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Abstract Rotating machinery covers a broad range of mechanical equipment in
industrial applications. It generally operates under tough working environment and
is therefore subject to faults easily. Vibration signals collected in the working
process have valuable contributions for the presentation of conditions of the
rotating machinery. Consequently, using signal processing techniques, these faults
could be detected and diagnosed. Empirical mode decomposition (EMD) is one of
the most powerful signal processing techniques and has been widely applied in fault
diagnosis of rotating machinery. This chapter attempts to introduce the recent
research and development of EMD in fault diagnosis of rotating machinery,
including basic concepts and fundamental theories about EMD methods and
improved EMD methods. Moreover, the applications of EMD methods and
improved EMD methods in fault diagnosis of common and key components of
rotating machinery, like rotors, gears and rolling element bearings, are described in
details.

1 Introduction

Rotating machinery plays an important role in industrial applications. It generally
works under a tough environment. Thus rotating machinery can suffer from failures
easily, which may decrease the service performance such as manufacturing quality,
operation safety, etc., and even cause the entire mechanical system to break down.
With rapid development of science and technology, rotating machinery is becoming
larger, more precise and more automatic. Its potential faults become more difficult
to be detected. Accordingly, the investigations of rotating machinery fault diagnosis
have attracted considerable interests in recent years. Vibration signals collected in
the working process have valuable contributions for the presentation of conditions
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of the rotating machinery. Consequently, adopting advanced signal processing
techniques to reveal fault characteristics is one of the commonly used strategies in
fault diagnosis of rotating machinery [1, 2]. Empirical mode decomposition
(EMD) is one of the most advanced signal processing techniques [3], which is
proposed as an adaptive time-frequency signal processing method to analyze
non-stationary and nonlinear signals. It is based on the local characteristic time
scales of a signal and could decompose the signal into a set of complete and almost
orthogonal components called intrinsic mode functions (IMFs). The IMFs indicate
the natural oscillatory mode imbedded in the signal and serve as the basis functions,
which are determined by the signal itself, rather than pre-determined kernels. Thus,
it is a self-adaptive signal processing technique that is suitable for nonlinear and
non-stationary processes. Since EMD was proposed in 1998, it has been widely
utilized and extensively studied in a lot of areas, for example, process control [4, 5],
modeling [6–8], surface engineering [9], medicine and biology [10], voice recog-
nition [11], system identification [12, 13], etc.

Although EMD largely contributes to the analysis of non-stationary and non-
linear signals, the algorithm itself has some shortcomings [14–16], such as end
effects, mode mixing, etc. Aiming at these drawbacks, various theoretical analyses
and improved EMD methods have been accomplished [17–22]. In addition, some
improved EMD methods have been applied in the diagnosis of early rub-impact
faults of rotors [21, 22], crack faults of gears [23, 24], and single or compound
faults of locomotive bearings [25, 26].

This chapter attempts to introduce the recent research and development of EMD
in fault diagnosis of rotating machinery. In the rest of this chapter, basic concepts
and fundamental theories about EMD methods and improved EMD methods will be
presented. In addition, the applications of EMD methods and improved EMD
methods in fault diagnosis of rotors, gears and rolling element bearings, which are
the common and key components of rotating machinery, will be described in
details.

2 Empirical Mode Decomposition

2.1 EMD Algorithm

The EMD algorithm was proposed by Huang et al. and could decompose a signal
into a set of IMFs [3]. An IMF is a function that should be satisfied with the
following two conditions: (1) in the whole data set, the number of extrema and the
number of zero-crossings must either equal or differ at most by one, and (2) at any
point, the mean value of the envelope defined by local maxima and the envelope
defined by the local minima is zero [3]. An IMF represents the natural oscillatory
mode embedded in the signal. A typical IMF is shown in Fig. 1.
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With the simple assumption that any signal consists of different simple IMFs, the
EMD method could decompose a signal into some IMF components, which are
determined by the signal itself. Thus, it is a self-adaptive signal processing method.
Given a signal xðtÞ, the EMD algorithm can be described as follows.

(1) Initialize: r0 ¼ xðtÞ, and i ¼ 1.
(2) Extract the i-th IMF.

(a) Initialize: hiðk�1Þ ¼ ri, k ¼ 1.
(b) Extract the local maxima and minima of hiðk�1Þ.
(c) Interpolate the local maxima and the minima by cubic spline lines to form

upper and lower envelops of hiðk�1Þ.
(d) Calculate the mean miðk�1Þ of the upper and lower envelops of hiðk�1Þ, as

shown in Fig. 2.
(e) Let hik ¼ hiðk�1Þ � miðk�1Þ.
(f) If hik is a IMF then set IMFi ¼ hik, else go to step (b) with k ¼ kþ 1.
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Fig. 2 Upper and lower envelops and their mean of a signal
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Fig. 1 Waveform of a typical IMF
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(3) Define riþ 1 ¼ ri � IMFi.
(4) If riþ 1 still has least 2 extrema then go to step (2) else decomposition process is

finished and riþ 1 is the residue of the signal.
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Fig. 3 Flow chart of EMD
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Thus, we can decompose the signal into I IMFs and a residue rI , which is the
mean trend of xðtÞ. Summing up all IMFs and the final residue rI , we get
xðtÞ ¼ PI

i¼1 ci þ rI . The frequency bands of IMFs c1; c2; . . .; cI ranges from high to
low. The frequency components contained in each frequency band are different and
they change with the variation of signal xðtÞ. Figure 3 shows the steps of the EMD
algorithm.

A simulation is presented here to illustrate the decomposition results of EMD
method. Given a signal xðtÞ, it consists of three components: a high-frequency
sinusoidal wave, a low-frequency sinusoidal wave and a trend component. We use
the EMD method to decompose this signal following the steps in Fig. 3. The
decomposed components and the simulated signal xðtÞ are shown in Fig. 4. From
Fig. 4, it can be seen that two IMFs c1 and c2, and a residue r2 are produced.
Among them, c1 and c2 correspond to the two sinusoidal waves with different
frequencies and the residue r2 reflects the trend component embedded in the sim-
ulated signal.
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Fig. 4 Illustration of the EMD method

Fault Diagnosis of Rotating Machinery Based on Empirical Mode … 263



2.2 Problems of EMD

Although EMD largely contributes to the analysis of non-stationary and nonlinear
signals, it also has weaknesses as well. For example, EMD produces end effects; the
IMFs are not strictly orthogonal to each other; mode mixing sometimes occurs
between IMFs.

(a) End effects

For a clear understanding of the end effects of EMD, we use the simulated signal
shown in Fig. 4 to illustrate the end effects. We display the two sinusoidal waves
included in the simulated signal and the decomposed IMFs of the simulated signal
by EMD in Fig. 5. It is seen that there are distortions at the two ends of IMFs. This
phenomenon is called end effects and it is caused by the EMD algorithm itself.

(b) Problem of orthogonality

The decomposed IMFs by EMD are not strictly orthogonal to each other. As we
all know, if two components are orthogonal to each other, the dot product between
them is zero. Here we also take the IMFs in Fig. 4 as an example. Calculating the
dot product between the two IMFs c1 and c2, we obtain the value of 1.5 instead of
zero. This means that IMFs c1 and c2 are not strictly orthogonal to each other.
Moreover, the energy of the two IMFs and the residue can be calculated as 514.6,
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Fig. 5 a Simulated high-frequency sine wave and IMF c1, and b simulated low-frequency sine
wave and IMF c2
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515.2 and 1161.8, respectively, which means that the total energy of the three
decomposed components is 2191.6. It is not equal to the energy of the simulated
signal 2125.8. This indicates that when a signal is decomposed by EMD, the energy
is not conservative before and after decomposition.

(c) Mode mixing

EMD method has another obvious shortcoming called mode mixing. The mode
mixing of EMD is defined as a single IMF including oscillations of dramatically
disparate scales, or a component of a similar scale residing in different IMFs.

To illustrate the problem of mode mixing in EMD, another simulated signal xðtÞ
is considered in this section. The simulated signal is shown in Fig. 6a. There is a
sine wave of 36 Hz and small impulses included in this simulated signal. Therefore,
it is a combined signal and actually consists of two components. Utilizing EMD on
the signal, the decomposed results are shown in Fig. 6.

From Fig. 6, we can see that mode mixing is occurring between IMFs c1 and c2
since there are neither indications of a sinusoidal wave nor indications of small
impulses. The sinusoidal wave and the impulses are decomposed into the same IMF
(c1). That is to say, these two IMFs obtained by EMD are distorted obviously and
both IMFs c1 and c2 of EMD fail to represent the characteristics of signal xðtÞ
accurately. This is a typical problem of mode mixing.

Mode mixing of EMD is a result of signal intermittency. To solve the problem of
mode mixing in the original EMD, ensemble empirical mode decomposition
(EEMD), was developed by Wu and Huang by adding noise to the investigated
signal [20]. A brief introduction of EEMD is given in the next section.
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Fig. 6 Decomposition result with EMD: a the simulation signal, b IMF c1, and c IMF c2
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Besides the end effects and mode mixing mentioned above, the EMD method
has some other weaknesses, such as lacking a theoretical foundation, sifting stop
criterion, extremum interpolation, etc. More details can be found in Refs. [14–16].

2.3 Hilbert-Huang Transform

Hilbert-Huang transform (HHT) mainly consists of two steps: EMD and Hilbert
transform. EMD can decompose a signal into a collection of IMFs, which are
almost monocomponent. Hilbert transform is defined as the convolution of signal
xðtÞ with 1=t, shown in Eq. (1). Through the Hilbert transform, local properties of
xðtÞ are emphasized.

yðtÞ ¼ 1
p

Zþ1

�1

xðtÞ
t � s

ds ð1Þ

Combining xðtÞ and yðtÞ,we can obtain the analytic signal zðtÞ of xðtÞ

zðtÞ ¼ xðtÞþ iyðtÞ ¼ aðtÞei/ðtÞ
aðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2ðtÞþ y2ðtÞp
uðtÞ ¼ arctanðyðtÞ=xðtÞÞ

8<
: ð2Þ

where aðtÞ is the instantaneous amplitude of xðtÞ, which reflects how the energy of
xðtÞ varies with time t, and uðtÞ is the instantaneous phase of xðtÞ. If the signal xðtÞ
is monocomponent, then the time derivative of instantaneous phase uðtÞ will be the
physical meaning of instantaneous frequency xðtÞ of the signal xðtÞ. Then the
instantaneous frequency xðtÞ is given as

xðtÞ ¼ duðtÞ
dt

ð3Þ

As discussed before, EMD can generate almost monocomponent IMFs, which
provides an opportunity for the instantaneous frequency applied to complicated
signals. For the signal xðtÞ, I IMFs are produced by EMD. Applying the Hilbert
transform to each IMF, and calculating the instantaneous frequency and amplitude,
we can express signal xðtÞ in the following representation:

xðtÞ ¼
XI

i¼1

aiðtÞ exp j
Z

xiðtÞdt
� �

ð4Þ

Therefore, based on the IMFs obtained by EMD, the Hilbert transform generates
a time-frequency-energy distribution to depict signal xðtÞ. The EMD-based Hilbert
transform is called Hilbert-Huang transform (HHT).
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3 Improved EMD Methods

3.1 EEMD Method

As we all know, mode mixing is a typical problem of EMD method. When the
problem of mode mixing occurs, an IMF can cease to have physical meaning by
itself, suggesting falsely that there may be different physical processes represented
in a mode [3]. To overcome this problem, ensemble empirical mode decomposition
(EEMD) was proposed based on the statistical properties of white noise. In this new
method, the true IMFs are defined as the mean of an ensemble of trials which
consist of the decomposition results of the signal plus a normally distributed white
noise with a constant standard deviation [20]. When the white noise is decomposed
by EMD, EMD behaves likes a dyadic filter bank: the Fourier spectra of various
IMFs collapse to a single shape along the axis of the logarithm of frequency [27]. In
addition, the result provided by Flandrin, Gonçalvès, and Rilling demonstrated that
the white noise could help data analysis in the EMD method [28]. In the process of
EEMD, different white noise with zero mean and a constant standard deviation is
added to the original signal and the combined signal is decomposed using EMD
method in each trial. When the white noise is added to the signal, the components in
different in different scales of the signal are automatically projected onto proper
scales of reference established by the white noise in the background. The influence
of the added noise can be decreased or even completely canceled out in the
ensemble mean of enough trials. Therefore, the ensemble mean is treated as the true
answer for the reason that only the signal is reserved when more and more trials are
carried out in the ensemble process. The principle of EEMD advanced here is on the
basis of the observations in the following [20].

(1) A collection of white noise cancels each other out in an ensemble mean; hence,
only the signal can be reserved in the final noise-added signal ensemble mean.

(2) White noise is used to force the ensemble to find all possible solutions; it makes
the signals of different scale reside in the corresponding IMFs, and the resulting
ensemble mean can be more meaningful.

(3) The decomposition with truly physical meaning of EMD is not the one without
noise; it is designated to be the ensemble mean of a large number of trials
consisting of the noise-added signal. More detailed description of EEMD can
be found in Ref. [20].

Based on the principle and observations as mentioned earlier, the EEMD
algorithm is given below and Fig. 7 is its flow chart.
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1. Initialize the number of ensemble, M, the amplitude of the added white
noise, and m ¼ 1.

2. Perform the m-th trial on the signal added white noise.

(a) Add a white noise series with the given amplitude to the signal to be
studied
xmðtÞ ¼ xðtÞþ nmðtÞ, where nmðtÞ indicates the m-th added white
noise series, and xmðtÞ represents the noise-added signal of the m-th
trial.

(b) Decompose the noise-added signal xmðtÞ into N IMFs,
cn;m(n ¼ 1; 2; . . .;N), using EMD, where cn;m denotes the nth IMF of
the m-th trial, and N is the number of IMFs.
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Fig. 7 Flow chart of EEMD
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(c) If m\M then go to step (a) with m ¼ mþ 1. Repeat steps (a) and
(b) again and again with different white noise series but having the
same amplitude each time.

3. Calculate the ensemble mean yi of the M trials for each IMF

yn ¼ 1
M

XM
m¼1

cn;m; n ¼ 1; 2; . . .;N; m ¼ 1; 2; . . .;M ð5Þ

(4) Report the mean yn (n ¼ 1; 2; . . .;N) of each of the N IMFs as the final
IMF.

In order to demonstrate the improvement of EEMD method, the simulated signal
in Fig. 6a is decomposed again using EEMD with the ensemble number 100 and
the added noise amplitude 0.01 time standard deviation of the signal. The original
signal is a sine wave of 36 Hz attached by small impulses. The decomposition
results of EEMD method are shown in Fig. 8.

It has been concluded from Fig. 6 that the mode mixing is serious between the
two IMFs obtained by EMD. However, it can be seen from Fig. 8b, c that the two
components contained in the signal are decomposed into two IMFs perfectly using
EEMD. IMF c1 in Fig. 8b denotes the impulse components and IMF c2 in Fig. 8c
indicates the sine wave. Therefore, EEMD is able to overcome the mode mixing
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Fig. 8 a The simulated signal; b and c the decomposition results of EEMD
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problem existing in EMD method and achieve an improved decomposition with
physical meaning.

When EEMD method is used, parameters such as the number of ensemble and
amplitude of the added noise need to be set reasonably. The following part will
discuss the choice of the two parameters.

(a) The number of ensemble

The relationship between the ensemble number and the amplitude of the added
white noise is given in the following equations [20].

e ¼ affiffiffiffi
N

p ð6Þ

or

ln eþ a
2
lnN ¼ 0 ð7Þ

where N is the number of ensemble, a is the amplitude of the added white noise,
and e is the standard deviation of error, which is defined as the difference between
the input signal and the corresponding IMFs.

In the process of EEMD method, small amplitude of the added white noise may
lead to a small error. However, if the amplitude of added noise is too small, it may
not change the distribution of extrema that the EEMD method relies on. This is true
when the investigated signal has a large gradient. Thus, the amplitude of the added
noise should not be too small for the effectiveness of EEMD method. On the other
hand, the error caused by the added white noise could always be reduced to a quite
small even negligible level by increasing the number of ensemble. Generally, an
ensemble number of a few hundred will lead to an exact result, and the remaining
noise would cause less than a fraction of one percent of error if the added noise has
the amplitude that is a fraction of the standard deviation of the investigated
signal [20].

(b) The amplitude of the added white noise

The investigation in references indicated that EMD is a noise-friendly method
[20]. In addition, increasing noise amplitudes and ensemble numbers changes the
decomposition results little as long as the amplitude of added noise is moderate and
the ensemble number is large enough.

The fact is that when the amplitude of noise increases, the number of ensemble
should increase to reduce the influence of the added noise in the decomposed
results. It is suggested that the amplitude of the added white noise is about 0.2
time standard deviation of the investigated signal [20]. However, it is not always
the proper amplitude of the added noise for any cases. Generally, when the signal
is dominated by high frequency components, the noise amplitude needs to be
smaller. On the contrary, when the signal is dominated by low frequency

270 Y. Lei



components, the noise amplitude should be larger. However, there is no a specific
equation reported in the literature to guide the choice of the noise amplitude until
now. Thus, for an investigated signal, different noise levels should be tried to
select the appropriate one.

3.2 AEEMD Method

As stated above, EEMD, as a noise-assisted data analysis method, is aimed to solve
the problem of mode mixing in EMD [20]. With the help of the added finite white
noise, EEMD is supposed to eliminate the mode mixing problem [21]. The per-
formance of EEMD, however, depends on the parameters adopted in the process of
decomposition, such as the sifting number, and the amplitude of the added noise. In
fact, these parameters were set as constant values whether the signal to be inves-
tigated contains high or low components in most current studies on EEMD [14].
Therefore, the problem of mode mixing is not solved completely and further work
need to be done to improve the performance of EEMD.

On the basis of the investigation of the filtering behavior of EMD/EEMD and the
relation between the signal frequency components and the amplitude of the added
noise, a new adaptive ensemble empirical mode decomposition method (AEEMD)
is proposed [24]. The new method adaptively selects the sifting number and decides
the amplitude of the added noise according to the signal frequency components in
decomposition process. By adopting the two parameters, the performance of EEMD
is going to be improved in feature extraction and fault diagnosis.

In the process of EEMD, high and low frequency components have different
sensitivity to noise. Therefore, larger noise and more sifting number had better be
adopted when high-frequency IMFs are extracted, while smaller noise and less
sifting number had better be used when low-frequency IMFs are extracted. To
satisfy this requirement for noise, different kinds of noise are tried and tested. The
result shows that the noise whose amplitude changes with its frequency in sine form
performs best. Therefore, the noise of this form is constructed and utilized in
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Fig. 9 Spectrum of the noise
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AEEMD in place of white noise adopted in the original EEMD. Figure 9 gives the
frequency spectrum of the constructed noise, in which fs represents the sampling
frequency and e denotes the amplitude at the highest frequency. On the other hand,
EMD method is an effective self-adaptive dyadic filter bank when applied to white
noise. Therefore, the sifting number for each IMF is adaptively set following
Eq. (8). Figure 10 gives the flow chart of AEEMD algorithm. The concrete steps
are as follows.

(1) Initialize the amplitude e of the highest frequency of the added noise, the
number of ensemble M, generally M ¼ 100 and e ¼ 0:2. Let m ¼ 1.

(2) Calculate the number of IMFs based on the signal length [20]
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I ¼ log2 L� 1 ð8Þ

where L is the signal length.
(3) Adaptively set the sifting number pi for the i-th IMF according to the following

equation.

pi ¼ 2ðI�i2Þ þ 2; i ¼ 1; 2; . . .; I ð9Þ

(4) Construct the noise as shown in Fig. 9 and add it to the signal to be
investigated.

(5) Perform EMD on the added-noise signal and obtain the m-th decomposition
result ai;m.

(6) If m\M then go to step (4) with m ¼ mþ 1. Repeat steps (4) and (5).
(7) Calculate the ensemble mean ai of the M trials for each IMF and report the

mean as the final IMF.

ai ¼ 1
M

XM
m¼1

ai;m; i ¼ 1; 2; . . .; I; m ¼ 1; 2; . . .;M ð10Þ

To demonstrate the effectiveness of AEEMD method, a simulation signal is
constructed. For the reason that modulation and impact are two typical fault events
in rotating machinery, the simulation signal contains modulation as well as impact
components. What is more, it also consists of a high-frequency sinusoidal wave and
a low-frequency sinusoidal wave respectively to represent certain rotating fre-
quencies of machinery. Therefore, there are four components having different
physical meaning in the simulation signal. The four components and the simulation
signal combined by them are shown in Fig. 11a–e, respectively.

AEEMD method is used to decompose the simulation signal and the decompo-
sition results are shown in Fig. 12. It can be seen from the result that IMFs 1–4
correspond to the impact component, the modulation component, the high-frequency
sinusoidal wave and the low-frequency sinusoidal wave respectively.

Comparing the decomposed IMFs in Fig. 12 with the real components in
Fig. 11a–d, it can be inferred that the different components embedded in the sim-
ulation signal are extracted accurately by AEEMD. For comparison, the simulation
signal is analyzed using the original EMD too and the decomposition result is
displayed in Fig. 13. It is seen that the problem of mode mixing between different
components is very serious and there are distortions for some IMFs. For example,
the first IMF contains not only the impact component but also the modulation
component. This result illustrates that the original EMD fails to produce the rea-
sonable decomposition. Based on the above simulation and comparison, it could be
inferred that AEEMD performs more effective than the original EMD, by adding
noise with the amplitude varying as a sinusoidal relation with its frequency into the
signal, and adaptively changing the sifting number for different IMFs.
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3.3 CEEMDAN Method

EEMD is mainly to alleviate the problem of mode mixing caused by EMD [20, 29],
however, it still has some shortcomings. For example, the EEMD method
decomposes a signal adding the white Gaussian noise, and the final IMFs are
obtained by averaging the IMFs. This would probably lead to some residual noise
in the reconstructed signal. In addition, if the white Gaussian noise in each
decomposition process is added with different amplitudes, it probably may produce
a different number of IMFs, which makes it difficult for the averaging [30, 31].

To overcome the above shortcomings of EEMD, Torres et al. proposed an
algorithm called a complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) [30]. Furthermore, Colominas et al. continued to make
improvements on CEEMDAN [31]. In this improved CEEMDAN method, a par-
ticular noise EkðwðiÞÞ instead of the white Gaussian noise is added at each stage of
the decomposition, where EkðwðiÞÞ means the kth IMF of the white Gaussian noise
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decomposed by EMD. Moreover, this method defines the true IMF as the difference
between the current residue and the average of its local means. As a result, the
problem of remaining noise in IMFs is much alleviated and the problem of the final
averaging because of a different number of IMFs is solved.

Let Mð�Þ represent the operator that produces the local means of the signal x, and
Ekð�Þ be the operator which produces the kth IMF decomposed by EMD. Obviously,
there exists a relation that E1ðxÞ ¼ x�MðxÞ. Considering the relation between the
first IMF c1 and the residue r1:c1 ¼ x� r1, c1 ¼ 1

I

PI
i¼1 E1ðxÞ ¼ x� 1

I

PI
i¼1 MðxðiÞÞ,

where I means the averaging number of IMFs, there exists 1
I

PI
i¼1 MðxðiÞÞ ¼ r1. The

decomposition using CEEMDAN is based on the following principles [30, 31] and a
flow chart of the CEEMDAN algorithm is shown in Fig. 14.

Step 1. Add E1ðwðiÞÞ to the original signal x, xðiÞ ¼ xþ b0E1ðwðiÞÞ, where wðiÞ

indicates the ith added white noise.
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Step 2. Use EMD to calculate the local means of xðiÞ and average them for the first
residue, r1 ¼ 1

I

PI
i¼1 MðxðiÞÞ, then calculate the first IMF c1 as c1 ¼ x� r1.

Step 3. Obtain the second IMF c2 as c2 ¼ r1 � r2, where
r2 ¼ 1

I

PI
i¼1 Mðr1 þ b1E2ðwðiÞÞÞ.

Step 4. Similarly, the k-th IMF ck is computed as ck ¼ rk�1 � rk, where
rk ¼ 1

I

PI
i¼1 Mðrk�1 þ bk�1EkðwðiÞÞÞ; k ¼ 2; 3 . . .N:

The coefficients bk represent the selection of the SNR at each stage, where
bk ¼ e0stdðrkÞ.
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To illustrate the decomposition difference between EEMD and CEEMDAN, a
simulated signal xðtÞ is implemented here. There are four components involved in
this signal: a high-frequency sinusoidal wave, a low-frequency sinusoidal wave, an
impact component and a modulation component. The simulated signal and the four
components are shown in Fig. 15a–e, respectively.

According to Refs. [20, 32], when the value of e0 is close to 0.2, it often has a
remarkable performance of the decomposition results. Consequently, we choose the
noise amplitude e0 ¼ 0:2 and the ensemble size I ¼ 100 in the decomposition of
CEEMDAN. The decomposed results of the simulated signal using EMD method
and the CEEMDAN method are shown in Figs. 16 and 17, respectively. The
components (a–d) in Fig. 16 correspond to high-frequency sinusoidal wave,
low-frequency sinusoidal wave, the impact and the modulation component,
respectively. It can be seen that the high-frequency sinusoidal wave is mixed with
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the low-frequency sinusoidal wave and the impact component is mixed with the
modulation component obviously. In Fig. 17, it is seen that the individual com-
ponents hidden in the simulated signal can be extracted using the method based on
CEEMDAN. Especially, the impact component and the modulation component are
presented clearly in the third and the forth IMF with an accurate waveform,
respectively.

4 Fault Diagnosis of Rotating Machinery
Using EMD Based Methods

4.1 Fault Diagnosis of Rotors

A power generator plays an important role in energy supply. It has a great meaning
to diagnose the faults occurring in the power generator to guarantee the regular
energy supply, avoiding the economic loss and saving the production cost.
A structure sketch of a power generator in a thermal-electric plant in China is given
in Fig. 18. This machine set is composed of a high pressure cylinder, a low pressure
cylinder, a motor and an exciter.

A certain day, it was found that the high pressure cylinder vibrated so intensely
that the virtual value of vibration signal exceeded the safety threshold, and then the
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online monitoring system began to sound the alarm. In the later one month, the
machine vibrated even more violently. When the power generator was stopped to be
maintained, it was found that one of the bearing bushes of the machine set had been
broken. In order to identify the fault pattern, the vibration signal was collected by a
vibration velocity transducer fixed on the high pressure cylinder, which is shown in
Fig. 19. The signal length is 1024, and the sampling frequency is 2000 Hz. The
rotating frequency of the machine set is 50.78 Hz.

First, the vibration signal was decomposed using EMD method, and the first six
IMFs of the decomposed results are given in Fig. 20. A series of impulses could be
seen in some local components of IMFs c1 and c2. Therefore, it can be inferred that
periodic impacts occur in the high pressure cylinder.
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Fig. 16 Decomposed components of the simulated signal using EMD
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However, what is the reason that caused the impacts between the rotor and the
bearing bushes? Unfortunately, it is very difficult to answer this question according
to the information provided by the IMFs of EMD owing to mode mixing occurring
between different IMFs. In addition, there is no more fault information to clarify the
fault cause.
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To overcome the above difficulty, the CEEMDAN method with the ensemble
number of 100 and the white noise amplitude of 0.3 time standard deviation of that
of the vibration signal is applied to the signal decomposition. The decomposition
results are given in Fig. 21. It can be clearly seen that each IMF has its real physical
meaning. IMF c1 corresponds to the added white noise. IMFs c2 and c3 indicate
impulse components. IMF c4 is the rotating frequency component of the machine
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set whose value is 50.78 Hz. IMF c5 is a component of 25.39 Hz, which is the half
rotating frequency of the machine set.

It can be inferred that the fault pattern is not oil whirl in this machine set because
oil whirl usually manifests itself by frequencies ranging from 42 to 48% of the
rotating frequency of the rotor. In a rotor system, both looseness and rub behave
themselves by the half rotating frequency. For the reason that there are impacts
between the rotor and the bearing bushes, we can conclude that the fault of the
power generator is the rub-impact pattern. That implies that the rotor system of the
high pressure cylinder rub and at the same time impact the bearing bushes when
the power generator is operating. Then impulse components are generated. Finally,
the intense impacts broke one of the bearing bushes.

4.2 Fault Diagnosis of Gears

In modern industry, planetary gear boxes are widely used as a kind of special gear
transmission structures owing to their advantages such as large transmission ratio,
strong load-bearing capacity. They have big difference with fixed-axis gearboxes
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and exhibit unique behaviors, which increase the difficulty of fault diagnosis in
planetary gearboxes [33–35].

In this section, experiments are conducted on a planetary gearbox test rig and
vibration signals are collected to demonstrate the effectiveness of the adaptive
EEMD in diagnosing gear faults. The planetary gearbox test rig consisted of two
gearboxes, a 3-hp motor for driving the gearboxes, and a magnetic brake for
loading. There were a planetary gearbox and a fixed-axis gearbox in the test rig. An
inner sun gear is surrounded by several rotating planet gears, and a stationary outer
ring gear in the planetary gearbox, which is our concern [33]. To simulate gear
faults, a crack at the tooth root of one planetary gear is created in our experiments.

An accelerometer is fixed on the planetary gearbox casing to collect the vibration
signals. The motor speed is about 20 Hz and the sampling frequency is set as
5120 Hz. The experimental parameters and the characteristic frequencies of the
planetary gearbox are shown in Table 1. It can be seen from the table that the
rotating frequency of one planetary gear is 2.5 times as large as that of the carrier.
Therefore, when the carrier rotates 2 cycles, the planetary gear meshes 5 periods

Table 1 Parameters and characteristic frequencies of the planetary gearbox

Tooth number of gears Gear number Rotating frequency/Hz Mesh frequency/Hz

Sun Planetary Ring Planetary Sun Planetary Carrier

20 40 100 3 20 8.33 3.33 333.33
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Fig. 22 Experimental signal a time-domain waveform, and b frequency spectrum
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with the ring gear, i.e. 200 teeth. This tooth number is twice as large as that of the
ring gear. That is to say, the ring gear meshes 2 periods with the planetary gear. In
other words, the planetary gear returns to the initial position when the carrier rotates
2 cycles. For the carrier to finish rotating 2 cycles, it takes 2/3.33 = 0.6 s.

The vibration signal collected from the test rig with the cracked planetary gear is
shown in Fig. 22a and its frequency spectrum is shown in Fig. 22b. It can be seen
that there are a series of impulses in the time-domain waveform. The period of the
impulses is nearly t ¼ 0:1 s which means that the frequency of the impulses is about
10 Hz. There are three planetary gears in planetary gearbox and they pass the fixed
accelerometer in turn. Therefore, the pass frequency of the planetary gears equals 3
times as large as the rotating frequency of the carrier, i.e. 10 Hz. It is apparent that
the impulses in the time-domain waveform are caused by the rotation of the carrier,
and they are normal vibration components of the gearbox. Unfortunately, it is
difficult to extract any fault characteristics besides these impulses for the reason that
the fault features of the planetary gearbox are buried by the normal vibration
components. The frequency spectrum of the vibration signal in Fig. 22b shows that
there are rich sidebands around the mesh frequency and the interval of the side-
bands is 3.33 Hz, which equals the rotating frequency of the carrier. Obviously, it is
not the fault characteristics either. Therefore, the fault features of the cracked
planetary gear cannot be found from the time-domain waveform or its frequency
spectrum.

The adaptive EEMD method is used to process the above signal to extract the
fault features of the cracked planetary gear. Among the IMFs decomposed by
adaptive EEMD, the first IMF contains the richest information and consequently it
is selected for further analysis. Figure 23 shows the detail of IMF1 and it can be
seen that there are impulses with the period T ¼ 0:6 s. It can be concluded that once
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the carrier rotates 2 cycles, the cracked planetary gear returns to the initial position.
As a result, the fault period of the cracked planetary gear doubles the rotating period
of the carrier, i.e. 0.6 s. That means that the impulse component with the period
T ¼ 0:6 s is resulted by the cracked planetary gear. Therefore, the adaptive EEMD
method can extract the fault characteristics effectively. For comparison, the same
signal is decomposed by original EEMD and the first IMF is shown in Fig. 24. In
can be seen that there are also periodic impulses in the waveform of the IMF, the
impulse (T ¼ 0:6 s) caused by the cracked gear and those (t ¼ 0:1 s) caused by the
rotation of the carrier. However, these impulses are decomposed in the same IMF
which means the mode mixing happens. It can be concluded from the comparisons
that the adaptive EEMD is more effective than the original EEMD in fault char-
acteristics extraction of the planetary gearbox.

4.3 Fault Diagnosis of Rolling Element Bearings

In this section, to demonstrate the effectiveness of the CEEMDAN based method,
an experiment on a test bench of locomotive rolling element bearings was con-
ducted. The detailed information of the test bench can be seen in Ref. [2]. The
parameters and fault characteristic frequencies of the bearings are listed in Table 2.

It is known that even though a serious single fault occurs on the bearing, peri-
odical impulses characterizing the fault can be submerged by the heavy noise,
which may be even worse for compound faults. This is mainly because in rolling
element bearings, once compound faults occur, different fault characteristics always
couple with each other. Then the fault characteristics of compound faults turned to
be complicated and difficult to be extracted, and the common used methods like
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Fourier spectrum analysis probably will fail to work. Thus for the demonstration of
the CEEMDAN method in the fault diagnosis of bearings, we choose a bearing with
compound faults on the outer race and the roller.

A vibration signal was collected from the test bench with a sampling frequency
of 12800 Hz and a signal length of 16,384 data points. The waveform of the signal
and its corresponding Fourier spectrum is given in Fig. 25. The outer race and the
roller fault characteristic frequencies of the bearing can be calculated as 44.5 and
19.94 Hz, respectively, since the rotation speed is 370 rpm. Obviously, in Fig. 25,

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
-5

0

5

Time (s)

A
m

pl
itu

de
(v

)

0 1000 2000 3000 4000 5000 6000
0

0.02

0.04

0.06

A
m

pl
itu

de
(v

)

Frequency (Hz)

(b)

(a)

Fig. 25 a Vibration signal of a bearing with compound faults, and b Fourier spectrum

Table 2 Parameters and fault characteristic frequencies of the locomotive rolling element bearing

Bearing specs 52732QT

Inner race diameter Di (mm) 160

Outer race diameter Do (mm) 290

Roller diameter d (mm) 34

Roller number n 17

Contact angle a (deg) 0

Bearing rotating frequency (Hz) fr
Pitch diameter D (mm) D ¼ 1

2 ðDi þDoÞ
The inner race fault characteristic frequency finner finner ¼ 1

2 frð1þ d
D cos aÞn

The outer race fault characteristic frequency fouter fouter ¼ 1
2 frð1� d

D cos aÞn
The roller fault characteristic frequency froller froller ¼ 1

2 fr½1� ðdDÞ2 cos2 a� Dd
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neither the periodic impulses related to faults in the time-domain waveform nor the
fault characteristic frequencies in the Fourier spectrum can be observed. The
Fourier spectrum analysis fails to detect the compound faults.

To reveal the fault characteristics, EEMD is used to extract the fault charac-
teristics from the signal. 16 IMFs are obtained after the decomposition. However,
there is no obvious fault indication at the characteristic frequency of 44.5 and
19.94 Hz from the first 10 IMFs and their corresponding Fourier spectra in Fig. 26.
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Fig. 26 Decomposition results of the vibration signal of a bearing with compound faults using
EEMD: a The IMFs, and b The Fourier spectra of IMFs
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After carefully checked the Fourier spectra of the 8th and 9th IMFs given in
Fig. 27, we found two obvious peaks at the frequency of 58.59 and 27.34 Hz.
These two frequencies, however, are neither the outer race fault characteristic
frequency of 44.5 Hz nor the roller fault characteristic frequency of 19.94 Hz.
Hence, the EEMD method fails to extract fault characteristics and diagnose the
compound faults of this rolling element bearing.

For comparison, the CEEMDAN based method is applied to analyze the signal
using the same noise amplitude and ensemble size in the EEMD method. There are
totally 15 IMFs obtained by CEEMDAN and Fig. 28 shows the first 10 IMFs and
their Fourier spectra. By examining each Fourier spectrum, we find that there are
peaks at the outer race and the roller fault characteristic frequency (45.31 and
20.31 Hz) in the Fourier spectra of the 9th and 10th IMFs, shown in Fig. 29a, b,
respectively. Therefore, based on the extracted fault characteristics using the
CEEMDAN-based method, the compound faults of this bearing are diagnosed.
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5 Conclusions

In this chapter, the basic theory of EMD and improved EMD methods, such as
EEMD method, adaptive EEMD method, etc., are presented. In addition, the
applications of these methods in fault diagnosis of rotating machinery, including
rotors, gears and rolling element bearings, are described in details.

(a) The empirical mode decomposition (EMD) method has a good performance in
the analysis of nonlinear and non-stationary signals. However, it is often
subject to some problems, like end effects and mode mixing, etc. Thus the
decomposed IMFs sometimes are unable to reflect the fault characteristics in
fault diagnosis of rotating machinery precisely.
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Fig. 28 Decomposition results of the vibration signal of a bearing with compound faults using the
CEEMDAN method: a the IMFs, and b the Fourier spectra of IMFs
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(b) To overcome the shortcomings of EMD, a lot of new methods based on EMD
are proposed to diagnose rotating machinery improve the EMD method. These
methods are developed mainly by adding different kinds of white Gaussian
noise to improve the extrema distribution of the signal.

(c) The EMD and improved EMD methods have been applied in the fault diagnosis
of rotating machinery. EMD sometimes cannot detect the fault in the
machinery, while the improved methods promote the performance of EMD in
different aspects. These methods have been proven to be effective in the
diagnosis of rotors, gears and rolling element bearings.
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