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Abstract. This paper presents an experimental investigation to determine the
efficacy and the appropriate order of Frequency Chaos Game Representation
(FCGR) for accurate and in silico classification of pathogenic viruses. For this
study, we curated genomic sequences of selected viral pathogens from the virus
pathogen database and analysis resource corpus. The viral genomes were enco-
ded using the first to seventh order FCGRs so as to produce training and testing
genomic data features. Thereafter, four different kernels of naïve Bayes classifier
were experimentally trained and tested with the generated FCGR genomic fea-
tures. The performance result with the highest average classification accuracy of
98% was returned by the third and fourth order FCGRs. However, due to con-
sideration for memory utilization, computational efficiency vis-à-vis classifica-
tion accuracy, the third order FCGR is deemed suitable for accurate classification
of viral pathogens from genome sequences. This provides a promising founda-
tion for developing genomic based diagnostic toolkit that could be used to
promptly address the global incidence of epidemics from pathogenic viruses.

Keywords: Classification � FCGR � Genome � GSP � Naïve Bayes �
Pathogens � Sequences � Virus

1 Introduction

Automatic detection of diverse species of viral pathogens associated with emerging
deadly ailments within human populations cannot be over-emphasized as they remain a
big threat to both personal and public health. Recent advances in molecular biology,
next generation sequencing and online bioinformatics platforms offer a vast compu-
tational ecosystem for accurate identification of causative viral pathogens associated
with the deadly human diseases. While allowing for extensive analysis, the rapidly
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growing databases of genomic sequences also provide an avalanche of resources for
improved epidemic surveillance, diagnostics and therapeutics towards promoting
healthy living. Furthermore, newer digital signal processing-based bioinformatics
methods utilize numerical and/or visual encoding of nucleotide sequences collected
from laboratory and environmental surveillances for effective non-alignment analysis
[1, 2].

The application of digital signal processing techniques to genomic analysis, coined
Genomics Signal Processing (GSP), requires that the nucleotide sequences be encoded
numerically or graphically for alignment-free sequence comparison [1, 3, 4]. Next,
discriminatory genomic features are extracted from the numeric genome representa-
tions to improve on species- or genome-level classification, usually based on a machine
learning technique [5]. GSP-based techniques provide alignment-free analyses of the
genomes to address the problems of unequal lengths of the sequences, the computa-
tional speed and large memory requirements encountered during alignment-based
analysis [6, 7]. However for an accurate detection, it is necessary to ensure that the
numeric or visual encoding of the nucleotide sequences represents the unique and
salient characteristic of the genome as desirable.

Unlike other methods, the Chaos Game Representation (CGR) visually expresses
the local patterns of the nucleotide sequences and hence the global structure of the
genome in a two-dimensional graphical form [2, 8]. CGR is a scale independent
representation developed by Jeffrey [9]. It was derived from the chaos theory, which
allows the illustration of frequencies of oligonucleotides in the form of images.
With CGR, the oligonucleotides of a genome exhibit the main physiognomies of the
whole genome [7]. However, in the original form, CGR is not convenient for pro-
cessing with a computer, hence, another form of CGR named Frequency Chaos Game
Representation (FCGR) was introduced [7, 8, 10]. The CGR pattern of the nucleotide
sequences of the same genome are found to be similar but differs quantitatively from
the CGR patterns of the genome from another specie. This biological attribute makes
the unique genomic signature of CGR and the subsequent features extracted from it, an
accurate representation for alignment-free analysis suitable for classification, clustering
and identification as proposed in many researches reported recently.

Karamichalis et al. [5] investigated the intra-specie and inter-specie variations of
the genomic signatures generated by CGR patterns, using six different distance mea-
sures. The study validated the hypothesis that the CGR patterns of the nucleotide
sequences of the same genome are similar but differs quantitatively from the CGR
patterns of the genome from another specie. The CGR-based genomic signatures also
accurately classified the genomic DNA sequences of Homo sapiens and Mus musculus
genomes at lower taxonomic levels – class and order.

Messaoudi et al. [11] encoded the genomic sequence of Caenorhabditis elegans
(C. elegans) with frequency of CGR patterns, otherwise called Frequency Chaos Game
Representation (FCGR), for a time-frequency investigation using the Continuous
Wavelet Transform (CWT). The complex Morlet wavelet based CWT revealed sig-
nificant biological characteristics from the genomic signature of the FCGR patterns.

Kari et al. [12] proposed a molecular distance map developed with the unique
genomic signature of CGR suitable for defining relationships between species to identify
species, clarify taxonomies and related evolutionary history. Multi-Dimensional Scaling
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(MDS) was applied to the distance metrics computed based on the Structural Dissimi-
larity Index (DSSIM) to produce the map. The map successfully characterized organ-
isms into several taxonomy levels within the Euclidean space that showed the spatial
proximity between the nucleotide sequences.

Tanchotsrinon et al. [13] adopted the CGR and Singular Value Decomposition
(SVD) for Human Papillomavirus (HPV) genotyping as an approach to fight cervical
cancer. Two classes of features were obtained from the SVD-reduced matrices of the
original CGR: ChaosCentroid, which captured the structure of the sequences and
ChaosFrequency, which represented relevant statistical distribution of nucleotides in
the sequences. Their study demonstrated comparative results with no significant dif-
ference between their proposed method and the NCBI viral genotyping tool irrespective
of the four classification techniques used i.e. Multi-layer Perceptron, Radial Basis
Function, K-Nearest Neighbor and Fuzzy K-Nearest Neighbor.

In the current study, we experimentally explored the applicability of FCGR and its
appropriate order for classification of viral pathogens from genomic sequences into the
right species. This endeavor is aimed at laying a foundation for the development of an
alternative, accurate and in silico genomic viral diagnostic tool, which could help in
rapid medical interventions in the event of viral pathogens epidemic.

2 Materials and Methods

2.1 Dataset

As shown in Table 1, we extracted the genome sequences of Ebola virus (N = 249),
Enterovirus (N = 632), Dengue virus (N = 390), HepatitisC virus (N = 567) and Zika
virus (N = 351) from the Virus Pathogen Database and Analysis Resource (ViPR) cor-
pus. This corpus was developed to provide free access to genomic and proteomic
sequences of viral pathogens for research and development of vaccines, therapies and
diagnostic tools. The Universal Resource Locator (URL) for ViPR as at the time this
studywas carried out is https://www.viprbrc.org/brc/home.spg?decorator=vipr. The total
sample size of the dataset extracted for this study is 2,189. Although, there is a huge
collection of pathogenic viral datasets on the corpus, the five viruses were selected due to
their prominence as causative agents of diseases that is currently of concern among
researchers on a global scale. These viruses are also specifically featured on the home
page of theViPR corpus and the structural diversity of their genomes provide a good basis
to investigate the efficacy of FCGR for viral species classification.

Table 1. Extracted dataset for five pathogenic viruses

S/N Viral species Number of unique samples

1 Ebola virus 249
2 Enterovirus 632
3 Dengue virus 390
4 HepatitisC virus 567
5 Zika virus 351

Total 2,189

Experimental Investigation of Frequency Chaos Game Representation 157

https://www.viprbrc.org/brc/home.spg?decorator=vipr


2.2 FCGR Computation at Different Orders and Naïve Bayes Classifier

FCGR is a numerical matrix in contrast to CGR, which is a graphical representation.
Instead of plotting a CGR first and converting it to a FCGR [7, 8]. Wang et al. [10]
posits that FCGR can be derived directly from a sequence. Furthermore, Wang et al.
[10] introduced the concept of FCGR order, which provides variants in matrix
dimensions when FCGR are derived directly from the sequences. For instance, given a
sequence S, with fw representing the frequency of the oligonucleotide w, the matrix
structure of a first order FCGR is given as Eq. (1) [10].

FCGR1ðSÞ ¼ fC fG
fA fT

� �
ð1Þ

The FCGR of (k + 1)th order can be computed by substituting each element fx in a
kth order FCGR with the four elements

fCX fGX
fAX fTX

� �
: ð2Þ

Therefore, the matrix structure of a second order FCGR is as shown in Eq. (2) and
higher order FCGR can be sequentially computed.

FCGR2ðSÞ ¼
fCC fGC fCG fGG
fAC fTC fAG fTG
fCA fGA fCT fGT
fAA fTA fAT fTT

0
BB@

1
CCA ð3Þ

From Eqs. (1) and (3), it can be seen that a k-th order FCGR is a 2k x 2k matrix and
it contains 4 k occurrences of the k length oligonucleotides [10, 14]. The direct cor-
respondence of CGR and FCGR, in which a kth order FCGR is equivalent to a CGR of
resolution 1/2k was also reported [10]. This makes it possible to observe the major
features that are inherent in higher order FCGR (which ordinarily is incomprehensible
because of the size) by visual observation of the equivalent CGR. Researchers have
also opined that CGR images and correspondingly the FCGR obtained from subse-
quence of a genome present similar structure as the whole genome [7]. This implies
that the CGR image or FCGR of a subsequence is a sufficient genomic signature for
species classification rather than the CGR image or FCGR of the whole genome [7, 10].
Therefore, in this study, we ventured to experimentally investigate the efficacy of
FCGR at different resolutions or orders ( 1� k� 7) for pathogenic virus species clas-
sification. We stopped at 7th order because the huge dimension of the matrix elements
at 8th order and beyond is computationally expensive without providing any benefits
with respect to classification accuracy.

The accurate classification of the viral species from the FCGR-encoded nucleotide
sequences was carried out with the Naïve Bayes (NB) classifier, which is a very
popular classifier in bioinformatics [15, 16]. NB classifier utilizes a key statistical
assumption of conditional independence of the FCGR features within the same class, to
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assign a class label to each sequence [15]. The class label in this context refers to the
viral species, drawn from Table 1. The NB classifier can be trained using different
kernel functions such as uniform, epanechnikov, normal and triangular to detect
through classification the most probable viral specie from each encoded sequence.

2.3 Experiments

Experiments were performed in this study to determine the efficacy as well as the
appropriate order of FCGR for classifying viral pathogens from genomic sequences. The
curated sequences for the five viruses were first converted to their numeric equivalents
with 1st to 7th order of FCGR. For each of these orders, the FCGR encoded viral
sequences were transmitted to train Naïve Bayes classifier using four different kernel
functions, namely; uniform, epanechnikov, normal and triangular. Both the FCGR
algorithm and naïve Bayes classifier were implemented inMATLABR2015a, which also
provided the in silico platform to perform all the experiments in this study. The PC on
which the experiments were performed contains an Intel Core i5-4210UCPUoperating at
2.40 GHz speed, with 8.00 GB RAM and runs 64-bit Windows 8 operating system.

3 Results and Discussion

Figure 1 shows the plot of the number of elements in the computed FCGR matrices
against the FCGR order. As illustrated on the graph, a first order FCGR matrix contains
4 elements, a second order contains 16 elements, third order contains 64 elements,
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Fig. 1. The number of elements in the FCGR matrix against the FCGR order
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fourth order contains 256 elements, fifth order contains 1024 elements, sixth order
contains 4096 elements and seventh order contains 16,384 elements. The relationship
between the number of elements in the FCGR matrix and the number of FCGR order is
clearly an exponential growth which is represented as:

y ¼ e1:3863x ð4Þ

where y is the number of elements in the FCGR matrix and x is the FCGR order. The
results of the experiments, which are hereafter reported provide an insight on the effects
of FCGR order vis-à-vis the number of elements in the corresponding FCGR matrices
on pathogenic viral classification accuracy.

Tables 2, 3, 4, 5, 6, 7, and 8 show the results we obtained when the first to seventh
order FCGR matrices were respectively utilized to encode the viral genomic sequences.
We deemed it expedient to compute the average classification accuracies and average
misclassification errors for the four different kernels across the FCGR orders. This
provides a compact scheme for the comparison of our results based on the FCGR
orders. The average classification results for the first order FCGR is shown in Table 2
(Accuracy = 89.8161%, ME = 0.1018). About 7% increase in performance was
obtained for the second order FCGR (Accuracy = 96.6281%, ME = 0.0337) over the
first order. Furthermore, increase in performance continued with the third order
(Accuracy = 98.3651%, ME = 0.0163) up to the fourth order (Accuracy = 98.1607%,
ME = 0.0184). There is however a drastic reduction in the performance results for the
fifth order (Accuracy = 94.2098%, ME = 0.0579), which continued for the sixth order
(Accuracy = 85.7857%, ME = 0.1422) and the lowest performance results in this
study was posted for the seventh order FCGR (Accuracy = 78.0654%, ME = 0.2194).
It is clearly apparent that approximately, both the third and fourth FCGR order with 64

Table 2. First order FCGR

S/N Naïve Bayes kernel function Accuracy Misclassification error (ME)

1 Uniform 89.7366 0.1026
2 Epanechnikov 89.7366 0.1026
3 Normal 89.8274 0.1017
4 Triangular 89.9637 0.1004
Average 89.8161 0.1018

Table 3. Second order FCGR

S/N Naïve Bayes kernel function Accuracy Misclassification error (ME)

1 Uniform 96.5486 0.0345
2 Epanechnikov 96.5940 0.0341
3 Normal 96.5032 0.0350
4 Triangular 96.8665 0.0313
Average 96.6281 0.0337
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Table 4. Third order FCGR

S/N Naïve Bayes kernel function Accuracy Misclassification error (ME)

1 Uniform 98.4105 0.0159
2 Epanechnikov 98.4559 0.0154
3 Normal 98.1381 0.0186
4 Triangular 98.4559 0.0154
Average 98.3651 0.0163

Table 5. Fourth order FCGR

S/N Naïve Bayes kernel function Accuracy Misclassification error (ME)

1 Uniform 98.7284 0.0127
2 Epanechnikov 98.4559 0.0154
3 Normal 97.0027 0.0300
4 Triangular 98.4559 0.0154
Average 98.1607 0.0184

Table 6. Fifth order FCGR

S/N Naïve Bayes kernel function Accuracy Misclassification error (ME)

1 Uniform 95.5495 0.0445
2 Epanechnikov 96.9119 0.0309
3 Normal 87.5568 0.1244
4 Triangular 96.8211 0.0318
Average 94.2098 0.0579

Table 7. Sixth order FCGR

S/N Naïve Bayes Kernel function Accuracy Misclassification error (ME)

1 Uniform 85.6494 0.1435
2 Epanechnikov 93.2788 0.0672
3 Normal 71.4805 0.2852
4 Triangular 92.7339 0.0727
Average 85.7857 0.1422

Table 8. Seventh order FCGR

S/N Naïve Bayes kernel function Accuracy Misclassification error (ME)

1 Uniform 82.8792 0.1712
2 Epanechnikov 80.2906 0.1971
3 Normal 66.6213 0.3338
4 Triangular 82.4705 0.1753
Average 78.0654 0.2194
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and 256 elements respectively, gave the highest performance results (Approximate
Accuracy = 98%, Approximate ME = 0.02). The summary of the entire result is
graphically represented in Fig. 2.

The results in this study clearly agree with the curse of dimensionality philosophy
in machine learning, in which too small training data features (first and second order
FCGR in this context) may hinder the creation of a reliable classification model for
assigning a class to all possible objects in the dataset. Conversely, high dimensions in
the training features (sixth and seventh order FCGR in this context) tend to make the
contiguity among data points more identical and often lead to lower classification
accuracy. Training data with high features has also being reported to lead to high
computational cost and memory usage [17], which is the case with the eight order
FCGR in this study that motivated its exclusion from the experiments.

Our literature search while undertaking this research yielded few studies that have
employed FCGR and other schemes for identification of species ([1, 18–21]. The study
by Vijayan et al. [18] utilized a third order FCGR (64 element vector) to encode
Eukaryotic organisms with Probabilistic Neural Network (PNN) as a classifier to obtain
a classification accuracy of 92.3%. In codicil, the study reported in [1] where a
15-element real Genomic Cepstral Coefficients (GCC) with Radial Basis Function
Neural Network (RBFNN) were utilized for identification of four pathogenic viruses
gave an accuracy of 97.3%. Obviously, the current result of 98% classification accu-
racy for five pathogenic viruses with 64 (third order) and 256 (fourth order) elements
FCGR and naïve Bayes classifier is comparable to the highlighted similar results in the
literature. However, based on the experimental results obtained in this study, the third
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order FCGR is recommended as an appropriate genomic feature for pathogenic viral
classification. This will appositely culminate in economy of memory space, compu-
tational efficiency and acceptable accuracy for viral pathogens classification, which is
an important contribution albeit moderate, to GSP and bioinformatics body of
knowledge.

4 Conclusion

Thus far, we have been able to achieve the objectives of the current study, which are to
determine the efficacy of FCGR and its appropriate order for accurate classification of
pathogenic virus from genomic sequences. The 98% classification accuracy obtained
with the third order FCGR is clearly promising for developing in silico and accurate
diagnostic tool for viral pathogens classification using next generation genomic
sequences. In the future, we hope to substantially extend this study by increasing the
viral pathogens coverage and further experiment with state-of-the-art machine learning
methods like deep learning and hierarchical classifiers.
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