure provided by the matching components for each pair
of entities, the matcher implements a classification algorithm to predict how to
relate entities each other. Here follows a brief description of each classification
class and its meaning:

– Equivalent (in symbol: ≡), the entities-pair is put in this class if they are
supposed to be equivalent, i.e., they are supposed to have the same meaning;

– Hypernym (in symbol: ⊃), the entities-pair is put in this class if the first
term is supposed to be a broader concept w.r.t. the second one, i.e., it is an
hypernym, or a superclass that subsumes the second;

– Hyponym (in symbol: ⊂), the entities-pair is put in this class if the first
term is supposed to be a narrower concept w.r.t. the second one, i.e., it is an
hyponym, or a subclass of the second;

– Related (in symbol: ∩), the entities-pair is put in this class if the first term
is supposed to be semantically related to the second one, or, thinking them
set-theoretically, they have an intersection not null;

– Disjointed (in symbol: ⊥), the entities-pair is put in this class if the first term
is not related at all to the second one, or, thinking them set-theoretically, they
have a null intersection;

3.4 Reference Models Merging or Integration

The mapping produced by the Aligner is used to integrate the selected input
ontologies to the output ontology along with the target concepts. The concepts
inside the target ontology can be envisioned as hub concepts, i.e., as a glue that
holds together all the aligned concepts from the input ontologies. This app-
roach is similar to that described in [36]. Figure 3 tries to explain it: each box
represents a cluster of concepts equivalent to the hub concept and so equiva-
lent to each other in turn. The red concept is the cluster representative and
is used to create links with other clusters representative, this way creating the
class-superclass hierarchy in the integration ontology. Introducing clustering is
convenient to reduce computational load of the integrating algorithm because
it avoid confronting each concept with each other concept of aligned ontologies
but limit the confront to the cluster representative. In addition to clustering,
another strategy that can be used to make scalable the integration algorithm
in presence of very large ontologies is the blocking or framing technique. This
consists in creating frames of clusters each relating to a knowledge domain or
sub-domain, or to a specific aspect of the ontology. Thus, only the clusters in
the same frame are confronted considerably reducing the effort for the integra-
tion phase. A similar approach can be also used for the matching and alignment
stages of the framework.
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Fig. 3. The ontology integration strategy

An approach similar to that described in [10], instead, is used in this phase
to merge or integrate input and target ontology entities: if two or more entities
(concepts or relations) from the input models are equivalent w.r.t. a knowledge
background ontology, from a set-theoretic perspective, they will be automati-
cally merged in the same entity in the target ontology (m). If two entities are
completely disjointed w.r.t all the knowledge background, they are considered
irrelevant and so discarded d or can be added to the target in an ontology enrich-
ment perspective (a). The domain experts consensus is also needed in the case
in which an intersection exists between two entities w.r.t. the knowledge back-
ground (?). In the remaining cases the rules summarized in Table 1 will be used.
In particular, when one entity subsumes (⊇) or is subsumed (⊆) by an entity in
the knowledge background while the other is equivalent, the first will be inte-
grated in the target ontology (i). Finally, when an entity is related somehow
to an entity (∩) in the knowledge background it will be discarded or added to
target ontology with the consensus of the domain experts.

Table 1. Merging/integration operator rules

∧ (=) (⊇) (⊆) (∩) (⊥)

(=) m i i ? d/a

(⊇) i ? ? ? d/a

(⊆) i ? i ? d/a

(∩) ? ? ? ? d/a

(⊥) d/a d/a d/a d/a d/a
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4 The Matching Methodology

The objective of the proposed matching methodology consists in creating an
alignment, i.e., a set of correspondences between the entities coming from the
input models and those of the target ontology. In this work, the target ontology
can be envisioned as the final goal of the integration approach but at the early
phases of the proposed approach also as a kind of proto-ontology encompassing
domain keywords, terms definitions, and concepts meanings related to the target
knowledge domain and the application requirements upon which the domain
experts agree. The alignment is used as a basis for the integration of the input
ontologies into a coherent and global conceptualization of the domain under
study.

We define the correspondence c as the tuple:

c = (e1, e2, r, v)

e1 being an entity from the first ontology, e2 being an entity from the second
ontology to be compared, r being a matching relation and v being a similarity
measure between the two entities based on the particular matching relation. Each
correspondence can be expressed in different format, such as RDF/OWL, XML,
or text. In this work, we use an RDF/OWL-based representation of alignments.
Each entity involved in a matching operation has a unique id corresponding to
the URI of the input ontology.

In the following sub-sections each of the matching methodologies will be
further detailed.

4.1 The String-Based Matching

The string-based matching operation is performed between the labels attached to
the entities (classes, relationships and properties) coming from the input and the
target ontology. Additionally, metadata like comments, abstracts or descriptions
will be taken into consideration in this phase. Concerning the string relatedness
measures it is worth to note that the standard measurement, like the edit or
Levenshtein distance works fine for very short strings (such as a single word), but
this approach is far too sensitive to minor differences in word order, missing or
extra words, and other such issues, so it is necessary to use fuzzy approaches and
heuristics in order to relax the standard measures and avoid the risk of getting
bad matchings. The fuzzy approach to string matching includes the following
strategies:

– Partial String Similarity, we use the “best partial” heuristic when two strings
are of noticeably different lengths. If the shorter string is of length m, and
the longer string is length n, this similarity basically scores the best matching
length-m sub-string. So, for example, the string “Yankees” and “New York
Yankees” are a perfect partial match;
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– Out of Order is another issue encountered with string matching. In this case
two strings are similar if they differ only on the order of the terms within
them. Two different approaches can be used here: The token sort approach
involves tokenizing the string in question, sorting the tokens alphabetically,
and then joining them back into a string, and The token set approach is sim-
ilar, but a little bit more flexible. Here, we tokenize both strings, but instead
of immediately sorting and comparing, we split the tokens into two groups:
intersection and remainder. We use those sets to build up a comparison string.

Specifically, the fuzzy string similarity methods correct the standard mea-
sures by reducing their sensitiveness to minor differences in word order, missing
or extra words, and other such issues. In this work we use a Levenshtein dis-
tance (i.e., the edit distance) to quantify how dissimilar two single-word labels
are dissimilar to one another, and use others fuzzy string matching methods to
compare multi-word labels or abstract and comments (with some tens of words
at most).

4.2 The Linguistic Matching

The linguistic matching is responsible for a comprehensive analysis of the terms
used in the input models at a semantic level, using an external linguistic data-
base like WordNet or other domain specific knowledge sources as background
knowledge. In WordNet, nouns, verbs, adjectives and adverbs are grouped into
sets of cognitive synonyms (synsets), each expressing a different concept [16].
The synsets are interlinked by conceptual semantic and lexical relations, thus
realizing a graph-based structure where synsets are nodes and lexical-relations
are edges. Exploiting the WordNet graph-based representation, it is possible to
relate concepts at a semantic level, for example, by calculating the Wu-Palmer
similarity [52], which counts the number of edges between two concepts by tak-
ing into account their proximity to the root concept of the hierarchy. According
to [27], Wu-Palmer similarity has the advantage of being simple to calculate, in
addition to its performances while remaining as expressive as the others.

Both the string and semantic similarity measure as a result of matching
operation contribute to defining the semantic relation between the entities. The
semantic relations correspond to set-theoretic relations between ontology classes:
equivalence (=), disjointness (⊥), less general (≤), more general (≥) and concept
correlation (∩). A thresholding method is used to establish the type of set-
theoretic relation that hold between the entities.

4.3 Extended Linguistic Matching

The extended linguistic matcher component defines and implements a meta-
model for ontology matching using a conceptualization as much as possible close
to the way in which the concepts are organized and expressed in human lan-
guage [37]. The matcher exploits the meta-model for improving the accuracy for
candidate reference model analysis. We define our meta-model as composed by
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a triple 〈S;P ;C〉 where: S is a set of objects; P is the set of properties used
to link the objects in S; C is a set of constraints on P . In this context, we
consider concepts and words as objects; the properties are linguistic relations
and the constraints are validity rules applied on linguistic properties w.r.t. the
considered term category (i.e., noun, verb, adjective, adverb). In our approach,
the target knowledge is represented by the target ontology. A concept is a set
of words which represent an abstract idea. In this model, every node, both con-
cept and word, is an OWL individual. The connecting edges in the ontology are
represented as ObjectProperties. These properties have some constraints that
depend on the syntactic category or on the kind of property (semantic or lex-
ical). For example, the hyponymy property can relate only nouns to nouns or
verbs to verbs; on the other hand a semantic property links concepts to con-
cepts and a syntactic one relates word forms to word forms. Concept and word
attributes are considered with DatatypeProperties, which relate individuals with
a predefined data type. Each word is related to the represented concept by the
ObjectProperty hasConcept while a concept is related to words that represent it
using the ObjectProperty hasWord. These are the only properties able to relate
words with concepts and vice versa; all the other properties relate words to words
and concepts to concepts. Concepts, words and properties are arranged in a class
hierarchy, resulting from the syntactic category for concepts and words and from
the semantic or lexical type for the properties.

Figures 4(a) and (b) show that the two main classes are: Concept, in which
all the objects have defined as individuals and Word which represents all the
terms in the ontology.

(a) Concept (b) Word

Fig. 4. Concept and Word

The subclasses have been derived from the related categories. There are some
union classes useful to define properties domain and codomain. We define some
attributes for Concept and Word respectively: Concept hasName that represents
the concept name; Description that gives a short description of concept. On the
other hand Word has Name as attribute that is the word name. All elements have
an ID within the WordNet offset number or a user defined ID. The semantic and
lexical properties are arranged in a hierarchy (see Fig. 5(a) and (b)). In Table 2
some of the considered properties and their domain and range of definition are
shown.

The use of domain and codomain reduces the property range application.
For example, the hyponymy property is defined on the sets of nouns and verbs;
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(a) Lexical Properties (b) Semantic Properties

Fig. 5. Linguistic properties

Table 2. Properties

Property Domain Range

hasWord Concept Word

hasConcept Word Concept

hypernym NounsAnd NounsAnd

VerbsConcept VerbsConcept

holonym NounConcept NounConcept

entailment VerbWord VerbWord

similar AdjectiveConcept AdjectiveConcept

if it is applied on the set of nouns, it has the set of nouns as range, otherwise,
if it is applied to the set of verbs it has the set of verbs as range. In Table 3 there
are some of defined constraints and we specify on which classes they have been
applied w.r.t. the considered properties; the table shows the matching range too.

Sometimes the existence of a property between two or more individuals entails
the existence of other properties. For example, being the concept dog a hyponym
of animal, we can assert that animal is a hypernymy of dog. We represent this
characteristics in OWL, by means of property features shown in Table 4.

Table 3. Model constraints

Costraint Class Property Constraint range

AllValuesFrom NounConcept hyponym NounConcept

AllValuesFrom AdjectiveConcept attribute NounConcept

AllValuesFrom NounWord synonym NounWord

AllValuesFrom AdverbWord synonym AdverbWord

AllValuesFrom VerbWord also see VerbWord
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Table 4. Property features

Property Features

hasWord inverse of hasConcept

hasConcept inverse of hasWord

hyponym inverse of hypernym; transitivity

hypernym inverse of hyponym; transitivity

cause transitivity

verbGroup symmetry and transitivity

Having defined the meta-model previously described, a Semantic Network
(i.e., SN) is dynamically built using a dictionary based on WordNet or other
domain specific resources. We define a semantic network as a graph consisting
of nodes which represent concepts and edges which represent semantic relations
between concepts. The role of domain experts is strategic in this phase because
they interact with the system by providing a list of domain keywords and concept
definition feeding the proto-ontology.

The SN is built starting from such first version of the target ontology, i.e.,
the domain keywords and the concept definition words sets. We then consider all
the component synsets and construct a hierarchy, only based on the hyponymy
property; the last level of our hierarchy corresponds to the last level of Word-
Nets one. After this first step, we enrich our hierarchy considering all the other
kinds of relationships in WordNet. In our approach, after the SN building step,
we compare it with the selected input models lexical chains. The intersection
between SN and the reference models gives us a lexical chain with the relevant
terms related to the target ontology. All terms are linked by properties from the
SN. Therefore, the SN give us a conceptual frame useful to discriminate the per-
tinent reference models from the other ones. In order to evaluate the relevancy
of the selected reference model, it is necessary to define a system grading that is
able to assign a vote to the model based on their syntactic and semantic content.
We use the approach described in [37] to calculate a Global Grade (GG) for each
semantic network related to each selected reference model. The GG is given by
the sum of the Syntactic-Semantic Grade (SSG) and the Semantic Grade (SG).
The first contribution gives us information about the analyzed model by taking
into account the polysemy of the term, i.e., the measure of ambiguity in the use
of a word, thus, with an accurate definition of the role of the considered term
in the model. We call this measure centrality of the term i and we define it as:
�(i) = 1

poly(i) where poly(i) is the polysemy (number of senses) of i.
We can define the relevance of the reference model as the sum of its relevant

word weights (terms centralities):

SSG(ν) =
n∑

i=1

�(i) (1)
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where n is the number of terms in the model ν.
The other contribution (SG) is based on a combination of the path length (l)

between pairs of terms and the depth (d) of their subsumer (i.e., the first common
ancestor), expressed as number of hops. Moreover, to each linguistic property,
represented by arcs between the nodes of the SN, a weight is assigned in order to
express the strength of each relation. We argue that not all the properties have
the same strength when they link concepts or words (this difference is related to
the nature of the considered linguistic property). The weights are real numbers in
the [0,1] interval and their values are set by experiments and they are validated,
from a strength comparison point of view, by experts.

We can now introduce the definition of Semantic Grade (SG), that extends
a metric proposed in [26]:

SG(ν) =
∑

(wi,wj)

e−α·l(wi,wj)
eβ·d(wi,wj) − e−β·d(wi,wj)

eβ·d(wi,wj) + e−β·d(wi,wj)
(2)

where (wi, wj) are a pairs of word in the intersection between DSN and model
reference ν and α ≥ 0 and β > 0 are two scaling parameters whose values have
been defined by experiments.

The final grade is the sum of the Syntactic-Semantic Grade and the Semantic
Grade.

Once we have obtained the Global Grade for each semantic network, they
are compared with a threshold value that act as a filter for the input reference
models, thus giving us the most relevant input model at a linguistic level.

5 A Case Study from the Food Domain

In this section, we apply the proposed approach to the food domain, specifically
to the industrial production of food. Since the food is an umbrella topic involv-
ing concepts related to different disciplines and applications, it represents a valid
benchmark to test our approach in order to select those reference models that
not only are about food in general, but whose main concern is on the produc-
tion of food. The term “food” in fact can be found in reference models such
as recipes for dishes served in a restaurant, biomedical thesaurus, commercial
products catalogues and many others. Thus, the main result we expect here is to
select the reference model for food that best fits the specific domain we are going
to shape. Each of the function block in Fig. 1 will be applied in the follow. The
collaboration with domain experts is precious in the first phase of the approach
in order to individuate knowledge sources from which to extract models. Google
search engine, Google Scholar, ISO International Classification of Standards and
OAEI Iniziative Food test cases suit best in this case. Also specialized portal
like BioPortal have been taken into consideration. The harvesting of reference
models has been executed mostly manually even though some tools for automa-
tizing search queries over Google Scholar have been successfully experimented1.
1 scholar.py, A parser for Google Scholar, written in Python. Available online: https://

github.com/ckreibich/scholar.py.

https://github.com/ckreibich/scholar.py
https://github.com/ckreibich/scholar.py
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As a result of applying this phase, many reference models, gathered in the refer-
ence corpus, have been collected. In order to select the best ones from the corpus
the evaluation criteria discussed in Sect. 3 has been applied. In this regard, a
greater weight has been given to reference models constructed in OWL or RDF
language, these ones being the final languages used in the integrated ontology,
and a greater weight has also been given to availability (open model data have
been preferred) and model provenance (a high rank has been given to standard
knowledge model like ISO standard). In Appendix A a brief description of each
reference model is provided. Going forward, the reconciliation and normalization
function block obtains a set of normalized, language-agnostic and de-structured
knowledge models. In order to do this, we have firstly flattened the models con-
cept hierarchy since we do not apply any structural analysis in this phase. Later
on, we have applied the linguistic normalization operations listed in Sect. 3, to
the model signature, i.e., to the textual representation of the model entities
(concepts or relations) and their metadata (label, comments). This process, con-
veniently applied to each selected model, has resulted in a lexical chain for each
model. Figure 6(a) shows the application of these steps to an excerpt of the
National Cancer Institute Thesaurus (NCIT). In order to apply the matching
function block to the input models, it is necessary to construct a prototype of the
target ontology. In this work, the target ontology can be envisioned as the final
goal of the integration approach but, also, at the early phases of the proposed
methodology also as a kind of proto-ontology, i.e., a raw set of domain keywords,
terms, definitions or in general concepts related to the knowledge domain under
study without a formal structure. It is not an ontology in the strict sense of the
term. It represents a set of grounded concepts related to the knowledge domain
from where to start to aggregating concepts from the top ranked ontologies
matched throughout the framework components. The contribution of domain
expert users is important in producing the target ontology because the choice
of terms or concepts involved in this phase will affect heavily the choice of the
knowledge repositories and the input ontologies to be collected in the reference
model corpus. The target ontology will provide the terms against which to match
all the terms in the lexical chains coming from the input ontologies.

The third block helps knowledge engineers to automatically select and eval-
uate the input ontologies, on the basis of the target ontology, while providing
a set of alignments, which will be used in the integration module. It performs
string and linguistic matching between the lexical chains of the input models
and that of the proto-ontology. Then it computes the Jaccard measure [15] for
each model as the ratio between the cardinalities of the intersection of the input
lexical chain and the target one and their union. The intersection of the input
lexical chains contains all the terms having a string and a linguistic similarity
measure greater than a prefixed threshold. According to the linguistic and string
analysis, the best models related to the target ontology in this case study are: 1),
2) and 10). This result is consistent with the fact that the remaining ontologies
or models listed in Table 5(a) are about others aspects of food mostly related
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Table 5. Selected reference models analysis

with food service or receipts (3), or about others not relevant aspects of the food
domain (7, 8).

The final step of the matching function block is the extended linguistic analy-
sis. As described in Sect. 4.3, this analysis converts the input and target lexical
chains in semantic networks containing an extended set of concepts w.r.t. the ini-
tial set from the lexical chain. This new set encompasses hyponims, hypernims,
meronims, holonims, etc., retrieved from WordNet. Furthermore, the concepts of
the semantic network are linked to each other with the linguistic and semantic
relations provided in the meta-model described in Sect. 4.2. Figure 6(b) shows an
excerpt of the Extended Direct Semantic Network (DSN) for the NCIT lexical
chain. The extended linguistic analysis has substantially confirmed the choice
of the previously selected model giving more relevance to 10) and that is con-
sistent with nature of ISO knowledge model. For this reason, the input models
1), 2) and 10) have been selected as the local ontologies to be integrated by
the merging and integration function block. The fourth function block applies
the alignments resulting from the matcher according to the Sect. 4.2 and inte-
grate the local ontologies in the global one. Table 5(b) shows an excerpt of the
alignment resulting by matching the NCIT and the AGROVC ontologies
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(a) Ontology Excerpt and Lexical Chain

(b) Extended Semantic Network Excerpt

Fig. 6. NCIT Extended Linguistic analysis

6 Experimental Results

Since the methodology described in this paper applies to different phases of
knowledge reuse and integration, and every phase produces intermediate results,
which would require specific comparisons with other similar matching systems
or approaches, our discussion here concentrates on a global level, i.e., how effi-
ciently and effectively, in terms of precision and recall, the candidate reference
models have been selected to be reused in the integration phase of the work-
flow, considering the methodology as a whole. We leave to further investigations
and measurements a detailed comparison of results coming from the matching
modules and the integration module.

For the sake of our global analysis, we use the standard definitions of precision
and recall by introducing two sets of reference models, namely, the relevant
reference models set (described later) and the retrieved reference models set, i.e.,
those resulting by applying the proposed methodology. The relevant models have
been individuated manually, by averaging the score assigned them by a group
of experts. This task has led us to select model 1), 2), 6) and 10) as relevant.
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Fig. 7. Reference models selection results

They represent a kind of ground truth for the analysis described here. Figure 7
shows an overview of the experimental results by plotting the maximum values of
precision, recall and F-measure in four different moments of the whole procedure,
namely, at the end of the first phase (reference models retrieval) after applying
the qualitative criteria to make a first selection of relevant models, at the end of
string-based matching phase, at the end of the linguistic-based matching phase
and, finally, at the end of the extended linguistic-based matching phase. The
figure shows a common behaviour regarding the precision and recall curves: while
the first measure increases, the second one decreases. In this context, this is due
to the effect of applying increasingly sophisticated matching methodologies in
order to retrieve the candidate reference models, that ameliorate the precision at
the expense of the recall. The F-measure continuously increases throughout the
matching phases as result of the precision rise, despite of the fluctuating trend
of the recall.

Given that a detailed comparison of the alignments outcoming from the
matching modules will be subject of future investigations, as discussed in the
conclusions section, a brief outline of the methodology under study is provided as
follows. Starting from a common approach in the literature, sets of reference doc-
uments are replaced by sets of correspondences, i.e., alignments. The alignment
(A) returned by the matching module to evaluate is compared to a reference
alignment (R). This latter, meant like a ground truth, is obtained manually
with the involvement of domain experts a can include a relevant subset of the
entire alignment between two ontologies. Like in information retrieval, precision
measures the ratio of correctly found correspondences (true positives) over the
total number of returned correspondences (true positives and false positives).
In logical terms, this is supposed to measure the correctness of the method.
Precision and recall together with the F-measure are commonplace measures in
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information retrieval and they have also been adapted for ontology alignment
evaluation [11] but they have the drawback that whatever correspondence has
not been found is definitely not considered. As a result, they do not discrimi-
nate between a bad and a better alignment. So, following the approach in [12],
instead of comparing alignments set-theoretically, we will measure the proximity
of correspondence sets rather than the strict size of their overlap, in other words,
instead of taking the cardinal of the intersection of the two sets (| R ∩ A|), the
natural generalizations of precision and recall measure their proximity ω(A,R),
where ω is an overlap function between alignments based on a proximity function
(σ) between two correspondences, as defined in the relaxed Precision and Recall
measures discussed in [12]. Furthermore, since our goal is to design a generaliza-
tion of precision and recall that is not only proximity-based but also semantically
grounded, we will consider as set of alignments the initial one plus the corre-
spondences that are consequences of the evaluated alignments (as recalled) and
those that are consequence of the reference alignments (R) (as correct), being
the notion of consequences defined in [14]. The characterization of the ω and
the σ function is out of the scope of this work and will be subject to further
investigations in future works.

7 Conclusions

A multi-strategy approach, manual and automatic, in ontology reuse and inte-
gration may result in a feasible and useful practice. The experimentation within
the Food domain has demonstrated that an approach based on linguistic match-
ing can help to automatize the selection of the most relevant reference models,
by properly distinguishing those models that belong to a specific interpreta-
tion of the domain under study among others, and the integration of the local
ontologies in the global model. Nonetheless, this process requires a significant
amount of manual work, even when it deals with common and formal models.
This requirement may be a severe limitation for a widespread adoption of the
knowledge reuse and may represent a relevant technological gap to be addressed
by researchers in the near future. Furthermore, it is worth to test the proposed
approach against other knowledge domains in order to evaluate its practicability
in different contexts. New matching similarity measures will be subject of further
researches with the aim of improving the precision of the alignments, comparing
them with gold standard tests, and this way ameliorating the entire approach.
In this regard a methodology for evaluating alignment and matching algorithms
similar to that proposed by the Ontology Alignment Evaluation Initiative [13]
or others like [23] can be adopted. Furthermore, a synergistic use of informa-
tion visualization techniques and the capabilities of new tools emerged in the
landscape of Big Graph Data like Neo4J and its declarative graph query lan-
guage (Cypher) [2,5], can help in visualize the alignment set and perform over
it different kind of evaluation measurements, which adopt extended versions
beyond the classical precision and recall measures, by exploiting its features like
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the pattern-based queries and its iconicity. Finally, most of the techniques used
here can be adopted in knowledge-based systems also taking into consideration
multimedia features [30,41,42].

A Appendix

The list below provides a short description for each selected reference model
filtered out from the corpus of retrieved references.

1. National Cancer Institute Thesaurus2 by the American National Insti-
tutes of Health (NIH):
The NCI Thesaurus is a reference terminology and biomedical ontology used
in NCI systems. It covers vocabulary for clinical care, translational and basic
research, and public information and administrative activities. It contains
118941 classes, 46839 individuals, 173 properties, 16 as the max depth, 3235
children, an average number of children equal to 6 and 36013 classes with
no definitions

2. AGROVOC Multilingual agricultural thesaurus3 by AIMS Advisory
Board:
AGROVOC is a controlled vocabulary covering all areas of interest of the
Food and Agriculture Organization (FAO) of the United Nations, including
food, nutrition, agriculture, fisheries, forestry, environment etc. AGROVOC
consists of over 32,000 concepts available in 27 languages: Arabic,
Burmese, Chinese, Czech, English, French, German, Hindi, Hungarian,
Italian, Japanese, Khmer, Korean, Lao, Malay, Moldovian, Persian, Polish,
Portuguese, Russian, Slovak, Spanish, Telugu, Thai, Turkish, Ukrainian,
Vientamese.

3. Linked Recipe Schema4 by schema.org:
Schema.org is a collaborative, community activity with a mission to create,
maintain, and promote schemas for structured data on the Internet, on web
pages, in email messages, and beyond. These vocabularies cover entities, rela-
tionships between entities and actions, and can easily be extended through
a well-documented extension model.

4. BBC Food Ontology5 by BBC:
The Food Ontology is a simple lightweight ontology for publishing data about
recipes, including the foods they are made from and the foods they create as
well as the diets, menus, seasons, courses and occasions they may be suitable
for. Whilst it originates in a specific BBC use case, the Food Ontology should

2 National Cancer Institute Thesaurus. Available online, https://ncit.nci.nih.gov/
ncitbrowser/.

3 AGROVOC Multilingual agricultural thesaurus. Available online, http://aims.fao.
org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus.

4 Linked Recipe Schema. Available online, http://aims.fao.org/vest-registry/
vocabularies/agrovoc-multilingual-agricultural-thesaurus.

5 BBC Food Ontology. Available online, http://www.bbc.co.uk/ontologies/fo.

http://www.schema.org
http://www.schema.org
https://ncit.nci.nih.gov/ncitbrowser/
https://ncit.nci.nih.gov/ncitbrowser/
http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
http://aims.fao.org/vest-registry/vocabularies/agrovoc-multilingual-agricultural-thesaurus
http://www.bbc.co.uk/ontologies/fo
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be applicable to a wide range of recipe data publishing across the web. It
presents 57 named classes.

5. LIRMM Food Ontology6 by LIRMM Laboratoire:
This ontology models the Food domain. It allows to describe ingredients and
food products. Some classes are: food:Recipe, food:Food, food:FoodProduct,
food:Dish, food:Ingredient, etc.

6. The Product Types Ontology7 by E-Business and Web Science Research
Group at Bundeswehr University Munich:
This ontology contains 300,000 precise definitions for types of product or
services that extend the schema.org and GoodRelations standards for e-
commerce markup.

7. Oregon State Food Glossary8 by Oregon State University:
FoodON is a new ontology built to interoperate with the OBO Library and
to represent entities which bear a “food role”. It encompasses materials in
natural ecosystems and food webs as well as human-centric categorization
and handling of food.

8. Eurocode 2 Food Coding System9 by European FLAIR Eurofoods-
Enfant Project:
The Eurocode 2 Food Coding System was originally developed within the
European FLAIR Eurofoods-Enfant Project to serve as a standard instru-
ment for nutritional surveys in Europe and to serve the need for food intake
comparisons. It contains 162 named classes.

9. WAND Food and Beverage Taxonomy10 by WAND Company:
The WAND Food and Beverage Taxonomy includes 1,278 terms including
foods, beverages, ingredients, and additives. This taxonomy includes any-
thing that somebody may consume as food, including some prepared foods.
The WAND Foods and Beverages Taxonomy is ideal for restaurants, gro-
ceries, and food manufacturers.

10. Food technology ISO Standard11 by ISO:
International standard by ISO which provides a terminology for processes
in the food industry, including food hygiene and food safety, food products
in general, methods of tests and analysis for food ICS (International Clas-
sification for Standards) products, materials and articles in contact with
foodstuffs and materials and articles in contact with drinking water, plants
and equipment for the food industry.

6 LIRMM Food Ontology. Available online, http://data.lirmm.fr/ontologies/food.
7 The Product Types Ontology. Available online, http://www.productontology.org/.
8 Oregon State Food Glossary. Available online, http://icbo.cgrb.oregonstate.edu/

node/282.
9 Eurocode 2 Food Coding System. Available online, http://www.danfood.info/

eurocode/.
10 WAND Food and Beverage Taxonomy. Available online, http://www.wandinc.com/

wand-food-and-beverage-taxonomy.aspx.
11 International classification for Standards (ISC). Available online, http://www.iso.

org/iso/home/store/catalogue ics.htm.

http://www.schema.org
http://data.lirmm.fr/ontologies/food
http://www.productontology.org/
http://icbo.cgrb.oregonstate.edu/node/282
http://icbo.cgrb.oregonstate.edu/node/282
http://www.danfood.info/eurocode/
http://www.danfood.info/eurocode/
http://www.wandinc.com/wand-food-and-beverage-taxonomy.aspx
http://www.wandinc.com/wand-food-and-beverage-taxonomy.aspx
http://www.iso.org/iso/home/store/catalogue_ics.htm
http://www.iso.org/iso/home/store/catalogue_ics.htm
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Abstract. The exponential growth of multimedia data including images and
videos has been witnessed on social media websites like Instagram and You-
Tube. With the rapid growth of multimedia data size, efficient processing of
these big data becomes more and more important. Meanwhile, lots of classifiers
have been proposed for a number of data types. However, how to assemble these
classifiers efficiently remains a challenging research issue. In this paper, a novel
scalable framework is proposed for classifier ensemble using a set of judgers
generated based on the training and validation results. These judgers are ranked
and put together as a hierarchically structured decision model. The proposed
ensemble framework is deployed on an Apache Spark cluster for efficient data
processing. Our experimental results on multimedia datasets containing different
actions show that our ensemble work performs better than several
state-of-the-art model fusion approaches.

Keywords: Classifier ensemble � Classifier fusion � Apache spark � Big data

1 Introduction

Content-based multimedia data retrieval and management have become a very
important research area due to its broad applications in this century [1–5]. For instance,
video content analysis, in the context of automatically analyzing human actions in
videos, has been widely utilized in video event mining, video summarization, camera
surveillance, etc. [6–11]. Meanwhile, the deluge of multimedia big data has made
data-oriented research more and more important, especially in this big data era [12–17].
In this paper, we propose a data mining based framework to solve the problem of
multimedia big data classification.

A number of data analysis technologies have been developed in the past decade,
including a variety of classification algorithms for different kinds of datasets. Never-
theless, a single classifier can hardly handle heterogeneous media types from different
datasets in various situations. Commonly speaking, an ensemble of data classifiers will
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be always better than the individual ones as “Vox Populi, Vox Dei”. To take advan-
tages of different classifiers and reach the best performance on a dataset, lots of research
groups recently focus on assembling useful classifiers together.

A novel idea of classification combination is proposed in this paper. Based on the
confusion matrices of different classifiers, a scalable classifier ensemble framework
assisted by several “judgers” is proposed to integrate the outputs from multiple clas-
sifiers for multimedia big data classification. These judgers are put together as a
boosted classifier. Specifically, a set of “judgers” are generated based on training and
validation results from different classifiers and features at first. On the second step,
these judgers are ranked and organized into a hierarchically structured decision model.
Finally, an Apache Spark-based classification system is developed which can be
applied for multimedia big data classification.

In the testing stage, an instance is fed to different classifiers, and then the classi-
fication results are passed to the proposed hierarchical structured decision model to
derive the final result. By running on a Spark cluster, the system is well designed for
multimedia big data processing. Our experimental results on two popular video datasets
including different actions show that the proposed work successfully fuses classifiers
and outperforms several existing classifier ensemble frameworks.

Our proposed system has the following three main contributions.

• Novel concepts of positive and negative “judgers” are defined to assemble a novel
hierarchical structured decision framework.

• The proposed work considers the fusion of classifiers using both the same features
and different feature spaces simultaneously.

• A unified ensemble fusion model in a big data infrastructure using Spark is
developed and uses action classification in videos as a proof-of-concept.

• Experimental results show promising results by comparing to several
state-of-the-art methods.

This paper is organized as follows. Section 2 presents related work in classifier
ensemble. In Sect. 3, the proposed classifier fusion model is introduced in details. In
Sect. 4, two benchmark action datasets are used for evaluation. Finally, concluding
remarks are presented in Sect. 5.

2 Related Work

2.1 Multiple Classifiers and Features

In the scope of multimedia data classification, multi-classifier fusion is an important
research area because one classifier is unable to perform better than other classifiers on
all types of data. In [18], the authors develop gradient histograms using orientation
tensors for human action. A classifiers fusion based framework using statistical fusion
such as GMM (Gaussian Mixture Model) fusion and ANN (Artificial Neural Network)
fusion is proposed in [19]. While conflict results can be generated by different clas-
sifiers, previous results have indicated that the fusion of multiple different results can
improve the performance of individual classifiers. In general, classifiers ensemble is a
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good resolution to conflict classification results. However, how to find a good way to
fuse these classification results from different classifiers remains as a big issue.

Meanwhile, how to utilize multiple features [20–26] by different feature extraction
models from multimedia datasets is another hot research area in the past decade.
Different classification models can be employed for different kinds of features, which
may discover different properties of the data [27, 28]. The authors in [29] found the
complementary nature of the descriptors from different viewpoints, such as semantics,
temporal and spatial resolution. They also employed a hierarchical fusion that com-
bines static descriptors and dynamic descriptors. Since high-level semantics are
sometimes difficult to be captured by visual features, textual features were used in [30]
and a sparse linear fusion scheme was proposed in their work to combine visual and
textual features for semantic concept retrieval and data classification.

2.2 Multi-classifier Fusion

Generally speaking, the existing work on multi-classifiers ensembles models falls into
four types as follows.

2.2.1 Weighted Combination Strategy
The weighted combination strategy is a popular and straight-forward strategy and
commonly used in many classifiers ensemble models. Two examples are sum and
product approaches as weighted combination rules. The sum rule treats the sum value
as the arithmetic mean while the product rule treats the product value as the geometric
mean. The sum rule is equivalent to the product rule for small deviations in the
classifier outcomes under the same assumption [31]. In general, the product rule is
good when the individual classifiers are independent.

Furthermore, the sum and product rules can be generalized to the weighted com-
bination approaches for different scores. The key to this strategy is to find a suitable set
of weights for different scores generated by different classifiers. Several different
strategies were proposed in the past in order to determine the weights. For instance, an
information gain method for assigning weights is explained in [32] where the authors
adapt and evaluate existing combining methods for the traffic anomaly detection
problem and showed that the accuracies of these detectors can be improved. Meng et al.
[33] utilize the normalized accuracy to compute the weights for each model built on a
specific image patch. In a recent study proposed in [34], the researchers further extend
this method by first sorting all the models according to the interpolated average pre-
cision and then selecting the models with top performance. The number of models to
retain in the final list is determined via an empirical study.

Although several experimental results indicate that sometimes weighted combi-
nation strategy can give a relatively good performance, the success of this kind of
approaches relies on specific knowledge from domain experts or experience from data
mining researchers to provide a good estimation of weights. This clearly shows the
importance of proper choice of weights.
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2.2.2 Statistics-Based Strategy
The sum rule can be also considered as a special statistics-based strategy. Some other
commonly used approaches in statistics-based approaches are “sum”, “max”, “min”,
and “median” rules. The “sum” strategy here is somewhat different from the sun rule in
weight combination strategy and gives an estimation of the final score based on the
majority-voting theory. By setting all the weights to the same value, it is then equiv-
alent to the sum rule. The “max” fusion approach is a relatively conservative estima-
tion, where the highest score of all the models is chosen. On the other hand, the “min”
fusion strategy picks the lowest value. The fourth one, “median” rule, gets the median
value of all the scores.

Kittler et al. [35] develop a common framework for classifier combination and show
that many existing schemes can be considered as special cases of compound classifi-
cation where all the features are used jointly to make a decision. In [36], Kuncheva
evaluates the advantages and disadvantages of these strategies in details from a theo-
retical point of view. The main advantage of the statistics-based approach is the low time
complexity, while the main disadvantage is that the performance of these models is not
quite stable under the condition that the underlying models are not accurate.

2.2.3 Regression-Based Strategy
The regression-based strategy receives a lot of attentions recently. In this research
direction, the logistic regression based model is commonly utilized. Parameters are
estimated using the gradient descent approach in the training stage. After the param-
eters are learned, the score of a testing data instance can be computed. In [37], a novel
logistic regression model is trained to integrate the scores from testing data by different
classification models to get a final probabilistic score for the target concept.

Although the logistic regression model sometimes gives relatively robust perfor-
mances in practice, the disadvantage of regression-based strategy is that this algorithm
may suffer from the problem of overfitting.

2.2.4 Bayesian Probabilistic Strategy
With the assumption of the scores are conditionally independent with each other, the
Bayesian theory is also widely used in multi-classifier fusion, and sometimes is
combined with other strategies [38]. The most issue of this strategy is that the previous
assumption does not hold under most circumstances. The final score is computed using
the Bayesian rule based on all the scores from the models.

The theory of Dempster–Shafer is an improved method of the Bayesian theory for a
subjective probability. It is also a powerful method for combining measures of evi-
dence from different classifiers. The authors in [39] develop another classifier combi-
nation technique based on the Dempster–Shafer theory of evidence by adjusting the
evidence of different classifiers based on minimizing the MSE of training data.
However, this kind of approaches may still give relatively bad performance because of
the severe deviation from the independence assumption in real cases.
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3 The Proposed Framework

3.1 Feature Extraction

Different from some other papers that extract features from the whole images or frames,
we do feature extraction only from the Region of Action (ROA) in order to capture the
action related information. Here, we use the ROA selection and feature extraction
strategy from [21] which improve the action detection and recognition performance in
an automated system by fully exploring the ROAs. This cited work also analyzes and
integrates the motion information of actions in both temporal and spatial domains.

This approach can be roughly divided into three steps. In the first step, ROAs are
driven from two popular spatio-temporal methods including Harris3D corners and
optical flow. Next, the idea of integral image in [40] is utilized for its fast implemen-
tation of the box type convolution filters. Similar idea is also used in SURF [41]
promoted from SIFT [42]. Finally, the Gaussian Mixture Models (GMM) are applied
sequentially in this paper. All the mean vectors of the Gaussian components in the
generated GMM model are concatenated to create GMM supervectors for video action
recognition. SIFT and STIP [43] features which are widely used are extracted from
frames in video datasets in our work to describe the action sequences in video action
recognition. Other good features can be also fed to the proposed model for better results.

3.2 Classification

Similar to features, our classifiers fusion framework accepts most kinds of classifiers.
Specifically, three popular classification algorithms are used in this paper as follows:

3.2.1 Support Vector Machine (SVM)
SVM is one of the state-of-the-art algorithms for classification in the data mining area.
The general idea is to build a separating hyperplane to classify the data instances so that
the geometric margin is maximized. In order to handle the case that the classes are
linearly inseparable. The kernel trick is utilized. In this paper, we applied the LibSVM,
which is one of the most popular off-the-shelf software implementations. The radial
basis function (RBF) kernel is chosen based on experimental results of an empirical
study.

3.2.2 Sparse Representation
Sparse representation [44] is a hot research topic in the past decade which builds
overcomplete dictionaries to represent the training dataset. With this kind of dic-
tionaries including prototype signal-atoms, signals can be described by sparse linear
combinations of these atoms. Sparse representation has been widely used in the areas of
image denoising, object detection, semantic concept retrieval, information compression
and other useful applications including multimedia data classification.

Here, we use Sparse Representation Classification (SRC) along with its dictionary
learning techniques and design a framework to analyze actions of one person and
events between multiple people. For the task of dictionary learning, the widely-used
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K-SVD algorithm is adopted, which aims at deriving the dictionary of sparse repre-
sentation using the Singular Value Decomposition (SVD). The class label of a testing
instance can be determined by finding the minimum reconstruction error of the testing
sample represented by the trained dictionaries. A disadvantage of the SRC scheme is its
high computational complexity associated with the minimization problem.

3.2.3 Hamming Distance
A novel scheme Hamming Distance Classification (HDC) [45] is also included in our
work. HDC is an efficient classifier for real-time applications due to its efficiency. For
each class, a threshold will be calculated by the median value of the inner products of
each pair of features in the training set. Given a testing instance, a binary string can be
coded based on the inner product between the testing sample and each training sample.
If the inner product of the testing sample and a training sample is less than the trained
threshold, it would be assigned to “0”; otherwise, it would be coded as “1”. Finally, the
hamming distance between the bit vector from the testing instance and each class is
calculated, and this testing sample is assigned to the class with smallest hamming
distance.

3.3 Classifier Ensemble

Suppose we have an instances x, where x is a d-dimensional feature vector. Let
x1;x2; � � � ;xM be M categories, and a1; a2; � � � ; aM be a finite set of possible actions.
Suppose we have totally N classifiers, namely c1; c2; � � � ; cN . Each classifier will gen-
erate a posterior probability PcnðxjjxÞ for x. Here, we define a loss function kðaijxjÞ
which describes the loss occurred for taking action ai when the state of nature is xj.
Obviously, we can get a set of posterior probabilities used for classification generated
by different classifiers as:

Pc1ðxjjxÞ;Pc2ðxjjxÞ; � � � ;PcnðxjjxÞ:

For each probability function, the expected loss associated with taking action ai is
defined in Eq. (1).

RcnðaijxÞ ¼
XM
j¼1

kðaijxjÞPcnðxjjxÞ ð1Þ

Then, as a classification problem, a zero-one loss function is defined as:

kðaijxjÞ ¼ 0 i ¼ j
1 i 6¼ j

�
; where i; j ¼ 1; 2; � � � ;M ð2Þ

Using these definitions, for each classifier, the condition risk for category xj is
defined in Eq. (3). R needs to be minimized to achieve the best performance for a
certain classifier cn using Eq. (4) as follows.
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RcnðaijxÞ ¼
X
j6¼i

PcnðxjjxÞ ¼ 1� PcnðxijxÞ ð3Þ

Rcn ¼
Z
x2X

RcnðajxÞpðxÞdx ¼
Z
x2X

1� PcnðxjxÞ½ �pðxÞdx ð4Þ

Considering N different classifiers, most previous fusion methods use a certain
algorithm to fuse different Pcn xjjx

� �
for M categories. For example, using the weighted

combination rules, we can generate a combined posterior and a new conditional risk
R using Eqs. (5) and (6).

PfusionðxjjxÞ ¼
XN
n¼1

wnPCnðxjjxÞ ð5Þ

Rfusion ¼
Z
x2X

1� PfusionðxjxÞ
� �

pðxÞdx

¼
Z
x2X1

1� Pfusionðx1jxÞ
� �

pðxÞdxþ
Z
x2X2

1� Pfusionðx2jxÞ
� �

pðxÞdx

þ � � � þ
Z
x2XM

1� PfusionðxM jxÞ
� �

pðxÞdx;

where X1 [X2 [ � � � [XM ¼ X and Xi \Xj ¼ /

ði 6¼ j; i; j ¼ 1; 2; � � � ;MÞ

ð6Þ

As discussed in Sect. 2, the issue of earlier ensemble models is that we can only
fuse classifiers performing well in all categories while integrating a relatively bad
classifier may lead to even worse results and eventually reduces the performance in
most of the time. However, as a bad guy with a good point, a relatively bad classifier
may outperform a good classifier for a certain class. Thus, the proposed framework can
still use it to enhance the classification result even though it is not a good choice for all
the other classes. We did this by splitting a classifier is split into different “judgers”,
with each judger working independently to determine the label of a testing instance.
We can thus find the good point in a bad classifier and the conditional risk can be
reduced by using different posteriors for different classes, as shown in Eq. (7).

Rmin ¼
Z
x2X1

1� Pmaxðx1jxÞ½ �pðxÞdxþ
Z
x2X2

1� Pmaxðx2jxÞ½ �pðxÞdx

þ � � � þ
Z
x2XM

1� PmaxðxM jxÞ½ �pðxÞdx
ð7Þ
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3.4 Generation of Judgers

In order to generate judgers, our classifier fusion model firstly split a dataset into three
parts including a training, a validation, and a testing dataset. The classification models
are then trained using the training dataset, followed by the calculation of precision and
recall on the corresponding validation dataset. Here, precision is defined as a positive
judger and recall rate is denoted as a negative judger, where TP stands for the true
positive value, and FP and FN are the false positive and false negative values,
respectively as follows:

Jpos ¼ precision ¼ TP
TPþFP

Jneg ¼ recall ¼ TP
TPþFN

Suppose there are M classes in a certain dataset. For one type of features fl
(l 2 ½1; L�, L is the number of feature descriptors, which is two in this paper), based on
the classification results on the validation dataset, 2�M judgers will be generated for a
certain classifier cn (n 2 ½1;N�, N is the total number of the classification models built
on one type of features) as follows:

Jn;lpos1 ; J
n;l
pos2 ; J

n;l
pos3 ; � � � Jn;lposm � � � ; Jn;lposM

Jn;lneg1 ; J
n;l
neg2 ; J

n;l
neg3 ; � � � Jn;lnegm � � � ; Jn;lnegM

Here, Jn;lposm is a positive judger generated by classifier cn using feature fl for the class

xm (ðm 2 1;M½ �, M is the total number of categories). Correspondingly, Jn;lnegm is a

negative judger. If Jn;lposm is high, it indicates that this judger is relatively accurate.
Accordingly, if it judges a testing instance as in class xm, it is highly likely that this
judgment is correct. On the other hand, if Jn;lnegm is high, it can be considered as a good
negative judger since if classifier cn does not label a testing instance as class xm, the
ground truth of the instance is not likely to be xm. These judgers form the committee to
give the final classification results.

In summary, suppose there are totally N classifiers and L types of features fed for
each classification model, the total number of judgers is 2MNL. As an instance, for the
UCF11 dataset [30] used in this work, there are 11 classes. Considering all the three
types of classifiers introduced on two kinds of features, the total number of judgers
generated would be 132, which is equal to 2� 11� 3� 2.

3.5 The Classifiers Fusion Model

After both positive and negative judgers are generated, the next important issue is how
to fuse the outputs from different judgers to draw the final conclusion. In order to
assemble these judgers, a novel classifier ensemble framework is proposed as follows:
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As shown in Fig. 1, all the judgers generated are used to build a novel classifier
fusion model. For a testing instance x, each classifier will assign x a serial of positive
and negative judgers on each feature space. Suppose we have the following list of
judgers:

J11pos1 ; J
11
neg1 ; J

11
pos2 ; J

11
neg2 ; � � � ; J21pos1 ; � � � J31pos1 ; � � � J32posM ; J32negM

Here, the positive judgers are first used and will be re-ranked by their accuracies.
When the highest positive judger ranks the first and assigns x as class xm, x will be
determined as class xm. For example, for a testing instance, if J32pos1 is the largest positive
judger with the highest accuracy, that testing instance will be classified as class 1.

In the next step, the highest positive judger will be compared with the largest
negative judger for the same class (i.e., Jn;lneg1 in the previous example). Take the same

example, if the value of J21neg1 is larger than J32pos1 (meaning that the negative judger
dominates the classification), x won’t be assigned to class 1 because there exists a
larger negative judger. That is to say even if the largest positive judger assigns a testing
instance to class xm, it will be skipped and the second largest positive judger followed
will be considered and compared with the corresponding largest negative judger.
A similar process continues until a positive judger assigns x to a class without the
corresponding largest negative judger rejecting it. The results of this particular testing
instance are showed as follows:

Classification

Datasets

Judgers 

class label

Features

Feature Extraction

Fig. 1. The proposed classifier ensemble framework.
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J32pos1 ; J
12
pos3 ; J

31
pos8 ; J

22
pos2 ; � � �

J32pos1\J21neg1
J12pos3 [max Jn;jneg3

In this example, our proposed model assigns x to class 3. This procedure is applied
to all the testing instances. In very rare cases, however, it should be noticed that if all
the corresponding largest negative judgers reject the classification results from the
positive judgers, the testing instance will be assigned back to the decision of the highest
positive judger at the beginning.

3.6 Proposed Apache Spark Cluster

Nowadays, a number of large-scale data processing frameworks are turning towards
generalized MapReduce frameworks after Apache HadoopTM is released. Among them,
Spark is an open source big data processing framework advertised as extremely fast
cluster computing and increases the capability of conventional MapReduce use-cases.
It is a fast and general engine for big data processing and has been deployed for many
popular large-scale systems. With cores complemented by a set of higher-level libraries
including Spark Streaming, SparkSQL for NoSQL database, GraphX for graphs
computation, and Mllib for machine learning.

Based on Spark, an efficient system for classifier fusion of large-scale data is built
as shown in Fig. 2. Spark Core is the foundation of the overall project which provides
the distributed task dispatching, scheduling, and basic I/O functionalities. Currently,

Fig. 2. Our spark cluster.
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our Spark cluster contains four boxes with one master node and three slave nodes. Each
node is setup to instantiate 2 workers with 4 GB of memory and 1 TB of storage.

The main abstraction Spark provided is a Resilient Distributed Dataset
(RDD) which is an immutable fault-tolerant, distributed collection of objects that can
be operated in parallel. An RDD can contain any type of objects and is created by
loading an external dataset or distributing a collection from the driver program. In
addition to the only two operations in MapReduce, Spark provides many other oper-
ations called transformations such as map, sample, groupByKey, reduceByKey, union,
join, sort, mapValues, and partionBy. The above operations can be used either
stand-alone or in combination to run in a single data pipeline use case. Currently, Spark
is originally written in Scala and now fully supports Java; while it also supports Python
unstably. In this paper, our codes are all written in Java.

In details, we first read the keys (sample ID) and values (scores from different
classifiers for different features) as follows to build a very efficient multimedia
large-scale data classification model using Spark:

Key ¼ sample1; Value ¼ ðsc1;f1;x1
1 ; sc1;f1;x2

1 � � � sc2;f1;x1
1 � � � scN ;fL;xM

1 Þ
Key ¼ sample2; Value ¼ ðsc1;f1;x1

2 ; sc1;f1;x2
2 � � � sc2;f1;x1

2 � � � scN ;fL;xM
2 Þ

Key ¼ sample3; Value ¼ ðsc1;f1;x1
3 ; sc1;f1;x2

3 � � � sc2;f1;x1
3 � � � scN ;fL;xM

3 Þ
. . .
Key ¼ sampleP;Value ¼ ðsc1;f1;x1

P ; sc1;f1;x2
P � � � sc2;f1;x1

P � � � scN ;fL;xM
P Þ

Here, the meanings and notations are the same as introduced in previous sections
and the output values are the classification results. To easily compare our performance
with other existing approaches, two popular medium-sized video datasets are used in
the experiments. Nevertheless, our Spark cluster is able to handle large-scale multi-
media datasets easily. For a larger dataset, more key-value pairs will be created and
thus the system can help more in terms of efficiency in comparison to classical classifier
fusion models.

4 Experiments and Result Analyses

To test the efficiency of our classifier ensemble framework, two popular and widely
accepted benchmark multimedia datasets in the field of human action recognition are
used in the experiments. These two datasets are the KTH dataset [46] and the UCF11
dataset [47].

In the two experiments on KTH and UCF11, the 25-fold cross validation is
adopted. Three classifiers introduced in Sect. 3.2 are used, namely SVM, SRC, and
HDC; while both SIFT and STIP features are used.

4.1 Results on the KTH Dataset

The KTH dataset includes 6 different human actions (i.e., boxing, hand clapping,
waving, jogging, running, and walking) from 25 actors in 4 kinds of scenarios
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(namely indoors, outdoors, outdoors with scale variation, and outdoors with different
clothes). Thus, there are 600 video sequences in total. All videos are in the “avi” format
and were recorded in a controlled setting with slight camera motion and a simple
background as shown in Fig. 3.

Table 1 shows the confusion matrix of our results. To fully evaluate our model, our
fusion strategy is compared with 6 other fusion strategies in terms of accuracy and the
results are given in Table 2. The arithmetic mean and geometric mean represent the
sum and product of the scores. Two ways of hybrid means are also tested. One is first to
calculate the arithmetic mean scores among different classifiers based on the same kind
of features and then to compute the geometric mean scores between different kinds of
features; the other kind is to do the opposite.

Fig. 3. Sample frames from the KTH dataset.

Table 1. The confusion matrix of six action categories in the KTH dataset.

Box Clap Wave Jog Run Walk

Box 96 3 0 0 0 1
Clap 0 99 0 0 0 1
Wave 1 5 94 0 0 0
Jog 0 0 0 88 11 1
Run 0 0 0 0 100 0
Walk 0 0 0 0 0 100
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In addition, our classifier ensemble model is compared to 4 other published
frameworks. Table 3 compares the accuracies among them. We also split our experi-
ment by first using only SIFT and then using only STIP as described in Sect. 3. As can
be clearly seen from the comparison results, our proposed model performs better the
other ones.

4.2 Results on the UCF11 Dataset

The UCF11 dataset which also known as “YouTube Action Dataset” is more chal-
lenging than the KTH dataset, since it contains realistic actions, camera motions, and
complicated backgrounds. There are eleven action categories, namely basketball
shooting, biking/cycling, diving, golf swinging, horseback riding, soccer juggling,
swinging, tennis swinging, trampoline jumping, volleyball spiking, and walking with a
dog. For each category, the videos are grouped into 25 groups with more than 4 action
clips in it. Some sample frames are given in Fig. 4.

Table 2. Comparison of our classifier ensemble framework and other fusion algorithms on the
KTH dataset.

Algorithm Average precision

Arithmetic mean 90.7%
Geometric mean 90.0%
Hybrid mean
(Arithmetic for different features)

90.7%

Hybrid mean
(Geometric for different features)

90.3%

Linear regression on SIFT 90.5%
Linear regression on STIP 91.2%
The proposed strategy 95.2%

Table 3. Comparison of overall average precision of our method and state-of-the-art methods
on the KTH dataset.

Method Average precision

Schuldt et al. [46] 71.5%
Dollar et al. [48] 80.7%
Yin et al. [49] 82.0%
Niebles et al. [50] 91.3%
Our work on SIFT 93.7%
Our work on STIP 95.3%
Our work on both features 96.2%
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Similar to the experimental steps in Sect. 4.1, we compare our work with 6 other
fusion strategies in terms of accuracy and the results are given in Table 4. Meanwhile,
we also compare our results with 4 other state-of-the-art models and the results are
shown in Table 5. Table 5 also shows the advantage of the proposed model which can
fuse different kinds of features to achieve a better performance than the other methods,
though the result by only one kind of feature may not able to always outperform other
methods.

Table 4. Comparison of our ensemble model and other fusion algorithms for the UCF11
dataset.

Algorithm Average precision

Arithmetic mean 74.91%
Geometric mean 74.82%
Hybrid mean
(Arithmetic for different features)

75.27%

Hybrid mean
(Geometric for different features)

75.09%

Linear regression on SIFT 77.82%
Linear regression on STIP 75.91%
The proposed strategy 80.3%

Fig. 4. Sample frames from the UCF dataset.
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5 Conclusions

Recently, ensemble learning models have received a lot of attentions with the attempt
to take advantages of multiple useful classifiers. In this paper, a novel classifier
ensemble framework based on judgers is proposed to fuse the classification results
generated from different classifiers and features. The proposed framework is built on an
Apache Spark cluster and applied to two different human action video datasets as a
proof-of-concept. The experimental results show that our proposed framework out-
performs several existing state-of-the-art classification approaches.

Although these two datasets are medium-sized, the proposed framework is capable
of handling big datasets as it is built on Spark. Thus, the proposed framework can be
easily extended to work with more classifiers and features for other multi-class and
multi-feature classification problems. Theoretically, the more classifiers and features
included, the more judgers will be generated correspondingly, which can potentially
lead to better classification results.
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Abstract. The advent of big data and NoSQL data stores has led to the
proliferation of data models exacerbating the challenges of information
integration and exchange. It would be useful to have an approach that
allows leveraging both schema-based and schema-less data stores. We
present a graph-based solution that attempts to bridge the gap between
different data stores using a homogeneous representation. As the first
contribution, we present and demonstrate a mapping approach to trans-
form schemas into a homogeneous graph representation. We demonstrate
our approach over relational and RDF schemas but the framework is
extensible to allow further integration of additional data stores. The sec-
ond contribution is a schema merging algorithm over property graphs.
We focus on providing a modular framework that can be extended and
optimized using different schema matching and merging algorithms.

Keywords: Schema integration · Graph databases · Schema mapping ·
Neo4j

1 Introduction

Recently, there has been a shift in the volume of data generated, diversity in data
forms (structured, semi-structured and unstructured) and an unprecedented rate
at which data is produced. The data possessing these characteristics is termed
as big data and the field is forecasted to grow at a 26.4% compound annual
growth rate through 2018, according to a report released by Intelligent Data
Corporation [33]. The need for faster analysis over big data with current storage
and computation power poses a major challenge for enterprise data infrastruc-
tures. Two alternatives to handle analysis over this newer form of data are:
(a) scale-up (adding CPU power, memory to a single machine), and (b) scale-out
(adding more machines in the system creating a cluster). The main advantage
of scaling out vs. scaling up is that more work can be done by parallelizing the
workload across distributed machines. Many existing relational database sys-
tems are designed to perform efficiently on single-machines. It should not be
misconstrued that relational systems cannot scale-out at all. They can, but they
c© Springer International Publishing AG 2018
S.H. Rubin and T. Bouabana-Tebibel (eds.), Quality Software Through Reuse
and Integration, Advances in Intelligent Systems and Computing 561,
DOI 10.1007/978-3-319-56157-8 6
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lose the features that they are primarily designed such as ACID compliance, for
example [34].

NoSQL (Not Only SQL) describes an emerging class of storage models
designed for scalable database systems. NoSQL data stores advocate new and
relaxed forms of data storage that do not require a schema to be enforced for the
underlying data. Instead, a schema is identified and generated at the application
side when the data is read from the system. This concept of postponing schema
definition to a later point has enabled NoSQL storage models to be applied in
many real-world use-cases. However, the popularity has also created a notion that
schemaless data management techniques are more suitable for solving emerging
data problems than schema-based structures.

While NoSQL data stores offer interesting and novel solutions for managing
big data, they are also not a panacea for all data management related scenar-
ios. In scenarios that need query optimization, data governance, and integrity,
schema-based stores offer a better solution. Furthermore, a large amount of enter-
prise data still resides in relational databases. The greater scalability of NoSQL
databases over relational databases comes at a price. Most NoSQL systems com-
promise certain features, such as strong consistency, to achieve efficiency over
other critical features of performance and availability. Organizations such as
Facebook and Hadapt who have widely embraced big data technologies also
choose a data store on a use-case basis as opposed to leveraging a single big data
storage technique for all their applications and data storage requirements [35].
More recently, a number of SQL implementations have also emerged that are
built over platforms and programming models such as MapReduce that support
big data [36–41].

Another field that is growing rapidly is semantic web and linked data tech-
nologies. Linked data builds upon the existing web and offers the idea of anno-
tating the web data (and not just the documents) [42] using global identifiers
and linking them. The data is published and organized using RDF (Resource
Description Framework), which is based on a subject-object-predicate frame-
work. RDF schema specifications and modeling concepts differ from relational
databases and NoSQL data models, thus supporting the need and demand for
creating schema and data integration solutions. Hitzler et al. [42] identify linked
data as a part of the big data landscape.

These recent developments indicate two ideas: (1) the significance and preva-
lence of structured data in the enterprise world, and (2) the unique advantages
possessed by different classes of data stores. In order to reap benefits from all of
them, it is important to bring them together under a homogeneous model. This
would serve two purposes: (1) offer more complete knowledge by combining data
stored in isolated sources, and (2) facilitate harnessing value from each of the
data stores (schema-based and schema-less), thus making them complementary
and not competitive solutions.

In this paper, we address this need by adopting graphs as a means towards
standardization and integration of different data stores, thus handling the variety
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characteristic of big data. Our selection of a graph model is based on the following
observations:

1. Graph databases are a NoSQL data storage model and thus support the big
data processing framework [50].

2. Graphs provide a simple and flexible abstraction for modeling artifacts of
different kinds in the form of nodes and edges.

3. Graph databases are attracting significant attention and interest in the past
few years as highlighted from the Google Trends analysis shown in Fig. 1. The
values are normalized representing the highest value in the chart as 100% and
the x-axis labels are marked in two-year time intervals.

4. The graph model adopted in our work, Neo4j, possesses a query language
called Cypher and allows programmatic access using API.

Fig. 1. Trend of web search interest for graph databases [28]

The main contributions of this paper are as follows:

1. A concept-preserving, integrated graph model that addresses the model het-
erogeneity and variety dimension of the big data landscape.

2. A software-oriented, automated approach to transform relational and RDF
schemas into a graph database.

3. A proof-of-concept that illustrates the potential of graph-based solutions
towards addressing diversity in data representations.

4. A framework accompanied by a proof-of-concept for schema merging over
property graphs.

The rest of the paper is organized as follows. Section 2 presents an overview
of the concepts and terms that are used frequently in the paper. These include a
discussion of property graphs and Neo4j graph database in particular, and rela-
tional and RDF data models as our native models of interest. Section 3 describes
our transformation rules for converting a relational schema to a property graph.
We leverage the approach proposed by Bouhali et al. [51] for converting RDF
to a property graph representation and extend it to support additional models.
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Next, we present a proof-of-concept to illustrate the implementation of our trans-
formation rules. We consider schema excerpts for relational and RDF models and
show their corresponding property graphs generated using the transformation
rules. Section 4 introduces our architecture and the motivation behind mapping
non-graph based schemas to a property graph. The evaluation issues for schema
mapping are reported in Sect. 5. We next present our approach towards schema
integration over property graphs in Sect. 6. The challenges and our proposed solu-
tion towards resolving them are illustrated using an example. Section 7 presents
the schema integration algorithm. In Sect. 8, we use two case-studies to evalu-
ate our approach for schema integration. Section 9 addresses the related work
in graph-based integration and transformations while Sect. 10 offers conclusions
and future work.

2 Background

In this section, we overview the concepts that form a foundation for our research.
These include relational and RDF schemas that serve as input schemas. There
are many graph based models; we consider the property graph as our model of
interest and introduce it here briefly. We leverage Neo4j [52] in our work.

2.1 RDF

RDF stands for Resource Description Framework. It refers to the model and
RDF schema is commonly abbreviated as RDFS. RDF allows annotating web
resources with semantics. The resources and semantic information is represented
in the form of classes and properties which form two core concepts of an RDF
schema.

The notion of classes and objects in RDFS differ from the similar concepts
that exist in conventional, object-oriented systems [53]. In many systems, classes
contain a set of properties and each of the class instances possesses those proper-
ties. However, in RDF, properties are described in terms of classes to which they
apply. These classes are referred to as domain in RDF schema, and similarly, the
values that a certain property can hold is described using range. For example,
we could define a property member that has domain Group and its range would
be Person. Nejdl et al. [43] and W3C specification [44] offer a summary of RDF
classes and properties.

2.2 Relational Schema

A relational schema is described as a set of relations which consists of a set of
attributes and constraints. The relations are connected by different types of rela-
tionships with cardinality constraints. There are two major types of constraints:
entity integrity and referential integrity. The entity integrity constraint states
that every relation has a set of attributes, termed primary key, that uniquely
identifies each of the tuples in the relation. The primary key attribute(s) may
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not be null. The referential integrity constraint applies to a pair of relations that
are associated with each other. Having this constraint signifies that every value
of one attribute in one of the participating relations comes from the set of values
of a primary key attribute in the other relation.

2.3 Neo4j and Property Graphs

Graphs provide a simple and flexible abstraction for modeling artifacts of differ-
ent kinds in the form of nodes and edges. The graph model adopted in our work,
Neo4j [52] supports automation and has a query language [45]. The database is
available for download for free and there is vast technical support and a large
user base. Neo4j has also been ranked as the most popular graph database by
db-engines.com [46].

The graph database in our work, Neo4j [52], organizes its data as a labelled
property graph in which the nodes and relationships possess properties and can
be annotated with labels. This allows augmenting the graph nodes and edges
with semantics. The concept of properties is analogous to attributes in traditional
conceptual models such as the Entity-Relationship Model. In property graphs,
properties are key-value pairs. Figure 2 presents an example of data modeling
using a property graph.

Some key points to note in Fig. 2 are as follows: (1) the labels Person, Book,
and Author are depicted in rectangles over the nodes, (2) a node can possess
more than one label, and (3) both nodes and relationships may have attributes
that are key-value pairs. The name of the relationship is reflected in bold font
over the edges. All the nodes with the same label form a group and this leads to
an improvement in the query efficiency because a query involving labels limits the

Fig. 2. An example of a property graph [24]

http://db-engines.com
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Table 1. Relational schema excerpt. Top Employee and Bottom Organization

Name SkypeID Gender DOB employeeID address ssn orgId

Marissa White marissa@yahoo.com Female 04-09-1983 mwhite 2600 clifton 1234567890 uc org
Jason Doe jason@yahoo.com Male 04-09-1973 jdoe 3200 clifton 6789083455 uc org

Name Location orgId

University of Cincinnati 2600 Clifton uc org

search space to the group of nodes or relationships defined by that label instead
of searching through the complete graph [24,52]. As an example, consider the
label Book in Fig. 2. In this case, when a query is specified to list all books, then
only the nodes labelled as Book are traversed.

This concludes our brief discussion of the concepts that form the foundation
of our research. In the next section, we present our approach and proof-of-concept
for transforming relational and RDF databases into a property graph model.

3 Transformation Approach

We leverage the graph transformations proposed by Bouhali et al. [51]. Bouhali
et al. focus on converting RDF data into a graph model whereas we envision an
extensible approach that embraces model diversity by allowing multiple models
such as relational, RDF, and column-family stores from NoSQL databases, for
example, all under one framework. Two issues arise: (1) transformation rules to
map native model concepts to the property graph model, and (2) assurance that
the individual concepts of native models do not get lost even after all the models
are transformed into a graph representation. One of the unique characteristics of
our proposed model is its native concept-preserving characteristic. This native
concept-preserving characteristic is instrumental in facilitating reverse engineer-
ing when the graph representation would need to be expressed in the original
model terminology. For example, to publish the data for use in a linked data
project, RDF would be the model of choice. Thus, data that is represented using
any other format would need to be transformed to the RDF model. Further-
more, in the scenario where the integrated, transformed graph includes informa-
tion from multiple models, having knowledge about which nodes are originating
from a particular model offers an independent view of the data models in use.
This lays a foundation for model-specific data extraction or transformation.

We now present transformation rules and proof-of-concept of our graph model
representation by considering schema excerpts for relational and RDF schemas.
For convenience, we use the general term schema throughout the paper to refer
to both schema and data when discussing models that have a close coupling
of the two. For example, mapping a data source to a Neo4j graph database
involves mapping structure and instances, but we refer to this activity as schema
mapping. Similarly for merging two graph databases, we refer to this process as
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schema integration. We intend for the meaning to be clear from the context
provided by the discussion and examples.

3.1 Relational Model to a Property Graph

We begin by addressing the conversion of a relational schema into a property
graph representation. Das et al. [47] have proposed a methodology for converting
relational databases to RDF. Given that Bouhali et al. [51] have proposed an
algorithm for transforming RDF to graph, it would appear that we can combine
these two proposals [47,51] to transform a relational database to a property
graph. However, we do not follow this approach in our work for the following two
reasons. First, the final property graph model obtained by Buohali et al. [51] does
not reflect the native model features. In their work, they focus on transforming
RDF to a graph model and thus graph nodes implicitly correspond to the RDF
schema. Our work applies to multiple models, not only RDF, and in anticipation
of the need for reverse engineering from property graphs to native models, it is
important to preserve the identity of native models in the graph representation.
Second, developing transformations from the relational model to the property
graph model offers a direct route to the target format (property graph in our
case) instead of creating an RDF representation as an intermediate step. Table 1
represents a sample relational schema that we consider for illustrative purposes.
The schema excerpt describes two entities, employee and organization, and the
relationship between them using a referential integrity constraint on the attribute
orgId. We present three transformation rules as follows.

Rule 1: Every tuple in the relation is transformed to a node in the property
graph. The node is labelled RelationalResource and defines a property in the
form of name-value pair as type: Name of the Relation. The label serves to
disambiguate the relational source from the other models that would also be
transformed into a graph representation.

Rule 2: For each of the attributes in the relations, a property (name/value pair)
is added to the corresponding node in the graph. This node would be the one
that has the value for the property type equal to the name of the relation.

Rule 3: For each foreign key, a relationship is created between the nodes corre-
sponding to the two participating relations.

The dashed rectangle on the left in Fig. 3 illustrate the relational schema from
Table 1 as a graph model in Neo4j based on the transformation rules above. The
black box at the bottom left shows the properties (name-value pairs) for the
employee, “Jason Doe” from the relational schema.

3.2 RDF Model to a Property Graph

We now focus on the RDF schema. Figure 4 presents RDF data based on a
schema excerpt from FOAF (Friend Of A Friend) [27] RDF vocabulary. An RDF
vocabulary is an RDF schema formed of specific set of classes and properties that
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Fig. 3. Excerpts of two heterogeneous schemas originally in different models (left:
relational schema, right: RDF schema) unified under a common graph representation

Fig. 4. RDF schema excerpt

define resources of a particular domain. The example in Fig. 4 describes two enti-
ties (Person and Group), the classes that are used to describe them (foaf:Person
and foaf:Group) and the properties that relate them (foaf:member). The proper-
ties such as foaf:name and foaf:homepage are applied to a Person entity and their
values are either literals or resources described using URI (Uniform Resource
Identifier). We show only one individual’s information in Fig. 4 to save space,
but the graph in Fig. 3 shows two individual’s information (Marissa White and
Jason Doe), their group memberships, and their organization. The black box at
the top left shows the properties (key-value pairs) corresponding to the node
identified by the name ucshuttletracker and of type Project in the RDF schema.
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With the two input schemas transformed to a graph representation, the next
natural question to ask is: What is the additional merit that the common graph
representation offers compared to the knowledge that could have been derived
from the native model representations? Fig. 3 shows both the relational schema
and RDF schema connected by mappings (Maps With) in a graph model. This
provides an insight into the question. Figure 3 highlights how one can obtain
more details for an employee if these two separate schemas can be integrated,
compared to the information that we originally received from isolated sources.
Relating Employee and Person nodes, we can identify his or her details such as
name and gender and also information on the groups that he or she is a member
of, or the homepage. Notice that the information on the homepage of a person is
only captured by the RDF schema in our example. By unifying them based on
common attributes such as date of birth or skypeId, an application can benefit
from incorporating information from both schemas. This additional information
may be harnessed by an organization to develop community-outreach programs
based on employee outside interests, for example. Graph models represent a
solution for depicting a connected environment. We employ the Neo4j Cypher
query language to create mappings (Maps With) between the appropriate nodes
by comparing values of certain attributes. In Fig. 3, we link the employee and
person information coming from relational and RDF schemas, respectively, based
on skypeId. In a general context, the example helps to illustrate a use case for
leveraging a graph-based model towards a common representation scheme for
model and schema diversity.

Apart from facilitating an integrated view, another benefit of our approach
is that it preserves the native model concepts in the transformed graph model
while providing a uniform representation at the same time. By augmenting nodes
with the labels (such as RelationalResource and RDFResource), one can easily
identify information that was originally expressed in a particular native model.
At the same time, bringing the individual model and schema concepts under
an umbrella of common terms (nodes and relationships) facilitates linking and
querying them using a single query language.

In a blog post, the Neo4j developer team present an approach to transform a
column-oriented data model to a property graph [49]. The goal is to allow load-
ing of data from a Cassandra data store into Neo4j. The mapping between the
source (column-oriented) and target (property graph) data models is taken as
input from the user and the resulting graph is created by loading the data from
Cassandra to a CSV file. Neo4j supports batch creation of a graph from CSV
format. Figure 5 shows a sample schema in Cassandra with p, r, and u as inputs
from the user for schema mapping. The label p stands for a property, r for a
relationship, and u for specifying unique constraint field. Since our work incor-
porates schemas originally expressed in multiple heterogeneous models, we can
incorporate the Cassandra to Neo4j mapping by labelling the nodes as Cassan-
dra Tables. The approach presented in [49] focuses only on the mapping between
one set of source and target data models. In the next section, we present the
architecture of our approach.
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Fig. 5. Placeholders p,r, and u for schema mapping between a column-oriented store
and a property graph model [49]

4 Architecture

Our framework for transforming schemas to a graph-based format can be broken
down into three main modules:

1. The database module holds schemas and exports a database to CSV format
to support the automation step in the application module.

2. The application module offers a presentation layer where a user can select the
schema that needs to be transformed to Neo4j, and to allow transformation
in a systematic manner. The software implementation in this module employs
our transformation rules.

3. The graph module uses the Neo4j browser to view the transformed schemas.

Figure 6 presents the architecture of our approach.
We use MySQL as the backend database for relational schemas. The process

starts at the database layer which consists of three components: schemas,
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Fig. 6. Architecture of our proposed approach

user-defined stored procedures and the MySQL native export tools. Schemas
capture a built-in MySQL database (information schema) and any user defined
relational schemas. These user defined schemas are the artifacts that will be
transformed to a graph model. The stored procedure reads metadata informa-
tion from the information schema and identifies all the foreign key relationships
in our schema of interest. Figure 7 illustrates a query in our stored procedure
to capture all referential integrity constraints. The reason for collecting all the
foreign keys in our database is that we need them to create relationships in our
graph model based on the transformation rules from Sect. 3.

The user first exports the data in each of the relations in the database as
a CSV file using MySQL native export data tool. We use the CSV file format
since both the Neo4j community and our programming interface which uses
Java support CSV files. Furthermore, Neo4j allows batch creation of a graph
from CSV format.

Fig. 7. MySQL query to capture foreign key relationships in the MySQL sakila
database [26]
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Fig. 8. Code-snippet illustrating creation of a Neo4j graph for a relational schema
programmatically

At the application level we use Java to interact with the database and the
graph modules programmatically. A database controller (DBController) manages
connection to the database module and a graph management controller (Graph-
Controller) handles connection to Neo4j and submits queries to the graph inter-
face through Java. These three application-level components working together
along with our transformation rules from Sect. 3 facilitate automated transfor-
mation of a relational schema into a Neo4j property graph.

Figure 8 presents a code snippet that reads a relational schema exported to
CSV format and converts it to Neo4j graph. The code focuses on generating
nodes which represent the concept of relations in a relational database. Each
relation in the schema is exported to a CSV file with the same name as the
relation itself. The code reads each of those CSV files and generates nodes with

Fig. 9. (a) (top) Modeling attributes as nodes, (b) (bottom) Our approach to modeling
attributes as key-value pairs
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label RelationalResource. The Create Set clause in Fig. 8 adds properties to those
nodes. Each field in the CSV file represents one property.

We now have an understanding of the architecture and the input artifacts
that are required for software implementation. Our approach is extensible and
only requires transformation rules to be defined between any additional models
and the property graph.

5 Evaluation

In this section, we discuss both the qualitative and quantitative analysis of our
mapping approach. We leverage the evaluation metrics proposed by Buohali
et al. [51] and also discuss qualitative merits of our proposal.

The quantitative evaluation metrics we consider are - conciseness and con-
nectivity of the graph. Conciseness is given by the total number of nodes and
relationships and can be used to calculate the graph size. Connectivity is calcu-
lated by dividing the number of relationships with the total number of nodes.
We apply these measures on the generated graph for an open source MySQL
database, sakila, in Table 2.

Table 2. Evaluation metrics results for MySQL database - sakila [26]

Total nodes 47273 Conciseness 62682

Total relationships 15409 Connectivity 0.32

Buohali et al. [51] state that for efficient processing over a graph, connectivity
should be at least 1.5, which would signify strong connections in the graph. The
connectivity value for our graph is quite low from their benchmark perspective.
However, on further investigation, we identify why a low value may not always
signify a non-desirable characteristic.

First, according to our transformation rules (Rule 3 in Sect. 3), the only
relationship between two nodes that occurs in the target graph model comes
from a foreign key relationship in the relational model. This sets the range for
the number of relationships between two nodes for a particular constraint to be
0 to max(n1, n2 ) where n1 and n2 correspond to the number of each of the two
node types. Thus, based on our transformation rules, the number of relationship
instances for a particular relationship type (in our case, a foreign key constraint)
cannot exceed the number of nodes and hence the connectivity cannot exceed 1.
The reason we have an even lower number is that some relations such as film text
are not even linked to other relations in the schema.

From this investigation, we come to the conclusion that strong connectivity
between nodes in a graph certainly is good for processing but it also does not
automatically lead to the conclusion that a lower number is not desirable. The
two metrics of conciseness and connectivity can also offer some ideas when we
need to make a choice among multiple solutions. A graph with high connectivity
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is good for processing but if it comes at a price of increasing the graph size
(less concise), then this would also lead to an increase in the cost of traversal
because of increased path lengths. A larger graph size also implies higher storage
requirements.

We evaluated this trade-off between conciseness and connectivity using an
alternate mapping and the results are shown in Table 2. For the alternate map-
ping, we considered modeling attributes as nodes instead of properties (key-value
pairs). This resulted in an increase in the number of nodes as well as relation-
ships. The additional relationships come from the new edges created between
attributes and entity nodes. We take a small example from sakila database to
illustrate the two different mappings and their impact on conciseness and connec-
tivity. Figure 8 shows two graph representations corresponding to two different
mappings.

Figure 9a shows a property graph model where attributes are modelled as
individual nodes. The conciseness of the graph (which is captured by total num-
ber of nodes and relationships) is 161 and connectivity equals 0.98. Our approach
shown in Fig. 9b shows how conciseness is increased based on our proposed set of
mappings which model attributes as node properties and not as separate nodes.
The connectivity does not show much difference and this is because of the nature
of the native model and the types of relationships it exhibits. Edges in the graph
are generated by foreign key constraints in the relational model.

Figure 9b represents the graph model based on our transformation rules
from Sect. 3; Fig. 9a captures an alternate mapping where emphasis is placed
on increasing the graph connectivity. We modeled the attributes of a relation
as separate nodes and created additional relationships between each of those
attributes (actor id, first name, last name, and last update) and the relation
node (actor 1). The node labelled actor 1 represents the data tuple from the
actor relation that has actor id equal to one. Similarly, the node film actor rep-
resents the relation film actor in the sakila database. The actor node has foreign
key relationships with 19 film actor nodes. Based on the sakila database, this
signifies that the particular actor has acted in 19 films.

Table 3 captures the evaluation metrics from both approaches.

Table 3. Evaluation metrics results for MySQL database - sakila using two mapping
transformations

Evaluation criteria Our approach Alternate mapping (Fig. 9a)

Total nodes 47273 62967

Total relationships 15409 66239

Conciseness 62682 129206

Connectivity 0.32 1.05

The results from Table 3 and the example from Fig. 9 illustrate two key ideas:
(1) the connectivity depends on the nature of original model, and (2) a higher
connectivity may come at the cost of an increase in the graph size. Qualitatively,
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the merit of our proposal for schema mapping lies in the integration between mul-
tiple, heterogeneous models under a common graph framework. The Maps With
relationship as shown in Fig. 3 creates many additional relationships which were
not even present when the transformed graph models of relational and RDF
schema were studied separately.

6 Schema Integration over Property Graphs

In this section we propose a framework for schema integration over property
graphs. We consider two input schemas expressed as a property graphs and
define an algorithm to integrate the two graphs to generate a final integrated
schema. The foundation for mapping heterogeneous models to a property graph
is established in Sect. 4.

There have been significant research and industry implementations that offer
solutions towards schema integration [11–16,23,54]. Solutions exist in the areas
of specifying or semi-automatically identifying schema mappings which serve as
a foundational step in schema integration. The contribution of our proposal lies
in providing an infrastructure that leverages existing mapping algorithms but
over a new modelling paradigm, the property graph.

We discuss our schema integration approach using two property graphs
shown in Fig. 10. The schemas in both the graphs capture information about
entities student, faculty, courses, and department and their relationships.

Fig. 10. Two schemas (left: Medicine Graph, right: Engineering Graph) modelled using
property graphs
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The two schemas correspond to two different departments: uc ceas and
uc medicine shown as the topmost node in Fig. 10.

While there are several commonalities as a result of the common domain,
the schemas also exhibit differences creating challenges in schema integration.
The differences and our proposed solutions for addressing each of them are as
follows:

1. Relationship semantics: The property graph uc medicine allows for a student
to have one advisor, if he or she has one (it is optional) while the graph
uc ceas requires a student to have an advisor. A student may not be under
a research program and thus may not even have an advisor according to the
uc medicine schema. We model these min/max constraints using properties
(participation and cardinality) over relationships in our property graphs. As a
solution to address this scenario, in the final integrated schema, we impose a
min constraint of 0 and max constraint of 1 for the has advisor relationship.
The idea behind picking this set of participation and cardinality constraints is
that it leads to information preservation of the two native schemas. Following
the uc medicine schema in Fig. 10, if a student does not have any advisor,
our integrated schema would allow that while also allowing a student to have
an advisor if that happens to be the case in the sample schemas.

2. Non-overlapping attributes in two similar entities across the two schemas: this
addresses the scenario where an entity in one schema has certain attributes
which are not present in the similar entity in the other schema. As an exam-
ple, the Faculty Member node in the uc ceas schema does not store informa-
tion about faculty’s start date and department while the uc medicine schema
does. This scenario can even be extended to entities and relationships such
that one schema may be capturing additional information about a domain
that is not covered in the other schema. As an example, consider the entity
ResearchCredits in the uc ceas. It is not present in the schema for college of
medicine. Our approach adds each of the unique attributes from each of the
two schemas to the final integrated schema.

3. Differences in constraints: this difference may occur where the properties from
two similar entities in the two schemas have different data type or uniqueness
constraints [48]. A uniqueness constraint on a property ensures that no two
nodes in the graph hold the same value for that property. As an example of the
differences, studentId for a student entity in uc ceas allows string values while
the data type for the corresponding property Id in the uc medicine only allows
integers. Apart from the difference in data types, the uniqueness constraint
for one schema may be composite (consisting of multiple properties) while
the other schema may be defining a single-attribute constraint.
There are multiple ways to resolve this scenario. As an example, if the dif-
ference is in terms of data types, then the data type with a wider range of
values (String over integer) can be considered for the final integrated schema.
However, consider another scenario where the difference is also in terms of
number of attributes representing the uniqueness constraint. One schema may
have the constraint defined on a set of attributes (composite) while the other
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schema uses a single attribute constraint. Considering the possibilities of mul-
tiple ways in which differences in the constraints can manifest, we consider
the idea of adopting a surrogate key in the final merged schema. The original
constraints on the attributes from each of the two schemas will also be copied
to the merged schema to prevent any information loss.

4. Difference in field names/entities: entities or attributes across the two schemas
may pertain to the same concept but use different names and terminologies.
In the example property graphs, the terms lname and lastname for Student
node use different terms for the same concept.
The literature offers numerous solutions for identifying and resolving such
conflicts using lexicon, ontology, or string algorithms [17–20].

The final integrated schema addressing the four heterogeneity scenarios above
is obtained using the algorithm described in the next section.

7 Algorithm

The core algorithm can be summarized as follows. Start with one input graph
as the base graph. Merge the second into the graph based on a likelihood match
for each new node against the base graph. The match between two nodes is
determined based on the four solutions described in Sect. 7, algorithms from the
literature and a user-defined threshold value. If there is no good match, the node
is not merged but added as a new node to the integrated graph. Figures 11, 12
and 13 presents our algorithm as three main modules - determineNodeTypes-
ForMergedSchema, mergeNodes, and mergeRelationships.

The input schemas modelled using property graphs (G1 and G2) are repre-
sented using a four-element tuple. The four elements are sets of nodes (N), edges
(E), node-labels (NL), and edge-labels (EL) in the graph. The notation NL(G)
and NL1(G1) refers to node-labels in the property graph G and G1 respectively.
The output, merged schema is represented as (N, E, NL, EL) where each of the
set elements is the union of the corresponding elements from the input graphs.
The set of nodes N in the merged schema is the union of N1(G1) and N2(G2).
The merged schema is initialized as empty.

The algorithm consists of three main parts: (a) capturing all unique node
types from all the input schemas into the final integrated schema, (b) union of
nodes N1 and N2, and (c) union of relationships E1 and E2.

The algorithm proceeds by first identifying the unique node-types across
all the input schemas. Each node-type can be considered as an artifact/entity
holding a certain set of properties modelled using key-value pairs. Figure 11
shows this module. In our example for schema integration here, we use node
labels to capture the node type. The module (Fig. 11) copies all the labels from
the first input schema to the integrated schema (Step 1.1). Step 1.2 then iterates
over each of the labels in the second schema, G2 to compare it against all the
labels in the merged schema so far. If a match is found that meets a threshold
value, then the node is merged with the matched node. The mapping between
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Fig. 11. Module for unifying the node-types from input schemas

the matched node from the partial merged schema and the new node is also
stored (Step 1.2.2).

The algorithm uses the isMatch function which takes four arguments: (a) the
node, l, to be searched, (b) set of node labels NL(G) in the merged schema, and
(c) a threshold value in the range 0 and 1 for matching, and (d) a boolean
argument to signify the type of return value. If the fourth argument is true
(Step 1.2.1), it returns the matching node, and if false, a boolean value is
returned. This return boolean value signifies if the label l exists in the set of
partial merged schema labels or not. If no match is found indicating a new node-
type, then the label is added to the set of labels of merged schema (else block in
step 1.2.2). The notation NL(G) represents set of node-labels for merged schema
graph G. However, if the node label already exists, then the mapping is stored
in a data structure map labels (Step 1.2.2). This function isMatch can be cus-
tomized by applying different schema matching algorithms from the literature.

To understand the rationale behind storing this mapping, refer to our sample
input schemas in Fig. 10. We have nodes (Assistant Professor and Lisa) labelled
Faculty and Faculty member. The labels are representing the same entity but
using different terms. The final integrated schema consolidates them into a single
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label Faculty. This mapping information is now important to merge nodes of type
Faculty member in the uc medicine into nodes with type Faculty in the merged
schema.

The next steps involve adding nodes and relationships in the final integrated
schema. Figures 12 and 13 show the modules addressing this functionality.

After identifying the node-types for the integrated graph, the algorithm iter-
ates through every node in the input graphs. It compares node-type (label) with
the set of labels in the integrated schema (Step 2.1.1). If an exact match is not
found (for example, Faculty and Faculty Member node-types in Fig. 10), the
closest mapping is found between the current node’s label and the set of labels
in the integrated schema (step 2.1.1.a in the else block). A new node is then cre-
ated with the mapped node-type. The notation N(G) refers to set of nodes in the
merged property graph G. Similarly, the algorithm iterates through each node in
the next input graph. If the current node’s label matches with one of the node’s
labels in the partial integrated schema, the functions mapAttributesForEntity
and addNonOverlappingAttributes are invoked.

Fig. 12. Module for merging the nodes from input schemas
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Fig. 13. Module for unifying relationships from input schemas

The final module involves creates edges between nodes in the partial inte-
grated schema. Figure 13 shows this module. The source and target nodes for
each relationship in the input graphs is read (Steps 3.1.1 and 3.1.2) and the cor-
responding nodes in the partial integrated schema are identified (Step 3.1.3). The
relationship is then created between the nodes resulting in the final integrated
schema (Step 3.1.5).

Figure 14 shows the integrated schema obtained using our algorithm for the
sample input property graphs (Fig. 10). Some points to note are as follows.

1. The figure shows the integrated schema for the Student, Faculty, Course and
ResearchCredits node types and one relationship has advisor. Note the sur-
rogate key custom id in the Student label. The native primary keys of the
individual schemas uc ceas and uc medicine are also preserved. Further, note
that the schema uc medicine originally employed the term FacultyMember
instead of Faculty. Using string matching algorithms, we consolidated these
two labels into one as Faculty.

2. The participation and cardinality constraints for has advisor is 0 and 1,
respectively, in the final integrated schema. The original min/max constraints
in the native schemas were (0,1) and (1,1), respectively.

The framework provided here merges two property graphs, which can be
mapped results from heterogeneous source models. The basic features we address
for matching nodes and merging them, for example, can be extended with more
sophisticated and powerful techniques from the literature. We provaide a mod-
ular proof-of-concept for graph merging.



Employing Graph Databases as a Standardization Model 129

Fig. 14. Integrated schema

8 Evaluation

In this section, we discuss two case studies to evaluate the effectiveness and
coverage of our schema integration algorithm [21,22]. The first case study refers
to a schema integration example by Petermann et al. [55,56]. The authors provide
data models for two heterogeneous systems (enterprise resource planning and
customer issue tracking) of a food trading company, and they further employ the
models to demonstrate the effectiveness of their graph-based data integration
approach [55,56]. We adopt their data sources to test the effectiveness of our
approach and compare our integrated schema with their result [55].

For the second case study, we use the schemas modelled by Batini et al.
[54]. Through these case study we discuss the features covered by our integrated
schema. Our focus is on providing a framework to illustrate schema integration
over property graphs that can be further extended and optimized.
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Fig. 15. FoodBroker – Enterprise Resource Planning and Customer Issue Tracking
schemas [56]

8.1 Example 1

We consider the FoodBroker data source presented by Petermann et al. [56]. The
model captures two schemas as shown in Fig. 15. The result obtained through
our algorithm (Fig. 16) results in a schema similar to theirs [56]. The Employee
and User nodes are merged along with their attributes into one node Employee.
Similarly, Customer and Client entities from the two schemas are consolidated
into the Customer entity in our integrated schema. In order to highlight schema
integration, we constrained sample data in our graph to one instance for each
node type. The cardinality constraints (Fig. 15) such as one SalesInvoice can be
created for multiple instances of SalesOrder are captured using properties on the
relationships in the graph. Once the interschema relationships are determined,
the properties of the similar entities are merged.
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Fig. 16. Integrated schema obtained through our approach (Example 1)

The added advantage offered by our approach is its ability to handle model
diversity. If the native input schemas are in heterogeneous models, the labels of
the nodes in their corresponding property graphs (Sect. 3) can be used to capture
the data source or model. This allows the schema administrator to preserve
native model information while gaining the benefits of collective information as
well that is obtained from the integrated schema.

8.2 Example 2

In this example, we consider schema examples modelled by Batini et al. [54].
The input schemas, Book and Publication, are shown in Fig. 17. The integrated
schema obtained through our algorithm is shown in Fig. 18. Our integrated
schema creates the same entities (Publisher, Book, University, and Topics). The
main features of our schema are as follows:

1. We also capture the participation and cardinality constraints in our inte-
grated schema (Fig. 18). The Book schema (Fig. 16) originally shows a 1:1
relationship between the entities Book and Topics while Publication schema
(Fig. 16) exhibits a 1:m relationship between similar entities Publication and
Keywords. In our integrated schema, we resolve this conflict in the cardinal-
ities by modeling the relationship as a 1:m. Batini et al. [54] present and
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Fig. 17. Book and Publication schemas [54]

Fig. 18. Integrated schema using our approach (Example 2)
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discuss the final integrated schema using a conceptual model (ER). Our app-
roach, based on property graphs, addresses the integration challenge from a
graph perspective.

2. We observe that our integrated schema created an additional attribute Pub-
lisher in the Book entity. At this point, our algorithm does not capture the
schema conflicts that can arise when some information is modelled as an
attribute in one schema and as a relationship in another schema. The informa-
tion about a book publisher is modelled as a relationship in the Book schema
and an attribute in the Publication schema (Fig. 17). Batini et al. [54] identify
and cover this conflict. Our framework can be extended to adress this kind
of schema heterogeneity.

3. Batini et al. [54] also show Book entity as a subset of the Publication entity,
considering that publication can also include journals in addition to books.
Our work does not yet address identifying and modelling subset relationships.
Again, extensions based on the solutions provided in the literature can be
incorporated into our framework.

There are numerous opportunities for extending our work to incorporate
modules that address a wide variety of heterogeneous features. The main contri-
bution of our work is in providing a framework that employs property graphs as
the representation model. Using graph databases allows addressing schema and
data integration using one modeling paradigm.

9 Related Work

Data integration and exchange has received significant research attention by
both academia and industry practitioners for more than two decades. One of
the frequent approaches is defining an intermediate, canonical model that can
capture the commonalities and differences of individual, heterogeneous models,
thus providing a uniform representation [5–10,55]. Relational, XML, and RDF
represent some examples of data models that have been considered for this pur-
pose. We identify two key points that may be raised toward our choice of graph
model and discuss each of them below. A discussion of these points highlights
the rationale and novelty of our solution.

– Semantic web technologies facilitate integration by establishing links

Our idea of employing a property graph model comes from recognizing the data
management revolution brought on by big data. In terms of databases, a new
class of storage models have emerged called NoSQL databases and graph data-
bases represent one of the categories of the NoSQL family. In this context, we
speculate that it would be useful to have frameworks that would allow transfor-
mation of different data formats into a model that is amenable to the big data
management challenges and our approach represents an effort in this direction.
We recognize the immense potential offered by the semantic web research com-
munity towards facilitating integration [1,30–32]. RDF model based on subject-
object-predicate framework represents the de-facto standard in the linked data
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and semantic web community and it already leverages a graph model. However,
the choice about selecting one model over the other also depends on the prob-
lem and domain at hand [29,30,51]. Our vision is to offer an interoperable and
integration framework in such a way that it not only facilitates integration of
heterogeneous modeling concepts in a flexible and extensible manner, but is also
native concept-preserving and aligns with the NoSQL family of data models.
Our graph model, as a property graph addresses these requirements.

Furthermore, Bouhali et al. [51] have highlighted potential performance gains
in executing large-scale queries over NoSQL graph databases as compared to
RDF engines. RDF data needs to be loaded into a SPARQL engine for efficient
query performance and authors cite that while contributions have been made
towards optimizing query execution in SPARQL but there still remains scope
for further improvement in terms of matching up with the performance offered
by graph databases for some large-scale queries. Vasilyeva et al. [29] have also
compared a graph model with an RDF store and they conclude that since RDF
stores both data and metadata using the same format, it requires RDFS and
OWL to distinguish the schema from the actual data.

– What is the advantage of graph based approach over dominant and successful
models such as the relational model?

In comparison to relational databases, data modeling using graphs offers perfor-
mance gains in processing interconnected data. This is achieved by avoiding the
join operation required in the relational model [2,25]. Furthermore, the relational
model requires a schema to be defined whereas graph models are flexible [3]. Our
work towards schema mapping (Sect. 3) closely aligns with Buohali et al. [51].
Buohali et al. [51] consider translation from RDF to property graphs only. Our
application has a broader scope. We build upon their work and extend the scope
by making the approach flexible to allow incorporation of additional models.

In terms of schema integration over graph databases, Petermann et al. [55,56]
present a system for graph integration and analytics. The system is based on
a property graph model and provides three types of graphs: unified metadata
graph (UMG), integrated instance graph (IIG) and business transaction graph
(BTG). For generating the metadata graph, their approach extracts the schema
of objects to translate it into the property graph model. While our contribution
on schema integration is closely related to the focus of their work (generating
metadata graph for integration), we also include preservation of native model
concepts while handling schema mapping. In case of the need for integration over
schemas originally expressed in heterogeneous models, our mapping approach
(Sect. 3) supports annotation of nodes with labels that define the native data
model of the schema elements.

The motivation for employing graph based approach also comes from the
fact that graph databases belong to the family of NoSQL data stores. Thus,
our framework and algorithm for schema mapping and integration over property
graphs lay a foundation for integration of schema-based and schema-less data
stores.
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10 Conclusion and Future Work

We advocate the idea of employing graph databases as a means of bridging
the gap between schema-based and schema-less data stores. Our initial results
for schema mapping present a proof-of-concept by illustrating transformation of
relational and RDF schemas as the first step. We believe that our approach lays a
foundation for addressing the variety aspect of big data and bringing traditional
data into a big data environment. The second contribution of our work lies in
presenting a schema merging algorithm over property graphs. In this paper, we
present a proof-of-concept to illustrate the proposed algorithm. Our approach
offers a framework that can be further optimized and it is flexible to incorporate
additional schema integration scenarios.

We have translated some traditional models to a property graph. We envi-
sion extending our work by incorporating additional data stores. Once we have
that achieved that we can incorporate an evaluation study of the transformation
process to address the efficiency of the approach. A performance study of query-
ing an integrated graph schema versus disconnected original native schemas is
another research direction. The idea of reverse engineering the graph model to
obtain the schemas in the original models can also be useful [4,51] to leverage
tools from the native data environments.
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Abstract. We integrate heterogeneous terminologies into our category-
theoretic model of faceted browsing and show that existing terminologies
and vocabularies can be reused as facets in a cohesive, interactive system.
Commonly found in online search engines and digital libraries, faceted
browsing systems depend upon one or more taxonomies which outline
the structure and content of the facets available for user interaction.
Controlled vocabularies or terminologies are often curated externally and
are available as a reusable resource across systems. We demonstrated
previously that category theory can abstractly model faceted browsing
in a way that supports the development of interfaces capable of reusing
and integrating multiple models of faceted browsing. We extend this
model by illustrating that terminologies can be reused and integrated
as facets across systems with examples from the biomedical domain.
Furthermore, we extend our discussion by exploring the requirements
and consequences of reusing existing terminologies and demonstrate how
categorical operations can create reusable groupings of facets.

Keywords: Faceted browsing · Terminologies · Category theory ·
Information reuse

1 Introduction

Faceted classification is the process of assigning facets to resources in a way
that enables intelligent exploratory search aided by an interactive faceted tax-
onomy [30]. Exploratory search using a faceted taxonomy is often called faceted
browsing (or faceted navigation or faceted search) [14] and is commonly found
in digital libraries or online search engines. Facets are the individual elements
of the faceted taxonomy and are simply attributes known to describe an object
being cataloged; these collections of facets are often organized as sets, hierarchies,
lattices, or graphs. Facets are usually shown alongside a list of other related, rel-
evant facets that aid in interactive filtering and expansion of search results [15].
A simple example of facets for a digital library of books would be genre or
publication date. The taxonomy behind the interface is either custom to the
search needs of the interface or bootstrapped by a terminology familiar to those
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with working knowledge of the domain. In the biomedical domain, patients are
often classified according to ICD10 diagnosis codes [31] in their electronic health
record; as seen in Fig. 1, the i2b2 query tool is capable of searching for patients
using ICD10 codes [19] as well as other common biomedical terminologies. We
will discuss i2b2 and another biomedical application in Sect. 4.

Fig. 1. Users can select from a variety of biomedical facets within i2b2, including
those from existing and well-known terminologies; a subset of the ICD10 terminology
as viewed through the i2b2 query tool is shown here.

Facet models formalize faceted data representations and the interactive oper-
ations that follow for exploratory search tasks. Wei et al. observed three major
theoretical foundations behind current research of facet models: set theory, for-
mal concept analysis, and lightweight ontologies [30]. In our previous work, we
demonstrated that category theory can act as a theoretical foundation for faceted
browsing that encourages reuse and interoperability by uniting different facet
models together under a common framework [9,10]. We also established facets
and faceted taxonomies as categories and have demonstrated how the compu-
tational elements of category theory, such as products and functors, extend the
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utility of our model [9]. The usefulness of faceted browsing systems is well-
established in the digital libraries research community [8,20], but reuse and
interoperability are typically not major design considerations [9]. Our goal is to
create a rich environment for faceted browsing where reuse and interoperability
are primary design considerations.

In this extended paper [11], we integrate heterogeneous terminologies as
facets into the category-theoretic model of faceted browsing [10] so that exist-
ing and well-known terminologies can be reused in an intelligent manner. These
terminologies themselves can act as a faceted taxonomy, but we also demon-
strate the usefulness of modeling a terminology as a facet type. We discuss how
to create instances of facets and faceted taxonomies in order for our model to
interact with multiple, heterogeneous sources. In our extension, we show that
categorical pushout and pullback operations help construct reusable groupings
of facets. We demonstrate how multiple terminologies can coexist, work together
efficiently, and contribute toward the ultimate goal of a particular faceted inter-
face. We present and compare two considerations for modeling faceted browsing
interfaces that utilize multiple terminologies: the need to merge facets together
into a single “master” taxonomy and the need for multiple focuses from different
terminologies.

2 Background

We must discuss faceted taxonomies and introduce concepts from category the-
ory before discussing our category-theoretic model of faceted browsing and its
extensions.

2.1 Faceted Taxonomies

At the heart of faceted browsing, regardless of the facet model chosen for a
particular interface, there lies a taxonomy which organizes and gives structure
to the facets that describe the resources to be explored. Faceted taxonomies can
aid in the construction of information models or aid in the construction of a
larger ontology [4,22]. If facet browsing is truly a pivotal element to modern
information retrieval [7], then great care must be taken to abstractly model and
fully integrate the taxonomies behind the interface. Depending upon the needs
and complexity of its design, a faceted browsing interface may rely upon one or
many faceted taxonomies to drive exploration and discovery.

2.2 Category Theory

Category theory has been useful in modeling problems from multiple science
domains [25], including physics [6], cognitive science [21], and computational
biology [26]. Categories also model databases [23,25] where migration between
schemas can be represented elegantly [24]. We will demonstrate that facets and
schemas are structurally related in Sect. 3.2.
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In this section, we introduce a few concepts from category theory that are
necessary for understanding our model. Informally, a category C is defined by sta-
ting a few facts about the proposed category (specifying its objects, morphisms,
identities, and compositions) and demonstrating that they obey identity and
associativity laws [25].

Definition 1. A category C consists of the following:

1. A collection of objects, Ob(C).
2. A collection of morphisms (also called arrows). For every pair x, y ∈ Ob(C),

there exists a set HomC(x, y) that contains morphisms from x to y; a mor-
phism f ∈ HomC(x, y) is of the form f : x → y, where x is the domain and
y is the codomain of f .

3. For every object x ∈ Ob(C), the identity morphism, idx ∈ HomC(x, x), exists.
4. For x, y, z ∈ Ob(C), the composition function is defined as follows: ◦ :

HomC(y, z) × HomC(x, y) → HomC(x, z).

Given 1-4, the following laws hold:

1. identity: for every x, y ∈ Ob(C) and every morphism f : x → y, f ◦ idx = f
and idy ◦ f = f .

2. associativity: if w, x, y, z ∈ Ob(C) and f : w → x, g : x → y, h : y → z, then
(h ◦ g) ◦ f = h ◦ (g ◦ f) ∈ HomC(w, z).

Our model of faceted browsing leverages two well-known categories: Rel and
Cat. We leverage these as building blocks in our model by creating subcategories:
categories constructed from other categories by taking only a subset of their
objects and the necessary corresponding morphisms.

Definition 2. Rel is the category of sets as objects and relations as morphisms
[1], where we define relation arrows f : X → Y ∈ HomRel(X,Y ) to be a subset
of X × Y .

Definition 3. Cat is the category of categories. The objects of Cat are cate-
gories and the morphisms are functors (mappings between categories).

Functors can informally be thought of as mappings between categories, but
additional conditions are required:

Definition 4. A functor F from category C1 to C2 is denoted F : C1 → C2,
where F : Ob(C1) → Ob(C2) and for every x, y ∈ Ob(C1), F : HomC1(x, y) →
HomC2(F (x), F (y)). Additionally, the following must be preserved:

1. identity: for any object x ∈ Ob(C1), F (idC1) = idF (C1).
2. composition: for any x, y, z ∈ Ob(C1) with f : x → y and g : y → z, then

F (g ◦ f) = F (g) ◦ F (f).

In this section, we describe our category-theoretic model of faceted browsing.
We demonstrated previously that our model encourages and facilitates reuse and
interoperability within and across faceted browsing systems; we describe only the
key elements and leave the minor details available in our prior work [9].
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Definition 5. Let Tax be a sub-category of Rel, the category of sets as objects
and relations as morphisms where Ob(Tax) = Ob(Rel) and let the morphisms
be the relations that correspond only to the ⊆ relations. The identity and com-
position definitions are simply copied from Rel.

Tax is simply a slimmer version of Rel, where we know exactly what binary
relation is being used to order the objects. In our previous work, we did not apply
a name to Tax and left this category described as Rel restricted to inclusion
mappings [9]; applying a name allows us to be concise in our discussions, which
is important because Tax will be the building block that will allow us to apply
the additional structure and granularity needed to support faceted browsing. We
can refer to an independent facet, such as genre, language, or price-range, as a
facet type.

Definition 6. A facet type (a facet i and its related sub-facets) of a faceted tax-
onomy is a sub-category of Tax, the category of sets as objects and inclusion rela-
tions as morphisms. Let us call this sub-category Faceti and let Ob(Faceti) ⊆
Ob(Tax) with the morphisms being the corresponding ⊆ relations for those
objects. The relevant identity and composition definitions are also copied from
Tax.

From this facet type, users make focused selections when drilling down into
faceted data. This selection pinpoints a subset of the facets within this type and
by proxy, it pinpoints a subset of the resources classified.

Definition 7. We can define a subcategory of Faceti, called Focusi, to repre-
sent a focused selection of objects from Faceti having Ob(Focusi) ⊆ Ob(Faceti)
and the necessary corresponding morphisms, identity, and composition defini-
tions for those objects.

Each individual facet category belongs to a larger taxonomy that collectively
represents the structure of information within a facet browsing system.

Definition 8. Let FacetTax be a category that represents a faceted taxonomy,
whose objects are the disjoint union of Faceti categories. In other words, let
Ob(FacetTax) =

⊔n
i=1 Faceti and n = |Ob(FacetTax)|. The morphisms of

FacetTax are functors (mappings between categories) of the form
HomFacetTax(C,D) = {F : C → D}.

Once you have a faceted taxonomy constructed, interactivity and engagement
with it follows; a natural task for users of a faceted system is to perform queries
that focus and filter objects being explored.

Definition 9. A facet universe, U , is the n-ary product [1] within the FacetTax
category, defined as

∏n
i=1 Faceti, where n = |Ob(FacetTax)|. The n coordinates

of U are projection functors Pj :
∏

Faceti → Facetj, where j = 1, . . . , n is the
jth projection of the n-ary product.
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Note that since Focusi is a subcategory of Faceti, there exists a restricted
universe U⊆ ⊆ U where every facet is potentially reduced to a focused sub-
set. The act of querying the universe is essentially constructing this restricted
universe U⊆.

Definition 10. A faceted query, Q, is the modified n-ary product [1] within the
FacetTax category, defined as∏n

i=1 Focusi, where n = |Ob(FacetTax)|. The n coordinates of Q are similarly
defined as projection functors Pj :

∏
Focusi → Focusj.

2.3 A Category-Theoretic Model

We visually summarize the key containers and products in Fig. 2. We will later
demonstrate that this same faceted taxonomy can be represented as a graph. The
objects of each Faceti are sets of resources that have been classified as belonging
to that facet type; our model can reuse the facets and adjust the surrounding
structure to fit our needs: if we wish to arrange the facets as graphs, we can do
so without bothering the resource and facet linkages.

Faceti Facet i+1

Focus i Focusi+1

FacetTax

U = Facet           Facet             ...i+1

i

i
Q = Focus           Focus             ...i+1i

Fig. 2. The structure of facet, focus, and taxonomy are easy to visualize due to their
natural hierarchical relationships. Universes and queries are products utilizing this
structure.

Figure 3 shows a sample piece of a medication taxonomy; each resource is
classified using the taxonomy. In our model, we refer to resources in the general
sense. The type of resource depends upon the interface: resources could be books
in a digital library system, documents in a electronic health system, and so
on. Note that the taxonomy in Fig. 3 could easily be considered the facet type
medications, which belongs to a large taxonomy (not pictured) instead of a
complete faceted taxonomy to itself; either scenario is acceptable as this will
depend upon the design of the faceted browsing system, which can vary.
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Fig. 3. We show a sample faceted taxonomy for medications. The objects of each Facet
are pointers to a resource that has been classified as belonging to that particular facet
type.

3 Leveraging Multiple Terminologies

The category-theoretic model is perfectly capable of representing basic faceted
interfaces in its current form, but the ability to model and interact with
multiple heterogeneous sources is needed to support more intricate interfaces.
The capacity to integrate multiple terminologies rests largely upon our abil-
ity to model instances of our facet categories. Understanding the relationship
between schemas and facets will be key to understanding the process for creating
instances.

In our previous work on modeling faceted browsing for reusability, we demon-
strated the importance that graphs play in reusing and integrating models [9].
We confirm this importance in the following sub-sections.

3.1 Underlying Graphs

The ability to transform into other structures enables the category theoretic
model of faceted browsing to consume other models. We show that graphs under-
lie categories and that a graph-based representation of a facet can be used as
input in modeling taxonomies.

Definition 11. Grph is the category with graphs as objects. A graph G is a
sequence where G := (V,A, src, tgt) with the following:

1. a set V of vertices of G
2. a set A of edges of G
3. a source function src : A → V that maps arrows to their source vertex
4. a target function tgt : A → V that maps arrows to their target vertex

Definition 12. The graph underlying a category C is defined as a sequence U(C)
= (Ob(C), HomC, dom, cod) [25].
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We previously demonstrated given that there exists a functor U : Cat →
Grph, so FacetTax can produce graphs of Faceti categories for
i = (1, . . . , |Ob(FacetTax)|) [9].

Definition 13. Let U(Faceti) be the underlying graph of an individual facet
and let U(FacetTax) be the underlying graph of the faceted taxonomy at large,
as constructed and detailed above.

This underlying graph will be important in discussing the relationship
between schemas and faceted taxonomies, which will allow us to create instances
of facets and faceted taxomonies.

3.2 Facet and Schema

In this section, we describe how to create instances of facets and faceted tax-
onomies with a method and rationale that is inspired by Spivak’s database
schemas [25]. In fact, we discover that facets are equivalent to database schemas.
Although this equivalence may be unexpected initially, conceptually the idea
of a database schema is not unlike facets when viewed from a category the-
ory perspective: both describe the conceptual layout that organizes informa-
tion (rows/entities in the case of databases and resources in the case of facets).
Figure 4 shows the same faceted information found in Fig. 3, but within a schema.
Note that parts of the table are abbreviated with ellipses in order to save space.
We will discuss these tables and their relationship with faceted browsing in detail
in the next section.

Fig. 4. A resource table and a medications table using example data from Fig. 3 shows
the role that primary and foreign keys play in modeling faceted browsing.

Preliminary Definitions. Spivak’s definition of schemas depends upon the
idea of congruence, which in turn depends on defining paths, path concatenation,
and path equivalence declarations [25].

Definition 14. If G := (V,A, src, tgt) is a graph, then a path of length n in G

is a sequence of arrows denoted p ∈ Path
(n)
G , where PathG is the set of paths in

G [25].
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Definition 15. Given a path p : v → w and q : q → x, p + +q : v → x is the
concatenation of the two paths [25].

Definition 16. A path equivalence declaration (abbreviated by Spivak as PED)
is an expression of the form p � q, where p, q ∈ PathG have the same source
and target, e.g., src(p) = src(q) and tgt(p) = tgt(q) [25].

Definition 17. A congruence on G is a relation � on PathG with the follow-
ing [25]:

1. The relation � is an equivalence relation.
2. If p � q, then src(p) = src(q) and tgt(p) = tgt(q).
3. If given paths p, p′ : a → b and q, q′ : b → c, and if p � p′ and q � q′, then

(p + +q) � (p′ + +q′).
Informally, a congruence is an enhanced equivalence relation that marks how

different paths in G relate to one another by enforcing additional constraints;
pairing a graph with a congruence forms a schema [25].

Categorical View of Schemas. We give Spivak’s definition of a schema below;
this definition is generic enough to also apply to faceted browsing when look-
ing at the underlying graph of the facet categories. Figure 4 contains a schema
corresponding to the medications example from Fig. 3.

Definition 18. A schema S is a named pair S = (G,�), where G is a graph
and � is a congruence on G [25].

Note that the keys in Fig. 4 would normally be integer keys, but here text
labels are applied to increase readability and to improve the ease of understand-
ing the example. The resource table in this schema contains a generic list of
resources (for example, documents or library items) where each resource has a
foreign key indicating how it is classified. The medications table contains a list
of classes and sub-classes for medications, as well as a self-referential foreign
key pointing back at itself; this foreign key indicates this particular medica-
tion’s ancestor. The self-referential key gives additional structure to the medica-
tion classes and sub-classes found within the table without the need for addi-
tional relationship tables; this method of storing a taxonomy is similar to closure
tables [16].

In Fig. 4, the entry with Medication as its key has no foreign key. This null
relationship indicates that it is the root of this particular facet graph; with
respect to the category-theoretic model, it implies there are no morphisms having
this object in its domain.

3.3 Instances of Facets and Faceted Taxonomies

An instance of a facet is a collection of objects whose data are classified according
to specific relationships, such as the one illustrated in Fig. 3. We formalize this
below using Spivak’s instances of schemas as inspiration [25].
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Definition 19. Let F = (U(Faceti),�), where the graph underlying a facet
type is denoted U(Faceti) for some Faceti ∈ Ob(FacetTax) and where � is a
congruence on U(Faceti). An instance on F is denoted (Facet, Ancestor) : F →
Set where:

1. Facet is a function defined as Facet : V → Set, so for each vertex v ∈ V we
can recover a set of facets denoted Facet(v) within this facet type.

2. for every arrow a ∈ A having v = src(a) and w = tgt(a), a function
Ancestor(a) : Facet(v) → Facet(w).

3. congruence is preserved: for any v, v′ ∈ V and paths p,p′ from v to v′ where
p = v[f0, f1, f2, . . . , fm] and p′ = [f0′, f1′, f2′, . . . , fn′], if p � p′, for all x ∈
Facet(v), ancestor(fm)◦. . .◦ancestor(f1)◦ancestor(f0)(x) = ancestor(fn′)◦
. . . ◦ ancestor(f1′) ◦ ancestor(f0′)(x) ∈ Facet(v′)
To create instances of FacetTax, the logic remains the same from Facet:

take the underlying graph and a congruence. Instead of looking at the underlying
graph of a single facet type, the underlying graph of FacetTax is considered.
We will use instances in the next section to model the integration and reuse
multiple heterogeneous sources of information.

4 Bootstrapping Faceted Taxonomies

Faceted taxonomies are common in the biomedical domain where controlled
vocabularies are curated and integrated into interfaces in order to assist in the
exploration and interaction required by the system. We present two different
use cases for faceted taxonomies with different requirements: one where merging
heterogeneous terminologies into a single taxonomy fits the design of the interface
(for example, i2b2) and one where having control over multiple independent
instances of facets is desired (for example, DELVE).

Master

ICD10 (in-patient)

ICD10 (out-patient)

LOINC

HCPCs

....

1.  
2.  
3. 
...
N.

Results

Fig. 5. A web interface could merge multiple instances together into a master taxon-
omy.
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4.1 Designing Faceted Systems

A common design for faceted systems that require multiple terminologies is to
simply merge everything together into a centralized master taxonomy; this merged
taxonomy is often how lightweight ontologies, discussed as one of the three founda-
tions of facet models [30], are constructed. The merged taxonomy may or may not
have multiple instances of the same terminology, depending upon what is needed
for the interface. For example, in the conceptual skeleton of the interface presented
in Fig. 5, the merged taxonomy has multiple existing biomedical terminologies,
including two instances of ICD10, based upon whether the resources are classified
as belonging to in-patient or out-patient resources. In Sect. 4.2, we will discuss
i2b2, a modern biomedical research tool that estimates patient cohort sizes by
constructing Boolean queries from a merged faceted taxonomy.

Alternatively, multiple terminologies can peacefully co-exist within a single
interface without being merged into a master taxonomy. In fact, it could be a
pivotal design element in the interface that allows for a deeper exploratory search
of the resources by enabling multiple points of faceted search. In Fig. 6, we show
a conceptual skeleton for a faceted system utilizing multiple terminologies and
multiple instances of ICD10. For example, such an interface could leverage ICD10
to draw a graph of facets (i0) and a tree of related facets (i2) and enable the user
to interactively explore resources which could be a simple list with annotations
(i1). This example is similar to the spirit of DELVE, discussed in Sect. 4.8, where
facets are contained within and help drive visualizations.

MeSH (j )

ICD10 (i ) 

ICD10 (i )0

0
2

1

ICD10 (i )

Fig. 6. A web interface containing multiple instances of a terminology in discrete com-
ponents assists interaction.

4.2 i2b2

The i2b2 (Informatics for Integrating Biology and the Bedside) query tool allows
researchers to locate patient cohorts for clinical research and clinical trial recruit-
ment [19]; the tool itself provides a drag-and-drop method of creating Boolean
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queries of inclusion and exclusion criteria from a hierarchical list of facets. For
example, if someone wanted to search for only female patients, they would click
into the Demographics facet, into the Gender facet, and drag Female to the first
query panel. In addition, if they wanted female diabetics, they would also navi-
gate into the Diagnoses facet and drag the desired type of diabetes into the sec-
ond panel. i2b2’s Boolean queries are formed from having logical or -statements
across panels and and -statements within a panel. With respect to the example
above, if the user wanted female diabetic and hypertensive patients, they would
also find the hypertension facet and drag it into the same panel having diabetes,
so that the panel represents patients having either diabetes or hypertension.
This Boolean construction can be continued with any number of facets from any
number of terminologies.

Fig. 7. The i2b2 query tool uses drag-and-drop interaction to construct patient queries.

The biomedical domain has a long history of curating and maintaining con-
trolled vocabularies and terminologies, such as those found in the Unified Medical
Language System (UMLS) [2]. The structure behind these terminologies is a rich
source for building faceted browsing systems that explore resources having been
classified with these standards.

In Fig. 7, the taxonomy of a local implementation of i2b2 is partially shown;
note that every facet type of a patient is compiled into a central taxonomy as part
of the meta-data cell for i2b2 [19]. This means that the central taxonomy has very
different concepts, such as diagnoses and laboratory procedures, residing in the
same table. Our local implementation of i2b2 uses ICD10 codes [31] for diagnoses
and HCPCs codes [5] for procedures; these terminologies are externally and
independently curated and made available by their creators. To i2b2, diagnosis
is a facet type and ICD10 provides the organizational structure behind diagnoses,
but ICD10 is a full terminology and one can consider ICD10 itself to be a facted
taxonomy for diagnoses; the use of large-scale existing terminologies in faceted
browsing system blurs the line between facet types and facet taxonomies, similar
to our example and discussion of Fig. 3. Our modeling technique needs to be able
to abstractly and consistently model both of these cases. In either case, the goal
is encouraging the reuse of existing terminologies so that our faceted taxonomies
contain accepted interoperable standards. An extension of i2b2 allows networking
queries between institutions, so that one Boolean query can return counts of
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patients from multiple clinical sites; this would be impossible without integration
of accepted biomedical terminologies into the faceted backbone of i2b2.

4.3 Merge Operations

Suppose we have multiple instances of facets, I0, I1, . . . , IN , how do we satisfy
the requirements of an application such as i2b2 that expects a single instance
to act as a master? For example, I0 could be medications, while I1 could be
procedures, and so on.

Each Faceti category is disjoint and contains no linkage to another Facetj
where i �= j, so we must manufacture a link. This link is a meta-facet, an
organizational tool that typically aids in drawing the faceted taxonomy [9]. By
design, the meta-facet must connect to the root of each facet; we can easily
identify the root in our facet graph because it is the only entry with a null
ancestor. Given an instance, such as I0 above, we know that the root of I0 is the
source of an arrow a ∈ A from U(Facet0) where Ancestor(a) is the empty set;
we shall call this function that returns the root object root(Ii) : A → Set for
some instance Ii.

...

M

Fig. 8. A meta-facet can assist in merging facets together by providing a common
anchor point.
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Definition 20. Let FacetM be a meta-facet category for categories Facet0, . . . ,
FacetN , containing a meta-object and the roots of the others:

Ob(FacetM ) = M ∪ root(I0) ∪ . . . ∪ root(IN )

M is a meta-object sharing a relationship with every object: HomFacetM (M,x)
for each x ∈ Ob(FacetM ).

Figure 8 illustrates adding a meta-facet to join together a collection of facets;
each black subtree represents a particular facet type. M is a new meta-object
that must be created; the gray and dotted arrows that link this meta-object and
the roots of the other facet graphs must be created as well.

Let us define the union of two underlying graphs, U(Faceti) and U(Facetj),
as the union of its constituent parts. By definition, the sets of vertices and arrows
for graphs underlying two Facet categories, Faceti and Facetj , are disjoint and
can be merged with the union of corresponding vertices and arrows; this leaves
the graph disconnected, since Faceti and Facetj have no object in common.

Using the root of each instance and a meta-facet, we can create a new instance
connecting every other underlying graph to our meta-facet:

Definition 21. The merger of instances I0, I1, . . . , IN of categories Facet0, . . . ,
FacetN is a new instance IM on (GU ,�U ) where:

1. GU = U(Facet0) ∪ · · · ∪ U(FacetN ) ∪ U(FacetM ). This is the union of the
underlying graphs of the meta-data facet and the facets that are merging.

2. �U is a congruence on GU . We define this the same as in Sect. 3.3 but do
note that the collection of paths have grown. No two paths in the merging
categories conflict because the facets are disjoint by definition.

The merged instance IM is not defined much differently than I0, . . . , IN in
that it still maintains (Facet, Ancestor) : F → Set function mappings; the
only difference is that the underlying graph has changed with additional path
considerations. The merge operation is simply a transformation: we are manipu-
lating the facets into a graph and symbolically merging graphs to suit our needs.
The information regarding classified resources that is embedded into each facet
gets reused; only the surrounding structure changes. In the following section, we
formally define pullbacks and give an example of the utility of merged instances.

4.4 Pullback Operations

Recall that the objects of each Faceti categories are sets of pointers toward
resources which have been classified as belonging to a particular facet. Our model
can create higher-level faceted groupings from existing facets by leveraging cat-
egorical pullback operations, also known as fiber products [25]; these operations
model interactive conjunctions within instances of Faceti and FacetTax cate-
gories, yielding new facet types that are not available directly in the taxonomy.
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Definition 22. Given sets A, B, C ∈ Ob(C) for some category C, a pullback of
A and B over C is any set D where an isomorphism A ×C B → D exists for
A ×C B = {(a, b, c)|f(a) = c = g(b)}; this is illustrated below, using Spivak’s
�-notation to label the pullback [25]:

(a)
B

A C

g

f

(b)
A ×C B B

A C

π2

π1

�
g

f

The result of a pullback is easily illustrated with an example. If horror and
comedy belong to the facet type for genres of either movies or books, then we
can draw the relationships between horror and comedy easily:

Horror

Comedy Genre

is

is

We derive a new set that we can label horror and comedy by applying the
pullback to the set of horror and the set of comedy objects:

Horror and Comedy Horror

Comedy Genre

π2

π1

�
is

is

This forms a new set of objects being characterized by a conjunctive facet not
directly found in the facet type; we could even give this new set a new semantic
name: comedic horror. The direct semantic name for groupings found indirectly
within the data can become an engaging element of the interface, eliminating
the possibility of the user being limited only to interaction with facets defined
directly within the original taxonomy.

The projection functions π1 and π2 may look trivial: a comedic horror title
is clearly a comedy and clearly a horror title. Despite simplicity in appearance,
the utility of the projection functions π1 and π2 mapping back to the original
facets can be seen with faceted cues: for example, we can use π1 to highlight
comedic horror titles within the horror titles.

Since patients in i2b2 are classified across multiple merged terminologies, we
can use pullbacks to create reusable conjunctions to bridge across facet types
in instances of FacetTax. A common goal within i2b2 is to identity groups of
patient cohorts by dragging and dropping facets from a master taxonomy. A clin-
ical researcher can quickly refine Boolean queries targeting patient populations;
often these queries have a base population that can be specified as a conjunction.
For example, a clinical researcher studying patients with breast cancer who have
undergone a mastectomy procedure needs the ability to quickly reference such a
population. We diagram what the data provides below:
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Procedure(Mastectomy)

Diagnosis(BreastCancer) Patient

belongs to

belongs to

If we apply the pullback to the category of procedure (Mastectomy) and the
category of diagnosis (Breast Cancer), we get a new category that we can label
Breast Cancer and Mastectomy :

Breast Cancer and Mastectomy Procedure(Mastectomy)

Diagnosis(BreastCancer) Patient

π2

π1

�
belongs to

belongs to

This new category becomes an interactive element that can be reused within
the interface; within i2b2, conjunctions can be annotated with a friendly human-
readable name and can be shared across users. In the next section, we will
demonstrate that pushouts help construct new facets from disjunctions.

4.5 Pushout Operations

Our model can assist in computing ad-hoc facets that attempt to compensate
for short-comings in either the terminologies involved or the underlying data. In
this section, we define what a pushout operation computes given specific sets of
resources.

Definition 23. Given sets A, B, C ∈ Ob(C) for some category C, a pushout of
sets B and C over A is any set D where an isomorphism B 
A C → D exists;
this is illustrated below, using Spivak’s �-notation to label the pushout [25]:

(a)
A C

B

g

f (b)
A C

B B 
A C

g

f i2

i1

�

It is important to note that B 
A C was formed by the quotient of the disjoint
union of A, B, C and an equivalence relation on B and C with A. An example
will help demonstrate the utility of pushouts. Hypertensive patients are woefully
under-diagnosed and relying solely on diagnosis codes to locate patients with
hypertension is problematic [28]. In addition to diagnosis codes, vital signs are
either recorded by medical providers or recorded by machines at given intervals;
these measurements can be used to determine a person’s hypertensive state [28].
Recall that our resources for i2b2 are patients; patients can have diagnoses (from
an instance of the ICD10 terminology) and vitals signs (from an instance of the
LOINC terminology):

Patient Diagnosis(Hypertension)

V ital(BP > 140/90)

has

has
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We compute the pushout and receive a single anchor for those individuals that
were either coded to have a hypertension diagnosis code or that were recorded
having high blood pressure:

Patient Diagnosis(Hypertension)

V ital(BP > 140/90) Hypertension or BP > 140/90

has

has i2

i1

�

The pushout acts as a convenient, derived facet that the user can interact
with just like any other facet. In i2b2, the disjunction between diagnoses codes
and vital signs can be performed without the pushout because the interface itself
allows for Boolean queries to be performed by dragging and dropping any facet
into its query window. The value of the pushout is simply for convenience and
reuse: when the pushout is used by multiple people, the context of a patient with
hypertension is made clear and reusable.

4.6 Faceted Views

We can construct commonly-used patient cohorts via pullback and pushout oper-
ations. In another example, we consider chronic kidney disease (CKD). CKD suf-
fers from an issue similar to hypertension: diagnostic codes are not always used
and might not capture the true disease state of the population, but laboratory
results can predict CKD, including the disease’s stage [17].

In Fig. 9, we show that pushouts can create new facets from existing ones
in order to better address the needs of the interface. We create a facet for a

Patient
Diagnosis

Hypertension

CKD

...

...

Labs
...

...
eGFR

...

  Hypertensive

  CKD
  ...

Patient 
Cohorts

h

1

2

h
c2

1c

ha
s

Vitals
...

...
BP

Fig. 9. Faceted views can provide convenient, derived facets for interactivity.
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hypertensive cohort by the pushout of diagnostic codes for hypertension and
qualifying vital signs; we also create a cohort of CKD patients by considering
CKD diagnostic codes and qualifying eGFR lab results. d1 and d2 are inclusion
maps for the hypertensive cohort, while c1 and c2 are inclusion maps for the CKD
cohort. The underlying taxonomies for patient data are large, having up to tens
of thousands of nodes. The ability to create faceted views on top of the standard
taxonomy will greatly improve the usability of an interface by providing the user
with the most meaningful and efficient facets, resulting in targeted and relevant
resources.

4.7 Implementation

If we connect instances back to our notion that schemas are not structurally
different than facets, it is clear that IM is simply another table containing N +1
relationships with entries from the Facet0, . . . ,FacetN categories sharing a rela-
tionship with the meta-facet. The foreign keys of these meta-relationships would
simply point back to the roots of the other facets; this enables reuse in-place
without needlessly copying data. Furthermore, this gives a clear implementa-
tion path for enabling reusable terminologies in a standard relational database,
where tables help structure facets and the resources that have been classified
accordingly. If a relational database is not possible for the application, then
an equivalent scheme can be mimicked in other environments. For example, a
web-application could use JSON (Javascript Object Notation) data interchange
format [3] to store the taxonomy and links to resources.

Fig. 10. DELVE contains visualizations controlled by facets as well as visualizations
that contain facets.

4.8 DELVE

DELVE (Document ExpLoration and Visualization Engine) is our framework
and application for browsing biomedical literature through heavy use of visu-
alizations [12,13]. In fact, our motivation for choosing category theory began
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when first designing DELVE, due to the difficulty in modeling facets that are
controlled by visualizations or found within a visualization. In the case of i2b2,
the design of the interface insists on merging terminologies together into a master
taxonomy that directs exploration within the interface. With DELVE supporting
multiple visualizations, a master taxonomy is unrealistic as each visualization
potentially requires a different set of facets altogether.

Understanding DELVE. In Fig. 10, a query for fibromyalgia is shown. The
screen is split into two parts for this example; the abbreviated left-hand side con-
tains a cloud [27] and the right-hand side contains a list of relevant biomedical
publications. The default cloud shows the frequency of terms using the MeSH
(Medical Subject Headings) vocabulary; librarians at the National Library of
Medicine manually review journal articles and tag them with appropriate MeSH
terms [18]. MeSH terms are hierarchically organized and are typically accurate
reflections of the article’s contents since they are manually assigned, making
them great facet candidates. In addition to MeSH terms, we extend the gen-
eral concept of world clouds [27] to unigrams, bigrams, trigrams, and common
phrases.

DELVE provides other collections of terms as facets for two reasons: (1) inter-
disciplinary collaboration typically involves researchers interested in biomedical
literature who are not familiar with MeSH terms and (2) granularity and phras-
ing of terms can be an issue. For example, a researcher queries for fibromyalgia
using DELVE as seen in Fig. 10; they are also interested in functional somatic
syndromes but this term is not directly available as a MeSH term. Instead, arti-
cles covering functional somatic syndromes are typically tagged somatoform dis-
orders; without this knowledge, a researcher could miss desired articles. DELVE
resolves this issue by providing a list of biomedical trigrams as a facet, which was
compiled by analyzing all trigrams found within Pubmed’s library of biomed-
ical articles; the phrase functional somatic syndromes occurs in great frequency.
From a modeling perspective, there are natural differences in the structure of
the MeSH hierarchy and the collection of anchoring trigrams, but our categorical
model naturally accounts for this by allowing objects to have any inclusive rela-
tionship within Facet categories: including those who have many (MeSH terms)
and those who have none (DELVE’s trigrams). In DELVE’s case, instances of
facets play a role when creating focused collections of documents based on what
the user has selected through the interface, which could potentially span one or
more facets.

Other visualizations, such as word trees and histograms, are available as part
of the extensible nature of DELVE. We give an example of MeSH clouds and
word trees working together in Sect. 4.9.

Focusing Considerations. The annotated screen-shot in Fig. 11 demonstrates
DELVE’s ability to use a facet to focus. In this example, a search for fibromyalgia
is focused on the MeSH term analgesics, which causes the documents viewer to
show only those documents that are classified as belonging to the MeSH term
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Fig. 11. A DELVE search for fibromyalgia publications focusing on analgesics

analgesics. Multiple points of focus are supported in the subsequent version of
DELVE, such as focusing using different word clouds [27] and word trees [29].
If the user also selects the MeSH term female, the document viewer would only
show those documents tagged with both MeSH terms analgesics and female.
Color is used to visually offset the facets being focused upon. The document
viewer ranks results according to how many occurrences of the focus terms can
be found within the abstract of the corresponding article.

Within one faceted taxonomy, aggregating focuses becomes a focused ver-
sion of the queries discussed in Sect. 2. Suppose the user also wishes to focus on
the trigram functional somatic disorders. If we have created instances of Facet
categories as discussed in Sect. 3.3, we can also create instances of focused sub-
categories by taking a subgraph of the graph underlying Facet:

Definition 24. Given instances I0, I1, . . . , IN of categories Facet0, . . . ,
FacetN , let IF0, IF1, . . . , IFN be focused instances created by replacing
U((Faceti)) with U(Focusi) for i = 0, 1, . . . , N .

Recalling Resources. At some point during a user’s interactive session in a
faceted browsing system, it is advantageous or desirable to recall and list all
resources that were classified according to a focused selection of facets. When
creating instances of our facet categories, we defined a function capable of return-
ing the ancestor of the facet type for a given facet. We can similarly define a
function capable of returning focused resources.

Definition 25. Let R be a function defined as R(Focus,Resource) : Focus →
Set, where:

1. Focus is a function similar to the Facet defined in Sect. 3.3: Focus : V →
Set, so for each vertex v ∈ V we can recover a set of focused facets denoted
Focus(v)

2. Resource is a function defined for every focused facet f ∈ Focus(v) above as
Resource(f) : Focus(v) → Resource(f).

In other words, similar to how we defined a function Ancestor in Sect. 3.3 as a
self-referential link back to facets, we now define a function that unrolls the foreign
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relationship between facets and resources. An example of this is seen in Fig. 4: the
resource with resource 2 as its key holds a foreign relationship with the medication
that has anti-diabetic as its primary key. Relating this back to the definition above,
we rephrase this as: for every facet in the graph, collect their primary keys (PKs)
and from the resource table, collect any primary keys where any foreign keys match
the original keys (PKs). At this point, the interface is free to present the resources

Fig. 12. A DELVE search for fibromyalgia publications focusing on depression
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as needed, which consequentially allows us to model ranking and sorting schemes
for resources; we leave these discussions as future work.

4.9 Interacting with Word Clouds and Trees

In DELVE, facets contained in visualizations can work together harmoniously
through a centralized point of focus; by default, focusing in one visualization will
set the focus in all other visualizations. In Fig. 12, we show a DELVE search for
fibromyalgia and the result of focusing on the MeSH term depression. Within
the MeSH cloud, the term is highlighted with blue and a secondary reminder
cue containing the focused term is placed below the original query. The word
tree redraws itself with the selected term as the root of the tree; this shows
occurrences of the term depression within the sentences belonging to the classi-
fied resources, where redundancy is collapsed to a common prefix. For example,
the following phrases are collapsed under tree nodes for depression followed by
anxiety :

1. depression, anxiety, and headache.
2. depression, anxiety, poor sleep quality and poor physical fitness...
3. depression, anxiety, muscle pain, autoimmune and thyroid disease...

From Fig. 12, we can also see that the phrases of the form {depression, anxiety,
and ...} and the phrase {depression, but not with anxiety} point to different
resources containing relationships between fibromyalgia, depression, and anxi-
ety. The goal of DELVE is to immerse a researcher into an exploratory search
system where visualizations help expedite the discovery process. This goal is
made easier by constructing DELVE upon a solid theoretical foundation that
has been demonstrated to intelligently reuse and integrate existing biomedical
terminologies.

5 Future Work

As mentioned previously, a natural consequence of modeling facets, faceted tax-
onomies, and faceted browsing systems is that resources ultimately are retrieved.
This opens the door to abstractly modeling and developing deeper manipulations
of faceted data in a way that is transparent and reusable across systems. For
example, we demonstrated that categorical constructions such as pullbacks and
pushouts can help dynamically organize and reorganize faceted data. These types
of operations could potentially lead to creating facets dynamically, where new
facets are created on the fly from computations involving existing facets. Other
operations, such as retractions, need to be explored so that their role in the model
is fully understood; this is the groundwork toward the next steps of ranking and
sorting resources. It is important to note that category theory focuses largely on
structure, but structural similarity does not necessarily imply functional similar-
ity; existing knowledge bases and terminologies must be intelligently used and
reused to supplement and extend our abstract framework.



Modeling Terminologies for Reusability in Faceted Systems 161

We are developing an application programming interface (API) for faceted
browsing and wish to include support for interfaces that require multiple het-
erogeneous terminologies. The mapping between schemas and facets clears the
path to implementation with a database containing faceted data and taxonomies.
Support for functional databases is growing [23,24], but a traditional relational
database is adequate. An API for faceted browsing can bridge the gap between
a categorical model for faceted browsing and databases, allowing us to start
with traditional relational databases and migrate towards functional databases
as they mature.

The impact that visualizations play in faceted browsing systems deserves to
be explored further. In systems such as DELVE, one interaction can have conse-
quences in many parts of the interface. Ultimately, with a categorical model, one
will be able to mathematically prove something is possible before implementa-
tion; the relationships and road maps between proof and implementation paths
need to be researched further.

6 Conclusions

We extended our category-theoretic model of faceted browsing to support mul-
tiple heterogeneous terminologies as facets, which are needed in interfaces where
more than one source of information controls the exploration of the data. Two
use-cases emerged from our discussions of integrating multiple terminologies:
merging instances into a single master and operation considerations when man-
aging multiple facets.

We also showed that facets are categorically similar to database schemas,
which allowed us to create instances of facets and faceted taxonomies and in
turn support modeling heterogeneous terminologies as facets. Our model was
previously demonstrated to encourage the reuse and interoperability of existing
facet models [9], but the additional extensions presented also encourage the
reuse of existing terminologies and provide a clear path to integrating them as
controllable facets within a faceted browsing system.
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UL1TR000117. The content is solely the responsibility of the authors and does not
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Abstract. Compositional reuse of software libraries is important for
productivity. To promote reliability and correctness, there must also be
a way to compose specifications for reuse. However, specifications cannot
be adapted by the use of wrappers in the same ways as code, which leads
to specifications being copied and modified. This copying and modifica-
tion of specifications leads to poor maintainability and technical debt. We
propose a system, Spekl, that solves these problems and makes composi-
tional reuse of specifications possible in a way independent of the choice
of specification languages and tools. We provide a detailed description
of our system as well as provide details on our domain specific language
for creating new tools, provide details on how to author new specifica-
tions, and demonstrate how Spekl facilitates compositional reuse through
specification layering.

Keywords: Specification · Specification languages · JML · Reuse ·
Specification management · Spekl

1 Introduction

Software libraries have become a critical component of modern software engi-
neering practice since they promote modularity and reuse. Unfortunately, the
same cannot be said for specifications. This is because software libraries are
typically reused in one of two ways: directly or adaptively. In direct reuse, the
library matches the desired functionality perfectly and is simply reused as is.
In adaptive reuse, the developer writes code that modifies (wraps) the library’s
computation in a way that makes it usable within the program at hand.

However, software specifications are encumbered by several issues that impact
their reuse in ways that do not impact library code (we detail these differences
in Sect. 2). Because of these differences, existing tools are inadequate for speci-
fication authoring and distribution.

The root of the problem is that, unlike software libraries, specifications may
not always be compositionally adapted by their clients (we explain several differ-
ent cases in which adaptation is made difficult in Sect. 2). This difference often
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means that the specification must be copied and modified, a non-compositional
form of reuse that is considered unacceptable for code. Directly modifying a
copy (rather than using an adapter) negatively impacts modularity and makes
it difficult to update to newer versions when they become available; hence such
copy and modify adaptation is not used for code libraries. However, in the case
of specifications, since an adapter is not always possible to create, the client may
be forced to use the copy and modify technique, despite the maintenance prob-
lems it creates. The problem is that after modifying the copied specifications,
the task of merging in ongoing work on the specification and keeping the local
modifications becomes part of the technical debt of the client.

When using specifications, clients often have an existing code base that they
want to check for some properties, such as safety or security. Verification of these
properties must often use specifications for various libraries which are used in the
code. If these library specifications are not appropriate for the verification, then
they need to be adapted or modified. Furthermore, the code that clients want
to check should not be modified to accommodate these specifications. Therefore,
techniques that are based on code adaptation will not work.

We propose a system, Spekl,1 aimed at solving this problem by making
the software specification workflow easier to manage. Spekl addresses two key
research questions:

RQ 1. How can tooling promote the reuse of pre-existing specifications?
RQ 2. How can tooling make existing specifications more useful?

The design of Spekl is based around the hypothesis that the problem of
effectively solving the specification reuse problem can be reduced to three sub-
problems: tool installation/usage, specification consumption, and specification
authoring and distribution. Before proceeding, we emphasize that the focus of
Spekl is on externalized specifications, i.e., those separate from the text of the
program. Spekl does not currently provide support for internalized specifica-
tions. This is because externalizing dependencies promotes modularity and thus
facilitates reuse, both of which are goals of the Spekl system.

The remainder of this paper is organized as follows: In Sect. 2 we consider
more deeply the motivation behind creating a tool tailored to the task of speci-
fication management. Then, in the following subsections, we explore these sub-
problems and explain how they relate to the design of the Spekl system. In
Sect. 3 we review the main features of the Spekl system including verification
tool installation and usage, specification consumption, and specification layering
and authoring. In Sect. 4 we cover the details of creating new tools, provide a
description of our domain specific language for writing new tools, and finally
we provide details about publishing and installing tools. In Sect. 5 we discuss
Spekl’s features for consuming specifications and provide details on how the
specification consumption features integrate with Spekl’s tool running features.
In Sect. 6 we discuss the specification authoring features of Spekl, including the
1 The name Spekl comes from the abbreviation of Spekkoek, a cake originating in the

Netherlands that is densely layered.
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details on creating new specifications as well as layering specifications. In Sect. 7
we provide a discussion of the work related to the Spekl system and finally in
Sect. 8 we conclude.

2 Problems in Specification Reuse

To further motivate our approach, in this section we examine specific problems
that impact the reuse of specifications.

(a)

(b)

Fig. 1. (a) An example of an adapter that adapts the type of audio format produced
by an audio capture library. (b) An example of attempting to adapt a pure method
specification in an implementation that violates the purity.

Since specifications are associated with code, one might think that they could
be managed using a source control system in the same way as code. However, in
this section we will explain the unique aspects of working with specifications that
make the direct use of such systems an incomplete solution to research questions
1 and 2.

As discussed in the introduction, the most fundamental difference between
specifications and code is found in the kinds of changes one must make to each
kind of artifact in order to perform adaptive reuse. For adaptive reuse of code,
one can reuse existing source code without changing it by writing an adapter,
e.g., a method that calls methods in an existing library to perform some task
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that the library does not support completely. This adaptation can be done in a
purely additive manner, e.g., by adding new modules (containing new methods)
that reuse existing code. For an example of this type of adaptation, see Fig. 1a.
In the UML diagram, we depict an audio application that makes use of an audio
library and an adapter to produce values in a format compatible with the client
program.

However, for adaptive reuse of specifications, one may need to make semantic
changes to the existing specifications. Although some changes are purely adap-
tive, such as adding missing specifications, others will not be.

2.1 Purity

Some examples where purely adaptive reuse does not work are caused by assump-
tions that verification tools must make for soundness; for example, a specification
language (like JML [12]) that checks methods for lack of side effects may require
that such methods must be declared to be “pure”; methods without such a decla-
ration are assumed to not be pure, which is the only sound assumption, because
only methods declared as pure are checked for lack of side effects. (In particular
a pure method may only call other pure methods.) Thus, there is no way to
write an adapter if one needs to prove that a particular method is pure; a new
method that is declared to be pure cannot simply call the existing (non-pure)
method, as that would not verify. The only fix is to change the specification of
the existing method and verify its implementation; that is, to change the exist-
ing specification in a non-additive way. For an example of this type of problem,
see Fig. 1b. In this example we show a specification for a banking application
wherein a method has been marked “pure” in its specification. However, due
to some new business requirements, a programmer must add a new behavior to
the banking application that places a restriction on the number of free balance
checks per month. To achieve this, purity must necessarily be violated since this
method will have side effects, i.e., not all invocations of the method will produce
the same results.

2.2 Specifications Are Not “One Size Fits All”

Why can’t we simply create specifications that do not suffer from the problems
described previously?

The task of creating a single specification to handle the needs of every con-
ceivable user is daunting. This problem is rooted in the very nature of specifica-
tion; that is, the goal is to specify a particular behavior that can be relied on.
Any deviations from the base specification can cause it to become invalid and
therefore unusable for verification.

To gain an intuitive understanding of the problem we will now consider an
example which will not require knowledge of program verification techniques.

Consider the program and specification in Listing 1.1. This example was writ-
ten in the JML [12] specification language and it specifies the behavior of a very
simple function that adds two positive integers.
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Listing 1.1. A simple program and specification.

public class MaybeAdd {
//@ requires 0 < a;
//@ requires 0 < b;
//@ ensures 0 < \result;
public static int add(int a, int b){

return a+b;
}
public static void main(String args[]){

System.out.println(add(2,3));
}

}

So what is the problem in Listing 1.1? The problem is as follows: the specifica-
tion in Listing 1.1 only considers integers greater than zero. This is fine, but what
if the integers are very large? An overflow condition is possible, though whether
it is encountered by a runtime assertion checker depends on the test data used.
A static checker however will detect this flaw and insist that the conditions in
Listing 1.1 are made stronger. The code in Listing 1.2 shows the changes that
are needed. Due to the changes made, the specification in Listing 1.2 does not
refine the one given in Listing 1.1.

Listing 1.2. The updated specification of Listing 1.1. Note that the preconditions have
been strengthened and the bounds on a and b have been tightened.

public class MaybeAdd {
//@ requires 0 < a && a < Integer.MAX_VALUE/2;
//@ requires 0 < b && b < Integer.MAX_VALUE/2;
//@ ensures 0 < \result;
public static int add(int a, int b){

return a+b;
}
public static void main(String args[]){

System.out.println(add(2,3));
}

}

2.3 Changes Invisible at the Language Level Can Cause
Incompatible Specifications

In the previous sections we explained how specifications may be difficult to
manage, because unlike source code, adaptation is not always possible, e.g., the
method purity example in Sect. 2.1 and how writing a general specification to
cover all possible use cases is difficult, e.g., the task of writing a specification flex-
ible enough to be used effectively in runtime and static checking in the previous
section. In this section, we discuss another problem that impacts specification
reuse that has impacted a real-world project, OpenJML.

When using OpenJML, a user is expected to supply the specifications they
want to check. To reduce programmer effort, OpenJML distributes a set of spec-
ifications for Java itself; without these specifications, any client that makes use
of the Java standard libraries would be required to provide these specifications
before checking their program.

Typically, between releases of Java, new library methods are added or mod-
ified. To accommodate this, the OpenJML project maintains specifications for
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Java 4 thru Java 7. In order to modularize the effort, these specifications are
maintained separately then combined to target a particular Java release. For
example, the specifications for Java 7 would be omitted for an OpenJML release
targeted for Java 6.

However, in preparation for the release of Java 8, the signature of the con-
structor for the Class class was changed between Java 1.7.79 and Java 1.7.80
to include an argument to the private constructor (this was missing in all prior
versions of Java).

In the case of a library, this small change would have presented no problem,
i.e., private constructors are hidden, furthermore, most client code will never
directly construct a Class object. However, in the case of a specification, the
prior specification (which did not include a parameter in the constructor) is
therefore invalid if a JDK higher than 1.7.79 is used. To solve the problem, a
user must either manually override the specification to be compatible with their
JDK or rely on a special release of OpenJML that includes the specification of
the Class class for that particular version of Java. The main difference between
the two solutions is mainly that in the first case, the burden is on the user, and
in second, an additional burden is placed on the tool author.

2.4 Subverting Security Specifications

Not all specifications are strictly behavioral in nature. Some specifications, such
as those designed to describe information flow [2,7], are written specifically to
prevent adaptation; if such adaptation were possible, it would not be possible to
soundly enforce the security properties described by the library specifications.
For example, consider an application designed to run on the Android operat-
ing system. A specification designed for use in an information flow verification
tool may state that all values coming from the network should be treated as
“untrusted.” If an application utilizing the Android API has different security
requirements and perhaps instead trusts network input, without copying and
modifying the underlying specification, any calls to methods that produce val-
ues originating from the network will necessarily produce “untrusted” values.
Rather than using the copy and modify approach, a more ideal solution would
be to rely on tooling to remember the differences between the base specification
and the enhancements made for the particular application.

3 Overview of Spekl’s Features

Although the question of how to promote specification reuse is central to the
design and motivation of Spekl, several other features such as support for
installing and using tools are needed to support this goal. In the next three sec-
tions we will describe the three central features of the Spekl system: tool installa-
tion/usage, specification consumption, and finally, we will provide a description
of the specification authoring and distribution features of Spekl. We provide an
outline of these features in this section and provide additional details in Sects. 4–6.
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3.1 Verification Tool Installation and Usage

In order to verify a program, a user must often install appropriate verifica-
tion tools. However, due to the variety of tools and technologies used to author
these tools, there does not exist a general way to go about installing them. This
presents a problem not only in software engineering contexts [6,13], but also
in teaching scenarios, where tools must be installed onto the computers of stu-
dents. To that end, the first problem Spekl solves is the problem of distributing
program verification software. Furthermore, since many verification tools such
as OpenJML [3], SAW [4], and SPARTA [7] require external software packages,
such as SMT solvers, in order to function properly, a single download is not
sufficient to create a fully functioning verification environment.

Dependency management is a well-studied problem; on systems such as
Linux, a user may choose to consume software via a variety of package man-
agement systems such as APT or YUM. While there are some cross-platform
package management systems in existence, none have gained wide-spread usage
and are therefore more likely to be detrimental to the purpose of increasing
adoption of specification technologies.

Installing executable tools is only part of the problem. After a package is
installed (even if a cross platform package manager were available) the user would
then have to learn a series of tool-specific commands (or GUI actions) necessary
to verify a piece of software. However, such specialization is not necessary. Spekl
differs from a standard package management system in that Spekl provides an
abstraction layer and a uniform interface to program verification tasks. Once a
user configures project for Spekl, a user may run their verification tools by using
the spm command from within the project directory.

The general command a user may use for checking their programs is the spm
check command as shown in the following example:

∼/my-project$ spm check

Executing the spm check command in this way causes all of the configured
checks to be executed and their output displayed to the user. The uniform inter-
face to running verification tools makes Spekl especially well-adapted for use in
automated environments such as Continuous Integration.

All Spekl tool and specification packages are configured via a package.yml
file, which is discussed in more detail in Sect. 4.2. Since the tool management
aspect of Spekl is essentially that of a package manager, we provide all the
usual support for tasks like dependency management, platform specific installa-
tion tasks, and packaging. Since these features are somewhat common to many
systems, we omit their discussion in this paper for brevity.

3.2 Specification Consumption

Any non-trivial program is comprised of more than the source code written by
one individual author. For example, if a user is writing an application with a
graphical user interface, their application may rely on dozens of interdependent
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Fig. 2. An overview of the Spekl system. Spekl relies on a vertical architecture in which
a decentralized repository of specifications and tools (1) is managed by an orchestration
server (2) and accessed by users via the Spekl command line tools (3).

libraries and packages (e.g., Swing or SWT), all of which may require specifica-
tions to be present in order to verify the program the user is writing.

Some verification tools handle this problem by distributing the full set of
specifications available for their given tool when the user performs an instal-
lation. However, this approach is problematic for a number of reasons. First,
programs and libraries evolve over time. Take for example the recent flaw found
in Java’s implementation of the TimSort algorithm. Though the essential behav-
ior of the sorting algorithm remained the same (it was a sorting algorithm and
put items in order), the specification of the method did in fact change [8].

In order for the user of a program verification tool such as OpenJML to get
the update to that specification they would have to download a new version
of the verification tool. In the Spekl model, a user can subscribe to specific
versions of named specification libraries that are automatically kept up to date
by the Spekl tool. This helps users to verify their programs against the latest
specifications. This is helpful not only in the case that a refined specification is
discovered; large code bases (for example, the Android API) may have partial or
incomplete specifications. Spekl’s automatic update mechanism allows program
authors to gain access to revised specifications earlier, as they become available.
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3.3 Specification Layering and Authoring

Writing a specification that will be applicable to every user is a challenging (if
not impossible) task. For example, suppose a user is using a taint analysis tool
that classifies all input from external devices as tainted and therefore should be
classified as a defect in any program that allows its input to come from external
devices. Although this may be desirable in some scenarios, the authors of the
specification, by being overly specific, risk making the specification unusable
for other purposes. If the user of the specification would like to specify that
input from some trusted external device (say, a crytographic USB key) is not
tainted the user will be unable to specify this behavior without finding ways of
subverting the existing specification.

Unfortunately, the way in which a user will typically perform this task is
to modify the specifications directly to override the specified behavior. However,
this has the disadvantage that the specifications are now orphaned from the revi-
sion history from which they are derived. Edits to the specification library will
become the technical debt of the project author and any subsequent updates to
the base specifications will require the author to manually merge in changes from
the upstream package. Even if the user does manage to succeed in modifying the
offending specification, they will have now diverged from the original specifica-
tion; any time the user updates the tool they are using, they must remember to
update the specification they have modified. To complicate matters, if the speci-
fication they have modified has also changed in the tool package, then they must
manually merge their changes with the changes distributed by the tool package.
The manual effort required by this process makes it brittle and error-prone.

Simply being able to access predefined software specifications is an impor-
tant part of the specification adoption problem. However, an important and
under-addressed aspect of the problem is what to do when the existing reference
specifications do not meet the needs of the user. We refer to specifications that
have been modified for use in a new context as child specifications. While this
topic will be covered in detail in Sect. 6, the final feature unique to Spekl is the
ability to allow users to not only modify but subsequently share specifications. A
core part of our approach, as indicated in Fig. 2, is that those child specifications
are then optionally published to an external repository where they may be con-
sumed by other users. New specifications in turn may either be freshly authored
(using no existing specification library as a basis) or written by adapting existing
specifications.

Since the focus of Spekl is specification authoring and reuse, in Sect. 6 we
provide additional details the features of Spekl related to specification author-
ing and usage. Finally, in Sects. 6.2 and 6.3 we provide details about Spekl’s
specification layering and extension features.

Now that we have given an overview of the Spekl system, we turn our atten-
tion to detailing the various features of Spekl. In the next we will discuss in
detail the facilities that Spekl provides for verification tool management.
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4 Verification Tool Management

The first hurdle in getting users to verify their software is installing the verifi-
cation tools. This presents a problem not only in software engineering contexts
[6,13], but also in teaching scenarios, where tools must be installed onto the com-
puters of students. To that end, the first problem Spekl solves is the problem
of distributing program verification software. This section discusses how Spekl
allows tool creators to author and publish tools to the Spekl repository as well
how it helps users install and run these tools.

4.1 Creating New Tools

The first step to creating a new tool in Spekl is to use the spm init command.
This command will prompt the tool author for basic metadata concerning their
new tool. As a first step, Spekl will prompt the tool author for their GitHub user-
name, under which they will publish the tool. The init command is executed
as follows:

∼/my-tool$ spm init tool

Spekl prompts the user for the tool’s package name and version. If the current
working directory is already a spekl-managed directory (meaning it contains a
spekl.yml file), then a new tool is created at .spm/<name>-<version>.
Otherwise, a new package.yml file is created in the current working directory.
In addition to creating a new package.yml file, the spm init command also
registers the tool’s package name in the central Spekl repository, reserving that
tool name. Spekl package names are assumed to be universally unique, thus
attempting to use a preexisting package name is not allowed.

4.2 The Spekl Package Format

The package.yml that was created with the spm init command is the basis
for configuring Spekl in the context of both tools and specifications. In this
section we will be examining the package format as it pertains to tool authoring
tasks. As a guiding example throughout this section will be referring to the
example in Fig. 3, which is the package.yml file for the OpenJML tool.

Package Metadata. The first section of the package.yml file is concerned
with author metadata. In this section the tool author should indicate the name
of the package, the initial version number, and the kind of package it is. The
kind field may be one of tool or spec. As we will see later in the section on
publishing packages, the author field of the package.yml file is important;
an author may specify one or more authors in this section and this information
will be used during the authentication process during publishing later in the
package lifecycle.
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name : openjml-esc
version : 1.7.3.20150406-3
kind : tool
description: The Extended Static Checker for OpenJML.

author:
- name: John L. Singleton
email: jsinglet@gmail.com

depends:
- one-of:
- package: z3
version: ">= 4.3.0 && < 4.3.1"
platform: all

- package: why3
version: "> 0.80"
platform: all

- package : openjml
version : ">= 1.7.3 && < 1.8"
platform : all

assets:
- asset : MAIN
name : openjml-dist
url : http://jmlspecs.sourceforge.net/openjml.tar.gz
platform: all

assumes:
- cmd: java --version
matches: java version "1.7.*
message: "Requires Java, version 1.7."

install:
- cmd: tar -zxvf MAIN
description: Unpacking the archive...
platform: all

- cmd: touch openjml.properties

Fig. 3. The package.yml file for the OpenJML-ESC package.

Expressing Package Dependencies. Many verification tools depend on the
presence of other external tools. However it is not always possible for tool authors
to distribute all of the binaries they may require in order to function. For exam-
ple, many program verification tools require SMT solvers to be installed. Since
there are many viable SMT solvers (some of which only work on certain plat-
forms), rather than distributing all possible SMT solvers, tool authors might
rely on the user to install the SMT tool of their choice. Spekl automates this
process by allowing tool authors to declaratively express the external packages
their tool depends on.

In Fig. 3, the OpenJML package expresses two types of dependencies with
two different nodes under the depends keyword. This feature supports two
types of dependencies. The first kind is a required dependency, which must be
satisfied prior to installation. The second kind is a one-of dependency. As in
the example with the SMT solvers, a user may wish to install one of several
different possible options. Specifying a list of dependencies in the one-of node
of the package.yml file instructs Spekl to prompt the user for a choice during
installation. If a given tool should only be installed on a certain operating system
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type, a tool author my indicate one of windows, osx, linux, unix, or all to
indicate which operating systems require the dependency being expressed.

Package Assets. A given tool may be the amalgamation of several different
software artifacts installed into a single host system. In Spekl, a tool’s assets are
the individual bits of software that make up a tool. To specify an asset a user
must create a tuple of (asset, url, platform) under the assets node
in package.yml. The asset attribute creates a new binding to be used later
in the installation process. In the example in Listing 3, the MAIN name is bound
to the asset that will be eventually downloaded from the location at url. This
name may be used symbolically in the commands found later in the install
section of package.yml.

Establishing Environmental Assumptions. In addition to the built-in
dependency management system, Spekl is also able to verify environmental
assumptions that must be true in order for package installation to be successful.
In Fig. 3 OpenJML assumes that the binary in the current user’s path for java
must be version 1.7. Note that environmental assumptions are different from
dependencies in that they pertain to the state of the user’s computer, where as
dependencies pertain to the internal state of a user’s set of installed packages.

To specify an environmental assumption, a user may add a node under the
assumes node of the package.yml file by specifying a tuple of the form (cmd,
matches, message). The condition for proceeding is the logical conjunction
after executing cmd, comparing the output with the regular expression contained
in matches, and if the regular expression does not match the output of cmd,
the message specified by message is displayed.

Specifying Installation Commands. The last section of the package.yml
file is concerned with the actual commands necessary to install the tool onto
the users’ system. Unlike system-wide package installation tools like the APT
package manager, Spekl installs tools and specifications on a project basis. This
feature enables users to use different versions of verification tools (and different
versions of their dependencies) on different projects without causing conflicts
arising from installing conflicting tools (and possibly versions of tools) on the
same system.2

To achieve this, Spekl maintains an installation database under the .spm
directory within a Spekl project. For example, consider the directory listing
shown in Fig. 4. In this listing we see that two packages are installed: openjml
and z3.

To specify the installation commands for a package the user must specify a
set of tuples of the form (cmd, platform). The commands that apply to the
destination platform will be executed in sequence with the following phases:
2 The disadvantage of Spekl’s technique is the use of more disk space than sharing a

single installation of each tool.
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/my-project

README

Main.java

Util.java

Tree.java

build.xml

.spm

openjml-1.1.1

package.yml

jmlruntime.jar

jmlspecs.jar

README

z3-4.3.2

package.yml

bin

doc

README

Fig. 4. An example directory layout for a Spekl project. Note that packages are wholly
installed under the .spm directory.

Dependency Resolution. Prior to starting the installation of the current tool,
the depends section of the tool will be examined and any tools that must
be installed will be installed.

Database Preparation. After dependencies are resolved, Spekl will create a
directory hierarchy to support the installation of this package. The installation
directory will be located in the .spm/<package>-<version> directory.

Asset Acquisition. Prior to starting the installation commands specified in this
section, each asset listed in the assets section will be downloaded to the
local computer and placed in the database directory created in the previous
phase.

Binding Substitution. The assets section of the package.yml file also
establishes bindings for later use in the installation process. In the listing
in Fig. 3, the assets section establishes a binding between MAIN and the
eventual destination of the downloaded archive. This is useful since the tool
author can (as shown in Fig. 3) later use the MAIN binding in a command
that unpacks the downloaded archive. These bindings are valid throughout
the install section of the tool’s package.yml.

Installation Command Execution. The command set for the current plat-
form is then extracted and executed in sequence. The sequence the commands
are executed in is the sequence that they are specified in the file and in order
for an installation to succeed all of the commands must succeed. The fail-
ure of any command causes the current installation to halt. Each command
should be written to assume it is being executed in the installation directory
for the package.
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4.3 The Check Definition Language

Spekl’s tool packages serve two purposes. The first is to provide a set of checks
that the user may run on their software. The second is to provide resources (such
as SMT solvers) for other checks and packages. In this section we focus on one
of the most central aspects of tool authoring: defining the checks the tools are
capable of running.

1 (ns spekl-package-manager.check
2 (:require [clojure.java.io :as io]
3 [clojure.tools.logging :as log]
4 [spekl-package-manager.util :as util]))
5
6 (def report-file "findbugs-report.html")
7 (def report-file-xml "findbugs-report.xml")
8
9 (defn open-report [file]

10 (log/info "Opening report...")
11 (let [open-command (util/get-open-command file)]
12 (apply run open-command)
13
14 ))
15
16 (defcheck default
17 (log/info "Running findbugs... report will open after running...")
18 (let [result (run-no-output "java" "-jar" "${findbugs-3.0.1/lib/findbugs.jar}"

"-textui" "-html" *project-files*)]
19 (if (= 1 (result :exit))
20 (println (result :out))
21 (do
22 (spit report-file (result :out))
23 (open-report report-file)))))
24
25
26 (defcheck xml
27 (log/info "Running findbugs [XML]... report will be available at"

report-file-xml "after running")
28 (let [result (run-no-output "java" "-jar" "${findbugs-3.0.1/lib/findbugs.jar}"

"-textui" "-xml" *project-files*)]
29 (if (= 1 (result :exit))
30 (println (result :out))
31 (spit report-file-xml (result :out)))))

Fig. 5. An example Spekl check file from the FindBugs package. This check file defines
two checks: a default check that outputs FindBugs reports in HTML format and a
check named “xml” that outputs FindBugs reports in XML format.

A Spekl tool may define any number of checks within a single package that
may in turn be run by a Spekl user. To specify that a package should export
checks, a tool author should create a check.clj file in the root directory of
the tool package. The check defined in Fig. 5 shows the details of the checks
available in the FindBugs [1] package. We describe the most pertinent portions
of this check below.

As indicted by the .clj file extension, the host language of all Spekl checks is
the programming language Clojure, a modern Lisp dialect that targets the Java
Virtual Machine [9]. As such, tool authors have the full capacities of the Clojure
language at their disposal while writing checks. However, to make this process
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easier, Spekl defines a special defcheck form that simplifies many tasks. The
features of this form are described next.

The defcheck Form. To declare a new check, a tool author must use the
defcheck form as shown on lines 16 and 26 of Fig. 5. These lines define the
checks default and xml, respectively. Once defined, they can be referenced in a
client’s spekl.yml file, using the check configuration element. The default
keyword has a special meaning in a Spekl check; although Spekl check files may
define as many checks as they wish, all check files must at a minimum define the
default check. The only other requirement of a check file is that they reside
in the spekl-package-manager.check namespace, which is accomplished
by the ns form on line 1.

The facilities that defcheck provides come in two forms: special variables
and special forms. The special variables are:

*check-configuration* This variable contains the configuration information
for the current check, as read from client’s spekl.yml file. This feature
is especially useful for tool authors that require additional configuration
parameters to be present in order to successfully execute a verification tool.

*project-files* Prior to running a check, Spekl expands the entries given in the
paths configuration element of a check (see Fig. 6). This element may con-
tain a list of literal paths, relative paths, or shell globs that specify collections
of files. These paths are resolved on the local file system and provided to the
check in the *project-files* variable. Since tools often run on collections of
files, this feature allows the tool to remain decoupled from the project that
is using it. In the example in Fig. 5, the *project-files* variable is used as an
argument to the FindBugs checker on lines 18 and 28.

*specs* This variable is similar to the *project-files* variable with a few impor-
tant differences. In Spekl, specifications reside in packages that are stored in
Spekl repositories. Since specifications may be found by version as well as
name it is not possible to know statically where all the required specifica-
tions for a project may be located. Prior to running a check, Spekl resolves
all of these specification paths and provides them to the check environment
in the form of the *specs* variable (see Fig. 6 for an example of how this
variable is configured).

As mentioned in Sect. 4.3, Spekl checks are hosted in the Clojure language.
This gives users access to a wide array of Clojure-specific functions as well as
any code that runs on the JVM. In addition to this functionality, Spekl defines
an asset resolution functionality that can be seen on lines 18 and 28, in Fig. 5.
The run-no-output form (and its complement, run), takes a variable number
of string arguments that are then invoked on the host system. When one of the
strings is of the form “${pkg:asset}”, this causes Spekl to attempt to resolve
the asset described between the curly braces. The token to the left of the colon
is the canonical name of the package in which one expects the asset to reside.
Since multiple versions of the same package may be installed on the users’s
system, Spekl automatically inspects the dependencies declared by the current
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tool and supplies only the package that complies with the restrictions set forth
in the tool’s package.yml file. If the left side of the colon is omitted, Spekl
will attempt to resolve the resource in the currently executing tool’s package. A
failure to resolve any asset results in the termination of the current check.

4.4 Publishing Tools to the Spekl Repository

One of the challenges of creating a robust repository of software is simultaneously
unglamorous and exceedingly hard: safely storing published packages. Rather
than focus on the problem of building a computing infrastructure to support
the storage of a software repository capable of handling possibly millions of
users, Spekl has taken the approach of leveraging an existing service to handle
the storage problem: GitHub. This comes with a number of advantages. First,
using the free hosting capabilities of GitHub allow Spekl to remain both free and
scalable. Second, since Spekl’s packages are stored in Git repositories, it allows
package authors fine-grained control over collaboration and workflow [15,16].

Once a package has been authored, Spekl allows a user to publish their tool
directly from the command line interface. To initiate the publishing process the
user should execute the publish command of Spekl as shown in the following
example.

∼/my-tool$ spm publish
[spm] Performing pre-publishing sanity check...
[spm] Current directory is a package directory
[spm] Creating new version: 0.0.1
[spm] Publishing changes to the repository

As mentioned in the previous section, all Spekl packages are publicly stored
on GitHub. To that end, if an author wishes to directly access the repository (for
example, to add a collaborator) they may access it immediately after publishing
at the URL: https://github.com/Spekl/<package-name>. Note that since Spekl
allows direct access to its repositories via Git, problems may arise if users mali-
ciously edit repositories (for example, deleting them). Such actions could violate
the invariants that Spekl requires to function. For the purposes of this work we
assume users act in good faith and do not work to subvert Spekl.

4.5 Installing Tools from the Spekl Repository

Tool installation is the primary method by which end users of the Spekl system
are expected to utilize verification tools. Any Spekl tool may be directly installed
without configuring the project via the spekl.yml project file (covered in the
next item). To do this a user may execute spm as follows:

∼/my-project$ spm install openjml

This command begins an installation of the OpenJML tool for the current
project. Note that this command takes an extra optional parameter version,
which, if specified, tells Spekl which version of OpenJML to install.

https://github.com/Spekl
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While a tool may be directly installed as shown above, most users will install
tools via the spekl.yml file. This will be covered in more detail in the next
section, but a tool may be flagged for installation by being listed as a required
check for a project.

Since Spekl is a centralized repository, the spm command takes advantage
of this fact and provides users with a way to locate packages to install. The
command that shows a user all available packages can be see in the following
listing:

∼/my-project$ spm list tools

This command will print a listing of the newest versions of tools available on
Spekl along with the version numbers and descriptions of each tool.

5 Consuming Specifications

Once users are able to install verification tools they will need to combine them
with specifications. The following sections are concerned with the problem of
consuming specifications. We will begin with a description of how to create new
Spekl projects.

In Spekl, the normal use case for end users of Spekl is to consume packages
(tools and specifications) for use in their own projects. Similar to tool creation in
the previous section, the way a user may indicate an existing project should be
used with Spekl is to use the init command of spm as shown in the following
example.

∼/my-project$ spm init

This command prompts the user for some basic metadata about their project
and creates a new spekl.yml file in the directory that the spm command was
executed in.

5.1 The Spekl Specification Project Format

As discussed in the previous section, the basis for consuming specifications and
tools happens at the project level and is configured via the spekl.yml file.
This section will look at the spekl.yml file in detail.

Package Metadata. Unlike the package.yml metadata, the metadata
section of the spekl.yml file does not contain information that will be made
publicly available. Often a project will not be published (e.g., if it is internal to
a company). As such the metadata section may be customized with whatever
information is useful for describing a project.
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name : My Project
project-id : my.test.project
version : 0.1

checks :
- name : openjml-rac
language : java
paths : [src/**.java]

tool:
name : openjml-rac
version : 1.1.12
pre_check :
post_check:

specs:
- java-core: 1.7

Fig. 6. An example spekl.yml project file.

Specification and Tool Configuration. The bulk of work editing a
spekl.yml file is concerned with adding checks and specifications to the current
project. This is done by manually editing the checks section of the spekl.yml
file and will be the topic of this section.

One key feature of Spekl is its support for multiple checkers within a single
project. This is especially useful for large, complex code-bases where one verifi-
cation tool may not be enough to handle all verification concerns. For example,
certain critical portions of the code base may need to be checked with static
checking, which is more precise, but more demanding in terms of specifications,
whereas it may be sufficient to check the remainder of the code base with runtime
assertion checking.

To configure a checker, a user adds a node below the checks node of the
spekl.yml file. In Fig. 6 we can see the OpenJML Runtime Assertion Checker
configured for a project. A few items in this configuration are of note.

name. The name attribute of a check is used to identify the check to the user
at runtime and any suitable string may be used.

language. Certain checkers may take advantage of knowing the input language
of a project ahead of time. This field is optional and should only be specified
if a tool needs it.

paths. The paths element of a check is a critical component of its configuration
and is the method by which the verification tool will find source files to check.
The paths element is a comma-separated list of shell globs that should contain
all of the files expected to be passed to the backend verification tool. In the
example, the double star pattern (**) means to match any directory within
src/ before matching the file pattern.

The next section of the check configuration pertains to selecting a tool and
version to use. When spm check is run it will consult this section first to ensure
that all dependencies are fulfilled before running the check. The parameters of
this section are as follows:
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name. The name of the tool to use as reported by the spm list command.
version. The version of the tool to require. In addition to numerical version

numbers, this attribute also supports symbolic version number strings. For
example to specify that version greater than 4.3 is required, a user can supply
the version string “>4.3”. Both conjunction and disjunction are supported
and version strings such as “>4.3 && <5.0” may be supplied. The operators
supported are the binary comparison operators: >, <, ==, <=, and >=.

pre check/post check. Though not normally needed, the pre check and
post check configuration parameters are hooks to allow a user to run cus-
tom actions before and after a check. For this parameter, a user may specify
a shell command to execute. No validation on this input is performed but a
failing pre check (a command returning a non-zero exit code) will cause the
check’s execution to halt.

5.2 Running Verification Tools

Once the spekl.yml file is configured, a user may run their verification tools
by using the spm command from within the directory where the spekl.yml
file is located. In this section we provide details on this process.

The general command a user may use for checking their programs is the spm
check command as shown in the following example:

∼/my-project$ spm check

Executing the spm check command in this way causes all of the configured
checks in the spekl.yml file to be executed in sequence. If the user has multiple
checks configured and only wishes to run one of the checks, they may refine the
behavior of the spm check command by naming the check to run:

∼/my-project$ spm check openjml-rac

As shown in Fig. 6, the configured check name is openjml-rac. Specify-
ing openjml-rac as an argument to spm check indicates that the spm tool
should only run the that specific check and no other.

6 Specification Authoring Features

Similar to the facilities for tool authoring, Spekl also provides support for spec-
ification authoring. Specifically, Spekl provides support for two modes of speci-
fication authoring: specification creation and specification extension.

In specification creation, a specification author creates a new specification for
a body of code from scratch. The code being specified need not be the work of
the specification author.

In specification extension, as we shall see in the following sections, a specifica-
tion author creates a new specification based on an existing specification within
the Spekl repository. The reason an author may do this is two-fold. First, the
author may need to change the meaning of an existing specification to fit their
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needs. The second case is that the author may need to add missing specifications
to the specification library to cover portions of the codebase not handled by the
original specification author.

6.1 Creating New Specifications

To create a new specification from scratch, a specification author uses the spm
init command as shown previously. The command is invoked as follows:

∼/my-project$ spm init spec

After prompting the user for some basic metadata about the specification, the
spm tool will create a package.yml file either in the current directory or in the
.spm directory, depending on how the command was invoked before. Much of the
package.yml file is identical to the one used for tools. The main difference is
that for specifications the sections for assets, installation steps, and dependencies
do not apply. Rather, the specifications must be wholly self-contained within the
package itself. Similar to tools, completed specifications that are either extended
or created from scratch may be published to the Spekl repository with the spm
publish command.

6.2 Layering Specifications

In Sect. 2 we presented several examples where adapting a specification was not
possible. In this case, rather than modifying a specification, what is needed is
the ability to extend the specification in such a way that it can override the
specification from which it is derived. This is a core idea behind how Spekl
allows specification writers to use and extend specifications. In this section we
give an example of this usage.

To begin, a user wishing to extend a specification should execute the extend
command of spm with the name of the package specification they wish to extend
as an argument. In our example we will extend jml-core-java-7 which is
the set of specifications in JML for Java 7.

∼/my-project$ spm extend jml-core-java-7

Executing this command creates a new specification project in the directory
from which it was invoked. Let us take a look at the package.yml file that
was created. The file is shown in Listing 1.3. As can be seen, this command adds
the extends keyword to the package.yml file. The effect of this keyword
has is to introduce a link between the revision history of the package it extends
and the history of the new package. This keyword instructs Spekl that it should
attempt to merge the revision histories of the parent and derived specifications
before checking a specification. Any additions or modifications that have been
made to the parent specification will automatically be made available in the
derived specification. This derived specification, which may contain zero or more
modifications, may then be published to the Spekl repository if desired and
consumed by other authors who may find the modifications of the specification
useful.
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Listing 1.3. An excerpt from the package.yml file generated by the spm extend
command

name : my-jml-java-7
version: 0.0.1
kind : tool
extends: jml-core-java-7

6.3 How Spekl Manages Hierarchies

One idea that Spekl introduces is the concept of specification hierarchies. In this
section we describe specification hierarchies in detail and provide details on how
specifications propagate throughout the hierarchy.

To begin, we consider a revision history of some specification S, H , where
H is a temporally ordered list of revision strings that specify the differences
between two adjacent revisions in a history. An individual element of H is some
element δn which is computed by taking the difference between the n − 1th

revision of S and the nth revision of S. The initial difference in H , δ0, is defined
as the empty revision string. Given an initial specification S and a revision to
S, S′, we write the difference between S and S′ as S − S′.

A specification hierarchy is defined as the semilattice of pairs (S,H ), ordered
by the refines relation, �, that is:

(S′,H ′) � (S,H ) ⇐⇒ S′ <: S ∧ (∃δ ∈ H ′ :: δ ∈ H ) (1)

The meaning of the S′ <: S is that S′ is declared to extend S. In Eq. (3) and
below we refer to a specification hierarchy by the more compact notation,

−−→
SH,

which is expanded more explicitly in (2).

−−→
SH = {(S⊥,H⊥), . . . , (S�,H�)} (2)

extends(S,
−−→
SH) =

{
nil if S = S�
(s, h) ∈ −−→

SH : S <: s otherwise.

}
(3)

In Eq. (2) the symbols 	 and ⊥ refer to the specification at the top of the
hierarchy (extended by every specification in the hierarchy) and the specification
at the bottom of the hierarchy. Both 	 and ⊥ must be uniquely defined and exist.

Note that in the case of the ⊥ specification this does not imply that no speci-
fication extends it, but only that for a particular context there is no specification
that extends it.

Specification hierarchies are useful in that they allow new specifications to
be based off of existing specifications, thus benefiting from the pre-existing work
in creating the base specification. We call specifications based off of existing
specifications child specifications. Conversely, the direct specification on which
a child specification is based is called the parent specification. We refer to the
collection of all parent specifications (that is, the ancestor chain) as the upstream
specifications.
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What is unique about Spekl’s specification hierarchies is that they allow a
given specification to be modified while maintaining a historical connection to the
revision history of any upstream specification that it extends. Any changes made
to the upstream specification are automatically propagated down the chain. We
refer to the current version of a given specification with all upstream changes
applied as the effective specification of S.

Suppose now that a specification S′ is created based on the specification S.
The user extending the specification makes changes to S′. Meanwhile, the orig-
inal author of S makes changes to it as well. These changes may include addi-
tions, deletions, or refinements of specifications. To complicate matters further,
the upstream specification itself may in turn be based off another specification.
How can we provide an appropriate effective specification?

To answer this question, Spekl defines two orthogonal concepts: specification
refreshes and specification merges.

A specification refresh is an operation invoked by Spekl during specification
checking that inspects the current specification, determines if there have been
changes in the specification extension chain and applies those changes if needed
in order to arrive at a new effective specification.

We provide a definition of the refresh operation in Eq. (4).

refresh((S,H ),
−−→
SH)

=

⎧⎪⎨
⎪⎩

H , if extends(S,
−−→
SH) = nil

let (S′,H ′) = extends(S,
−−→
SH)

in refresh((S′,H � H ′),
−−→
SH)

otherwise.

⎫⎪⎬
⎪⎭ (4)

The second concept, specification merges, is introduced by the presence of the
operator � in Eq. (4) — the merge operator. The merge operation in Spekl (�) is
in fact the same three-way merge operation used by the version control system
Git, which is based on the finding the longest common subsequence between
two revisions of a file. It is different than the more simplistic two-way merge in
that it takes into account the information about common ancestors in a revision
history [14]. Improving the usefulness of the merge operation is a task relegated
to future work for Spekl.

However, in order to understand how this merge operation impacts specifi-
cations, let us consider the possibilities of merging two arbitrary specifications
and histories (S,H ) and (S′,H ′):

Case 1 (∀δ ∈ H ′::δ �∈ H ) Action: No specification merge is possible since S′

was not derived from S. All of the remaining cases assume that case 1 does
not hold.

Case 2 (H ⊆ H ′) Action: No action is needed since all of the history for S is
already subsumed by the history of S′.

Case 3 (∃δ ∈ H ::δ �∈ H ′) Action: There has been at least one change to
S that has not been applied to S′. These changes will be merged into S′

by using the three-way merge algorithm described earlier. Note that this
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condition assumes that (S′,H ′) refines (S,H ), i.e., the ordering relation �
from Eq. (1) holds.

In Spekl, specification refreshes are invoked in two ways. The first way is
automatically during the spm check command. During the execution of spm
check, Spekl automatically collects the required specifications for a check and
checks the remote repositories of the specifications to determine if they need
to be refreshed. Additionally, if during specification development, an author
wishes to synchronize their work with the upstream specifications, they may
invoke the spm refresh command to manually trigger a refresh. The effective
specification then becomes part of the permanent revision history of the child
specification.

7 Related Work

The main related work on specification management (research questions 1 and 2)
is that of source code control systems, such as Git. The reasons why such source
code control systems are inadequate for using and extending specifications were
discussed in Sects. 2 and 6.2.

Although Spekl does aim to abstract the process of installing and using veri-
fication tools, it does not aim to be a general purpose package management sys-
tem. Nevertheless, Spekl implements many of the functions that are required by
a software package management system and is therefore comparable to previous
work in that domain. Though Spekl concerns itself with the installation of soft-
ware artifacts like package management systems such as YUM [20], APT [19], and
Haskell’s Cabal [5,11], the installation of artifacts is only one of Spekl’s features
whereas they are the main focus of typical package management systems.

Recent work by Tucker et al. [17] demonstrated the usefulness of integrating
SMT solvers into the problem of solving dependency-related problems in software
package repositories. This work was later extended by Ignatiev et al. [10] who
demonstrated an improvement over the OPIUM system in the case of SMT
solver timeouts. Spekl’s current dependency resolution strategy does not use
any of these sophisticated techniques but rather uses an optimistic approach in
which a package installation proceeds until it cannot. For example, if a package
expresses that it requires a version of tool T greater than 1.0 Spekl will install
the newest version of T satisfying that requirement. In theory, it could be the
case that installing an older version of T (greater than version 1.0) could satisfy
some other dependency at a later stage in the dependency resolution stage. This
sort of scenario could be detected by an SMT solver-based approach and is more
comprehensive. We intend to implement this strategy in a later revision of Spekl.

Another issue that impacts Spekl is the problem of broken components in
evolving software repositories. This issue is explored in depth by Vouillon [18]
who investigates strategies for fixing “broken sets” in evolving software reposi-
tories. From the perspective of Spekl, the techniques explored in this work could
be applied to Spekl’s specification libraries. In the case of Spekl, the problem
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is not as straightforward as a constraint solving problem pertaining to versions
of software packages, but rather tied to ensuring that software artifacts satisfy
their specifications as the repository evolves. This idea is indeed promising, but
has been relegated to future work for Spekl.

8 Conclusion

In this paper we introduced a new system called Spekl that is aimed at streamlin-
ing the process of specification authoring and usage. As we have shown, Spekl’s
design solves the three key subproblems of achieving wider adoption of program
specification: tool installation/usage, specification consumption, and specifica-
tion authoring and extension. Additionally, we saw how Spekl addresses the
problem of adaptive reuse for specifications by providing tooling to support
writing and reusing specifications. In addition to providing a description of the
problems impacting specification reuse, in this paper we have provided a detailed
discussion of the Spekl system from the perspective of tool authors, specification
authors, and users of both tools and specifications.

In addition to being a proof of concept tool, Spekl is an effort to widen the
adoption of specification, verification, and validation in general. The Spekl tools
can be downloaded from http://www.spekl-project.org, and people wishing to
contribute to the development of Spekl may join the project via http://www.
github.com/Spekl.
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Collection.sort() Is broken: the good, the bad and the worst case. In: Kroening,
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Abstract. A contract is an artifact that records an agreement made
by the parties of the contract. Although contracts are considered to be
legally binding and can be very complex, they are usually expressed in an
informal language that does not have a precise semantics. As a result, it
is often not clear what a contract is intended to say. This is particularly
true for contracts, like financial derivatives, that express agreements that
depend on certain things that can be observed over time such as actions
taken of the parties, events that happen, and values (like a stock price)
that fluctuate with respect to time. As the complexity of the world and
human interaction grows, contracts are naturally becoming more com-
plex. Continuing to write complex contracts in natural language is not
sustainable if we want the contracts to be understandable and analyz-
able. A better approach is to write contracts in a formal language with a
precise semantics. Contracts expressed in such a language have a math-
ematically precise meaning and can be manipulated by software. The
formal language thus provides a basis for integrating formal methods
into contracts. This paper outlines fcl, a formal language with a precise
semantics for expressing general contracts that may depend on tempo-
rally based conditions. We present the syntax and semantics of fcl and
give two detailed examples of contracts expressed in fcl. We also sketch
a reasoning system for fcl. We argue that the language is more effec-
tive for writing and analyzing contracts than previously proposed formal
contract languages.

Keywords: Contracts · Formal languages · Simple type theory ·
Observables · Deontic logic · Conditional agreements · Temporally based
conditions

1 Introduction

A contract records, orally or in writing, a legally binding agreement between two
or more parties [22]. Contracts come in many forms and are used for many pur-
poses [6,22]. Written contracts are artifacts that can be stored, analyzed, modified,
and reused. As artifacts, contracts are usually expressed informally in a natural
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language such as English. Since natural language does not have a precise seman-
tics, it can be difficult to write complex ideas in a natural language in a clear and
unambiguous way. Thus contracts that embody complex agreements can be very
difficult to both write and understand when natural language is used.

The meaning of a contract — that is, what the agreement is — often depends
on certain things that can be observed, called observables, such as actions taken by
the parties of the contract, events that happen, and values (like a stock price) that
fluctuate with respect to time. A contract of this kind is dynamic: the contract’s
meaning changes over the course of time. A dynamic contract contains temporally
based conditions that trigger changes to the contract’s meaning when the condi-
tions become true. Since the structure of these conditions can be very complex,
dynamic contracts can be very difficult to understand and analyze. For example,
financial derivatives that derive their values from fluctuating underlying assets
are dynamic contracts that are notorious for being difficult to value [4].

Contracts — in particular, dynamic contracts — are naturally becoming more
complex as the complexity of the world and human interaction grows. Continuing
to write complex contracts in natural language is not sustainable if we want the
contracts to be understandable and analyzable. A better approach is to write con-
tracts in a formal language with a precise semantics. Then a contract becomes a
formal object that has a mathematically precise meaning and that can be manip-
ulated by software. A formal contract of this kind can be written, analyzed, and
manipulated in various ways with the help of sophisticated software tools.

This paper outlines fcl, a Formal Contract Language with a precise seman-
tics for writing general contracts. In fcl, a contract is a set of components (def-
initions, agreements, and rules) that can refer to observables and can include
conditions that depend on observables. The meanings of these components can
change when the values of observables mentioned in them change, and new com-
ponents can be added when conditions become true. Hence the state of a contract
as a set of components can evolve over time in much the same way as the state
of a computer program evolves over time.

The paper is organized as follows. Section 2 presents a simple example of
a dynamic contract. Section 3 discusses what properties contracts have. An
overview of fcl is given in Sect. 4, and the formal semantics of fcl is outlined
in Sect. 5. Permissions and reparations are discussed in Sect. 6. Section 7 shows
how the example from Sect. 2 can be expressed in fcl. A more complex exam-
ple expressed in fcl is given in Sect. 8. A system for reasoning about contracts
written in fcl is sketched in Sect. 9. How fcl is related to other formal and
informal contract languages is summarized in Sect. 10. And the paper concludes
with Sect. 11.

2 Example 1: An American Call Option

To illustrate the role of observables and conditions that depend on them in a
dynamic contract, we will consider the following simple example.
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Example 1. Consider an American call option for purchasing one share of a
certain kind of stock on June 30, 2015 for $5. The expiration date of the option
is December 17, 2015 (and so the option may be exercised on any date from
June 30, 2015 to December 17, 2015). The strike price of the option is $80. The
transaction of the sale of the stock must be finished within 30 days of payment.

An American option is a contract that gives the owner the right, but not
the obligation, to buy or sell a specified asset at a specified price on or before a
specified date [11]. This example describes the conditions that are required for
the sale of one share of stock. It shows the role that observables and conditions
commonly play in contracts. If a payment of $5 on June 30, 2015 is made to
the option seller to buy the option (first condition), the option contract will
become effective. If the option buyer exercises the option by paying $80 to the
option seller on or before December 17, 2015 (the second condition), the option
seller will transfer one share of the stock to the option buyer within 30 days after
the option is exercised. The payments of $5 and $80 are both observables on
which the first and second conditions respectively depend. The transference of
the stock is also an observable.
This American call option can be deconstructed into three components:

1. Condition 1: The option buyer gives the option seller $5 on June 30, 2015 to
buy an American call option consisting of a conditional agreement composed
of the following two components.

2. Condition 2: The option buyer chooses to exercise the option by paying $80
to option seller on or before December 17, 2015.

3. Agreement: The option seller is obligated to transfer one share of stock to
the option buyer no later than 30 days after the option is exercised.

The contract thus has the following form:

i f Condition 1
then
i f Condition 2
then Agreement

Both if-then parts of the contract are conditional agreements. The second con-
ditional agreement consists of Condition 2 and Agreement, and the first
conditional consists of Condition 1 and the second conditional agreement.

The offer time of the American call option is the time the option contract is
offered by the option seller to possible buyers. At the offer time, the option con-
tract is not a legally binding agreement. It becomes a legally binding agreement
only when the option contract is purchased by the option buyer (i.e., the time
when Condition 1 is satisfied).

A conditional agreement, like either of the two in this example, can be viewed
as a “rule” that generates an agreement depending on the values of certain
observables. In general, different agreements are generated when observables
have different values. Observables determine both the meaning of a contract and
how the meaning of the contract evolves over time.



FCL: A Formal Language for Writing Contracts 193

3 What is a Contract?

Before we present fcl, our formal language for writing contracts, we need to
discuss what a contract is. A contract is an artifact with certain properties.
There is not a clear consensus of which of these properties are necessary and
which are optional. We favor the definition of a contract given by Brian Blum
in [6, p. 2]. He says a contract must have each of the following properties:

– Is an oral or written agreement.
– Involves at least two parties.
– Includes at least one promise made by the parties.
– Establishes an exchange relationship between the parties.
– Is legally enforceable.

A contract is created only because the parties reach agreement on the terms
of the contract. The parties are the people or entities that have mutually agreed
to the contract and are bound by its terms and conditions. In the case of written
agreements, the parties are typically identified as the people or entities that
signed the agreement. For any contract to be valid, there must be at least two
parties. Typically, one party makes an offer and the other party accepts it.
In addition, to be valid a contract must involve the parties in an exchange of
something of value such as services, goods, or a promise to perform some action.
Note that the exchange of money is not necessary.

A contract involves a promise which Blum defines as an “undertaking to
act or refrain from acting in a specified way at some future time” [6, p. 5]. We
think of “undertaking to act” as the deontic notion of obligation. Similarly, we
understand “refrain from acting” as the deontic notion of prohibition. Obliga-
tion and prohibition are concepts studied in deontic logic [17]. They have the
distinctive characteristic of being violable. When a promise made in a contract
is honored, we say the promise has been satisfied. If it has not been honored, we
say it has been violated. A promise may be restricted by a temporal bound, that
is, a period of time during which an obligation or prohibition is in force. For
example, a tenant may be obliged to pay rent on the first day of each month.

We will use an expanded definition of a contract that includes “degenerate
contracts” that would not be considered contracts according to Blum’s definition
but are convenient to include in the space of all possible contracts. For example,
a contract is void if it violates the law [4]. Void contracts are not legally enforce-
able agreements, so by Blum’s definition they are not genuine contracts. We will
consider them to be contracts, but we will designate them as being degener-
ate. Similarly, we will consider an agreement between two parties that does not
include a promise or establish an exchange relationship between the parties as a
degenerate contract.

4 Overview of FCL

This section describes the main components of fcl and informally explains their
purpose and meaning. The formal semantics of fcl is outlined in Sect. 5.
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4.1 Underlying Logic

We will assume that the underlying logic of fcl is some version of simple type
theory [8]. Simple type theory is a form of high-order logic with function types,
quantification over functions, and function abstraction. The underlying logic
must have the following base types:

1. Bool, a type consisting of the boolean values t (true) and f (false).
2. Time, a type consisting of the integers Z. That is, we assume that time is

represented as a discrete linearly ordered set of values such that each value
has a predecessor and a successor. The values many denote any convenient
measure of time such as days, hours, seconds, etc.

3. Event, a type of events. These can be actions performed by the parties of a
contract as well as events that the parties have no control over.

The underlying logic must include the following constants:

1. true and false of type Bool.
2. obs-event of type Time × Event → Bool.

true and false represent the truth values t and f, respectively. obs-event is used
to express observations of events as described in Sect. 4.2. The underlying logic
must also have the variable Xtime of type Time. Xtime is used to instantiate
expressions with the current time of a contract.

An expression of fcl is any expression in the underlying logic of fcl. A
formula of fcl is an expression of fcl of type Bool.

Building fcl on simple type theory gives fcl access to the high expressivity
and reasoning power of simple type theory [8]. This means that fcl can be
developed largely by utilizing the standard machinery of simple type theory
without the need to develop new logical ideas.

4.2 Observables

An observable is something that has a variable value that can be observed at a
particular time [20,21]. Let us look at a couple of examples. The temperature of
a room is an observable. Its value at a given time t is the temperature measured
in the room at t. An event is an observable whose value is either true or false.
Its value at a given time t is true [false] if the event occurs [does not occur] at t.

An observable of fcl is the application of a constant f of type

Time × α1 × · · · × αn → β

where n ≥ 0. Thus the value of the observable f(t, a1, . . . , an) depends on time
in the sense that it depends on the value of its first argument which is of type
Time. The value of f(t, a1, . . . , an) also depends on the parameters a1, . . . , an.
An observation of fcl is an atomic formula of the form o = v where o is an
observable f(t, a1, . . . , an) and v is a value in the output type of f . When the
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output type of f is Bool, o = true and o = false can be written as o and ¬o,
respectively. An observational statement of fcl is a formula of the underlying
logic of fcl constructed from observations using the machinery of the underlying
logic — which includes propositional connectives, quantifiers, and the other usual
machinery of simple type theory.

We will show how the two examples of observables mentioned above can
be expressed in fcl. Let obs-temp be a constant of type Time → Z. Then
obs-temp(t) = a represents the observation that the temperature in a partic-
ular room is a at time t. obs-event(t, e) represents the observation that the event
e occurs at time t.

4.3 Actions

An action is an event that can be performed by the parties of a contract. There
are two sorts of entities involved in an action: subjects and objects. The former
are the entities who perform the action, while the latter are the entities that are
acted upon by the subjects. An action a of type Event is defined as a tuple of
the form (L,α,S,O) where L is the label of an action, α is the act of the action
(i.e., the thing that is performed), S is the set of subjects of the action, and O
is the set of objects of the action.

Contracts typically include actions that specify the transfer of resources
(money, goods, services, and even pieces of information) between parties. The
act of the action would be the transfer of resources from one party (the subject)
to another party (the object). Notice that an action of this kind encodes both
what is transferred and what parties are involved in the transference.

4.4 Constant Definitions

A constant definition of fcl is an expression of the form c = e where c is a
new constant or an application of a new constant and e is an expression that
defines the value of c. Constant definitions are used, among other things, to
define temporally based values.

4.5 Agreements

An agreement is a promise to do or not do a specific action. An agreement of
fcl is an expression of either the form O(a, T ) or the form F(a, T ) where a is an
action and T is a set of times. O(a, T ) is called an obligation; it represents the
promise that the action a will be observed at some time in T . F(a, T ) is called
a prohibition; it represents the promise that the action a will not be observed
at any time in T . O(a, T ) and F(a, T ) are considered to be duals of each other.
The operators O and F are inspired by the deontic operators for obligation and
prohibition [17].
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4.6 Rules

A rule R of fcl is inductively defined as an expression of the form

ϕ �→ B

where ϕ is a formula of fcl and B is a set of constant definitions, agreements,
and rules. We assume that each free variable occurring in a constant definition
or an agreement in B also occurs in ϕ. We will see in Sect. 5 that, if ϕ is satisfied
at time t, the members of B are added to the state of a contract at time t + 1.
Thus a rule can dynamically change the meaning of a contract.

A rule of the form ϕ �→ {A}, where A is an agreement, represents a condi-
tional agreement.

4.7 Contracts

A contract C of fcl is a pair (toffer,B) where toffer is a time and B is a set
of constant definitions, agreements, and rules. The parties of C are the parties
mentioned in the agreements in B. toffer is the time the contract is offered to the
parties.

As we will see in the next section, a contract has a state consisting of a set
of constant definitions, agreements, and rules. The state evolves over time like
the state of a program evolves over time. A contract is fulfilled when all the
agreements in its state are satisfied and all the rules in its state are no longer
applicable. A contract is breached when some agreement in its state is violated.

5 Formal Semantics of FCL

This section presents the highlights of the formal semantics of fcl.

5.1 Models

A model of fcl is a model of the underlying logic of fcl. Throughout this section
let M be a model of fcl. Let V M be the valuation function of M that assigns
each (closed) expression of fcl a value in M. In particular, V M assigns each
observable f(t, a1, . . . , an) a value for all times t (and parameters a1, . . . , an).
Thus a model includes the values for all observables over all time.

5.2 Agreements

Let t ∈ Z and t be some canonical expression whose value is t. The value of an
obligation O(a,T ) in M at time t is V M(ϕ) where ϕ is the formula

∃u : Time . u ∈ T ∧ u ≤ t ∧ obs-event(u, a).
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The value of a prohibition F(a, T ) in M at time t is V M(ψ) where ψ is the
formula

∀u : Time . u ∈ T ⊃ (u ≤ t ∧ ¬obs-event(u, a)).

An agreement is satisfied in M at time t if its value in M at t is t. An agreement
is violated in M at time t if the value of its dual in M at t is t. We will
occasionally use an agreement O(a, T ) or F(a, T ) as a formula of fcl whose
meaning is ϕ or ψ, respectively.

5.3 Rules

Let R = ϕ �→ B be a rule of fcl and t ∈ Z. Define sub(ϕ, t) to be the set
of substitutions σ that map the free variables in ϕ to appropriate expressions
such that σ(Xtime) = t. The variable Xtime is used to instantiate a rule with the
current time of a contract. For any expression e and substitution σ ∈ sub(ϕ, t),
let eσ be the result of applying σ to each free variable in e if e is not a rule and to
each free variable in e except Xtime if e is a rule. Then define new-items(R,M, t)
to be

{eσ |σ ∈ sub(ϕ, t) ∧ V M(ϕσ) = t ∧ e ∈ B}.
R is active in M at t if V M(ϕσ) = t for some σ ∈ sub(ϕ, t). R is defunct in

M at t if V M(ϕσ) = f for all u ≥ t and all σ ∈ sub(ϕ, u). If R is defunct in M
at t, then R is not active in M at u and new-items(R,M, u) = ∅ for all u ≥ t.

5.4 Contracts

Let C = (toffer,B) be a contract. The state of C in M at time t ≥ toffer, written
state(C,M, t), is the set of constant definitions, agreements, and rules defined
inductively as follows:

1. state(C,M, toffer) = B.
2. If t ≥ toffer, then state(C,M, t + 1) =

(state(C,M, t)) ∪
⋃

R∈B
new-items(R,M′, t)

where M′ is the smallest expansion of M such that V M(ψ) = t for each
constant definition ψ ∈ state(C,M, t).

The model M′ in clause 2 is called the C-expansion of M at time t. A model
of C at time t is any C-expansion of a model of fcl at time t.

C is fulfilled in M at time t ≥ toffer if every agreement in state(C,M, t) is
satisfied in the C-expansion of M at t and every rule in state(C,M, t) is defunct
in the C-expansion of M at t. C is breached in M at time t ≥ toffer if there is
an agreement in state(C,M, t) that is violated in the C-expansion of M at t. C
is null in M at time t ≥ toffer if state(C,M, t) contains no agreements and every
rule in state(C,M, t) is defunct in the C-expansion of M at t.
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Notice that we are employing a very simple model of concurrency in our
semantics for contracts: At each time t, all active rules are applied simultaneously
and the resulting new components – constant definitions, agreements, and rules
— are added to the state of the contract at the next point in time. There
is no opportunity for the application of rules to interfere with each other. In
particular, a component can never be removed from the state once it is added
to it. It is possible, however, for a contract state to be produced that contains
contradictions, but this would be caused by a flaw in the contract, not a flaw in
the conceptual framework.

6 Two Additional Concepts

This section explains how permissions and reparations can be expressed in fcl.

6.1 Permissions

Agreements of the form O(a, T ) and F(a, T ) are used in fcl to represent
promises in the form of obligations and prohibitions. Notice that agreements
in fcl do not include expressions formed using an operator corresponding to
the deontic operator for permission. Unlike an obligation or a prohibition, a
permission is not a promise.

Some kinds of permissions can be expressed in fcl. For example, the per-
mission to exercise a call option is expressed by adding a rule ϕ �→ B to the
contract’s state where the condition ϕ holds if it is observed that the buyer of
the option exercises the option and B includes an obligation that the seller of
option sells to the buyer the goods specified by the option. See Sect. 7 for details.

6.2 Reparations

A contract usually specifies actions to be taken in case of the violation of a
part of the contract. A conditional obligation arising in response to a violated
agreement is considered as a reparational agreement. We extend the example of
a sale of a laser printer contract from [15, p. 5] to explain how a violation that
arises in contract can be “repaired”.

Example 2. The contract consists of five clauses:

1. Seller agrees to transfer and deliver to Buyer one laser printer within 22 days
after an order is made.

2. Buyer agrees to accept the goods and to pay a total of $200 for them according
to the terms further set out below.

3. Buyer agrees to pay for the goods half upon receipt, with the remainder due
within 30 days of delivery.

4. If Buyer fails to pay the second half within 30 days, an additional fine of 10%
has to be paid within 14 days.
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5. Upon receipt, Buyer has 14 days to return the goods to Seller in original,
unopened packaging. Within 7 days thereafter, Seller has to repay the total
amount to Buyer.

Note that clause 3 of this example is a primary obligation, saying that the
buyer is obligated to pay the second half within 30 days of delivery. Clause 4 of
is an example of reparational obligation in which an unfulfilled obligation can
generate obligations to “repair” this violation. It says what the buyer is obligated
to do if he or she violates the primary obligation.

Similar to the reparational obligation, a reparational prohibition is a condi-
tional agreement arising in response to a violated prohibition. Both the repara-
tional obligations and reparational prohibitions are reparational agreements. In
fcl, a reparational agreement will be expressed as a rule that can create other
agreements or rules in response to the violation of the primary agreement. To
express the potential violations, we introduce obs-event-during(T , e) to represent
the observation that the event e occurred during the time period T .

In fcl, a reparational obligation of O(a, T ) is expressed as a rule of the form

¬obs-event-during(T , a) �→ B

where a is an action. ¬obs-event-during(T , a) represents a potential violation of
agreement O(a, T ). If an obligation is satisfied, the rule to “repair” this oblig-
ation will never be active. Similarly, a reparational prohibition of F(a, T ) is
expressed as a rule of the form

obs-event-during(T , a) �→ B

where a is an action. A rule that represents a reparational prohibition of F(a, T )
will always be defunct if the agreement F(a, T ) is satisfied.

Consider clause 4 of Example 2, the reparational obligation of the primary
obligation given in clause 3 is the conditional agreement that, if the second half
of payment has not been observed within 30 days of delivery, then the buyer has
to pay an additional fine of 10% within 14 days. How this conditional agreement
is expressed in fcl is shown in Sect. 8.

7 Example 1 Formalized: An American Call Option

We formalize here the American Call Option introduced in Sect. 2 as a contract C
of fcl. C has two parties: a seller and a buyer. The unit of time is one day. Let the
offer time toffer of the contract, the time the seller offered the contract to the buyer,
be some day before June 30, 2015. C is defined as the pair (toffer, {D1,D2, R1})
where:

D1 : tbuy = 0 (June 30, 2015).
D2 : texpire = 170 (December 17, 2015).
R1 is defined below.
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C is constructed from two rules R1 and R2:

1. Rule for Buying the Option:
R1 = ϕ1 �→ {R2} where:
ϕ1 = obs-event(tbuy, e1).
e1 = (“Buy Option”, transfer($5), {buyer}, {seller}).
R2 is defined below.

2. Rule for Exercising the Option:
R2 = ϕ2 �→ {D3, A} where:
ϕ2 = obs-event(Xtime, e2) ∧ tbuy ≤ Xtime ≤ texpire.
e2 = (“Exercise Option”, transfer($80), {buyer}, {seller}).
D3 : texercise = Xtime.
A = O(e3, [texercise, texercise + 30]).
e3 = (“Transfer Stock”, transfer(stock), {seller}, {buyer}).

tbuy, texpire, and texercise are new constants of type Time. [texercise, texercise +30] is
the interval representing the set of times {texercise, texercise + 1, . . . , texercise + 30}.

Each of the three events e1, e2, and e3 are actions by one of the two parties.
The three events are tied to the contract. For example, a more exact name for
“Buy Option” would be “Buy Option Described by Contract C”. We assume
that each of the three events can happen as most once. ϕ1 asserts the option is
bought on June 30, 2015, and ϕ2 asserts the option is exercised at a time after
the option is bought and before the option expires.

The state of C in a model M at time t ≥ toffer, written as state(C,M, t),
evolves over time as indicated in Fig. 1. How the state of C evolves depends on
the observables specified by M. In the figure, let u be the time that R2 becomes
active, i.e., when the buyer exercises the option. Let σ be the substitution that
maps Xtime to u. Applying σ has the effect of replacing Xtime with u, whose
value is the time u. D3σ is thus the equation texercise = u, but Aσ is A since
Xtime does not occur in A.

8 Example 2 Formalized: A Sale of Goods Contract

We previously saw an encoding of the American Call Option in fcl. In this
section we formalize the sale of the printer contract introduced in Sect. 6.2.
Although this example contract is very simple, two points should be noticed.
First, as illustrated in Sect. 6.2, this contract includes a reparational agreement
that can used to repair a potential violation. Second, consider the total amount
specified in clause 5. Taken literally, it would imply that the total amount the
seller must repay to buyer in case of a return of the printer should be $200 as
stated in clause 2. Actually, this is certainly not the seller’s intention. In fact,
the total amount to be repaid should be the amount that the buyer has already
paid the seller (which may not be the full $200).

Now we formalize this contract in fcl to explain how we deal with the prob-
lems mentioned above. Let C be this contract expressed in fcl. C has two parties:
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state(C, M, toffer) = {D1, D2, R1} null

state(C, M, t + 1

+ 1

buy ) = {D1, D2, R1, R2} null

state(C, M, texercise ) = {D1, D2, D3σ, Aσ, R1, R2} breached

fulfilled

R1 is defunct

R1 is active

R1, R2 are defunct

R2 is active

Aσ is violated

Aσ is satisfied; R1, R2 are defunct

Fig. 1. Execution of the American Call Option C

a seller and a buyer. The unit of time is one day. C is defined as the pair (toffer, {R1})
where toffer is the time when the seller offered the contract to the buyer.
C is constructed from the following nine rules:

1. Rule for Ordering a Printer:
R1 = ϕ1 �→ {D1, A1, R2}.
ϕ1 = obs-event(Xtime, e1) ∧ toffer ≤ Xtime.
e1 = (“Order Printer”, transfer(order), {buyer}, {seller}).
D1 : torder = Xtime.
A1 = O(e2, [torder, torder + 22]).
e2 = (“Deliver Printer”, transfer(printer), {seller}, {buyer}).
R2 is defined below.

2. Rule for Delivering the Printer:
R2 = ϕ2 �→ {D2,D3, R3, R4, R5, R6}.
ϕ2 = obs-event(Xtime, e2) ∧ torder ≤ Xtime ≤ torder + 22.
D2 : tdeliver = Xtime.
D3 : obs-total-paid(Xtime) = 0.
R3, R4, R5 and R6 are defined below.

3. Rule for Returning the Printer:
R3 = ϕ3 �→ {D4, A2}.
ϕ3 = obs-event(Xtime, e3) ∧ tdeliver ≤ Xtime ≤ tdeliver + 14.
e3 = (“Return Printer”, transfer(printer), {buyer}, {seller}).
D4 : treturn = Xtime.
A2 = O(e4(obs-total-paid(Xtime)), [treturn, treturn + 7]).
e4 = λXtotal.(“Return Payment”, transfer(Xtotal), {seller}, {buyer}).
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4. Rules for Recording the Payment:
R4 = ϕ4 ∧ ¬ϕ5 �→ {D5}.
R5 = ¬ϕ4 ∧ ¬ϕ5 �→ {D6}.
ϕ4 = obs-event(Xtime, e5(Xpayment)) ∧ tdeliver ≤ Xtime.
e5 = λXpayment.(“Pay Seller”, transfer(Xpayment), {buyer}, {seller}).
ϕ5 = obs-event-before(Xtime, e3).
D5 : obs-total-paid(Xtime) = obs-total-paid(Xtime − 1) + Xpayment.
D6 : obs-total-paid(Xtime) = obs-total-paid(Xtime − 1).

5. Rules for Making Payments:
R6 = ¬ϕ6 �→ {A3, R7}.
ϕ6 = obs-event-before(tdeliver + 1, e3).
A3 = O(e5(200/2), [tdeliver, tdeliver + 1]).
R7 = ϕ7 ∧ ¬ϕ5 �→ {D7, R8}.
ϕ7 = obs-event(Xtime, e5(200/2)) ∧ tdeliver ≤ Xtime ≤ tdeliver + 1.
D7 : tfirst = Xtime.
R8 = ¬ϕ8 ∧ ¬ϕ5 �→ {R9}.
ϕ8 = obs-event-during([tfirst + 1, tdeliver + 14], e5(200/2)).
R9 is defined below.

6. Rules for Paying Fine for a Late Payment:
R9 = ¬ϕ9 �→ {A4, A5}.
ϕ9 = obs-event-during([tdeliver + 15, tdeliver + 30], e5(200/2)).
A4 = O(e5(200/2), [tdeliver + 31, tdeliver + 44]).
A5 = O(e5(10% ∗ 200/2), [tdeliver + 31, tdeliver + 44]).

torder, tdeliver, treturn, and tfirst are new constants of type Time. Each of the five
events e1, e2, e3, e4, and e5 are actions by one of the two parties. We assume
that the events e1, e2, e3, e4 can happen at most once and the “Pay Seller” event
e5 can happen at most twice.

obs-total-paid(t) represents the total amount that the buyer has been observed
to have paid the seller at time t. When rule R4 is active, D5 is generated. D5

is used to add a payment to the total amount paid at the previous time point.
D5 and D6 work together to record the happenings of the “Pay Seller” event e5

in the timeline. obs-event-before(t, e), a constant of type Time × Event → Bool,
represents the observation that the event e occurred on or before time t.

We identify that the buyer has the following options to choose from after he
has accepted the printer and made the first payment:

1. Buyer makes a return within 14 days after the delivery is made.
2. Buyer makes the second payment within 14 days after the delivery made.
3. Buyer makes the second payment between 15 to 30 days after the delivery

made.
4. Buyer makes the second payment with an additional fine between 31 to

44 days after the delivery made.
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R8 and R9 work together as a reparation if the second payment is not made
on time. Within 14 days the buyer has the first and second options to choose
from. R8 says if the first two options have not been chosen, then between 15 to
44 days the buyer is obligated to make the second payment. If it is paid late,
which means R9 is active, then an additional fine must be paid.

9 A Reasoning System

In this section we will sketch a reasoning system for fcl which is an extension
of a proof system for simple type theory. Let t be an expression of type Time

whose value is the time t, ϕ be a formula, Γ be a set of formulas, A be an
agreement, R be a rule, and C be a contract. For a model M of fcl, M � ϕ
means V M(ϕ) = t and M � Γ means M � ψ for all ψ ∈ Γ .

A reasoning system for simple type theory (and other traditional logics) has
a judgment of the form Γ � ϕ that asserts ϕ logically follows from Γ , i.e.,
M � Γ implies M � ϕ for all models M of fcl. Since constant definitions,
agreements, and rules are not expressions of simple type theory, we need the
following additional judgments in a reasoning system for fcl:

1. Γ �C,t ϕ asserts that ϕ logically follows from Γ and C at t, i.e., M � Γ
implies M � ϕ for all models M of C at t.

2. Agreement[Γ,A,C, t] asserts that A is in the state of C at t with respect to Γ ,
i.e., M � Γ implies A ∈ state(C,M, t) for all models M of fcl.

3. Rule[Γ,R,C, t] asserts that R is in the state of the C at t with respect to Γ ,
i.e., M � Γ implies R ∈ state(C,M, t) for all models M of fcl.

4. Satisfied[Γ,A,C, t] asserts that A is satisfied at t with respect to Γ , i.e., M � Γ
implies that A is satisfied in M at t for all models M of C at t.

5. Violated[Γ,A,C, t] asserts that A is violated at t with respect to Γ , i.e., M � Γ
implies A is violated in M at t for all models M of C at t.

6. Defunct[Γ,R,C, t] asserts that R is defunct at t with respect to Γ , i.e., M � Γ
implies R is defunct in M at t for all models M of C at t.

7. Fulfilled[Γ,C, t] asserts that C is fulfilled at t with respect to Γ , i.e., M � Γ
implies C is fulfilled in M at t for all models M of C at t.

8. Breached[Γ,C, t] asserts that C is breached at t with respect to Γ , i.e., M � Γ
implies C is breached in M at t for all models M of C at t.

The role of Γ is to specify the models in which C will be considered.
The reasoning system has several rules of inference including the usual rules of

inference for simple type theory. There is a rule of inference that shows Γ �C,t ϕ
extends Γ � ϕ:

Γ � ϕ

Γ �C,t ϕ
.

The rule of inference says that if ϕ follows from Γ , then ϕ follows from Γ and
C at t for any contract C and time t.
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The following three rules of inference show how a rule changes the state of a
contract:

Rule[Γ,R,C, t], Γ �C,t ϕσ

Γ �C,t+1 ψ1σ, . . . , Γ �C,t+1 ψkσ

Rule[Γ,R,C, t], Γ �C,t ϕσ

Agreement[Γ,A1σ,C, t + 1], . . . ,Agreement[Γ,Amσ,C, t + 1]

Rule[Γ,R,C, t], Γ �C,t ϕσ

Rule[Γ,R1σ,C, t + 1], . . . ,Rule[Γ,Rnσ,C, t + 1]

where
R = ϕ �→ {ψ1, . . . , ψk, A1, . . . , Am, R1, . . . , Rn},

ψ1, . . . , ψk are constant definitions, A1, . . . , Am are agreements, R1, . . . , Rn are
rules, and σ ∈ sub(ϕ, t)

There is a rule of inference for satisfied agreements:

Agreement[Γ,A,C, t], Γ �C,t A

Satisfied[Γ,A,C, t]
.

There are similar rules of inference for violated agreements, defunct rules, fulfilled
contracts, and breached contracts.

A reasoning system of this kind can be used to both prove statements about
a contract and to simulate the unfolding of a contract over time. The latter is
done by using Γ to specify the observations that are expected over the course of
the contract. The reasoning system can be strengthened by introducing temporal
operators that enable one to say, for example, that it follows from Γ that C will
be eventually be fulfilled.

10 Related Work

Several formal languages for writing contracts have been proposed. Our language
fcl is most closely related to the following work:

– S. L. Peyton Jones and J. M. Eber (J&E) [20,21].
– A. Goodchild, C. Herring, and Z. Milosevic (GHM) [12].
– G. Governatori and Z. Milosevic (G&M) [13,14,16].
– J. Andersen, E. Elsborg, F. Henglein, J.G. Simonsen, and C. Stefansen

(AEHSS) [1].
– C. Prisacariu and G. Schneider (P&S) [10,23–26].
– P. Bahr, J. Berthold, M. Elsman (BBE) [5].
– LegalRuleML Technical Committee (TC) [2,3].

The domains of these approaches are varied: J&E’s and BBE’s works are
restricted to financial contracts; GHM builds a domain-specific language for
business contracts; AEHSS is concerned with formalizing commercial contracts;
and the LegalRuleML TC focuses on the creation of machine-readable forms of
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the content of legal texts, such as legislation, regulations, contracts, and case
law, for different concrete Web applications. Same as P&S’s work, our proposed
language fcl considers the formalization of general contracts that are agreements
written by and for humans.

Several techniques are employed in the literature for developing a precise
formal language for specifying contracts. Most of the techniques, such as those
given in [12,13,16], belong to the event-condition-action (ECA) based scheme.
GHM and G&M model contracts as sets of policies. A policy specifies that
a legal entity is either forbidden or obliged to perform an action under cer-
tain event-based conditions. AEHSS provide an action-trace based language [1]
to model contracts. J&E’s functional programming based language [20,21] and
BBE’s cash-flow trace based approach [5] use the idea of observables to specify
events. P&S introduce in [23–26] a contract language CL for expressing electronic
contracts based on a combination of concepts from deontic, dynamic, and tem-
poral logic. CL restricts deontic modalities to ought-to-do statements and adds
the modalities of dynamic logic to be able to reason about what happens after
an action is performed. Rather than providing a logical language for contracts,
the LegalRuleML TC extends RuleML to provide a rule interchange language
with formal features specific for the legal domain. This enables implementers to
structure the contents of the legal texts in a machine-readable format by using
the representation tools. Motivated by the ECA-based formalisms and the idea
of observables, we introduce in fcl the concept of a rule that is (in its simplest
form) a conditional agreement that depends on certain observations. The use of
observables to determine both the meaning of a contract and how the meaning
of the contract evolves over time provides a basis for monitoring the dynamic
aspects of a contract.

Only P&S’s CL language and LegalRuleML can specify reparation clauses.
CL language incorporates the notions of contrary-to-duty and contrary-to-
prohibition by explicitly attaching to the deontic modalities a reparation which
is to be enforced in case of violations. LegalRuleML introduces in [2] a subor-
der list that is a list of deontic formulas to model penalties. We think CL’s and
LegalRuleML’s use of only contrary-to-duty obligations to recover a contract
when it is breached is too limited. There is no provision provided for recovery
from technical or business-related issues. In fcl, we interpret an agreement in
a contract in terms of the deontic concepts of obligation and prohibition. These
concepts are applied in expressions to actions that are executed by the parties of
the contract. Thus, the concepts express what a party ought to do and or ought
not do. fcl rules can also be used for reparational purposes when an agreement
is violated (see Subsect. 6.2).

With the exception of approaches provided by AEHSS, BBE, P&S, and Legal-
RuleML TC, all of the languages above are informal. The work of both AEHSS
and P&S include a trace-based reduction semantics model for contracts. These
two approaches provide a run-time monitoring of the fulfillment and breach
of a contract since the state of a contract at a time is determined by the
events that have happened. LegalRuleML utilizes the defeasible deontic logic to
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reason about violations of obligations. Both GHM’s work and G&M’s work lack
a formal semantics and a reasoning system even though they provide a good
framework for monitoring contracts. The semantics provided by J&E in [21] is
based on stochastic processes. J&E’s approach provides the ability to perform
compositional analysis of monetary values of contracts. This work can estimate
the expected value of financial contracts. BBE’s trace-based semantics allows
the modification of a contract according to the passage of time and the values
of observables. But since both of the approaches provided by J&E and BBE
pay more attention to finding the monetary value of contracts, they consider
the semantic meaning of a contract to be its cash-flow gain or loss, which is too
limited for general contracts from our point of view. We find this lack of work on
formal semantics surprising since one of the main benefits of defining a contract
language to be formal is to enable the language to have a precise, unambiguous
semantics.

Although the languages of AEHSS and P&S provide a formal mathematical
model for contracts with a formal semantics and are able to express some impor-
tant features of contracts, they are not as expressive as fcl. For example, in the
case where a contract is breached, the monitor should not only report a breach of
contract, but also who among the contract parties is responsible (blame assign-
ment). Except for the languages provided by BBE and LegalRuleML TC, all the
other contracts covered by these approaches, including the work of AEHSS and
P&S, are two-party contracts in which the parties are implicit. These approaches
are not able to determine who is to be blamed when a contract is breached. Our
proposed language provides explicit participants and thus provides the possibil-
ity of having contracts with both an unrestricted number of parties and with
blame assignment.

In addition, because time constraints are implicit in P&S’s CL language,
it only has relative deadlines where one party’s commitment to do something
depends on when the other party has performed an action. Our proposed lan-
guage fcl has not only relative temporal constraints, but also absolute temporal
constraints.

11 Conclusion and Future Work

In this paper we have presented fcl, a formal language for writing contracts
that may contain temporally based conditions. Changes to the meaning of a
fcl contract are triggered when the conditions in it become true. fcl admits
agreements that correspond to the deontic notions of obligation and prohibition,
can express conditions that depend on events and other observables, and include
condition-based rules to define new constants and introduce new agreements and
rules. We have sketched a reasoning system for fcl. To our knowledge, no other
formal contract language is as expressive as fcl.

fcl offers three advantages to the contract writer. First, since fcl has a
precise semantics, contracts written in fcl have an unambiguous meaning. Since
the underlying logic of fcl is simple type theory, the semantics of contracts
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written in fcl is based on very well understood ideas and the logical tools
for writing contracts in fcl are very expressive. Third, since fcl is a formal
language, software-implemented formal methods can be used to assist in the
writing and analysis of fcl contracts. In particular, we can use software tools
to check whether an action in a contract has been performed or not, to report
whether a contract has been fulfilled or violated, to compute the value of a
contract, etc. We can also use software tools to reason about possible future
outcomes of a contract and about the relationship between different contracts.

Our future work will include (1) extending the design of fcl, (2) writing
several additional examples of contracts in fcl, (3) finishing the development
of a reasoning system for fcl, (4) designing a module system for building con-
tracts out of contract modules, and (5) integrating fcl with contract law and
regulations. We will also validate fcl by implementing it in Agda [7,18,19], a
dependently typed functional programming language. In a future paper, we will
give a full presentation of fcl and its implementation in Agda.
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Abstract. The development of distributed systems based on poorly
specified abstractions can hinder unambiguous understanding and the
creation of common formal analysis methods. In this paper, we outline
the design of a system modeling language called DS2, and point out how
its primitives are well matched with concerns that naturally arise during
distributed system design. We present an operational semantics for DS2
as well as results from an ongoing Scala-based implementation slated
to support a variety of state-space exploration techniques. The driving
goals of this project are to: (1) provide a prototyping framework within
which complex distributed system protocols can be stated and modeled
without breaking the primitives down to low level ones, and (2) drive
the development of interesting and distributed system-relevant property
checking methods (e.g., linearizability).

Keywords: Distributed systems · Operational semantics · Scheduling ·
Concurrency · Actors

1 Introduction

Distributed systems, both large scale and small, are now critically important
in nearly every aspect of computing and in our lives. From embedded micro-
controllers to data centers and web applications that span multiple geographic
locations, more developers are building distributed systems than ever before.
The ability to rapidly construct and deploy correctly functioning distributed
systems is a growing necessity; unfortunately, this is hard even for experts. Non-
determinism, weak update consistency, and complex failure handling protocols
push far beyond what manual reasoning can grapple with, making it hard to
offer basic safety guarantees.

The formal methods research community has begun responding to some of
these challenges associated with building distributed systems. Recent efforts have
formalized several famously subtle algorithms [25] and generated correct, syn-
thesized implementations [13,29]. While these efforts represent significant steps
forward, their wider applicability is limited. For example, approaches that rely
on automated theorem proving [29] are beyond the expertise of all but a hand-
ful of academics and tend to abstract away from situation-specific complexities.
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Approaches that require developers to model systems using predicate logic [22]
or model-checking frameworks [12,16] provide only limited reasoning capabilities
and do not provide the requisite higher-level abstractions necessary for intuitive
modeling.

Concurrently with all these developments, new languages and frameworks
are continually emerging to help developers rapidly create new distributed sys-
tems. Languages such as Go and Rust and frameworks such as Akka are enabling
developers to build and deploy distributed systems more easily. However, these
approaches provide no formal basis for reasoning about the safety and correct-
ness of the resulting systems. The guarantees that they do provide are informally
documented, are non-portable, and low-level. Consequently, the developers’ abil-
ity to build and deploy complex systems has vastly outpaced their ability to reason
about their behaviors and detect design flaws. There is however an opportunity
here: by combining a simple and expressive programming model with strong for-
mal guarantees, one can achieve the best of both worlds. With that goal in mind,
we are developing a domain-specific language for distributed systems called DS21.

DS2 is being developed to allow developers specify, test, verify, and synthesize
correct distributed systems built on a clear operational semantics. DS2 uses an
Actor-based concurrency model [3,11,14] that is compatible with the popular
Akka distributed systems programming framework [1]. A working prototype of
DS2 system written in Scala exists, and many driving examples are being ported
using a front-end. Preliminary results from our effort appear in DS2’s official
website [9]. This paper details the aforementioned preliminary work’s operational
semantics, both its normal operation and its faults model.

While developing some of the central features underlying state-space explo-
ration of distributed systems2 expressed in DS2, we realized first-hand how treach-
erous the corner-cases can be. We detail some of these subtleties in Sect. 7. This
gave further impetus to our work on writing down a clear operational semantics.

The need for clear guiding semantics underlying distributed systems is fur-
ther exemplified by Chord’s [26] erroneous operation [31] that was discovered
with help of a manually written model of it in an external model checker. In
short, having a semantic basis helps carry out automated semantics-guided veri-
fication, supports more objective comparisons between various efforts, and helps
prepare the community to handle newer protocols being designed. A variety of
formal (e.g., linearizability checking [6]) and semi-formal (e.g., lineage-driven
fault-injection [24]) techniques can also build on a clear semantics.

Background: It is important to point out some central characteristics of distrib-
uted systems, over and above those present in shared-memory concurrency (e.g.,
P-Threads) or traditional message-passing based parallel programming (e.g.,
using MPI). Distributed systems ingest all these concurrency-related subtleties,
and additionally present other challenges:

1 Domain-Specific/Declarative-Specification of Distributed Systems.
2 Our focus is towards networked, asynchronous, deterministic, and non-Byzantine dis-

tributed systems. However, the model is easily extensible to include Byzantine dis-
tributed systems, too.
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– Weak (eventual [5]) consistency is the norm rather than the exception. This
adds to the non-intuitiveness of distributed systems behaviors.

– Given that faulty operation is the norm rather than the exception, processes of
a distributed system hover on different planes of operation at different times
(i.e. fault-free or faulty planes). Each time a fault occurs, the correctness
guarantees are subsetted to a core set of primitive ones. When faults are
correctly handled and normalcy returns, guarantees are elevated. A designer
must be empowered with the ability to simulate these fault/recovery driven
transitions, and check for the right level of guarantees being delivered.

2 Contributions

A key feature of our approach is the adoption of the simple strategy OO design
pattern [27], wherein the scheduler is the algorithm and the distributed system is
the context. This design approach provides both flexibility and extensibility both
with respect to actual algorithms, as well as implementations. Another feature
is that our design of DS2 facilitates the specification of normal behaviors, and
introduces – in a layered manner – various scheduling options that mimic faulty
behaviors. This matches the fault/recovery-driven transitions referred to earlier.
We now present specific primitives of DS2 that facilitate the creation, extension,
and systematic exploration of candidate distributed system designs:

– Locking mechanism: It allows an agent to control when to (and when not to)
receive messages, to model a single process disconnect.

– Message dropping: It helps model failures such as dropped packets and/or
network partitioning.

– Futures: At the implementation level, DS2 employs a mediator agent (tempo-
rary agent) to model an ask pattern. The use of a mediator agent removes the
need to broadcast the handle to the replier, thus freeing the asker from man-
ually handling the future resolution. This is inspired by the actual Akka [1]
implementation.

– Mixins: Mixins are known as traits in Scala. They enable the designer to incor-
porate variations to fault models into a scheduler elegantly. This approach
provides flexibility for algorithm designers, while at the same time shielding
users from distributed systems complexities. This approach also helps avoid
making a priori assumptions about fault models.

– State capture: capturing the global state and resumption from such cap-
tured global states allows us to develop backtracking algorithms, on-the-fly
scheduler switching, and parallel schedules exploration.

– Expressive power-wise: DS2 [4] has a model part (that facilitates state space
exploration) and a language part (a DSL for concisely specifying distributed
systems). In this work, we focus on the model that facilitates the state space
exploration and distributed systems analyses. It provides a rich set of primi-
tives to support flexible state-space exploration methods (as compared with
more standard model-checking notations such as TLA+ and Promela).
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Our approach is more in line with the needs of a real distributed systems
designer. In contrast, some prior language designs (notably Actors [3]), have
emphasized novel state-space exploration algorithms [28], and have not empha-
sized (to the same extent) the creation of a guiding operational semantics or
emphasis on key primitives as we summarized.

3 Overview

In this section, we give a brief overview of how our design choices fit together
synergistically. In Sect. 4, we present a more detailed example, walking through
most of the operational semantics rules to address the details.

In a real world example, when a distributed system has been constructed,
normally one or more agents comprising it should be bootstrapped, i.e. started.
It is exactly the same for our model, however with the scheduler taking control
of how the state of the system should evolve, by deciding what events happen
when and where.

After bootstrapping an agent, we arrange for it to have a Start message
in its input queue. The scheduler dequeues this message, finds the matching
action from the agent’s reactions map, and makes a copy of that action-template
and instantiates its relevant parameters. After that, the scheduler schedules the
action into its task queue (making it a task). The scheduler then can choose
whether to schedule something from another agent or merely resume executing
the scheduled task(s). Consuming a statement leads to that statement being
enqueued into the scheduler’s consume queue. We employ a consume queue to
expose interleaving effects of statements coming from different tasks scheduled
by different agents. The scheduler then executes each statement, removing it
from the front of the consume queue. This cycle repeats until some specified
stopping criteria are met.

The aforesaid simple design gives the scheduler the ability to model differ-
ent planes/levels of faulty behaviors in isolation (or combination, if chosen).
Examples of situations that can be modeled include reordering, duplication, and
dropping of messages; these are modeled by manipulating the agent’s queue.
Disconnects of single processes can be modeled using locking, and network parti-
tioning can be modeled by message dropping from selected agents queue’s, hence
simulating missing updates. The scheduler consume queue can be manipulated
to simulate different interleavings as well as delays of execution, forcing different
bug scenarios. Similarly, a crash in a node (agent), and injecting a fault or a
message that causes a fault can be simulated.

The rest of the paper is organized in the following manner: an illustrative
example is given in Sect. 4, followed by the walkthrough Sect. 5 of the operational
semantics rules that are stated in Fig. 2, then the faults operational semantics are
explained in Sect. 6. A real example of a bug discovery in our project is discussed
briefly in Sect. 7. After that, we present related work in Sect. 8 followed by the
concluding remarks in Sect. 9.
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4 Walk Through Example

A distributed system is constructed by the code in Listing 1.1. We begin by
creating a distributed system ds, a client c and a server s. Then a reaction is
added to the client in lines 6 through 10. Two reactions are then added to the
server in lines 12 through 16. Finally, the client and server are added to the
distributed system that, in turn, is attached to the basic scheduler (basic in the
sense of being controlled by the user).

One execution of such a distributed system is shown in Listing 1.2. We delib-
erately chose a schedule that leads to a large number of rule-firings. The listing
is explained via the comments, and Fig. 1 visualizes the resulting sequence of
states step-by-step.

A design-time question might be: what schedule might lead to a client avoid-
ing blocking on a future? The answer is to swap the consuming of the resolving
send (on line 17 of Listing 1.2), with consuming the blocking get (on line 16 of
the same listing). Another intent may be to exhibit a deadlock by the client.
We then keep the same schedule, but we remove all statements and actions,
consumed and scheduled respectively, from the server, and reset the server state
(i.e. locking the server, then making q = ε, and making its local state L empty)
before it executes the resolving send. By doing the latter, we simulated a crash
of the server and there is no way that client gets its future resolved, ending it
in the simplest forms of a deadlock. One last attempt is to simulate a message
drop for a message sent by the same resolving send to resolve the client’s future
(say we drop RF from client’s queue, since getting the messages into the queue
does not mean it is delivered, but rather means it is in flight and only considered
delivered after it gets scheduled and/or handled by the receiving agent).
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In addition, fault assumptions can be enabled/disabled selectively to affect
how a scheduler explores a distributed system, i.e. the operation of a scheduler is
not disconnected from these assumptions. In our implementation, we have these
assumptions implemented in the form of mixin Scala traits. When these traits
are mixed into a scheduler they change what different faults are/not allowed
to be simulated by the scheduler. Even better, a developer can replace, extend,
re-use and/or override these mixins by providing their own scheduler-specific
implementations that, in turn, enable their schedulers inject/simulate faults in
a very specific manner with respect to their algorithms.

All these are illustrations that highlight the flexibility offered by the DS2
approach in creating faulty situations, and forcing a plethora of semi-formal
state exploration methods to cover them.

5 Operational Semantics

Despite DS2’s simplicity, creating a concise semantics for it proved to be a chal-
lenge. Our initial operational semantics spanned dozens of pages [9], which led
us to invent several abstract state predicates. The result is a concise semantics
expressed in eight simple rules, and complemented with another eight fault-
rules Sect. 6, that still retain the full expressiveness that real-world developers
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Fig. 1. Example run invoking majority of operational semantics rules. Subfigures refer
to line numbers in Listing 1.2
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Fig. 1. (continued)

demand. For example, it provides both asynchronous communication and syn-
chronization primitives. At the same time, it forms the minimal rule set needed
to understand and reason about communication and synchronization patterns
(Sect. 5.2). This conciseness gives us confidence that our operational semantics
and model will benefit designers who seek to build formal method tools and
those seeking to model and understand new and existing distributed protocols.
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Fig. 2. DS2 operational semantics

We achieved this parsimony by defining a set of structures representing the
state of a distributed system, a set of predicates to de-clutter the rules from
mathematical details, and a set of conventions to make our presentation intuitive.

5.1 Structures

Now, we introduce the core structures of our semantics. We use the convention
( , , , p, q, , r, . . .) to indicate three don’t care arguments followed by p and q,
then one don’t care followed by r, and the tail sequence is a don’t care.
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Distributed System is a tuple 〈A ,T ,Σ〉 with the set of agents in a dis-
tributed system A , the set of all temporary agents T (initially empty; each such
agent handles resolving a single future, and then disappears), and a scheduler
Σ. We will first elaborate the primitives in our model, and then return to the
components of the distributed system.

Message is a tuple 〈s, p0, . . . , pn〉 where s is the sender agent, and p0, . . . , pn

is the payload of the message. The set of messages is symbolized by M .
Statement is a wrapper around the code to execute. It is a tuple

〈γ, code, k, p∗〉 where γ is the action containing this statement, code is the actual
code to execute, k indicates the kind of a statement e.g. Send for send statement,
and p∗ are the parameters of the statement. A statement holds a reference to its
containing action γ to provide access to the message m that invoked the action
and agent a whose local state could be modified/accessed by the statement. In
addition, in case a statement was preempted, it is known where it should be put
back (to the front of the to-execute queue of the action γ); a walk-through of
the rules in Sect. 5.4 will clarify this.

Action is essentially the sequence of statements to execute. More specifi-
cally, it is a tuple 〈m,a, stmts, ζx〉 where a is the agent containing this action
(whose local state may get modified/accessed by this action’s statements), m is
the message that invoked this action, stmts is a sequence of statements or the
template. ζx is a reference to the to-execute queue of statements. The set of all
actions is Γ.

Timed Action is an action associated with two values of time. It is the
tuple 〈t1, t2, γ〉 where γ is scheduled to execute every t1 time with tolerance of
t2 amount of time, usually used to model heart beat. The tolerance time t2 is
there to add delay-tolerance for message delivery, since it cannot be predicted.

Future is a synchronization construct, which is a tuple 〈r, val〉 where r is a
boolean indicating whether the future is resolved (defaults to false) and val is
the value resolving this future (defaults to ⊥, or no value). A future object is
returned by the Ask statement type, as will be presented shortly.

Agent is a communicating autonomous process. It is a tuple
〈q, l, b,R, τ,L , p〉 where q is its receive queue, the reactions of the agent
R : M → Γ, timed actions set τ = {〈t1, t2, γ〉}, L is the local state of an
agent L : Ids → V als. Blocked b and locked l are flags whose initial values
are false and true, respectively. A blocked agent cannot execute statements,
consume, or schedule tasks, an agent is blocked if a future it tries to access is
not resolved. Locked l is used by the scheduler to tell if the process is receiving
messages or not, e.g. its server socket is not open, to model a disconnect. In order
to model network partitioning, however, the p is the partition id to which this
agent belongs, initially the same for ALL agents. Many or all agents can share
the same value, if they are in the same network partition. Otherwise, agents in
different partitions must have different partition id.

Scheduler encodes the runtime (an algorithm) of the distributed system.
It is a tuple 〈c, ζt, ζc〉 where ζt is the task queue (a queue of actions), ζc is the
consume queue (queue of statements), and c is a logical clock (lamport clock [20])
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that is incremented by one each time a statement is executed. The role of a
scheduler is to explore a sub-set of the allowed behaviors by the operational
semantics in order to reveal a conclusion about the system under analysis.

5.2 Communication and Synchronization

Our model uses a minimal set of four communication and synchronization prim-
itives. Such a restriction does not limit the expressivity of the language, while at
the same time facilitating understanding. These primitives are now explained.
Send is a fire-and-forget type of statement. Its signature is send(αsrc, μ, αdst).
Ask is a fire and return a handle (future) statement. Its signature is ask(αsrc, μ,
αdst, vn). Its details are similar to that of send, except for vn which is a variable
name where the handle (future) f is stored in source agent αsrc local state. When
an ask statement is fired, the message μ is sent to the destination agent, by a
temporary agent on behalf of the source agent αsrc. Later in time, there may/not
be a reply (possibly from another agent than αdst) to the sender of the message
that resolves the future when received by the temporary agent. The temporary
agent would update the source agent αsrc upon receiving that reply. Get is the
statement used to block on a future object. Blocking means not executing any
more statements till that future object is resolved, then the agent is unblocked to
schedule, consume, and/or execute tasks/statements. There are two variants of
get statements. The blocking-get signature is get(α, vn, vn2) and the timed-get
signature is get(α, vn, vn2, to). The agent calling it is α, the variable holding the
future is vn, the variable that holds resolved value is vn2, and the time out limit
is to.

5.3 Predicates and Conventions

We first need to state our conventions. References and Types are inferred
directly from alphabets α, μ, γ, s, f, vn and where as follows: an agent with
α ∈ A , message with μ ∈ M , action γ ∈ Γ, statement s ∈ Statement, and
future with f ∈ F . We also refer to variable names with {vn,where} ∈ Ids,
appended with a number if more than one. The same thing goes to other types.
Subscripts are used in two ways. First, in parameters to indicate the function
of the parameter e.g. αs for source agent. Second, we use it to indicate where the
entity belongs e.g. Lα for local state of agent α. Specific task in a scheduler
γΣ,α means a front-most action in a scheduler’s task queue ζt that was scheduled
by agent α. We also use the same structure (tuple) as a predicate with com-
mas indicating place inside the tuple representing them as opposed to dots that
are used to state the flexibility of location inside a tuple/sequence. Involved(s)
returns a variable length tuple according to the kind of current statement. The
tuple represents the arguments involved in this statement.
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Involved(s) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

〈αsrc, μ, αdst〉 if s[k] = SEND
〈αsrc, μ, αdst, vn〉 if s[k] = ASK
〈α, vn, vn2〉 if s[k] = GET
〈α, vn, vn2, to〉 if s[k] = TGET
undefined otherwise

The meanings of symbols inside each tuple returned are as explained in Sect. 5.2.

5.4 Rules Walkthrough

Now, we explain the rules in Fig. 2 one by one, and illustrate the effects of these
rules with the aid of the subfigures of Fig. 1 (when applicable). Let us start by
explaining one rule, namely SCHEDULE.

Schedule. The SCHEDULE rule states that to schedule a task from an agent α,
the agent needs to be in the unblocked (¬b) state. Further, the agent should have
an entry in its reactions map R that maps the message received, μ, residing at
the head of its queue q (indicated by μ.q), to an action. Moreover, the action
field formal parameters m and a must be set to μ and α, respectively. Further,
the action’s execute queue ζx must refer to stmts (indicated by ζx,γ = stmts),
where stmts is nonempty. In addition, the ChoseSchedule(Σ, α) predicate must
be true. The predicate means the scheduler chose to schedule a task from agent
α. We use the “as” notation, as in Ocaml, to serve as an alias; for instance,
γa as 〈μ, α, stmts, ζx〉 uses γa as an alias for 〈μ, α, stmts, ζx〉. The system tran-
sitions to a state where the message μ is removed from the front of agent α’s
queue, and the action γα is appended to the scheduler’s task queue (ζt). An
example of this rule before it triggered twice is shown in Fig. 1b and after it
triggered in Fig. 1c.

Consume. The CONSUME rule fires when the scheduler (Σ) has a task in its task
queue (ζt). In addition, that task is scheduled by a currently non-blocked (¬b)
agent α. Further, the predicate ChoseConsume (Σ, α) must return true, which
means that the scheduler chose to consume from a front-most task (symbol-
ized by γΣ,α) that was scheduled by agent α. Then, the system transitions by
(1) popping the statement that is at the front of the task’s execute queue (s.ζx)
(2) appending that statement to the back of the scheduler’s consume queue
(ζc.s). An example of this rule before triggering four times is shown in Fig. 1c
and after it triggered in Fig. 1d.

Send. This rule (SEND) states that if the current statement s at the front of the
scheduler consume queue ζc is a send statement (IsSnd(s)), and that statement
parameters returned by Involved(s) are 〈αs, μ, αd〉, and the statement is not a
resolving send (¬IsRSend(T , s)), i.e. the destination αd isn’t a member of the
temporary agents. In addition, neither the source agent αs is blocked (¬b) nor
the destination agent αd is locked nor they reside in different network partitions
(p = p′). Then, if the scheduler chose to execute a statement (ChoseExOne(Σ)),
the transition happens. That is, the message μ is appended to agent αd queue
(q.μ). In addition, the statement is removed from the front of the scheduler’s
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consume queue (ζc). An example of this rule when it triggers is shown in Fig. 1f
and after it completes is shown in Fig. 1g.

Ask. ASK rule states that if the current statement to execute is an ask, predicate
IsAsk(s), and like in SEND rule, the source agent is in unblocked state (¬b) and
the destination agent αd is in unlocked state (¬l), and they reside in the same
network partition (p = p′). Then, if the scheduler chose to execute a statement, a
fresh temporary agent αt (i.e. αt =fresh(Agent)) is created along with a fresh
future f ∈ F (i.e. f =fresh(Future)). Then, the transition happens: (1) the
temporary agent αt is added to the temporary agents T , inheriting the same
network partition as the asker/source agent (p′), (2) the future f is added to both
the temporary agent and the source agent αs local states under the key vn, i.e.
L ∪(vn, f) (3) the temporary agent local state updated with the (where, αs), to
keep track where to forward the RF (Resolve Future) message in case the future
was resolved. (4) the sender field of the message updated to be the temporary,
μ(αt, ) (5) the ask message enqueued at the destination agent αd’s receive queue,
q.μ. An example operation of this rule is visualized in multiple frames of Fig. 1,
namely in frames 1e, 1f, and 1g. Important to notice that the updates to local
states of both temporary and source agent stated here are not shown in the
figure due to space constraints.

Resolving Send. R-SEND rule states the same guards as a regular SEND rule
except that the destination is a temporary agent, i.e. predicate IsRSnd(T , s). As
such, additional work need be done over a normal send by αt. So, if the scheduler
chose to execute the statement, the transition happens: (1) The temporary agent
updates its future resolved status to true and that future’s value from the first
payload of the message μ, and encapsulates it in a fresh RF message setting its
sender to the original sender αs, i.e. RF (αs, f(true, μ[p0])) (2) The RF message is
then inserted into the destination agent αd queue with the resolved future, before
all non-Resolve-Future messages but after all other RF messages, as shown by
RF ∗.RF (αs, f(true, μ[p0])).q (3) The temporary removes itself from the tempo-
rary agent’s set, T \ {αt( , , , , ,L ∪{(vn, f(true, μ[p0])), (where, αd)}, p′)}. Up
to this point, the future is considered resolved, however it is up to the scheduler
implemented to decide when to update αd local state with the resolved future, as
can be told from the post state of the destination agent local state, L ∪ (vn, f).
An example of a resolving send executing is shown in multiple frames in Fig. 1,
namely frames: 1k, 1l, 1m and 1n.

Resolved Get/Timed-Get. R-GET rule states that if the current statement is
either a blocking-get (i.e. IsGet(s)) or a timed-get (i.e. IsTGet(s)), and the
future they try to retrieve is already resolved,f(true, val). In addition, that
future is stored in α’s local state under entry vn. Further, the scheduler chose to
execute a statement. Then, that future’s value is retrieved and stored in another
entry in the local state of the same agent, i.e. L ∪{(vn, f(true, val)), (vn2, valf ).
Figure 1p shows the state before this rule triggered, and Fig. 1q shows the effect
after it is triggered by agent c.
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Blocking Get. BLK-GET rule states the same guards stated by R-GET except
that: (1) the future in this case is not resolved (2) the current statement is a
blocking-get (IsGet) (3) and the future is unresolved f(false, ). If the scheduler
chose to execute a statement, a transition happens: All statements indicated by
ss, that are returned by the PreEmpted(Σ) in the same order they were con-
sumed, are appended to the current statement and the resulting sequence of state-
ments prepended to the front-most task execute queue, i.e. s.ss.ζx. PreEmpted(Σ)
determines all those statements, that were consumed from the same agent α tasks
and returns them. Then, these statements in ss are removed from the consume
queue, as in ζc \ ss. Lastly, the agent blocking status is updated from unblocked
¬b to blocked b. An Example of this rule prior it triggers is shown in Fig. 1i and
after it triggers in Fig. 1j.

Timed Get. T-GET rule states the same guards as in BLK-GET rule except it
does not block indefinitely. It only blocks temporarily until it times out (to ≤ 0),
delaying execution of all those statements till the agent unblocks. That is the
time for them to have been consumed, i.e. appended to the consume queue
of the scheduler, ζc.ss (skipping the statement s). Agent α’s state changes to
unblocking.

6 Faults and Exploration Semantics

We present the semantics for faulty behaviors that can, in our framework, be
introduced during testing. These rules can be thought of as facilitating high-level
fault injection. Structuring high-level fault injection rules in this manner ensure
that users can cover faulty scenarios systematically.

In Sect. 6.1 we will walk through the rules shown in Fig. 3 and explain in
detail how they work. The next section, Sect. 6.2, we will show how they can be
used to simulate faults in the context of previous sections example, and other
complementary examples when needed.

6.1 Rules Walk-Through

In order for a scheduler to determine the existence of a bug in the model, it needs
some facilities. These facilities, as we mentioned before, include the presence
of a locking mechanism to simulate network partitioning, fault injections to
simulate, for example, message duplication, and many others such as network
message delivery/dropping mechanisms like the incoming queue. The reader is
highly encouraged to refer frequently to Fig. 3 in order to understand rules while
reading this walk through.

Message Dropping. MSG-DROP rule states that if the scheduler (Σ) chose
to drop a message (μm) from an agent (α(. . . μm . . . , , , , , , )), shown as
ChoseDrop(Σ, α, μm), then that message is discarded from that agent’s queue
(α(. . . , , , , , , )). This rule is of extreme importance, and the reason is
that message dropping is the root cause of the majority of problems in
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Fig. 3. DS2 faults semantics

distributed systems. As a matter of fact, the majority of faults can be reduced
to message dropping or are a product of dealing with dropped messages. Our
non-primitive network partitioning rules are built around implicit message drop-
ping by communication rules (SEND, ASK, and R-SEND). When these three rules
detect a different partition indicator/identifier between the source and destina-
tion agents, they drop the message to be sent; that is what rule IMPL-DROP in
Fig. 3 does and is explained next.

Implicit Message Dropping. The rule IMPL-DROP states that on execut-
ing any statement (ChoseExOne(s)) that is either a send or a resolving send
((IsSnd(s) ∨ IsRSnd(s)), or an ask (IsAsk(s)) whose involved communicating
agents (as and ad), shown as 〈αs, μ, αd〉 = Involved(s) for send/resolving-send
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and as 〈αs, μ, αd, 〉 = Involved(s) for ask, reside on different network partitions
(p 
= p′) then the message (μ) is implicitly dropped. Hence, the post state is the
exact equivalent to the prior state of the distributed system.

Message Reordering. MSG-REORD rule states that if: (1) The scheduler (Σ)
chose to reorder (ChoseReOrder(Σ, α,O)) an agent’s (α) incoming queue
according to one of the policies specified by O ∈ {P2P,¬P2P} ( P2P policy
means that the new reordering of messages must keep the relative order between
point-to-point communication, i.e. messages sent from the same sender and to the
same receiver should maintain their relative order), and (2) the effect of permut-
ing these messages in the old version of the queue (q) according to the policy
specified above, QPermuted(q,O, q′), resulted in a policy-respecting queue of
messages (q′), then the system transitions and the new reordering of messages
takes effect.

Task Interleaving. Task interleaving rule TASK-INTERLV states that if a sched-
uler (Σ) chose to interleave its task queue (ζt), stated as (ChoseInterleave
(Σ, O)), according to one of the polices O ∈ {PO,¬PO}, then the resulting
queue (ζ ′

t) is a permutation of the old task queue that conforms to the policy
specified (TPermuted(ζt, O, ζ ′

t)). The policy PO means that the interleaving of
tasks should respect “program order”. That is, the order of tasks scheduled by
the same agent should stay the same relative to each other.

Message Duplication. The message duplication rule (MSG-DUPL) is a fault
injection mechanism. This rule states that if a scheduler (Σ) chose to dupli-
cate a message (μm) that is in an agent’s queue (α(. . . μm . . . , , , , , , )) – all of
that is stated as ChoseDupl(Σ, α, μm) – then it inserts a copy of it anywhere
in the agent’s queue (α(. . . μm . . . μm . . . , , , , , , )) in a way that is specific to
the target task of that scheduler. This is why a certain position of where the
duplicated message is to be inserted into an agent’s queue is not specified. Other
kinds of message duplication can be due to either crashes of processes followed
by retries e.g. Re-transmission of such messages till an ack is received, or due
to some other behavior induced re-transmission3. Such behaviors are not con-
trolled by our model, since they are specified by target systems’ developer(s),
and do impose causality constraints for message duplication. However, they are
explorable by schedulers even if said schedulers do not use fault injection mecha-
nisms. Fault injection using message duplication is a way to give that last nudge
(when appropriate) to the system to hit a bug, and hence is prioritized last
compared to other rules that simulate faultiness.

Network Partitioning. There are two rules that manipulate network parti-
tioning (NET-PART and NET-UNPART), and another that makes use of network
partitioning to implicitly drop messages (IMPL-DROP explained before). The net-
work partition rule NET-PART states that if the scheduler (Σ) decided to parti-
tion a set of agents ({αa0, . . . , αam}) away from a distributed system – that is
to place them in a separate partition of their own – then the partition identi-
fier (p) in these agents is changed to a fresh partition identifier (p′), indicated
3 e.g. a heart beat sending messages every certain time period.
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by p′ = fresh(Ids). The network unpartitioning rule NET-UNPART, on the other
hand, (1) takes two sets of agents having different partition numbers per set, (2)
creates a new partition id for the resultant combined partition, and (3) updates
the partition id on all of the agents from both sets/partitions to be (p′′), i.e.
the new partition id. After which, all agents reside in the same partition (p′′)
and can communicate with each other. An implementation of the model may
choose any function that guarantees the deterministic resultant partition id for
combining the two. The model does not impose any restriction to do that or not.

Process Crashing. The process crashing rule PROC-CRSH states that if a sched-
uler (Σ) chose to crash (ChoseCrash(Σ, α)) an agent (α), then that agent sim-
ply ceases to exist in the distributed system (A (. . .)), along with its stored state
(queue and local state4).

In the next section, we will discuss how these fault rules make sense in a
realistic system exploration by discussing the previous example and introducing
high level complementary ones when needed.

6.2 How Faults-Rules Help

From Fig. 1 we will try to focus on deadlock detection to illustrate the importance
of the rules shown in Fig. 3. This helps in illustrating the benefits of the faults we
can model to address realistic situations. In the case that the deadlock detection
example does not apply to illustrate a rule, we will introduce a complementary
example to help.

Message Dropping. A message is not considered delivered till it is handled
by the agent, e.g. by stashing it or by processing (potentially producing more
messages, and other possibly irreversible side effects). This leaves sufficient room
for the model to address realistic message dropping scenarios to model different
faults. One example is that we can model packet/message loss by dropping that
message from the destination agent’s queue. We could have dropped the resolve
future message (RF ) from the client’s queue to simulate the packet/message
loss. The client, then, can deadlock and the scheduler will be able to detect that.
These examples (along with upcoming network partitioning examples) show the
importance of the ability to simulate message dropping in a formal model for
distributed systems.

Message Reordering. An intuitive example of message reordering rule ben-
efit is easily shown in multiple examples. One could think of a bank account
getting mutated by two clients at the same time, c1 and c2. These clients issue
their orders independently, while the bank account keeps track of what balance
remains to be withdrawn. Let us assume that the initial balance is zero and
it is updated in real time, i.e. no human supervision and/or review is involved
in updating the balance. Client c1 deposits some money, but meanwhile c2 is
withdrawing from the balance. If c1’s message/update reaches before c2 request
4 For this base model being discussed in this work, all it has as a state is a queue and

a local-state. Implementations, of course, can have more than that.
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is received and fulfilled, c2 is happy. If, however, c2’s request happens before
c1’s request, c2 is not happy. Client c2 keeps on re-issuing the same request, but
withdrawal is always prioritized (or reaches the server faster) over c1’s. There,
we can see that message reordering simulating delayed messages (relative order
of messages arriving at the server) taking bad effect on the outcome of c2. The
same scenario happens with updating any shared resource that supports any
non-commutative pair of operations, except it may go much deeper than two
interactions between just three agents. All of these scenarios are enabled by the
message reordering rule.

Message Duplication. Consider the same example for the bank account dis-
cussed above. Since c2 is duplicating the request often, there could be the pos-
sibility of repeating a withdrawal. It could be the case that one request took
completely different route to the server, and got delayed beyond anticipation.
Due to that, c2 times out and normally re-issues the same request. However, the
old message gets delivered along with the new one and both get processed. Of
course, this duplication is very common in distributed systems, and normally
processes should be coded to handle such scenarios. It is helpful to have such
exploration ability in the model to check for unwanted behavior due to mes-
sage duplication and that logic handling such duplication handles the situation
correctly.

Tasks Interleaving. In the case that message reordering is short of showing a
bug, can there be a tweaked task interleaving to target that bug and show its
existence? It turns out that, in our bank account example, if the server dispatches
its tasks in a program-order (PO) and point-2-point (P2P ) respecting manner,
there still could be a way to interleave the tasks of two different agents in a way
that they cause problems, e.g. overdraft. The worst case scenario would be the
server dispatches all tasks coming from c2 then the account balance is doomed, if
there is no overdraft protection. If at least one c2 task was dispatched before c1
deposits money, a bit more optimistic, it still can cause overdraft. A scheduler
relying on this rule can explore said scenarios, even if message reordering fell
short of revealing a bug.

Network Partitioning. One example is that we can model a network partition
between the client and the server shown in the example, dropping all messages
going either way implicitly by any communication primitive described previously.
Another example is to simulate a network partition before that RF message
(in example shown in Fig. 1) is sent to the client and it will be auto-dropped
based on the partitioning semantics and the IMPL-DROP rule semantics. The
same network partition, between the client and server, can actually occur before
the client sends its request. That would lead to the request to be lost (i.e. not
delivered to the server for handling), and then the way the client is coded assumes
it was delivered. That, in turn, will lead the client to block over a promised
future whose request isn’t even delivered, leading to another deadlock scenario.
A more involved network partitioning scheme that may be simulated by network
partitioning (implicitly message dropping between partitions) is to keep two
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partitioned sets of agents to evolve their state and stay divergent to simulate
some consistency violation scenarios.

Process Stop/Crash. Going back to our deadlock detection example, from
Fig. 1, it is easy to crash the server after/before the client request is issued (but
before the server processes it) to cause a deadlock at the client. That server may
come back online, after it lost the message, or it can stay down forever, leaving
the client blocking on an unresolved future. Under the assumption of having
some kind of a persistent state private to each agent, e.g. by checkpointing
in-memory data to the disk, there would be an interesting set of examples to
investigate the state consistency between processes that occasionally crash then
reboot and weather they may recover and converge from state view divergence.
Our implementation of the model takes advantage of the assumption that there
is always private disk (persistent) store available to each agent, in order to be
able to simulate that. Actually, in any distributed system, when there is an agent
that is to process requests on which other agents are waiting or that causes more
updates to propagate through the distributed system, crashing certain processes
is a good idea to cause data consistency problems across the system (divergent
state view) and/or other concurrency problems (e.g. deadlocks). After all, a lot
of distributed systems problems/faults are due to message dropping, processes
demise and/or reboots.

7 Bug Discovery in Snapshot of Runtime

By forcing us to think clearly, the operational semantics helped expose a bug
in the original implementation of snapshotting support. For example, before we
had an operational semantics, we struggled to correctly capture snapshots of
the runtime state (which includes both the distributed system and the scheduler
attached to it). For the most part, a system and its scheduler must be “deep
copied,” to create an isomorphic state; however, not everything can be copied
verbatim. When copying a distributed system, the steps must be carried out in
two phases: (1) a copy phase (creating objects but leaving references untouched)
for all entities in it, followed by (2) a link phase (re-wiring references to entities
from new snapshot) for all of them. However, in our original implementation, this
was not the case. For example, an action’s ζx statements kept on referring and
affecting the original distributed system’s agents even after the linking phase.
More over, ζx statements were not the same statements from the snapshot’s
stmts template. So, when the link operation updated the agent field a, which
in turn updates all of the template statements, it did not reflect in those inside
of ζx. The operational semantics exposed the bug in the original snapshotting
implementation that left actions in the snapshot still attached to the parent
distributed system instead of their snapshotted counterparts. The operational
semantics were essential in correcting snapshotting, which will be the cornerstone
of DS2’s model checking and testing functionality.

After correcting this mistake, DS2 can now easily and reliably capture, fork,
and restore distributed system states. Listing 1.3 shows how succinctly one can
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now snapshot a whole distributed system along with its scheduler state and then
restore from it.

A key detail here is that the scheduler sch need not be the same scheduler
that saved the state. This flexibility enables different schedulers, for example,
those running truly concurrently to explore different paths in the distributed
system’s state-space; and/or cooperation between different analyzing schedulers,
i.e. switching on the fly between different kinds of analyses to be performed
by different schedulers. An additional importance of this snapshot feature is
enabling backtracking/stateful algorithms.

8 Related Work

Several distributed-system related projects have emphasized the use of formal
semantics. SimgGrid [7] focuses on the simulation and model checking of distrib-
uted systems. In Verdi [29], the Coq system is used to develop formal operational
semantics for network and node-failure models to synthesize distributed systems
from specifications. Our work focuses on targeted correctness of distributed sys-
tems, as opposed to performance simulation as in SimGrid. Our goal is to allow
designers to model a variety of distributed systems in the DS2 language; the
formal definition of a modeling language is not targeted in Verdi.

MoDist [30] is a transparent operating system-agnostic model checker for
unmodified distributed systems. Our work is extensible to address specific needs
of distributed systems using custom schedulers. MaceMC is an execution based
model checker for distributed systems specific to the Mace language. It benefits
from coarse-grained interleaving exploration and random walk [17].

IronFleet [13] is a layered approach to TLA-style [22] state-machine refine-
ment and Hoare-logic [15] based verification to synthesize provably correct dis-
tributed systems, developed by Microsoft Research.

Thanks to its utilization of operational semantics information for control flow
statements and state space reduction policies, SAMC [23] was able to show huge
gains, both in performance and precision, over regular Dynamic Partial Order
Reduction (DPOR) based approaches.

Pony [2] is an actor based programming language that relies on avoiding
blocking (i.e. lockless) to produce high performance distributed systems. Future
support for fault-tolerance is expected to be based on Erlang’s actors supervisory
hierarchies [8].

Distributed Closures [10] rely on fixing distributed data (i.e. not allowing
mutation) that are called “silos” and sending closures (function shipping) that
are called “spores” instead of sending messages. These functions construct a
lazy graph of computations over these constant distributed data that are finally
evaluated/computed when needed to be materialized. This provides strong type



Operational Semantics for the Rigorous Analysis of Distributed Systems 229

safety, a functional approach to programming distributed systems, and some
fault tolerance.

An approach for sequential programming (actors) in distributed systems [19]
proposes a paradigm shift in programming distributed systems, by suggesting
programming language level support to address said systems. Future direction
of this work may support fault tolerance.

9 Conclusion

The current implementation status of our DS2 core is in its final stages of test-
ing, and tightly follows the formal operational semantics explained in this work.
We are working on developing an extended version of linearizability checking
scheduler for distributed systems inspired by Line-up [6] and guided by the
operational semantics explained in this work. Our immediate targets are devel-
oping a front-end parsing the benchmarks we developed in Akka: Paxos [21],
Chord [26], and Zab [18] for our linearizability checker, semantics-aware dis-
tributed systems automated testing, analysis, and synthesis. We are developing
many use-cases [4,9] to drive our work forward along these lines.
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Abstract. Behavior-Driven Development (BDD) is an “outside-in” approach to
software development built upon semi-formal mediums for specifying the
behavior of a system as it would be observed externally. Through the repre-
sentation of a system as a collection of user stories and scenarios using BDD’s
notation, practitioners automate acceptance tests using examples of desired
behavior for the envisioned system. A formal model created in concert with
BDD tests would provide valuable insight into test validity and enhance the
visibility of the problem domain. This work called BHive builds upon the formal
underpinnings of BDD scenarios by mapping their “Given,” “When,” and
“Then” statements to “Precondition,” “Command,” and “Postcondition” con-
structs as introduced by Floyd-Hoare logic. We posit that this mapping allows
for a B-Method representation to be created and that such a model is useful for
exploring system behavior and exposing gaps in requirements and test plans. In
this extension of previous work, we outline recent additions to BDD tooling
required for the described integration, present a new strategy for test case
generation from our approach, and expand on the benefits of the BHive
approach to integrating formalism within a BDD project.

Keywords: BDD � Behaviour-Driven development � B-Method � Agile � Test
generation

1 Introduction

The term “Formal Methods” broadly describes approaches for specifying, modelling and
verifying systems that are grounded in mathematical rigor. A system properly developed
with such treatment can be proven to have (or not have) specific properties or behavior.
Successful application of formal methods typically depends on contributions from
“guru-level” experts. This specialized knowledge requirement and perceived costs (both
time and money) often reserve the application of these methods to projects requiring
higher levels of assurance than can be provided using empirical testing practices.

The rise in popularity and reported productivity of agile software development
practices have given many development houses pause to evaluate the effectiveness of
so-called “heavyweight” methods in use today, particularly the “waterfall” develop-
ment process. Nonetheless, it seems that formal methods are typically applied to
projects following a traditional, sequential development process. How can we account
for the apparent “impedance mismatch” between formal and agile methods? A number
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of reasons will be put forward in Sect. 2. Despite these, we believe that a useful bridge
can be built between the formal and the agile worlds. This work is about using the
“hidden” formalism in one agile method, Behavior-Driven Development (BDD), to
connect it with B-Method via the Python tooling for BDD known as Behave. We call
this technique “BHive” and will illustrate it below using a small case study. The
purpose of this paper is to describe the conceptual basis of BHive; actual software tools
will be developed as future work.

This paper builds on previous work [1] about the BHive approach. Here we expand
on that description, outline enhancements to the development process including our
provided tool support, and describe initial work toward test case generation using BHive.

The next section will give background on BDD and B-Method. Section 3 intro-
duces BHive and applies the technique to a “Take-A-Number” machine case study.
Section 4 describes BHive’s approaches to verification, and Sect. 5 the BHive devel-
opment flow. Section 6 comments on the applicability of this approach. Related work
targeting integration of formal and agile methods is presented in Sects. 7, and 8 gives
the conclusion and future work.

2 Background

Agile methods are lightweight methodologies that strive to implement principles out-
lined in the Agile Manifesto [2]. Methods identified as Agile typically share the fol-
lowing characteristics:

• The ability to embrace change and “course correct” anywhere in the project life-
cycle without incurring undue overhead.

• Cross-functional teams working in close collaboration, including project stake-
holders external to the development team (i.e., customers, domain experts, business
analysts).

• Continuous delivery of incremental milestones: By providing deliverables early and
often, the clients of agile teams can see the product grow and can shape its
development through clarification of requirements and feedback.

• An adaptive approach to analysis and design: “Big design up front” is replaced with
deliveries of smaller groups of functionality. The business value of milestones
determines their delivery priority. A tight, continuous feedback loop informs
decisions and shapes future development and management.

We suggest a combination of reasons why agile and formal methods seem to make
strange bedfellows:

• Software vendors working in markets that require formal methods-backed assur-
ances tend toward the more structured, document-driven “traditional” approaches
such as Waterfall or “Vee” models [3]. The development approach itself may be
part of a larger industrial certification process required by prospective customers.

• A traditional sequential approach contains dedicated phases for analysis and design.
These phases may appear as a better fit for formal model-building activities than the
periodic delivery cadences used by agile.
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• Methodology experts may not be available for the entire development process, or
the cost to retain them throughout may be judged too high.

• Agile methods focus on incrementally delivering business value to the customer.
Modelling the entire system before development could delay initial milestones.
“Front-loading” specification and modelling could be seen to be at odds with the
agile notion of evolutionary development—requirements changing alongside a
shared understanding between developer and customer.

• Agile methods favor “individuals and interactions over processes and tools” and
“working software over comprehensive documentation” [2]. A formal model could
be relegated to a second class artifact or seen as unnecessary documentation by the
customer.

• Proponents of the agile movement assert that the “old way” of developing software
is broken, citing collateral damage such as schedules and budgets. Formal methods
may be deemed an unnecessary cost of time or money.

• Agile methods are relatively new compared to both traditional development
approaches such as Waterfall, and to formal methods themselves.

• Development teams working in some sectors (e.g.: mobile application development,
web development, game development) may have been educated in a highly focused
setting and have not been exposed to a breadth of software engineering methods,
perhaps learning Agile “on the job.”

The subsections below introduce the building blocks of the BHive technique, BDD,
and B-Method.

2.1 Behaviour-Driven and Acceptance Test Driven Development

BDD is an emerging agile method. In the originating work [4], Dan North describes
how BDD began as a shift in the process of naming and thinking about writing unit
tests. In applying Test-Driven Development (TDD), North observed that merely
changing the name of a unit test resulted in a marked change in how developers thought
about test cases and communicated their understanding of the system. Beginning the
name of a unit test with the word “should” makes the test more of a sentence and
summarily captures an external description of behavior desired from the class. North
suggests that any inability to apply such a template implies the behavior captured by
the test belongs elsewhere. BDD also incorporates one of the principles of
Domain-Driven Design—the “Ubiquitous Language” (UL). Evans asserts [5] that a
useful model should be syntactically structured around the “domain model” and that
this model (and its associated terminology) become the primary means to connect all
team members with the product being developed.

BDD has commonality with Acceptance Test Driven Development (ATDD), to the
extent that occasionally the terms are used interchangeably. There is, however, an
important distinction: ATDD builds on the “test first” philosophy of TDD but moves the
focus from testing internal functional blocks to automated tests of acceptance criteria.
ATDD captures automated acceptance tests in the language of the business domain; a
passing test corresponds to one or more business goals being achieved by the system
under development. In contrast, a BDD specification is a user story, not a test. A BDD
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story exemplifies the desired behavior of the envisioned system as viewed by an external
observer. This vantage point, combined with a structured natural language medium,
provides specifications that are meaningful and contextual to all project stakeholders
while still allowing automated processing performed by a BDD tooling package.

Gherkin [6] is a “business readable” domain specific language used by many BDD
frameworks: Cucumber for Ruby, Behave for Java, Behat for PHP and Behave [7] for
Python. The relationship between BDD’s components is illustrated in Fig. 1 below:

Thus, a system specified using Gherkin contains many “feature files.” Each feature
file collects “scenarios” that form an executable specification of its behavior. Scenarios
are structured out of “steps” using a Given-When-Then (GWT) syntax:

Given: (a precondition)
When: (a triggering event)
Then: (a post condition)

The BDD tooling allows for linking each of the steps to a function, and for any
number of features to be executed by the framework. During execution, the “Given”
step should put the system-under-test into the state necessary for the “When” step to
take place—which is where a state change occurs—and be observed by the “Then”
step. Execution of a scenario can be parameterized using tables of data, allowing for
real-world examples to be added alongside corresponding user stories.

We observe that the GWT construct is related to the concept of a “Hoare Triple” as
introduced in Floyd-Hoare logic [8]. Within Floyd-Hoare logic Given-When-Then is
represented as:

{P} C {Q}
where P is known as the “precondition”, C the “command”, and finally, Q the

“postcondition”. The triple and its accompanying axioms provide means to reason about
program correctness for a system specified using the formalism. The Hoare triple is
fundamental tomodern state-based formalisms such as Z, B, andEvent-B, discussed next.

Fig. 1. Entity relationship diagram of BDD components
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2.2 B-Method

Invented by J.R. Abrial (the creator of Z) the B-method [9] provides the means to
specify systems as “B Machines” using B’s “abstract machine notation” (AMN).
Whereas Z focused purely on specification, B-method introduces additional granularity
in its specification capabilities to enable refinement of specifications to an implemen-
tation. Machines contain events that change the system state (a machine’s variables).
These events are composed of a name, parameters (a precondition that must be true for
the event to be applied), and a state change. The machine itself provides definitions for
constants, typing information for variables, and a set of invariants—logical proposi-
tions that must hold for correctness. Event-B [10] is an evolution of B-Method (often
referred to as “classic B”).

By using B-Method or Event-B to model a system under development, a project
team may perform correctness proofs on components of the system. Formalizing the
system introduces precise logical semantics not found with design documentation or
source code. Both B and Event-B provide support for model “refinement”—the gradual
introduction of complexity into a successive version of the model. The equivalence
between the refined model and the previous model is proven using “linking invariants.”
With B-Method the end goal is the refinement to source code, whereas the Event-B
refinement process is used to introduce model complexity gradually. The application of
such a refinement process is akin to the agile concept of iterative development.
Moreover, it allows for systems that are “correct-by-construction,” in contrast to
implementing from a static up-front specification from which the system diverges over
the course of the development lifecycle.

The specification process adds business value, in that the development team is
forced to analyze and formally capture the behaviour of the system along with its data
model, but also examine issues of system decomposition and the structure of system
components. Rigid formal semantics allow for thorough understanding and verification
of the system’s behavior. Such understanding is of particular importance in cases where
system failure is beyond the level of inconvenience and even carries catastrophic
consequences.

3 Introducing BHive

This work provides the means to bridge the expressive power of Behavior-Driven
Development with the rigor of B-method. Development of this approach builds upon
the Python BDD tooling package “Behave.” To form a semantic bridge between
Gherkin and B-Method, BHive wraps a number of built-in Behave functions, and
provides an alternate typing system as well as additional provisions not specific to
Behave. BHive’s approach and integration are designed to augment an existing BDD
methodology and its tooling. Modifications to syntax are avoided to ensure the
approach is usable by existing teams applying BDD, and to minimize the effort needed
to port BHive to other BDD toolings.
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Figure 2 shows a high-level view of the inputs (feature files, step definitions, and
environment file) and the output (i.e., the system itself) of a typical BDD flow using
Behave. The dark grey arrows show flow into and out of Behave, and the curved arrow
from output to input represents the iterative nature of the BDD process.

Figure 3 shows a view of BHive at the same level of generalization as Fig. 2.
BHive accepts the same feature files, step specifications, and environment files that
make use of BHive’s integration functions, and produces B Machines represented in
Abstract Machine Notation (AMN). In addition to the generation of B specifications,
test cases are generated using the ProB tool.

Fig. 2. Basic components of Behave

Fig. 3. Basic components of BHive
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3.1 “Take-a-Number” Case Study

One of the case studies used to illustrate this work is a readily understandable
“take-a-number” customer queuing system. The discussion begins with a feature file (in
Gherkin) capturing the behavior of the system, followed by examples of how Gherkin
and BDD are bridged.

Feature File. Here we are specifying part of the “TakeANumber” machine. The
machine name is derived from the name of the feature file, in this case “TakeANumber.
feature”.
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If we run Behave with this feature file, it will generate stubs for each of the steps we
must create. The stubs generated for the “Start Machine” scenario are shown next:

These initial steps are identical whether one is following the Behave or the BHive
approach. With Behave, development would likely continue with TDD or the “Test
First” approach. The central tenet of TDD is that the first code one writes is a test,
which is then followed by just enough code to make the test pass, and finally a possible
refactoring step to improve or generalize the code one just wrote. Running the tests on
demand allows one to evaluate the correctness of the refactor. Once satisfied, the
process begins with a new unit test.

Part of writing “just enough code to make the test pass” is often the use of mocks.
Mocks allow a developer to substitute another object, make calls on it, and enforce
certain properties (parameters, return types) on the mocked object. This practice is also
applied in BDD. Using mocks, the developer can implement the steps with objects that
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do not exist and make assertions on their behavior. It also allows a design to evolve, as
the developer has free rein to code to the interface they want. It is this approach that
links Behave’s steps to a B-Method machine.

BHive provides a mocking library to specify Given, When, and Then steps. Unlike
other mocking libraries which are free form, the BHive mocking library is slightly more
restrictive in order to ease translation to B’s Abstract Machine Notation.

In the Then step, we specify a test to verify that the change did take place. This will
serve as input into the test generation process. Fleshing out the “Start Machine” sce-
nario introduced above, we specify the following:

Here we specify the “Given” step. We declare three variables with their associated
types and initial values. BOOL and INT types are B-Method built in types, but custom
types may be introduced by the developer. The fourth parameter is the variable’s initial
value. This will be used for the INITIALISATION clause in the synthesized BMachine.
The “ensure_that” method is used to specify conditions necessary to meet the behavior
“Machine is off”, in this case ensuring that the machine’s “running” variable is false.

The Python variable “context” is Behave’s mechanism for passing data between
Gherkin constructs. It exists as an associated array with the following choice of
scopes1: all, feature, and scenario. Whenever a new scope is entered (in this case the
“Scenario” scope for “Start Machine”) a new associative array is pushed on Behave’s
internal stack. This associative array exists for the execution of “Start Machine” and is
popped from the stack after all of its steps have been executed.

BHive extends the context mechanism to perform “bookkeeping” on the state
changes contained in a scenario. When a variable is declared, BHive associates it with
the Feature being specified and allows for state changes to occur for that variable using
the context.state.assign method shown below:

1 A fourth scope, tag, does exist which provides a scope of each unique tag applied to a scenario. This
feature is not presently used by BHive..
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Above, the “When” step is specified as the state change to satisfy “Machine is
started”: running is enabled, and display and ticket are set to 1.

The Then steps are used to specify the state to test after the execution of the
scenario. This diverges from the use of “then” in a typical BDD development process.
Using a traditional BDD approach, “Then” would contain a number of assertions that
would be made on the system-under-development after the “when” step occurred. As
BHive is synthesizing a B Machine, we use a conjunction of the predicates specified
using the method context.state.test_that to generate test cases via the ProB
tool.

3.2 Synthesis of “Start Machine”

Invoking Behave extended with BHive synthesizes a B machine containing our vari-
able definitions and our newly specified “Start Machine” operation. The output log is
shown below:
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We can open and animate this specification with the ProB tool, depicted in Fig. 4.
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In the output log we see BHive registering B’s primitive types (BOOL, INT, NAT,
NAT1), and running all features and scenarios to build its internal model for state
changes. Finally, this model is synthesized to B Method, and predicates to be used for
ProB’s test generation tool are emitted.

Completed Mocks. Shown below are the completed mocks using BHive’s framework:

Fig. 4. Screenshot of ProB tool
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B Machine. Synthesis with BHive yields the following B Machine:2

2 max_ticket is a parameter manually introduced in the synthesis process for TakeANumber to limit
state explosion during model checking activities.
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4 BHive’s Approaches to Verification

BHive presently supports two approaches to verification, both involving ProB, which
are described next.

4.1 ProB’s Test Generation

By including a context.state.test_that() invocation in a Then step, BHive will synthe-
size the associated predicate to be fed into ProB’s for test case generation (either
manually using the ProB GUI or the command line via an XML file).

ProB’s Test Case generation specifies a predicate and a set of operations. ProB will
then generate a finite number of test cases with system traces that satisfy this predicate

Fig. 5. Constraint-based test case generation using ProB
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using a specific set of operations. For example, in “Start Machine” the Then steps
produce the following predicate:

running = TRUE & display = 1 & ticket = 1
We can input this into ProB’s constraint-based-checking (CBC) test case generation

tool as shown in Fig. 5, and select a set of operations to be covered. ProB will then
generate a set of test cases where the provided predicate is satisfied, shown in Fig. 6.

ProB supports both constraint-based-checking (CBC) and model-based-checking
(MCM). CBC does not construct the entire state space, instead using ProB’s constraint
solver to find relevant traces of operations. Both approaches have advantages and
disadvantages, however, a detailed discussion is outside the scope of this work.

4.2 Handling of Invariants

At present, invariants are introduced into the synthesized B Machine in two ways:

• Typing: When a variable is declared, an invariant is added for that variable’s
corresponding type.

• TEST_THAT_ALWAYS()

By including TEST_THAT_ALWAYS() additional invariants can be added to the
specified machine. For instance, in the “TakeANumber” machine, we add to the
invariant:

display <= ticket
ProB provides an easy interface to check the synthesized model for invariant

violations, and can provide example traces to any such violation states.

5 BHive’s Development Flow

Figure 7 shows a block diagram of the major components of the BHive development
flow. They are explained below:

Fig. 6. Results of CBC test case generation with ProB
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• A feature is specified behaviorally in a Gherkin feature file. From this file, the
Behave tool can be invoked to generate stubs for all necessary steps.

• Initially, a developer would implement the steps using BHive mocks exclusively.
The BHive mocks, plus typing information implemented in the environment file,
allow a B Machine file to be created.

• The B Machine can be explored and animated, e.g., using ProB [11], with the
latter’s built-in model checker used to formally verify the invariant and display a
trace that leads to a violation, which can be confirmed by invoking that path using
Python code. Any other incorrect or underspecified behavior would inform revi-
sions to the Gherkin feature file (shown by the dashed line), then verification can be
repeated.

• Once the developer is happy with the feature they have explored using the BHive
mocks, they can flesh out the system using Python’s built-in mocks. Alternatively,
they may choose to implement directly, or have even skipped the BHive mocking
altogether in cases where a formal model would not offer additional value. BHive
mocks can coexist alongside Python’s built in mocks, or an actual implementation
by disabling BHive when invoking behave.

Fig. 7. BHive development flow
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• As the system under development takes shape, a clearer design emerges which feeds
back into the Gherkin feature files. This transition is shown by the solid black line.

• Assertions contained in the “Then” steps for scenarios are synthesizes using ProB’s
[11] built-in test case generation. Based on the assertions specified, generated test
cases will provide sequences of state changes that satisfy a given predicate. Manual
testing can then be performed using these test cases. ProB will also report cases
where the given predicate is not reachable. ProB uses a constraint based approach to
test case generation, generating traces of operations that cover certain specified
operations and satisfy a given predicate.

Note that this development flow does not explicitly call for producing source code
by means of refining the B Machine. While this is possible, it requires the involvement
of B-Method gurus, and it is more likely that agile practitioners would be satisfied with
building on the mocks. The compromise at the heart of the BHive approach is that
developers can enjoy some benefits of the injected formalism, compared to using BDD
alone, but need not commit to the path of full formal development with all the costs that
entails.

The system under development need not be a Python implementation, but rather
any language that is capable of providing Python bindings. Cython is a compiler that
provides two-way communication between C/C++ and Python, or SWIG creates
general purpose bindings for a variety of target languages to be called from Behave
step functions.

6 Application of BHive to System Development

BHive, like BDD, is best suited for control dominated systems and is not readily
applicable to data-driven applications; such applications are difficult to express purely
as externally observable behavior.

For example, a “take-a-number” ticketing system can easily be described to a
developer creating such a system by outlining its functionality and providing examples
of possible interactions, using a relatively small set of examples for typical use cases
and others selected to illustrate edge case behavior. By contrast, a system intended for
data processing and transformation such as a signal processing application would be
highly cumbersome to specify using means other than the underlying mathematical
equations.

For systems amenable to BDD development, synthesizing a specification from a set
of Gherkin feature files provides an early preview of how the designed system handles
state. The use of a model animator (such as ProB) to view and explore a model requires
minimal training and offers a tangible way for stakeholders to “check their work”
concerning the system they’ve described. By having a model that can be animated, a
stakeholder can uncover cases of underspecification and improve the outlines passed to
their scenario examples. The generation of test cases provides a “head start” for manual
testing teams and could serve to highlight non-obvious execution paths a given state.

250 J.D. Carter and W.B. Gardner



7 Related Work Integrating Formal and Agile Methods

“An Agile Formal Development Methodology” [12], published two years after the
Agile Manifesto [2], proposed XFun, an extension to finite state machines built upon
the Unified Process (UP) [13]. The authors acknowledge that existing formal methods
are at a disadvantage in highly dynamic development approaches where requirement
changes may invalidate previous models. XFun is an iterative approach that follows the
phases of UP—Inception, Elaboration, Construction, Transition—through some itera-
tions with the following activities:

1. Requirements gathering.
2. Construction of models from system requirements using XFun.
3. Application of XFun to animation and verification of constructed models as well as

the generation of test cases.
4. A phase where the system is implemented.
5. A validation phase where the implementation is checked against the previously

XFun-generated test cases.

Assuming successful application of UP and decomposition for iterations, the
authors offer the ability of a formally verified system to evolve without the need for a
single up-front modelling activity that is brittle with respect to late-breaking project
changes. Despite being an iterative process, the work presented is comparatively
sequential when compared with more recent approaches including TDD and BDD. The
approach is similar to BHive in that animation and verification of constructed models is
central, as well as the generation of test cases from those models. Aside from the choice
of formalism and of development process (UP), the biggest difference between XFun
and BHive is the potential disconnect with stakeholders when the project evolves from
requirements gathering to model constructions. With BHive the models are constructed
from the mediums used to capture requirements, Gherkin.

In 2004, Ostroff et al. presented “Agile Specification-Driven Development” [14].
The work identifies traditional development processes, characterized by a need for
complete requirements up front, as “plan-driven development.” Their approach is novel
in that:

• It builds upon a plan-driven approach of “design by contract” (DbC) [15], where a
system is constructed using a schema of preconditions, postconditions, and
invariants which align to P, C, and Q (respectively) present in a Hoare Triple.

• It applies “Test-Driven Development” [16] (also known as “Test First” develop-
ment) alongside the DbC specification.

The authors acknowledge that these two constructs had been regarded as “absolute
extreme opposites with no combination possible or desirable,” but show that DbC and
TDD are complementary in the sense that they provide different capabilities for
specification. The application of TDD is significant: TDD grew out of the Extreme
Programming [17] movement and was applied across a variety of methods. Ostroff
et al. highlight that a set of tests form a specification. Passing tests demonstrates
conformance to the specification. Refactoring activities can be performed with
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confidence that a refinement of the system may be checked against the set of tests
previously passed. TDD, which they describe as suitable for “collaborative specifica-
tion,” is tempered with additional assurances made possible by the rigor of DbC. The
work presented by Ostroff is very encouraging for the BHive approach of bridging
formalism and agile development process. DbC is semantically similar to B-Method
with the inclusion of preconditions, postconditions and invariants. TDD is a close
relative of BDD, and is frequently combined with BDD during development. BHive
offers the advantage of a close integration between the formalism and the requirements
medium (BDD’s Gherkin). With Ostroff’s work, the formalism of DbC and agility of
TDD exist in two spheres, and the proficiency of the a practitioner familiar with both
TDD and DbC determines the success of the integration. In contrast, with BHive’s
formalism is derived from the requirements medium at the outset, removing much of
the “space” between the formal aspects and agile development approaches.

In 2006, Lopez-Nores et al. introduced “An Agile Approach to Support Incremental
Development of Requirements Specification” [18] which describes an iterative
approach to requirements refinement, not unlike model refinement methods used in
B-Method and Event-B. Their approach is agile in that it “exploits the characteristic
volatility of the early stages of development, to establish a frequent dialog with the
stakeholders.” With their approach, each iteration of analysis is refined through model
checking, with amendments arising out of model checking activities proposed to
stakeholders as a refinement to what was previously specified. The approach is agile in
that, given a specification, additional requirements can be added to the model without
the need for construction of a new model. Instead, through a series of refinements and
abstractions, the model is adapted to include new requirements. The approach
described is successful at being agile, due to its iterative nature but is more successful at
bringing an agile perspective to formal development, rather than injecting formalism
and its associated correctness into the world of agile development. Secondly, the
requirements specification is subject to additional constraints, making it less appro-
priate to serve as a ubiquitous language between all stakeholders as is possible with
Gherkin.

Rutledge et al. proposed Formal Specification-Driven Development (FSDD) [19]
building upon TDD and BDD through the introduction of an additional artifact: “a
formal design specification expressed in a behavioral specification language.” The
work identified the following shortcomings of BDD:

• A BDD specification is comprised solely of scenarios limiting the creators and
maintainers in what they can express which they argue is contrary to Evan’s notion
of a Ubiquitous Language [5] and is prone to “knowledge transfer errors” as found
without using a UL.

• When considering the difference between BDD and TDD, the authors assert:
“Without the expansion into the analysis and test realms, BDD devolves into TDD
with a specific vocabulary.”

Rutledge et al. cite a study [20] showing no gains to code quality and statistically
insignificant productivity boost through the application of TDD. The authors of that
study explain this through the scope of the project used in the study and the inexpe-
rience of its participants. Rutledge et al. offer an additional explanation: TDD does not
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address knowledge transfer issues which contribute to overall quality of the system and
acknowledge that any process designed to supplant or augment TDD and BDD must
provide tool support that allows frequent and automated execution of the created
tests/specifications. They outline their approach which is comprised of the following
steps and artifacts:

• A designer creates a state-based formal specification from a set of requirements,
aided by a “design specification analyzer.” From the formal specification artifact,
the following artifacts are created:
– A coder creates the software manually. He or she is able to begin with a set of

stub functions generated automatically from the preceding formal specification.
– The developer is aided by a set of unit tests automatically generated from the

formal specification using an FSDD-specific unit testing framework.
– QA analysts test the system using a manually created test plan that has been

analyzed by an FSDD-supported test case analyzer.

Rutledge et al. [19] provide a sound methodology base on which many formal
methods could be integrated into a more traditional plan-based development approach.
Formalism in FSDD is introduced as part of an agile development process, in the form
of assertions and predicates in the source files themselves. Though this offers additional
assurance of correctness, this approach relies heavily on the developers and designers
to “learn to read and write a new, more abstract language. Additionally, designers with
an implementation background will have to adopt a new approach. They must learn to
think in terms of ‘what’ an entity does, rather than ‘how’ an entity does it.” BHive is
advantageous in that the formalism is derived from the ubiquitous language, rather than
requiring retraining in a language that may not be appropriate for all stakeholders.

Lastly, a 2009 article “Formal Versus Agile: Survival of the Fittest” [21] surveys
the state of integrating formal methods with agile methods. The authors acknowledge
potential disconnects between agile and formal method communities, but identify
where the two communities share common goals: testing, requirements specification,
documentation, and parallelism. They identify two conditions in order for formalism to
achieve wide-scale agile “buy-in”: speed and availability of such methods, and the need
for “flexible tools.”

BHive is novel when compared to surveyed work in that it injects formalism into an
existing agile development technique to form a very close coupling of two ostensibly
incompatible approaches to system development (the agile process, and the plan driven
world of formal specification and verification). Through allowing the development
team to determine how much formalism to introduce into their Gherkin specifications,
the team is able to inject formalism incrementally and use discoveries found by
examining generated models to inform future development. What’s more, the BHive
process is compatible with existing BDD practices, so our methodology may be added
when it offers value, or removed without requiring rework.
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8 Conclusion and Future Work

Here we have described our ongoing work in connecting an unexploited formalism
underlying Gherkin’s “Given-When-Then” syntax with Abrial’s B-Method. In doing
this, we have bridged the world of behavior specification suitable for close collabo-
ration with domain experts and non-technical stakeholders, with the world of high
quality, formally verified systems.

Future efforts will focus on the following:

• Improving the internal models used by the BHive mocking library, particularly the
ability to introduce additional invariants.

• Enrichment of the typing system, including building types from set comprehen-
sions. Presently only enumerations are supported.

• Migration from “classic B” to Event-B, which will allow the creation of theorems to
prove specific properties on models.

• B offers very flexible options for machine reuse and structuring. The modular nature
of B’s AMN provides the ability for incremental development. BDD’s feature
structure and contained scenarios can be synthesized into a self-contained machine
and validated in isolation. Future enhancements of BHive will seek to leverage B’s
decomposition mechanisms.

• Improved and automatic selection of parameters for automatic test case generation.
Presently a “one size fits” all approach is used. This can be improved by embedding
some of ProB’s test case generation semantics into BHive itself.
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Abstract. One of the deficiencies of Z tools is that there is limited
support for model checking Z specifications. Building a model checker
directly for a Z specification will take considerable amount of effort and
time due to the abstraction of the language. Translating a Z specification
input into a specification in a language that an existing model checker
tool accepts is an alternative method. Researchers at the University
of Sheffield implemented a translation tool, Z2SAL, that takes a Z spec-
ification and translates it into the input for Symbolic Analysis Labora-
tory (SAL), a framework for combining different tools for abstraction,
program analysis, theorem proving and model checking. This paper dis-
cusses support for model checking Z specifications, in which the capa-
bility of Z2SAL is extended. This support includes a translation of a
generic constant and a schema calculus definition. Instead of translating
these aspects of the Z language into the SAL language as Z2SAL does,
a Z specification containing these two notations will be pre-processed, in
which a generic constant definition is redefined to an equivalent axiomatic
definition and a schema calculus definition is expanded to a new schema
definition. As a result of a successful redefinition or expansion, a redefined
or expanded Z specification is generated, otherwise the original Z speci-
fication is returned. Results show that the large number of our examples
can be run successfully by our system. The redefined or expanded Z spec-
ification can be translated later by Z2SAL and the generated SAL file
can be model checked or simulated by the SAL tool. Results also show
that Z2SAL can translate outputs of our system to some extent. The
majority of generated SAL files can be run by the SAL tool.

Keywords: Z · Specification · Generic constant · Schema calculus ·
Z2SAL · SAL

1 Introduction

As a formal language, the use of Z in academia and industry has increased
considerably. This is because Z has been used successfully to address a large
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variety of problems and the international standard was also designed for this
language. The use of Z can make a specification more formal and free from
ambiguity. In addition, Z allows a specification to be analysed mechanically [1].
Designing a specification of a system enables a user to verify the system at an
early stage of development. Early verification could avoid high cost of system
implementation and test phases, if the specification was designed correctly [2–4].
Therefore, a specification is crucial for a system, especially if the system relates
to the safety of property and/or life.

However, there is a lack of tools for this language, especially in model checking
Z specifications. Although the Community Z Tools (CZT) project is developing a
set of open source tools for Z, progress of this development is slow [5]. There are
many causes of the shortage of Z tools. These are mostly related to the Z language
and semantics, such as an inherent expressiveness and a difficulty in deciding
effectively any theorem about Z specifications [1,5]. Another cause is the richness
of this language, which can also be the issue of verifying Z [1]. Furthermore,
only a few of these tools can be used in validating intended meanings of such Z
specifications [6].

The lack of supporting tools for the Z language and the above issues has
led researchers suggest alternative methods, which is a more rapid approach, to
address this problem: reuse and adapt existing tools. Researchers at the University
of Sheffield implemented the Z2SAL translator [5] which generates a SAL specifi-
cation from a Z specification input. The generated SAL file can be model checked
later by the SAL model checker. A brief introduction to Z2SAL and SAL is given
in Sect. 2.

In our study, several experiments using Z2SAL and SAL are performed. Our
finding is Z2SAL supports many Z tags, but not all. Furthermore, sometimes
several generated SAL files cannot be verified or simulated by the SAL tool.

Therefore, this paper intends to address problems as stated below:

1. What are crucial features of Z should be implemented to enhance the ability
of Z2SAL and why?

2. How to implement such features that are supported by Z2SAL and SAL?

These questions will be explored in the following sub-sections. Both the below
sub-sections did not exist in [12].

1.1 Motivation

Based on our experiences using Z2SAL, two aspects of the Z notation were chosen
to study. Both aspects will be discussed in this section.

The first aspect is the Z generic construct. Z2SAL cannot translate specifi-
cations that consist of generic constructs. As a result, error files were generated
instead. Our finding is that Z2SAL cannot recognize a generic constant which
is one type of the Z generic constructs. Although it has been declared in the
generic constant definition, Z2SAL reported that the generic constant is a new
identifier.
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Z2SAL has not encountered any generic construct on Z specifications before-
hand, so this part of Z has not been implemented yet. Therefore, our assump-
tion is that the current version of Z2SAL does not support translation of either
a generic constant or a generic schema. Although, Z2SAL’s researchers might
implement them.

Our study in the SAL literature concludes that a generic form cannot be
found in the SAL language. Thus, another assumption is that Z2SAL does not
support generic constructs in order to be consistent with the SAL language.

Specified using generic parameters, a generic constant is commonly used in
formulating mathematical tool-kit operators [7], in which the operators do not
depend on the particular type of elements in their construction [8]. Another usage
of a generic constant is to specify a general notion which is used frequently in a
system.

In case there is no generic constant, several equivalent functions should be
formulated because each function is dedicated to one set of types of parameters;
it is redundant work. Thus, a generic constant is beneficial to a Z specification.

The second aspect is the Z schema calculus. Z2SAL supports a translation of
several schema calculus such as a schema inclusion, the Δ operator, and the Ξ
operator. However, they must be specified either vertically or horizontally in a
schema. If a new schema is specified as being constructed from earlier schemas,
Z2SAL does not support this schema construction. Thus, it is argued that Z2SAL
does not support schema calculus.

The constructed schema is used commonly to define a more complex, modular
and larger specification of a system. Therefore, schemas are reused to create
new schemas. These schemas are combined by using schema operators. Different
schema operators which are used define different new schemas.

Therefore, focus was set on generic constants and schema calculus as crucial
features of the Z notation in our work. They were studied to extend Z2SAL so
it can translate both of them. These findings were used to define our objective
as discussed below.

1.2 Objective and Contribution

Our objective is to implement a tool. This tool will redefine a generic constant
definition to an equivalent axiomatic definition based on usages of this generic
constant.

Another objective is to implement a tool to create a new schema by expanding
other schemas. These schemas are connected by schema operators.

Both these tools are implemented in a system which is called support for
model checking Z specifications. This System is our contribution to broaden the
applicability of model checking Z specifications. JFlex [9], BYACC/J [10], and
Java language [11] were used to implement our system. During our experiments
with this system, there is another contribution of a SAL translation of user
defined functions and constants. It will be discussed later.

The paper is organized as follows. Section 2 describes briefly an introduc-
tion to Z2SAL and SAL. Section 3 contains our support for model checking
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Z specifications. This section also discusses how to implement this support which
is supported by both Z2SAL and SAL. It is divided into two sub-sections. Each
sub-section has been extended from its previous version in [12]. Section 3.1 out-
lines our support for generic constants. There are several new sub-sections in
this section, such as Generic Abbreviation Definitions, Lambda Expressions,
Summaries of Experiments on the Redefinition System, Size of Z Specifications,
and Manual Modification in SAL files. However, majority of the contents of
the first three ones and the last one have been discussed in [12]. The new sub-
section, Size of Z Specifications, discusses how our redefinition system scales to
a variety of sizes of Z specifications. Section 3.2 explains another support which
is schema calculus. There is a new sub-section in this section, Summaries of
Experiments with the Expansion System. Several contents of this sub-section
were gathered from earlier sub-section. There are several new experiments have
been performed in the expansion system as compared to the previous version in
[12]. These experiments were summarised in new tables accompanied the new
sub-section. Section 4 concludes this paper and summarises future work. This
last section has also been extended from its previous version in [12].

2 A Brief Introduction to Z2SAL and SAL

Several tools in Z have been developed based on the quick approach, such as
ProZ [6] which is a translator of Z into the existing Alloy Analyser tool, ProB
[13]; data refinement verification [14] which uses Alloy SAT-solver based on a
counter-example finder; and Z2SAL [5] which is a translator of a Z language
specification into a SAL language specification [15].

Smith and Wildman at the University of Queensland, Australia, described
how to translate a Z language specification into a SAL input language specifi-
cation [16]. This basic idea was implemented in a tool set [17] and the current
Z2SAL extends it in a different direction, to tackle optimization issues [5].

In providing a translator of Z into an input language of existing tools, SAL
was chosen since it has an equivalent representation of many aspects of Z [17].
Moreover, ’many different tools exist, which use the SAL input language such
as simulator, model checker either symbolic or bounded, deadlock checker, etc’
[5], which are offered freely by Stanford Research Institute (SRI) International
under academic licences.

A generated SAL file consists of a SAL module and/or several SAL contexts.
This module describes a transition system of Z states [17]. The simple SAL
module has a general format as follows:

State : MODULE =
BEGIN

INPUT . . .
LOCAL . . .
OUTPUT . . .
INITIALIZATION [ . . . ]
TRANSITION [

. . .
]

END;
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The SAL context is a place to declare types, constants, modules and modules
properties [15]. Z2SAL formulates several Z mathematical tool-kits, which are
necessary for a generated SAL specification, in separate but integrated SAL
context files.

Translating a Z language specification into a SAL input language specification
requires several adjustments due to a number of differences of both languages
[5]. These adjustments are discussed briefly as given below:

First, is bounding the infinite. Z supports fully abstract (non-grounded, non-
constructive) specification styles, whereas SAL is a concrete and grounded lan-
guage. For example, Z supports the built-in numerical types “Z”, “N” and “N1”,
whose ranges are infinite. On the other hand, SAL has similar unbounded types
INTEGER, NATURAL and NZNATURAL, which can be used only as base types of
finite sub-ranges in a SAL specification. Z also supports given types, which have
semantics of an un-interpreted set, such as [TAPE, NAME]. Therefore, the trans-
lations provided by Z2SAL should specify a finite number for sizes of these sets.

The mismatched formal paradigms are the second difference. Z and SAL
have very different styles of specifications and descriptions. The Z specification,
which consists of state schemas and operational schemas, is built-up increas-
ingly. It views locally and functionally such that every operational schema oper-
ates on its input and output variables, or on variables of state schemas. On the
other hand, the SAL specification is created as a ’monolithic finite state automa-
ton’ (FSA) such that all inputs, outputs and local variables are compiled into
aggregate states [5]. Moreover, all operations act upon guard transitions from
one state configuration to another state configuration [5]. Thus, this mismatch
can be approached by re-ordering all information in the Z specification. A fur-
ther mismatch is that Z specifications often use partial functions [5]. On the
other hand, as SAL is based on Binary Decision Diagrams (BDDs), SAL always
requires a representation of function as a total function. Thus, a work-around
is necessary in order to present a partial function in Z specifications as a total
function in SAL. Furthermore, a set cannot be treated as a monolithic FSA of
SAL, but as a ’poly-lithic collection of judgements’ over its elements instead [5].
Thus, several operations in sets are necessary to be expressed differently, such
as the cardinality of a set, which is not supported by SAL.

The last difference is an issue of non-computable specifications [5]. A Z speci-
fication naturally supports non-constructive styles of a specification. These styles
should be expressed in computable styles of a specification in SAL. Both styles
essentially are different indeed. Normally, a SAL specification consists of a set
of update assignments to primed variables, which indicates posterior variable
states. On the other hand, a direction of a constructive approach is not nec-
essary in a Z specification. Z2SAL asserts posterior existences of variables and
restricts their values on preconditions. This requires a search for suitable pre-
condition values.

More information relating to Z2SAL is provided in [18]. It also includes a
downloadable version of this translation tool.
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SAL is a framework of several different tools such as abstraction, program
analysis, theorem proving and model checking, which is used to change concepts
and implementations of model checkers and theorem provers. These concepts and
implementations at first were based on verification, but they were extended to
include calculation of properties or symbolic analysis such as abstraction, slicing
and composition [15,19].

The SAL language can be used as a specification language, a target language
for several translators, or a common source of several analysis tools. It is origi-
nated of a collaboration of two researchers, David Dill from Stanford University
and Thomas Henzinger from the University of California at Berkeley. These col-
laborations devolved SAL further and incorporated Verimag. SAL is now devel-
oped at SRI and its current version is 3.3. The SAL language syntax can be found
in [15].

The next section describes our support for model checking Z specifications.

3 Support for Model Checking Z Specifications

As mentioned earlier in Sect. 1.2, there are two main types of our support for
model checking Z specifications. The first is a generic constant, which will be
described in the following sub-section.

3.1 Support for Generic Constants

Our first support is to aid Z2SAL to translate generic constants. The follow-
ing sub-sections describe briefly an introduction to a generic constant and our
system, also discuss results of several examples.

Introduction. A generic constant is used to introduce a new constant which
uses generic parameters [7]. By using a generic parameter, different types of a
parameter can be specified. They are specified by using different literals such as
X, Y, Z and others. A generic constant has a global scope in a Z specification,
whereas a generic parameter has a local scope in the particular generic constant
definition.

An example of a generic constant definition is formulated as follows:

[X ]
monoSequence : P(seqX )

monoSequence = {s : seqX | #(ran s) ≤ 1}

The above definition has monoSequence as the generic constant, which is a con-
stant (see a discussion below). The output type is a set of a sequence of X. There
is one specified generic parameter, X. This generic constant definition defines a
set of a sequence of s, which just has at the most one element.
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A Generic Constants Redefinition System. Our approach to support
Z2SAL in translating generic constant definitions is to implement a tool. This
tool will redefine a generic constant definition to an equivalent axiomatic defi-
nition based on usages of this generic constant (see Sect. 1.2). This approach is
based on similar behaviour between a generic constant and an axiomatic defini-
tion. In other words, they both declare a global variable inside a Z specification.
This redefinition is called an actualization process, in which a generic typed
parameter will be actualised to its actual typed parameter.

Plagge and Leuschel in [13] also proposed the same method as our method
for translating a generic definition defined in a Z specification. As discussed in
their paper, generic constant definitions had not been added to Z specification
examples.

Our system specifies different types of generic constants. These types can be
identified based on the generic constant declarations, as given below:

– a function; the outermost operator is an infix generic function. A complete
set of these functions is “ �→”, “→”, “ ��”, “�”, “ �→→”, “→→” and “�→”. These
functions are collected in one token, INGEN. As a function, it will have at least
one input parameter and one output parameter. This type can be generic.

– a relation; a declaration uses the “↔” tag in its outermost operator. This tag
has the REL string as its token. As a relation, there is no output parameter
type. In other words, the output is the relation itself; a pair of types.

– a constant; a constant means it does not require any input. Thus, a decla-
ration of this generic constant only gives us generic output parameters. This
declaration denotes none of the above tags in its outermost declaration.

The above three types of generic constants are parts of a variable declaration
of the Z grammar in the Z language. This grammar, which refers to [8], was
specified in our parser as follows:

expr1 : expr1 . word REL decor expr1 . word
| expr1 . word INGEN decor expr1 . word
| expr2 . chain
| expr2
;

The first production rule indicates a relation, whereas the second one is a func-
tion. The third production rule contains CROSS obtained from expr2.chain.
Thus, this production rule can either be a function or a relation depending on
which of those first two production rules is fired previously. The last one is a
constant; both function and relation production rules are not matched.

Inevitably, a constant actualization is not always straightforward, especially
a constant implicit type. In this case, a solution is to infer the actual type of the
generic constant.

Our redefinition system is intended as a pre-processing tool which can aid
Z2SAL. A Z specification input, which consists of generic constant definitions
and usages, will be pre-processed by this tool in order to redefine its generic
constant definitions.
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This tool was implemented in Java. It has a simple GUI to interact with users
and has also two preliminary processes: the scanner and the parser generation.
These two generators were implemented by using the JFlex scanner generator
[9] and the BYACC/J parser generator [10] respectively.

The current version of our system implemented several Z tokens which refer
to [8,20] and several production rules of the Z grammar which refer to [8]. Our
system also experienced of simple variable types of generic constants.

The next sub-section discusses an example of the redefinition process. This
Z specification was taken from [21], the swap function.

An Example of the Redefinition Process. This specification has one given
type, NAME. There are two generic constant definitions for the swap process defined
in this specification. These functions, each of which has two parameters, swap the
orders of its parameters. Thus, after a swap, an element in the second position will
be shifted such that this element is in the first position and vice versa.

The first definition, as shown below, has two different generic parameters: X
and Y. These different parameters mean that both of them have different types.
The generic constant is swap2 which is shown in the following example:

[X , Y ]
swap2 : X × Y → Y × X

∀ x : X ; y : Y • swap2(x , y) = (y, x)

The second definition has one generic parameter, X. This single parameter
means that the swap process will occur on objects of the same type. The generic
constant is swap1 which is shown in the following example:

[X ]
swap1 : X × X → X × X

∀ x , y : X • swap1(x , y) = (y, x)

A state schema, State, has only one state variable, name, which is an instance
of the specified given type. There is no predicate specified in this schema.

The initialization schema, Init, refers to the post state of the state schema.
This schema does not declare its own variable and predicate. It means that this
schema only contains predicates which are inherited from its reference to the
state schema. In this case, the reference is the post state of the state schema.

There is one operational schema specified in this specification, Swap, which
calls these generic constants. This schema does not change a state of the system
indicated by a reference to Ξ State. This schema is specified as follows:
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Swap
a? : NAME ; a!, b! : NAME ; c? : N; c! : N; ΞState

(b!, a!) = swap1[NAME , NAME ](name, a?)
(c!, a!) = swap2(name, c?)

As can be seen in the above schema, each generic constant has one usage. The
first usage uses explicit parameter types in addition to parameters required by
the function. Our system generates two axiomatic definitions for these usages as
shown below:

swap1 : NAME × NAME → NAME × NAME

∀ x , y : NAME • swap1(x , y) = (y, x)

swap2 : NAME × N → N × NAME

∀ x : NAME ; y : N • swap2(x , y) = (y, x)

Consider that the explicit type has been deleted from the first usage since Z2SAL
does not support this type of parameter. Thus, the first usage should be modified
by our system as follows:

(b!, a!) = swap1(name, a?)

This modification was conducted on this usage to let Z2SAL translates this
specification successfully.

Result and Discussion. The generated specification of the above example can
be translated by Z2SAL. A SAL file, generated by Z2SAL, can also be verified
by the SAL model checker. However, it failed to be simulated by the SAL model
checker. This simulator generated an unsupported error of a failure to convert
function application.

Furthermore, if a theorem was added to the generated SAL file, this SAL file
cannot be verified either by the SAL model checker. Thus, it is an issue of the
redefinition system.

The current Z2SAL translates the Z functions, relations and constants, and
puts them in the base module. Z2SAL defines State as the default name for
this module. The simple structure of this module can be seen in Sect. 2. This
translator also puts variable declarations in a definition clause. The definition
clause is part of the base module or in other words it is inside the base module.

As a result, an error was sometimes experienced during our experiments with
user-defined functions. This error related to an incompatible type in the equality
operator or a failure to convert function application produced by the SAL model
checker or simulator, as given earlier.
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A user defined function, relation and constant are always declared outside
a SAL module [15]. They are put in a context clause, specifically in a constant
declaration, instead. The module language in SAL describes transition system
modules [15]. However, it cannot be used to declare new types or constants or
asserting properties of the module [15]. All of these can be easily declared by
specifying them in the SAL context language.

A translation method of user defined functions adapted by the SAL language
is different to the one that Z2SAL adapts. Based on this finding, the same
method as SAL’s method was proposed by us to Z2SAL researchers during our
study. This proposal can be considered as our contribution in model checking Z
specification as mentioned in Sect. 1.2.

This method can be applied to a user defined function and constant, but it is
not applicable to a user defined relation since a relation does not have a type for
its output parameter. It is based on a signature of this SAL function specified
in [15].

The signature of which is named as a constant declaration has the following
syntax rule [15]:

ConstantDeclaration := Identifier [(VarDecls)] : Type[= Expression]

This constant declaration, as mentioned above, is part of the SAL context lan-
guage. The SAL context language syntax is given as follows [15]:

Context ::= Identifier [{Parameters}] : CONTEXT = ContextBody
Parameters ::= [TypeDecls]; {VarDecls}∗,

TypeDecls ::= {Identifier}+, : TYPE
ContextBody ::= BEGINDeclarationsEND
Declarations ::= ConstantDeclaration

| TypeDeclaration

| AssertionDeclaration

| ContextDeclaration

| ModuleDeclaration
ConstantDeclaration ::= Identifier [(VarDecls)] : Type[= Expression]
TypeDeclaration ::= Identifier : TYPE [= TypeDef ]
AssertionDeclaration ::= Identifier : AssertionForm = AssertionExpression

AssertionForm ::= OBLIGATION | CLAIM | LEMMA | THEOREM
ContextDeclaration ::= Identifier : CONTEXT = Identifier{ActualParameters}
ActualParameters ::= {Type}∗, ; {Expression}∗,

Other non-terminals or rules can be found in the same reference as given above.
Thus, the generated SAL file was modified to adapt a constant declaration

formulated by SAL. Both the above function definitions were formulated manu-
ally on the generated SAL file. They are shown below:

swap1 ( q 1 : NAME, q 2 : NAME) : B NAME X B NAME = ( q 2 , q 1 ) ;

swap2 ( q 3 : NAME, q 4 : NAT) : B NAT X B NAME = ( q 4 , q 3 ) ;

Original declarations generated by Z2SAL for these functions were deleted.
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A few theorems were added to this specification as shown below:

th1 : theorem State |− G(FORALL ( i : NAME, j : NAT) : swap2 ( i , j ) = ( j , i ) ) ;

th2 : theorem State |− G(FORALL ( i , j : NAME) : i = j =>
swap1 ( i , j ) = swap1 ( j , i ) ) ;

th3 : theorem State |− G(FORALL ( i , j : NAME) : swap1 ( i , j ) = swap1 ( j , i ) ) ;

The first two theorems are valid; the swap system can satisfy both properties.
The last theorem is invalid since the swap function will not give us the same
result for different parameters.

There is another issue relating to an abbreviation definition and a lambda
expression which was found during our experiments with the redefinition system.
Both these issues will be discussed in the next sub-sections.

Generic Abbreviation Definitions. Z2SAL supports an abbreviation defin-
ition, but not the generic one. Declaring a global constant by using an abbrevi-
ation definition is common in writing Z specifications. Thus, a generic abbrevi-
ation definition was taken also into our consideration.

In the case of generic abbreviations, it is not enough just to work with an
actualization of a generic type. The other issue here is a set comprehension
definition. A generic abbreviation definition is usually defined by using a set
comprehension definition. However, Z2SAL does not support an abbreviation
definition consisting of a set comprehension.

For example, consider a generic abbreviation definition as below [7]:

monoSequence[X ] == {s : seqX | #(ran s) ≤ 1}

A generic abbreviation definition can be rewritten to a generic constant defini-
tion. Both these definitions declare global constants in the related Z specification,
in this case the type of the generic constant is a constant.

The expression in the right hand side of the “==” uses a set comprehension
definition, which denotes that monoSequence is a set of a sequence of X. The
body of this generic definition is obtained from the expression after the “==”
tag.

Thus, a generic abbreviation definition is first rewritten to a generic constant
definition. This rewriting is performed manually and automatically in order to
prove that it is correct. This equivalent definition was given in Sect. 3.1. After-
wards, this generic constant definition is redefined to an axiomatic definition.

Lambda Expressions. Another kind of generic forms is the “λ” expression,
which is used to define a function without specifying a name [7]. Z2SAL does
not support this expression which is common in generic constant definitions or
in other definitions in a Z specification generally. Our approach is to rewrite
a lambda expression automatically and manually to an equivalent expression
without any lambda expression. Then, it is redefined to an axiomatic definition.
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For example, a generic constant definition as formulated below consists of
the lambda expression [7]:

[X ]
commonSubseq : ((seqX ) × (seqX )) → P(seqX )

commonSubseq = (λ s, t : seqX • allSubseqs ∩ allSubseqt)

The lambda expression in the above definition can be rewritten to an equivalent
definition as follows:

commonSubseq = {s, t : seqX • ((s, t), allSubseq(s) ∩ allSubseq(t))}

or another equivalent one as given below:

∀ s, t : seqX • commonSubseq(s, t) = allSubseqs ∩ allSubseqt

A lambda expression definition, (λ S • E), represents a function and has argu-
ments which are taken from S. An output of this expression is the value of E [8].
As given by the first equivalent definition above, the lambda expression is equiv-
alent to a set comprehension, {S • (T ,E )}, in which T is a characteristic tuple of
S. In a set comprehension, a characteristic tuple is obtained from its declaration.
Thus, (s,t) is the characteristic tuple of the above set comprehension.

During our experiments, Z2SAL was unable to translate a set comprehen-
sion definition with many parameters of the same type. According to the SAL
grammar rules, only one parameter can be declared in one definition of a set
comprehension. The SAL syntax [15] for a set expression is given as follows:

SetExpression := SetListExpression | SetPredExpression

SetListExpression := {{Expression}+
, }

SetPredExpression := {Identifier : Type = Expression}

Thus, our approach is to rewrite the first equivalent lambda expression to the
second equivalent one.

Several results collected from our experiments are summarized and discussed
in the next sub-section.

Summaries of Experiments on the Redefinition System. A number of
experiments on several Z specifications are presented on Table 1. These exper-
iments run on a laptop with a 1.30 GHz Genuine Intel(R) CPU U7300 and
2.00 GB RAM.

The second column of Table 1 indicates that a manual modification was made
to the SAL file. The SAL file was generated by Z2SAL from the Z specification
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Table 1. Several experiments with the redefinition system

Z Specification Details Verification time in secs

(*.tex) #Theorem = 0 #Theorem > 0

bbook Modified SAL function 0.842

bbook map Modified SAL function 0.016 0.25

bbook uni Modified SAL function and other
parts of SAL file

0.031 0.406

bbook map uni Modified SAL function and other
parts of SAL file

0.359

fDomRan Modified SAL function 0.015

fEmpty OK 0.093

fEmptyImpl OK 0.109

fFirst Modified SAL function 0.015 0.187

fHead Modified SAL function 0.031

fHeadFunc Modified SAL function and cannot
be simulated: The set of initial
states is empty

0.031

fMaxComSubSeq Modified other parts of SAL file
and cannot be simula ted: An out
of memory error

0.047

fMaxComSubSeq 1 Modified other parts of SAL file
and cannot be simula ted: An out
of memory error

0.032

fMaxComSubSeq orig Modified other parts of SAL file
and cannot be simula ted: An out
of memory error

0.032

fMonoSeq OK. Long simulation 0.047

fMonoSeq 1 OK. Long simulation 0.031

fSwap Modified SAL function 0.016 0.141

fUniqSeq Ok. Cannot be simulated: An out
of memory error

0.062

fUniq1Seq Ok. Cannot be simulated: An out
of memory error

0.031

fUniq2Seq Ok. Cannot be simulated: An out
of memory error

0.015

tn Modified other parts of SAL file
and cannot be simula ted: An out
of memory error

0.03

tnImpl Modified other parts of SAL file
and cannot be simula ted: An out
of memory error

0.0

fFileStorage Canot be translated by Z2SAL N/A

fSet Modified SAL function and other
parts of SAL file

0.0
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produced by our redefinition system. This modification is required so that the
SAL file can be verified by the SAL model checker or simulated by the SAL
simulator. It involved rewriting a user defined function and placing this function
in which SAL put its function. Examples of this rewriting were given earlier
in Sect. 3.1. The modification also involved rewriting other parts of a SAL file.
Such a modification implies that there is a bug in the translation of associated
Z specification by Z2SAL. It can also be a mismatch between the Z language
and the SAL language. This manual modification will be discussed in the later
sub-section.

The third column shows verification times of each SAL file. A SAL file which
has one verification time means that this file has only be verified for one case of
the number of theorems. A SAL file which has two verification times means that
the SAL file at first can be verified by the SAL model checker. However, later
it cannot be verified if at least one theorem was added to this SAL file. Such a
SAL file usually cannot be simulated either by the SAL simulator even there is
no theorem.

Based on our experiments as shown in Table 1, majority of SAL files generated
by Z2SAL from the output of our system, can be verified by the SAL model
checker. It is proved by existences of a verification time in each row of the table.

Inevitably, there is one output produced by our system which cannot be
translated by Z2SAL. The output is generated from the fFileStorage.tex input
file. It is because this Z specification contains a function which its range is also
a function. Z2SAL does not support such a type. A quick solution is to rewrite
such a function. However, another error relating to the “. .” tag was experienced.
It was concluded that it is a bug in a Z2SAL translation of a range of numbers.

Another finding is that a few SAL files, which can be verified by the SAL
model checker, cannot be simulated by the SAL simulator due to an out of
memory error as can be seen in Table 1. These SAL files usually have sequences
or a set inside other sets. Currently, this error has not been solved.

Relating to out of memory errors, the following sub-section discusses this
issue. The discussion will be accompanied by a table.

Size of Z Specifications. Z specifications used for our experiments have dif-
ferent sizes measured in kilobytes. These sizes are summarized in Table 2. Sizes
of the redefined specifications are recorded also on this table.

“input” on this table means a Z specification input file for our system. On
the other hand, “output” means a Z specification output file generated by our
system after performing a redefinition process, “N/A”s in SAL specifications
means an associated Z specification cannot be translated by Z2SAL.

Referring to this table, almost all of our experiments have the same sizes
of Z specifications before and after redefinition processes. It means that there
were not many usages specified in these specifications. It can also mean that the
generic constant definitions are not quite complex definitions.

The size of a SAL specification is roughly twice to four times of its Z specifica-
tion. Sizes of SAL specifications shown in this table are original sizes producing



270 M.U. Siregar

Table 2. Sizes of Z specifications

Z Specifications Sizes in KB

(.tex) Input Output SAL specifications

bbook 2 2 6

bbook map 1 1 4

bbook uni 1 1 4

bbook map uni 1 2 5

fDomRan 2 2 6

fEmpty 1 1 2

fEmptyImpl 1 1 2

fFirst 1 1 3

fHead 1 1 3

fHeadFunc 1 1 3

fMaxComSubSeq 2 2 4

fMaxComSubSeq 1 2 2 4

fMaxComSubSeq orig 2 2 4

fMonoSeq 1 1 3

fMonoSeq 1 1 1 3

fSwap 1 1 2

fUniqSeq 1 2 5

fUniq1Seq 1 2 5

fUniq2Seq 1 2 5

tn 3 3 6

tnImpl 3 3 6

fFileStorage 2 2 N/A

fSet 2 2 5

by Z2SAL. As discussed above, several of these SAL specifications have been
modified as required in order to be executed by the SAL tool successfully. Thus,
their sizes can be different from the original ones.

There are only four experiments which their sizes of Z specification outputs
were increased twice of their inputs. These specifications are bbook map uni,
fUniqSeq, fUniq1Seq and fUniq2Seq.

As shown in Table 1, several of our Z specifications cannot be simulated by
the SAL simulator because of out of memory errors. However, these errors cannot
be blamed for the increasing sizes of specifications. It is because there are other
specifications which their sizes were not increased, but they were involved on the
same errors as above. Sizes of these specifications are greater than 1. However,
it can coincide which is not influenced entirely only by sizes of specifications.
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An additional factor is the complexity of a declaration of a generic constant.
The out of memory errors were involved on specifications which have either
sequences, or sets of sets.

Thus, a Z specification, which does not have a sequence, a set of other set,
or a range of numbers, can be executed successfully by the SAL tool. It argues
also that a size of a generic constant definition and a number of usages relate to
a generation of that error.

In a conclusion, our approach to redefine generic constants definitions scales
to larger specifications. However, as the outcomes of our system will be translated
by Z2SAL and executed by the SAL tool later, the large specification generated
by our system is possible to be a problem with both tools.

As mentioned earlier, a separate discussion in manual modification in SAL
files will be offered. The following sub-section discusses our approach to this
manual modification.

Manual Modification in SAL Files. Although all generated SAL files in our
experiments with this system can be verified by the SAL model checker, a few of
them at first failed. The modified version of these SAL files also failed to be ver-
ified by the SAL model checker. These files are output bbook uni as the SAL
file generated from the output of bbook uni.tex, output bbook map uni
as the SAL file generated from the output of bbook map uni.tex and
output fSet as the SAL file generated from the output of fSet.tex.

This failure related to incompatible types in the equality operator. The SAL
model checker identified that the type of birthday is not compatible with the
type of the first argument of a function uniSet in the first and second SAL
files. The uniSet function which is a generic constant definition was specified as
follows:

[X ]
uniSet : (PX ) × (PX ) → (PX )

∀ S , T : (PX ) • uniSet(S , T) = {x : X | x ∈ S∨x ∈ T}

This function combines two sets of elements which have the same types. As can
be seen, this function requires two parameter inputs. Both of them have the
same types as the output type.

An example of usage of the above generic constant is specified as follows:

birthday′ = uniSet(birthday, {name? 	→ date?})

As can be seen from the above generic constant definition, the type for the first
parameter is a set of X. This type is an expected type. On the other hand,
birthday is the first parameter passed to uniSet. The type of birthday will be
the actual type for this parameter. The declaration of the function birthday is
as follows:
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birthday : NAME 	→ DATE

birthday is a state variable, which is a partial function from NAME to DATE.
Our system generated the uniSet axiomatic definition as follows:

uniSet : (P(NAME × DATE)) × (P(NAME × DATE)) → (P(NAME × DATE))

∀ S , T : (P(NAME × DATE)) • uniSet(S , T) = {x : (NAME × DATE) | x ∈ S∨x ∈ T}

As can been from the above definition, the type of birthday has been modified
to its equivalent type. It is done so to ease the unification of the expected type,
X, and the actual type, NAME �→ DATE.

A function type can be rewritten to a relation type [8]. Several constraints
should also be added to maintain that it was a function. Furthermore, a relation
is equivalent to a set of a pair of types.

X ↔ Y ≡ P(X × Y )

Thus, SAL failed to recognize that birthday had an equivalent type to the
first argument of the uniSet user-defined function. This error indicated that
there was incompatible type between the output of uniSet, Set C B NAME
X B DATE I, and the right hand side of the equality operator, [NAME X DATE
-> bool]. Afterwards, a sequence of modifications was performed to the associated
SAL file lines.

The last error produced by the SAL model checker is as follows:
Error: [Context: output bbook uni mod, line(62), column(29)]:

Type mismatch in the function application.

Expected type:

[set{output bbook uni mod!NAME X DATE}!Set,
set{output bbook uni mod!NAME X DATE}!Set]
Actual type:

[output bbook uni mod!Set C NAME X B DATE I,

set{output bbook uni mod!NAME X DATE}!Set]

The related SAL lines are as follows:

61 NOT se t {NAME;} ! c onta in s ?(known , name?) AND
62 birthday ’ = uniSet ( ( birthday , s e t {NAME X DATE;} !
63 s i n g l e t on ( ( name? , date ? ) ) ) ) AND
64 i nva r i an t ’

In line 62, the type of uniSet after modification is a pair of set {NAME X DATE;}
! Set and set {NAME X DATE;} ! Set. This type was not compatible with the
actual type passed to uniSet, which was a pair of Set C NAME X B DATE I
and set {NAME X DATE;} ! Set. The type Set C NAME X B DATE I is an
alias for [NAME -> B DATE], specified by Z2SAL.
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Although a function is special type of a relation and a relation is a set of a
pair of types in the Z language, SAL did not conclude that both types of the
first argument of uniSet are the same. Thus, this incompatible type was solved
manually. This is because our tool has not been able to perform this modification
automatically.

Our last modification defined the same alias for birthday, but this time the
alias represents a relation, not a function any more. It is shown as follows:

Set C NAME X B DATE I : TYPE = se t {NAME X DATE;} ! Set ; .

This change affects the usage of birthday. It cannot any longer be used as a
function.

f unc t i on {NAME, B DATE; DATE BB} ! p a r t i a l ?( b irthday ) AND

As a result, the above line was deleted from the old SAL file.

known = r e l a t i o n {NAME, DATE;} ! domain ( birthday ) AND

Another result is the above line, which is a relation, replaced a line, which is a
function, as follows:

known = func t i on {NAME, B DATE; DATE BB} ! domain ( birthday ) AND

As well as a line as follows, which presents a usage of a function:

date ’ = birthday (name?) AND

was replaced by a line below, which presents a usage of a relation:

s e t {NAME X DATE;} ! c onta in s ? ( birthday , (name? , date ’ ) ) AND

Finally, the modified SAL file can be verified by the SAL model checker and
simulated by the SAL simulator.

The same function was also a source of the error in the third SAL file, but this
time its first actual parameter is used. A usage of this function in the associated
Z specification is as follows:

used′ = uniSet(used, n)

The used state variable is a set of “N1” and the n variable is an instance of
“N1”.

An axiomatic definition generated for the above usage is as follows:

uniSet : (PN1) × (PN1) → (PN1)

∀ S , T : PN1 • uniSet(S , T) = {x : N1 | x ∈ S∨x ∈ T}

After a similar modification as performed in both SAL files above, the modified
SAL file can be verified and simulated by the SAL tool.
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Another aspect of the Z notation in our study is the schema calculus. This
aspect was taken as the second type of our support for model checking Z speci-
fications.

3.2 Support for Schema Calculus

This sub-section discusses the addition of support for Z schema calculus to our
tool. The sub-section begins with an introduction to schema calculus. It is fol-
lowed by a brief introduction to our support for this Z notation and our experi-
ments on this system.

Introduction. Z2SAL supports a translation of several schema calculus such as
a schema inclusion, the Δ and the Ξ operator, but they must be specified either
vertically or horizontally in a schema. However, if a new schema is constructed
from earlier schemas, Z2SAL does not support this schema construction. Thus,
it argues that Z2SAL does not support schema calculus definitions.

The constructed schema is specified by using “=̂”. It is the same as the
supported schema calculus. However, the constructed schema does not use “[”
and “]” to surround its declaration of variables and predicates.

The constructed schema is used commonly to define a more complex, modular
and larger specification of a system. Schemas that have been specified can be
reused to specify a new schema. It is because every schema has its distinctive
operation in a specification, called ’schema separation’ [2].

A Schema Calculus Expansion System. Our approach is to construct a
new schema by expanding other schemas, in which they are connected by schema
operators. This system was included in the support tool for model checking Z
specifications, the same as the redefinition system.

Since every schema operator has its own definition, a schema operator affects
how the expansion is performed. The expansion means that all unique variables of
involved schemas are listed in the new schema. It also means that predicates from
the involved schemas are added. These predicates are combined using specified
schema operators.

There is a prerequisite for operating two schemas; the same or common vari-
ables should have the same type. Furthermore, in a case of the negation operator,
normalisation is also required.

Normalisation is to define explicitly the constraint given by the declaration
part of the related schema. This constraint is specified in the predicate part. Nor-
malisation should be performed just before the negation. This process is applied
also to other schema operators for the sake of easiness. Several normalisation
rules were specified in our system as follows:
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– Every “N” or “N1” in a declaration part is rewritten to a type of “Z”.
– Every “seq” or “seq1” is changed to P(Z × newVal), newVal is a type which

comes after “seq” or “seq1”. The previous rule is applied also to newVal.
– Every function is changed to a pair of its left hand side type and its right

hand side one. Both the above rules are also applied to the type in the left
and in the right.

In general, after each schema is expanded, variables and predicates will be
collapsed to a reference of a state schema. This collapse benefits the new schema
to get a more compact schema and to avoid re-declarations of state variables.

Our system can expand several schema operators such as conjunction “∧”,
disjunction “∨”, negation “¬”, implication “⇒”, bi-implication “⇔”, hiding “\”,
renaming “/”, composition “o

9”, universal quantifier “∀” and existential quantifier
“∃”. Our system can also perform a simple simplification over a predicate part.

The next sub-section describes an example from our experiments with this
system.

An Experiment with the Schema Calculus Expansion System. An
example, expandingschema 3.tex, will be presented in this sub-section. This
example was taken from [2], but has been modified in some places for our exper-
iments.

This example represents a library system specification. It has a state and an
initialization schema as follows:

Library
stock : COPY 	→ BOOK ; issued : COPY ↔ READER
shelved : F COPY ; readers : F READER

∀ x : COPY ; y1, y2 : READER •
(x 	→ y1) ∈ issued∧(x 	→ y2) ∈ issued ⇒ y1 = y2
shelved ∪ domissued = domstock
shelved ∩ domissued = ∅

ran issued ⊆ readers
∀ r : readers •#(issued � {r}) ≤ maxloans

InitLibrary
Library′

shelved′ = ∅

readers′ = ∅

As can be seen from the above state schema, this library system has four
state variables:

– stock is a partial function from COPY to BOOK. It gives us information about
what copies a book has.

– issued is a relation between a copy of a book and a reader. It gives us
information about which copy of a book each reader has.
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– shelved is finite set of COPY.
– readers is a finite set of READERS.

This system has also three given types: COPY, BOOK, READER.
There is one schema calculus definition specified in this specification, which

uses the Z schema composition operator, “o
9”. It is shown as follows:

Donate=̂EnterNewCopy o
9 RegisterReader .

This operator will combine the second schema with the first schema, in which
the result of the first schema is an input for operating the second schema.

The schema composition consists of the number of operations taken from
other schema operators. Renaming is the first operation to take place. Its
processes begin with renaming the same state variables so that the primed ones
in the first schema and non-primed ones in the second schema have the same
name of variables. Afterwards, these renamed schemas are combined using a con-
junction operator. The next process is to hide the common renamed variables
in a declaration part of the new schema. It is followed by adding an existential
quantification which binds these hidden variables in a predicate part of the new
schema.

The new schema, Donate, was constructed by our system as given below:

Donate
ΔLibrary; b? : BOOK ; r? : READER; rep! : Report

∃ c : COPY | c �∈ domstock • (stock ′ = stock ⊕ {c 	→ b?}∧
shelved′ = shelved ∪ {c})∧r? �∈ readers ⇒
(readers′ = readers ∪ {r?}∧rep! = Ok)∧
r? ∈ readers ⇒ (readers′ = readers∧rep! = ReaderAlreadyRegistered)
∧issued′ = issued

A theorem as given below was added to the generated SAL:

th1 : theorem State |− G( she lved = se t {COPY; } ! empty ) ;

It says that shelved is always empty, which is invalid. It is because c of type
COPY can be added to shelved by performing EnterNewCopy or Donate. Indeed,
the SAL model checker reported a counter-example on the verification of this
SAL file.

This specification requires a simplification which is applied to the final out-
put, otherwise there will be re-declared state variables. Our system could perform
a simple simplification to collapse all state variables and predicates to a reference
of the state schema.

As mentioned previously, the first process of a schema composition is renam-
ing which is to rename several state variables to the common names. In this
system, the common name is specified to be the same as the name of the state
variable, but 0 will be added at the end of this variable. This simplification is
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achieved by substituting all renamed common variables for their appropriate
values obtained from related predicates.

The above example can be translated by Z2SAL. It can also be verified and
simulated by the SAL tool.

The following sub-section summarizes results obtained from our experiments
with this system. A discussion in these results is also given in this sub-section.

Summaries of Experiments with the Expansion System. This sub-
section discusses several findings found during our experiments with the expan-
sion system. Each finding is discussed in a separate paragraph.

Re-declaration of State Variables. Re-declaration of state variables is an issue
of implementations of renaming and hiding operations. Since a simplification
is hard to apply on both operations, these operations cannot be further imple-
mented at the moment.

The current Z2SAL assumes that the first schema definition in a Z specifi-
cation is a state schema and the second one is an initialization schema. Z2SAL
defines also one base module in each SAL specification and accepts only one
state schema in each Z specification input, though both SAL and Z allow many
modules and state schemas respectively in one specification.

A SAL module specifies a transition system of a finite-state automaton. A Z
schema represents a state of a system and a collection of these schemas models
behaviour of the system. A state schema is a combination of state variables and
predicates of a system.

A restriction on the number of state schemas in a Z specification is also an
issue of performing a negation in a schema expansion. Variables and negated
predicates in the constructed schema cannot be collapsed into a state schema
inclusion. It is because of a problem of re-declared variables. The only way to
solve this problem is to define at least two state schemas. The first state schema
just defines state variables, whereas the second one defines an inclusion to the
first schema and state predicates. However, Z2SAL does not support many state
schemas either as discussed earlier.

This restriction affects also how a renaming and a hiding are applied to. Both
schema operators cannot be applied to the initialization schema and operational
schemas due to the above same problem and instead to the state schema. Further-
more, Z2SAL also enforces us to define the same name for both the constructed
schema and the state schema. Thus, the application of these two operators will
modify the whole specification.

The Order of Schema Operators. Another issue in schema expansion is the order
or the binding of schema operators, especially when brackets are not added in a
definition of schema calculus. Fortunately, operators bindings and associativities
can be defined by using built-in options of the BYACC/J parser generator [10]:
left, right and nonassoc, which mean left, right and no grouping respectively.
Afterwards, several actions can be added in associated grammars to define infor-
mation about these orders. The order of operators tells us the precedence among
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them, which is getting higher position, the lower the precedence. Several of these
orders are given in the [8].

Size of Z Specifications. One issue that is important to consider is by having
many schema calculus definitions, both a Z specification and a SAL specification
are also getting big in sizes. Another important issue is that a size of a SAL
specification is roughly twice to four times of its Z specification (see discussion
below).

Fortunately, our approach to expand schema calculus definitions scales to
larger specifications. However, as the outcomes of our system will be translated
by Z2SAL and executed by the SAL tool later, the large specification resulted
by our system is possible to be a problem with both tools.

The following describes briefly our experiments with this system. Several
tables are presented which summarize these experiments.

Tables 3, 4, and 5 show us results from several examples of our experiments.
These examples were obtained from several Z books and they will be discussed
below.

Specifications which were used for Experiment 1 to Experiment 8, and Exper-
iment 71 were taken from [2]. It is a library system which has been discussed in
Sect. 3.2.

On the other hand, Experiment 9, Experiment 24 to Experiment 33, Experi-
ment 54 to Experiment 55, and Experiment 58 to Experiment 63 were taken from
[22]. This is a simple car park system. The state schema and the initialization
schema are as follows:

CarsPark
count : N; maximum : N

count ≤ maximum

InitCarsPark
CarsPark

count = 0
maximum = 3

Experiment 10 to Experiment 14, Experiment 23, Experiment 34 to Exper-
iment 44, Experiment 56 to Experiment 57, and Experiment 64 to Experiment
70 were taken from [4]. This system regards with bookings for performances on
a concert hall. The state schema and the initialization schema for these experi-
ments are as follows:

BoxOffice
seating : PSeat
sold : Seat 	→ Customer

domsold ⊆ seating

InitBoxOffice
BoxOffice′

sold′ = ∅

seating′ = initial allocation

Experiment 15 to Experiment 22 were taken from [7].
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Table 3. Several experiments with the expansion system

No Z Specification Details Verification time in secs

(.tex) Non-simplified Simplified

1. expandingschema 1 “∨” 0.063 0.031

2. expandingschema 2 “∧” 0.062

3. expandingschema 3 “o
9” 0.03

0.733

4. expandingschema 4 “∧” 0.016

“∨, ∨”
“∨”

2.044

5. expandingschema 5 “∧, ¬, ∧” 0.031

1.654

6. expandingschema 6 “∧, [, ]” 0.031

0.686

7. expandingschema 7 “¬, ∧, [, ]” N/A

8. expandingschema 8 “∧, [, ]” N/A

“¬, ∧, [, ]”
“∨”

9. expandingsch2 4 “¬” N/A

10. expandingsch3 1 “⇒” 0.015

11. expandingsch3 2 “∧, ⇒” 0.032

12. expandingsch3 4 “⇒, ∧” 0.016

13. expandingsch4 1 “⇔” 0.015

14. expandingsch4 2 “∧, ⇔” 0.031

15. expandingsch5 1 “[, /, ]” N/A

16. expandingsch5 2 “[, /, /, ]” N/A

17. expandingsch6 1 “\” N/A

18. expandingsch6 2 “\” N/A

19. expandingsch7 1 “o
9” 0.031

20. expandingsch8 1 “∀” N/A

21. expandingsch8 2 “∀” N/A

22. expandingsch8 3 “∀, ∧” N/A

23. expandingsch8 6 “∃” N/A

24. expandingsch1 1 “∧” 0.0

25. expandingsch1 2 “∧” 0.016

26. expandingsch1 3 “∧, ∧, ∧” 0.0

27. expandingsch1 4 “∧, ∧” 0.015

28. expandingsch1 5 “∨, ∧” 0.015

29. expandingsch1 6 “∨, ∧” 0.0

30. expandingsch1 7 “∧, ∨” 0.015

31. expandingsch1 8 “∧, ∨” 0.0
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Table 4. Several experiments with the expansion system (continued)

No Z Specification Details Verification time in secs

(.tex) Non-simplified Simplified

32. expandingsch1 9 “∧” 0.0

33. expandingsch1 10 “∨, ∨, ∨” 0.0

34. expandingsch1 11 “∧, ∨, ∧” 0.016

35. expandingsch1 12 “∧, ∨, ∧” 0.015

36. expandingsch1 13 “∧, ∨, ∧” 0.016

37. expandingsch1 14 “∧, ∨, ∧” 0.016

38. expandingsch1 15 “∧” 0.016

39. expandingsch1 16 “∧” 0.016

40. expandingsch1 17 “∧” 0.016

41. expandingsch1 18 “∧” 0.031

42. expandingsch1 19 “∧, ∨, ∧” 0.032

43. expandingsch1 20 “∧, ∨, ∧” N/A

44. expandingsch1 21 “∧, ∨, ∧” 0.03

45. expandingsch1 22 “∧, ∨” 0.031

46. expandingsch1 23 “∧, ∨” 0.032

47. expandingsch1 24 “∧, ∨” 0.031

48. expandingsch1 25 “∧, ∨” 0.016

49. expandingsch1 26 “∧” 0.015

50. expandingsch1 27 “∧” 0.031

51. expandingsch1 28 “∨, ∨, ∨” 0.031

52. expandingsch1 29 “∨, ∨, ∨” 0.031

53. expandingsch1 30 “∨, ∨, ∨” 0.047

54. expandingsch1 31 “∨, ∧, ∨” 0.0

55. expandingsch1 32 “∨, ∨, ∧” 0.015

56. expandingsch2 1 “¬” N/A

57. expandingsch2 2 “¬, ∧” 0.032

58. expandingsch2 3 “¬” N/A

59. expandingsch2 5 “¬, ∧” N/A

60. expandingsch2 6 “¬, ∧” N/A

61. expandingsch2 7 “∧, ¬” 0.0

62. expandingsch2 8 “∧, ¬” 0.0

63. expandingsch2 9 “¬, ∧, ¬” N/A

64. expandingsch3 3 “∧, ⇒” 0.016

65. expandingsch3 5 “⇒, ∧” 0.015

66. expandingsch3 6 “⇒, ∧” 0.031

67. expandingsch3 7 “⇒, ∨, ⇒” N/A

68. expandingsch3 8 “∧, ⇒, ∧” 0.015

69. expandingsch3 9 “∧, ⇒, ∧, ⇒, ∧” 0.015
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Table 5. Several experiments with the expansion system (continued)

No Z Specification Details Verification time in secs

(.tex) Non-simplified Simplified

70. expandingsch8 5 “∀” N/A

71. expandingschema 9 “∧, ¬, ∧” N/A

“∧, [, ]”

“¬, ∧, [, ]”

“∨”

“∧, ∨”

Calculator
store : MEMORY → Z

display : Z

arg2 : Z

Init
Calculator

∀ m : MEMORY • store(m) = 0
display = 0
arg2 = 0

Above are the state and initialization schemas of this specification. This speci-
fication is a system of a four function calculator.

Experiment 45 to Experiment 53 were taken from [23], but have been modi-
fied in several places to be able to be translated by Z2SAL. One of these mod-
ifications is to have one state schema. In the original specification, there are
references to several different schemas. These references indicate the referenced
schemas are state schemas. The modification is necessary to be translated by
Z2SAL. A state and initialization schemas are given as follows:

Flexi
Standard Hours, Flexitime Hours : Time → Period
worked : Ident 	→ Period; in : Ident 	→ Time

domin ⊆ domworked

InitFlexi
Flexi

in = ∅

worked = ∅

As can be seen from Tables 3, 4, and 5, a simplification has only been per-
formed on an output of expandingschema 1 specification. It is indicated by
two verification times in associated columns. Outputs of expandingschema 3,
expandingschema 4, expandingschema 5, and expandingschema 6 have two
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Table 6. Sizes of Z specifications

Z Specifications Sizes in KB

(.tex) Input Output SAL specifications

Expandingschema 1 2 2 7

Expandingschema 2 2 2 6

Expandingschema 3 2 2 6

Expandingschema 4 2 3 10

Expandingschema 5 2 3 9

Expandingschema 6 2 2 4

Expandingschema 7 2 3 N/A

Expandingschema 8 3 5 N/A

Expandingsch2 4 1 N/A N/A

Expandingsch3 1 1 1 3

Expandingsch3 2 2 2 4

Expandingsch3 4 2 2 4

Expandingsch4 1 2 2 4

Expandingsch4 2 2 2 5

Expandingsch5 1 1 1 N/A

Expandingsch5 2 1 1 N/A

Expandingsch6 1 1 1 N/A

Expandingsch6 2 2 2 N/A

Expandingsch7 1 1 1 2

Expandingsch8 1 2 2 N/A

Expandingsch8 2 2 2 N/A

Expandingsch8 3 2 2 N/A

Expandingsch8 6 1 2 N/A

Expandingsch1 1 1 1 3

Expandingsch1 2 1 1 3

Expandingsch1 3 1 1 3

Expandingsch1 4 1 1 3

Expandingsch1 5 1 1 3

Expandingsch1 6 1 1 3

Expandingsch1 7 1 1 3

Expandingsch1 8 1 1 3

Expandingsch1 9 1 1 3

Expandingsch1 10 1 1 3

Expandingsch1 11 1 2 3

Expandingsch1 12 1 2 4

Expandingsch1 13 1 2 4

Expandingsch1 14 1 2 3

Expandingsch1 15 1 1 3

Expandingsch1 16 1 1 3

Expandingsch1 17 1 1 3

Expandingsch1 18 1 1 3

Expandingsch1 19 2 2 4

Expandingsch1 20 2 N/A N/A

Expandingsch1 21 2 2 4
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Table 7. Sizes of Z specifications (continued)

Z Specification Sizes in KB

(.tex) Input Output SAL specifications

Expandingsch1 22 2 2 4

Expandingsch1 23 2 2 4

Expandingsch1 24 2 2 4

Expandingsch1 25 2 2 5

Expandingsch1 26 2 3 7

Expandingsch1 27 2 3 7

Expandingsch1 28 3 5 14

Expandingsch1 29 3 5 14

Expandingsch1 30 3 5 14

Expandingsch1 31 1 1 3

Expandingsch1 32 1 1 3

Expandingsch2 1 1 1 N/A

Expandingsch2 2 1 1 3

Expandingsch2 3 1 2 N/A

Expandingsch2 5 1 2 N/A

Expandingsch2 6 1 2 N/A

Expandingsch2 7 1 1 3

Expandingsch2 8 1 1 3

Expandingsch2 9 1 2 N/A

Expandingsch3 3 2 2 4

Expandingsch3 5 2 2 4

Expandingsch3 6 2 2 4

Expandingsch3 7 2 2 N/A

Expandingsch3 8 2 2 4

Expandingsch3 9 2 2 5

Expandingsch3 10 2 N/A N/A

Expandingsch6 3 2 N/A N/A

Expandingsch6 4 2 N/A N/A

Expandingsch7 2 2 N/A N/A

Expandingsch8 4 2 N/A N/A

Expandingsch8 5 1 2 N/A

Expandingschema 9 3 8 N/A



284 M.U. Siregar

verification times in one column. The first time is a verification time with
no theorem and the second one is a time with one theorem. There are three
specifications that have many schema calculus definitions: expandingschema 4,
expandingschema 8, and expandingschema 9. “N/A”s in several rows mean that
the related specification cannot be translated by Z2SAL. All of these specifica-
tions contain re-declarations of state variables. It is because these variables could
not be collapsed by our system to references of a state schema.

Regarding size of Z specifications, this will be discussed below. Tables 6, and
7 show us sizes of our Z specifications on this experiments. As can be seen from
these three tables, a range of sizes of our Z specification inputs is between 1
and 3 kilobytes, otherwise the ranges are 1 to 8 and 1 to 14 for Z specification
outputs and SAL specifications respectively. Sizes of SAL specifications shown
in this table are original sizes producing by Z2SAL. As discussed above, a few of
these SAL specifications have been modified as required in order to be executed
by the SAL tool successfully or have been simplified to their compact form of
predicates. Thus, their sizes can be different from the original ones.

“input” means a Z specification input file for our system. On the other hand,
“output” means a Z specification output file generated by our system after per-
forming an expansion process, “N/A”s in output means an associated Z speci-
fication input could not be expanded by our system either because of errors in
the input file or because of bugs on our system, “N/A”s in SAL specifications
means an associated Z specification could not be translated by Z2SAL. It can
also be seen that a “N/A” in input makes this Z specification is not possible to
be further processed.

4 Conclusion and Future Work

Our experiments find that the SAL language is not a case sensitive language.
Another finding is that a bug on a Z2SAL translation of a range of numbers is
found. This finding convinces us to such a bug since our other experiments with
Z2SAL also find this.

All tables, which summarize our experiments, show that majority of our
running examples can be redefined or expanded by our system. Several of them
can also be translated by Z2SAL, verified by the SAL model checker, or simulated
by the SAL simulator.

As a conclusion, redefinition and schema expansion, which pre-process a Z
specification, can benefit the scope of translation of Z2SAL. It is because a Z
specification can consist of generic constant or schema calculus definitions. This
fact can support Z2SAL to translate a variety of Z specifications, which at the
end can also support model checking Z specifications.

However, our method of implementing this system seems that our method
is not feasible for larger and more complex specifications. It is because such
specifications require more time to be translated by Z2SAL and to be executed
by the SAL tool.

Expanded schemas can make the larger specification even larger. A more
complex generic constant definition means several conditions. It can be more
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complex types of generic constant variables. It can also be a more complex
predicate part of this definition. On the other hand, a more complex schema
calculus definition means the definition contains a combination of several schema
operators. Inevitably, further work could extend the system so it is able to run
more complex Z specifications.

Furthermore, the out of memory error which is often encountered during
simulation is also beneficial to be addressed. How abstraction can be applied
to the related schemas to reduce the memory consumption is planned to be
investigated.

Moreover, re-declaring state or global variables could be approached by
implementing a better simplification in predicates. It could also include upgrad-
ing Z2SAL to a version that accepts many state schemas and references to them.
Thus, one state schema can be specified to have just a variable part. Another
state schema has a predicate part. Having these state schemas, a user can col-
lapse state variables easily without a bother on negated predicates of other state
schema.

Other future work is our approach to a SAL translation of a user defined
function or constant could also be automated. There are two options for this
automation: implementing it as an extension to this system or adding it as
an extension to Z2SAL system. It appears that the second option is an easier
method to implement.
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Abstract. Faults modelling is essential to anticipate failures in criti-
cal systems. Traditionally, Static Fault Trees (SFTs) are employed to
this end, but Temporal and Dynamic Fault Trees (TFTs and DFTs)
are gaining evidence due to their enriched power to model and detect
intricate propagation of faults that lead to a failure. SFTs structure can
be abstracted to Boolean expressions. An algebra with an operator to
express order is needed to abstract TFT and DFT structures. These
expressions for SFT, TFT, and DFT are called structure expressions.

Architectural modelling languages, such as Architecture and Analy-
sis Design Language (AADL), have been used to model components and
systems relations, including modelling of faults, errors, failures, and fault
propagation. AADL tools can perform Static Fault Tree Analysis, for the
faults modelled using AADL’s Error Model Annex.

In previous work, we showed an Algebra of Temporal Faults to analyse
the order of occurrence of faults extending Boolean algebra to perform
analysis for Temporal and Dynamic fault trees. In this work, we show a
parametrized logic to express nominal and erroneous behaviours, includ-
ing faults modelling, provided an algebra and a set of operational modes.
We show how to use this logic together with the Algebra of Temporal
Faults to analyse the occurrence of faults as well as their order and prop-
agation. The logic created in this work is intended to help analysts to
consider all possible situations in complex expressions with order-related
operators, avoiding to miss some subtle (but relevant) combination.

Keywords: Activation logic · Algebra of temporal faults · Dynamic
fault trees · Boolean algebra

1 Introduction

The development process of critical control systems is based essentially on the
rigorous execution of guides and regulations [1,4,10,11]. Specialised agencies
(like FAA, EASA and ANAC in the aviation field) use these guides and regula-
tions to certify such systems.

Safety plays a crucial role on critical systems and it is the responsibility
of the safety assessment process. ARP-4761 [1] defines several techniques to

c© Springer International Publishing AG 2018
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perform safety assessment. One of them is Fault Tree Analysis (FTA). It is a
deductive process that uses trees to model faults and their dependencies and
propagation. In such trees, the premises are the leaves (basic events) and the
conclusions are the roots (top events). Intermediary events use gates to combine
basic events and each kind of gate has its own combination semantics definition.
For example, the most traditional gates are OR and AND. They combine the
events as at least one shall occur and all shall occur, respectively. To analyse
fault trees, their structures are then abstracted as Boolean expressions called
structure expressions. The analysis with these two traditional gates uses a well-
defined algorithm based on Shannon’s method—which originated the Binary
Decision Diagrams (BDDs) [3,6]—to obtain minimal cut sets from the structure
expressions and a general formula to calculate the probability of top events.

Besides the traditional OR and AND gates, the Fault Tree Handbook defines
other gates. For example the Priority-AND gate, which considers the order of
occurrence of events. Although the work reported in [24] defines these new gates,
there is no algorithm to perform the analysis of trees that contain such new gates.
This motivated the introduction of two new kinds of fault trees: Dynamic Fault
Trees [9] (DFTs) and Temporal Fault Trees [26,27] (TFTs). These variant trees
can capture sequence dependencies of fault events in a system. The difference
from Temporal Fault Tree [26,27] (TFT) to Dynamic Fault Tree [9] (DFT) is
that Temporal Fault Trees [26,27] (TFTs) use temporal gates directly, while
Dynamic Fault Trees [9] (DFTs) do not—Dynamic Fault Trees [9] (DFTs) gates
are an abstraction of temporal gates. To differentiate traditional fault trees from
the other two, we will call traditional fault trees as Static Fault Trees (SFTs).

Both TFT and DFT also use structure expressions ([19,27], respectively)
to abstract the tree to enable their analyses. Despite some limitations related
to spare gates [19], the structure expressions used in TFTs and DFTs can be
formulated in terms of a generic order-based operator.

The NOT operator is absent in the algebras showed in [16,18,25,27]. They
conceptually remove such an operator to avoid incorrect analysis, as there is no
consensus about the relevance of its use: (i) it can be misleading, generating non-
coherent analysis [22], or (ii) it can be essential in practical use [5]. The algebra
created in our previous work [8] defines the NOT operator and allows its use.

In structure expressions, the variables represent fault events and the expres-
sions represent a top event, an operational mode of a system. The combination
of all operational modes is expected to describe the complete behaviour of a
system. For example, if no fault occurs, then the system is in a nominal state;
if all faults occur, then the system is definitely in a faulty state. Possibilities
in between vary accordingly to the fault tolerance strategies employed in a sys-
tem. The analysis of all possibilities is what we call completeness analysis. For
Boolean algebra, it is equivalent to verify if all rows in a truth table (in which
the variables are fault events) are considered in at least one structure expression.

Architecture Analysis and Design Language [12] (AADL) is a standard lan-
guage to model (among other features) system structure and component inter-
action. AADL has several tools to perform different analyses to obtain SFT to
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perform FTA. But AADL’s assertions framework does not express order explic-
itly as needed for TFT and DFT analyses.

On the analyses of systems and its constituents, there is a distinction of
operational modes and error events. Operational modes refer to the behaviour
that is perceived on the boundaries of a system. Error events, on the other
hand, represent the behaviour detected in a constituent of a system. Such error
events may relate to an operational mode, but not necessarily. We abstract these
differences and leave the distinction as a parameter. In this article, we refer to
such a set as operational modes.

Another concern, left untreated in the literature, is the undesirable possibility
of non-determinism in structure expressions. What guarantees can we provide to
detect non-determinism in erroneous behaviour? For example, if a commission
is observed when fault A is active and an omission is observed when faults
A and B are active, then the system may behave non-deterministically with a
commission or omission when both A and B are active (A and B implies A). In
this work we show three different approaches to check the non-determinism: (i)
verify its existence, (ii) indicate which set of operational modes are active for a
combination of faults, or (iii) what is the combination of faults that activates a
set of operational modes.

Writing and analysing expressions with order-related operators is more com-
plex than analysing expressions with Boolean operators only. In this work, we
define a formal Activation Logic (AL) that works together with an inner algebra
to perform analysis of system structure and component interaction with a focus
on fault modelling and fault propagation, tackling the complexity introduced
by order-related operators. AL receives an algebra and the set of operational
modes of a system as parameters. The choice of algebra defines which struc-
ture expressions can be obtained: if Boolean algebra is passed as a parameter,
the AL can generate structure expressions with Boolean operators (SFT); if the
Algebra of Temporal Faults [8] (ATF) is passed as a parameter, the AL can gen-
erate structure expressions with order-related operators (TFT and DFT). The
AL requires that the inner algebras provide a set of properties (tautology and
contradiction) and semantic values. The use of the NOT is essential: besides its
use in expressions, we use the complement to normalise the expressions to pro-
vide healthy expressions. To obtain critical event expressions used in FTs and to
denote faults propagation, the AL provides a predicates notation and verification
of non-determinism.

This paper is organised as follows: in Sect. 2 we show the concepts used as
the basis for this work. Section 3 presents the proposed AL, and Sect. 4 the case
study and the application of the proposed AL. Finally, we present our conclusions
and future work in Sect. 5.

2 Background

Faults modelling depends on which analyses we want to perform. For instance,
in fault trees, even if a fault can be repaired, it is considered as a non-
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repairable fault. A fault tree is a snapshot1 of a system’s, subsystem’s or com-
ponent’s topology of faults. The time relations on fault events in TFTs and
DFTs allows the analysis of different configurations (or snapshots) of a system,
subsystem or component. We discuss these time relations in Sect. 2.1.

Structure expressions are used to analyse fault trees. In general, a struc-
ture expression is obtained from gates semantics and basic events. Basic events
become variables and gates become operators (a gate may become one or more
operators). In Sect. 2.2 we explain these structure expressions for SFTs, TFTs
and DFTs.

The AL proposed in this work depends on algebraic rules and relies on a
complement operator. Our previous work showed the ATF that extends the
Boolean algebra, thus providing the NOT operator and some properties and
rules to use the algebra. In Sect. 2.3 we show these properties and rules used in
this work.

2.1 Time Relation of Fault Events

The most general case for time relations is to consider that each fault event has a
continuous time duration. They are the basis on how fault events discretization
are defined. The point of view in this work is the analysis of the effects caused
by a combination of faults in a snapshot of a system state. In Fig. 1 we show
all possibilities of events relations in a continuous timeline (from A to B; the
converse relation is similar):

a. A starts before and ends after B has started, but before B has ended;
b. A starts before B and ends after B has ended (A contains B);
c. B starts after A, but they end at the same time;
d. A and B start at the same time, but A ends before B;
e. A and B start and end at the same time;
f. A starts before B and ends when B starts.
g. A starts and ends before B starts;

Considering that fault occurrence corresponds to the start of a fault event
and its duration, from Fig. 1 we clearly identify which event comes first: A comes
before B, except in the cases (d) and (e), where they start exactly at the same
time. If fault events are independent (they are not susceptible to have a common
cause) then the probability of their occurrences starting at the same time is very
low. The relations (f) and (g) shows the case that the system was repaired, thus
A is not active when B starts. In Sect. 2.3 we show that the ATF abstracts the
relation of events in continuous time as an exclusive before relation, based on
fault occurrence (it is similar—at least implicitly—to what is reported in [17,27]).

1 Whether a top event indeed causes a catastrophic or major failure is out of the scope
of this paper; we consider that, if it is possible that such failure occurs, then it will.
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Fig. 1. Relation of two events with duration

2.2 Structure Expressions

Structure expressions in FTA are defined in terms of set theory, using symbols
for fault events occurrence. If a fault event symbol is in a set, then it means that
fault has occurred. A set is a combination of fault events that causes the top-
level event of a tree. A structure expression of a tree is denoted by a set of sets
of fault event combinations. The OR gate becomes the union operator between
sets and the AND gate, the intersection. For example, if a system contains fault
events a, b, and c, fault trees for this system contain at most all these three
events. The occurrence of the fault event a is denoted by a set of sets A, which
contains the following sets:

1. {a}: only a occurs;
2. {a, b}: a and b occur;
3. {a, c}: a and c occur;
4. {a, b, c}: all three events occur.

The fault tree in Fig. 2 contains only two events and the resulting structure
expression for this tree is the expression A ∩ B (TOP ), where A and B are the
sets of sets that contain a and b, respectively. The resulting combinations for
TOP are {a, b} and {a, b, c} (fault events a and b occur in all possibilities).

After obtaining structure expressions, the next step is to reduce the expres-
sions to a canonical form to obtain the minimal cut sets. Minimal cut sets are
the sets that contain the minimum and sufficient events to activate the top-level
failure. That is, minimal cut sets are the smallest sets of fault events that, if
all occur, cause the top-level failure to occur. Probabilistic analysis is then per-
formed on these events to obtain the overall probability of occurrence of the top-
level event. The Fault Tree Handbook shows an algorithm based on Shannon’s
method to reduce structure expressions to obtain minimal cut sets. The Boolean
expression of the tree shown in Fig. 2 is TOP = A ∧ B.

Structure expressions are also present in TFTs [25,27,28], through the
Pandora2 methodology. These expressions use the FTA operators OR and AND,
2 Pandora stands for: P-AND-ORA, which translates to Priority AND, Time.
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TOP

a b

AND

Fig. 2. Very simple example of a fault tree

and three new operators related to events ordering: Priority-AND (PAND),
Priority-OR (POR), and Simultaneous-AND (SAND). The semantics of the
PAND in TFTs is similar to the semantics of the Priority-AND described in
the Fault Tree Handbook. To avoid ambiguous expressions, the semantics in
TFTs is stated in terms of natural numbers (instead of Boolean values), using a
sequence value function. For every possibility it assigns a sequence value to each
fault event. For example, if event A occurs before event B, then the sequence
value of A is lower than the sequence value of B, and one formula to express this
is A PAND B.

In TFTs, an invariant on sequence values is that there are no gaps for assigned
values higher than zero. For example, if faults A and B occur at the same time
and there are only these two events, then they should both be assigned value 1.
On the other hand, if A occurs before B, then the assigned values are 1 and 2,
respectively. Value zero means that the event is not active in the combination.
Table 1 shows the semantics of all TFT operators with sequence values.

Table 1. TFT operators and sequence value numbers

A B AND OR PAND POR SAND

0 0 0 0 0 0 0

0 1 0 1 0 0 0

1 0 0 1 0 1 0

1 1 1 1 0 0 1

1 2 2 1 2 1 0

2 1 2 1 0 0 0

The reduction of TFT expressions is achieved using dependency trees. In a
dependency tree, if all children of a tree node are true, then the node is also
true. Conversely, if a node is true, then all its children are also true. An issue
with dependency trees is that they grow exponentially. Accordingly to the work
reported in [28], it is already infeasible to deal with seven fault events in TFTs.
They use an alternative solution based on modularisation and algebraic laws [27]
to tackle this.



Reasoning About Temporal Faults Using an Activation Logic 293

Structure expressions are also used in DFTs. In [16,17,20] fault events occur
in a specific time and are instantaneous, stated through a date-of-occurrence
function. As the date-of-occurrence function is stated in continuous time, the
probability of two events occurring at the same time is negligible. In fact, useful
information is obtained from the possibilities of relation in time of the occurrence
of the events.

The work reported in [16,17,20] describe an algebra with operators OR and
AND, and three new operators to express events ordering: (i) non-inclusive-
before, (ii) simultaneous, and (iii) inclusive-before. The non-inclusive-before and
the simultaneous operators are similar to TFT’s POR and SAND operators,
respectively (although in [16,17,20] the only true result with the simultaneous
operator happens if the operands are the same). The inclusive-before is a com-
position of the non-inclusive-before and the simultaneous operators.

The work reported in [23,29] shows the top-level events probability calcula-
tion for DFTs by converting them to a simplified version, using only order-based
operators. Such a simplified version, which is based on a modified BDD that
includes an order-based operator, creates Sequential BDDs that are used to per-
form the probabilistic analysis.

From the previous explanation, we can conclude that an order-based operator
is present on the analyses of TFTs and DFTs. Each approach describes a new
algebra (without the NOT operator) based on different representations of events
ordering with similar theorems to reduce expressions to a canonical form.

2.3 The Algebra of Temporal Faults

Recall from Sects. 2.1 and 2.2 that fault events are independent on one another
if the events are not susceptible to a common cause. Also, the simultaneity
of events is probabilistically impossible, so one event occurs exclusively before
or after another one, inducing an order of occurrence of events. Moreover, the
analysis of fault events considers that they have started and are active, as a
snapshot of a system (faulty) state. Thus, the ATF is not used to analyse the
effects of a repairable fault. For example, the cases that are possible to analyse
with the theory shown here are (a), (b) and (c) of Fig. 1, in Sect. 2.1.

The set-theoretical abstraction of structure expressions for SFTs
[24, pp. VI-11] is very close to a Free Boolean Algebra [13, pp. 256–266] (FBA),
where each generator in FBA corresponds to a fault event symbol in fault trees.
In FBAs, as generators are “free”, they are independent on one another and
Boolean formulas are written as a set of sets of possibilities, which are similar
to the structure expressions of SFTs.

The set of sets for FBAs is the denotational semantics for Boolean algebras.
We use the concept of generators to define the denotational semantics of ATF
using a set of lists without repetition (distinct lists). The choice of lists is because
this structure inherently associates a generator to an index, making implicit
the representation of order. These lists are composed by non-repeated elements
because the events in fault trees are non-repairable, thus they do not occur more
than once.
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In the following, we show the definitions and laws of the ATF used in Sect. 4.
To avoid repetition, let S, T and U be sets of distinct lists. A list xs is distinct
if it has no repeated element. So, if x is in xs, then it has a unique associated
index i and we denote it as x = xsi.

The ATF form a free algebra, similarly to FBAs. Infimum and Supremum
are defined as set intersection (∩) and union (∪) respectively. The order within
the algebra is defined with set inclusion (⊆).

To distinguish the permutations that are not defined in FBA, we need a new
operator. The definition of XBefore (→) is given in terms of list concatenation:

S → T = {zs|∃xs, ys • (setxs) ∩ (set ys) = {}
∧xs ∈ S ∧ ys ∈ T ∧ zs = xs@ys} (1)

where the set function returns the set of the elements of a list, and @ concate-
nates two lists.

In some cases it is more intuitive to use the XBefore definition in terms of
lists slicing because it uses indexes explicitly. Lists slicing is the operation of
taking or dropping elements, obtaining a sublist. In slicing, the starting index is
inclusive, and the ending is exclusive. Thus the first index is 0 and the last index
is the list length. For example, the list xs[i..|xs|] is equal to the xs list, where |xs|
is the list length. We use the following notation for list slicing:

xs[i..j] = starts at i and ends at j − 1 (2a)
xs[..j] = xs[0..j] (2b)
xs[i..] = xs[i..|xs|] (2c)

List slicing and concatenation are complementary: concatenating two con-
secutive slices results in the original list:

∀i • xs[..i]@xs[i..] = xs (3)

There is an equivalent definition of XBefore with concatenation using lists
slicing:

S → T = {zs|∃i • zs[..i] ∈ S ∧ zs[i..] ∈ T} (4)

A variable in ATF is defined by one generator, and denotes its occurrence:

varx = {zs|x ∈ zs} (5)

The following expressions are sufficient to define the ATF in terms of an
inductively defined set (atf):

varx ∈ atf Variable (6a)
S ∈ atf =⇒ −S ∈ atf Complement, Negation (6b)

S ∈ atf ∧ T ∈ atf =⇒ S ∩ T ∈ atf Intersection, Infimum (6c)
S ∈ atf ∧ T ∈ atf =⇒ S → T ∈ atf XBefore (6d)
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Following the definitions, the expressions below are also valid for atf (using
DeMorgan laws):

UNIV ∈ atf Universal set, True (6e)
{} ∈ atf Empty set, False (6f)

S ∈ atf ∧ T ∈ atf =⇒ S ∪ T ∈ atf Union, Supremum (6g)

The following expressions are valid for generators a and b and are sufficient
to show that the generators are independent:

var a = var b ⇐⇒ a = b (7a)
var a �⊆ −var b (7b)
var a �= −var b (7c)
−var a �⊆ var b (7d)
−var a �= var b (7e)

Expressions (6a) to (6g) and (7a) to (7e) imply that the ATF without the
XBefore operator (1) forms a Boolean algebra based on sets of lists. And this is
also equivalent to an FBA with the same generators.

Note that, as the ATF is a conservative extension of a Boolean algebra, the
NOT operator is defined here, so expressions in the ATF can use it.

In the following section, we show properties as a generalisation of the pre-
conditions of laws related to XBefore.

Temporal properties (tempo). Temporal properties give a more abstract and
less restrictive shape on the XBefore laws. These properties avoid the require-
ment that every operand of XBefore should be a variable (5).

The first temporal property is about disjoint split. If the first part of a list
is in a given set, then every remainder part is not. So, if a generator is in the
beginning of a list, it must not be at the ending (and vice-versa).

tempo1S = ∀i, j, zs • i ≤ j =⇒ ¬ (
zs[..i] ∈ S ∧ zs[j..] ∈ S

)
(8a)

tempo2S = ∀i, zs • zs ∈ S ⇐⇒ zs[..i] ∈ S ∨ zs[i..] ∈ S (8b)

tempo3S = ∀i, j, zs • j < i =⇒ (
zs[j..i] ∈ S ⇐⇒ zs[..i] ∈ S ∧ zs[j..] ∈ S

)

(8c)

tempo4S = ∀zs • zs ∈ S ⇐⇒ (∃i • zs[i..(i+1)] ∈ S) (8d)

The second temporal property is about belonging to one sublist in the begin-
ning or in the end. If a generator is in a list, then it must be at the beginning
or at the ending.

The third temporal property is about belonging to one sublist in the middle.
If a generator belongs to a sublist between i and j, then it belongs to the sublist
that starts at first position and ends in j and to the sublist that starts at i and
ends at the last position (both sublists contain the sublist in the middle).

Finally, if a generator belongs to a list, then there is a sublist of size one that
contains the generator.
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Variables have all four temporal properties. For a generator x, the following
is valid:

tempo1 (varx) ∧ tempo2 (varx) ∧ tempo3 (varx) ∧ tempo4 (varx)

Other expressions also meet one or more temporal properties:

tempo1S ∧ tempo1T =⇒ tempo1 (S ∩ T ) (9a)
tempo3S ∧ tempo3T =⇒ tempo3 (S ∩ T ) (9b)
tempo2S ∧ tempo2T =⇒ tempo2 (S ∪ T ) (9c)
tempo4S ∧ tempo4T =⇒ tempo4 (S ∪ T ) (9d)

XBefore Laws. We now show some laws to be used in the algebraic reduction
of ATF formulas. The laws follow from the definition of XBefore, from events
independence, and from the temporal properties.

We define events independence (��) as the property that one operand does
not imply the other. For example, we need to avoid that the operands of XBefore
are var a and var a ∪ var b (it results in {}, see (11e)).

S��T = ∀i, zs • ¬ (
zs[i..(i+1)] ∈ S ∧ zs[i..(i+1)] ∈ T

)
(10)

The absence of occurrences ({}, the empty set of atf) is a “0” for the XBefore
operator.

{} → S = {} left-false-absorb (11a)
S → {} = {} right-false-absorb (11b)

(S → T ) ∪ S =S left-union-absorb (11c)
(T → S) ∪ S =S right-union-absorb (11d)

tempo1S =⇒ S → S = {} non-idempotent (11e)
tempo1S ∧ tempo1T∧

tempo1U =⇒
S → (T → U) =(S → T ) → U associativity (11f)

The XBefore is absorbed by one of the operands: if one of the operands may
happen alone, thus the order with any other operand is irrelevant. However,
an event cannot come before itself, thus XBefore is not idempotent Finally, the
XBefore is associative.

To allow formula reduction we need the relation of XBefore to the other
Boolean operators. We use the XBefore as operands of union and intersection.

tempo1S ∧ tempo1T =⇒
(S → T ) ∩ (T → S) = {} inter-equiv-false (12a)

tempo1−4S ∧ tempo1−4T ∧ S��T =⇒
(S → T ) ∪ (T → S) =S ∩ T union-equiv-inter (12b)



Reasoning About Temporal Faults Using an Activation Logic 297

As the XBefore is not symmetric, the intersection of symmetrical sets is empty.
The union of the symmetric is a partition of the intersection of the operands.

There are other laws shown in [8]. We are still working on a syntactical
reduction for tautology and contradiction. Such an analysis for Boolean algebra
uses binary trees for formula reduction. Our initial studies show that the ATF
relies on a ternary tree. Besides such a syntactical analysis, we only need those
laws shown in this section.

3 The Activation Logic

The Activation Logic (AL) proposed in this work emerges from the need to
analyse the behaviour of a system when a subset of the faults is active during
the same time period, and to provide completeness analysis of system behaviour.
There are at least two strategies to use AL to obtain structure expressions of
SFT, TFT, or DFT: (i) model systems directly in AL, and (ii) obtaining oper-
ational mode expressions extracted from failure traces, as shown in the work
reported in [8]. In approaches as those reported in [16,27], behavioural com-
pleteness is left for the analyst. Using tautology and the indication of undefined
nominal values, we ensure that no situation is left forgotten.

The AL associates: (i) an operational mode, and (ii) the expression of fault
events that activates the operational mode or error event. The expressions of
fault events can be written in any algebra that provides tautology and contra-
diction properties. Thus, AL is parametrized by: (i) an algebra that provides at
least tautology and contradiction, and (ii) operational modes. Figure 3 depicts
an overview of AL.

We summarise the properties of the AL as follows:

1. No expression predicate is a contradiction: there are no false predicates in
activation expressions;

2. The predicates in the terms of an expression consider all possible situations:
expression tautology;

3. There are no two terms with exactly the same operational mode: all expression
terms are related to a unique operational mode.

These properties form the healthiness conditions [14] of an expression in the AL.
We show the general form of the AL to model faults in Sect. 3.1, the health-

iness conditions to normalize expressions in Sect. 3.2, how to identify non-
determinism in an expression in Sect. 3.3, and the predicates notation to analyse
systems and model fault propagation in Sect. 3.4.

3.1 The Activation Logic Grammar

Each term in an expression is a pair of a predicate and an operational mode.
The predicate is written in either Boolean algebra, ATF, or any algebra that
provides these properties: tautology and contradiction. We assume that the set
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Fig. 3. Activation Logic (AL) overview

of possible faults on a system is finite and that each variable declared in a
predicate represents a fault event.

The operational mode has two generic values: (i) Nominal, and (ii) Failure.
Nominal values either determine value, or an undefined value (in this case, the
constant value “undefined” is assumed). Failure values denote an erroneous
behaviour, which can be a total failure (for example, signal omission) or a failure
that causes degradation (for example, a signal below or above its nominal range).
The choice of the operational modes depends on the system being analysed and
its definition is generic and is left for the analyst. For the AL, it is sufficient to
specify that it is an erroneous behaviour.

The grammar is parametrized by the syntax of an algebra (Algebra) and
a set of operational modes (OperModes). The initial rules of the grammar are
defined as follows:

AL(Algebra, OperModes) = TERM(Algebra, OperModes)
| TERM(Algebra, OperModes)

‘|’ AL(Algebra, OperModes)
TERM(Algebra, OperModes) = ‘(’ Algebra ‘,’ OM(OperModes) ‘)’
OM(OperModes) = ‘Nominal’ NominalValue

| ‘Failure’ OperModes
NominalValue = ‘undefined’ | Number
Number = Integer | Bool | Decimal

The denotational semantics of the expressions in AL is a set of pairs. The predi-
cate in each term of an expression depends on the semantics of the inner algebra.
Thus the predicate evaluates to either true (�) or false (⊥) depending on the
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valuation in the algebra. In what follows we show a sketch of the denotational
semantics of AL.

(P1, O1) �→ {(P1, O1)}
(P1, O1) | (P2, O2) �→ {(P1, O1) , (P2, O2)}

Nominal 100 �→ Nominal 100
Nominal undefined �→ Nominal undefined

Failure Omission �→ FailureOmission

In an expression, if the ith predicate evaluates to true (�), we say that the ith
operational mode is activated. To simplify the presentation of the expressions and
to ease the understanding, we use the denotational semantics in the remainder
of this article (the right-hand side of the sketch above).

In this section, to illustrate the properties and possible analyses, we use an
example of a system with faults A and B and the following outputs:

O1: when A is active;
O2: when B is active;
O3: when A is active, but B is not;
O4: when A or B are active.

The expression for this example in AL is:

S = {(A,O1) , (B,O2) , (A ∧ ¬B,O3) , (A ∨ B,O4)} (13)

In this example we see that one of the healthiness conditions is not satisfied:
when for instance, A and B are both inactive (¬ (A ∧ B)), there is no explicit
output defined. In Sect. 4 we show a more detailed case study to illustrate the
reasoning about temporal faults. In the next section, we show how to normalise
the expression, so that the three healthiness conditions are satisfied.

3.2 Healthiness Conditions

The healthiness conditions are fix points of a language. The property is defined
as a function of an expression and returns another expression. For example, if a
healthiness condition H is satisfied for an expression Exp, thus H (Exp) = Exp.

In what follows we show the three healthiness conditions for the AL. All
definitions in this section refer to an algebra that has the following properties:

contradiction: the expression always evaluates to false;
tautology: the expression always evaluates to true.

H1: No predicate is a contradiction. This property is very simple and it is
used to eliminate any term that has a predicate that always evaluates to false.

Definition 1. Let exp be an expression in the AL, then:

H1 (exp) = {(P,O) | (P,O) ∈ exp • ¬contradiction (P )} (14)
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where the operator ∈ indicates that a term is present in the expression.
Applying the first healthiness condition to our example results in:

H1 (S) = S

Thus, we conclude that S is H1-healthy.

H2: All possibilities are covered. This property is used to make explicit that
there are uncovered operational modes. In this case, there is a combination of
variables in the inner algebra that was not declared in the expression. Very often
the focus when modelling faults is the erroneous behaviour, so we assume that
such an uncovered operational mode is nominal, but has an undefined value.

Definition 2. Let exp be an expression in the AL, and τ is:

τ = ¬
⎛

⎝
∨

(P,O)∈exp

P

⎞

⎠

then:

H2 (exp) =

{
exp, if contradiction (τ)
exp ∪ {(τ,Nominal undefined)} , otherwise

(15)

This property states that if the expression is already complete, so all possi-
bilities are already covered, thus the expression is healthy.

Applying the second healthiness condition to our example results in the fol-
lowing expression after simplification:

H2 (S) = S ∪ {(¬A ∧ ¬B,Nominal undefined)}
Thus, we conclude that S is not H2-healthy.

H3: There are no two terms with exactly the same operational mode.
This property merges terms that contain the same operational mode. It avoids
unnecessary formulas and may reduce the expression.

Definition 3. Let exp be an expression in the AL. Then:

H3 (exp) = { (P1, O1) | (P1, O1) ∈ exp∧
∀ (P2, O2) ∈ exp • (P1, O1) = (P2, O2) ∨ O1 �= O2 } ∪
{(P1 ∨ P2, O1) | (P1, O1) , (P2, O2) ∈ exp ∧ O1 = O2}

(16)

Applying H3 in the example in the beginning of the section, we conclude that
S is H3-healthy. On the other hand, if we consider an S′ system being a copy of
S, but making O1 = O2, then:

H3 (S′) = {(A ∨ B,O1) , (A ∧ ¬B,O3) , (A ∨ B,O4)}
Thus, we conclude that S′ is not H3-healthy.
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Healthy Expression. To obtain a healthy expression, we apply all three health-
iness conditions. The order of application of each healthiness condition does not
change the resulting expression. The healthiness function is written as composi-
tion of functions as follows:

H = H1 ◦ H2 ◦ H3 (17)

After applying the three healthiness conditions to S, the resulting expression
is:

H (S) = { (A,O1) , (B,O2) ,

(A ∧ ¬B,O3) , (A ∨ B,O4) ,

(¬A ∧ ¬B,Nominal undefined) }
The healthiness conditions are useful to faults modelling, aiding the faults

analyst to check contradictions and completeness. Also, obtaining safe predicates
is only possible in healthy expressions. In the next section, we show how to verify
non-determinism in AL expressions.

3.3 Non-determinism

The non-determinism is usually an undesirable property. It causes an unexpected
behaviour, so the analysis shall consider the activation of fault even if the fault
might or not be active.

To identify a non-determinism, we can check for the negation of a contradic-
tion in a pair of predicates in the inner algebra.

Definition 4 (Non-determinism). Let exp be an expression in AL.

nondeterministic (exp) =∃ (P1, O1) , (P2, O2) ∈ exp •
¬contradiction (P1 ∧ P2)

(18)

If there is at least one combination that evaluates P1 ∧ P2 to true (it is
not a contradiction), then exp is non-deterministic. Our example is clearly non-
deterministic as at least A ∧ (A ∨ B) is not a contradiction.

To analyse components and systems, and to model faults propagation, a
predicates notation is shown in the next section. The predicates notation offers
more two ways to check non-determinism.

3.4 Predicates Notation

The AL needs a special notation to enable the analysis of: (i) a particular faults
expression, or (ii) a propagation in components. Such a special notation extracts
predicates in the inner algebra given an output of interest.

Definition 5 (Predicate). Let exp be an expression in AL, and Ox an oper-
ational mode. A predicate over exp that matches Ox is then:

〈out (exp) = Ox〉 ⇐⇒ ∃ (P,O) ∈ H(exp) | O = Ox • P (19)
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The predicate notation function returns a predicate in the inner algebra. For
the example in the beginning of this section, the predicate for O2 is obtained as
follows:

〈out (S) = O2〉 = B

To allow fault propagation of components we need another special notation
that expands the modes of an expression with a predicate in the inner algebra.

Definition 6 (Modes). Let exp be an expression in AL, and P a predicate in
the inner algebra, then:

modes (exp, P ) = {(Pi ∧ P,Oi) | (Pi, Oi) ∈ H(exp)} (20)

Finally, to check the possible outputs, we need a function to obtain a set of
outputs given an expression.

Definition 7 (Activation). Let exp be an expression in AL, and Px a predi-
cate in the inner algebra, then:

activation (exp, Px) = {O|(P,O) ∈ H(exp) ∧ tautology (Px =⇒ P )} (21)

The non-determinism can also be checked using the predicates notation and
the activation property:

activation (S,A ∧ ¬B) = {O1, O3} (22a)
〈out (S) = O1〉 ∧ 〈out (S) = O3〉 = A ∧ ¬B (22b)

Equation (22a) shows that both O1 and O3 can be observed if A ∧ ¬B is true.
Equation (22b) states that if the possible operational modes of healthy S are O1

and O3, then the predicate is A ∧ ¬B. In the next section, we show a practical
case study using these properties and notations.

4 Case Study

EMBRAER provided us with the Simulink model of an Actuator Control System
(depicted in Fig. 4). The failure logic of this system (that is, for each of its con-
stituent components) was also provided by EMBRAER (we show some of them in
Table 2). In what follows we illustrate our strategy using the Monitor component.

A monitor component is a system commonly used for fault tolerance [15,21].
Initially, the monitor connects the main input (power source on input port 1)
with its output. It observes the value of this input port and compares it to
a threshold. If the value is below the threshold, the monitor disconnects the
output from the main input and connects to the secondary input. We present
the Simulink model for this monitor in Fig. 5.

Now we show two contributions: (i) using only Boolean operators, thus ignor-
ing ordering, we can obtain the same results obtained in [7], and (ii) using the
order-related operator reported in [8] obtaining an expression in ATF with the
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Fig. 4. Block diagram of the ACS provided by EMBRAER (nominal model)

Table 2. Annotations table of the ACS provided by EMBRAER

Component Deviation Port Annotation

PowerSource LowPower Out1 PowerSourceFailure

Monitor LowPower Out1 (SwitchFailure AND (LowPower-In1 OR
LowPower-In2)) OR (LowPower-In1
AND LowPower-In2)

Fig. 5. Internal diagram of the monitor component (Fig. 4(A)).
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same results as shown in [8]. To simplify formulas writing, we associate the fault
events as:

B1 = LowPower-In1
B2 = LowPower-In2
F = SwitchFailure

The power source has only two possible operational modes: (i) the power
source works as expected, providing a nominal value of 12V , and (ii) is has an
internal failure Bi, and its operational mode is “low power”. In AL it is modelled
as:

PowerSourcei = {(Bi, LP ) , (¬Bi,Nominal 12V )} (23)

where LP is the LowPower failure. The expression PowerSourcei is healthy.
The monitor is a bit different because its behaviour depends not only on

internal faults, but also on its inputs. We will now use the predicates notation
defined in Sect. 3.4 to express fault propagation. As the monitor has two inputs
and its behaviour is described in Fig. 5, then it is a function of the expressions
of both inputs:

Monitorbool (in1, in2) =
modes (in1, 〈out (in1) = Nominal X〉 ∧ ¬F )∪
modes (in2,¬ 〈out (in1) = Nominal X〉 ∧ ¬F ) ∪
modes (in2, 〈out (in1) = Nominal X〉 ∧ F )∪
modes (in1,¬ 〈out (in1) = Nominal X〉 ∧ F )

(24)

where X is an unbound variable and assumes any value. The expression states
the following:

– The monitor output is the same as in1 if the output of in1 is nominal and
there is no internal failure in the monitor:

modes (in1, 〈out (in1) = Nominal X〉 ∧ ¬F )

– The monitor output is the same as in2 if the output of in1 is not nominal
and there is no internal failure in the monitor:

modes (in2,¬ 〈out (in1) = Nominal X〉 ∧ ¬F )

– The monitor output is the converse of the previous two conditions if the
internal failure F is active:

modes (in2, 〈out (in1) = Nominal X〉 ∧ F )∪
modes (in1,¬ 〈out (in1) = Nominal X〉 ∧ F )

The operational modes (observed behaviour) of the monitor depend on: (i)
its internal fault, and (ii) propagated errors from its inputs. Composing the
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monitor with the two power sources, we obtain the AL expression of a power
supply subsystem Systembool:

=Monitorbool (PowerSource1, PowerSource2)
=modes (in1,¬B1 ∧ ¬F ) ∪ modes (in2,¬¬B1 ∧ ¬F )∪

modes (in2,¬B1 ∧ F ) ∪ modes (in1,¬¬B1 ∧ F ) by Eq. (19)
=modes (in1,¬B1 ∧ ¬F ) ∪ modes (in2, B1 ∧ ¬F )∪

modes (in2,¬B1 ∧ F ) ∪ modes (in1, B1 ∧ F ) by simplification
= {(Pi ∧ ¬B1 ∧ ¬F,Oi) | (Pi, Oi) ∈ in1} ∪

{(Pi ∧ B1 ∧ ¬F,Oi) | (Pi, Oi) ∈ in2} ∪
{(Pi ∧ ¬B1 ∧ F,Oi) | (Pi, Oi) ∈ in2} ∪
{(Pi ∧ B1 ∧ F,Oi) | (Pi, Oi) ∈ in1} by Eq. (20)

= {(B1 ∧ ¬B1 ∧ ¬F,LP ) ,

(¬B1 ∧ ¬B1 ∧ ¬F,Nominal 12V ) ,

(B2 ∧ B1 ∧ ¬F,LP ) ,

(¬B2 ∧ B1 ∧ ¬F,Nominal 12V ) ,

(B2 ∧ ¬B1 ∧ F,LP ) ,

(¬B2 ∧ ¬B1 ∧ F,Nominal 12V ) ,

(B1 ∧ B1 ∧ F,LP ) ,

(¬B1 ∧ B1 ∧ F,Nominal 12V )} replacing vars

Simplifying and applying H1, we obtain:

H1 (Systembool) =
{(¬B1 ∧ ¬F,Nominal 12V ) , (B2 ∧ B1 ∧ ¬F,LP ) ,

(¬B2 ∧ B1 ∧ ¬F,Nominal 12V ) , (B2 ∧ ¬B1 ∧ F,LP ) ,

(¬B2 ∧ ¬B1 ∧ F,Nominal 12V ) , (B1 ∧ F,LP )}
Applying, H3, we simplify to:

H3 ◦ H1 (Systembool)

=

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

(¬B1 ∧ ¬F )∨
(B1 ∧ ¬B2 ∧ ¬F )∨

(¬B1 ∧ ¬B2 ∧ F )
,Nominal 12V

⎞

⎟
⎠ ,

⎛

⎜
⎝

(B1 ∧ B2 ∧ ¬F )∨
(¬B1 ∧ B2 ∧ F )∨

(B1 ∧ F )
, LP

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

= {((¬B1 ∧ ¬B2) ∨ ¬F ∧ (¬B1 ∨ ¬B2) ,Nominal 12V ) ,

(F ∧ (B1 ∨ B2) ∨ (B1 ∧ B2) , LP )}
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The monitor expression is H2-healthy (the predicates are complete), thus:

H2 ◦ H3 ◦ H1 (Systembool) = H3 ◦ H1 (Systembool)

The resulting expression for the monitor after applying all healthiness con-
ditions is:

H (Systembool) = {((¬B1 ∧ ¬B2) ∨ ¬F ∧ (¬B1 ∨ ¬B2) ,Nominal 12V ) ,

(F ∧ (B1 ∨ B2) ∨ (B1 ∧ B2) , LP )} (25)

The operational modes of Systembool is either Nominal 12V or LP (low power).
Finally, we obtain the low power structure expression (see Table 2) using the

predicates notation:

〈out (Systembool) = LP 〉 ⇐⇒ F ∧ (B1 ∨ B2) ∨ (B1 ∧ B2)

The monitor expression also indicates that if the switch is operational (¬F )
and at least one PowerSource is operational (¬B1 ∨ ¬B2), the monitor output
is nominal. But if at least one PowerSource is faulty (B1 ∨ B2) and the monitor
has an internal failure (F ) the system is not operational. These two sentences
written in AL using predicates notation are:

activation (Systembool,¬F ∧ (¬B1 ∨ ¬B2))
= {O| (P,O) ∈ H(Systembool) ∧

tautology (¬F ∧ (¬B1 ∨ ¬B2) =⇒ P )} [by Eq. (21)]
= {Nominal 12V } [by simplification](26a)

activation (Systembool, F ∧ (B1 ∨ B2))
= {O| (P,O) ∈ H(Systembool) ∧

tautology (F ∧ (B1 ∨ B2) =⇒ P )} [by Eq. (21)]
= {LP} [by simplification] (26b)

Now, let’s consider the same system but with a subtle modification. As shown
in [8], the order of the occurrence of faults may be relevant, and the qualitative
and quantitative analyses results may be different than those results without
considering the order of the occurrence of faults. Observing Fig. 5, we see that
if F activates before a failure in the first input of the monitor, then it would
display a nominal behaviour, because the internal failure F anticipates switching
to the second input. On the other hand, if the first input fails before F , then the
monitor would switch to the second input, then switch back, due to the internal
failure. We obtain the following expression for the monitor, now using the ATF:

MonitorATF (in1, in2) =
modes (in1, 〈out (in1) = Nominal X〉 ∧ ¬F ) ∪
modes (in2,¬ 〈out (in1) = Nominal X〉 ∧ ¬F )∪
modes (in2, 〈out (in1) = Nominal X〉 ∧ F ) ∪
modes (in1,¬ 〈out (in1) = Nominal X〉 → F )∪
modes (in2, F → ¬〈out (in1) = Nominal X〉)

(27)
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where X is an unbound variable and assumes any value.
The difference to Systembool (Eq. (24)) is only the finer analysis of the cases

of erroneous behaviour of the first input and an internal failure. Note that the
finer analysis splits the predicate

¬ 〈out (in1) = Nominal 12V 〉 ∧ F (activates in1)

into:

¬ 〈out (in1) = Nominal 12V 〉 → F (activates in1)

and

F → ¬〈out (in1) = Nominal 12V 〉 (activates in2)

We can assure that such a split is complete because the predicate notation evalu-
ates to B1. Thus the operands satisfy all temporal properties (Eqs. (8a) to (8d))
and events independence (Eq. (10)), thus the law shown in Eq. (12b) is valid. For
case (i), the expected behaviour is the same as in1 because the system switches
to in2, but then an internal failure occurs, and it switches back to in1. For
case (ii), it switches to in2 due to an internal failure, then the first input fails,
so the behaviour is similar to the nominal behaviour (see the second modes in
Eq. (27)).

Following the similar expansions of Eq. (24), we obtain:

SystemATF =MonitorATF (PowerSource1, PowerSource2)
= {(B1 ∧ ¬B1 ∧ ¬F,LP ) ,

(¬B1 ∧ ¬B1 ∧ ¬F,Nominal 12V ) ,

(B2 ∧ B1 ∧ ¬F,LP ) ,

(¬B2 ∧ B1 ∧ ¬F,Nominal 12V ) ,

(B2 ∧ ¬B1 ∧ F,LP ) ,

(¬B2 ∧ ¬B1 ∧ F,Nominal 12V ) ,

(B1 ∧ B1 → F,LP ) ,

(¬B1 ∧ B1 → F,Nominal 12V )} ,

(B2 ∧ F → B1, LP ) ,

(¬B2 ∧ F → B1,Nominal 12V )}

Simplifying and applying H1 to remove contradictions, we obtain:

H1 (SystemATF ) =
{(¬B1 ∧ ¬F,Nominal 12V ) , (B2 ∧ B1 ∧ ¬F,LP ) ,

(¬B2 ∧ B1 ∧ ¬F,Nominal 12V ) , (B2 ∧ ¬B1 ∧ F,LP ) ,

(¬B2 ∧ ¬B1 ∧ F,Nominal 12V ) , (B1 → F,LP ) ,

(B2 ∧ F → B1, LP ) , (¬B2 ∧ F → B1,Nominal 12V )}
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Applying H3 to remove redundant terms with identical operational modes
and using the rules shown in Sect. 2.3, we simplify to:

H3 ◦ H1 (SystemATF)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎝

(¬B1 ∧ ¬F ) ∨
(B1 ∧ ¬B2 ∧ ¬F ) ∨
(¬B1 ∧ ¬B2 ∧ F ) ∨

(¬B2 ∧ F → B1)

,Nominal 12V

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

(B1 ∧ B2 ∧ ¬F ) ∨
(¬B1 ∧ B2 ∧ F ) ∨

(B1 → F ) ∨
(B2 ∧ F → B1)

, LP

⎞

⎟
⎟
⎟
⎠

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= {((¬B1 ∧ ¬B2) ∨ ¬F ∧ (¬B1 ∨ ¬B2) ∨
¬B2 ∧ F → B1,Nominal 12V ) ,

((B1 ∧ B2) ∨ (¬B1 ∧ B2 ∧ F ) ∨ (¬B2 ∧ B1 → F ) , LP )}
The monitor expression is H2-healthy. Simplifying Boolean operators as

usual, the XBefore expression:

¬B2 ∧ F → B1 ∨ ¬B2 ∧ B1 → F

simplifies to

¬B2∧F ∧ B1 by Eq. (12b)

Thus:
H2 ◦ H3 ◦ H1 (SystemATF) = H3 ◦ H1 (SystemATF)

The resulting expression for the monitor after applying all healthiness con-
ditions is:

H (SystemATF ) = {((¬B1 ∧ ¬B2) ∨ ¬F ∧ (¬B1 ∨ ¬B2) ∨
¬B2 ∧ F → B1,Nominal 12V ) ,

((B1 ∧ B2) ∨ (¬B1 ∧ B2 ∧ F )∨
(¬B2 ∧ B1 → F ) , LP )}

(28)

Finally, we obtain the low power structure expression of the monitor using
the predicates notation:

〈out (SystemATF) = LP 〉 ⇐⇒ (B1 ∧ B2) ∨ (¬B1 ∧ B2 ∧ F ) ∨ (¬B2 ∧ B1 → F )

Thus, SystemATF fails with LP if:

– Both power sources fail;
– The monitor fails to detect the nominal state of the first power source and

the second power source is in a failure state;
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– The monitor fails to detect the failure state of the first power source (the
monitor fails after the failure of the first power source).

Note that if the monitor fails before the failure of the first power source, it fails
to detect the operational mode of the first power source and switches to the
second power source, which is in a nominal state (see expression ¬B2 ∧ F → B1

in Eq. (28)).

5 Conclusion

In this work we proposed a parametrized logic that enables the analysis of sys-
tems depending on the expressiveness of a given algebra and a given set of
operational modes. If ATF is used as a parameter, then the order of occurrence
of faults can be considered. Although the logic is not as detailed as AADL,
the predicates notation in conjunction with the ATF provides a richer asser-
tion framework. Also, it is possible to verify non-determinism on the model,
by: (i) verifying its existence with the nondeterministic function, (ii) providing
an expression and obtaining the possible operational modes with the activation
function, or (iii) using the predicates notation to obtain a predicate that enables
two or more operational modes.

The AADL is extensible. The work reported in [2] shows an extension to
perform dependability analysis through state machines and expressions on fault
events and operational modes. Although such an extension captures system
behaviour, operational mode activation conditions are expressed in state tran-
sitions in combination with an extension of Boolean expressions (not related to
order). Our work relates operational modes and fault occurrences order explicitly.

As presented in [8], TFTs and DFTs structure expressions can be written as
formulas in ATF. As the root events of TFTs and DFTs represent operational
modes of a system, the ATF can be used to associate root events with operational
modes, thus allowing the combination of two or more fault trees.

Although the properties of AL require that the inner algebra provides tau-
tology and contradiction, and we used ATF in the case study, we did not show
tautology and contradiction for ATF. Instead, we used a law to reduce the ATF
expression to a Boolean expression. The methodology to check tautology and
contradiction in ATF is a future work.

The original expression shown in the case study was already H2-healthy. The
second healthiness condition about completeness uses the concept of undefined
value to make any expression H2-healthy. Algebraically it is fine, but in prac-
tice, the property should be met originally, thus the initial expression is already
H2-healthy. This property should be used as an alert to the analyst if it not met
originally.
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