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Abstract With the development of rotary machinery condition monitoring,
challenges have often been encountered due to the cumbersome nature of data
monitoring. Common methods in signal processing are primarily based on the
Shannon sampling principle, which requires substantial amounts of data to achieve
the desired accuracy from on-line monitoring signals. This limits their applications
in cases for which only small samples can be collected, or cases for which too much
data are generating which needs to be largely reduced with under-sampling. Using
the Shannon sampling principle, it seems impossible to significantly reduce the
quantity of data while preserving adequate useful information for condition mon-
itoring. A newly developed theory termed compressive sensing provides a new
insight to condition monitoring and fault diagnosis. It states that a signal can be
perfectly recovered from under-sampled data, which means that useful condition
information can still be represented by small samples. This study presents novel
methods for rotary machinery fault detection from compressed vibration signals
inspired by compressive sensing, which can largely reduce the data collection and
detect faults of rotary machinery from only a few signal samples. This will greatly
help reduce the amount of monitoring data while still guaranteeing a high accuracy
of fault detection. Case studies related to roller bearing fault signals are also pre-
sented in this study to illustrate the effectiveness of the present strategy.

1 Introduction

As a highly important piece of equipment in various industrial fields, rotary
machinery is integral for ensuring security and stable operations of mechanical
systems. The rotor and its rotating parts are the two main components of rotary
machinery. Critical consequences may result from failures in rotary machinery or its
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rotating units, and can be more detrimental in the absence of adequate monitoring.
In addition, since condition-based maintenance is often required in the modern
machinery management, it is necessary to perform condition monitoring to elimi-
nate excess maintenance and guarantee a safe operation. Based on this, researches
related to fault diagnosis of rotary machinery have attracted great interests from
both academic and industrial communities.

In the past, fault diagnosis was often achieved via equipment disassembly at the
job site by experienced maintenance engineers. This manual method presented
challenges in guaranteeing high accuracy and efficiency. Presently, with the rapid
development of information technologys, it is possible to achieve online monitoring
and fault diagnosis of rotary machinery. Various unstable factors may exist during
the operation of rotary machinery. Abundant status information consistently results
from vibrations, allowing vibration signal analysis to be a common and effective
method for condition monitoring. Vibration signal analysis is typically performed in
the time domain, frequency domain or time-frequency domain [1, 2]. Statistical
parameters are adopted to detect and predict faults in the time domain. This method
is easily implemented for fault detection, however, it cannot distinguish fault types
with high precision [3]. Frequency analysis may be applied to extract fault features
[4, 5], identifying fault types by highlighting characteristic fault frequencies in a
spectral domain. Signals acquired by sensors, however, often contain noise, thereby
complicating effective fault features extraction. Time-frequency methods have been
developed to solve these issues, e.g., empirical mode decomposition [6—8] and
wavelet analysis [9, 10], and are generally based on the Shannon sampling theory in
which the sample frequency must be twice the maximum frequency. This theory
indicates that a large amount of data must then be collected, creating an exceptional
challenge for signal acquisition, transmission and processing. In addition, since the
development of database technology and the automation improvements of large
essential equipment, a real-time monitoring techniques have been widely applied.
Using this approach, operation data can be acquired by a distributed control system
with a high-rate collection, e.g., one data point per microsecond or even higher, to
monitor the changes of displacement, acceleration or other parameters. Finally, a
large amount of data is collected, and a large scale database or data warehouse is
built to improve the accuracy of monitoring and its automaticity.

However, the observed data and parameters are often disorderly and unsystem-
atic, i.e., the features are not obvious for condition monitoring. Meanwhile, complex
equipment often generates a large-scale data set to be analysed. Generally, an
intelligent fault diagnosis system is an information processing system, which col-
lects a large set of information about an object with the aid of technologies related to
sensing, information and data transmission [11]. It must be able to accommodate a
lot of original fault information, however, it may also encounter problems of low
quality data that could potentially result in uncertain information. Especially, the
problems of incomplete information are also exacerbated by the limitations of cur-
rent data acquisition and monitoring techniques as well as the diverse information of
rotary machinery. The incompleteness and discordance of the data presents new
challenges to fault diagnosis and condition monitoring. For the fault diagnosis,
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incomplete information primarily refers to missing attributes, incomplete data or
uncertain information, which would result in an inaccurate conclusion regarding a
machine’s status. Therefore, how to deal with incomplete monitoring data and make
a reasonable inference about a machine’s running condition has become a hot topic
in intelligent monitoring of rotary machinery.

Moreover, there is a high requirement on the real-time performance for condition
monitoring of modern rotary machinery. It is expected that a fault can be discovered
once it appears. However, in a big data set generated by continuous monitoring,
there is only a small number of data related to a machine’s abnormality, since the
large majority is healthy and stable information. Thus, it would be much easier if
the monitoring data were greatly reduced, while preserving the most useful infor-
mation. In this case, the pressures on acquisition and post-processing can be
relieved with a guarantee to the diagnosis speed and accuracy. Whereas a large
amount of sampled data is required to be within the limits of traditional Shannon
sampling principle [12] used for perfect post-processing of the observed data.
Therefore, it seems impossible to achieve condition monitoring of rotary machinery
from an abbreviated data set as suggested above.

Compression of large-scale monitoring data to detect fault features directly from
sparse samples is one way to address these challenges. A theory termed com-
pressive sensing is such a way that provides a new insight for solving the above
problems, i.e., condition monitoring from compressed samples or incomplete big
data sets. The theory states that it is still possible to recover a signal from only a few
samples, even with under-sampled incomplete data [13, 14]. It is a big breakthrough
in the signal processing field and great attentions have been placed on it since its
original proposal. Compressive sensing has been widely applied in various fields,
e.g., magnetic resonance imaging [15], seismic wave processing [16] over time, yet
many of the studies reported are associated with signal or image reconstruction.

For condition monitoring of rotary machinery, according to compressive sens-
ing, operation information is possible to be reserved with well-designed sampling,
then it is possible to store and transmit a small amount of samples and reconstruct
them on the receiving side, and detect the fault features from only a few samples.
Moreover, the fault features usually can be identified far before signal recovery is
complete, thus it is not necessary to recover the signal perfectly. Effectiveness of
statistical inference based on compressive sensing has been verified in references
[17-20] in related fields, suggesting the possibility of estimating certain charac-
teristic parameters from only a few compressed measurements without ever
recovering the actual signals.

In the field of condition monitoring, there are also some related reports found in
the relevant literature [21, 22]. Chen et al. [23] built a learning dictionary frame to
extract a fault-impact signal. Zhang et al. [24] performed a preliminary study on
compressive detection issues of bearing faults. Tang et al. [25] developed a sparse
classification method for rotating machinery faults based on a compressive sensing
strategy. Results of these studies validate the effectiveness of compressive sensing
in machinery fault diagnosis; however, focuses were primarily on sparse repre-
sentation or reconstruction of fault signals.
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Considering the complexity of both condition monitoring and compressive
sensing, there are still many obstacles that must be overcome, especially on the
extraction of fault features from compressed signals. The motivation of this paper is
to briefly introduce the compressive sensing theory and present some applications
for the condition monitoring of rotary machinery. These compressive-sampling-
based methods can help to promote the fault detection efficiency of rotary
machinery faults from under-sampled signals, which will provide new insights to
this research fields.

In this paper, roller bearings are used as an example to explain the main concept
of the proposed strategy [26, 27]. Statistical inference based on compressive
sensing has been studied in other fields [28-30] as mentioned above, yet there are
still many obstacles to be overcome when applied to bearing fault detection. The
bearing fault signal consists of impulses and in the commonly utilized Fourier or
wavelet domain, its sparsity does not completely meet the requirements of com-
pressive sensing, thereby increasing difficulty of the compressive sensing process.
Also yet to be resolved also is the identification of bearing fault features to be
extracted from under-sampled signals and the integration process for compressive
sensing into the bearing fault diagnosis. In this study, we try to develop applicable
condition monitoring strategies for bearing faults from under-sampled vibration
signals, and perform simultaneously sampling and detection without a complete
recovery of the incomplete signal.

The rest of this paper is organized as follows. Section 2 states the fault detection
problems in rotary machinery monitoring. Section 3 provides a brief introduction to
compressive sensing. Section 4 shows three proposed methods and case studies for
bearing fault detection with simulation and experiments. Conclusion is drawn in
Sect. 5.

2 Problem Statement

In the condition monitoring of rotary machinery, to reveal the operation status
accurately and comprehensively, a large number of signals are often collected,
including the signal of operating condition (e.g., speed, pressure), the vibration
signals, the surrounding signals (e.g., temperature), etc. This leads to mutual
crosslinking, which complicates the relationship between different signals. The
intensity trends of a vibration signal are often related to the operation state of a
piece of equipment, thus they are important indicators of whether a machine is
running properly or not. Furthermore, the intensity is also closely related to the
working condition and the surroundings. They are closely linked to each other,
therefore none are dispensable. However, the limitations of the field environment,
often result in a lack of data, which adversely affects the judgment of the machine
status. In addition, the complication of a piece of equipment usually causes a
complex signal transmission path, which leads to a serious noise interference, or
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even incorrect signals. Thus we have to pre-processing the observed signals, e.g.,
eliminating invalid signals, which often renders the data incomplete.

In short, the big data related to rotary machinery are often interfered by the
surroundings, which makes the data difficult comprehensively acquired. Therefore,
it is necessary to develop a strategy to deal with the big but incomplete monitoring
data. Ideally, the big data should be compressed or compressively sensed without
losing important information.

Without a loss of generality, a simple detection issue of bearing faults can be
formulated as

xX=s+n (1)

where s is a known signal of interest, x denotes the observation signal, and n is
mixed noise with interference signals from surrounding devices.

Provided s denotes a vibration signal related to a bearing fault, the fault detection
problem then is to distinguish s from x. One of the common methods to distinguish
the fault component s from the mixture signal x is to proceed in a transforming
domain:

y=&x= " p(s+n) =Ap(s+n) (2)

where x is a signal of N x 1 dimension, ¢ is an M X N measurement matrix,
M <N, and each row of @ represents a sensor to measure x. ¢ is a N X N column
orthonormal basis matrix, and the superscript ¢ denotes a conjugate transposition.
A = ¢ ¢ is often designated the sensing matrix to measure the transformed data
u=@x.yis a M x 1 measurement vector denoting the observation of y = Au.
When all N measurements are available, i.e., M = N, then, ?7® = dd7 = [,
indicating that y is an observation of x with full sampling, which can be solved by
many methods.

However, to facilitate data acquisition and bypass the limitations resulting from
incomplete and imprecise knowledge, M < N is often encountered or expected. y is
then indicated as a compressive sensing of signal x. It would be promising if
required information of the original signal x could be deduced from the compressed
observation y without reconstruction, i.e., the compressed detection problem.

3 Compressive Sensing Theory

3.1 Shannon’s Sampling Theory

Shannon’s sampling theory was first proposed by Shannon in 1949 [31]. According
to the theory, if a continuous signal can be completely represented by a cluster of
samples processed at discrete time, then the samples must occur at more than twice
the sampling frequency of the highest frequency of the signal.
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If the signal xt is sampled through the sampling frequency f; (sampling interval
T, = 1/f), then the sequence can be generated at
{..,x(=nTy),...,x(=T;),x(0),x(Ty), ..., x(nTy), ...},

o0 o0

%(0) =Y x(nTy)-0(t—nTy) =x(r) - Y 6(t—nT) (3)

n=—00 k=—00

where 0(t —nT,) =1 at t = nTy, and 6(t — nT,) = 0 elsewhere. f; is called the
Nyquist frequency [31]. Based on this theory, the maximum frequency in the signal
x(2) is f;/2.

The Nyquist frequency must be reached in signal band-limited processing.
However, with the development of information technology, the bandwidth of the
signals has been so widely expanded that many new troubles arise when dealing
with these signals in data collection, data transmission and data storage.

In addition, a lot of unimportant and redundant information is contained in the
sampled data. It costs large amounts of time to store and transmit data, in addition to
perform an increasing time in signal processing.

3.2 Compressive Sensing

The theory of compressive sensing has been developed in the field of signal pro-
cessing. It brings a new inspiration to solve problems of big data compression,
incomplete data processing and rapid detection from small samples, which is
regarded as a breakthrough of the Shannon sampling theorem. Here we give a brief
introduction about the theory. For more detail, please refer to [13, 14].

Provided that a perceptual measurement matrix A = @@ satisfies the isometric
constraint conditions, u = ¢@x defines a representation of a sparse signal x as

y=Au 4)

where x is a N x 1 vector signal, @ is a M x N measurement matrix, M <N, and
each row of @ represents a sensor to measure x. ¢ is a N X N column orthonormal
basis matrix and the superscript H denotes a conjugate transposition. A = @¢ is
often termed the sensing matrix to measure the transformed data u = ¢x, y is a
M x 1 measurement vector denoting a compressive sensing of the original full data.

Because M <N, thus Eq. (4) is an under-determined problem, whose solution
can be approximately pursued as

min|[0]|, st y=Au= d¢"(¢px) (5)

Owing to the sparsity promotion strategy, if x is sparse in ¢, u and x can be
recovered from the small observations y.
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The theory employs a sparse space ¢ to represent the signal x and obtain a small
amount of observation data y. In this way, the signal sampling is converted into an
information sampling. Then by solving an optimization problem, the original signal
x can be recovered from compressed observed data y. With this theory, the sample
data no longer depends on the bandwidth of the signal, but on the information
structures and contents of the signal. Compressive sensing makes it possible to
solve inference problems with low sampling rates.

It also provides a new insight to condition monitoring of rotary machinery.
According to the compressive sensing theory, a signal can be represented by or
sufficiently approximated to a linear combination of predefined atoms. Then the
compression efficiency can be greatly improved and processing costs can be largely
reduced. Furthermore, for the condition monitoring of rotary machinery, fault
features extraction from small samples are as important as those from continuously
measured large samples. If we can detect the faults from only a few under-sampled
signals, i.e., overcome the limitations of the traditional Shannon sampling theorem,
then the requirements surrounding the data acquisition and post-processing can be
greatly reduced, in addition to the time costs of condition monitoring.

Generally, sparse representation, sampling schemes and solutions of underde-
termined equations are three key issues for compressive sensing technique.

3.3 Sparse Representation of a Signal

According to the compressive sensing theory, sparse representation of a signal is a
precondition to recover the original signal. In many methods for signal compres-
sion, the signal is often transformed into another domain first with orthogonal
projections. Then only samples at positions with large absolute values in the
transform domain are reserved to obtain a compressed signal. This is called sparsity
which means that a signal can be represented by a liner combination of a small
amount of elements. This signal representation theory was originally developed by
Mallat and Zhang with a complete dictionary sparse decomposition [32].

In general, a set of functions {¢,} can be found in Hilbert space L,(R) so that
signal y can be expressed as a liner combination of N basis {¢;}. So,

N
y=0x = in(Pi (6)
i=1

where x; is the coefficients of y in dictionary ® = (¢, ...@y). x and y are equiv-
alent representations of the same signal. The difference is that y is in the time
domain and x is in the dictionary @. We say that signal y is K-sparse, which means
that the x; coefficients in formula (6) has K-nonzero elements. In practice, x is
considered to be compressible if there are few large coefficients and many small
coefficients.
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Besides sparsity, the other key point of sparse representations is incoherence
which means that the basis must be obviously different [33]. The coherence
between two orthonormal matrixes ¢; and ¢; is defined as,

w( i, d;) = vnmaxi <ij<a|(d;, ;)] )

There are two main issues in sparse representation: how to build a redundant
dictionary and how to design a decomposition method. At present, the dictionaries
mainly include local cosine dictionary, over-complete wavelets, curvelets and
Gabor dictionary [32]. Furthermore, the decomposition methods mainly include
Matching Pursuit (MP) [34], Orthogonal Matching Pursuit (OMP) [35], Basis
pursuit (BP) [36] and FOCUSS [37].

3.4 Sampling Method

Sampling is the first step of conducting condition monitoring of rotating machinery.
Traditional sampling methods must obey the Nyquist sampling theorem to maintain
essential features of the signal so that the analysis results via Fourier transform,
wavelet transform and Hilbert transform make sense. This usually generates vast
amounts of monitoring data. The sampling frequency based on the compressive
sensing theory may be much lower while still maintaining the signal features well.

In compressive sensing theory, the measurement matrix is the key to sampling.
To ensure different sparse signals is not projected to the same M-dimensional
measurement matrix for the perfect reconstruction of sampled signal, the mea-
surement matrix must satisfy the principle of restricted isometry property (RIP) that
the measurement matrix @ is noncoherent with sparse representation basis ¢.

RIP can be described below. There is an isometric constant constraint ¢ € (0, 1),
that allows the following formula to be true for any K-sparse signal:

(1 —&)| P < (1+¢)|xll3 (8)

Determination of the sampling method is essential to designing a measurement
matrix @ that meets RIP. Gaussian random measurement matrix and Bernoulli
random measurement matrix are often employed in compressive sensing theory.
The former obeys the N (0, 1) normal distribution, and the latter meets the Bernoulli
distribution. It has been proved that the Gaussian random matrix can meet RIP with
great probability. Such an irregular sampling (random sampling) method is simple
to design, and usually performs perfectly in the reconstruction of under-sampled
data. Therefore, a Gaussian random matrix is employed to conduct compression
measurement in condition monitoring and fault diagnosis of rotating machinery.
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3.5 Optimization Solving Strategy

The process of compressive measurement can be described as:
y=&x=®p"p(s+n) = Au 9)
The sparse solution can be approximately pursued as:
minull, st y=Au= D¢ (¢px) (10)

However, M <N, thus Eq. (10) based on minimum /y-norm is an under-determined
problem within an uncertainty of solutions. Convex-optimum algorithm and greedy
algorithm are most common used methods to solve the above issue. Optimization
objective is replaced by /;-norm that can transform the problem into linear pro-
gramming and insure the uniqueness of the solution, which described as:

minul|, st y=Au= ®¢"(¢px) (11)

Basis Pursuit (BP) is a typical algorithm based on /;-norm optimization. A local
optimal solution is selected to approximate the original signal in each iteration
of Greedy algorithms, which has a lower computational complexity than
convex-optimum algorithm. Matching Pursuit (MP), Orthogonal Matching Pursuit
(OMP) and their improved algorithm are typically employed in the optimization
solving.

4 Proposed Strategies and Applications

4.1 Experiments

Experiments are carried out to validate the effectiveness of the proposed method.
The test rig and the faulty roller bearings are shown in Fig. 1, which is composed of
a motor, a coupling, a rotor and a shaft with two roller bearings. Here we do the
experiments with roller bearings with single fault in the outer race, inner race and
rolling element, respectively. The fault sizes are all width of 0.7 mm and depth of
0.25 mm. Sample frequency is 100 kHz at a shaft speed of 500, 900 and 1300 rpm,
respectively. Vibration sensors are located at positions near bearings to mitigate the
effects of signal attenuation. The bearing housing is considered to be a superior
location for bearing arrangement. Vibration signals are measured by an
accelerometer located at the top of the bearing house and the theoretical values of
the fault characteristic frequency are shown in Table 1. All data using in this paper
are processed through the normalization.
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Fig. 1 a Fault test rig of roller bearing b outer-race fault ¢ inner-race fault d rolling-element fault

Table 1 Theoretical values of the fault characteristic frequency

Running Fault type

speed (Ipm) | Outer-race fault (Hz) | Inner-race fault (Hz) Rolling-element fault (Hz)
500 33.20 56.09 39.33

900 59.76 100.97 70.8

1300 86.32 145.84 102.26

4.2 Reconstruction of Incomplete Vibration Signal

Continuous condition monitoring always leads to big data, which is a major
challenge for fault diagnosis. Inspired by the compressive sensing theory, recon-
struction from a limited samples provides a new idea for signal storage and
transmission. If the original vibration signals can be reconstructed from few sam-
ples, it enables the storage of a small amount of samples instead of the whole data
set, in addition to the reconstruction of the limited samples to obtain the raw
vibration signals when necessary. One of the key preconditions for the compressive
sensing theory is that the analyzed signal must be sparse or compressible.
Unfortunately, the vibration signals of rotary machinery are often insufficiently
sparse in the common transform domain, which presents an obstacle to the appli-
cation of compressive sensing in fault diagnosis. Here a compression and recon-
struction strategy based on compressive sensing is presented to show the potential
applications.
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Vibration signals measured from faulty bearings are always drowned out by
noise, which weakens the sparsity of the vibration signals. Thus, in this section a
sparsity-promoted approach based on segmentation threshold denoising is
developed.

As shown in Fig. 2, the original vibration signal is first divided into several
segments based on its peaks, which are the significant features in faulty vibration
signals. Then a threshold is set for denoising, through which the vibration signal
becomes sparser. Since the vibration signal becomes adequately sparse, the unit
matrix is selected as a sparse matrix, while the Gaussian random matrix is selected
as the measurement matrix to gain random observations in order to meet the
requirements of compressive sensing. Finally, the signal denoising and recovery are
obtained via implementation of a matching pursuit strategy.

A vibration signal of a roller bearing with an outer-race fault operated at
1300 rpm is shown in Fig. 3, which shows that the signal is not significantly sparse.
Thus, a sparsity-promoted method based on the segmentation threshold denoising is
used to increase the sparsity of the original signals as shown in Fig. 4. After
segmentation threshold denoising, the vibration signal becomes much sparser and

Original Reconstructed
vibration signal signals
l A
Divide into several Matching
segments pursuit
A
Denoising and Measurement | Gaussian
sparsity-promotion matrix ) random matrix
A
Sparse vibration signals » Sparse matrix [« unit matrix

Fig. 2 The flowchart of the proposed compression and reconstruction strategy
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Fig. 3 Original vibration signal of a roller bearing with an outer-race fault operating at 1300 rpm
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smoother as shown in Fig. 5. If the signal is sparse enough, the compressive
sensing theory can be applied to reconstruct the vibration signal. The
dimension-reduced signal with 1000 samples as presented in Fig. 6, is achieved
through random sampling. Through the application of a matching pursuit algorithm,
the original signal can be recovered as shown in Fig. 7, and the envelope spectrum
is shown in Fig. 8, through which the running status of roller bearing can be judged
according to the fault characteristic frequency.
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Fig. 5 Vibration signal after segmentation threshold denoising
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Fig. 6 Compressed sampling with 1000 random samples
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Fig. 8 Envelope spectrum of the recovered signal

4.3 Fault Classification of Rotating Machinery [25]

The compressive sensing theory has proved its capability in reconstruction,
de-noising and feature extraction of rotating machinery vibration signal.
Additionally, it can be applied to fault diagnosis and classification in the case of
partial reconstruction. Bearing signals are taken for example in this section,
introducing a rotating machine fault classification method based on dimension
reduction sampling and sparse representation.

A redundant dictionary should contain all possible types of signals that any test
signal can be described as the linear combination of the vectors in redundant
dictionary. For bearing signals, the redundant dictionary consists of the normal
signal, inner ring fault signal, outer ring fault signal and rolling elements fault
signal, a total of four signal types. E is defined as the redundant dictionary com-
posed of k categories of samples with the following configuration:

E = [E17E27"'7Ei>"',Ek]

(12)
= [V11,--~V1N17V21>--~,V2N2, <oy Vily -+ ViNg Vil - - ~7Vka] € RN
N=N +N+N3+ -+ +N; (13)
where E; = [vi1, Vi1, - - ., Vin,] € RM*Ni jndicates the number of samples N; of the ith

category fault.

After configuration of the redundant dictionary, the test signal sample x of ith
category can be described as the linear combination of the vectors in the redundant
dictionary,

x=EuecR" (14)

Thus, the bearing signal x is represented as the sparse vector u =
[0,...,0,u1,up,y - - -y Uin;, 0, .. ., 0, ]T € RY in the transform base E which consists of
over-complete training samples.
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Gaussian random measurement matrix R € R”*™(D < M) that contains i.i.d.
N (0, 1) entries processes the bearing signal sample x and redundant dictionary E by
random mapping dimension reduction, to provide compressive observations y = Rx

and sensing matrix E = RE.
y =Rx=REu = Eu € R” (15)

For each test sample x, its sparse solution o of the training set E can be obtained
through the SP algorithm. A new set of sparse vector is defined and u = >, d;(u),
setting zero value for all elements except those ones corresponding to the ith signal
category. Thus, the mapping feature of the test sample x in the ith category has the
following formula:

yi = Edi(u) (16)

The residual error between compressive observations y and feature value y; is
calculated:

min; r;(y) = Hy—Eé,-(u)Hz (17)

The category of the test sample can be determined by the minimum residual error.
The flow chart of this sparse representation classification framework based on
compressive sensing is shown in Fig. 9.
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Fig. 9 Flowchart of the sparse representation classification framework
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Table 2 Fault classification results at different rotating speeds

Category Rotating speed (1r/min)

500 900 1300
Inner race fault 0.996 0.964 0.984
Outer race fault 0.948 1 1
Roller element fault 0.880 0.998 0.976
Average classification accuracy rate 0.941 0.987 0.987

Each fault signal test group is 500 at three different speeds, concluding 500, 900
and 1300 rpm. Fault identification and classification accuracy of the proposed
method is presented in Table 2.

Traditional fault pattern recognition methods, such as BP neural network and
SVM methods, are usually based on the characteristic parameters of time and
frequency domains to achieve fault classification. In this section, a compressed
sensing sparse representation classification algorithm (SRC) is proposed. The
solution is a sparse vector by SP algorithm and residual error calculation of the
feature and observed values, determining the category of the test signal.
Comparison analysis is shown in Fig. 10. The SRC method demonstrates its
advantage of having a higher accuracy rate in rotating machinery fault classification
than traditional BP and SVM pattern recognition methods.

To investigate the effect of the length of original signals on the sparse classifi-
cation results, the average classification accuracy rate of the proposed SRC algo-
rithm is observed to be a gradually increased trend at different rotating speeds when
the length of each input signal is varied from 5000 to 50,000. When the signal
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Fig. 10 Classification results of SRC method in comparison with BP and SVM
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Fig. 12 Influence of variable measurement dimension D on average classification accuracy

length is more than 30,000, the average recognition rate by SRC can reach 99.67%,
and more details are shown in Fig. 11.

Sparse dimension reduction parameter D is directly related to the feature
extraction and preserving of original signals, thus it is necessary to discuss the
influence of this measurement dimension D on classification accuracy rate of the
proposed SRC. Figure 12 indicates that the average classification accuracy
increases as the D = 2/(j = 1,2,...,8), and when D >25 = 32, the classification
accuracy of the three kinds of bearing faults can reach 98.5%.
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4.4 Compressive Sensing of Bearing Fault
via Characteristic Harmonic Detection

As mentioned above, the vibration signal of a roller bearing is insufficiently sparse
in the Fourier domain to meet the requirement of compressive sensing. It is well
known that when a defect occurs in roller bearing, an impulse will be generated
when the bearing strikes another surface and periodic impulses will be generated,
termed fault characteristic frequency. The inadequate sparsity of a vibration signal
exerts a negative effect on a perfect signal reconstruction. If the gathered data is
incomplete or compressed due to some reasons, it should be recovered first before
using post-processing methods to identify the condition of roller bearing. This
makes it difficult to meet the efficiency requirement of real-time condition moni-
toring. Ideally, the fault detection would be performed with compressed samples
directly without complete recovery [26].

The sparsity of a signal is regarded as a priori information for most existing
reconstruction algorithms based on compressive sensing theory. However, in
practice, it is difficult to achieve a perfect sparse representation and obtain a specific
sparsity. Therefore, the sparsity of a signal must be estimated correctly, otherwise,
the sparsity of a signal will be an obstacle to the application of compressive sensing.

In fault diagnosis of roller bearing, the objective is to extract fault features rather
than data reconstruction. Thus, complete reconstruction of a signal is not necessary
in all cases. To our knowledge, the envelope signal of a roller bearing consists of a
variety of harmonic waves as sub-components, which are related to the fault fea-
tures. In addition, it is well known that the sparsity of a harmonic wave in the
Fourier domain has a value of 2. If we can detect these harmonic waves related to
the fault features in Fourier domain, a decision as to whether or not a fault exists in
the roller bearing can be made [26]. Based on this idea, a compressed fault detection
method for roller bearing is developed in this work and the fault detection flowchart
is presented in Fig. 13.

Here the Fourier basis is selected for sparse representation, and a Gaussian
random matrix is chosen as a measurement matrix to reduce the amount of bearing
vibration signal. Finally, the matching pursue algorithm, such as orthogonal
matching pursue (OMP), compressive sensing sampling matching pursue
(CoSaMP), is utilized to detect the harmonic wave with frequencies of interest.

The proposed detection strategy is implemented to extract the fault features with
a fault on the inner race at a shaft speed of 900 rpm. The waveform with impulses
in time domain is presented in Fig. 14. In generally, it is difficult to extract fault
characteristic frequencies from such a large number of samples. Therefore, the
proposed compressed fault detection method is applied to extract the fault features.
As mentioned above, the Gaussian random matrix is selected as a measurement
matrix while Fourier basis is chosen for sparse representation. Next, the detection
method based on CoSaMP is used to extract the fault characteristic frequency,
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Fig. 14 Time domain waveform of a roller bearing with a fault on the inner-race at 900 rpm

where the sparsity K is set to 2. With a measurement matrix, the number of samples
could be compressed to 800 as shown in Fig. 15. The frequency of the first detected
harmonic component is 100.6 Hz, as shown in Fig. 16, which is almost equal to the
theoretical value. Furthermore, the value twice to the fault characteristic frequency
can also be determined, as shown in Fig. 17. Therefore, it could be concluded that a
fault existed on the inner race. Different dimension of 400 is utilized to fully
validated the effective of the proposed method. From the results in Figs. 18, 19 and
20, a conclusion can be drawn that the method proposed in this work can also detect
the faults with 400 observations.
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5 Conclusions

To solve the problems of big data and incomplete small samples in condition
monitoring of rotary machinery, this paper introduced a newly developed com-
pressive sensing theory to the field of rotary machinery. A threshold denoising
method is used to promote the sparsity of roller bearing and a perfect reconstruction
is achieved, which provides a new insight for signal storage and transmission.
Furthermore, a fault classification based on compressive sensing is developed in
this work without designing a classifier. Compared to other methods of classifi-
cation, the success ratio is much higher. In addition, a compressed fault detection
strategy is proposed to directly detect the fault features from limited samples, which
can increase the efficiency of fault diagnosis. Reconstruction and detection may
proceed simultaneously without complete recovery and significantly improving
detection efficiency is validated by simulations and experiments. The strategy of
compressed detection provides a new insight to condition monitoring of rotary
machinery, making it possible to largely reduce the data sets while preserving
useful information for monitoring. However, there are still lots of un-solved
problems still remain for future investigations. Improvements in elimination of
more redundant information and preservation of more useful samples will be the
focus of our future work regarding compression strategy.
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