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Abstract This chapter focuses on the application of stochastic resonance (SR) in
mechanical fault signal detection. SR is a nonlinear effect that is now widely used in
weak signal detection under heavy noise circumstances. In order to extract char-
acteristic fault signal of the dynamic mechanical components, SR normalized scale
transform is presented and a circuit module is designed based on parameter-tuning
bistable SR. Weak signal detection based on stochastic resonance (SR) can hardly
succeed when noise intensity exceeds the optimal value of SR. Therefore, a signal
detection model based on combination effect of colored noise SR and parallel
bistable SR array, which is called multi-scale bistable stochastic resonance array,
has been constructed. Based on the enhancement effect of the constructed model
and the normalized scale transformation, weak signal detection method has been
proposed. The effectiveness of these methods are confirmed and replicated by
numerical simulations. Applications of bearing fault diagnosis show the enhanced
detecting effects of the proposed methods.

1 Introduction

Weak signal detection under heavy background noise is one of the focuses in
various signal-processing fields. It is commonly concerned by scientists and engi-
neers to detect or enhance weak target signal more expeditiously and precisely in
noisy environment with certain restrictions. In the real-world systems, because
characteristic signals of mechanical component early fault contain a little energy
and are usually annoyed by heavy noise, it is a great challenge to reveal the
characteristic signal. Effective characteristic signal detection approach is significant
to the fault diagnosis of mechanical component, especially when the fault is in its
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early stage. Prognosis of critical mechanical component mandates detecting the
defect signatures as early as possible, so that the corresponding maintenance can be
scheduled and the possible catastrophic accident or machine breakdown can be
avoided. Consequently, detection of characteristic signal has become one of the key
technologies of early fault diagnosis for mechanical component.

A traditional way of weak signal detection generally focuses on suppressing the
noise to improve the output signal-to-noise ratio (SNR). Compared with conven-
tional linear methods, the methods based on stochastic resonance (SR) are
promising in the conditions of short data records and heavy noise. SR is a nonlinear
effect that has been widely used in weak signal detection. Since proposed by Benzi
et al. [1], stochastic resonance has been developing rapidly in signal processing,
detection and estimation [2–9], especially in low SNR cases. It is essentially a
statistical phenomenon resulting from an effect of noise on information transfer and
signal processing that is observed in both man-made and naturally existing non-
linear systems. The counterintuitive SR phenomenon is caused by cooperation of
signal (deterministic force) and noise (stochastic force) in a nonlinear system. In a
certain nonlinear system, noise plays a constructive role, and energy flows from
noise to signal. When noise or system parameters are tuned properly, the output
SNR will reach a maximum.

However, the application of SR to practical problems has been restricted by the
fact that the bistable system is only sensitive to low frequency and weak periodic
signals. This can be explained in a formal way by adiabatic approximation and
linear response theory [2]. In order to apply SR to high frequency signal detection,
several system parameter tuning or noise intensity tuning methods have been
proposed to make them more adaptive, such as normalized scale transform [10, 11],
re-scaling frequency SR [12], frequency-shifted and re-scaling SR [13], adaptive
step-changed [14], etc. In order to apply SR methods to characteristic vibration
signal detection, two methods are discussed in this chapter: (1) normalized scale
transform, a complete computation method for sampled vibration signal;
(2) parameter-tuning SR circuit module for analog application. Basic theory of the
two methods is parameter tuning SR. Simulations are made to validate the
enhancing effect of the two methods.

The equivalence between noise tuning SR and parameter tuning SR in a typical
bistable system with an additive white noise has been addressed in reference [6].
Only when the input noise intensity reaches the system resonance region, the
system response is capable of following the input signal so that the output SNR is
enhanced to conform to the nonlinear mechanism [5, 6]. In practice, tuning noise
intensity is not always feasible. The intensities of signal and noise have been fixed
for the collected raw signal in a practical engineering system. Using noise tuning,
parameter tuning or array SR alone may not be a suitable option when the noise
intensity exceeds the SR resonance region, which is often the case for digital signal
processing and weak signal detection, such as the vibration signals collected from a
gearbox for fault diagnosis and health state assessment. Besides tuning noise
intensity and parameter, SR based signal processing could be improved for a
better performance. The first approach is the cascaded bistable system [15],

348 X.F. Zhang et al.



which connects two or more bistable systems in series. The second one is the
coupled or uncoupled parallel bistable array [16–19]. The third one is to make use
of the characteristics of colour noise [20–22].

The SR effect can be driven not only by white noise but also by the band-limited
noise alone, which indicates that it is possible to realize the SR by tuning the band
limited noise. In addition, the array SR theory indicates that an array of bistable
dynamical subsystems constructs a meaningful collective system for further
improvement of output SNR [16–19]. In order to process the noisy signal that is
beyond the SR resonance region, a summing SR array model called multi-scale
bistable array (MSBA) is constructed, which consists of several bistable units. This
parallel bistable array model also combines normalized scale transform with
inherent SR effect driven by colour noise. At first, the processed signal is
decomposed into some different scale signals by wavelet transform. Each unit is
subject to different scale noise, which plays the role of inner noise of the array. The
scale signal containing the target signal is processed as the noisy input signal of the
array. By summing the output signal from each unit, we can obtain a resultant
signal of the entire array. The signal detection method based on the MSBA can
obtain a better output in high frequency signal detection under heavy noise. This
method is verified and confirmed by numerical simulation and a practical case for
mechanical fault diagnosis.

This chapter is organized as follows. In Sect. 2, bistable SR model is presented.
In Sect. 3, normalized scale transform are introduced and validated by simulation
and experiment. In Sect. 4, SR circuit module based on parameter tuning is
designed and validated by simulated and experimental signal. In Sect. 5, the MSBA
model is constructed and the SR effect of the model is analyzed. The signal
detection approach based on MSBA is proposed and numerical simulations are
carried out, which is followed by experiment on enhanced detection of rolling
element bearing. Finally, the conclusions are outlined in Sect. 6.

2 Bistable Stochastic Resonance Model

The study of stochastic resonance in signal processing has received considerable
attention over the last decades. In the context, stochastic resonance is commonly
described as an approach to increase the SNR at the output through the increase of
the special noise level at input signal. The essence of the physical mechanism
underlying classical SR has been described in [1, 5, 9].

Considering the motion in a bistable double-well potential of a lightly damped
particle subjected to stochastic excitation and a harmonic excitation (i.e., a signal)
with low frequency x0. The signal is assumed to have small enough amplitude that,
by itself (i.e., in the absence of the stochastic excitation), it is unable to move the
particle from one well to another. We denote the characteristic rate, that is, the
escape rate from a well under the combined effects of the periodic excitation and
the noise, by a = 2pntot/Ttot, where ntot is the total number of exits from one well
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during time Ttot. We consider the behavior of the system as we increase the noise
while the signal amplitude and frequency are unchanged. For zero noise, a = 0, as
noted earlier. For very small noise, a < x0. As the noise increases, the ordinate of
the spectral density of the output noise at the frequency x0, denoted by Фn(x0), and
the characteristic rate a increases. Experimental and analytical studies show that,
until a � x0, a cooperative effect (i.e., a synchronization-like phenomenon) occurs
wherein the signal output power Фs(x0) increases as the noise intensity increases.
Remarkably, the increase of Фs(x0) with noise is faster than that of Фn(x0). This
results in an enhancement of the SNR. The synchronization-like phenomenon plays
a key role in the mechanism as described in [23].

At present, the most common studied SR system is bistable system, which can
be described by the following Langevin equation

_x ¼ ax� bx3 þA sinðx0tþu0ÞþCðtÞ ð1Þ

where C(t) is noise term and <C(t), C(0)> = 2Dd(t), Asin(x0t + u0) is a periodic
driving signal. Generally, it is also written as the form of Duffing equation

€x ¼ �b _xþ ax� bx3 þA sinðx0tþ/0ÞþCðtÞ ð2Þ

where b is the damping coefficient.

3 Normalized Scale Transform

3.1 Basic Theory of Normalized Scale Transform

Equation (1) has two stable solutions xs ¼ � ffiffiffiffiffiffiffiffi
a=b

p ¼ �c (stable points) and a
unstable solution xu ¼ 0 (unstable point) when A ¼ D ¼ 0, here potential of Eq. (1)
is given by

VðxÞ ¼ � 1
2
ax2 þ 1

4
bx4 ð3Þ

The height of potential is

DV ¼ Vð0Þ � VðcÞ ¼ a2

4b
ð4Þ

When adding the modulation signal, potential function is

Vðx; tÞ ¼ � 1
2
ax2 þ 1

4
bx4 � Ax cosx0t ð5Þ
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For a stationary potential, and for D � DV , the probability that a switching
event will occur in unit time, i.e. the switching rate, is given by the Kramers
formula [2]

r0 ¼ ð2pÞ�1 V 00ð0ÞjV 00ðcÞ½ �1=2expð�DV=DÞ ð6Þ

where V 00ðxÞ � d2V=dx2. We now include a periodic modulation term A sinx0t on
the right-hand-side of (1). This leads to a modulation of the potential (5) with time:
an additional term �Ax cosx0t is now present on the right-hand-side of (5). In this
case, the Kramers rate (6) becomes time-dependent:

rðtÞ � rð0Þ expð�Ax sinx0t=DÞ ð7Þ

which is accurate only for A � DV and x0 � V 00ð�cÞf g1=2. The latter condition is
referred to as the adiabatic approximation. It ensures that the probability density
corresponding to the time-modulated potential is approximately stationary (the
modulation is slow enough that the instantaneous probability density can ‘adia-
batically’ relax to a succession of quasi-stationary states). The slow modulation
means the signal to detect is confined to a rather low frequency range and small
amplitude, and theoretical analysis and deduction are also based on this hypothesis.
As we all know, the characteristic frequency reflecting mechanical system state
exceeds the range of limit, so how to detect the high frequency signal is of great
importance in weak characteristic signal detection of mechanical system. Here we
proposed a kind of transform to solve the problem.

Considering the bistable system modeled by Eq. (1), where A is amplitude of the
input signal, x 	 1 is its frequency, CðtÞ is Gaussian white noise with the corre-
lation CðtÞh i ¼ 0; CðtÞ;Cð0Þh i ¼ 2DdðtÞ, and D is the noise intensity, when a and
b are positive real numbers, take the variable substitutions

z ¼ x
ffiffiffiffiffiffiffiffi
b=a

p
; s ¼ at ð8Þ

Substituting Eq. (8) into Eq. (1), we can obtain

a

ffiffiffi
a
b

r
dz
dt

¼ a

ffiffiffi
a
b

r
z� a

ffiffiffi
a
b

r
z3 þA cos

x0

a
sþ/0

� �
þC

s
a

� �
ð9Þ

where the noise Cðs=aÞ satisfies Cðs=aÞCð0Þh i ¼ 2DadðsÞ. Therefore

C
s
a

� �
¼

ffiffiffiffiffiffiffiffiffi
2Da

p
nðsÞ ð10Þ

where nðsÞh i ¼ 0, nðsÞ; nð0Þh i ¼ dðsÞ.
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Substituting Eq. (10) into Eq. (9), then

a

ffiffiffi
a
b

r
dz
dt

¼ a

ffiffiffi
a
b

r
z� a

ffiffiffi
a
b

r
z3 þA cos

x0

a
sþ/0

� �
þ

ffiffiffiffiffiffiffiffiffi
2Da

p
nðsÞ ð11Þ

Equation (11) can be simplified into

dz
dt

¼ z� z3 þ
ffiffiffiffiffi
b
a3

r
A cos

x0

a
sþ/0

� �
þ

ffiffiffiffiffiffiffiffiffi
2Db
a2

r
nðsÞ ð12Þ

Equation (12) is a normalized form and equals to Eq. (1). The frequency of the
signal after the transform is 1/a times of which before transform. Hence, through the
chosen of larger parameter a, high frequency signal can be normalized to low
frequency to satisfy the request of the theory of SR.

During the numerical simulation, the variance r2 is used to describe the statis-
tical property of the white noise. As the noise intensity D is influenced by sample
step h, the actual value D ¼ r2h=2.

Considering the RMS of the noise is r0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2D=h

p
before transform, after the

transform, the intensity of the noise changed to 2Db=a2. And because the sample
frequency descends, the sample step becomes a times of the original sample
step. Therefore, the RMS of the noise after transform is r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Db= a2 � ahð Þp
. The

ratio of the noise RMS after the transform to which before the transform is

r=r0 ¼
ffiffiffiffiffiffiffiffiffiffi
b=a3

p
ð13Þ

It is easy to be seen that, after the transform, the signal and noise are amplifiedffiffiffiffiffiffiffiffiffiffi
b=a3

p
times.

3.2 Simulation Result of Normalized Scale Transform

In the following, the scale transformwill be validated through a numerical simulation.
We passed the mixed signal through the model of bistable system with parameters
a ¼ b ¼ 1, A ¼ 0:3, f ¼ 0:01 Hz, r ¼ 1:2, and analyze the spectrum of the output
signal. Figure 1a, b shows themixed signal and its spectrum,while Fig. 1c, d gives the
output of the bistable system and the spectrum of the output signal. From Fig. 1d, it
can be seen that although the input SNR ¼ 20 logðA=rÞ ¼ �12:04 dB, there is a clear
spectrum line at f = 0.01 Hz, and the noise fades obviously.

If the signal frequency is changed to f = 1 kHz, according to the transform
principle, we can take the parameters a = b = 105. Conditioned the mixed signal
through the SR model, the result can be shown in Fig. 2. The detection result based
on the normalized scale transform is shown in Fig. 2. Figure 2a, c are the
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waveforms of input and output signals. Figure 2b, d are their FFT spectra. The
component of 1 kHz is revealed clearly in Fig. 2d.

The signal and spectrum in Fig. 2 is consistent with Fig. 1, and the only dif-
ference is time domains and frequency coordinates of the spectrum. The noise
components are greatly suppressed, and the detecting signal is standing out, which
shows that the transform method is suitable to the detection of high frequency
signal.

3.3 Application of Normalized Scale Transform

In cases where it is desired to process sampled discrete vibration signals, we
realized that it would be possible to enhance the bearing characteristic components
using SR method. As mentioned above, the SR normalized scale transform is

(a)

(b)

(c)

(d)

Fig. 1 Time-domain and its
FFT of the input and output
when f ¼ 0:01 Hz. a and b:
the input; c and d: the output
by one-time
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suitable for big parameter signal processing. In this section, SR normalized scale
transform is applied in bearing fault diagnosis. The schematic diagram of bearing
fault enhanced detection method is shown in Fig. 3. After sampling, the analog
vibration signal is converted to input data as depicted in Fig. 3. Then, band-passed
vibration signal is demodulated based on Hilbert transformation, and the output is
bearing vibration envelope signal. The band-pass filter parameters are set to cover
bearing natural resonance frequencies. Finally, envelope signal enhanced by SR
normalized scale transform is transformed to frequency domain through FFT
algorism and fault features are extracted. The procedures of this method from input
vibration data to fault features are carried out by software, in other words, achieved
by computation.

This method based on SR normalized scale transform is applied to vibration
signal from machinery fault simulation test rig shown in Fig. 4. Tests were carried
out on the test rig with normal and planted-in inner fault bearings. The rig is driven
by a variable-speed electric motor. For these tests, the shaft speed is 628 r/min with
two rotor disks on the shaft. The Bearing1 in Fig. 6 is alternated with normal

(a)

(b)

(c)

(d)

Fig. 2 Time-domain and its
FFT of the input and output
when f ¼ 1 kHz. a and b: the
input; c and d: the output by
one-time
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bearing, bearing with 0.2 mm planted inner race fault and bearing with 0.5 mm
planted inner race fault, which are shown in Fig. 5. Signals were measured by an
accelerometer on the casing immediately above it. Details of the geometry of the
bearings are shown in Table 1. The expected inner race fault frequency (Ball pass
frequency, inner race, BPFI) is 70.28 Hz. The raw vibration data was collected with
the sampling rate 50 kHz. And the collected data length is 1 s. Figure 6 displays the
recorded raw time signals from Accelerometer1 denoted in Fig. 6: (1) normal
bearing, (2) bearing with 0.2 mm inner race fault and (3) bearing with 0.5 mm inner
race fault.

From the raw signal we can see that there are more impacts in the vibration
signals of 0.2 and 0.5 mm inner race fault than the signal of normal bearing.

Fig. 3 Schematic diagram of enhanced bearing fault detection method using SR normalized scale
transform

Fig. 4 Machinery fault simulation test rig
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And the signal of 0.2 mm inner race fault contains obvious periodic impacts at
about shaft speed, as shown in Fig. 6b. This should be caused by imbalance of the
rotor system. However, we could not make sure whether there is local damage on
any of the bearing component or not.

The signals were demodulated on frequency range from 8 to 12 kHz, which
covers one of the bearing nature resonance bands. And Fig. 7 shows the envelope
spectra of the three cases, which is up to 500 Hz—the band dominated by shaft
speed, bearing fault characteristic component and their harmonics. The BPFI and its
harmonics are indicated by harmonic cursors in the envelope spectra. It can be seen
in Fig. 7a that there are only shaft speed component and its second harmonic. In the
envelope spectrum of 0.2 mm inner race fault shown in Fig. 7b, discrete spectrum
components including shaft speed, BPFI and their harmonics can be seen, but the
BPFI and the second harmonic is not clear. However, the BPFI and its harmonics
are obvious in Fig. 7c, since 0.5 mm inner race fault is rather severe. We use local
signal to noise ratio (LSNR) as the indicator of the BPFI component, which is
defined as

R ¼ 10lg lim
Df!0

Zf þDf

f�Df

ðSðf Þ=SNðf ÞÞdf

2
64

3
75

8><
>:

9>=
>; ð14Þ

Fig. 5 Inner races of normal, with 0.2 mm planted fault and with 0.5 mm planted fault bearing
(from left to right)

Table 1 Test bearing
parameters

Parameter Value

Roller diameter d/mm 7.50

Pitch diameter D/mm 34.50

Roller number n 11

Contact angle //(°)
Shaft speed m/(r ∙ min–1)

0
628
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where S(f) denotes the power density at signal frequency f, SN(f) is the noise mean
power density around f. The LSNR indicators of envelope spectra of the three cases
are 8.88, 8.58 and 14.01 dB respectively. We could not distinguish the 0.2 mm
inner race fault bearing from normal bearing only by the envelope spectrum.

Figure 8 shows the corresponding spectra of the three signals after the vibration
data are processed using the method shown in Fig. 3. The SR system parameters
were tuned according to a target signal frequency of 200 Hz. It is found that the
inner race fault component of 0.2 mm inner race fault was enhanced greatly, but the
corresponding components of the normal bearing did not show up. The LSNR
indicators of normal bearing and 0.2 mm inner fault are 8.58 and 12.22 dB.
However, we could not see obvious change at the inner race fault component of the
0.5 mm inner fault case, and the LSNR indicator increases slightly to 14.16 dB.
The shaft speed and its second harmonic were enhanced simultaneously in the three
cases.

Although effective in the application of sampled signals processing, due to the
fact that it is realized by software calculation, the normalized scale transform has

(a) Normal bearing

(b) Bearing with 0.2mm inner race fault

(c) Bearing with 0.5mm inner race fault

Fig. 6 Raw vibration signals
of the experiment
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some drawbacks: (1) The sampling frequency should be much higher than the
Nyquist frequency to make sure that the target signal is in the low area of whole
frequency range; (2) A lot of computation is needed to obtain the solution of the
differential equation.

4 SR Circuit Module

4.1 Circuit Module

Because software realization of SR requires intensive computation and high sam-
pling frequency, it would be a practical way to actualize SR by using hardware

(a) Normal bearing

(b) Bearing with 0.2mm inner race fault

(c) Bearing with 0.5mm inner race fault

Fig. 7 Envelope spectra of
the test bearings
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devices. To save the computational resource and the SR processing time, a circuit
module is designed in this section.

The integral form of Eq. (1) is

xðtÞ ¼
Z

ax� bx3 þ sðtÞþCðtÞ� �
dt ð15Þ

where s(t) is the signal to be detected. Equation (15) could be expressed as a
nonlinear system with a feedback loop, which involves amplifier, integrator, mul-
tiplicator etc. The feedback loop could be realized by amplifier, resistance and
capacitances. Figure 9 is the frame and concrete SR circuit module.

According to the circuit principles, the mathematical model (nonlinear stochastic
integral equation) of the circuit module can be written as

(a) Normal bearing

(b) Bearing with 0.2mm inner race fault

(c) Bearing with 0.5mm inner race fault

Fig. 8 Enhanced spectra of
SR normalized scale
transform
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x ¼
Z

K4½sðtÞþCðtÞ�
R1C

� K2K3x3

R3C
þ K1x

R2C

� �
dt ð16Þ

The differential form of Eq. (15) is

_x ¼ K4½sðtÞþCðtÞ�
R1C

� K2K3x3

R3C
þ K1x

R2C
ð17Þ

By comparing Eq. (17) and Eq. (1), the circuit system parameters can be written
as a = K1/R2C, b = K2K3/R3C, A = K4/R1C, C’(t) = AC(t). The two stable status of
the bistable circuit model, i.e., the two penitential wells’ locations are

x1;2 ¼ �
ffiffiffi
a
b

r
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1R3

K2K3R2

r
ð18Þ

The system potential is

VðxÞ ¼ � a
2
x2 þ b

2
x4 ¼ � 1

2
K1

R2C

	 

x2 þ 1

4
K2K3

R3C

	 

x4 ð19Þ

So, the potential height is

DV ¼ a4

4b
¼ 1

4
K2
1R3

R2
2CK2K3

ð20Þ

Equation (17) is consistent with Eq. (1) formally and intrinsically. According to
bistable stochastic resonance system theory, parameter a correlates with signal
frequency, and b influences DV. The circuit module is physically coincident with
the bistable model in theory.

(a) Circuit diagram frame (b) Circuit photo 

Fig. 9 Design of the SR circuit module
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The parameters of the circuit R1, R2 and R3 are 10 kX, C = 150 pF, K3 = 0.01.
Given the other parameters, adjusting K1 could tune a (0–666,667) to adapt to
signal frequency, and adjusting K2 could tune b (0–6667) to adapt to different noise
intensity. Via adjusting resistance coefficients K1, K2 or both, potential height and
stable status could also be tuned. Parameters tuning can be realized by adjusting the
two resistances of the circuit module designed in this section. The difference is that
the input signal amplitude should be retuned based on parameters of the SR module.
The weak target signal will be revealed, when signal, noise and nonlinear system
are matched. Since both the input and output of circuit module are both analog
signals, sampling frequency of the output signal is just demanded to catch the signal
to be revealed. In other words, the high sampling frequency could be avoided. This
will be validated by the simulation test in the next section.

4.2 Simulated Experiment of Circuit Module

The input signal is a sinusoidal signal mixed with a white noise generated by
generators. The signal frequency is 10 kHz and the amplitude is 0.04 mV. The
white noise intensity RMS is 0.6 mV. Then the input signal SNR is −23.52 dB.
The input signal waveform and its spectrum are shown in Fig. 10a, b.

Adjusting circuit module coefficients K1 to 2/63 and K2 to 50/63, that is to say, the
system parameters are a = 21,164, b = 5291 and the stable states are x1,2 = ±2 V.
The highest frequency, which could be enhanced theoretically, is calculated to
2116.4 Hz. The output signal waveform and its spectrum are shown in Fig. 10c, d.
The 10 kHz signal is revealed clear in the spectrum. The signal sample frequency is
100 kHz, and the data length is 2000.

4.3 Application of Circuit Module

If SR is realized by circuit module, it would be possible to replace the SR nor-
malized scale transform with circuit module and then change the input data to
analog signal. As mentioned in Sect. 3, the sampling frequency, which could catch
the signal interested under Nyquist sampling law, would be adequate for SR circuit
module output signal. Moreover, there is no need to sample the signal at the
beginning, if the signal processing procedures before SR circuit module are
implemented by hardware. The bearing fault enhanced detection method using SR
circuit module is shown schematically in Fig. 11. The parameters of SR circuit
module are tuned according to the signal interested. The analog vibration signal
from bearing is filtered by a band-pass filter directly. Then, the band-passed
vibration signal is demodulated by envelope detection. The band-pass filter
parameters are set to cover the bearing nature resonance frequency band. Envelope
signal is enhanced by SR circuit module and then transformed to frequency domain
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through FFT algorithm after signal sampling at a much lower rate than software
method. The signal processing procedures before sampling are all realized by
hardware.

This method based on SR circuit module is applied to vibration signal shown in
Fig. 6. Then, the analog vibration signals of the three cases were processed by
hardware with SR circuit module according to the diagram shown in Fig. 11.
Adjusting circuit module coefficients K1 to 2/63 and K2 to 50/63, which means that
the system parameters are a = 21,164, b = 5291. The output signal of one second
was collected at sampling rate 1 kHz. The FFT spectra of the three cases are shown

Fig. 10 Detection of 10 kHz
signal by SR circuit module
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in Fig. 12. Similar results to Fig. 10 were obtained with the LSNR indicators of
8.11, 12.23 and 13.67 dB. The shaft speed and its second harmonic were also
enhanced simultaneously in the three cases.

5 Multi-scale Bistable Array SR

5.1 Stochastic Resonance Effect in MSBA

The SR effect is still shown in a nonlinear bistable system when the white noise is
changed to band-limited noise, which indicates that it is possible to realize the SR
by tuning the band-limited noise [5, 24]. To improve the signal processing based on
SR when the original noise intensity is beyond the optimal level, the input signal is
decomposed into multi-scale signals by orthogonal wavelet transform. Stationary
white noise with zero mean can be decomposed into independent band-limited
noises by orthogonal wavelet transform. The reconstructed detail at each scale and
the approximation signal at the last scale are independent of each other owing to the
orthogonality of wavelet base.

The SR effect of the bistable model of Eq. (1) is investigated using a sine signal
plus a single scale noise as the input signal. By adjusting the noise intensity at each
scale, Fig. 13 illustrates the SR enhancement effect of each scale noise, which
indicates that SR can also be produced by each scale noise alone. The signal
amplitude A0 = 0.3, frequency f0 = 0.01 Hz, system parameters a = b = 1, sam-
pling frequency fs = 5 Hz, and data length N = 4000. In the context, aj and dj
denote reconstructed approximation signals and detail signals, respectively for
convenience. It can be seen that the scale noise a3 has the effect similar to the white
noise, and the other scale noises still show clear SR effect when taking higher noise
intensity. In a bistable system, the output SNR curves produced by different scale
noises show dissimilar SR mechanisms. Now, an interesting question arises,

Fig. 11 Schematic diagram of enhanced bearing fault detection method using SR circuit module
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namely, can we further improve the output SNR under large noise intensity? The
answer is positive and lies in the different SR effect of each scale noise.

By combining uncoupled parallel array of dynamical subsystems with colored
noise SR effect, an MSBA consisting of bistable units formulated as Eq. (1) is
constructed. Figure 14 illustrates the configuration of the MSBA. The input signal
is decomposed into different scale signals by wavelet transform. The driving signal
of the MSBA, which is in the low frequency region, is supposed to be contained in
the approximate signal aJ. The approximate signal aJ and each scale noise dj
reconstruct the new input signal of each bistable element. Then, the number of array
elements is equal to the scale number J. Being uncoupled between any two ele-
ments, the outputs of all units are averaged together to produce the entire array
output y(t). Similar to uncoupled parallel SR array, each element is subjected to an
independent array noise dj and the same noisy input signal aJ. However, the inner

(a) Normal bearing

(b) Bearing with 0.2mm inner race fault

(c) Bearing with 0.5mm inner race fault

Fig. 12 Enhanced spectra of
SR circuit module
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array noise intensity and characteristics of the MSBA are different from those of the
uncoupled parallel array. The noise intensity of input signal is reduced after
decomposition. The noise at different scale has a different contribution to the SR
effect of the single bistable element in the array.

Numerical simulation is performed according to the MSBA system given in
Fig. 14. Each bistable element in the MSBA is formulated as Eq. (1). The SR effect
of the MSBA is evaluated with tuning the input noise intensity D and the analyzed
scale number J. The other system parameters are chosen as a = b = 1, A0 = 0.3,
f0 = 0.01 Hz and u = 0. The sampling frequency is set to be fs = 500f0 = 5 Hz, and
the data length of the input signal is set to be 4000.

Figure 15 shows the SR effect of the MSBA with tuning noise intensity D and
the analyzed scale number J. The array output SNR curves, from bottom up,
correspond to J = 1, 2, 3, 4, 5, and 6, respectively. The other parameters are chosen
as a = b = 1, A0 = 0.3, f0 = 0.01 Hz and u = 0. The results indicate that the tuning
noise intensity D of the input signal produces an obvious SR effect on the MSBA.

Fig. 13 Output SNR curves
of SR produced by individual
scale noises alone

Fig. 14 MSBA model of
J elements
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When the value of D increases, the array output SNR first increases and then
decreases after reaching a maximum. It can be found that the output SNR resonance
region is broadened with the increase of the analyzed scale number J, and also the
maximum point is moved to a larger noise intensity D with almost the same value.
When the noise intensity D becomes larger, the SNR curves of J > 1 will go up
compared with the curve of J = 1. This means that the output signal of the MSBA
has been enhanced further than that of the single bistable system at a larger input
noise intensity D. Thus, the model of MSBA has admirable capability in signal
processing based on SR under large noise.

The noise intensity curves of the MSBA output signal versus input noise
intensity D and analyzed scale number J are shown in Fig. 16. The noise intensity
curves, from top down, correspond to J = 1, 2, 3, 4, 5, and 6, respectively. The
other simulation parameters are the same as in Fig. 15. The output signal is filtered
by a high pass filter, which is cut off at 0.1 Hz, to eliminate the driving frequency
component. It can be seen that the output noise intensity is reduced gradually when
the analyzed scale number J increases for a given input noise intensity. This
indicates that the MSBA can achieve a better signal quality than that obtained by
the conventional single SR unit.

Figure 17 compares the signal detection result of the conventional single SR unit
with that of the MSBA at fixed noise intensity. The analyzed scale is J = 6 and the
other parameters are the same as in Fig. 15. The target signal is submerged in the
heavy noise (D = 2.3, A0 = 0.3) as seen in the input signal wave in Fig. 17a. The
dashed line and right y-axis in (a), (b) and (c) show the input target signal.

Comparing the output of the conventional single SR unit in Fig. 17b with that of
MSBA in Fig. 17c, we can find that the MSBA can obtain smoother output
waveform and lower noise. Sub-figures (d), (e) and (f) are the spectrums of
sub-figures (a), (b) and (c), respectively. The above study shows that the proposed
MSBA model has the capability of detecting signal under heavy noise background
and can obtain the output signal with lower noise intensity correspondingly.

Fig. 15 Output SNR of the
MSBA versus tuning noise
intensity D and analyzed scale
number J
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Fig. 16 Noise intensity
curves of the MSBA output
signal versus input noise
intensity and analyzed scale
number

Fig. 17 Comparison of
signal detection between
conventional model and
MSBA model
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5.2 Signal Detection and Numerical Simulation

Based on the MSBA model and normalized scale transform, we present a novel
weak signal detection method. The framework of the method is shown in Fig. 18.
The first part is signal decomposition based on wavelet transform. aJ often contains
low frequency interference which will be also enhanced by SR in practical appli-
cation. The selection principle of the decomposition level J is that the dJ should
cover the frequency of the target signal. Then, scale dJ is processed as the input
signal of the MSBA model. The other scales of high frequency noises, as inner
noises of the array, are inputted to the bistable units of MSBA, respectively. The
second part is tuning MSBA parameters (a, b, k) using normalized scale transform
for high frequency target signal detection, where k is the amplitude coefficient of the
input signal. Finally, output signals of the units after parameter tuning are summed
up and divided by the array size to obtain the resultant signal y(t).

High frequency signal detection based on SR can be carried out by normalized
scale transform. The SR effect of MSBA has been validated by simulation in
Sect. 5.1. However, the whole enhancing effect of the combination of normalized
scale transform and MSBA on weak signal still demands further verification.

Normalized scale transform consists of two parts. One is system parameter
tuning for high frequency signal processing, the other is input signal amplitude
tuning for output optimization. Firstly, the effect of normalized scale transform on
MSBA for high frequency signal detection is illustrated by simulation. The MSBA
output SNR curves of different frequency signals are depicted in Fig. 19. The tuft of
six SNR curves (solid line) is corresponding to target signal frequencies f0 = 0.01,
0.1, 1, 10, 100 and 1000 Hz, respectively. The sampling frequency is set to be
fs = 500 f0. a = b = f0/0.01, other parameters are set as the same as in Fig. 15. The
effect of normalized scale transform on a single bistable unit is also shown in
Fig. 19 for comparison. The tuft of six SNR curves (dashed line) is corresponding
to the same target signal frequency as the MSBA model, where the parameters of
the single unit are the same as the parameters of MSBA. By normalized scale
transform, the target signal of different frequencies can be enhanced by SR effect in
the MSBA model and the single bistable model.

Fig. 18 Scheme of weak signal detection based on MSBA and normalized scale transform
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Then, the effects of input signal amplitude tuning on conventional SR and
MSBA are illustrated by simulation. The output SNR curves of conventional SR
model (dashed line) and MSBA (solid line) after amplitude tuning are plotted in
Fig. 20. The signal and system parameters used in the simulation are set to be the
same as those in Fig. 19. The six curves in each tuft correspond to the target signal
frequencies f0 = 0.01, 0.1, 1, 10, 100 and 1000 Hz, respectively. Compared with
the SNR curves in Fig. 19, the SNR curves after amplitude tuning are above the
curves before amplitude tuning. Especially, the SNR is promoted greatly in the low
noise intensity region.

A simulated 1 kHz target signal submerged in heavy noise (D = 2, A0 = 0.3)
was processed by the proposed method and the conventional SR method. The
results are shown in Fig. 21. The analyzed scale is J = 6 and the other parameters
are the same as in Fig. 15. The input signal wave is shown in Fig. 21a. The dashed

Fig. 19 Effect of normalized
scale transform on high
frequency signal detection

Fig. 20 SNR curves
corresponding to different
frequencies after amplitude
tuning
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lines and right y-axis in Figs. 21a–c show the input target signal. Comparing the
output of the conventional single SR unit in Fig. 21b with that of the proposed
method in Fig. 21c, we can find that the proposed method can detect the target
signal explicitly and obtains an output signal with lower background noise.
Figures 21d–f are the spectrums of Figs. 21a–c, respectively.

5.3 Application for Machinery Fault Diagnosis

A vibrational feature detection experiment for rolling element bearing incipient
fault was conducted to verify the effectiveness of the proposed method. Bearings
are widely used in mechanical transmission systems. Their local faults or damages
usually produce characteristic frequency components, whose frequencies depend on
bearing geometry, rotational speed and position of the fault.

Fig. 21 Comparison of
signal detection between
conventional SR and the
proposed method
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Fault or defect is identified when the frequency component corresponding to the
bearing defect induced impulses is found in the frequency domain. Then, the critical
work is the weak characteristic signal detection after the demodulation of vibration
impulses. In fact, vibration signatures in the envelope are taken to be the weak
target signal and the noise and the other components are tuned to play an active role
in the MSBA model. For the experiments in this section, the vibration signals are
decomposed to make the scale dJ contain the characteristic frequency, where
J = 10. In the following cases, the proposed method is verified in comparison with
two other methods. One is the kurtogram for the detection of transient signal based
on kurtosis maximization. The other is the conventional SR based on normalized
scale transform.

The proposed method and the two other methods were applied to vibration
signal from a test rig of machinery fault simulation, as shown in Fig. 22. Tests were
carried out on the test rig with seeded inner and outer race fault bearings. The rig
was driven by an electric motor with rotating speed 665 r/min. The vibration sig-
nals were collected with the sampling frequency of 50 kHz from the bearings with
0.2 mm seeded inner and outer race faults. The bearing with seeded defect was
installed in the position of Bearing I during the test. The collected data time length
was 1 s. The ball pass frequencies over inner and outer race defect, fBPFI and fBPFO,
were computed to be 74.40 and 47.51 Hz.

Figure 23a displays the raw time signal collected from Accelerometer I on the
test rig of the bearing with 0.2 mm inner race defect, which is denoted in the top
right of Fig. 22. Figure 23b is the envelope of the signal in Fig. 23a processed by
signal pre-whitening and signal demodulation [24]. The data in Figs. 23c, d are
the output signals of the conventional SR method and the proposed method.

Fig. 22 Test rig and the 0.2 mm inner and outer race defect bearings
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Their spectra are shown in Figs. 23e, f, respectively. It can be seen that there are
some noisy impulses in the time domain signal and the envelope. The envelope
signal is enhanced by traditional SR using normalized scale transform, which
improves the defect identification as shown in Fig. 23e. The shaft frequency
(marked as 1X) is also enhanced by the conventional SR method. The result pro-
duced by the proposed method makes the inner race fault diagnosis beyond all
doubt. As seen in Fig. 23f, the characteristic component of inner race defect
fBPFI = 74.40 Hz is highlighted clearly.

Figure 24 is the analyzed result of the kurtogram, where Kmax, Bw and fc denote
the maximum kurtosis, bandwidth and central frequency of the selected band,
respectively. Figure 24a is the kurtogram of signal in Fig. 23a. Figure 24b is the
envelope signal of the selected band, which maximizes the kurtogram. Figure 24c is
the spectrum of the envelope signal. The characteristic component fBPFI induced by
inner race defect can be identified in the envelope spectrum. However, there are
also some frequency components disturbing the inner race fault identification.

The vibration signal of 0.2 mm outer race fault is analyzed in Figs. 25 and 26 to
confirm the reliability of the proposed method. Figure 25 displays results similar to
that in Figs. 23 and 26 displays results similar to that in Fig. 24. All the signal and
experimental parameters are set equal to those of the inner race fault identification.
Only the fault type and the target signal frequency are different from the inner race

Fig. 23 Analyzed results of bearing inner race fault using the traditional SR and the proposed
method
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fault identification. Similar to the result in Figs. 23 and 24, the characteristic
component of outer race defect fBPFO = 47.51 Hz is highlighted clearly by the
proposed method. This shows that better performance can be achieved by the
proposed method in comparison with kurtogram and traditional SR method for fault
diagnosis.

Fig. 24 Analyzed results of bearing inner race fault using kurtogram

Fig. 25 Analyzed results of bearing outer race fault by using the traditional SR and the proposed
method
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6 Conclusions

In the chapter, we studied normalized scale transform, circuit module and
multi-scale bistable array to extract characteristic fault signal of the dynamic
mechanical components based on SR theory. The SR normalized scale transform is
flexible and feasible for discrete signal processing, but it demands high sampling
rate and expensive computation. The SR hardware module, which is suitable for
processing analog signal directly, changes nonlinear system parameter tuning into
resistances adjusting. The advantages of implementation by hardware are less
computational task, instantaneous output, and much lower sampling frequency.
The SR effect of the MSBA model could be used to detect weak signal buried by
strong noise. Numerical simulation results show that the SR effect of MSBA can
appear at high input noise intensity. Simulation and experiment results of the
experiment on bearings with planted inner race fault demonstrate that the methods
of this chapter are suitable for application in mechanical fault signal detection.
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