Accelerating Smith-Waterman Alignment
of Long DNA Sequences with OpenCL on FPGA

Enzo Rucci!, Carlos Garcia®?®) | Guillermo Botella?, Armando De Giusti®,
Marcelo Naiouf?, and Manuel Prieto-Matias?

! TII-LIDI, CONICET, Facultad de Informética,
Universidad Nacional de La Plata, 1900 La Plata, Buenos Aires, Argentina
{erucci,degiusti}@lidi.info.unlp.edu.ar
2 Depto. Arquitectura de Computadores y Automatica,
Universidad Complutense de Madrid, 28040 Madrid, Spain
{garsanca,gbotella,mpmatias}@ucm.es
3 III-LIDI, Facultad de Informética, Universidad Nacional de La Plata,
1900 La Plata, Buenos Aires, Argentina
mnaiouf@lidi.info.unlp.edu.ar

Abstract. With the greater importance of parallel architectures such as
GPUs or Xeon Phi accelerators, the scientific community has developed
efficient solutions in the bioinformatics field. In this context, FPGAs
begin to stand out as high performance devices with moderate power
consumption. This paper presents and evaluates a parallel strategy of the
well-known Smith-Waterman algorithm using OpenCL on Intel/Altera’s
FPGA for long DNA sequences. We efficiently exploit data and pipeline
parallelism on a Intel/Altera Stratix V FPGA reaching upto 114 GCUPS
in less than 25 watt power requirements.

1 Introduction

In recent years, genome research projects have produced a vast amount of biolog-
ical data. In fact, biologists are working in conjunction with computer scientists
to extract relevant biological information from these experiments. The compar-
ison of millions of sequences [13] is one of the most useful mechanisms known in
Bioinformatics, commonly solved by heuristic methods.

Smith-Waterman (SW) algorithm compares two sequence in an exact way
and corresponds to the so-called local methods because it focuses on small similar
regions only. Besides, this method has been used as the basis for many subsequent
algorithms and is often used as basic pattern to compare different alignment
techniques. However, one of the main drawbacks is the cost of this approach in
computing time and memory requirements which makes it unsuitable in some
cases.

Regarding on the performance aspect, many approaches, such as BLAST [1]
and FASTA [14] considerably reduce execution time at the expense of not guar-
anteeing the optimal result. Nevertheless, accelerating the SW algorithm is still a
great challenge for the scientific community. SW is usually used to align two DNA

© Springer International Publishing AG 2017
I. Rojas and F. Ortuno (Eds.): IWBBIO 2017, Part II, LNBI 10209, pp. 500-511, 2017.
DOI: 10.1007/978-3-319-56154-7_45

Accelerating Smith-Waterman Alignment 501

sequences or a protein sequence to a genomic database. A single matrix must
be built for each alignment and the matrix size depends on sequence lengths.
In DNA alignment, the matrix can be huge since these sequences can have upto
hundreds of million nucleotides. As protein sequences are shorter, multiple small
matrices are usually computed simultaneously since they are independent among
them [16].

In the last years, we have witnessed attempts to parallelize for both schemes.
These efforts reduce SW execution time through the exploitation of High-
Performance Computing (HPC) architectures. However, most implementations
focus on short sequences, particularly protein sequences [15]. For very long
sequences, as the DNA case, few implementations are nowadays available. In
the hardware accelerators scenario, we highlight SW# [9] and CUDAlign [18]
(and its newer versions [4,5]) that focus on the alignment of huge DNA sequences
with multi CUDA-enabled Graphics Processor Units (GPUs). Meanwhile, Liu
et al. have presented SWAPHI-LS [12] a highly optimized hand-tuned imple-
mentation for Intel Xeon Phi accelerators. In addition, several proposals based
on Field Programmable Gate Array (FPGA) speedup sequence alignments [2,22]
in the context of DNA comparison. Moreover, Wienbrandt presents a study of
multi-FPGAs version in [21].

Nowadays, HPC capabilities are changing in data-centers scenario. FPGAs
are being integrated with CPUs due to accelerators consolidation in HPC com-
munity as a way of improving performance while keeping power efficiency.
Recently, Microsoft announced that their data-centers equipped with FPGAs
increase dramatically Bing’s engine capacities, and they have also incorporated
them to Azure ecosystem [6]. In the same way, Amazon has included FPGAs in
its Amazon Web Services [10]. With the acquisition of Altera in 2015, Intel plans
to incorporate FPGA capabilities in the next Xeon’s server processors because
they expect to be used by at least 30% of data-center in next years [11].

Our paper proposes and evaluates a SW implementation, capable of aligning
DNA sequences of unrestricted size, for Altera’s FPGA. Unlike previous works
on literature, we employed the novel OpenCL paradigm on FPGAs. Although
Altera’s developers promote a similar implementation in [19], no-real sequence
data of fixed, limited size (n =256 residues) are used. As this issue can radically
differ from real bioinformatic contexts, the observed behavior becomes unpre-
dictable for these scenarios, especially in alignment of long DNA sequences. We
would like to point out that, unlike GPU or Xeon Phi accelerators which need to
be purchased separately, the hardware used in this study will be available soon
in the next processor generation at null cost. In that sense, this study can be
taken as starting point for future hybrid CPU-FPGA solutions.

The rest of the paper is organized as follows. Section 2 describes SW algo-
rithm. Section3 introduces Altera’s OpenCL programming extension while
Sect.4 addresses our parallelization of the SW algorithm using OpenCL on
FPGAs. Section 5 presents experimental results and finally Sect. 6 outlines con-
clusions and future lines of work for this novel viability study.

502 E. Rucci et al.

2 Smith-Waterman Algorithm

The SW algorithm is used to obtain the optimal local alignment between two
sequences and was proposed by Smith and Waterman [20]. This method employs
a dynamic programming approach and its high sensitivity comes from exploring
all the possible alignments between two sequences.

Given two sequences S; and So, with sizes |S1| = m and |S2| = n, the
recurrence relations for the SW algorithm with affine gap penalties [7] are defined
below.

Hi,j = max{O, Hi_17j_1 =+ SM(Sl [l], So [j]), Ei,j) Fiﬂ'} (1)
E;; =max{H; j_1 — Goe, Ei j—1 — G} (2)
F;,j =max{H;_1; — Goe, Fi—1,; — G} (3)

H, ; contains the score for aligning the prefixes Si[1..7] and S3[1..j5]. E; ; and
F; ; are the scores of prefix S;[1..4] aligned to a gap and prefix S»[1..j] aligned to a
gap, respectively. SM is the scoring matriz which defines match/mismatch scores
between nucleotides. G, is the sum of gap open and gap extension penalties
while G, is the gap extension penalty. The recurrences should be calculated
with 1 <7 <m and 1 < j < n, after initialising H, F and F with 0 when i =0
or j = 0. The maximum value in the alignment matrix H is the optimal local
alignment score.

It is important to note that any cell of the matrix H can be computed only
after the values of the upper, left and upper-left cells are known, as shown in
Fig. 1. These dependences restrict the ways in that H can be computed.

Hoo Ho,1 Ho,2 Ho3
Ly >
v[a vl
Hio Hiz Hi.»
N
v %
HZ,O HZ,I Hm-_?,n
‘74?
v [a
H3,0 HM-Z,n-l Hm-Z,n
> N>
""""" N
H-tn2 | Hingn1 | Hmoan
> > N
""""" v (4 NI
Hm,n—3 Hm,n—z Hm,nvl Hm,n

Fig. 1. Data dependences in the alignment matrix H.

3 OpenCL Extension on Altera’s FPGA

OpenCL is a framework for developing parallel programs across heterogeneous
platforms. It is currently supported by several hardware devices such as CPUs,

Accelerating Smith-Waterman Alignment 503

GPUs, DSPs and FPGAs. The OpenCL is based on host-device model, where
host is in charge of managing device memory, transferring data from/to device
and launching the kernel code.

Kernel corresponds to a piece of code which expresses the parallelism of a
program. OpenCL programming model divides a program workload into work-
groups and work-items. Usually, in the denoted data parallel programming model,
work-items are grouped into work-groups, which are executed independently on
a processing element. Data-level parallelism is ordinarily exploited in SIMD way,
where each work-item is mapped to a lane width of the target device.

OpenCL memory model uses a particular memory hierarchy which is also
characterized by the access type, performance and scope. Global memory is
read-write accessible by all work-items which implies a high latency memory
access. Local memory is a shared read-write memory that can be accessed from
all work-items of a single work-group. Besides, it usually involves a low latency
memory access. Constant memory is a read-only memory visible by all work-
items across all work-groups, and private memory as the name suggests it is
only accessible by a single work-item.

OpenCL allows a programmer to express parallelism abstracting the target
platform details. We can highlight portability and reduction in development
time as the main advantages. FPGAs permit programming networks composed
of logic elements, memory blocks and specific DSP blocks. In order to verify and
create digital designs, Hardware Description Languages (HDLs) are generally
used, which are complex, error prone and affected by an extra abstraction layer
as they contain the additional concept of time.

Regarding the execution model, Altera’s OpenCL SDK [3] recommends the
use of task parallel programming model, where the kernel consists of a single
work-group with a unique work-item. The Altera OpenCL Compiler (AOC) is
capable of extracting parallelism from each loop iteration in a loop-pipelined
way allowing to process the loop in a high-throughput fashion.

Altera’s OpenCL extension also take advantage of I/O channels and kernel
channels as in OpenCL 2.0 by means of pipes [8]. Altera’s channel extension
allows to transfer data between work-item’s in the same kernel or between dif-
ferent kernels without host interaction.

4 SW Implementation

In this section we will address the programming aspects and optimizations
applied to our implementations on FPGA accelerated platforms. Algorithm 1
shows the pseudo-code for the host implementation. Memory management is
performed in OpenCL by means of c¢lCreateBuffer (memory allocation and ini-
tialization) and clEnqueueReadBuffer (memory transfer to host). Kernels are
invoked through the clEnqueueTask function.

The kernel is implemented following the task parallel programming model
mentioned in Sect.3. Algorithm 2 shows the pseudo-code for our kernel. The
alignment matrix is divided into vertical blocks (BW means Block Width) and

504 E. Rucci et al.

Algorithm 1. Host pseudo-code

1: clCreateBuffer’s(...) > Create buffers + transfer sequences
2: NB=n/BW > N B is the number of vertical blocks
3: for b < NB do

4 clEnqueueTask(...) > Compute b-th block
5: swap(prevLastCol H ,cur LastCol H)

6 swap(prevLastCol E,cur LastColE)

7: end for
8: clEnqueueReadBuffer(maxScore)

Algorithm 2. Pseudo-code for Smith-Waterman kernel
1: _kernel void SW _kernel (S1, Sz, m, b, match, mismatch, Goe, Ge, prevLastCol H,
curLastColH, prevLastColE, curLastColE, maxScore) {
2: Load the BW residues of Sz corresponding to b-th block from global memory to
private memory

3: for : <m do > each row

4: Load the i-th residue of S1 from global memory to private memory

5: Read previous block data from global memory (prevLastColH and
prevLastColE)

6: #pragma unroll

T for j < BW do

8: Calculate H;,; in private memory

9: end for

10: Write data for next block to global memory (curLastColH and curLastColE)
11: end for

12: Update maxScore in global memory (if appropiate)

13: }

each block is computed in row-by-row manner: from top to bottom, left to right
direction (see Fig.2). Besides improving the data locality, this blocking tech-
nique reduces the memory requirements for block execution, which favors the
exploitation of the private low-latency memory. In that sense, we employed two
buffers to store one row for matrices H and F'. Additionally, both sequences are
partially copied to private memory.

Fully unrolling of the inner loop represents an essential aspect of this kernel
from performance point of view. This technique allows the AOC to exploit loop
instruction pipelining and, in consequence, more operations per clock cycle are
performed. As the compiler needs to know the number of iterations at compile
phase, Ss sequence must be extended with dummy symbols to make its length
a multiple of fixed BW value.

Due to the data dependencies mentioned in Sect.2, each block needs the
last column H and E values of the previous block. Global memory buffers are
employed to communicate these data. To avoid read-write dependences in global
memory, separate buffers are used: one for reading the values from the previous
block and one for writing the values for the next block, so after each kernel
invocation buffers are swapped in the host. It is important to mention that,

Accelerating Smith-Waterman Alignment 505

Block 0 Block 1 Block 2 Block NB-1

FBW A | L 1

Fig. 2. Schematic representation of our OpenCL kernel implementation.

although in OSWALD implementation [17] Altera OpenCL channels are used to
exchange these information, the use of this technique is not affordable in DNA
context with million of nucleotide bases involved.

Moreover, host-side buffers are allocated to be 64-byte aligned. This fact
improves data transfer efficiency by means of Direct Memory Access. Both
sequence are transferred when creating the device buffers and optimal score
is retrieved after all kernels finished.

5 Experimental Results

5.1 Experimental Platforms and Tests Carried Out
Tests have been performed on different platforms running CentOS (release 6.6):

— A server with two Intel Xeon CPU E5-2670 8-core 2.60 GHz, 32 GB main
memory and an Altera Stratix V GSD5 Half-Length PCle Board with Dual
DDR3 (two banks of 4 GByte DDR3).

— A server with two Intel Xeon CPU E5-2695 v3 16-core 2.30 GHz, 64 GB main
memory and two NVIDIA GPU cards: one Tesla K20c (Kepler architecture,
2496 CUDA cores, 5 GB dedicated memory and Compute Capability 3.5) and
one GTX 980 (Maxwell architecture, 2048 CUDA cores, 4 GB dedicated mem-
ory and Compute Capability 5.0).

— A server with two Intel Xeon CPU E5-2695 v3 16-core 2.30 GHz, 128 GB main
memory and a single Xeon Phi 3120P coprocessor card (57 cores with 4 hw
thread per core, 6 GB dedicated memory).

We have used the Intel’s ICC compiler (version 16.0.3) with the -O3 opti-
mization level by default. The synthesis tool used is Quartus II DKE V12.0 2
with OpenCL SDK v14.0 and the CUDA SDK version is 7.5.

To provide the most relevant study, tests were made with the real DNA
sequences retrieved from the National Center for Biotechnology Information
(NCBI)!, ranging from thousands to millions of nucleotide bases. The acces-
sion numbers and sizes of the sequences are presented in Table 1. Also, for the

! Sequences are available in http://www.ncbi.nlm.nih.gov.

http://www.ncbi.nlm.nih.gov

506 E. Rucci et al.

Table 1. Information of the sequences used in the tests.

Sequence 1 Sequence 2 Matrix size | Score
Accesion Size | Accesion Size

AF133821.1 10K | AY352275.1 10K | 10K x 10K 5027
NC_001715.1 | 57K | AF494279.1 57K | 57K x 57K 51
NC_000898 |162K | NC_007605 |172K 162K x 172K 18
NC_003064.2 | 543K | NC_000914.1 | 536K | 543K x 536K 48
CP000051.1 1M | AE002160.2 1M 1M x 1M 82091
BA000035.2 3M | BX927147.1 3M| 3M x3M 3888
AE016879.1 5M | AE017225.1 5M 5M x 5M 5220775
NC.005027.1| 7M |NC_003997.3| 5M | 7M x5M 157
NC_017186.1 | 10M | NC_014318.1| 10M | 10M x 10M | 10235056
NT_033779.4| 23M | NT_037436.3 | 25M | 23M x 25M 9059

sake of validation, optimal alignment scores are included in Table 1. The scoring
scheme used was: +1 for match; —3 for mismatch; —5 for gap open; and —2
for gap extension. Each particular test was run ten times and performance was
calculated with the average of ten execution times to avoid variability.

5.2 Performance and Resource Usage Evaluation

The metric GCUPS is used to performance assessment in the Smith-Waterman
scenario [18]. In order to evaluate FPGA performance rates, we have considered
different kernel implementations according to integer data type and BW value.
We detail below the main differences:

— The name prefix denotes the integer data type used; i.e. int, short and char
represent 32, 16 and 8 bit integer data types, respectively.

— The name suffix denotes the BW value used; e.g. bw32 means that BW value
was set to 32.

Table 2 presents FPGA resource utilization and the performance achieved for
our OpenCL kernels implementations. Larger BW means better performance
but also higher resource consumption. Adaptive logic modules (ALMs) are the
most influenced resources; registers (Regs) and RAM blocks (RAMs) are slightly
increased while DSP blocks (DSPs) stay intact. In spite of this fact, there are
still available resources that allow increasing BW parameter. Nevertheless, larger
values could not be used because AOC reports non-real read-write dependences
in private memory associated to H and F' matrices. In fact, these false depen-
dences reduce the number of operations per clock cycle decreasing considerably
performance rates achieved.

Regarding integer data type, as can be observed, smaller data type not only
improves performance but also decreases resource consumption. This behavior

Accelerating Smith-Waterman Alignment 507

Table 2. Performance and resource usage comparison for different OpenCL kernel
implementations.

Kernel int_bw32[int_bw6{ [int_bwi28[ini_bw256] short_bw256|short_bw512]|char_bw512]char_bw768
Integer type int (32 bits) short (16 bits) char (8 bits)
Maximum value 2147483647 32767 127
BW 32 64 128 256 256 512 512 768
go ALMs 30% 36% 48% 69% 50% 76% 49% 68%
2] Regs 11% 12% 12% 12% 10% 13% 10% 15%
I RAM 22% 22% 22% 25% 21% 24% 20% 33%
E DSPs 0% 0% 0% 0% 0% 0% 0% 0%
Z10K x 10K || 222 | 460 | 7.45 1447 18.43 23.23 - -
57K x 57K 4.27 8.42 16.32 30.35 38.01 58.21 73.07 91.89
162K x 172K 4.75 9.33 18.04 33.45 41.85 66.34 84.67 109.29
543K x 536K 4.97 9.66 18.86 35.51 43.36 70.21 86.01 113.78
1M x 1M 5.12 9.93 19.44 36.52 - - - -
3M x 3M 5.24 10.14 19.87 37.32 45.58 73.39 - -
5M x 5M 5.27 10.18 19.93 37.49 - - - -
7™ x 5M 5.28 10.20 20 37.56 45.86 73.73 - -
10M x 10M 5.28 10.21 20.03 37.61 - - - -
23M x 25M 5.29 10.23 20.07 37.68 46.01 74 - -
Matrix size GCUPS

is clearly exposed when comparing int_bw256 and short_bw256 kernels: using
the same BW configuration, short_bw256 reports an increase from up to 1.22x
in performance with a reduction from up to 0—0.28 X in resource usage against
to int_bw256 counterpart. A similar behavior is observed with short_bw512 and
char_bw512 kernels: char_bwb12 presents an increase from up to 1.28x in per-
formance with a reduction from up to 0—0.36x in resource usage respect to
short_bw512. However, it is also important to take into account that the use of
narrower integer data types also involves an important reduction in representa-
tion range. Due to this fact, there are three alignment scores out of ten that can
not be represented when using 16 bit integer data. It is also observed for the
experiments with 8-bits data type where only three experiments can be carried
out?.

From sequence length point of view, all kernels benefit from larger workloads
regardless of sequences similarity. The best performances achieved are 37.68, 74
and 113.78 GCUPS for int, short and char kernels, respectively.

5.3 Performance and Power Efficiency Comparison with Other
SW Implementations

In this subsection our developed version is compared with other optimized SW
implementations in the HPC scenario: the Xeon Phi-based SWAPHI-LS program
(v1.0.12) [12] and the GPU-based SW# [9] and CUDAlign (v3.9.1.1024) [4] pro-
grams. We would like to note that both GPU implementations were configured
to perform only their score version.

2 The symbol ‘-’ indicates an alignment that can not be computed because the optimal
score exceeds the corresponding maximum value.

508 E. Rucci et al.

Table 3. Performance of other SW implementations.

Implementation | SWAPHI-LS SW# CUDAlign | SW# | CUDAlign
Device Intel Xeon Phi 3120P | NVIDIA Tesla K20c | NVIDIA GTX 980
10K x 10K 0.42 0.16 | 0.06 0.3 0.03
57K x 57K 7.69 5.86 | 1.57 7.62 1.08
162K x 172K 21.24 32.78 110.23 33.33 8.18
543K x 536K 30.67 42.36 | 29.71 64.53 | 45.89

1M x 1M 32.84 51.01 | 39.64 75.24| 79.21

3M x 3M 33.9 43.48 | 39.73 69.54 | 84.05

5M x 5M 34.16 90.15 | 79.53 120.92 | 160.79

™™ x 5bM 34.38 43.64 | 39.55 68.84 | 84.43
10M x 10M 33.19 90.22 | 79.96 118.81 | 163.77
23M x 25M 30.36 44.19 | 40.69 67.55| 84.84
Matrix size GCUPS

Table 3 presents performances for the SWAPHI-LS, SW# and CUDAlign
implementations. Comparing our FPGA implementation against Xeon-Phi accel-
erator, SWAPHI-LS yields an average performance of 25.89 GCUPS and a peak
of 34.38 GCUPS being outperformed by int_bw256 version in all cases. In par-
ticular, the most impressive performance difference occurs for smaller matrix
sizes where int_bw256 runs on average 21.8x faster. For the rest of the tests, the
performance gain decreases but still improves on average 1.45x.

Unlike our FPGA kernels, both GPU implementations are sensitive to
sequences similarity; better results are obtained on alignments with higher scores.
On Tesla K20c, SW# achieves an average performance of 44.38 GCUPS and a
maximum performance of 90.15 GCUPS, outperforming CUDAlign by a factor
of 1.78x on average. int_bw256 improves SW# on the three shortest alignments
while the latter runs 1.62x faster on average than the former on the largest ones.
In contrast, SW# only beats CUDAlign on the four shortest alignments on GTX
980. CUDAlign reports 71.23 GCUPS on average and a peak of 163.77 GCUPS,
achieving an average speedup of 1.24x on the six largest matrix sizes. Just as
the previous case, int_bw256 improves both GPU implementations on the three
shortest alignments while is outperformed in the rest. In that sense, CUDAlign
runs 2.76x faster on average than int_bw256.

In FPGA context, a theoretical comparison with other OpenCL implemen-
tations is the only possibility since the absence of available source codes. We
would like to note that the Altera staff implementation [19] uses 32-bit integer
data type and imposes a fixed, limited size (n =256 residues) to S2 sequence,
which substantially differs from the common ones used in DNA analysis. In spite
of this fact, Altera’s staff implementation reported a peak of 24.7 GCUPS on
Stratix V meanwhile our approach achieves an average of 33.8 GCUPs.

Accelerating Smith-Waterman Alignment 509

Table 4. Power efficiency comparison.

Implementation | Device GCUPS | Watts | GCUPS/Watts
int_bw256 Altera Stratix V 37.68 25 1.51
short_bwb512 74 2.96
char_bw768 113.78 4.55
SWAPHI-LS Intel Xeon Phi 3120P | 34.38 |270 0.13

SW# NVIDIA Tesla K20c | 90.22 225 |0.4

CUDAlign 79.96 0.36

SW# NVIDIA GTX 980 12092 |165 |0.73

CUDAlign 160.79 0.97

In order to complete this study, we have also analyzed the power efficiency.
Table4 presents power efficiency ratios considering the GCPUS peak perfor-
mance and Thermal Design Power (TDP) in each accelerator. It can be seen
that the worst ratio observed is for SWAPHI-LS due to low performance rates
and high TDP on the Xeon Phi. GPU implementations place at an intermediate
position because they obtain the highest performance peak but at the expense
also of higher power requirements. As expected, both GPU implementations
obtain better GCUPS/Watts ratios on GTX 980 in comparison with Tesla K20c
since its better performance and power capacities. We would like to remark
that FPGA implementation reaches the best GCUPS/Watts ratios. Despite not
achieving the highest performance peak, its low power consumption leads to
the best choice taking this aspect into account. Further, the lowest performance
FPGA kernel considering integer data type (int_bw256) outperforms SWAPHI-
LS implementation by a factor of 11.62x and to the GPU implementations by
a range of 1.56-3.78x. It is important to mention that if this analysis is carried
out considering average GCUPS instead of GCUPS peak, larger differences in
favor of FPGA implementations will be found.

6 Conclusions

In this paper, we addressed the benefits of a parallel SW implementation using
OpenCL on Intel/Altera’s FPGA, not only from performance perspective but
also from power efficiency point of view. To the best of the author’s knowledge,
this is the first time that a paper examines an implementation of this kind
with real, long DNA sequences. In addition, as Intel will incorporate FPGA
capabilities in its next Xeon processors in a free manner, this study can be
useful as an starting point for future hybrid CPU-FPGA implementations.
Among main contributions of this research we can summarize:

— Data type exploitation is crucial to achieve successful performance rates. Nar-
rower data-types reports better performance rates with less resource impact,
but at expense of decreasing representation width. In fact, a peak of 114
GCUPS is reached when using 8 bit integers.

510 E. Rucci et al.

— From performance perspective, our most successful 32-bit implementation
reaches 37.7 GCUPS peak, running 1.53x faster than Altera’s staff imple-
mentation [19]. Despite being competitive in performance terms respect to
other solutions on accelerators (such as GPUs or Xeon Phi), our implementa-
tion is significantly better from power efficiency perspective. In particular, the
fastest 32-bit FPGA kernel outperforms SWAPHI-LS by a factor of 11.62x
and the GPU implementations by a range of 1.56-3.78x in efficiency.

Taking into account these encouraging results, as future lines we will consider
three aspects:

— As all kernels developed still have free available resources, we will try to exploit
them to improve performance rates. On one hand, we expect to solve perfor-
mance limitations imposed by AOC with larger BW values. On the other
hand, we plan to combine distinct integer data width kernels to explore differ-
ent configurations in order to find the best performance-representation width
trade-off.

— As OpenCL allows multiple devices exploitation, we would like to extend this
work to a multi-FPGA implementation and explore most successful workload
distribution.

— As real power consumption on accelerators can differ from TDP values due to
a variety of reasons, we plan to measure the instant power consumption in all
devices in order to make a more fairly performance vs. power analysis.

Acknowledgments. This work has been partially supported by Spanish govern-
ment through research contract TIN2015-65277-R and CAPAP-H5 network (TIN2014-
53522).

References

1. Altschul, S.F., Madden, T.L., Schffer, A.A., Zhang, J., Zhang, Z., Miller, W.,
Lipman, D.J.: Gapped BLAST and PSIBLAST: a new generation of protein data-
base search programs. Nucleic Acid Res. 25(17), 3389-3402 (1997)

2. Caffarena, G., Pedreira, C.E., Carreras, C., Bojanic, S., Nieto-Taladriz, O.: FPGA
acceleration for DNA sequence alignment. J. Circuits Syst. Comput. 16(2), 245—
266 (2007)

3. Altera Corporation: Altera SDK for OpenCL Programming Guide, v14.0 (2014)

4. de Oliveira Sandes, E.F., Miranda, G., Alves de Melo, A.C.M., Martorell, X.,
Ayguadé, E.: CUDAlign 3.0: parallel biological sequence comparison in large GPU
clusters. In: CCGRID, pp. 160-169. IEEE Computer Society (2014)

5. de Oliveira Sandes, E.F., Miranda, G., Martorell, X., Ayguad, E., Teodoro, G.,
Alves de Melo, A.C.M.: CUDAlign 4.0: incremental speculative traceback for exact
chromosome-wide alignment in GPU clusters. IEEE Trans. Parallel Distrib. Syst.
27(10), 2838-2850 (2016)

6. Feldman, M.: Microsoft goes all in for FPGAs to build out AI cloud (2016).
https://www.top500.org/news/microsoft- goes-all-in-for-fpgas- to-build-out-cloud-
based-ai/

https://www.top500.org/news/microsoft-goes-all-in-for-fpgas-to-build-out-cloud-based-ai/
https://www.top500.org/news/microsoft-goes-all-in-for-fpgas-to-build-out-cloud-based-ai/

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Accelerating Smith-Waterman Alignment 511

Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol.
162, 705-708 (1981)

Khronos Group: The OpenCL Specification, version 2 (2014)

Korpar, M., Sikic, M.: SW# - GPU-enabled exact alignments on genome scale.
Bioinformatics 29(19), 2494-2495 (2013)

Leopold, G.: AWS Embraces FPGAs, Elastic GPUs (2016). https://www.hpcwire.
com/2016/12/02/aws-embraces-fpgas-elastic-gpus/

Leopold, G.: Intels FPGAs target datacenters, networking (2016). https://www.
hpcwire.com/2016/10/06/intels-fpgas-target-datacenters-networking/

Liu, Y., Tran, T.T., Lauenroth, F., Schmidt, B.: SWAPHI-LS: Smith-Waterman
Algorithm on Xeon Phi coprocessors for long DNA sequences. In: IEEE Interna-
tional Conference on Cluster Computing (CLUSTER), pp. 257-265 (2014)
Mount, D.W.: Bioinformatics: Sequence and Genome Analysis. Cold Spring Harbor
Laboratory Press, Mount (2004)

Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison.
Proc. Nat. Acad. Sci. U.S.A. 85(8), 24442448 (1988)

Rucci, E., Garcia, C., Botella, G., Giusti, A., Naiouf, M., Prieto-Matias, M.: State-
of-the-Art in Smith—Waterman protein database search on HPC platforms. In:
Wong, K.-C. (ed.) Big Data Analytics in Genomics, pp. 197-223. Springer, Cham
(2016). doi:10.1007/978-3-319-41279-5_6

Rucci, E., Garca, C., Botella, G., De Giusti, A., Naiouf, M., Prieto-Matas, M.: An
energy-aware performance analysis of SWIMM: SmithWaterman implementation
on Intel’s multicore and manycore architectures. Concurrency Comput. Pract. Exp.
27(18), 5517-5537 (2015)

Rucci, E., Garca, C., Botella, G., De Giusti, A., Naiouf, M., Prieto-Matas,
M.: OSWALD: OpenCL Smith-Waterman Algorithm on Altera FPGA for large
protein databases. Int. J. High Perform. Comput. Appl. (2016). doi:10.1177/
1094342016654215

de Oliveira Sandes, E.F., Alves de Melo, A.C.M: CUDAlign: using GPU to accel-
erate the comparison of megabase genomic sequences. In: Proceedings of the 15th
ACM SIGPLAN Symposium on Principles and Practice of Parallel Computing,
PPoPP 2010, pp. 137-146. ACM, New York (2010)

Settle, S.O.: High-performance dynamic programming on FPGAs with OpenCL.
In: IEEE High Performance Extreme Computing Conference (HPEC 2013), pp.
1-6 (2013)

Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences.
J. Mol. Biol. 147(1), 195-197 (1981)

Wienbrandt, L.: Bioinformatics applications on the FPGA-based high-performance
computer RIVYERA. In: Vanderbauwhede, W., Benkrid, K. (eds.) High-
Performance Computing Using FPGAs, pp. 81-103. Springer, New York (2013).
doi:10.1007/978-1-4614-1791-0_3

Yamaguchi, Y., Tsoi, H.K., Luk, W.: FPGA-based Smith-Waterman Algorithm:
analysis and novel design. In: Koch, A., Krishnamurthy, R., McAllister, J., Woods,
R., El-Ghazawi, T. (eds.) ARC 2011. LNCS, vol. 6578, pp. 181-192. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-19475-7_20

https://www.hpcwire.com/2016/12/02/aws-embraces-fpgas-elastic-gpus/
https://www.hpcwire.com/2016/12/02/aws-embraces-fpgas-elastic-gpus/
https://www.hpcwire.com/2016/10/06/intels-fpgas-target-datacenters-networking/
https://www.hpcwire.com/2016/10/06/intels-fpgas-target-datacenters-networking/
http://dx.doi.org/10.1007/978-3-319-41279-5_6
http://dx.doi.org/10.1177/1094342016654215
http://dx.doi.org/10.1177/1094342016654215
http://dx.doi.org/10.1007/978-1-4614-1791-0_3
http://dx.doi.org/10.1007/978-3-642-19475-7_20

	Accelerating Smith-Waterman Alignment of Long DNA Sequences with OpenCL on FPGA
	1 Introduction
	2 Smith-Waterman Algorithm
	3 OpenCL Extension on Altera's FPGA
	4 SW Implementation
	5 Experimental Results
	5.1 Experimental Platforms and Tests Carried Out
	5.2 Performance and Resource Usage Evaluation
	5.3 Performance and Power Efficiency Comparison with Other SW Implementations

	6 Conclusions
	References

