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Abstract. Since about twenty years, the otoneurology functional exploration
possesses auditory tool to analyze objectively the state of the nervous conduc-
tion of additive pathway. In this paper, we present a new classification approach
based on the Hidden Markov Models (HMM) which used to design a Computer
aided medical diagnostic (CAMD) tool that asserts auditory pathologies based
on Brain-stem Evoked Response Auditory based biomedical test, which pro-
vides an effective measure of the integrity of the auditory pathway. Case study,
experimental results and comparison with a conventional neural networks
models have been reported and discussed.
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1 Introduction

Dealing with expert (human) knowledge consideration, intelligent diagnosis systems or
Computer-Aided Diagnosis (CAD) dilemma is one of the most interesting, but also one
of the most difficult problems. Among difficulties contributing to challenging nature of
this problem, one can mention the need of several knowledge representations, fine
classification and decision-making with a certain degree of reliability.

In many applications of interest, it is desirable for the system to not only identify
the possible causes of the problem, but also to suggest suitable remedies (systems
capable of advising) or to give a reliability rate of the identification of possible causes.

Recently, several decision support systems and intelligent systems have been
developed [9, 10] and the diagnosis approaches based on such intelligent systems have
been developed for biomedicine applications [11–15]. Indeed, several approaches have
been developed to analyze and classify biomedicine signals: electroencephalography
signals [12], electrocardiogram signals [13], and particularly signals based on Auditory
Brainstem Response (ABR) test, which is a test for hearing and brain (neurological)
functioning [11, 16–18].
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The analysis and recognition of ABR signals is a medical problem of great
importance, since it is the best known technique of the auditory organs evaluation. The
task of construction of fully automatic method of ABR recognition present considerable
technical difficulties, because the signals are in general hardly readable, and in par-
ticular the evaluation of the data part obtained for low intensities of the audio stimulus
is especially difficult. It can be assumed that the methods of analysis and recognition of
ABR signals can be of some interest to other investigators, not necessarily directly
interested in audiology, but trying to cope with the difficulties of interpretation and
recognition of totally different signals.

The aim of this work is absolutely not to replace specialized human but to suggest a
decision support system with a satisfactory reliability degree for CAD systems. We
present in this paper, an original approach which is suggested for CAD systems and
applied in biomedicine to auditory diagnosis, based on ABR test.

We propose to use the Bayesian models for classification of electrical signals, with
come from a medical test, these are called Auditory Evoked Potentials (AEP). AEP are
scalp-recorded electrical responses of the brain elicited by acoustical stimuli. Indeed,
since about twenty years, the otoneurology functional exploration possesses a tool to
analyze objectively the state of the nervous conduction of additive pathway. The AEP’s
classification is a first step in the development of a diagnosis tool assisting the medical
expert. The classification of these signals presents some problems, because of the
difficulty to distinguish one class of signal from the others. The results can be different
for different test session for the same patient. Today, taking into account the progress
accomplished in the area of intelligent computation or artificial intelligence, it becomes
conceivable to develop a diagnosis tool assisting the medical expert. One of the first
steps in the development of such tool is the AEP signal classification.

Then we proposed to use the Hidden Markov Models (HMM) and we attempt to
illustrate some applications of this theory to real problems to match complex patterns
problems as those related to AEP biomedical diagnosis or those linked to social
behavior modeling. We focus also on the K-Means clustering algorithm which it is one
of the most used iterative partitioned clustering algorithms based in vector quantization.
In particularly, we review the theory of discrete HMM and show how the concept of
hidden states, where the observation sequences provided using the k-means algorithm,
can be used effectively for AEP classification.

In the pattern recognition domain, HMM techniques hold an important place, there
are two reasons why the HMM has occurred. First the models are very tick in math-
ematical structure and hence can form the theoretical basis for use in a wide range of
applications. Second the models, when applied properly, work very well in practice for
several important applications. Nowadays, HMM are considered as a specific form of
dynamic Bayesian networks based on the theory of Bayes [22]. They are a dominant
technique for sequence analysis and they owe their success to the existence of many
efficient and reliable algorithms.

HMM are used in many areas in modern sciences or engineering applications, e.g.
in temporal pattern recognition such as speech, handwriting, gesture recognition,
part-of-speech tagging, musical score following, partial discharges. Other areas where
the use of HMM and derivatives becomes more and more interesting are biosciences,
bioinformatics and genetics [19–25].
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The organization of this paper is as follows. In the Sects. 2 and 3, we introduce the
theory and the foundation of HMM and vector quantization. In the Sect. 4, we present
the AEP signals and we describe our biomedical pattern classifier, implemented with
HMM and vector quantization ideas. In the same section, we present the classification
results obtained by using a database of 213 AEP like waveforms. A comparison to
alternative implementations using neural networks methods is presented. Finally in
Sect. 5 we summarize the ideas, discus the presented technique’s potential to deal with
social behavior modeling and give the prospects that follow from our work.

2 Foundation of HMM

An HMM system is typically characterized by the following quantities [6, 7].

2.1 Elements of an HMM

We define the following notation for an HMM:

1. A set of states Si, i ∊ [1, N] that are unobservable though there is often a physical
meaning attached to them.

2. A set of M observations. In a discrete HMM [5]. M is the number of codebook
vectors, or the number of all possible observations. This implies that any obser-
vation, vt, is quantized into the set {x1, x2, … xm} where xm is the mth codebook
vector (to see Sect. 3).

3. A set of state “transition” probabilities represented by matrix A = [aij] where aij = P
(qt = Sj| qt−1 = Si, k) with qt being the state visited at time t, Si is state i and k is the
model defined by the object class and the corresponding training data.

4. A set of observation probabilities represented by matrix B = [bi(xk)] where
bi(xk) = P(xk\ qt = Si, k) is the “emission” probability of the kth quantized obser-
vation, xk, at time t from state Si if the emission processes are assemply reduces to P
(xk| Si, k).

5. An initial state distribution or the probability of starting in a given state, i.e., pj = P
(q1 = Sj| k).

Given the number of states N, and the number of observations M, the parameters A,
B and p represent the model k. There are three main issues [5] in order to maximize the
performance of the HMM and identify the model in practical applications. These are
briefly mentioned in the following. An in depth discussion on these topics can be found
in [5–7].

2.2 The Three Basic Problems of HMM

Given the form of HMM of the previous section, there are three basic problems of
interest that must be solved for the model to be useful in real-word applications. These
problems are the following:
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Problem 1. Given the observation sequence O = o1o2 … oT, and a model k = (A, B, p),
how do we efficiently compute P(O|k), the probability of the observation sequence,
given the model?

Problem 2. Given the observation sequence O = o1o2 … oT, and the model k, how do
we choose a corresponding state sequence Q = q1 q2 … qT which is optimal in some
meaningful sense (i.e., best “explains” the observations)?

Problem 3. How do we adjust the model parameters k = (A, B, p) to maximize P
(O|k)?

2.3 Solutions to the Three Problems

Solution to Problem 1: Computing Model Probability. The answer to the first
problem is the forward-backward procedure [5]. From this procedure we can find the
forward variable at(i) and it is defined as at(i) = P(O1 O2 … Ot, qt = Si |k). This is the
probability of the partial observation sequence, O1 O2 … Ot, (until time t) and state Si at
time t given the model k. The forward-backward procedure also provides us with a
backward variable bt(j) = P(O1 O2 … Ot |qt = Si, k) which gives the probability of the
partial observation sequence from t + 1 to the end, given state Si at time t and the
model k. Even though the backward variable is not needed for the first problem it
becomes useful when solving problem 3 [5].

Solution to Problem 2: Optimal State Sequence. Problem number 2 is a matter of
finding the best state sequence that best fits with the observation. The Viterbi algorithm
manages this and finds the single best state sequence, Q = (q1 q2 … qt), for the given
observation O = (O1 O2 … Ot) [5, 6].

Solution to Problem 3: Maximization of P(O/k). The third problem is to adjust the
HMM parameters to maximize the probability of the observation sequence. If given an
finite observation sequence there is no optimal way of estimating the models param-
eters. However, it is possible to chose k = (A, B, p) such that it is locally maximized
for P(O|k) by using the Baum-Welch algorithm [5]. The Baum-Welch algorithm works
by assigning initial probabilities to all the parameters. Then, until the training con-
verges, it adjusts the probabilities of the parameters so as to increase the probability the
model assigns to the training set [7].

The Baum-Welch algorithm (or Baum-Welch expectation maximization algorithm)
makes use of both the forward variable at(i) and the backward variable bt(j) when it
determines updated parameters for the HMM. Because of this the Baum-Welch algo-
rithm is also known as the Forward-Backward algorithm.

To properly estimate the local maximum for P(O|k) the Baum-Welch algorithm
needs several iterations. The algorithm will either be repeated a predetermined number
of times, or until the local maximum is found. The local maximum is found when the
difference between P(O|knew) and P(O|kold) reaches a certain value [5].
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3 Vector Quantization

Several approaches to find groups in a given database have been developed in litera-
ture, but we focus on the K-Means algorithm (vector quantization) [2] as it is one of the
most used iterative partitional clustering algorithms and because it may also be used to
initialize more expensive clustering algorithms (e.g., the EM algorithm).

k-means is one of the simplest unsupervised learning algorithms that solve the
well-known clustering problem. The procedure follows a simple and easy way to classify
a given data set through a certain number of clusters (assume k clusters) fixed a priori.

As can be seen in Fig. 1 where the pseudo-code is presented, the k-means algorithm
is provided somehow with an initial partition of the database and the centroids of these
initial clusters are calculated. Then, the instances of the database are relocated to the
cluster represented by the nearest centroid in an attempt to reduce the square-error. This
relocation step (step 3) changes its cluster membership, and then the centroids of the
clusters Cs and Ct and the square-error should be recomputed. This process is repeated
until convergence, that is, until the square-error cannot be further reduced which means
no instance changes its cluster membership [1].

For the case in which we wish to use an HMM with a discrete observation symbol
density, rather than the continuous vectors above, a vector quantized VQ is required to
map each continuous observation vector into a discrete codebook index. Once the
codebook of vectors has been obtained, the mapping between continuous vectors and
codebook indices becomes a simple nearest neighbor computation, i.e., the continuous
vector is assigned the index of the nearest codebook vector. Thus the major issue in VQ
is the design of an appropriate codebook for quantization.

Fortunately a great deal of work has gone into devising an excellent iterative
procedure for designing codebooks based on having a representative training sequence
of vectors [2]. The procedure basically partitions the training vectors into M disjoint

Step 1. Select somehow an initial partition of the 
database in K clusters {C1,…,CK}.

Step 2. Calculate cluster centroid ik

j ij
i

i Kiw
k

w
1

,...1,1

Step 3. for every wi in the database and following the 
instance order do
Step 3.1. Reassign instance wi to its closest cluster 
centroid, wi  Cs is moved from Cs to Ct if 

jiti wwww     for all j = 1,…,K, sj
Step 3.2. Recalculate centroids for clusters Cs and Ct
Step 4. If cluster membership is stabilized then stop
        else go to step 3. 

Fig. 1. The pseudo-code of the k-means algorithm.
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sets (where M is the size of the codebook), represents each such set by a single vector
(vm, 1 � m � M), which is generally the centroid of the vectors in the training set
assigned to the mth region, and then iteratively optimizes the partition and the codebook
(i.e., the centroids of each partition). Associated with VQ is a distortion penalty since
we are representing an entire region of the vector space by a single vector. Clearly it is
advantageous to keep the distortion penalty as small as possible.

4 Validation on Biomedical Classification Paradigm

For our experience, consider using HMM to build a biomedical classifier or a CAMD
tool. Assume we have a vocabulary of 3 classes to be recognized: Normal class –

Endocochlear class – Retrocochlear class, and that each category is modeled by a
discrete HMM. For this type of HMM, there exists a limited number of observations (in
our case, number of clusters) which can be made.

Further assume that for each category in the vocabulary, we have a training set of
k occurrences (instances) of each category where each instance of the class constitutes
an observation sequence¸ where the observation are some appropriate representation of
the characteristics of the class. In order to build a CAMD tool, we perform the fol-
lowing operations:

(1) For each class v in the vocabulary (3 classes in our work), we must build an HMM
kv, i.e., we must estimate the model parameters (A, B, p) that optimize the like-
lihood of the training set observation vectors for the vth class.

(2) For each unknown class which is to be recognized, the processing of Fig. 2 must be
carried out namely measurement of the observation sequence O = {o1, o2, … ,oT},
via a feature analysis of the signal corresponding to the class, followed by cal-
culation of model likelihoods for all possible models, P(O/kv), 1 � v � V, fol-
lowed by selection of the class whose model likelihood is highest, i.e.,
v� ¼ argmax

1 � v � V
P O=kvð Þ½ �

Fig. 2. Block diagram of a biomedical database HMM recognizer.
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The probability computation step is generally performed using the Viterbi algo-
rithm (i.e., the maximum likelihood path is used) and requires on the order V.N2.T
computations.

4.1 Background of Brainstem AEP Clinical Test

When a sense organ is stimulated, it generates a string of complex neurophysiology
processes. Brainstem auditory evoked potentials (BAEP) are electrical response caused
by the brief stimulation of a sense system. The stimulus gives rise to the start of a string
of action’s potentials that can be recorded on the nerve’s course, or from a distance of
the activated structures. ABR comprise the early portion (0–12 m-s) of AEP are
composed of several waves or peaks. BAEP are generated as follows (see Fig. 3): the
patient hears clicking noise or tone bursts through earphones. The use of auditory
stimuli evokes an electrical response.

In fact, the stimulus triggers a number of neurophysiology responses along the
auditory pathway. An action potential is conducted along the eight nerve, the brain-
stem, and finally to the brain. A few times after the initial stimulation, the signal evokes
a response in the area of brain where sounds are interpreted. AEP are considered the
most objective measure currently available with which to determine the functional
integrity of the peripheral auditory nervous system.

These response signals have small amplitude, and so they are frequently masked by
the background noise of electrical activity. Indeed, the response is obtained by
extraction from the noise by the principle of averaging. The firing of neurons results in
small but measurable electrical potentials. The specific neural activity arising from
acoustic stimulation, a pattern of voltage fluctuations lasting about one half second, is
an AEP. With enough repetitions of an acoustic stimulus, signal averaging permits
AEPs to emerge from the background spontaneous neural firing (and other non-neural

Fig. 3. Brainstem auditory evoked potentials clinical test. (Source: Ref. [3], p. 120)
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interferences such as muscle activity and external electromagnetic generators), and they
may be visualized in a time-voltage waveform.

Depending upon the type and placement of the recording electrodes, the amount of
amplification, the selected filters, and the post-stimulus timeframe, it is possible to
detect neural activity arising from structures spanning the auditory nerve to the cortex.
Estimating hearing threshold from BAEP signals is a time consuming and labor
intensive procedure, and therefore one which recommends itself to computerized
automation. The important step is the classification of the signals into Response (R) and
No Response (NR) classes, the main difficulties being a poor signal-to-noise ratio and
the differentiation of response peaks from artifacts.

The ABR waves or peaks, labelled using Roman numerals I–VII as shown in the
Fig. 4, are typically 1 ms apart and have amplitudes of about 100–500 nanovolts.
Waves I, III and V are generally considered major peaks, generated by the synchronous
electrical activity of the auditory nerve, caudal and rostral auditory brainstem struc-
tures, respectively, in response to onset of auditory stimuli. This test provides an
effective measure of the integrity of the auditory pathway up to the upper potential
level.

A technique of extraction, presented in [5] allows us, following 800 acquisitions
such as describe before, the visualization of the AEP estimation on averages of 16
acquisitions. Thus, a surface of 50 estimations called Temporal Dynamic of the Cerebral
trunk (TDC) can be visualized. The software developed for the acquisition and the
processing of the signals is called ELAUDY. It allows us to obtain the average signal,
which corresponds to the average of the 800 acquisitions, and the TDC surface. Figure 5
(extracted from [5]) shows two typical surfaces, one for a patient with a normal audition
(2-A) and the other one for patient who suffers from an auditory disorder (2-B). This
figure shows the large variety of AEP signals even for a same patient. Moreover, this
software automatically determinates, from the average signal, the five significant peaks

Fig. 4. Perfect AEP (Source: Ref. [3], p. 85)
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and gives the latency of these waves. It also allows us to record a file for each patient,
which contains administrative information (address, age,…), the results of the tests and
the doctor’s conclusions (pathology, cause, confidence’s index of the pathology…).

AEP signal and TDC technique are important to diagnosis auditory pathologies.
However, medical experts have still to visualize all auditory tests’ results before
making a diagnosis.

4.2 Classification and Decision-Making

At first, through some examples, an important problem is emphasized to illustrate the
problem difficulty of the classification in diagnosis systems. In the biomedicine
application described in this section, three patient classes are studied: Retro-cochlear
auditory disorder’s patients (Retro-cochlear Class: RC), Endo-cochlear auditory dis-
order’s patients (Endocochlear Class: EC), and healthy patients (Normal Class: NC).
The AEP signals descended of the exam and their associated pathology are defined in a
data base containing the files of 11 185 patients. We chose 3 categories of patients (3
classes) according to the type of their trouble. The categories of patients are the next
one:

(1) Normal: the patients of this category have a normal audition (normal class).
(2) Endocochlear: these patients are reached of unrest that touches the part of the ear

situated before the cochlea (class Endocochlear).
(3) Retrocochlear: these patients are reached of unrest that touches the part of the ear

situated to the level of the cochlea or after the cochlea. (class retrocochlear).

We selected 213 signals (correspondents to patients). So that every process (signal)
contains 128 parameters, we were force to respect the values of parameters used in the
work describes in the following articles [3, 4] using the LVQ and RBF neural structure
respectively. 92 among the 213 signals belong to the normal class, 83, to the class
Endocochlear: and 38, to the class retrocochlear. Figure 6 shows two examples of

Fig. 5. TDC surfaces (A- Normal patient, B- Patient with auditory disorder) (Source: Ref. [3],
p. 85)
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signal knowledge representations for six patients: RC, EC, and NC. Also, Fig. 7 shows
image knowledge representations for the same six patients. These figures illustrate the
fact that, signal or image representations could be very similar for patients belonging to
different classes, and they could be very different for patients belonging to a same class,
demonstrating the difficulty of their classification.

Fig. 6. Two examples of signal representations for RC patients, EC patients, and NC patients.

Fig. 7. Two examples of image representations for RC patients, EC patients, and NC patients.

Diagnosis of Auditory Pathologies with Hidden Markov Models 127



4.3 Analysis of the Signal

Raw BAEPs were amplified and bandpass filtered (100–3000 Hz) to remove the EEG
component and high frequency noise. A post stimulus signal of 12.8 ms was sampled
at 40 kHz to give 512 data points. Since these raw signals are extremely noisy, standard
procedure was to coherently average 1024 of such signals to give a single BAEP signal.
This signal can be used for classification but in this study, the signals were further
reduced by sampling every eighth value between 1 ms and 11 ms The resulting signal
of 50 data points was normalized between 0 and 1. A data set of 321 such input signals
was obtained, which included various combinations of hearing impaired and normal
subjects and varying stimulus intensities.

4.4 Case Study and Experimental Results

The aim of our work is to classify the AEP signals using HMM models. In our case, the
components of input vectors are the samples of the BERA average signals and the
output vectors correspond to 3 different possible classes.

To construct our basis of training, we chose the signals corresponding to
pathologies indicated like being certain by the physician. All AEP signals come from
the same experimental system. In order to value the realized work and for ends of
performance comparison with the work of the group describes in the following article
[3, 4] and that uses a neural network structure basis of RBF and LVQ networks The
basis of training contains 141 signals, of which 25 correspondent to the class retro-
cochlear, 55 to the class endocochlear and 61 to the normal class. The ratio of class
sizes (the R:NR ratio) in the training set was chosen as 3:1, reflecting the approximate
ratio in a clinical setting.

The test set consisted of 213 signals with the same ratio of three R signals to one
NR signal. No signals from any of the same subjects used in the training set were
included, which added considerably to the difficulty of the learning task.

After the phase of training, when the non-learned signals are presented to the
HMM, the corresponding class must be designated.

The convergence of the k-means process has been obtained during the 11th itera-
tion. Figures 8 and 9 illustrate the tradeoff of quantization distortion versus M (on a
long scale). Although the distortion steadily decreases as M increases, it can be seen
from Fig. 9 that only small decreases in distortion accrue beyond a value of M = 26.
Hence HMM with codebook sizes of from M = 26 to 64 vectors have been used in
biomedical database recognition experiments using HMM.

Table 1 presents a sample of clustering for two instances taken randomly, after the
iteration of convergence. Noting that each instance has been divided in 16 windows
that each has 8 parameters. When creating HMMs during this project, we used a HMM
implementation for Matlab called “Hidden Markov Model (HMM) Toolbox” for
Matlab.

We have three HMM representing respectively: HMM1: normal class; HMM2:
endo class; HMM3: retro class. The final parameters of the model that represents the
class of normal patients are as follows:
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Fig. 8. Process of convergence of AEP basic using the k-means algorithm.
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Fig. 9. Curve showing tradeoff of VQ average distortion as a function of the size of the VQ, M
(shown of a log scale).

Table 1. The result of clustering of two instances after the iteration of convergence.

Windows w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16

Instance1 14 7 7 14 7 3 7 7 14 7 12 12 12 12 12 14
Instance2 3 3 3 14 3 14 7 7 7 7 12 12 12 8 14 3
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The most likely sequence of states and the observing probability of “Instance1” to
the HMM1, HMM2, HMM3 respectively are as follows:

For the phase of generalization, with application of HMM, the basis of training has
been learned correctly at the time of the phase of generalization with 100% rate. The
results gotten for the recognition system of the test biomedical basis with using the
HMM, are presented like follows.

(1) 98.38% for the normal class.
(2) 58.93% for the class Endocochlear:
(3) 96.15% for the class retrocochlear:
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Thus, the average rate of success is of 84.48% for the totality of the data base in
relation to the rate of classification of 63.7% and 62.5% of the systems using the LVQ
and RBF neural structure respectively describes in the following articles [3, 4]. So the
results gotten for every class with the system proposed in this paper in comparison with
those of the neural networks structure, is presented in the following table (to see Table 2).

The results with a number of 26 clusters which is the number that we had to get
quite satisfactory classification results are presented in the Table 2. The first obser-
vation for the results is that the application of HMM for this biomedical BDD is has
proven to be very effective for both normal and retro classes with a classification rate of
98.38 and 96.15 respectively and a performance degradation for the endo class with a
rate of 58.93. In fact, the signals on which we work can be very different within the
endo class compared to other classes. They could be very different for patients
belonging to a same class, demonstrating the difficulty of their classification. One can
notice, by comparing these results with those obtained with the LVQ and RBF con-
nectionist approaches that include an improvement of the overall performance.

5 Conclusion and Perspective

In this paper, Bayesian approaches is suggested for CAD systems in a biomedicine
application: auditory diagnosis based on ABR test. In fact, the aim is then to achieve an
efficient and reliable CAD system for three classes: two auditory pathologies RC and
EC and normal auditory NC. Implementation and experimental results are presented
and discussed.

The setting of this experimentation is off line and it remains again many to make.
The results that we got only concern a qualitative approach in a static context. Nev-
ertheless, this preliminary survey will allow us to propose other models that will allow
palliating the insufficiencies of HMM.

The main idea is to define a fusion scheme: cooperation of HMM with the
multi-network structure in order to succeed to a hybrid model by those providing more
effective results than those proposed in this paper. On the other hand, we have studied
the potentiality of HMM modeling’s application in estimating artificial bots’ behavior
state in a social negotiation context in the framework of a European Sistine project [8].

The both state in that case may be neutral, aggressive or conciliate. These both is
used in the development of innovative training practices for the teaching of negotiation,
leading to the development of new teaching and evaluation methodologies. If such

Table 2. Results of classification of the AEP

Evaluation set Average rate %
Recognizer type Normal

%
Endocochlear
%

Retrocochlear
%

RBF 68 58 61 62.5
LVQ 57 62 72 63.7
HMM 98.38 58.93 96.15 84.5
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technique show a number of strong theoretical advantages, unfortunately, its imple-
mentation in a real time interactive multi-user tool still remains inappropriate.
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