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Preface

The past decades have seen increasing attention from the research community
worldwide on structural health monitoring (SHM). The efforts have promoted the
continued advancement of sensing as well as signal processing technologies. In
addition to commonly used time and frequency domain techniques, advanced signal
processing techniques, such as wavelet transform and sparse representation, have
been investigated as new tools for health monitoring of various mechanical or
structural systems. However, many challenges and problems remain unsolved as of
now or not fully addressed for SHMwhen signal processing techniques are applied to
dealing with data measured from the system. For example, the complication of
mechanical or structural systems results in complexity of the monitoring signals.
Also, background noises weaken the effective condition signal and thus hinder the
interpretation of the condition information. Furthermore, the specialization of each
monitoring object leads to the predicament that a single signal processing technique
cannot be effective for any SHM demands, which is also the reason why there are
many advanced signal processingmethods to be researched by academy and industry.

The book aims at introducing some advanced signal processing techniques that
can be used in the field of structural health monitoring. The book contains invited
chapters from researchers, who are experts in applying signal processing technique
to solve structural health monitoring problems. It starts with an introduction on
basic knowledge of structural health monitoring, followed by traditional frequency
domain analysis, which is discussed for crack detection and rotor balance correc-
tion. Then some newly developed signal processing techniques, including wavelet
transform, time-frequency analysis, compressive sensing and sparse representation,
empirical mode decomposition, local mean decomposition and stochastic reso-
nance, are introduced in theory with applications to various mechanical and
structural systems. These advanced signal processing techniques are believed to be
beneficial to structural health monitoring.
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We would like to thank all the authors for their contribution and sharing of their
knowledge. We do sincerely hope that the readers will find this book interesting and
useful in their research on advanced signal processing for structural health
monitoring.

Nanjing, China Ruqiang Yan
Xi’an, China Xuefeng Chen
Sydney, NSW, Australia Subhas Chandra Mukhopadhyay
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Advanced Signal Processing for Structural
Health Monitoring

Ruqiang Yan, Xuefeng Chen and Subhas C. Mukhopadhyay

Abstract This chapter starts with an introduction on structural health monitoring
(SHM) and emphasizes its importance for engineering systems. Then four different
stages, i.e., operational evaluation, data acquisition, feature extraction and diagnosis
and prognosis, involved in SHM are briefly discussed, followed by review of each
signal processing technique used in SHM, which will be described in the book.

1 Introduction

The progress in science and technology has advanced development of engineering
systems, such as aircraft, wind turbine and machine tools. Many of these existing
systems are currently nearing the end of their original design life, and also new
engineering systems are more and more complicated with high-precision. The
process of implementing a damage identification strategy for aerospace, civil and
mechanical engineering infrastructure is referred to as structural health monitoring
(SHM) [1]. SHM is an engineering service to guarantee the performance of these
systems so that they can detect the onset of damage at the earliest possible time and
predict the remaining useful life of the engineering system in order to prevent
failures and optimize resource allocation. Therefore the potential economic and
life-safety implications of early damage detection in aerospace, civil and mechanical
engineering systems have motivated a significant amount of research in SHM [2].

The guarantee of life-safety is always a strong motivation especially for the
aircraft. On one hand, once an aircraft accident occurs, it is possible to result in fatal
crash. As we can see in the Fig. 1, flight GE235 of TransAsia Airways, carrying 58
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people, crashed into a Taipei river on Feb. 4, killing at least 40 people. Thanks to the
introduction of SHM, an improvement in maintenance and a decrease of
structure-caused accidents would result in a global reduction of accidents of less than
10% [3]. On the other hand, systems based on SHM can assess their working
conditions and prevent the fatal fault, such as engine health management (EHM) and
health and usage monitoring systems (HUMS). EHM, as one of the main SHM
applications, can be considered as a collection of capabilities from which building
blocks can be drawn to create customized architectures that best meet individual user
needs (see Fig. 2). In 2014, Allan J. Volponi, the chief scientist in Pratt and Whitney
published a review paper on ASME to summarize and discuss the past, present and
future trends of the gas turbine engine health management. Moreover, the reference
stressed that the future state of EHM would need to integrate and balance its onboard
and off-board capabilities to maximize cost benefit and operational reliability [4].
Likewise, HUMS is also one of typical SHM applications. HUMS is a combination
of health monitoring and usage monitoring to provide accurate information
regarding the condition of various flight critical components [5].

The economic motivation is also very strong. The economic impact with the
effect of SHM is hard to evaluate. For example, Boeing attempted to transfer the
company from the manufacturing enterprise to the service enterprise in order to
achieve more economic benefits. It reported that about 40% or more of both metal
and composite structure for a modern fighter aircraft can be saved on maintaining

Fig. 1 The air crash of TransAsia airways
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time through the use of smart monitoring systems [6]. In terms of renewable energy,
wind power is one of the fastest increasing renewable energy sources, and it is
going to have remarkable share in the energy market [7]. With the installed capacity
and scale of the wind turbines enlarging year by year (see Fig. 3; [8]), the economic
benefits of wind power are seriously influenced by the maintenance costs and huge
losses caused by frequent accidents of wind turbines. Thus, reducing maintenance
costs has become an increasingly important issue, and SHM as an advanced
monitoring technique can effectively help to solve this serious problem.

To sum up, the benefits of having SHM are as follows [9–11]:

(a) Enhancing structural safety: Based on the conditional information of SHM,
enhancing the weak structure is feasible.

Fig. 2 EHM: the big picture [4]

Fig. 3 Annual installed global capacity 2000–2015 [8]
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(b) Shortening unnecessary downtime: People can utilize the condition information
to adjust the operation of the equipment.

(c) Avoiding catastrophic failures: Incipient fault detection can prevent the
equipment from catastrophic failures and secondary defects.

(d) Reducing maintenance costs: The period maintenance can be replaced with
condition-based maintenance.

(e) Supporting further development: Designer may yield detailed information on
the dynamic behavior of the equipment over the periods of time that may help
optimizing the design.

2 Structural Health Monitoring

Structural health monitoring (SHM) usually refers to the process of implementing a
damage detection and characterization strategy for structural and mechanical sys-
tems. This book mainly focuses on the SHM of mechanical systems. Generally,
SHM involves four different stages, namely: operational evaluation, data acquisi-
tion, feature extraction and diagnosis and prognosis (see Fig. 4).

2.1 Operational Evaluation

The process of operational evaluation is to answer the following four questions in
order to implement the damage identification [12]:

Operational 
Evaluation

Data 
Acquisition

Feature 
Extraction

Diagnosis  
and 

Prognosis

Sensor 2

Sensor n

...

Traditional Frequency 
Domain Analysis
Wavelet Analysis
Time-Frequency 
Analysis
Compressed Sensing 
and Sparse 
Representation
Empirical Mode 
Decomposition
Stochastic 
Resonance...

Artificial Neural 
Networks
Fuzzy Logic 
Systems
Neuro-Fuzzy 
Inference Systems
Support Vector 
Machine
Hidden Markov 
Model
Bayesian Network
Deep Learning...

Sensor 1

Fig. 4 Flow chart of SHM
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• What is the life-safety or economic benefits for performing the SHM?
• What defines a damage for the system? And which cases are of the most

concern?
• What are the operational and environmental conditions, under which the system

to be monitored?
• What are the limitations on acquiring data under this special operational

condition?

Operational evaluation mainly focuses on setting limitation on what should be
monitored and how the monitoring can be finished. Namely, once the operational
evaluation has been determined, the other component of the SHM would be carried
out with increasing speed and high reliability.

2.2 Data Acquisition

Vibration measurement is an effective, reliable and non-intrusive technique to
monitor machine conditions during startup, shutdown and normal operations [13].
Vibration sensors are one of the core components in a SHM system. It is no
exaggeration to say that selection of sensors determines the accuracy of the signal
and the reliability of SHM systems. Figure 5 shows the basic principle of data
acquisition [14].

The vibration transducer detects the vibration parameter from the machine and
converts these vibration signals to the electrical signals. The common used vibra-
tion transducers are:

• Displacement transducers (Vibrometer/Proximity Probes)
• Velocity transducers (Velometer)
• Accelerometers (PCB)
• Laser Doppler Vibrometers

Vibration 
transducer

Vibrating 
machine 

Signal 
conversion 
instrument

Display unit 
or 

computer

Data 
analysis

 

Fig. 5 Flow chart of data
acquisition
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Displacement transducers measure relative displacement which is suited to
measure the low frequency vibration signal (below 10 Hz), whereas the most
widely used to measure absolute motion are velocity (10–1000 Hz) and
accelerometers (above 1000 Hz) which is suited to measure the high frequency
vibration signal [15].

2.3 Feature Extraction

Extracting features through signal processing is the key component of any vibration
based SHM, and is also the challenging aspect of the SHM. Because the acquired
signals are always noisy and complex, the main aim is to remove noise and enhance
the weak features of the system. Utilizing the features, the fault of the system can be
identified. Moreover, location and severity of the damage will be determined for
further diagnosis and prognosis.

Obviously, there are no universal physical variables and signal processing
techniques that are appropriate for all the feature extraction problems [16]. Many
signal processing techniques have been used to extract the features for SHM
research. The most common ones are summarizes as follows [10, 17]:

• Frequency Domain Analysis: Fourier transform is used to estimate the strength
of different frequency components contained in the signal. However, it cannot
calculate the frequency at each instant of time, namely instant frequency.

• Wavelet Transform (WT) [18]: WT can achieve an optimal balance between
frequency resolution and time resolution [19]. Moreover, it has multiple choices
on basis function to match a specific fault symptom, which is beneficial to fault
feature extraction [20, 21]. There are various types of wavelets used for SHM,
such as discrete wavelet transform (DWT), continuous wavelet transform
(CWT), wavelet packet transform (WPT) and second generation wavelet
transform (SGWT) [22].

• Time-Frequency Analysis(TFA): TFA such as short-time Fourier transform
(STFT), Chirplet transform, local polynomial Fourier transform and generalized
demodulation approach [23–25] provides a powerful tool to effectively char-
acterize the time-frequency (TF) pattern of nonstationary signals and gives an
insight into the complex structure of a given signal consisting of several
components.

• Compressed Sensing (CS) and Sparse Representation: Signal sparse represen-
tation is an advanced technique which utilizes a small number of atoms in the
predefined dictionary to express the complex signal with a small error and it
mainly consists of two basic procedures: dictionary construction and sparse
approximation [26, 27]. In addition, compressed sensing brings a new inspira-
tion to solve problems of big data compression, incomplete data processing and
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rapid detection from small samples, which is regarded as a breakthrough of the
Shannon sampling theorem [28, 29].

• Empirical Mode Decomposition (EMD): EMD is one of the most advanced
signal processing techniques [30], which is proposed as an adaptive
time-frequency signal processing method to analyze non-stationary and non-
linear signals. It is based on the local characteristic time scales of a signal and
could decompose the signal into a set of complete and almost orthogonal
components called intrinsic mode function (IMF) [31].

• Stochastic Resonance (SR): SR is commonly described as an approach to
increase the signal-to-noise ratio (SNR) at the output through the increase of the
special noise level at input signal and is a nonlinear effect that is now widely
used in weak signal detection under heavy noise circumstances [32, 33].

2.4 Diagnosis and Prognosis

In order to realize fault diagnosis, the quantification of the reliability and prognosis
of remaining useful life, artificial intelligence (AI) is a necessary technique for
SHM. SHM requires reliable models which are able to learn complex non-linear
relationships between acquired signals and the system’s state [34]. There are also
various AI techniques to diagnose the machine state, evaluate its reliability and
predict its remaining useful life. It is impossible to list all the AI techniques which
can be used in the SHM system. According to the application, this portion lists
some famous AI techniques for reference only.

• Artificial neural networks (ANNs): ANNs have powerful pattern classification
and pattern recognition capabilities [35]. ANNs are appropriate to inspect the
health conditions of machines due to its self-learning function, associated
storage capabilities and abilities of fast searching an optimal solution.

• Fuzzy Logic Systems: Fuzzy logic is suitable for the representation of vague
data and concepts on an intuitive basis, such as human linguistic description
[36].

• Artificial Neuro-fuzzy Inference System (ANFIS): ANFIS integrates ANNs with
fuzzy systems, and make use of their advantages to realize efficient diagnosis
and prognosis [37].

• Support Vector Machine (SVM): SVM, based on statistical learning theory, is a
famous machine learning method which is appropriate to small samples clas-
sification and regression [38]. Actually, SHM system confronts the problem of
fewer samples, and SVM can handle this problem without loss of accuracy.

• Hidden Markov Models (HMMs): HMMs are attractive owing to their rich
mathematical structure and their success in real world applications [39]. They
can capture statistical properties of the underlying fault and result in reliable and
efficient diagnosis and prognosis.

Advanced Signal Processing for Structural Health Monitoring 7



• Bayesian Networks (BN): BN is a model based on probability theory, and it
describes how conditions are related through probabilities. BN and their
extension for time-series modeling known as Dynamic Bayesian Network
(DBN) have been shown by recent studies to be capable of providing a unified
framework for SHM [40].

• Deep Learning (DL): DL refers to a class of machine learning techniques, where
many layers of information processing stages in deep architectures are exploited
for pattern classification and other tasks [41]. Based on DL, deep neural net-
works (DNNs) with deep architectures can be established to adaptively capture
the representation information [42].

Among all the stages, the necessary step is to extract damage-related features
through signal processing techniques to convert sensor data into damage infor-
mation. Thus, signal processing techniques play a critical role in SHM.

3 Signal Processing in SHM

The goal of this book is to feature latest advances and directions in the advanced
signal processing for SHM. The emphasis of the book will be on the utilization of
advanced signal processing technique for helping to monitor the health status of
some critical structures or equipment encountered in our daily life: wind turbine,
gas turbine, machine tools, etc. Each chapter is organized as an introduction to an
advanced signal processing technique for structural health monitoring, and gives a
list of references, through which the readers can continue to research the state of the
art signal processing techniques. A summary of key points in each chapter is given
below.

The first part is about traditional frequency domain analysis. Chapter 2 shows a
signal processing algorithm which can accurately estimate the natural frequencies
of structures for early recognition and assessment of cracks. Chapter 3 improves the
traditional holobalancing method by replacing the initial phase vector (IPV) with its
forward precession component (IPV+). Thus, the impact of probe orientation on the
balancing analysis and calculation is completely eliminated and the computational
procedure is greatly simplified without sacrificing the balancing accuracy.

The second part is about the wavelet analysis. Chapter 4 verifies the essence on
inner product operation of wavelet transform (WT) by simulation and field
experiments. Moreover, the major developments on adaptive multiwavelet and
super wavelet transform are introduced and discussed. Chapter 5 introduces a
wavelet based spectral kurtosis and kurtogram that ensures automatic detection of
impulsive transient vibrations occurring during machinery fault events.

The third part is about the time frequency analysis (TFA). Chapter 6 reports a
new method called time-frequency manifold (TFM) which can effectively realize
the signature enhancement and sparse representation of non-stationary signals for
machinery fault diagnosis. Chapter 7 also proposes a new time-frequency analysis
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method called matching demodulation transform (MDT) which can generate a
time-frequency (TF) representation with satisfactory energy concentration, and thus
extract the highly oscillatory frequency-modulation (FM) feature of rotating
machine fault.

The forth part is about the compressive sensing and sparse representation.
Chapter 8 brings a newly developed theory termed compressive sensing to the
condition monitoring and fault diagnosis, and presents a novel method for rotary
machinery fault detection from compressed vibration signals inspired by com-
pressive sensing, which can largely reduce the data collection and detect faults of
rotary machines from only a few signal samples. Chapter 9 presents an overview of
the sparse representation theory, and utilizes the sparse representation theory to
figure out the fault detection of rolling bearings, gearboxes and compound bearing
faults.

The fifth part is about the empirical mode decomposition (EMD). Chapter 10
introduces the recent research and development of EMD in fault diagnosis of
rotating machinery, and describes the basic concepts, fundamental theories and the
applications about EMD methods and improved EMD methods. Chapter 11 dis-
cusses two dimensional form of EMD, namely Bivariate Empirical Mode
Decomposition, and the powerful capacity of this innovative technique in the
application of machine condition monitoring.

The final part is about two other state of the art methods including local mean
decomposition and stochastic resonance. Chapter 12 proposes a time-frequency
demodulation technique based on local mean decomposition which is utilized in
extracting impulsive and modulated components of the rotor system and a gearbox.
Chapter 13 focuses on the application of stochastic resonance (SR) in mechanical
fault signal detection, and the ability of detecting weak signal is demonstrated
through numerical simulations and experimental verification.
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Signal Post-processing for Accurate
Evaluation of the Natural Frequencies

G.R. Gillich and I.C. Mituletu

Abstract In this paper, a signal processing algorithm to accurately estimate the
natural frequencies of structures for early recognition and assessment of cracks is
proposed. In standard frequency estimation, the precision increases if the frequency
resolution is improved. A finer resolution is achieved by increasing the analysis
time interval. Nowadays, there are many other methods to improve the spectrum
resolution, as the interpolation of spectral lines, zero-padding, zoom-FFT and so on.
The proposed algorithm stepwise crops the acquired vibration signal and performs a
spectral analysis. Superposing these spectra, an overlapped spectrum, with a dra-
matically increased resolution, results. This spectrum offers the possibility to
identify very precisely the natural frequencies, even for damages in early stage. The
algorithm was tested on generated and real-world signals and was proved to work
well, even in the case of fast damped or short signals.

1 Introduction

Damage assessment, implying the location identification and severity estimation of
cracks or other types of damage in structural members, using vibration data, has
received considerable attention in last decades [1–3]. The basic idea is that modal
parameters, such as frequencies or mode shapes, are functions of the physical
parameters (e.g. stiffness, damping or mass). A common approach is to extract the
modal parameters of the healthy structure as a baseline via modal identification
methods [4], all subsequent test results being afterwards compared with this data
[5]. Deviation of the modal parameters indicates the occurrence of damage. Thus, it
is possible to find the location and magnitude of the structural alteration if the effect
of the physical parameters changes upon the modal parameter is known [6].
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Numerous methods for damage assessment are presented in literature, differ-
entiated by the level achieved in damage identification [7], the type of excitation
[8], the number and the type of sensors involved in the structural monitoring
process, the complexity of the structure’s model and the algorithms applied to
recognize and quantify the physical parameter changes from the modal parameter
shifts. In engineering applications, the output-only damage detection methods are
the most promising, because the excitations are usually difficult to measure.
Therefore, it is desirable to involve detection methods based only on the measured
responses, without making use of excitation information [9].

In order to be seriously considered for in situ implementation, damage detection
methods should demonstrate that they can perform well under several limitations.
For instance, it is important to achieve good results with a small number of mea-
surement points, which should be selected a priori without knowledge of the
damage location. Another important issue is the possibility to discriminate changes
in the modal parameters due to damage from these resulting from variations in the
environmental and/or test conditions. Also important is the repeatability of the tests;
a reduced level of uncertainty in the measurements ensures the detection of damage
in an early stage. Because it fulfils the above-enounced requirements, the natural
frequency becomes the mostly utilized parameter for damage detection. Still, fre-
quency changes present low sensitivity to damage, so that frequency-based methods
require precise frequency evaluation.

2 Motivation

Damage detection methods based on the change in the natural frequencies are
performed by acquiring and processing vibration signals. The time-domain signal is
converted into the frequency domain by specific algorithms. For most structures the
range between the harmonics is sufficiently large so that it is easy to discern
between consecutive frequencies. However, problems in observing early damage
occur because small damages cause limited changes in the natural frequencies. This
happens because, in standard frequency evaluation, the frequencies are indicated at
equidistantly distributed spectral lines, whose position is dependent on the signal
length. Thus, for small structural parameter alterations, the frequency changes are
not indicated in the spectrum since the peak-amplitude moves to the inferior
spectral line. It results in the requirement of involving certain advanced algorithms
providing denser spectral lines and in this way increasing accuracy when fre-
quencies are evaluated.

In this work, we introduce a simple frequency evaluation algorithm and test it
against several simple methods presented in the literature. The application of this
algorithm, proved as exact and robust, will help in improving the early damage
recognition and precise location and severity estimation.
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3 Standard Frequency Evaluation

Vibration signals are continuous functions of time, thus analogue, as well as most
sensor outputs. The accelerometer presented in Fig. 1 produces an output signal that
is proportional to the acceleration of the system at the measurement coordinate.
This analogue time signal, depicted in Fig. 2a, is transmitted from transducer to an
electronic analogue-to-digital (A/D) converter which transforms it into a discrete
time series, resulting in a digital signal. Now, the digital code can be used by the
processor [10].

The A/D converter records the level of the signal at a discrete set of times.
Figure 2 illustrates the sampled acquisition of an analogue time signal, where the
time s elapsed between each sample is

s ¼ 1=FS ð1Þ

if FS denotes the sampling frequency. In the case of the National Instruments
acquisition module NI 9233, shown in Fig. 1, the sampling frequency is

FS ¼ 50;000=m ½Hz� ð2Þ

with m an integer less than 25. In practice, a collection of points with information
on the amplitude at discrete and regular intervals of times is achieved, as shown in
Fig. 2b.

A/D conversion of a signal x(t) means to ensure an amplitude value for each
discrete time k�s, with k = 0, 1, 2, …N−1. If the individual amplitudes are denoted
x½k� ¼ xðksÞ, the signal xðtÞ is represented by following sequence:

xf g ¼ x½0�; x½1�; . . .; x½k�; . . .; x½N � 1�f g ð3Þ

The process of converting a continuous sinusoid of amplitude a and frequency f
into a discrete signal follows:

xðtÞ ¼ a sinð2pftþ/Þ ! x½s� ¼ xðksÞ ¼ a sinð2pfksþ/Þ ð4Þ

Fig. 1 The analogue-to-digital converter NI 9233 and a piezoelectric PCB accelerometer
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The sequence xf g is also called the sampled version of x(t). It contains no
explicit information about the sampling frequency (or sampling rate) FS. However,
because the number of samples N and the sampling time s are known, the signal
length (or acquisition time) is derived as

TS ¼ ðN � 1Þs ¼ ðN � 1Þ
FS

: ð5Þ

The conversion to discrete signals is in direct relation to the chosen sampling
time s respectively the sampling frequency FS. A perfect signal reconstruction from
the sampled values is possible, so Nyquist-Shannon sampling theorem, if the signal
frequency does not exceed the half of the sampling frequency, i.e. f\FS=2.
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Fig. 2 The analogue and converted digital signal
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Any complex signal can be synthesized from a linear combination of harmonic
functions. The inverse process, the analysis, permits decomposition of complex
signals in harmonic components. One of the most utilized algorithms to represent a
function in the frequency domain, aiming to highlight the harmonic components, is
the Discrete Fourier Transform (DFT). It processes discrete signals of finite time,
being ideal for processing information stored in computers.

For multi-frequency signals, the sequence in Eq. (3) can be expressed as a sum
of complex sinusoids

x½k� ¼
XN�1

j¼0

aje
i2p k

N�1j ð6Þ

where j is the sinusoid index, and, by definition

aj ¼ 1
N

XN�1

j¼0

x½k�e�i2p k
N�1j ð7Þ

Let the continuous time function x() be an approximation to the original con-
tinuous time function from which the xf g sequence was obtained

xðksÞ ¼
XN�1

j¼0

aje
i2p k

N�1j for x 2 R ð8Þ

or

xðtÞ ¼
XN�1

j¼0

aje
i2p j

N�1
t
s ¼

XN�1

j¼0

aje
i2pfj t ð9Þ

where fj is the frequency of the jth component, defined as

fj ¼ j
ðN � 1Þs ¼ Df � j ð10Þ

From Eq. (10) one can observe that the frequencies for which the analysis is
performed are equidistantly distributed, the interval between two consecutive fre-
quencies, called frequency resolution, being

Df ¼ 1
ðN � 1Þs ¼

1
TS

ð11Þ

The DFT of the discrete sequence xf g will indicate, at the jth spectral line, the
amplitude
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X½j� ¼ Naj ¼
XN�1

k¼0

x½k�e�i2p j
N�1k ð12Þ

in the frequency domain. If frequencies fj are considered in stand of spectral line
numbers j, Eq. (12) becomes

X½fj� ¼
XN�1

k¼0

x½k�e�i2pfjt ð13Þ

As a consequence, an input signal with N samples result in a DFT
will N spectral lines. In Fig. 3, constituting the frequency spectrum, the individual
values of X[j] for j = 0 … N − 1 spectral lines are indicated. One can observe that
the number of samples in both the time and frequency representations is the same.
Equation (13) shows that regardless of whether the input signal x[k] is real or
complex, X[j] is always complex [11]. For real signals, such as those obtained from
the output of a DAQ device, the DFT is symmetric, with the following property

X½j�j j ¼ X½N � j�j j ð14Þ

Obviously, only half of the spectral lines of the DFT need to be computed or
displayed, because the symmetry makes the information redundant.

Having a look onto Fig. 3 one can observe that it is sufficient to analyze the DFT
only for N/2 samples, corresponding to a frequency

mirrored domain 

N/2 N-1

max 2
SFf =

Δf

Fig. 3 Amplitude spectrum of a sampled signal
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fNy ¼ N
2
Df � 1

2s
¼ FS

2
; ð15Þ

called the Nyquist frequency. An analysis regarding the influence of the nature of
N on the spectral lines distribution and the maximum achievable frequency fmax is
worth of attention. It shows that the estimated number of samples N/2 which should
be involved in the spectral analysis is a row approximation. A precise evaluation of
fmax is made in Table 1, constructed using the property stated in Eq. (14).

If N is an even number, the equivalent frequencies are on the lines

N � j � N � jþN ¼ �j ð16Þ

whereas, if N is an even number, the equivalent frequencies are on the lines

N � 1
2

þ j � N � 1
2

þ j� N ¼ j� N � 1
2

ð17Þ

The switch from positive to negative frequencies takes place for the first fre-
quency whose value would be equal to or larger than the Nyquist frequency. The
index of these frequencies and the frequencies itself are marked in dark background
in Table 1. Note that the index j for which this happens, if even number of samples
are chosen, is actually (N/2) + 1. For an odd number of samples, the index for
which fmax is achieved is (N + 1)/2.

A more powerful tool for frequency evaluation is the power spectrum (PS),
defined as

P½fj� ¼ 1
N

XN�1

k¼0

x½k�e�i2pfjt

�����
�����
2

¼ 1
N

X½fj�
�� ��2 ð18Þ

Table 1 Spectral line distribution and the corresponding frequencies

Index number N is an even number N is an odd number

Index value j Frequency fj Index value j Frequency fj
1 0 DC 0 DC

2 1 Df 1 Df

3 2 2Df 2 2Df

… … … … …

j + 1 N
2 ± N

2 Df ¼ fmax
N�1
2

N�1
2 Df ¼ fmax

… … … N�1
2 þ 1 � N�1

2 Df

… … … … …

N−1 N−2 −2Df N−2 −2Df

N N−1 −Df N−1 −Df
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which is typically used to examine the various frequency components of a signal.
The representation of all frequency-amplitude pairs for all spectral lines characterize
the signal in the frequency domain and is the so-called periodogram. Note that, in
case of PS the spectral lines are identically distributed as in the case of DFT. Further
we will use the PS.

The main disadvantage of these frequency estimators is the weak frequency
resolution, especially in the case of short-time signals, as in damage detection
occurs. This will be demonstrated by applying the PS to a sequence representing a
sinusoidal signal with frequency f = 4 Hz and amplitude A = 1. Two cases are
exemplified. In the first case, the sequence has a length TS1 = 1 s, therefore con-
taining an integer number of periods, as shown in Fig. 4a. The PS of this signal,
plotted with a red line in Fig. 5, precisely indicate the frequency of 4 Hz at the 5-th
spectral line. The amplitude is also correct indicated, the value 0.5 being expected
since the energy is distributed into two spectral lines. Note that just one of them is
visible in Fig. 5, because the spectrum is a single-sided representation.

In the second case, the signal sequence has the length TS2 = 1.1 s. As shown in
Fig. 4b, it does not contain an integer number of periods. Its PS is plotted with a
blue line in Fig. 5. Even if the spectral lines are denser, the frequency is not
accurately evaluated, while we found a peak at 3.6036 Hz instead of 4 Hz. For this
frequency, the amplitude 0.2748 is obtained in stead of 0.5 as expected. Thus,
neither the frequency nor the amplitude is correct indicated.

This happens, for the second example, because the energy is dispersed into
“phantom” frequencies while no spectral line coincides with the real frequency. The
phenomenon, known as spectral leakage, causes also an apparent amplitude
decrease because the energy is divided between more spectral lines [12]. The
estimated frequency can differ from the real frequency value with at most a half of
the frequency resolution, which is emax = Df/2. This error cannot be predicted,
because it depends on the signals period T = 1/f, which is obviously not known
before the measurement takes place. Several techniques to improve the frequency
readability are known. We present in the next sections three simple methods; they
will be tested for a sinusoidal signal against an original method proposed by the
authors.

4 Simple Methods to Improve the Frequency Readability

The simplest attempt to improve the frequency readability consists in increasing the
observation time TS. The increased signal length has as consequence the decrease of
the width between tow consecutive spectral lines, i.e. a finer frequency resolution
Df. Figure 6 presents the PS for the sinusoid described in the previous section,
having the frequency f = 4 Hz and the length TS1 = 1.1 s. The signal was generated
by N = 110 samples, with a sampling frequency rate FS = 100 Hz. The PS indi-
cates a false frequency, f1 = 3.6036 Hz, the resulted error being e1 = 0.3964 Hz.
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For the signals with increased observation time, TS2 = 2.2 s and TS3 = 3.1 s
respectively, the frequency resolution Df decrease two respective three times, in
accordance to Eq. (11). The signals, presented in Fig. 7a are generated at N2 = 221
respectively N3 = 311 samples. One can identify in Fig. 6 the frequencies
f2 = 4.0724 Hz respectively f3 = 3.8585 Hz; both of them are more precisely as
that found for TS1. The errors are thus reduced to e2 = 0.0724 Hz respectively
e3 = 0.1415 Hz. This experiment shows that a finer frequency resolution leads to
lower maximum possible errors, but it does not guarantee an improvement in the
frequency estimation.

Fig. 4 Sinusoid with integer number of periods (a) and non-integer number of periods (b)
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If increasing the observation time cannot be done, for instance in the cases of
signals acquired from free damped vibrations, the signal length can be artificially
extended by adding a number of samples for which the amplitude is null [13, 14].
The procedure, illustrated in Fig. 7b, is known as “zero-padding”. The exemplified
signal has the length TS3−ZP = 3.1 s, and it takes the same frequency resolution
Df3 = 0.322851 Hz as the sinusoid with the similar time length (see Fig. 8). The
disadvantage of this procedure is the dramatic decreasing of the amplitudes, which
can make it not operative. Table 2 presents the settings of the three simulated
signals and the PS output in terms of frequencies and amplitudes.

Signal windowing is considered an alternative method which improves the
frequency readability. When performing Fourier or spectral analysis on finite-length
data that contain non-integer number of cycles, the application of a window

Fig. 5 Power spectrum of the two signals

Fig. 6 Reduced distortion effect
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smoothes the signal ends, making the amplitude to vary gradually towards zero at
the ends [15, 16]. This minimizes the discontinuities of the finite-time signal edges,
reducing spectral leakage.

Firstly, the effect of windowing is analyzed for a sine with the frequency
f = 4 Hz and the amplitude A = 1. The signal is generated with N = 321 samples by
a sampling frequency FS = 100 Hz, resulting in a signal time length TS = 3.2 s.
The PS for the original signal is plotted in Fig. 9. In addition, three other spectra are
plotted for the signal for which three types of windows were applied: Hamming,
Blackman-Harris and Flat top. One can observe in Fig. 9 that windowing does not

Fig. 7 The signal with extent length due to observation time increasing (a) and zero-padding (b)
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Fig. 8 Increasing the frequency resolution through zero-padding

Table 2 Settings for the frequency evaluation and the achieved results

Signal name Color Signal settings PS results

TS [s] N FS Df [Hz] f [Hz] A e [Hz]

Sine 1 Blue 1.1 111 100 0.909091 3.6036 0.2748 0.3964

Sine 2 Red 2.2 221 100 0.454545 4.0724 0.4674 −0.0724

Sine 3 Brown 3.1 311 100 0.322851 3.8585 0.26 0.1415

Zero-padded Brown 1.1 + 2 101 + 200 100 0.322851 3.8585 0.0625 0.1415

Fig. 9 PS of a sine in the absence and the presence of windowing
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improve the frequency readability since the spectral lines maintain their location
(Df is unchanged). Moreover, for a single-tone signal, the amplitudes indicated at
the spectral lines next to that corresponding to the pick amplitude have increased
values.

A second test regarding the signal windowing is performed on a two-tone signal,
composed by two sinusoids with the frequencies f1 = 4 Hz respectively f2 = 7 Hz,
and amplitudes A1 = 1 respectively A2 = 0.0025. The signals were generated using
N = 325 samples, with a sampling frequency FS = 100 Hz, resulting in a signal
time length TS � 3.2 s. The PS in linear representation, presented in Fig. 10a, is not
able to indicate both frequencies. In contrary, the representation of the results in dB
plotted in Fig. 10b highlights the existence of a second frequency at 7 Hz, even if
this frequency component has for very small amplitude. However, the frequency
values cannot be accurately extracted.

Fig. 10 Representation of the PS for a two-tome signal in the absence and the presence of
windowing: a linear, and b dB representation
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As a conclusion, the previously presented methods can be used to reduce the
possible error range by decreasing the distance between the spectral lines (extension
of the observation time or zero-padding), or to indicate the existence of closely
located frequencies (windowing). But, for short-time signals commonly used in
damage detection, as free damped vibrations are, the achieved precision is insuf-
ficient, so that other methods have to be investigated.

A method for which an inter-line frequency is found relies on plotting a curve
best fitting to three consecutive points obtained in the PS: B(fj−1, Aj−1), C(fj, Aj) and
D(fj+1, Aj+1). Among them, C is always a local maximum in the PS, as shown in
Fig. 11. Thus, the evaluated frequency is not directly linked with the spectral line
position in the periodogram. The frequency fcorr considered as correct is correlated
with the amplitude Amax found as the curve’s pick value. The fractional correction
term is d = fcorr−fj.

There are several functions used to evaluate the peak location, and therefore the
corrected frequency in the periodogram. In [17–19] parabola approximation for
peak determination is used, so the correction term is given by

d ¼ Ajþ 1 � Aj�1

4Aj � 2Aj�1 � 2Ajþ 1
ð19Þ

For exemplification of the method, a sine signal with a generated frequency
f = 4 Hz was analysis. As shown, the frequency resolution Df = 1/TS dependents on
the signal time length TS. The aim of this experiment is to highlight the influence of
the observation time TS upon the method’s precision. Therefore, signals with time
lengths between Tmin = 0.65 s to Tmax = 1.35 s have been created. Table 3 presents
12 simulation cases, reflecting the phenomenon for a signal length of 1 cycle,
around the central observation time of TS = 1 s. Obviously, different frequency
resolutions are achieved for the different time lengths, and the frequency-amplitude

Fig. 11 The interpolation of three points from PS
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pairs result in consequence. The standard frequency evaluation is preformed by
involving the PS for each observation time. Three of the amplitudes are indicated
for all simulation cases; always the pick value is taken in central position. For this
value the frequency estimated by the standard method is also provided. Figure 12
shows the pick amplitude for all analyzed cases.

The fractional correction term d is derived using Eq. (19) from the sequence of
amplitudes specific for each time length. This parameter is used to correct the read
frequency. Figure 13 presents a comparison between the frequencies attained by
standard evaluation and those derived with the correction term. It results that there
are time lengths for which the correction improves the results, but the frequencies
are still not exact estimated.

Two specific domains, located around the two types of characteristic points, are
observable in Fig. 13. The first characteristic points are defined by the time lengths
for which the signal achieves integer number of cycles (e.g. TS = 1 s). Thus, the
first domain is symmetrically located around these points, for instance the TS in the
range 0.95–1.05 s. Here, the frequencies are similarly estimated, irrespective to the
evaluation method. The closer the TS to the domain center, the higher the precision
in evaluating frequencies is, because the position of the spectral line becomes closer
to the real frequency. If the TS match an integer number of cycles, e.g. 1 s, the
frequency is perfectly estimated.

The second type of characteristic points are centered between the first one, so
that the time lengths past with one half the integer number of cycles. For the signal
with frequency f = 4 Hz, on of these point is TS = 1.125 s. Around these points a
second domain exists, for instance the TS in the range 1.05–1.2 s. Having a look
onto Fig. 13 one can observe that, for these domains, the interpolation method
improves the frequency readability, but even so, the errors are more important as
that achieved in the first domain.

Table 3 Frequency achieved by standard evaluation and after correction with the term d

TS
[s]

Df
[Hz]

fread
[Hz]

Aj�1

[–]
Aj

[–]
Ajþ 1

[–]
d
[Hz]

fcorr
[–]

error
[%]

1.12 0.892857 3.57143 0.03298 0.24431 0.16687 0.23184 3.80327 −4.92

1.1 0.909091 3.63636 0.03136 0.30907 0.11468 0.08825 3.72461 −6.88

1.08 0.925926 3.70370 0.02457 0.36470 0.07369 0.03892 3.74262 −6.43

1.06 0.943396 3.77358 0.01555 0.41093 0.04182 0.01718 3.79077 −5.23

1.04 0.961538 3.84615 0.00744 0.44977 0.01844 0.00629 3.85245 −3.69

1.02 0.980392 3.92157 0.00203 0.48110 0.00439 0.00124 3.92281 −1.93

1 1 4 0 0.5 0 0 4 0

0.98 1.020408 4.08163 0.00291 0.49826 0.00329 −0.00019 4.08183 2.05

0.96 1.041667 4.16667 0.01473 0.46947 0.01011 −0.00253 4.16414 4.10

0.94 1.06383 4.25532 0.04106 0.41407 0.01601 −0.01624 4.23908 5.98

0.92 1.086957 4.34783 0.08572 0.34072 0.01851 −0.05822 4.28960 7.24

0.9 1.111111 4.44444 0.14709 0.26275 0.01783 −0.17925 4.26520 6.63
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The errors resulted from frequency evaluation, if the correction term is applied,
are plotted in Fig. 14. One can observe that the error varies cyclically, depending on
the central point C position in the PS. It should also be noted that the maximum
expected error decrease with increasing of the observation time.

Fig. 12 PS pick values Aj versus observation time TS

Fig. 13 Estimated frequency values fread and fcorr versus observation time TS

Fig. 14 Errors attained for the estimated frequencies fread and fcorr
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Nor of the methods above presented satisfy the requests of precision in fre-
quency evaluation for damage detection processes [20, 21]. Early, effective damage
detection imposes accurate frequency estimation and, in addition, the possibility to
observe minor changes in the modal parameters if physical or geometrical
parameters of a structure are lightly affected [22]. This implies the use of simple but
performant signal processing algorithms, which are capable to provide power
spectra with very dense spectral lines, even for short-time signals. The next section
describes an original signal post-processing algorithm who permits a dramatically
improvement of the frequency readability.

5 Description and Implementation of the Iterative
Algorithm

The algorithm is step-described, in order to clearly get the right idea about how it
works [23]. In the main, it acts as an iterative loop, decreasing a certain number of
samples from the original acquired signal, converting each achieved signal in a
frequency spectrum and overlapping the spectra in order to realize a higher reso-
lution spectrum. In the following, this spectrum will be assumed as
overlapped-spectrum (OS). The overlapped-spectrum instead of one certain spectral
line (SL) of significant amplitude shows a lobe shape formed by a number of bins
equal to the number of iteration.

Figure 15 aims only to illustrate the SLs distribution in the case of OS.
Therefore, all the amplitudes of SLs are equal to the unit. Three superposed spectra
(S1, S2, S3) achieved after applying the algorithmic post-processing procedure are
supposed. The frequency resolutions are in the following relation Kf1 < Kf2 < Kf3,
corresponding to the signal lengths T1 > T2 > T3.

Fig. 15 SLs distribution for the OS resulted by superposing three spectra with different frequency
resolutions: Kf1 = 1 Hz, Kf2 = 1.05 Hz and Kf3 = 1.11 Hz
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In Fig. 15 can be observed that even if frequency resolution decreases, by
superposing those spectra the distance between SLs has been decreased. This means
that the frequency resolution of the resulted OS significantly increases in com-
parison to one of the individual spectra. Also, even if the bins in the overlapped
spectrum are not equidistant, the higher density greatly increases and thus the
probability as one of the SLs to fit more accurately the desired frequency.

For a faster understanding, the algorithm working principle can be resumed to
the following steps:

– it takeover the acquired data, corresponding to the vibration signal in the
time-domain;

– a certain number of samples are iteratively decreased, this could be assumed as a
rectangular windowing applied to the signal;

– a Power Spectrum analysis is performed for all truncated signals, in this way
individual spectra are achieved;

– in the end, all the achieved spectra are overlapped to obtain an OS of much
higher resolution.

It has to be taken into account the algorithm steps must be repeated for each
desired frequency f. The desired frequency value is in relation with the decreased
sample’s number NS via its corresponding period T, acquisition period TS and
sample’s number of the original signal N:

NS ¼ 1� 1:3
n

� �
� N; n ¼ TS

T
ð20Þ

where n > 1.3.
Also, after algorithm decreased a number of samples NS equivalent to the time

length TD, the variation of frequency resolution can be appreciated:

Df � ¼ DfD � Df ð21Þ

where Df is the initial resolution, corresponding to the TS, and the resolution after
the signal portion is cropped out:

DfD ¼ 1
TS � TD

ð22Þ

As pre-conclusion, it should be said the iterative algorithm offers the possibility
to more accurately evaluate the frequency insofar a denser spectrum is achieved.

As logic structure, the iterative algorithm has been implemented in a numerical
form by the help of LabView software. In the main, it consists of a conditional loop,
having one input and one output (Single Input—Single Output SISO). Data file
corresponding to the acquired vibration signal is applied to the input, at the output
accomplishing the OS in a graphical view.
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The “Block Diagram” (BD) window of LabView ensures the placement and
interconnectivity of functional blocks. As example, instead of real vibration signal,
the input data can be provided from an auto-generated signal by using the func-
tional block “Simulate Signal” (SS), where the waveform, amplitude, frequency,
length and number of samples were previously set. The more important part of
algorithm block diagram (ABD) is the logic structure placed in the conditional loop,
where “Extract Portion of Signal” (EPS) and “Spectral Measurements” (SM) blocks
perform signal cropping and spectral analysis. At the end of iteration, all accom-
plished data are sending to the “Graph” (G) block named Display Resulted Spectra
(D.R.S.). Data are presented as graphical OS in a different window “Front Panel”
(FP). The parameters chosen to be set or visualize are shown in FP as well.

Figure 16 presents the BD image that is meant to comprehensively clear up all
the aspects associated with the algorithm implementation. In the image can be also
seen two bordered areas, which specify the alternatively way to input the signal

Fig. 16 Software implementation of iterative algorithm
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(1) of analysis and graphically display the results (2). The algorithm input can be
provided from one or more SSs, or from a data file (“File Name”) via the “Read
From Measurements” (RFM) block. Data file must contain an Analog to Digital
Conversion (ADC) data stream of a real vibration signal. The (2) block performs
modifications on graphical view of the results, in order to have more options for
displaying the frequency bins. Same color for all frequency bins not allows the
individual spectra to be distinguished; it only shows the resolution increasing.
Different color for each spectrum highlights the participation of any spectra to the
resolution of OS.

The abbreviated forms of parameters included in the Fig. 16 are explained
Table 4. Also, for each of them is presented the sense of consideration (as input or
output).

Above parameters should not be considered only for simple signal cropping and
iteration, but also to create many possibilities of data and results management from
whatever section of the algorithmic structure. Therefore, considering important the
way in which the iterative algorithm performs in applications, to get suitable
information and more details some examples are presented in the next chapter.

Table 4 Parameter’s meaning

Parameter Sense Detail

A1 Input Signal amplitude

F1 Input Signal frequency

Ref.F. Input Reference frequency—expected to reach by analysis

Ref.P. Output Reference period—corresponds to Ref.F.

T.S.N. Input Total samples number—all signal samples considered in test

S.I. Input Sampling interval—whole signal length in time

S.T. Output Sampling time

B.S. Input Begin sample—first sample from the signal left-side

A.S.N. Output All samples number—remaining samples after last iteration is done

Start.It. Input Start iteration—sample whence algorithm begins the iterative
cropping

It.S. Input Iteration step—number of samples cropped at iteration

Stop.It. Output Stop iteration—number of samples cropped at the iteration end

In.It.N. Output Initial iteration number—resulted by computing

Real.It.N. Output Real iteration number—resulted by applying It.S. to In.It.N. and
rounding

O.S. Output Original signal—graphically displayed

P.S. Output Portioned signal—graphically displayed when the iteration ends

D.R.S. Output Display resulted data—data displayed as overlapped-spectrum
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6 Testing the Algorithm Efficiency

These examples were considered to check the algorithm efficiency. In the first
example the algorithm performs the analysis of one auto-generated signal at a
precise value of 9.753 Hz. Set values for the involved parameters are given into the
Table 5. The dark background marks the parameter auto-computed values after the
algorithm starts.

In order to have a clear view on the cropped portion of the original signal,
Fig. 17a shows entire signal and Fig. 17b the remained portion, after algorithm
decreased a number of samples equivalent to the period TD that corresponds to
9.5 Hz.

Figure 18 presents the main lobe formed around to 9.753 Hz and a zoomed area
of lobe’s peak. All the spectra of OS are displayed in blue. In the zoomed area it is
can be observed that a certain frequency bin precisely fits the 9.753 Hz value.

The second example aims the analysis of a real vibration signal. The input signal
was previously acquired using the test stand depicted in the Fig. 19. In experiment a
cantilever beam fixed to the left-side has been involved.

The cantilever beam has the geometric and mechanical characteristics given in
Table 6.

The meaning of the parameters involved in Table 6 is: l—length of a beam, w—
width of the beam, t—thickness of the beam, I—moment of inertia, q—mass
density, E—Young modulus and m—Poisson’s ratio. Left-end of the beam was
fixed in a milling machine vise.

The acquisition hardware equipment consists in: computer, compact chassis NI
cDAQ-9172, signals acquisition module NI 9234 and accelerometer Kistler 8772.
The accelerometer is mounted near by the free end of the beam.

Table 5 Main parameters involved in the algorithm

S.I. [s] T.S.N. S.T. [s] Ref.F. [Hz] Start It. It.S. Real It.N.

1 10,000 10−4 9.5 0 4 250

Fig. 17 Entire signal (a) and remained portion after TD segment was cropped (b)
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Fig. 18 Main lobe formed at 9.753 Hz and the peak zoomed area

Fig. 19 View of the experimental stand

Table 6 Geometric and mechanical characteristics of the cantilever beam

l [mm] w [mm] p [mm] t [mm] I [m4] q [kg/m3] E [N/m2] m [–]

1000 50 410 5 520.833 � 10−12 7850 2.0 � 1011 0.3
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The algorithm has to be tuned up for each desired frequency, as explained above,
and so that two examples of setup, for the frequencies of first two vibration modes,
are given in Table 7.

Figure 20 presents the spectrum adjusted area in order to display as clearly as
possible the above mentioned two frequencies, with a zoom on the peak of the first
frequency. Here, the different color for each spectrum of OS can be remarked.

By the algorithm setup the achievement of the first five weak-axis bending
vibration modes has been performed, each mode has been analyzed for five times
and the average value was kept as final. The values are given in the Table 8.

Table 7 Parameter values involved in the algorithm setup

S.I. [s] T.S.N. S.T. [s] Ref.F. [Hz] Start It. It.S. Real It.N.

10 50,000 2 � 10−4 9.5 100 10 57

10 50,000 2 � 10−4 65 0 1 77

Fig. 20 Frequencies corresponding to first two vibration modes

Table 8 First five natural frequencies achieved for the undamaged cantilever beam

Mode
number

Test 1
[Hz]

Test 2
[Hz]

Test 3
[Hz]

Test 4
[Hz]

Test 5
[Hz]

A [Hz]

1 10.86955 10.86896 10.8686 10.87029 10.86977 10.86943

2 69.74296 69.73753 69.73018 69.74354 69.742 69.73924

3 195.2166 195.1993 195.1931 195.21 195.2072 195.2052

4 383.1953 383.0578 383.1829 383.2283 383.0092 383.1347

5 633.5744 634.2199 633.7255 633.3499 632.7726 633.5285
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Analyzing these values little differences between the values of frequencies for
each mode are observed, they being less than 0.97 Hz in absolute and 0.6% in
percentage. The differences can be explained as occurring due to the initial phase of
the different modes and the relative values of the acceleration amplitudes.

As conclusion of this chapter, performing many analyses on cantilever beams
with different dimensions, having a significant variation of damages, as location and
severity, method confirms its effectiveness in improving the readability of fre-
quencies, especially in the case of short time signals [24].

7 Conclusions

In this paper, a signal post-processing method for accurate identification of the
natural frequencies was comprehensively presented. The method is based on an
iterative algorithm, which performs the step-cropping of the acquired vibration
signal, analyzes the truncated signal at each step and realizes a much denser
overlapped-spectrum. This overlapped-spectrum offers the possibility to identify
natural frequencies with higher precision.

The algorithm working way has been presented and exemplified for a generated
signal and same real vibration signals. In all cases, more accuracy in frequency
identification was accomplished. Therefore, the method is strongly recommended in
case of rapid vibration damping and small cracks. The method work-limits depend
only on the precision of signal acquisition and sampling frequency value, mainly
for short time signals.
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Holobalancing Method and Its
Improvement by Reselection
of Balancing Object

Yuhe Liao and Liangsheng Qu

Abstract Based on the idea of multi-sensor information fusion, one of the main
problem—insufficient utilization of rotor vibration information—existing in the
traditional rotor balancing methods is solved. By integration of all the amplitude,
frequency and phase information, the Holobalancing method can help to correct the
rotor balancing state more accurately and efficiently than other traditional methods.
The field balancing capability has been greatly improved therefore. Since the
Holobalancing method truly considers the characteristics of system support stiffness
anisotropy, the unreasonable isotropic assumption adopted in traditional balancing
methods is no longer required therefore. The balancing result of the Holobalancing
method is more reliable and fewer number of trial runs is needed. Recently, the
Holobalancing method is further improved by reselection of balancing object. With
the Initial Phase Vector (IPV) being replaced by its forward precession component
(IPV+), the impact of probe orientation on the balancing analysis and calculation is
completely eliminated and the computational procedure is greatly simplified
without sacrificing the balancing accuracy. The experiments and field application
cases verify the effectiveness and reliability of this method.

1 Introduction

The Holobalancing method is developed on the basis of the Holospectrum tech-
nique [1, 2]. It is the application of multi-sensor information fusion theory in the
field of rotor dynamic balancing technology. Holospectrum, which is formed by
integration of the spectral lines obtained by the FFT of the rotor vibration signals
collected from two mutually perpendicular radial directions, can be seen as a kind
of orbit spectrum or modified FFT spectrum containing phase information.
Therefore, the Holospectrum is actually an information fusion method implemented
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in frequency domain [3]. Since the Holospectrum contains all the vibration
amplitude, frequency and phase information of a machine set, it is more reliable and
accurate in identifying the complex faults with similar vibration response spectrum
structure than conventional FFT spectrum. The rotor dynamic balancing technology
is then further promoted by a new method developed on the basis of this
Holospectrum technique, which is called Holobalancing. By fusing the vibration
data, not only the signal analysis can be extended from one-dimension to
multi-dimension, it also makes the rotor balancing process more reliable and effi-
cient. This method breaks through the limitations of some simplifying assumptions
in the traditional balancing methods. The rotor spatial precession characteristic is
fully considered in the analysis process of the Holobalancing method. The intro-
duction of genetic algorithm optimization and computer simulation technique in the
Holobalancing method further increased the accuracy and efficiency of this
method [4].

In the Holobalancing method, rotor vibration information, as well as the system
dynamic characteristic response, is expressed in the form of Three-dimensional
Holospectrum (abbreviated to 3dH). The rest part of this chapter begins with the
introduction of the basic theory of Holospectrum technique. Then some key con-
ceptions and core issues of the Holobalancing method are discussed in detail. Based
on that, the basic theory of the Holobalancing method and its improvement are
presented. Finally, the capability and effectiveness of this method is verified by
laboratory experiment and a field application case.

2 Construction of Holospectrum

2.1 Basic Condition Required

The movement of a rotor during its operation is actually a combined motion of a
rotation on its own axis and a revolution round the bearing center line and is called
precession in rotor dynamics. In fact, it can be seen that there are two coplanar and
mutually perpendicular probes installed on each bearing section of almost every
large scale rotating machinery. This arrangement makes the machine set running
condition monitoring and vibration analysis more reliable. However, if the vibration
signals collected from different radial directions are only analyzed independently, a
complete description of the rotor spatial precession situation could not be achieved.
The influences of damping effect and system stiffness anisotropy are the reasons
why vibration signals collected from different radial directions are generally also
not the same. It is then of great importance to find a new information fusion
approach to accurately and directly describe the overall vibration situation of the
whole rotor system. This is the primary motivation for the development of
Holospectrum.
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In essence, Holospectrum is a kind of modified FFT spectrum. Through
reconstruction of the orbits of different orders of harmonic and/or sub-harmonic
components in the frequency domain, Holospectrum gives a complete description
of the precession situation of the whole rotor system. However, since the infor-
mation fusion are all implemented in data layer, some rigorous requirements for the
vibration signals participating in information fusion must be satisfied, as follows:

(1) Consistency of probe installation

Unlike the traditional FFT spectrum, a two-dimensional Holospectrum (2dH)
should contain all the vibration information of a rotor test section. Therefore, it is
required that two coplanar and mutually perpendicular probes must be installed on
every rotor vibration test section and at least one keyphasor is also necessary to get
the phase information. The two probes should be perpendicular to each other and
both point accurately to rotor axis along radial direction. In field applications there
are two most common probe installation ways–horizontal to vertical and left 45° to
right 45°, as shown in Fig. 1.

One obvious advantage of the Holospectrum is that the structure and shape of
2dH are both independent of the probe mounting orientation. This is also one of the
most excellent features that normal FFT spectrum doesn’t possess. In fact, as long
as the installation of probes follows the rules mentioned above, the Holospectra
obtained will be all the same no matter which scheme is actually adopted. As shown
in Fig. 2, the left side of the figure gives the probe orientation and it can be seen that
the two 2dH shown in the right side are exactly the same. This feature excludes the
uncertainty brought by probe orientation to vibration waveform and spectrum and
makes fault diagnosis much more reliable.

As to the construction of 3dH, it is required that all the probes mounted on every
test section along the shaft train should follow one same scheme. This is the
consistency demanded for probe installation.

Fig. 1 Common probe installation
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(2) Consistency of probe characteristic

This requires that the probes used in one machine set should all have identical
physical characteristic, including the linear response range, sensitivity coefficient,
etc.

(3) Consistency of signal transmission path

This requires that the vibration signals should be transmitted via similar paths from
its source to the test probes. This ensures all signals have identical transfer functions
and signal characteristics during transmission.

(4) Consistency of sampling frequency
(5) Consistency of the sampling start time

This requirement ensures all signals collected have a reliable phase relationship,
which corresponds to one common sampling start time. It is of vital importance to
the construction of 3dH that the sampling of all signals begins at the same moment.

(6) Accuracy of fusion information

The information involved in the fusion process includes the amplitude, phase and
frequency of all the related components of the vibration signals. Considering the
fact that the characteristic frequency of some faults (such as oil whirl) may locate in
the sub-harmonic area, no matter which sampling method is applied the spectral
peak interpolation correction technique is always necessary to ensure the correct-
ness of related information.

2.2 Three-Dimensional Holospectrum (3dH)

In the Holobalancing method, the rotor vibration response (including the Transfer
Matrix, i.e. the rotor characteristic response) appears in the form of 3dH. 3dH is
constructed by connecting all the rotational frequency orbit of the whole rotor
system with generating line. The relationship between 2dH and 3dH is given in
Fig. 3.

Fig. 2 2d-Holospectra of
different probe orientations
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It can be seen that only the rotational frequency components (i.e. 1X harmonic or
the 1st order component) in the 2dH of every test section are used to form 3dH of
the whole rotor system. This is because the 1X harmonic frequency components are
the characteristic vibration response of rotor mass unbalance. For the convenience
of further discussion, only these 1X components are considered hereinafter.

Suppose there are n bearing test sections along the rotor of the whole machine
set and the 1X rotational frequency components, which are obtained by spectral
peak correction if necessary, of the ith bearing test section are

xi ¼ Ai cosðxtþ aiÞ
yi ¼ Bi cosðxtþ biÞ

(
ð1Þ

Equation (1) can also be seen as the parametric equation of the elliptical pre-
cession orbit of the rotor axis at the ith test section, which can be further expanded
to

xi ¼ sxi sinðxtÞþ cxi cosðxtÞ
yi ¼ syi sinðxtÞþ cyi cosðxtÞ

(
ð2Þ

Equation (2) indicates that, if system rotational speed x is constant, any ellip-
tical orbit can be completely determined by the coefficients of the Sine term [sxi, syi]
and Cosine term [cxi, cyi].

Therefore, the 3dH of the whole rotor system can be expressed in matrix form, as
shown in Eq. (3).

R ¼
sx1 cx1 sy1 cy1
sx2 cx2 sy2 cy2
..
. ..

. ..
. ..

.

sxn cxn syn cyn

2
6664

3
7775 ð3Þ

Fig. 3 Relationship between 2dH and 3dH (the example rotor contains 6 test sections)
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Besides, 3dH can also be expressed in a more intuitive way. Figure 4 gives the
construction procedure of a 3dH of a 300 MW steam turbine generator set. Here the
whole machine set contains one high pressure cylinder, one intermediate pressure
cylinder, two low pressure cylinders and one generator. There are six rotors and ten
bearing test sections along the shaft train. Using generating lines to orderly connect
the points on every two adjacent orbits sampled at the same moment, we get the
3dH in graphical form. Figure 5 gives a typical 3dH of a rotor system with mass
unbalance.

Figure 5 and Eq. (3) are two different kind of expressions of 3dH and they can
be used in different occasions. Obviously, the graphical form (like Fig. 5) is more
intuitive and shows the specific vibration fault type directly, while the matrix form
(Eq. 3) is more convenient in balancing analysis and calculation.

For clarity only the first four sections are presented here in Fig. 5. The three
essential elements necessary for the construction of graphical formed 3dH are:

(1) Rotational Frequency Orbit. Generally, the precession orbits are ellipses of
different size and eccentricity. The size of the orbit, represented by the half
length of major axis of the elliptical orbit, reflects the level of vibration and the
eccentricity of the elliptical orbit gives the system stiffness anisotropic situation
at different bearing test section. Besides, the inclination of the orbit major axis
indicates the weak stiffness direction of corresponding bearing test sections.

Fig. 4 Construction procedure of 3dH
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(2) Initial Phase Point (IPP). IPP gives the rotor axis location on the precession
orbit at the moment when the keyphasor aims exactly at the key slot on the
rotor. IPP is also the first point sampled when the data sampling process starts.
Since the location change of IPP on the orbit directly reflects the change of
rotor balancing state, the tight relationship between IPP and the heavy point of
mass unbalance is the most important foundation for the establishment of the
Holobalancing method. Besides, the vector points from orbit center to the IPP is
named Initial Phase Vector (IPV). Both IPP and IPV are very important con-
ceptions in Holobalancing method and their characteristics will be discussed in
detail in the upcoming subsection.

(3) Generating Line. The shape of the 3dH traced out by generating lines gives us
the initial perception on the way how the rotor is unbalanced. Generally, par-
allel generating lines may indicate the vibration problem is mainly caused by
force unbalance, while crossed generating lines could suggest couple unbalance
as the dominant fault. The situation of neither parallel nor crossed generating
lines may give evidence of existence of multiple mass unbalance modes. In
short, the shape of 3dH gives us the intuitive basis for the judgment of rotor
mass out-of-balance situation.

3 Introduction of Holobalancing Method

3.1 Initial Phase Point (IPP)

Another two correlated important conceptions connected with IPP are the Initial
Phase Vector (IPV) and the Initial Phase Angle (IPA, the angle of the IPV).

Fig. 5 The graphical form of a typical 3dH
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The magnitude of the IPV gives the measure of rotor mass unbalance and the IPA
marks the spatial orientation of mass unbalance on the rotor. In order to make the
relationship between IPP (including IPV and IPA) and the heavy point of rotor mass
unbalance clearer, a simple rotor mass unbalance fault is considered here.

Suppose a known mass unbalance, with magnitude e and position angle aw, is
intentionally seeded in a zero state rotor-bearing system. Then the parametric
equations of its axis precession orbit, Eq. (1), can be modified to

x ¼ ekx cosðxtþ aw þu0Þ
y ¼ eky cosðxtþ aw þw0Þ

(
ð4Þ

Parameters in Eq. (4) are:

e The amount of mass unbalance (g);
kx System amplification factor in x direction (lm g−1);
ky System amplification factor in y direction (lm g−1);
x rotational speed (rad s−1);
aw Position angle of unbalance heavy point (deg);
t Sequence of sampling time (s);
u′ Mechanical phase lag in x direction vibration (deg);
w′ Mechanical phase lag in y direction vibration (deg).

According to the basic theory of rotor dynamic, some conclusions can be drawn.
Firstly, if the dynamic characteristic of the rotor system are all constant, the
eccentricity of the elliptical orbit will be unchanged during rotor operation;
Secondly, if the weak stiffness direction is also constant at the same time, the
inclination angle of orbit major axis will keep steady as well. It means that, as long
as the working condition (including rotating speed, support stiffness, etc.) of the
rotor system remain stable, related system parameters kx, ky, u′ and w′ will all be
constants and they don’t vary with changes of rotor balancing state. Therefore, let
t = 0 in Eq. (4) and we get the coordinate of IPP under this condition, as shown in
Eq. (5)

x0 ¼ ekx cosðaw þu0Þ
y0 ¼ ekx cosðaw þw0Þ

(
ð5Þ

Equation (4) can be further rewritten in complex form

r ¼ xþ jy ð6Þ
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Therefore, the magnitude and angle of IPV, denoted by r0 and a0 respectively,
are

r0 ¼ ðx20 þ y20Þ
1
2 ; a0 ¼ arctan

y0
x0

: ð7Þ

Put Eq. (5) into Eq. (7), we have

r0 ¼ e½k
2
x þ k2y þ k2x cos 2ðaw þu0Þ þ k2y cos 2ðaw þw0Þ

2
�12

a0 ¼ arctan
ky cosðaw þw0Þ
kx cosðaw þu0Þ

8>>><
>>>:

ð8Þ

Obviously, r0 and a0 are determined by and only by e and aw of the unbalance
heavy point. The change of rotor balancing state will definitely affect the IPP of the
system response and vice versa. Therefore, this corresponding relationship between
IPP and rotor mass unbalance makes it possible to use IPP (or IPV) to measure rotor
system balancing state. The IPV is the key parameter in the balancing analysis and
calculation of the Holobalancing method. Experiments and field applications have
all confirmed this important characteristic and it will not be described here.

3.2 Precession Angle Compensation

According to the isotropic stiffness assumption of traditional dynamic balancing
method, rotor axis precession orbit should be a perfect circle. That means, if the
unbalance heavy point changes its position on the rotor with angle increment Dax,
the corresponding vibration response collected at any radial directions should all
have equal amount of phase angle change, as shown in Eq. (8). In other words, if
kx = ky and the phase difference between u′ and w′ is exactly 90°, which are exactly
the conditions required by isotropic assumption, rotor axis precession orbit will be
circular and the initial phase angle change Da0 will be equal to Dax at any rotor test
section.

Under this condition the rate of rotor rotation and that of its revolution are the
same. However, this is not the case in practice. Since almost all real rotor-bearing
systems have anisotropic damping and stiffness, the eccentricity ratio and major
axis inclination angle of precession orbits of a rotor generally are seldom the same.
Not only the phase change of any one vibration signal could not be equal to Dax,
but the phase change of signals collected at different axial positions are also dif-
ferent. Furthermore, the initial phase angle could even be changed nonlinearly,
which can also be seen in Eq. (8). The change of a0 (i.e. Da0) is actually in a much
more complex form. Therefore, angle must be compensated when we use measured
Da0 to determine Dax by taking those factors, including orbit eccentricity ratio and
major axis inclination angle, into consideration.
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Figure 6 gives the relationship between rotation angle and precession angle.
Suppose we need to move the IPP from PI1 to PI2 according to balancing
requirement. The angle compensation is implemented as follows.

The IPA of PI1 and PI2 are denoted by a1 and a2 respectively. Then the
increment of IPA during this process is

Da0 ¼ ða2 � hÞ � ða1 � hÞ ð9Þ

where h is the inclination angle of orbit major axis. The unbalance heavy point on
the rotor corresponding to the IPP PI1 is marked by x1.

In order to move IPP from PI1 to PI2, i.e. IPA has an increment of Da0 as shown
in Eq. (9), the unbalance heavy point need to be moved from x1 to x2. The cor-
responding angle variation of the unbalance heavy point, Dax, is

Daw ¼ arctan a=bð Þ tanða2 � hÞf g � arctan a=bð Þ tanða1 � hÞf g ð10Þ

where a and b are the length of half major and minor axis of the orbit (in lm),
respectively. Equation (10), together with Eq. (9), gives the clear relationship
between the change of precession angle and rotation angle, which provides the
theoretical basis for angle compensation in the Holobalancing method. Since this
compensation process truly considers the actual rotor precession situation under
system anisotropic condition, the unreasonable isotropic assumption adopted in
traditional balancing method is no longer required therefore.

3.3 Differential Holospectrum and Transfer Matrix

Both the Holobalancing method and the other traditional dynamic balancing
methods have one common premise. That the relationship between unbalance

(a) Precession angle increment 0 (b) Rotation angle increment 

Fig. 6 Relationship between rotation angle and precession angle
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excitation force and system vibration response is thought to be linear is held by all
dynamic balancing methods at present. More particularly, this linear premise
actually contains the following two aspects of meaning. Firstly, it means that the
relationship between excitation and response is linear; Secondly, it also indicates
that system response satisfies linear superposition condition, i.e. system response to
a group of unbalance weights is the linear combination of system responses to those
unbalance weights respectively.

The correctness and reliability of this linear premise have been proved theo-
retically and experimentally. It sets the basic theoretical foundation for rotor
dynamic balancing methods and can be utilized to extract system characteristic
response, which reflects the dynamic property of the rotor system and is indepen-
dent of specific out-of-balance situation. As to the Holobalancing method, the
extraction of system characteristic response is very simple with only matrix addition
and subtraction. Suppose the system initial unbalance response and the system trial
weight response are denoted by R and Rt, respectively. Then we have

Rt½ � ¼ R½ � þ DR½ � ð11Þ

where DR is the pure system response excited by and only by the seeded trial
weight. DR is also called Differential Holospectrum and can be solved directly with

DR½ � ¼ Rt½ � � R½ � ð12Þ

DR depicts how the system response will be affected if the rotor balancing state
varies. Another important parameter, the Transfer Matrix (TM), then could be
obtained through normalization of DR. In the Holobalancing method, TM is defined
as the system response to a standard trial weight, which has the standard mass
(generally 1000 g for large scale steam turbine, for instance) and is seeded in the
standard position (for the convenience of later calculation, 0° is mostly used) at the
selected balancing plane. It has been proved that TM have some important features,
which are also owned by the Influence Coefficient. Firstly, there is a one-to-one
correspondence between TM and the balancing plane; Secondly, TM reflects the
inherent dynamic characteristic of the whole rotor-bearing system. Therefore, TM is
independent of specific rotor balancing state. Finally, TM is also closely related to
rotating speed. TM plays a similar role of the Influence Coefficient in the dynamic
balancing analysis and calculation. However, since TM contains much more
information, the balancing procedure is therefore more efficient and reliable than
traditional methods.

3.4 The Balancing Procedure

The problem-solving procedure of Holobalancing method is much like that of the
traditional Influence Coefficient balancing method. The differences are that
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vibration data of some single rotor radial direction and the Influence Coefficient are
replaced by 3dH and the Transfer Matrix. Besides, since the elliptical orbits induced
precession angle compensation has to be considered in the Holobalancing method,
the balancing calculation procedure now is actually a nonlinear optimization
problem. Many optimization techniques can be used to search for the balancing
scheme, here the genetic algorithm is applied.

In summary, the complete balancing calculation procedure is shown in Fig. 7.

Fig. 7 The complete balancing calculation procedure of Holobalancing
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4 Balancing Object Reselection

Instead of the vibration vector of some single radial vibration vector, the
Holobalancing method adopts the IPV as the balancing object to implement the
balancing analysis and calculation, which has been proved to be effective in field
balancing applications. However, since there isn’t a linear relationship between the
angle of the mass unbalance and the IPV, an angle compensation procedure is
necessary during the calculation procedure to ensure a correct balancing scheme
[5]. Furthermore, the magnitude of the IPV is not solely decided by the amount of
the unbalance mass. It could also be changed by the angle variation of the heavy
point. This reveals a nonlinear relationship between the mass unbalance and the
rotor response (i.e. IPV) so that the computational procedure is much more com-
plicated than the traditional methods. A more reasonable balancing object, called
the Forward Precession Component of the IPV(IPV+), is proposed here to replace
the IPV.

4.1 Characteristic and Deficiency of the IPV

Suppose there are two coplanar and mutually perpendicular probes installed on each
bearing section and the signals collected by them are denoted as x and y respec-
tively. The synchronous frequency components of the vibration signals, which are
the vibration occurring at 1X RPM and the main consideration in rotor balancing,
collected at these two radial directions are

x ¼ A cosðxtþuÞ
y ¼ B cosðxtþwÞ

(
ð13Þ

where x is the rotating frequency. With Eq. (13) the synchronous shaft orbit can be
constructed in a Cartesian Coordinates System as shown in Fig. 8.

Generally, the orbit is an ellipse. Since the difference between the initial phase
angles of the two signals, u and w, is not always exactly 90°, the coordinates
system xoy constructed along with the probes will not be consistent with the one

Fig. 8 The shaft orbit and
the detecting coordinates
system
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constructed along with the major-minor axis ηon of the orbit. There is an oblique
angle h between the major axis oη and the axis ox. So neither A nor B in Eq. (13) is
equal to the length of the half major axis of the orbit. It indicates that, no matter
which radial direction is adopted in the balancing calculation, the result could be
incorrect.

Different from those traditional balancing methods, the Holobalancing method
uses the IPV of the synchronous shaft orbit as the balancing object. It has been
proved that there is a certain relationship between the IPV and the mass unbalance
[6], as we have discussed above in Sect. 3. The change of rotor balancing state will
result in a corresponding change of the IPV. In the Holospectrum technique, the
Initial Phase Point (IPP) gives the shaft center position on the synchronous shaft
orbit at the moment when the key slot on the rotor aims exactly at the key phase
probe during every precession cycle (t = 0). Then the IPV is defined as the vector
starting from the orbit center and ending at the IPP. For the orbit expressed in
Eq. (13), its IPP is

IPPðx0; y0Þ :
x0 ¼ A cosu

y0 ¼ B cosw

(
ð14Þ

Then the IPV can be expressed in complex form as

IPV ¼ x0 þ jy0 ð15Þ

Certainly, IPV can also be expressed in exponential form. Its amplitude r0 and
angle a0 are shown in Eq. (7). In order to further clarify the relationship between
mass unbalance and the IPV, here Eq. (8) is utilized again. It can be seen that r0 and
a0 are dependent on e and aw, which suggests that the variation of IPV reflects the
change of rotor balance and vice versa. Since the IPV is a better reflection of the
spatial precession orbit of a rotor, it is more precise than that of some single radial
direction information in dealing with rotor balancing problems.

However, since u and w in Eq. (13) are also influenced by the relative instal-
lation position of the vibration probes to the key phase probe, the IPP’s location on
the orbit is a key phase probe orientation related. This will not be a problem if the
precession orbit is an exact circle. As to an anisotropic rotor-bearing system, the
precession orbit is generally an ellipse and it is possible that the IPP locates fairly
close to the minor axis of the orbit while there is a large unbalance mass (see IPP1
in Fig. 8). Obviously, the IPV cannot reflect the real out-of-balance situation in that
circumstance. Therefore, using IPV directly to illustrate the rotor balance could be
misleading.

Furthermore, r0 is not decided solely by e. Suppose we keep e unchanged but
alter aw by an increment Daw, since the phase difference and the amplitudes of the
two signals are still the same as before, the shape, size and direction of the orbit will
be unchanged and only the IPP will shift along the orbit to a new position. For
instance, the IPP could shift from its original position IPP1 to IPP2 after the
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variation of aw as shown in Fig. 8. The change of aw can also result in a corre-
sponding variation of r0, which can be seen in Eq. (8). Though the variations of
IPV can still reflect the change of the location of the heavy point, its function of
illustration of unbalance response is obviously disturbed. So unbalance response
should not be estimated by the magnitude of the IPV only. In addition, there is no
linear relationship between the increment of aw and a0. According to Eq. (8),
Da0 = Daw is tenable if and only if kx = ky and u′ = 90° + w′, which happens to be
the isotropic stiffness assumption made by traditional balancing methods and is not
the case for the elliptical shaped orbit. The actual relationship between aw and a0 is
in a much more complicated form, see Eq. (8). The angle compensation procedure
must be considered here to solve this nonlinear problem, which makes the bal-
ancing calculation much more complicated than the traditional methods, as we have
discussed in Sect. 3.2. All these arguments indicate that the decrease or increase of
the magnitude of the IPV actually doesn’t correspond to the improvement or
deterioration of the rotor balancing state for certain. This deficiency means that the
Holobalancing method still has to rely on the vibration signals from some single
radial direction for balancing analysis.

4.2 Precession Decomposition

In practice, the objective of any balancing operation should be on decreasing of the
major axis of the precession orbit. However, it is not feasible to use the major axis
as the balancing object directly because its direction is mainly decided by the weak
stiffness direction of the rotor system and it is not sensitive to the location change of
mass unbalance. For the convenience of further discussion, let’s start our analysis
from Eq. (4) to Eq. (6).

Substitute Eq. (4) into Eq. (6) and decompose the orbit expression according to
the Euler Formula, then we have

r ¼ rþ ejðXtþ aþ Þ þ r�e�jðXt�a�Þ ð16Þ

where r+ and r− are the radii of the forward and backward precession circles,
respectively. Equation (16) shows that the synchronous shaft orbit can be expressed
as a composition of a forward precession circle with its precessing direction the
same as the rotor rotating direction and a backward precession circle with its
precessing direction contrary to the rotor rotating direction. If r+ is larger than r−,
the overall precession will be forward. Otherwise, the resultant precession will be
backward.

The decomposition of shaft orbit into its forward and backward components
means every point on the orbit can be expressed as the superposition of two
corresponding points on the forward and backward precession circle respectively.
The same decomposition is applicable to IPP. IPP can be decomposed into
two components, one on forward and the other on backward precession circle,
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named the Forward Precession Component (IPP+) and the Backward Precession
Component (IPP−) respectively. For any orbit, this relationship is exclusive and
reversible. So the IPV can also be expressed as the vector sum of the IPV+ and
IPV−, which can be expressed as

IPVþ ¼ rþ ejaþ

IPV� ¼ r�eja�

(
ð17Þ

The magnitude of IPV+ and IPV− are

rþ ¼ e
k2x þ k2y þ 2kxky sinðu0 � w0Þ

2

" #1
2

r� ¼ e
k2x þ k2y þ 2kxky sinðw0 � u0Þ

2

" #1
2

8>>>>>><
>>>>>>:

ð18Þ

The Initial Phase Angles (IPA) of IPV+ and IPV− are

aþ ¼ arctanðkx sinðu
0Þ þ ky cosðw0Þ

kx cosðu0Þ � ky sinðw0ÞÞ þ aw

a� ¼ � arctanðkx sinðu
0Þ � ky cosðw0Þ

kx cosðu0Þ þ ky sinðw0ÞÞ � aw

8>>><
>>>:

ð19Þ

The radius ratio d is

d ¼ rþ
r�

¼ k2x þ k2y þ 2kxky sinðu0 � w0Þ
k2x þ k2y þ 2kxky sinðw0 � u0Þ

" #1
2

ð20Þ

The length of the half major axis a and half minor axis b are

a ¼ 1þ 1
d

� �
rþ ; b ¼ 1� 1

d

� �
rþ ð21Þ

4.3 Balancing Object Selection: Characteristic Analysis
of IPV+ and IPV− [7]

Both r+ and r− are unrelated to aw and only have a linear relationship with e (see
Eq. 18). The larger the e is, the bigger the r+ and r− will be, while a+ and a− do have
a linear relationship with aw but they are not affected by e, see Eq. (19). a+ and a−
will change linearly with respect to aw. Compared with the IPV, the IPV+ is more
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direct and accurate in describing rotor balancing state. Furthermore, the radius ratio
d is independent of the mass unbalance situation and only decided by the system
characteristic, see Eq. (20). That means d is a constant during the balancing pro-
cedure and if r+ has been effectively decreased, the actual balancing object, the
major axis of the orbit, will be decreased accordingly, see Eq. (21). These features
make it possible to construct a direct and reliable relationship between IPV+ and
rotor unbalance response. It is feasible to adopt IPV+ as the correction object.

However, mass unbalance will not affect the forward precession component
only. IPV− possesses all those features as IPV+ and could also be adopted as the
balancing object according to Eq. (18) and Eq. (19). Kirk [8] once discussed this
problem with Lund and they agreed that the energy generated by mass unbalance
could also enter backward precession circle. It is true that the mass unbalance does
affect the size of the backward precession component to a certain extent. However,
it is not the decisive factor. Consider an ideal situation that the characteristic of the
rotor system is isotropic. Since kx = ky and u′ = w′ + 90°, then r− will be zero no
matter how severe the out-of-balance situation is, see Eq. (18). The radius ratio d
could approach to infinity and the shape of the synchronous shaft orbit under this
condition is an exact circle. It indicates that the root cause of the emergence of the
backward precession component is not the mass unbalance, but the asymmetrical
system characteristic. Taking this anisotropic characteristic into consideration, two
different situations should be investigated when evaluating the impact of mass
unbalance on the backward component.

First, suppose mass unbalance is the only fault existing in a rotor system. The
radius ratio d is a constant in such circumstances according to Eq. (20) and is
determined only by the system characteristic. It means that once r+ has been
decreased (or increased), r− will be proportionally decreased (or increased)
simultaneously. Therefore, it is not necessary to bring IPV− into consideration
during the balancing procedure.

Second, consider a more common situation where there are other faults besides
unbalance in a rotor system. Those faults are also featured in rotating frequency.
The overall vibration response is a combination of the contributions from all these
faults. An experiment was designed to help better understand the impact of the mass
unbalance on the forward and backward components of the response in this cir-
cumstance. The test rig layout and the sensor locations are shown in Fig. 9.

This two mass rotor system is supported by oil-impregnated bronze bearings and
connected to the motor with a flexible coupling. The rotor shaft has a nominal
diameter of 10 mm, an overall length of 550 mm, and a span between bearings of
325 mm. Two disks with a diameter of 75 mm are separated within the bearing
span. Each disk has 16 screw holes, equally distributed on a circle with a radius of
32 mm, for adding trial weights. The rotating direction is counterclockwise when
looking at the rig from the driving end. The first order critical speed of the rotor
system is around 2500 r/min and the working speed is 5000 r/min, far away from
adjacent critical speeds.

There are two correction planes positioned within the bearing span, labeled as P1
and P2, respectively. The rotor system has two faults, unbalance and misalignment,
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aiming to simulate a faulty machine with multiple fault coexistence situation. In the
experiment, a trial weight was sequentially added in these holes, except for those
having been occupied by seeded unbalance weights. The location change of the trial
weight on the correction plane corresponds to the change of the rotor unbalance
state. The radius variations of the forward and backward components during this
period are plotted in Fig. 10. The solid black triangles denote the positions occu-
pied by the seeded unbalance weights. Along with the movement of the trial weight
on the correction plane, r+ has a variation of nearly 70 lm in Sec. 1 and 50 lm in
Sec. 2, while during the same period the variation in r− at both sections is
insignificant and even shows a slightly opposite trend with that in r+ in this case.

Obviously, the radius ratio d is not a constant anymore. The change of d during
the balancing procedure indicates there must be some faults other than mass
unbalance. Equations (18)–(21) are not valid under this condition. To explain this
phenomenon, the effect of misalignment should be considered. Actually, all faults
featured in 1X frequency can excite both forward and backward components when
the system characteristic is asymmetrical [9], not just misalignment and unbalance
mentioned in this example. The amount of IPV− depends not only on the

Fig. 10 The trend of the precession components (r+: ; and r−: ) at a section 1 and b
section 2 [7]

Fig. 9 Test rig layout and arrangement of the probes
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characteristics of the rotor-bearing system but also on those of the specific faults.
The emergence of large eccentricity orbit, or large backward component, does not
suggest severe unbalance for sure. Since the overall IPV+ and IPV− are combina-
tions of these two faults, they can be expressed in a separated form as

IPVþ ¼ IPVuþ þ IPVnþ ; IPV� ¼ IPVu� þ IPVn� ð22Þ

where IPVu+ and IPVu− are the components induced by mass unbalance; IPVn+ and
IPVn− are the components generated by misalignment. It will be difficult to actually
extract IPVu+ and IPVu− from IPV+ and IPV−; thus only a qualitative analysis is
carried out here.

Suppose IPVu+ and IPVu− are decreased to IPV′u+ and IPV′u−, respectively after
an effective balancing operation, and at the same time IPV+ and IPV− are changed
to IPV′+ and IPV′−, correspondingly. The impact of the improvement of rotor
balance on the IPV+ and IPV− then could be different, which can be explained as
follows.

Since mass unbalance has the largest radius ratio among all faults featured in
working frequency, which indicates the IPVu− cannot be the main part of the IPV−,
the decrease in IPVu− then may have little impact on IPV−, or even result in a slight
increase in IPV− instead of decreasing it, as shown in Figs. 10 and 11.

Whether IPV− will be decreased or increased depends on the phase relationship
between the IPVu− and IPVn−. Though there is IPVn+ in the IPV+, the impact of
IPVn+ on IPV+ will not be so obvious compared with the impact of IPVn− on IPV−

when the primary fault has been identified as mass unbalance. Since the backward
component is not sensitive to the change of the rotor balance in the compound fault
situation, the decrease in IPVu+, caused by the balance improvement leads to an
immediate decrease in IPV+, while the change in IPV− is in significant.

Fig. 11 The impact of the improvement of rotor balance on a IPV+ and b IPV− [7]
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In conclusion, no matter in what circumstances, the IPV− is not important in the
balancing procedure. Furthermore, the use of IPV+ as the balancing object has
another additional benefit. Since the forward precession component is an exact
circle, the isotropic characteristic is no longer an unreasonable assumption. So, the
IPV+ can also be used in the other balancing methods. This removes the obstacles
for the future integration of the Holobalancing method and the other balancing
methods.

5 Experimental Verification and Case Study

5.1 Experimental Verification

The test rig shown in Fig. 9 is used to validate the proposed method. Raw vibration
signals collected from both bearings exhibit overwhelming 1X frequency compo-
nent and the purified synchronous shaft orbits in the 3dH of system initial vibration
response are both ellipses with large eccentricity, as shown in Fig. 12a. This kind of
orbit shape generally indicates that there could be some faults other than mass
unbalance that also need to be corrected, such as insufficient supporting stiffness.
Since the phase and amplitude are stable, a balancing experiment is conducted to

Fig. 12 a The system initial vibration response in 3dH [7]. b The balancing effect using IPV+

scheme [7]. c The balancing effect obtained with information from only x direction [7]. d The
balancing effect obtained with information from only y direction [7]
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see whether balancing operation could effectively reduce the vibration level under
this condition. Table 1 lists the synchronous vibration data of the initial and the trial
runs.

The balancing solutions calculated by the traditional influence coefficient
method and the Holobalancing method, which use single radial direction infor-
mation and the IPV+ respectively as the balancing object, are listed in Table 2.
There are remarkable differences between the correction schemes calculated with
information of different radial directions, especially the angle of the correction
weights. If this kind of situation happens in real dynamic balancing issue, it will be
very hard for the field engineers to decide which scheme should be chosen. That is
not only because the operation cost is involved, but in some serious situation a
wrong scheme could even endanger the safety of the machine and the operators.

The three balancing solutions are applied to the rotor, respectively, and their
balancing effects are shown in Fig. 12b, d. The vibration in the x direction was
visibly reduced with single x scheme (from 61 µm to 47 µm at Sec. 1 in Fig. 12c),
but vibration in the y direction was greatly increased instead (from 20 µm to over
100 µm also at Sec. 1 in Fig. 12c). Similar results can also be seen in the balancing
effect of single y scheme, as shown in Fig. 12d. That is why it is necessary for
traditional balancing method to verify the balancing solution with the vibration
information from other radial directions.

Moreover, although the vibration level detected at one radial direction after
applying the single x or y schemes may be extremely small (even less than 10 µm),
the actual vibration level is not that small as detected. In fact, it can be seen that the
balancing effects, represented by the length of the major axes of the precession
orbits, after the correction with the information of single radial direction (bold
numbers in the last two rows of Table 3) are not decreased as expected. On the
countrary, the balancing effect of the holobalancing method, as shown in the sec-
ond data row in Table 3, greatly improves the vibration situation of the testrig.

Table 1 Vibration data of the initial and trial run (µm ∠ °)

1_X 1_Y 2_X 2_Y

Initial vibration 60.81 ∠ 144.80 20.05 ∠ 137.11 1.81 ∠ 20.20 42.18 ∠ 26.93

Trial run with
1.30 g ∠ 135° on p1

50.57 ∠ 144.42 32.06 ∠ 99.07 46.24 ∠ 44.74 43.09 ∠ 130.08

Trial run with
1.30 g ∠ 135° on p2

59.21 ∠ 96.00 60.13 ∠ 136.57 7.97 ∠ 24.27 44.27 ∠ 50.24

Table 2 Comparison of balancing solutions

Balancing method Balancing object Balancing solution (g ∠ °)

P1 P2

Holobalancing method IPV+ 0.45 g ∠ 81.56° 0.88 g ∠ 235.63°

Influence coefficient method x direction info 0.25 g ∠ 30.48° 1.60 g ∠ 200.00°

Influence coefficient method y direction info 0.80 g ∠ 113.70° 0.95 g ∠ 334.50°
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In fact, this kind of situation is caused by the large eccentricity of the precession
orbits and the sensor orientation. It is the major axis of the precession orbit that truly
represents the actual vibration level. Large eccentricity orbit has a significant impact
on the unbalance analysis procedure. Orbits with large eccentricity indicate that the
characteristics of the rotor-bearing system in different radial directions are highly
asymmetrical. Therefore, the isotropic assumption made by traditional balancing
methods will not be valid. The analysis and calculation based on this assumption
could be inaccurate. The Holobalancing method with the IPV+ as the balancing
object extracts the rotor unbalance information more precisely than traditional
methods. With the adoption of the IPV+, the interference caused by backward
component has been eliminated. In this experiment, among all the three balancing
schemes, only the scheme of the Holobalancing method effectively corrects the
rotor balance. The half major axes of the precession orbits from both bearing
sections have been decreased by 30 and 49%, respectively.

5.2 Case Study

Figure 13 shows the sketch map of a 300 MW turbine generator set. The overhaul
of this turbine generator set had lasted nearly 2 months to replace all the broken
blades. In the first startup after the overhaul, vibration from bearing sections 4–6 all
exceeded the alarm level. The largest vibration peak-to-peak value was almost
200 lm.

The vibration signals were carefully analyzed and it was confirmed that the
vibration was excited mainly by mass unbalance. The first trial weight (1597 g) was
applied on the correction plane adjacent to sect. 5. The effect of the trial weight was

Table 3 Parameter comparison

r+ (lm) r− (lm) a (lm)

Sec 1 Sec 2 Sec 1 Sec 2 Sec 1 Sec 2

Initial vibration 30.71 21.22 33.26 21.00 63.98 42.24

IPV+ scheme 5.29 5.16 39.60 16.56 44.89 21.73

x scheme 64.45 27.48 48.16 28.03 112.58 55.50
y scheme 44.89 9.01 46.87 12.17 91.80 21.16

Fig. 13 The sketch map of the 300 MW turbine ge set [7]
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negative and the vibration was increased. The machine set was even unable to pass
through its first critical speed.

The initial vibration is shown in Fig. 14a (only sections 3–6 are illustrated here
for convenience). After removing the first trial weight, another two weights (1384
and 1775 g) were added successively on the correction plane located adjacent to
sect. 6 (labeled as the P in Fig. 13). The effects were still unsatisfactory. The
comparisons between the initial vibration and these two trials are shown in
Fig. 14c, d, respectively.

It seems that the balancing attempt to correct this rotor has reached a deadlock.
Table 4 lists the balancing schemes calculated from the data collected from the third
trial run using the influence coefficient balancing method with the least-squares
optimization (LSO) and the weighted least-squares optimization (WLSO),
respectively.

The balancing weight calculated with the information of x direction was much
heavier than that of the y direction. Even in the balancing schemes with WLSO
method, the difference of these two solutions is still more than 500 g. Such a big

Fig. 14 a The initial vibration [7]. b The comparison between the initial vibration (thin line) and
the final balancing result (bold line) [7]. c The comparison between the initial vibration (thin line)
and that of the second trial run (bold line) [7]. d The comparison between the initial vibration (thin
line) and that of the third trial run (bold line) [7]

Table 4 The balancing solution comparison

Balancing object LSO WLSO

x direction info 2109.58 g ∠ 334.64° 2123.75 g ∠ 338.05°

y direction info 1195.12 g ∠ 3.32° 1566.11 g ∠ 1.16°
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difference makes it very difficult for the field engineers to decide. The balancing
solutions calculated by the Holobalancing method with IPV and IPV+ being the
balancing objects are 1822.96 g ∠ 331.98° and 1879.36 g ∠ 339.54°, respec-
tively. Due to the limitation from the correction plane, a weight of 1835 g was
finally seeded on the plane at 342°. The balancing result is depicted in Fig. 14b.
Table 5 presents the unbalance response of all the four sections during the whole
balancing procedure. Using the improved Holobalancing method proposed, the
vibration level from sections 4–6 have been reduced greatly.

6 Conclusion and Discussion

In this field application, the calculated balancing solutions using IPV+ and IPV are
similar. One advantage of using IPV+ as the balancing object is that since the
relationship between IPV+ and the rotor balancing state is linear, neither angle
compensation nor phase shift orbit is required anymore. Therefore, the whole
calculation procedure is greatly simplified without sacrificing the balancing preci-
sion. Laboratory experiment and field application have successfully demonstrated
the feasibility and effectiveness of the IPV+ based approach. At the same time, since
the decreasing of the IPV+ can decrease the major axis at the same time, there is no
need to verify the correction scheme with vibration signals from different radial
directions and the balancing efficiency is then improved. However, some limitations
that need further investigation should be mentioned here. In fact, all faults featured
in rotating frequency will excite both forward and backward precession components
at the same time. The result of this study does not imply that one can discriminate
different faults through this decomposition procedure, and that is also beyond the
scope of this chapter. Besides, there will be two different critical speeds in the same
order when the rotor system is anisotropic. The precession excited by mere mass
unbalance could be obviously backward when the rotating speed is located in the
region between these two different critical speeds [10]. The use of IPV+ as the
balancing object in that speed region could get into trouble. This will not be a
problem if the rotor under consideration is a rigid one. As to the balancing of
flexible rotors with the modal balancing method, since the mode separation has to

Table 5 Comparison of balancing results

Stage of balancing procedure Major axis (µm)

Sec. 3 Sec. 4 Sec. 5 Sec. 6

Original vibration 92.27 203.47 155.64 185.80

The second trial 85.45 206.30 199.40 115.87

The third trial 57.48 148.05 163.46 87.32

Final balancing 104.72 76.11 62.80 45.42
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be done at a speed fairly close to a corresponding critical speed region, this situation
then has to be carefully considered. The ongoing study is to investigate the rotor
characteristic with anisotropic stiffness in this special speed region and integrate the
use of IPV+ with the modal balancing method.
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Wavelet Transform Based on Inner
Product for Fault Diagnosis of Rotating
Machinery

Shuilong He, Yikun Liu, Jinglong Chen and Yanyang Zi

Abstract As a significant role in industrial equipment, rotating machinery fault
diagnosis (RMFD) always draws lots of attention for guaranteeing product quality
and improving economic benefit. But non-stationary vibration signal with a large
amount of noise on abnormal condition of weak fault or compound fault in many
cases would lead to this task challenging. As one of the most powerful
non-stationary signal processing techniques, wavelet transform (WT) has been
extensively studied and widely applied in RMFD. Many previous publications
admit that WT can be realized by means of inner product principle of signal and
wavelet base. This paper verifies the essence on inner product operation of WT by
simulation experiments. Then the newer development of WT based on inner pro-
duct is introduced. The construction and applications of major developments on
adaptive multiwavelet in RMFD are presented. Finally, super wavelet transform as
an important prospect of WT based on inner product are presented and discussed.

1 Introduction

Rotating machinery is widely used in industrial equipment. For rotating machinery,
some pivotal components could not avoid generating multifarious faults after
running in the complex and severe conditions for a long time such as strong impact,
corrosive environment, high temperature or heavy load [1]. In rotating machinery,
some arisen fault may lead to catastrophic accidents as well as enormous economic
losses. Therefore, it is necessary and crucial to identify the type of fault and evaluate
the level of fault as early as possible, particularly on two vital problems in the
rotating machinery fault diagnosis (RMFD), compound fault diagnosis and weak
fault diagnosis [2]. Vibration signal analysis remains the most popular and useful
method in the assignment of RMFD [3, 4]. However, when the equipment is
operated, numerous kinds of mechanical faults will produce specific dynamic
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response signals that is of diversification. Moreover, because the structures is
correlative and the equipment is complex, the measured vibration signal that
acquired is not only complicated but also non-stationary, and heavy background
noise bury the fault features. Consequently, great difficulty exists in identifying this
fault feature from such vibration signals that is acquired. Engineering requirements
have promoted continuous advancement of some signal-processing technologies
like short-time Fourier transform, the fast Fourier transform, wavelet transform and
etc., and a foundation is established for the fault diagnosis of rotating machinery,
the condition monitoring and got significant influence in this field [5].

We can treat Fourier transform (FT) [6] as well as short-time Fourier transform
(STFT) [7] as kinds of inner product transform, which analyses the contents that in
the signal by using a pre-determined triangular basis. Fourier transform became a
signal processing method which is the most widely used as the bridge from the
analysis of time domain to frequency domain [14]. But local feature information
that in frequency domain as well as its corresponding relations that in the time
domain can’t be provided by Fourier transform [8]. To solve the problem, a more
effective frequency and time localized analysis method named the STFT was
proposed Gabor. And we could consider the STFT as a local spectrum of the signal
in a fixed window [9]. Although STFT has achieved tremendous achievements in
mechanical fault diagnosis, the effectiveness of it is still restricted by the inevitable
limitation from single triangular basis, and it indicates that Fourier Transform could
be good at detecting harmonic feature rather than the usual impulse feature of the
fault of rotating machinery that based on the principle of inner product.

Wavelet transform (WT), unlike FT, has more basis functions to choose to match
a special fault symptom, which can benefit fault feature extraction [10, 11]. The
idea of translation and dilation originates the wavelet theory that is also a kind of
inner product transform, which analyzes the non-stationary contents that in the
signal by using a pre-determined wavelet basis [12]. On the basis of the study from
Randall, it is the similarity that between the non-stationary contents that in the
signals and the wavelet basis plays a conclusive role in its successfulness [13].
What’s more, because of the advantage exist in multi-resolution analysis, tremen-
dous usefulness has already been shown in fault diagnosis of rotating machinery by
WT [14]. We usually categorize the wavelet transform as wavelet packet transform
(WPT), discrete wavelet transform (DWT), and continuous wavelet transform
(CWT) [15]. However, all of these wavelet transform methods have trouble in
selecting appropriate wavelet basis. And without an inappropriate wavelet basis
employing in an application, the accuracy of the fault diagnosis, particularly for
weak fault diagnosis will be directly influenced.

Sweldens proposed Lifting scheme (LS) originally, which reveals itself as a
systematic and flexible way that can construct second generation wavelet basis and
also is dyadic wavelet basis [16]. A biorthogonal wavelet basis, a wavelet, in which
the relevant wavelet transform is invertible but not always orthogonal. Compared
with orthogonal wavelets, designing biorthogonal wavelets provides more degrees
of freedom. And one additional degree freedom gives a possibility to structure
symmetric wavelet functions [16]. Because the structure is generated from the time
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domain without relying on the FT. LS, as a tool to design wavelet, provides much
more freedom and flexibility for the structure of biorthogonal wavelet [17]. What’s
more, we can use it to construct adaptive wavelet by the design to predict operator
and update operator [17]. In the light of the prediction operator, the prediction step
provides the detail signal that shows the difference between prediction outcome and
original signal. And an approximated signal that produced by update operators
offers a general expression of original signal [17]. Lifting scheme also has several
other advantages than classical wavelet transform, e.g. simple, less memory and
computation, integers-to-integers wavelet transforms and irregular samples [18].
Although the DWT has achieved tremendous in mechanical fault diagnosis, the
effectiveness of it is still hampered by the inevitable limitations [18]. Single wavelet
basis selected during SGWT or DWT cannot extract the feature with multiple types
of shapes, which become a reason for the failure of compound faults diagnosis of
rotating machinery. But as the matter of fact, because of the complexity of
equipment and the correlation of structures, engineering practice powerfully indi-
cates that faults appeared in rotating machinery usually are expressed as the
compound fault.

In addition to reducing frequency aliasing and improving shift insensitivity,
Kingsbury propose dual tree complex wavelet transform (DTCWT) by using two
different wavelet bases and it could extract two relevant features at the same time
[19]. Moreover, Donovan et al. firstly propose multiwavelet transform (MT), which
is a newer development of the wavelet transform theory [20]. Multiwavelet can
realize multi-resolution analysis and simultaneously possesses some important
properties, such as symmetry, orthogonality, higher order and compact support of
vanishing moments, which traditional scalar wavelet doesn’t have [21]. At first,
multiple wavelet basis, depended on inner product principle, has more obvious
advantages compared with traditional wavelet transform during multiwavelet
transform on extracting some compound features with multiple types of shapes in
rotating machinery fault diagnosis [22]. The theory of MT and DTCWT provides a
possibility to solve the detection of compound faults of rotating machinery.

The world has seen an enormous growth in wavelets’ theory and application, and
many publications have appeared to describe wavelet theory’s advancement and it
successful used in a multifarious of fields of engineering [23]. These methods
became a powerful mathematical and a signal processing tool to identify machine
conditions in operation because of the adaptive, multi-resolution ability. But
actually, in view of multiplicity and adaptivity of wavelet basis that depend on the
nature of inner product principle, some recent developments like adaptive SGWT,
MT and DTCWT remarkably enhance the capacity of WT on compound fault and
weak fault diagnosis in rotating machinery. For better solving these two vital
problems of compound fault diagnosis and weak fault diagnosis in RMFD,
revealing the nature of inner product operation and after that plan the development
in the future is necessary. Then we introduce the construction and the applications
of main developments on accommodative multiwavelet in RMFD. Finally, we
present and discuss super wavelet transform, an important prospect, which of WT
that based on inner product.
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2 Wavelet Transform Based on Inner Product

2.1 Inner Product

The inner product theory plays a vital part in signal processing [24]. Follows are the
definition of the inner product of the function which is in the square integrable
space of real numbers L2ðRÞ:

xðtÞ; yðtÞh i ¼
Zþ1

�1
xðtÞy�ðtÞdt ð1Þ

The superscript * symbolizes the conjugate transposition. xðtÞ; yðtÞh i stands for
an operation aimed at calculating a generalized inner product betwixt xðtÞ and yðtÞ:

The inner product theory used in mechanical fault diagnosis is brought in from
the general expansion of signals. For the signal expression is diverse, a given signal
is able to be expanded in different ways. If a signal x in space of W can be evinced
as follows

x ¼
X
n2Z

anwn ð2Þ

wnf gn2Z is a cluster of fundamental functions in space of W:

If wnf gn2Z is the flawless sequences in W space, which means every signal in space
of W can be evinced as Eq. (2), there exists a cluster of dual functions, whose
expansion coefficient can be obtained by basis function as in Eq. (3) or Eq. (4):

an ¼
Z

xðtÞw�
nðtÞdt ¼ x; ~wn

D E
ð3Þ

an ¼
X
t2Z

xðtÞw�
nðtÞdt ¼ x; ~wn

D E
ð4Þ

Note that ~wn stands for the analytic function and wn stands for the synthesis

function, while each functions is dual. x; ~wn

D E
stands for an operation of computing

a generalized inner product betwixt x and ~wn.
According to Eq. (2), a bigger result of an stands for a closer relationship betwixt

the signal x and the dual functions ~wn. The inner product transform can be such an
easy and fixed process if the dual functions ~wn is considered as a kind of basis
function and the inner product transform is considered as a kind of measurement of
the similarity between the signal x and the basis function ~wn. As the intrinsic quality
of the mechanical fault diagnosis is to find out the mode which has the most

68 S. He et al.



similarities to the basis function, the vital step of the fault diagnosis is to structure
the appropriate basis function and distinct signal features [25]. As a consequence,
the core of the accurate condition monitoring and fault diagnosis is extracting the
realistic and physical features from the original signal through inner product
transform.

FT is the most widely applied method in signal processing. It could be solved by
means of the inner product operation xðtÞ; ej2pft� �

betwixt a signal xðtÞ and a tri-
angle basis function ej2pft [25].

2.2 CWT, DWT and WPT

WT can be regarded as a fast-evolving mathematical and signal disposing tool that
transforms a signal in time domain through a wavelet basis function into a diverse
form, i.e. mostly a sequence of wavelet coefficients in time-scale domain [26]. The
wavelet basis function is a necessity to implement the wavelet transform. And
wavelet basis function is a small wave, which owns oscillating waveform like
features and focuses its whole energy in short time as well. In a word, the traditional
WT can be sorted as CWT, DWT, and WPT.

Let us first state some annotations and summarize the very rudiments on wavelet
transform theory. In the meantime, the extensive literature is capable to provide
further particulars on the wavelet theory, refer to example [27]. With the parameter
s[ 0; a general wavelet dictionary wu;s

� �
can be defined as the dilated in the

temporal domain and interpreted by u 2 R of the mother wavelet w (of zero-mean)
as follows

wu;sðtÞ ¼
1ffiffi
s

p wðt � u
s

Þ ð5Þ

Then the wavelet transform of f ¼ xðtÞ is realized by computing the inner
product operation of Wf ðu; sÞ ¼ f ;wu;s

� �
.

Wf ðu; sÞ ¼ f ;wu;s

� � ¼ 1ffiffi
s

p
Z

xðtÞwðt � u
s

Þdt ð6Þ

If s stands for a continuous variable, in that way Wf ðu; sÞ is defined the CWT but
if s ¼ a j, a is the scale parameter, in that way Wf ðu; sÞ ¼ Wf ðu; jÞ is defined the
DWT [27]. Discrete wavelet transform can be treated as the application of a filter
bank is an important property of it, which means that each filter corresponds to one
scale. In practice, the most applied case is prescribed by dyadic subdivision scheme,
s ¼ 2 j [28].

In 1984, wavelet as a novel notion was first definitely submitted by Morlet.
However, this notion still faces a lot of dispute and criticism for the time. Soon
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after, Morle formalized the plan of CWT and inferred its inverse transform with the
aid of Grossmann [29]. In 1985, a flawless orthogonal wavelet basis was estab-
lished by Meyer and this wavelet basis processes quite excellent time and fre-
quency localization property, and it was significant to extract local essential
information of a signal and developed the engineering applications of CWT [30].
In the following year, Meyer and Mallat proposed the thought of multi-resolution
analysis (MRA) which urged that to construct more orthogonal wavelet basis is
very convenient and easy [31]. A more significant affair was that the MRA had
given birth to the well-known fast DWT, which was used to computing the wavelet
transform coefficients of the signal which is based on recursive filtering [32]. The
flow chart of three-stage DWT decomposition and reconstruction processes is
expressed in Fig. 1. Before long, Daubechies built orthogonal wavelet basis with
contract support property in an original way [33]. Moreover, Daubechies also did
lots of researches on structuring wavelet frames which allowed more freedom
about the design of basis wavelet function with a little cost of some redundancy
[34]. These researches from Mallat and Daubechies vastly promoted the progress
of the wavelet theory from continuous to discrete signal analysis and engineering
applications.

In 1992, Coifman, Meyer and Wickerhauser suggested the algorithm framework
of WPT, which was regarded as a natural and significative expansion of the MRA
and DWT [35, 36]. As we are always concentrating on developing comprehensive
representations of a signal, probably the most known way is the WPT based on a
basis pursuit framework through successive scale refinements of the expansion [35,
36]. WPT can further decompose the particular coefficients of the analysed signal in
the high frequency part and offers a more particular and comprehensive
time-frequency plane tiling as it is shown in Fig. 2.

WT, unlike FT and STFT, has more basis functions to choose to match a special
fault symptom, which can benefit fault feature extraction. What’s more, because
WT, which is different from them, can be used to multi-scale analysis of the signal
via dilation and translation, it can effectively identify the time–frequency feature of

(a)

(b)

Fig. 1 The flow chart of a three-stage DWT decomposition and b reconstruction
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the signal. Consequently, WT has obvious advantages when analyze non-stationary
signals. Recently, WT have obtained great success in the fault diagnosis of rotating
machinery because of its distinct advantages, not only for the ability of the analysis
of the non-stationary signals. During the past ten years, People have made great
progress in the theory and the applications of wavelet theory as well as in the field
of RMFD. Nevertheless, for better solving these two vital problems of compound
fault diagnosis and weak fault diagnosis in RMFD, revealing the nature of inner
product operation and after that plan the development in the future is necessary.

2.3 Inner Product Validation of WT in RMFD

He et al. design and use the Daubechies 10 (Db10) wavelet to emulate the weak
characteristic of the influence fault in the mixed analog signals [24, 33] to justify
that the basis function is most similar to the feature can perfectly match the
mechanical fault characteristic. In Fig. 3, its abscissa represents the quantity of
samples N and its ordinate reflects the non-dimensional amplitude A, and the Db10
wavelet function is shown in it. The simulated signal is generated by adding a small
impulse component, the Db10 wavelet function wðtÞ, to the sinusoidal signal which
imitates the operating feature of vibration signal on rotating machinery as shown.
The sample frequency of the analog signals is 5120 Hz and the quantity of sam-
pling points is 5120, which meets the sampling needs of the impulse component
and the sinusoidal component. The Fig. 4 reflects the periodic impulse component
x1ðtÞ, the sinusoidal component x2ðtÞ and the mixed simulated signal xðtÞ. In the
Fig. 4a, c, the first simulative impulse in the Db10 wavelet function begins from the

(a)

(b)

Fig. 2 a Dyadic WT time-frequency plane tiling and b dyadic WPT time-frequency plane tiling
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four hundredth point to the one thousand and eighth point, which means that the
signal begins from the 0.0781 s and lasts for s ¼ 0:2 s.

First of all, He et al. [24] use the Db10 wavelet as the fundamental function to
analyze the analog signal and the result showed in Fig. 5. As shown in Fig. 5, the
signals from d1 to d5 are detail signals but the signals a5 is a approximation signal.
During the experiment we often ignore the boundary effect of wavelet transform
and it is clear that the periodic impulse component exists in the detail signals but the
approximation signal a5 is exactly the sinusoidal component. It is natural that we
use the detail signals d1 to d5 to construct the periodic impulse component and the
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result shown in the Fig. 6a one more time. Afterwards we intercept the first factor
of the reconstructed periodic impulse component and show it in Fig. 6b. Compared
with the Db10 wavelet function in Fig. 3, we find it obvious that the first impulse
element analyzed by the Db10 wavelet is absolutely similar to the real waveform of
the impulse component. The correlation analysis shows the same result simulta-
neously, because it is 0.9969 that we finally got, and the correlation coefficient
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between the impulse element in the Fig. 6b and the impulse element in Fig. 3 is
0.9969, they are very close to 1.

xðtÞ ¼ 0:2x1ðtÞþ x2ðtÞ
x1ðtÞ ¼

P5
i¼1

wðt � 0:0781� isÞ
x2ðtÞ ¼ sinð10ptÞ

8>><
>>: ð7Þ

He et al. [24] also use other wavelet functions to justify the inner product theory,
for example, the Db4 wavelet function, the Db32 wavelet function, the Sym10
wavelet function and the Bior3.7 wavelet function. The correlation coefficient
between the extracted impulse component by Db4 in Fig. 7b and Db10 wavelet
basis in Fig. 3 is calculated at 0.9319, which shows a worse result than Db10
wavelet. The symbol of A in Figs. 7 and 8 means the rising trend and B downtrend.
The correlation coefficient between the extracted impulse component by Db32 in
Fig. 8b and Db10 wavelet basis in Fig. 3 is calculated at 0.9570, showing that the
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Db32 wavelet is a better basis function than the Db4 wavelet. The Sym10 wavelet
function is also used to analyze the simulated signals, and the correlation coefficient
of the two impulse components in Figs. 9b and 3 is 0.9794. In the end, the Bior3.7
wavelet function is applied to the experiment, and the result of the coherence
analysis between the impulse components in Figs. 10b and 3 is 0.8829. The
mentioned result based on the above wavelet basis function is shown in Table 1.

According to simulation experiments and results, He et al. [24] find the fol-
lowing facts as: the correlation coefficient between Db10 wavelet transform coef-
ficients with the impact element is the highest value (0.9969), close to 1. This value
indicates Db10 wavelet has the highest similarity with emulational impulse com-
ponent. And the extracted impulse component in Fig. 6b is almost identical with
emulational impulse component. That is to say, choosing an appropriate wavelet is
a very key step for the transform result. Moreover, an inappropriate wavelet
employed in application will directly influence the accuracy of the signal feature
extraction. These simulation validation results directly reveal the essence on inner
product operation of WT.
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What’s more, He et al. [24] used the family of the Daubechies wavelets (DbN,
N = 1–40 represents the different wavelet order, and the relevant wavelet function’s
vanishing moments is N) to analyze the analog signals synthetically. To assess the
contribution of different wavelet functions, we used the correlation coefficient
between the impulse component extracted by the diverse wavelet function and the
emulational impulse component. The result of the Daubechies wavelet function is
shown in the Table 2.

On the basis of simulation experiments and the results of them, He et al. [24] find
some facts as follows: the correlation coefficient between the impact element with
Db10 wavelet transform coefficients is the highest value (0.9969), mostly close to 1.
The value indicates that emulational impulse component has the highest similarity
with Db10 wavelet. And the impulse component that is extracted in Fig. 6b is
nearly same as emulational impulse component. In other words, it is a very key step
to choose an appropriate wavelet for the transform result. What’s more, the accu-
racy of the extraction of signal feature will been influenced directly by an inap-
propriate wavelet that employed in application. These results of simulation
validation directly reveal the nature of inner product operation of WT.
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Fig. 9 a The reconstructed signal by Sym10 wavelet, b the extracted impulse component and
c the Sym10 wavelet basis
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3 Adaptive Multiwavelet for RMFD

3.1 Summary of Multiwavelet Theory

Multiwavelet is the new advance of wavelet theory, and the wavelet basis of
multiwavelet are generated by more than one mother wavelets [37]. The rising
multiwavelet is extended from vector scaling and wavelet functions [37]. There are
three more crucial properties of multiwavelet comparing with scalar wavelets. The
first is that more synthetic information can be get from signal with multiwavelet
than scalar wavelets owing to the varieties of shapes for mixed features, and thus
the MT is fit for the fault diagnosis of rotating machinery [38]. The second is that
multiwavelet can possess many properties at the same time including orthogonality,
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Fig. 10 a The reconstructed signal by Bior3.7 wavelet, b the extracted impulse component and
c the Bior3.7 wavelet basis

Table 1 The coherence analysis results based on several typical wavelet basis

Wavelet Db10 Db4 Db32 Sym10 Bior3.7

Correlation coefficient 0.9969 0.9319 0.9570 0.9794 0.8829
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symmetry, compact support and higher order of vanishing moments, which cannot
be satisfied simultaneously for scalar wavelet except Haar wavelet [38]. The last
one is that there is higher freedom degree during the processing of constructing the
multiwavelet basis [38].

The expression of multiwavelet could be W ¼ ðw1; . . .wrÞT , where T is the
transpose. And the subspaces generating from a scaling function U ¼ ðu1. . .urÞT
can be expresses as

Vj ¼ spanð2j=2uið2 jt � kÞ : 1� i� r; k 2 ZÞ

by its translation and dilation. Its complementary subspaces Wj

Wj ¼ spanð2j=2wið2 jt � kÞ : 1� i� r; k 2 ZÞ;

is generated through the translation and dilation of multiwavelet. Similarly, the
two-scale refinement Equations in the scalar case are still satisfied,

Table 2 The coherence analysis results based on DbN wavelet basis

DbN Correlation coefficient DbN Correlation coefficient

1 0.6058 21 0.9732

2 0.9126 22 0.9327

3 0.9910 23 0.9701

4 0.9319 24 0.9939

5 0.9099 25 0.9496

6 0.9886 26 0.9444

7 0.9719 27 0.9897

8 0.9118 28 0.9776

9 0.9638 29 0.9386

10 0.9969 30 0.9663

11 0.9353 31 0.9932

12 0.9351 32 0.9570

13 0.9958 33 0.9446

14 0.9703 34 0.9849

15 0.9248 35 0.9820

16 0.9713 36 0.9442

17 0.9948 37 0.9617

18 0.9421 38 0.9918

19 0.9425 39 0.9642

20 0.9937 40 0.9450
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UðtÞ ¼
X
k

HkUð2t � kÞ ð8Þ

WðtÞ ¼
X
k

GkUð2t � kÞ ð9Þ

The recursive relationship of the coefficients ðc1;j;k; c2;j;kÞT and ðd1;j;k; d2;j;kÞT can
be got through the dilation of Eqs. (8) and (9),

c1;j�1;k

c2;j�1;k

 !
¼

ffiffiffi
2

p Xk
n¼0

Hn
c1;j�1;2kþ n

c2;j�1;2kþ n

 !
; j; k 2 Z ð10Þ

d1;j�1;k

d2;j�1;k

 !
¼

ffiffiffi
2

p Xk
n¼0

Gn
c1;j�1;2kþ n

c2;j�1;2kþ n

 !
; j; k 2 Z ð11Þ

Furthermore,

c1;j;n
c2;j;n

 !
¼

ffiffiffi
2

p Xk
n¼0

H þ
k

c1;j�1;2kþ n

c2;j�1;2kþ n

 !
þGþ

k

d1;j�1;2kþ n

d2;j�1;2kþ n

 ! !
ð12Þ

The input streams of multiwavelet differs from scalar wavelets because of
matrix-valued filter-bank, and that means both the process of decomposition and
reconstruction are multi-input and multi-output (MIMO). Therefore, the pre-process
of the input signal avant decomposition and the post-process of the output signal
after reconstruction is inevitable [39]. Post-filter and pre-filter are the inverse
matrixes for each other. There exist two kinds of pre-processing method [39]. The
one on the base of an oversampling scheme is repeated row pre-filter [39]. And the
other is on the base of critical sampling scheme [39]. It has been proved that
oversampling during feature extraction is effective [39]. For the reason that the first
one leading to double oversampling of the data, usually in engineering applications,
people adopt the repeated row pre-filter. So the decomposition and reconstruction
above can be expressed in Fig. 11. Where QðxÞ represents the pre-filter, and PðxÞ
represents the post-filter.

In order to utilize the useful information existing in high frequency band, which
may be left out because that multiwavelet transform merely concentrates on
multi-resolution analysis in low frequency band, the multiwavelet packet is
developed.
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3.2 Adaptive Multiwavelet Construction

In order to construct new biorthogonal wavelets, the lifting scheme (LS) is proposed
[16, 40]. Because that there is more designing freedom for multiwavelet than scalar
ones, the symmetric lifting (SymLift) scheme is adopted to construct new
multiwavelet.

If x0 is used as an origin to produce a new wavelet with the assigned numbers of
vanishing moments, accordingly lifting scheme could be

xnew
0 ¼ x0ðxÞþ

Xk
i¼1

kixiðxÞ ð13Þ

where ki is the lifting coefficients. For satisfying symmetry, the major factor is
selecting the translation quantity s of functions. Let’s take the symmetric lifting of
W1 for example, assuming that xi is symmetric/ antisymmetric functions about the
points axi separately. The translation quantity s must meet the Equation below,

aW1 � ðaxi þ sxi;1Þ ¼ ðaxi þ sxi;2Þ � aW1 and sxi;1
�� �� ¼ sxi;2

�� �� ð14Þ

where i ¼ 1; 2: Let Bxi ¼ �1 (1 represents symmetry and −1 represents
anti-symmetry), means the symmetry/antisymmetry properties of the original
multiwavelet. Lifting vanishing moment p of W to p0 , a linear Equation system can
be got through integrating both sides of Eq. (13).

(a)

(b)

Fig. 11 The two-stage decomposition and reconstruction processes of MT
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x1ðxþ sx1;1Þxpdx
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The lifting coefficients of W1 are the results of Eq. (15). And the lifting of W2 is
similar. Then, substitute the lifting coefficients into Eq. (13). After that, acquire the
lifting matrices T and S using Z transform. The detail could be expressed as below,

GnewðzÞ ¼ Tðz2Þ½GðzÞþ Sðz2ÞHðzÞ� ð16Þ

With TðzÞ and SðzÞ, the construction of a new symmetric biorthogonal multi-
wavelet can be done, where TðzÞ and SðzÞ are finite order and determinant of TðzÞ is
monomial.

The only case that there are many solutions for ci is an underdetermined linear
Equation system thinking back to the SymLift scheme for multiwavelet in Eq. (15).
That means there are many alternatives of multiwavelet with a assigned increase of
vanishing moment. Thus, there exist a lot of additional designing freedoms when
constructing multiwavelet. Equation (15) could be simplified as MBk ¼ N.
Assuming the vanishing moments of the multiwavelet after SymLift is p0 and
Rankð�Þ means the rank of a matrix.

Nf¼ ðp0 � 1Þ � Rank(MB) ð17Þ

And, free parameters for the design of the new biorthogonal multiwavelet exist.
In order to match and model the fault features, the best parameter relied on the

input dynamic response signals need to be selected carefully according to an
evaluation rule. It is famous that Shannon entropy is an effective rule to represent
the diversity of possibility distribution. Therefore, the minimum entropy principle is
promoted to search for the best parameters through measuring the sparsity. The
recommended tool to optimize multiwavelet having free parameters is Genetic
algorithm (GA). In this chapter, the searching ranges of these parameters are
consistently within the interval ½�50; 0Þ [ ð0; 50�: In order to accelerate the process
of optimizing GA, the population scale is assigned 100 and the number of iterations
is assigned 50, the possibility of crossover is assigned 0.6 and the possibility of
mutation is assigned 0.05.

Wavelet Transform Based on Inner Product … 81



To display the synthetical information about the consequences of redundant
multiwavelet packet decomposition, the ratio r representing relative energy of the
interested characteristic frequency is calculated to choose the sensitive frequency
band.

r ¼ max AðfcÞ½ �f g2Pf 0
f¼0 Aðf Þ2

; fc 2 ðfc � D; fc þDÞ ð18Þ

where A means the amplitude of envelope spectrum of redundant multiwavelet
packet coefficients, f represents the characteristic frequency and D means the fre-
quency interval. f ¼ 0� f 0 represents the range of the frequency band. The sen-
sitive range could be chosen by the comparatively larger frequency band, which can
judge whether the machinery fault exists. The step of the adaptive multiwavelet for
RMFD is expressed as Fig. 12.

3.3 Experimental Study

In order to simulate the many kinds of abnormal mechanical phenomena occurring
on the components, a multifunctional double-motor transmission train rig without
clearance was designed, as Fig. 13 shows. The Fig. 13a describes the schematic
diagram of the test rig, and the Fig. 13b display the rig.

The experiment simulates mixed-fault of a bevel gearbox including a rubbing
fault on the spiral bevel gear and a bearing fault on the outer-race. The installation
of fault pieces is shown in Fig. 13a red section. The fault test specimens are
displayed in Fig. 14.

The number of gearwheel teeth in test gearbox is shown in Table 3. The fault
gear locates in the input terminal of the gearbox is a spiral bevel gear. Experiment
bearing is 32908, whose structure parameters are displayed in Table 4. The
reduction ratio of planetary gearbox is 32 and the motor’s rotate speed is
1500 r/min, the characteristic frequencies are shown in Table 5. With Eqs. (19–21)
and the parameters of the bearing in Table 2, the character frequency of bearing can
be calculated, as displayed in Table 3.

fe ¼ D
2d

� fr � 1� d
D

� 	2

cos2 h

 !
ð19Þ

fo ¼ 1
2
� N � fr � 1� d

D
cos h

� 	
ð20Þ
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fi ¼ 1
2
� N � fr � 1þ d

D
cos h

� 	
ð21Þ

where fe, fo and fi represent the characteristic frequencies of roller element,
outer-race and inner-race of bearing, respectively. The parameter fr means the
rotation frequency, D means the pitch diameter, d means the roller diameter, N
means the number of roller, and h means the contact angle.

There are vibration acceleration sensors installed in the output terminal of
planetary gearbox as shown in Fig. 20b, and the vibration signal of both horizontal
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Fig. 12 The flow chart of the adaptive multiwavelet method for RMFD

Wavelet Transform Based on Inner Product … 83



and vertical can be obtained. The sample frequency is 5.12 kHz, motor speed is
1414 rpm and the sample time is 30 s. Figure 15a shows the original signal of the
vertical sensor, showing severe background noise with the impulse information
being concealed. Figure 15b shows the FFT spectrum of the vibration and Fig. 15c
displays the original Hilbert envelope spectrum. Figure 15d shows the amplified
spectrum of the original signal. There are only the gear meshing frequency (7 Hz)
and its doubling frequency in the amplification of the low frequency band. It is
challenging to extract spiral bevel gear’s fault features for that the contemporary
contact of a few teeth and stable transmission lead to large overlap ratio. Thus, it has
been one of the most challenging tasks to do the fault diagnosis of spiral bevel gear.

Motor Planetary box Test components Rolling bearing

Accelerometer

Data acquisi on system

Z
Z

Z1
2
3

(a)

(b)

Fig. 13 The experimental setup. a The schematic diagram and b the test rig
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In order to acquire the whole fault information, the original signal will be
analysed using this method. The original multiwavelet chosen is cubic Hermite and
the vanishing moment is lifted to 5, moreover, the multiwavelet lifted is displayed
in Fig. 16. Figure 17 shows the histogram of relative energy ratio when three layers
redundant multiwavelet packet decomposition has been done.

Scratch defect

Fig. 14 The defects of the
testing components

Table 4 Parameters of the test rolling bearing

Outer race
diameter (mm)

Inner race
diameter (mm)

Roller diameter
mean value (mm)

Roller
number

Contact
angle (°)

62 40 4.635 26 13° 50′

Table 5 The feature frequencies of the gearbox in case 1

Feature frequency Value (Hz)

Gear meshing frequency of the fist stage planet gearbox 247.5

Gear meshing frequency of the second stage planet gearbox 61.875

Gear meshing frequency of the spiral bevel gear 13.995

Gear meshing frequency of the output stage gear 6.9978

Feature frequency of pinion wheel 0.7366

Characteristic frequency of inner-race fault of rolling bearing (32908) 10.42

Characteristic frequency of outer-race fault of rolling bearing (32908) 8.73

Characteristic frequency of roller fault of rolling bearing (32908) 4.02

Table 3 Parameters of the gears in the test gearbox

Pinion wheel teeth number (Z1) Gearwheel teeth number (Z2) Output stage wheel teeth number (Z3)

19 38 19
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It can be seen that the faults of spiral bevel gear and outer-race bearing are more
distinct and the faults of inner-race bearing and roller element may be weak from
Fig. 17. Meanwhile, the highest relative energy ratio of the faults of spiral bevel
gear, roller element and inner-race bearing are in the 6th branch and the highest
relative energy ratio of the faults of outer-race bearing is in the 9th branch. When
the 6th branch and 9th branch are selected as sensitive frequency bands, Fig. 18
shows the result of envelope spectra. Here, the spectrum of 0.733 Hz same as the
spiral bevel gear’s characteristic frequency is clear. Base on that, the early fault of
the spiral bevel gear can be diagnosed and the characteristic frequency of the roller
element and the inner-race bearing are submerged in background noise. Though it’s
not the dominant in this branch, outer-race bearing fault is also here. The obvious
8.73 Hz in Fig. 18b indicates the bearing’s outer-race fault. The spiral bevel gear’s
characteristic frequency exists in this branch. Though there is strong background
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Fig. 15 a The vibration signal of the test in the case 1, b the FFT spectrum, c the envelop
spectrum, d zoomed-in (b)
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noise in this experiment leading to extreme difficulties, the spiral bevel gear and
outer-race bearing’s unobvious mixed-fault features could be extracted with the
construction and analysis of the proposed method. In order to verify the effec-
tiveness of the proposed method, Db8 has been used to analyse the signal, which is
shown in Fig. 19.
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Fig. 17 The ratios on the sixteen multiwavelet packet coefficients in the case 1
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It can be seen that all these methods can diagnose the outer-race bearing fault,
but the spiral bevel gear’s fault cannot be successfully extracted. The major reason
is spiral bevel gear’s overlap ratio. Thus, the proposed method in this chapter can be
effective in diagnosing the bearing and gear mixed-fault.

4 Discussion

According to the descriptions above in this chapter, it can be seen that there are
many successful applications in RMFD with wavelet transform. But it’s more
difficult to realize a standard status in engineering applications than FT due to the
abundance of basis functions selection as well as varieties of transform schemes.
These crucial factors lead to the current status of wavelet in fault diagnostics as well
as doubt on wavelet’s engineering applications from field staff. The fact is that
while researchers appreciate wavelet transform for its capability, field staff dislike it
due to its comparatively complicated steps. Therefore, basing on the inner product
for RMFD, super wavelet transform (SWT) and more rational threshold shrinkage
strategy need to be studied in the future. It can be seen from Fig. 20 that there are
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two major factors restrict the capability of super wavelet, namely strongly adaptive
multiple wavelet basis functions and shift-invariant self-organizing wavelet trans-
form scheme, and both the two factors can help to improve the current status in
engineering applications. What’s more, research on more rational data-driven
threshold shrinkage strategy used in wavelet threshold denoising (WThD) [41, 42]
is helpful to improve the capability of WT in RMFD with heavy background noise.

5 Conclusion

In this chapter, simulation experiments are introduced first to validate the inner
product essence of WT in RMFD. Then the development of WT on the base of
inner product is concluded and the relevant applications in RMFD are summed
up. What’s more, the construction and applications of key developments on
adaptive multiwavelet in RMFD are also recommended. Eventually, super wavelet
transform is presented and discussed as a crucial prospect of WT based on inner
product. Looking forward to that this chapter can synthesize individual pieces of
information about WT-based fault diagnosis and provide an in-depth and synthet-
ical references for relative researchers to help them to find out further research
topics in this field.
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Wavelet Based Spectral Kurtosis
and Kurtogram: A Smart and Sparse
Characterization of Impulsive Transient
Vibration

Binqiang Chen, Wangpeng He and Nianyin Zeng

Abstract Mechanical signature analysis is of vital importance to the structural
health monitoring of mechanical equipment. However, the fast development of
mechanical signature analysis tool always requires a rich and deep understanding of
state-of-the-art technologies, which is often lacked by the on-site staff. In this
chapter, we introduce an effective methodology that ensure automatic detection of
impulsive transient vibrations occurring during machinery fault events. This
methodology is originally derived from the concept of spectral kurtosis, whose
advent has a close relation with the early development of wavelet theory, and
acquired a fast computation implementation named fast kurtogram. The essential
originality of this methodology lies in its unique way of combining multi-scale
analysis and scalar indicator based characterization of impulsive transient compo-
nents. As a result, this methodology emerges as a single-input-single-output system
for both theoretical researchers and on-site engineers. In the presented materials,
basics and fundamentals of this fast developing methodology are introduced. The
recent improvements mainly focus on the construction of new multi-scale signal
decomposition frames and the invention of new scalar-valued indicators. All the
efforts are motivated to obtain a satisfactory sparse characterization of impulsive
transient components induced by machinery faults. A range of construction
examples of wavelet-based spectral kurtosis with their engineering applications are
presented to demonstrate the developments.
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1 A Brief Introduction

Rotating machinery (RM) covers a wide range of applications in the industrial
manufacturing field. Rotating machinery is composed of various types of rotating
mechanical components such as shafts, rotors, roller element bearings and gear
transmission. Structural health monitoring plays an important role to prevent
machinery downtime and catastrophic events that result in loss of economic benefits
as well as human lives. A variety methods, including vibration based condition
monitoring, acoustic emission analysis, temperature trend analysis and wear debris
analysis, have been developed for implementation of both diagnostic aspect and
prognostic aspect during rotating machinery maintenance [1, 2], vibration based
analysis has become the preferred mean to understand the operation state of rotating
machinery. One of the fundamental premises of vibration-based condition moni-
toring is that the abnormal states of a machinery that lead to symptomatic vibrations
that can be easily distinguished from a healthy reference [2, 3].

Owing to the existence of multiple types of mechanical components and their
coupled rotating transmissions, the occurrence of mechanical faults will produce
repetitive impulsive transient vibrations masked by other non-stationary vibrations
and interfering noises. Therefore, a most important problem in diagnosis and
prognosis of RM is concluded as the recovery of the incipient and critical vibration
transients [4–7]. Considerable efforts have been paid to address this issue and
fruitful achievements are continuously being acquired. Among the massive mate-
rials, a few famous examples are mentioned as STFT, continuous wavelet trans-
form, discrete wavelet transform, empirical mode decomposition and other adaptive
signal analysis tools. However, each of them needs to be combined with some
specific pre-processing procedures and post-processing procedures to attain a
concrete diagnostic result, which often requires sophisticated and professional
human interference that are usually lacked by on-site staffs and industrial engineers.
Owing to the present situation, the state-of-the-art techniques are not receiving good
propagations.

Inspired by the difficult issue, spectral kurtosis (SK) and its fast computation
implementation, Kurtogram, were investigated and have attracted considerable
attentions. This methodology becomes very popular to the on-site vibration mea-
surement due to its smart and powerful capability in detecting impulsive transients.
Spectral kurtosis was proposed by Dwyer [6] as a spectral statistic which helpfully
supplements the classical power spectral density. SK by Dwyer was initially for-
mulated as a fourth-order moment of real part of short-time Fourier transform such
that it can indicate non-Gaussian components in signal. However, this initial def-
inition of SK was seldom utilized due to its complicated properties. In 1994,
Otonnello and Pagnan proposed an improved SK based on normalized fourth-order
moment of the magnitude of STFT [8, 9]. Their definition showed SK is capable of
recovering randomly occurring signals severely corrupted by additive stationary
noise. In 1996, with the mature establishment of higher-order statistics, more formal
definitions of SK were given to enhance its filtering ability. Capdevielle considered
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SK as the normalized fourth-order cumulant of the Fourier transform, and used it as
a measure of distance of a process form Gaussianity [10]. In 2006, Antoni provided
a new SK definition in terms of Wold-Cramer decomposition and introduced many
conditional non-stationary cases for which his definition can be applied [11].

Kurtogram [12] is usually referred to the fast computational implementation of
spectral kurtosis [13]. The using of different kinds of detection filters will result in
distinguished variations of kurtogram. The Short time Fourier transform (STFT)
and multi-rate filterbank (MRFB) based quint wavelet (QW) were originally
investigated and turn out to be efficient estimates of the impulsive transients.
However, efforts were paid to enhance the effectiveness of kurtogram. These efforts
can be categorized into two aspects. The first is the development of time-frequency
frames, and the other is the developments of new statistical indicators with similar
functions to SK. In this chapter we focus on the wavelet-based and enhanced
spectral kurtosis techniques. Table 1 show the different detection filters used to
replace the original ones of STFT and QW [14].

2 Spectral Kurtosis and Fast Kurtogram

2.1 Signal Modelling

An essential problem of spectral kurtosis is how to detect non-stationary fault signal
YðtÞ in a vibration measurement ZðtÞ in the presence of some strong additive noise

Table 1 Different detection filters used to estimate the SK of vibration signal

Detection filter SK technique References Comments

CMWT STFT-based SK [15] Uniform resolution on a logarithmic
frequency scale

WPT Kurtogram [16] More dedicated division of the
time-frequency decompositionAdaptive supper-

position window in
frequency domain

[17]

TQWT [18] More flexible wavelet transform of
tunable quality factor

QAWTF Kurtogram [4] Quasi-analytic wavelet tight frames

AKBS Adaptive spectral
kurtosis

[19] Remove sinusoidal interferences

Mulitwavelet
transform

Kurtogram [20] Customized multiwavelet transform

Morlet wavelet Adaptive spectral
kurtosis

[21] Morlet wavelet used as filterbank
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NðtÞ as well as some other interfering components. This signal model is partly
based on the work of Antoni and Randall [11–13].

ZðtÞ ¼ YðtÞþNðtÞ ð1Þ

It is assumed that YðtÞ is of impulsive transient nature. In terms of Wold’s
decomposition, any stationary stochastic process can be treated as the output of a
causal, linear, and time-invariant system hðsÞ excited by strict white noise:

YðtÞ ¼
Z t

�1
hðt � sÞXðsÞds ð2Þ

No restriction is imposed on XðtÞ other than it has a flat spectrum almost
everywhere and it has a symmetric probability density function. While its coun-
terpart in the frequency domain is named as the Cramer’s decomposition via

YðtÞ ¼
Zþ1

�1
ej2pftHðf ÞdbXðf Þ ð3Þ

where Hðf Þ is the Fourier transform of hðsÞ and dbXðf Þ is the spectral counterpart
associated with XðtÞ

XðtÞ ¼
Zþ1

�1
ej2pftdbXðf Þ ð4Þ

Different interpretation may be applied to Eq. (6). A famous one is regarded as
the integrant is the filtering of YðtÞ with an infinitely narrow-band filter cantered at
the frequency of f . In more general cases, the transfer function hðsÞ can be
time-varying, such that an extended Wold-Cramer decomposition of non-stationary
process can be represented as

YðtÞ ¼
Z t

�1
hðt; t � sÞXðsÞds ð5Þ

while the spectral counterpart of Eq. (5) is

YðtÞ ¼
Zþ1

�1
ej2pftHðt; f ÞdbXðf Þ ð6Þ
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The understanding of Eq. (6) is very similar to that of Eq. (3) except that a
non-stationary process is now expressed as a time-varying summation of weighted
complex exponentials. Meanwhile, the time-varying transfer function Hðt; f Þ can be
replaced by the complex envelope or complex demodulate of process YðtÞ at the
frequency of f . However, in practical situations Hðt; f Þ would be rather stochastic
than deterministic due to the random temporal variations of the filter or the difficulty
in acquiring precise time domain data. As such, a more comprehensive description
of YðtÞ can be revised as

YðtÞ ¼
Zþ1

�1
ej2pftHðt; f ;-ÞdbXðf Þ ð7Þ

where Hðt; f ; -Þ denotes a complex envelope whose shape depends on the random
variable -. For simplicity, we impose that Hðt; f ; -Þ is time stationary and inde-
pendent of the spectral process dbXðf Þ. As a result, the fault signal YðtÞ we want to
recover is categorized as processes of conditional non-stationarity (CNS). A few
typical examples are regarded as the uniformly amplitude-modulated processes

YðtÞ ¼ mðt;-Þ½hðtÞ � XðtÞ�; ð8Þ

where hðt; s;-Þ ¼ mðt;-ÞhðsÞ, randomised cyclostationary processes

hðt; sÞ ¼ hðtþ T ; sÞ ¼
X
k

hkðsÞej2pkt=T ; ð9Þ

where T is a given period, and generalized shot noise

hðt; t � s;-Þ ¼ hðt � sÞ
X
k

dðs� skð-ÞÞ; ð10Þ

where XðskÞ determines the random amplitude of the pulses. More specific cases are
available in Refs. [11, 13].

2.2 Spectral Kurtosis

In the cases of conditional non-stationary processes mentioned above, spectral
kurtosis can be formally defined as the energy-normalized forth-order spectral
cumulant

SKYðf Þ ¼ S4Yðf Þ
S22Yðf Þ

� 2; f 6¼ 0; ð11Þ
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where the 2n-order spectral moments is defined as

S2nYðf Þ ¼D E S2nY ðt; f Þf g ¼ E Hðt; f ÞdXðf Þj j2n
n o

¼ E Hðt; f Þj j2n
n o

� S2nX ; ð12Þ

Considering the actual vibration measurement being ZðtÞ ¼ YðtÞþNðtÞ, the SK
can be expressed as

SKZðf Þ ¼ SKYðf Þ
½1þ qðf Þ�2 þ q2ðf ÞSKN

½1þ qðf Þ�2 ; f 6¼ 0 ð13Þ

where qðf Þ ¼ S2Nðf Þ=S2Yðf Þ is the noise-to-signal ratio. Specially, if NðtÞ is an
additive stationary Gaussian noise independent of YðtÞ, the spectral kurtosis of ZðtÞ
is simplified as

SKZðf Þ ¼ SKYðf Þ
½1þ qðf Þ�2 ; f 6¼ 0 ð14Þ

2.3 Illustration Example of Spectral Kurtosis

To illustrate the effectiveness of spectral kurtosis, a synthetic signal xðtÞ containing
repetitive impulsive transient components and white Gaussian noise is used. The
sampling length of the signal is 50,000, and the theoretical spectral content of the
transients is located in the normalized frequency band of [0.15, 0.19]. The time
domain waveform of xðtÞ is shown in Fig. 1. The masked impulsive transients are
difficult to be identified by visual inspection.

The power spectrum density (PSD) function of the original signal is displayed in
Fig. 2, from which it is seen that there are no spectral sidebands that helps to
identify the repetitive transients.
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Fig. 1 Time domain waveform of the synthetic signal
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The spectral kurtosis distribution of xðtÞ is computed and shown in Fig. 3. It is
evident to recognize a global maximum point at the normalized frequency of 0.17.
The spectral kurtosis distribution is used as the optimal filter and the corresponding
filtered signal is shown in Fig. 4. It is observed that the transients of interest masked
by white Gaussian noise are explicitly detected and extracted by the method of
spectral kurtosis.
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Fig. 2 Time power spectrum density of the synthetic signal
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As comparison, we investigate the time domain kurtosis of the synthetic signal
and the filtered signal. In statistics, the kurtosis indicates the fourth standardized
moment, defined as

Kurt½X� ¼ l4
r4

¼ E½ðX � lÞ4�
ðE½ðx� lÞ2�Þ2 ð15Þ

where l4 is the fourth moment about the mean and r is the standard deviation. It is
computed that Kurt½xðtÞ� ¼ 3:5022, very close to the kurtosis of a statistically white
Gaussian noise (3). While the kurtosis of the filtered signal in Fig. 4 is 11.0308.
This comparison shows that usage and effectiveness of spectral kurtosis.

3 Wavelet Based Kurtogram and Its Development

Although SK is powerful in detecting impulsive transients in the presence of white
Gaussian noise, its effectiveness can be very limited in processing vibration mea-
surement Z 0ðtÞ when interfering vibration modes are incorporated.

Z 0ðtÞ ¼ YðtÞþNðtÞþVðtÞ ð16Þ

where VðtÞ indicates other vibration components independent of YðtÞ. As can be
inferred from Fig. 3, additional vibration modes would introduce other pass bands
of the optimal filter, which result in mode mixing. In order to address this problem,
pre-filtering step utilized all kinds of signal decomposition tools (detection filter) is
required. A feasible detection filter is assumed to posses excellent time-frequency
localizability whose properties are concluded in Lemma 1 [11].

Lemma 1 Requirement 1. Translation invariance: The values of the kurtogram
are constraint to remain invariant to any time variation, i.e. SK[xðn� n0Þ� ¼
SK[xðnÞ�.

Requirement 2. Insensitivity to harmonics (discrete tones): The kurtogram of a
discrete tone at frequency f0 is constraint to be nil (strictly speaking a discrete tone
is stationary and therefore should not be detected by the kurtogram).

Requirement 3. Frequency localization: For the kurtogram to be interpreted as
the kurtosis of the signal at a (frequency/frequency resolution) dyad APff ;Df g,1 it
is necessary that its estimator acts like a band-pass filter f � Df ; f þDf½ �.

Requirement 4. Frequency concentration: For the kurtogram to be used to
select the optimal frequency band where to demodulate a signal, it is necessary that
its estimator fulfils that Df � f .

12 AP means ‘Analyzing Parameter’.
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3.1 STFT Based Kurtogram

The initial detection filter used to estimate SK is STFT. For a non-stationary process
YðtÞ with an analysis window wðnÞ of length Nw and a give temporal step size P,
the STFW is written as

YwðkP; f Þ ¼
X1

n¼�1
YðnÞwðn� kPÞe�j2pnf ð17Þ

The 2n-order spectral moment of YwðkP; f Þ is defined as

Ŝ2nY ðf Þ ¼ YwðkP; f Þj j2n
D E

k
ð18Þ

with �h ik standing for the time-average operator over index k. Similar to Eq. (11)

SKSTFT ;Y ðf Þ ¼ Ŝ4Yðf Þ
Ŝ22Yðf Þ

� 2; f �modð1=2Þj j[ 1
NW

ð19Þ

where Nw indicates the windows length. In STFT-based spectral kurtosis analysis
(shown in Fig. 5), the STFT is used as a filterbank that involves frequency-shift,
low-pass filtering, down-sampling operations, and the squared magnitude envelope
of the filtered signal is used to estimate the peakiness of the transients at different
frequency.

Fig. 5 Implementation of STFT-based spectral kurtosis
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3.2 Fast Kurtogram

The four fundamental requirements in Lemma 1 are generally violated by DWT and
WPT, a type of multi-rate filter-bank (MRFB) as the detection filter of the FK.
The MRFB is composed of complex-valued finite impulse response (FIR) filters
and approximates the four feasible properties. The implementing filter-bank of the
MRFB is shown in Fig. 6, where the filter fhðnÞjn ¼ 0; 1; . . .; L� 1g is a sym-
metric and low-pass filter. The complex-valued filters fh0ðnÞg and fh1ðnÞg are
related as

h1ðnÞ ¼ ð�1Þ1�nh0ð1� nÞ ð20Þ

A very notable advantage of FK over classical DWT and WPT is its ability to
provide 1/3-binary tree decomposition to the signal, offering embedded frequency
subbands of dyadic frequency partition grids.

In level k, the input signal is decomposed into 2k distinct subbands. For the
specific subband cik , its Fourier spectrum is mainly localized in the frequency range
of ½ði� 1Þ � 2�k; i � 2�k�p and its central frequency is approximately equal to
ði� 0:5Þ � 2�kp. The frequency-scale paving plane of the original fast kurtogram is
shown in Fig. 7.

3.3 Wavelet Packet Based Kurtogram

According to Ref. [15], the wavelet packet based kurtogram (WPBT) employs
wavelet packet transform (the ‘DB10’ orthonormal basis, shown in figure) as its
detection filter. Because the decomposition signals of WPT are real-valued, kur-
tosis, the traditional statistical indicator, is chosen to measure the impulsiveness of
the signals rather than SK, even though the latter is also applicable to real-valued
signals. Lei’s filterbank inherits classical dyad-tree structure with DB10 wavelet
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(Fig. 8). Moreover, Lei shown two applications and shown that WPBT demon-
strated robuster performance than FK.

4 Wavelet Tight Frame Based Kurtogram

4.1 Limitation of Original Kurtogram

Although the original fast kurtogram is deliberately designed to possess the pow-
erful vibration transients detecting ability characterized by the four properties listed
in Lemma 1. However, in practical applications, three major limitations signifi-
cantly hamper the effectiveness of the original fast kurtogram.

Fig. 7 The frequency-scale paving of the original fast kurtogram
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Limitation 1. Poor spatial resolution in higher decomposition stages

Owing to the down-sampling operations in the MRFB of the original fast kurtogram
and its lack of perfect reconstruction property, the length of the series in higher
decomposition stages are substantially truncated compared with that of the input
signal. More importantly, the sampling density of the decomposition subbands
becomes sparser, i.e. the spatial analyzing resolution decreases significantly, posing
serious threats to successful investigations of transient signatures in these subbands.

Limitation 2. Relatively weak improvements in translation invariance

The MRFB of the FK was originally devised to possess better translation-invariance
property. However, this improvement is not perfect. It turns out that the MRFB is
far away form precise translation-invariance.

Limitation 3. Sensitivity of SK indicator to sporadic impulse

Despite the effectiveness of the SK indicator in detecting non-Gaussian transients, it
is also sensitive to randomly occurred background noise and sporadic vibration
components which are also be impulsive in nature. The sensitivity of the SK
indicator to sporadic impulsive shocks will be shown via numerical trials and
engineering applications.

4.2 Quasi-Analytic Wavelet Tight Frame

WPT offers finer frequency resolution in comparison with DWT, but inherits all
mentioned limitations of DWT, some of which become even more severe in WPT.
In this subsection we will adopt the strategy based on dual tree complex wavelet
bases (Fig. 9) and construct a QAWPB combining the advantages of classical
orthonormal basis and that of the orthogonal wavelet bases.

The hybrid filterbank for a QAWPT is shown in Fig. 10. Similar to that of
DTCWT, the input signal is processed by two independent filter trees simultane-
ously. The filter-bank can be divided into three parts:

(1) The part of the first stage decomposition (FSD):

fh<e10 ðnÞ; h<e11 ðnÞ; h=m10 ðnÞ; h=m11 ðnÞg;

(2) The part of dual three complex wavelet transform:

fh<e0 ðnÞ; h<e1 ðnÞ; h=m0 ðnÞ; h=m1 ðnÞg;

104 B. Chen et al.



-2 -1 0 1 2
-0.4

-0.2

0

0.2

0.4

Time [s]
A

m
pl

itu
de

-2 -1 0 1 2
-0.1

0.1

0.3

A
m

pl
itu

de

Time [s]

-2 -1 0 1 2
-0.4

0.5

1.4

Time [s]

A
m

pl
itu

de
Real Part
Imaginary Part
Envelope

-2 -1 0 1 2
-1.2

0

1.2

Time [s]

A
m

pl
itu

de

Real Part
Imaginary Part
Envelope

(a) (b)

(c) (d)

Fig. 9 Time-frequency atoms for the constructed DTCWT basis: a The complex scaling function
and its envelope, b the complex wavelet function and its envelope; and time-frequency atoms of
the ‘Sym10’ orthonormal wavelet basis, c the scaling function, and d the wavelet function

def= ( )a n 2
 ( ) | 0,1, , 1Aa n n L 

def=

 ( ) | 0,1, , 1Aa n n L 
( 1 )Aa L n 

( 1 )Bb L n 

2

2


 ( ) | 0,1, , 1Bb n n L 

( )
3,1d  ( )

,3 2d  ( )
,3 4d ( )

,3 3d  ( )
,3 7d  ( )

,3 8d ( )
,3 6d ( )

,3 5d 

x

( )
11h ( )

10h 

( )
0h  ( )

1h 

( )
0h  ( )

1h 
0f 1f

( )
0h  ( )

1h 

( )
1h ( )

0h 
0f 1f

0f 1f

( )
11h ( )

1 0h 

( )
1h ( )

0h 

( )
0h  ( )

1h 

0f 1f

0f 1f

0f 1f

( )x 

Tree e

1/2

x(n)

x(n)

e ( )x n m ( )x n

Tree m

(a) (b)

(c) (d)

Fig. 10 Filter-bank for QAWPT a data flow of QAWPT; b implementing filter-bank for each
filter branch (the superscript could be substituted by ‘<e’ or ‘=m’); c function node in the analysis
phase; and d function node in the synthesis phase
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(3) The part of the generalized quasi-analytic wavelet packet (QAWP):

ff0ðnÞ; f1ðnÞg:

Different filter sets are allowed to be used for each individual part listed above;
and theoretically speaking the filters can be chosen arbitrarily on condition that
perfect reconstruction condition is satisfied. However, for acquiring better filtering
performance, filters should be selected properly. Aiming at ensuring approximate
linear-phase and obtaining reduced frequency aliasing, the scaling filter and wavelet
filter originated from the ‘sym10’ orthonormal basis are also adopted for the QAWP
part, i.e. the filters of non-DTCWT parts in Fig. 10 are defined as

f0ðnÞ ¼ h<e10 ðnÞ
f1ðnÞ ¼ h=m10 ðnÞ

�
ð21Þ

Let W ð�Þ
k;i ðzÞ, with k and i being positive integers, denotes the Z transform of the

wavelet function corresponding to the node dð�Þk;i and nk�1nk�2. . .n1n0 be the binary
coding of the decimal integer i� 1 such that

i� 1 ¼
Xk�1

m¼0

2mnm ð22Þ

where nm 2 f0; 1g for 0�m� k � 1. Then W ð�Þ
k;i ðejxÞ, for k� 1, can be expressed as

below:

W ð�Þ
k;i ðejxÞ¼

Hð�Þ
1;nk�1

ðejxÞQk�2

u¼0
Hð�Þ

nu ðej2k�1�uxÞ i2 1;2f g

Hð�Þ
1;nk�1

ðejxÞ QNone�1

u¼0
Fð�Þ
nk�1�u ðej2k�1�uxÞ

� � Qk�2

v¼None

Hnk�1�vðej2
k�1�vxÞ

" #
i2 3;4;...;2k
� �

8>>>><
>>>>:

ð23Þ

where None is the index of the first non-zero digit in the ordered sequence
fnk�1; nk�2; . . .; n1; n0g, i.e. nm ¼ 0 for None þ 1�m� k � 1 and nNone ¼ 1. Owing
to the disadvantages brought about by the length truncation of the wavelet coeffi-
cient series, their corresponding single branch reconstruction signals are used for
vibration analysis instead. After performing QAWPT on the input signal and single
branch reconstruction on the complex wavelet coefficient series dCk;iðnÞ ¼
d<ek;i ðnÞþ j � d=mk;i ðnÞ, where 0� i� 2k � 1, we can obtain the wavelet packet set

Di
kðnÞji ¼ 1; 2; . . .; 2k

� �
. Let W<e

k;i ðejxÞ and W=m
k;i ðejxÞ denote the Fourier coefficient

for the wavelet atoms corresponding to the wavelet packet Di
kðnÞ. Reference [22]

shows that
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W=m
k;i ðejxÞ � e�j0:5xW<e

k;i ðejxÞ ð24Þ

holds true for i = 1, 2. While for i 2 f3; 4; . . .; 2kg, there exists that

W=m
k;i ðejxÞ

W<e
k;i ðejxÞ

¼ W=m
k�None;nNone

ðejxÞ
W<e

k�None;nNone
ðejxÞ ð25Þ

where the subscript index nNone is ranged in {0, 1}. This leads to that

W=m
k�None;nNone

ðejxÞ � e�j0:5x �W<e
k�None;nNone

ðejxÞ ð26Þ

holds true for arbitrary subscript indices k and i, i.e. the resultant complex wavelet
packet basis is also quasi-analytic. What’s more, the QAWPT inherits the nearly
translation-invariance of the DTCWT and has approximate linear-phase property.

Besides the convenience of automatic selection of optimal analyzing parameters,
another significant advantage of the FK lies in that the MRFB is able to provide
non-dyadic frequency subbands compared with DWT and WPT, therefore more
effective in extracting fault features located in transition-areas of dyadic
frequency partition grids. In order to achieve comparable feature extracting ability,
we propose an ensemble wavelet subband generating strategy (EWSGS) that
engenders non-dyadic wavelet subbands. The proposed EWSGS is based on the
translation-invariance, perfect reconstruction and nearly linear-phase properties of
QAWPT. The procedure of the proposed EWSGS is described as the following:

Step (i). Performing wavelet decomposition on the input vibration signal using the
QAWPT and subsequently obtain the reconstructed wavelet packet set
fDi

kji ¼ 1; 2; . . .; 2kg.
Step (ii). Reordering the reconstructed wavelet packet set Di

kji ¼ 1; 2; . . .; 2k
� �

so
that they are arranged in the ascending order with respect to their pass-band, i.e.
Ri
kji ¼ 1; 2; . . .; 2k

� �
. We will show the mapping between these two sets as below:

For a specific reordered wavelet packet Ri
kðnÞ with the binary coding of i� 1 being

i� 1 ¼
Xk�1

m¼0

2mnm ð27Þ

define a decimal variable i0 which can be expressed as

i0 ¼ 1þ
Xk�1

m¼0

2mn0m ð28Þ
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where

n0m ¼ nm m ¼ k � 1
modðnm þ nmþ 1; 2Þ m ¼ 0; 1; . . .; k � 2

ð29Þ

Then the series Ri
k in the reordered set is associated with the series Di0

k in the
naturally reordered set of reconstructed wavelet packet signals.
Step (iii). Generating ensemble wavelet subbands using the following formula

ERi
kðnÞ ¼ R2i

k ðnÞþR2iþ 1
k ðnÞ; for 1� i� 2k�1 � 1 ð30Þ

4.3 Spatial-Spectral Ensemble Kurtosis and Its Kurtogram

Both of the kurtosis and the SK are less effective in distinguishing periodic impulses
from other interfering vibration contents, especially when interfering contents such
as background noise and sporadic vibrations also exhibiting impulsive natures in the
time domain. However, their Fourier magnitude spectra stay irregular and produce
low kurtosis values. This observation is not only effective in identifying Gaussian
noise, but also in suppressing sporadic impulsive vibrations, which are usually
broad-band distributed in the frequency domain (Figs. 11 and 12).

The proposed SSEK indicator attempts to make use of the information implied in
the Fourier spectrum of the vibration signal to eliminate some interferences which
cannot be correctly recognized by kurtosis and SK. Inspiringly, the SSEK indicator
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Fig. 11 Frequency response of the ensemble wavelet subbands (EWSs) derived form the first
5-stage quasi-analytic wavelet packet decomposition (the purple cures represent the frequency
responses for the generated EWSs)
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is developed as a compound measure for evaluating the impulsiveness of vibration
signals. For a specific wavelet subband, the SSEK value is also dependent on its
frequency resolution. The SSEK indicator not only evaluates the impulsiveness of
vibration signal in terms of its time-domain kurtosis, but also takes the kurtosis
of its Fourier spectrum into consideration. Let xðnÞ be a vibration signal of
length L. The reordered wavelet packet set fRi

kðnÞ j i ¼ 1; . . .; 2kg and the EWS set
fERi

kðnÞj i ¼ 1; 2; . . .; 2k�1 � 1g are obtained by performing QAWTP and EWSGS
on the input signal in sequence. The SSEK value for a specific wave packet Ri

k is
defined as the following

SSEK[Ri
k� ¼D WFSK[Ri

k� �
P 0:95Lb c

n¼ 0:05Lb c Ri
kðnÞ � lRi

k

� �4

N � 1ð Þr4Ri
k

ð31Þ

For a specific wavelet subband, its SSEK value is actually the product of its
weighted Fourier spectrum kurtosis (WFMSK) index and its time-domain kurtosis.
It can be checked that SSEK Di

kw

	 
� 0. Two additional specifications should be
emphasized:

Remark 1 In computation of SSEK, not all coefficients of the reconstructed sub-
band signal Di

kw are used for calculating the time-domain kurtosis. Only the coef-
ficients indexed within the interval ½ 0:05Lb c; 0:95Lb c� are used so as to eliminate
the inevitable boundary effects inherited in single branch wavelet reconstruction.

Remark 2 The purpose of the correction term is to endow the developed SSEK
indicator with more robust identification ability of Gaussian noise, harmonics and
sporadic impulses. For a particular wavelet subband Di

kw, the WFMSK index is
defined as the kurtosis the Fourier coefficients in set of

Fig. 12 The frequency-scale
paving of the proposed SSEK
kurtogram
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fR̂i
kðf Þjf 2 ði� 1Þ � k=2kþ 1; i � k=2kþ 1

	 

fsg ð32Þ

where ½ði� 1Þ=2kþ 1; i=2kþ 1�fs is the theoretical pass-band of the wavelet packet
Ri
kðnÞ in the frequency domain and fs denotes the sampling frequency. The math-

ematical definition of the operator WFMSK½�� is given as

WFMSK Ri
k

	 
 ¼D u FMSK R̂i
k

	 
� Tlow
� � � u Tupp � FMSK R̂i

k

	 
� � ð33Þ

with

FMSK R̂i
k

	 
 ¼D
R i=2kþ 1f
ði�1Þ=2kþ 1f R̂i

k fð Þ � l½R̂i
k�

� �4
df

N � 1ð Þr4½R̂i
k�

ð34Þ

and uðtÞ being the unit-step function, where l½bRi
k� and r½bRi

k� are the mean and

standard deviation of Fourier magnitude spectrum bRi
kðf Þ within the theoretical

pass-band of the input wavelet packet, i.e. ½ði� 1Þ=2kþ 1; i=2kþ 1�fs; Tlow and Tupp
are threshold values. By definition, it can be deduced that WFMSK½�� is a bi-valued
operator ranged in {0, 1}. For the derived EWS ERi

k , its theoretical pass-band is
assumed to be

½ð2i� 1Þ=2kþ 1; ð2iþ 1Þ=2kþ 1�fs ð35Þ

To compute the SSEK indicator, an important issue is the proper choice of Tlow
and Tupp. Based on a large amount of numerical simulations and abundant engi-
neering experiences, the values of Tlow and Tupp are determined to be 6 and 100
respectively Eq. (33) (Fig. 13).

4.4 Numerical Simulations and Engineering Applications

(a) Numerical simulations

To verify their feasibility in the extracting transition-band features, a testing signal
consisting of white Gaussian noise and periodically spaced impulses is simulated.
The test signal is expressed as

xtestðtÞ ¼
X10
i¼1

LixuiðtÞþwgnðtÞ ð36Þ
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where xuiðtÞ ¼ e�bðt�i�ThÞ sinð2p512tþ/iÞ for 1� i� 10; Li denotes the amplitude
of the ith impulse; wgnðtÞ is the white Gaussian noise series with certain intensity;
the term auiðtÞ represents the periodic amplitude modulation of the ith impulse;
b ¼ 140 is the damping characteristic of the system. The occurrence rate of the
repetitive impulses fh ¼ 1=Th ¼ 9:75 Hz is set as non-integer because in engi-
neering situations most occurrence rates of bearing faults and gear faults are frac-
tional numbers. Moreover, the random variables f/iji ¼ 1; 2; 3g, which are ranged
in ð�p; p�, are utilized to simulate the inconsistency inherent in the periodic impacts
due to a variety of factors such as slip, varying load angle and transition path effect
of engineering mechanical systems. The sampling rate of the testing signal is
2048 Hz and the sampling interval is 1 s. The original periodic impulses and its
Fourier spectrum are shown in Fig. 14a, b, while the contaminated simulation
signal containing white Gaussian noise and its Fourier spectrum are plotted in
Fig. 14c, d. The signal-to-noise (SNR) ratio of the simulated signal is calculated to
be −15.348 dB.

The proposed technique is applied to the analysis of the noise contaminated
simulation signal, with the processing result shown in Fig. 15a. The optimal ana-
lyzing parameters are chosen as AP(512, 256 Hz). The corresponding optimal
analysis subband is plotted in Fig. 15b, from which the masked periodic impulses
are easily recognized. As comparison, the analyzing result by the WPT-based FK is
shown in Fig. 15c and the optimal analyzing parameters are AP(480, 64 Hz),
whose corresponding filtered signal shown in Fig. 15d reveals only a few scattered

Vibration monitoring of rotating machinery

Vibration Signals

Decomposition by Quasi-analytic WTF

Wavelet subband (dyadic and non-dyadic)

Calculate kurtosis of the 
subband signals in the 

time domain

Calculate Fourier magnitude 
spectrum kurtosis (FMSK)

Threshold processing

Weighted FMSK

The fast SSEK kurtogram

Optimal analyzing parameter selection

Fig. 13 Flow chart of the
proposed SSEK kurtogram
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impulsive units. In contrasts, the processing result using the original FK is dis-
played in Fig. 15e. The filtered signal in Fig. 15f does not give so satisfactory result
as that of the proposed technique. Although the harmonics existing in the envelope
spectrum of the filtered signal indicates the existence of hidden transient vibration
contents, the information in the time domain is not clear.

It is undeniable that each of the above three techniques detects the hidden fault
features to a certain extent, which can be reflected in their envelop spectrum.
However, the proposed technique is with the optimal analyzing result in the sense
that it extracts the periodic impulses most successfully in the time domain, whereas
the periodic impulses in the filtered signals other two contrasting methods are less
clear.

(b) Engineering applications

A three-axis NC horizontal boring and milling machine (HBMM), shown in
Fig. 16a, was employed to conduct coaxial-hole boring of complex shell parts. The
problem of low coaxiality of the machined holes was detected. By using another
ordinary boring machine tool, the machining precision of the end face was exam-
ined again and the resultant coaxiality of the holes can meet the required machining
precision. Therefore, it was inferred that the rotary table system of the HBMM was
suffering major performance degradation. Because this NC machine tool had been
put into service for more than ten years, the above phenomenon was considered to
be natural. Ant the major issue was to locate the part suffering severe performance
degradation and evaluate the remaining machining capacity of this HBMM.

The driving chain of the rotary table system is sketched in Fig. 16c. As illus-
trated, a servo motor is connected to the input shaft, and the torque is transmitted by
the sequential combination of timing belts and worm gears. The rotary table is
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simulation signal in (c)
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Fig. 15 a SSEK kurtogram of the simulation signal b the optimal analysis subband and its
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connected to the output shaft on which the worm gear is installed. A vibration
measurement system was set up to collect the vibration signals during the HBMM’s
machining operation, as shown in Fig. 17b. A 3-axis accelerometer was mounted
on the housing of the rotary table and the acceleration signals were collected. The
acceleration signals were sampled at 12.8 kHz. Each record of collected signal is of
length 16,384. When the rotary table was operating at constant speed, it was
measured that the rotation speed of the servo motor was 2000 r/min. Accordingly,
the expected characteristic frequencies of the rotary table system are listed in
Table 2.

The acceleration signal of the X-axis vibration and its Fourier spectrum are
shown in Fig. 17. As it can be seen, many interfering contents exist in time domain
and frequency domain and mask the critical information related to the HBMM’s

Servo motor Reduction box

Input shaft
Belt Pulley

  worm shaft

Worm Gear Z2=72

Worm Z1=21

(Rotary Table)Output shaft

(a) (b)

(c)

Fig. 16 a Photograph of the HBMM, b the mounted sensor, c the schematic diagram of the
transmission chain
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working condition. What’s more, the frequency peaks of 857.80, 1523.00 Hz and
etc. are not found in Table 3, hence no critical vibration signatures related to rotary
table system is recognized.

The SSEK kurtogram of the acceleration signal is shown in Fig. 18a, in which
the optimal analyzing parameters AP(3000, 400 Hz) are selected. The time domain
waveform and the envelope spectrum corresponding to the optimal analyzing
parameters are shown in Fig. 18b. It can be observed that there are repetitive
impulses spaced at 0.075 s. This impulse occurrence rate is exactly the same as the
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Fig. 17 a Vibration signal of rotary table and b Fourier spectrum of the rotary table vibration
signal

Table 2 Expected
characteristic parameters of
the reduction gearbox in the
milling machine

Transmission ratio [Z2/Z1] 65/22

Rotation frequency of input shaft [Hz] 4.5

Rotation frequency of output shaft [Hz] 1.52

Meshing frequency [Hz] 99

Module of the pinion [mm] 30

Central distance [mm] 1350

Face-width [mm] 560

Table 3 Expected
characteristic parameters of
the reduction gearbox of the
HBMM

Rotation speed of the servo motor [Hz] 33.33

Transmission ratio of the timing belts 2.5

Rotation speed of the worm shaft [Hz] 13.33

Transmission ratio of worm gear pair 72

Rotation speed of the worm gear [Hz] 0.185
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Fig. 18 a SSEK kurtogram of the rotary table’s acceleration signal; b the optimal analysis
subband and its envelope spectrum of SSEK kurtogram; c DWT based fast kurtogram of the rotary
table’s acceleration signal; d the optimal analysis subband and its envelope spectrum of DWT
based fast kurtogram; e original fast kurtogram of the rotary table’s acceleration signal; and f the
optimal analysis subband and its envelope spectrum of original fast kurtogram
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rotation frequency of the worm shaft, meaning that the impulses happened every
single revolution of the worm. Thus it was surmised that the worm suffered
localized fault on its surface, which caused abnormal vibration during the HBMM’s
machining process and resulted in low machining precision. This speculation was
validated in an afterwards overhaul of the HBMM. Without available spare part of
worm of this type, the HBMM, after long service term, was determined to be no
longer suitable for high precision machining. However, it is still feasible for
semi-finishing machining purposes.

The other two contrasting methods are also employed in this case study, with
their processing results shown in Fig. 18c–f. It can be seen form Fig. 18d that the
optimal analysis subband of the WPT-based FK only reveals a few isolated and
irregular impulses. The periodicity of the impulses in Fig. 18d is not so evident as
that shown in Fig. 18b. On the other hand, the FK selects the high frequency noise
as its optimal analysis subband. Although the optimal analysis subband of the FK
its envelope spectrum disclose there may be periodic phenomenon, its time domain
waveform does not provide and explicit information about that.

5 Adaptive Super-Wavelet Based Kurtogram

Sparse representation of fault features is of great importance to the feature
extraction of machinery fault detection [23]. Generally, the detection filter used for
estimation of spectral kurtosis are based on fixed bases or frames. In this section, an
adaptive detection filter name ensemble super-wavelet (ESW) is applied. The ESW
is put forward based on the combination of tunable Q-factor wavelet transform
(TQWT, [24]) and Hilbert transform such that fault feature extracting adaptability is
enabled.

5.1 Adaptive Super-Wavelet Transform

(a) Filter bank

The TQWT is implemented using perfect reconstruction over-sampled filter banks
with real-valued sampling factors. The transform consists of a sequence of
two-channel filter banks, with the low-pass output of each filter bank being used as
the input to the successive filter bank. The associated analysis and synthesis filter
banks for the TQWT are shown in Fig. 19 (where LPS a and HPS b represent
low-pass scaling and high-pass scaling with the parameters a and b, respectively).
The filter bank parameters a and b should be properly chosen so as to achieve a
wavelet transform with the desired Q-factor and over-sampling rate r. Here, the
relationship between (a; b) and (Q, r) can be expressed as
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b ¼ 2
Qþ 1

; a ¼ 1� b
r
: ð37Þ

For the purpose of perfect reconstruction, the frequency responses HiðxÞ; i ¼
0; 1; must be chosen so that the reconstruction signal yðnÞ equals the input signal
xðnÞ. Specifically, the frequency responses of H0ðxÞ and H1ðxÞ are defined as

H0ðxÞ ¼
1; xj j � ð1� bÞp
hðxþðb�1Þp

aþb�1 Þ; ð1� bÞp� xj j\ap
0; ap� xj j � p

8<
: ð38Þ

H1ðxÞ ¼
0; xj j � ð1� bÞp
hð ap�x

aþb�1Þ; ð1� bÞp� xj j\ap
1; ap� xj j � p

8<
: ð39Þ

where

hðxÞ ¼ 1
2
ð1þ cosxÞð2� cosxÞ1=2 for xj j � p ð40Þ

The transition function hðxÞ, originating from the Daubechies filter with two
vanishing moments, is used to construct the transition bands of H0ðxÞ and H1ðxÞ.
It can be verified that the low-pass filter H0ðxÞ and high-pass filter H1ðxÞ satisfy
the perfect reconstruction requirement H0ðxÞg2 þ H1ðxÞj j2¼ 1. The variables a
and b are the LPS parameter and the HPS parameter, respectively. They satisfy

0\a\1
0\b� 1

�
ð41Þ

Input Analysis Phase Coefficients Synthesis Phase Output

Fig. 19 Filterbank of TQWT

118 B. Chen et al.



so as to ensure the wavelet transform will not be overly redundant. In order that the
filter responses be well localized, it is necessary that aþ b[ 1.

(b) TQWT parameters

The TQWT is specified by three parameters: the Quality-factor Q, the redundancy r,
and the number of stages (or decomposition levels) J (Fig. 20).

Generally, Q is a measure of the number of oscillations the wavelet exhibits.
According to the definition of the Q-factor, the bandwidth varies inversely to the Q-
factor for a given center frequency. Therefore, a higher Q-factor has a better fre-
quency resolution in comparison with a lower one. For Q, a value of 1.0 or greater
can be specified. The wavelet with a Q-factor 4.0 or greater consists of sufficient
oscillatory cycles to process signals with oscillatory features. Meanwhile, for Q, a
value of 4.0 or greater is large enough for the precise division of frequency band of
mechanical vibration signals. Therefore, the lower and upper bounds of the Q-factor
are set to be 1.0 and 5.0 respectively in this article. The parameter r is the
redundancy of the TQWT when it is computed using infinitely many levels. The
specified value of r must be greater than 1, and a value of 3 or greater is generally
recommended. The parameter J denotes the number of filter banks. As illustrated in
Fig. 20, after performing a J-stage TQWT decomposition, there will be J + 1
subbands: the high-pass filter output signal of each filter bank fdjðnÞjj ¼ 1; . . .; Jg,
and the low-pass filter output signal of the final filter bank aJðnÞ.
(c) TQWT wavelets and frequency responses

Figure 21 shows the TQWT for two different sets of TQWT parameters. By
increasing the value of Q, the wavelet function becomes more oscillatory, as
illustrated in Fig. 21 Obviously, it can be observed that for Q = 1.0 the wavelet
consists of few oscillatory cycles compared with the wavelet for Q = 3.5.
Meanwhile, the frequency responses of the band-pass filters constituting the TQWT
can be easily observed in Fig. 21. For a low Q-factor, the band-pass filters are quite
wide. In contrast, for a high Q-factor, the filters are narrower. Therefore, a high
Q-factor wavelet transform requires more levels to cover the same frequency range
as a low Q-factor transform [25].

Original Signal
J-stage TQWT 
Decomposition

( )x n
2 ( )d n

( )Jd n

( )Ja n

1( )d n

...

Detail Subbands

Approximation Subband

Fig. 20 TQWT with J-stage decomposition
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In addition, the TQWT can be implemented efficiently using radix-2 FFTs. The
computational cost of the TQWT is as low as expected, given the implementation is
based on the discrete Fourier transform.

5.2 A Sparse Indictor: Fault Feature Ratio (FFR)

The FFR measures the peakiness of a non-stationary signal in the Hilbert envelope
domain [26]. A record of real signal is defined as the real part of an analytic signal

xReðtÞ ¼D xðtÞ ð42Þ

while its counterpart in the Hilbert domain is expressed as

xImðtÞ ¼ p�1
Zþ1

�1
xReðsÞ 1

t � s
ds ð43Þ

In consideration of the slow decaying property of convolution function
gðtÞ ¼ 1=ðptÞ in the time domain, the above operation are often made in the Fourier
domain.
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Fig. 21 TQWT wavelets and frequency responses (at level 6) for two Q-factors: a Q = 1, r = 3,
J = 8; and b Q = 3.5, r = 3, J = 16
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x̂ImðxÞ ¼ �j � x̂ReðxÞ; x[ 0
j � x̂ReðxÞ; x\0

�
ð44Þ

As for complex-valued signal xC ¼ xReðtÞþ j � xImðtÞ, the instantaneous ampli-
tude IAmpðtÞ and the instantaneous freuqnecy IFreqðtÞ can be computed as

IAmpðtÞ ¼ ðxReðtÞÞ2 þðxImðtÞÞ2
h i1=2

ð45Þ

IFreqðtÞ ¼ arctan xImðtÞ=xReðtÞ	 
 ð46Þ

The Hilbert envelope spectrum IAmpðtÞ is the Fourier transform of IAmpðtÞ

HfIAmpðtÞg ¼ DFTfIAmpðtÞg ð47Þ

For a specific characteristic frequency fCha ,the energy weight of its higher order
harmonic i � fCha in the Hilbert envelope HfIAmpðtÞg is computed as

Eimpðx; fChaÞ ¼ 2
L
�
Pi�fCha � fs=2

i¼1 maxk2IiChar
PL�1

n¼0
xðnÞ exp �j 2pL nk

� �


� �
PL=2�1

n¼0 HfIAmpðtÞg
 	 
 ð48Þ

where fs denotes the sampling frequency of xðtÞ, and IiCha denotes the index interval
of the ith order harmonic component of fCha

IiCha ¼ kjk ¼ iLfCha
fs

	 m; m ¼ 0; . . .; 10
� �

ð49Þ

According to the characteristics of impulsive transients, we choose the subset of
i 2 f1; 2; 3g. Thus Eq. (49) can be simplified as

~Eimpðx,fChaÞ ¼ SðfChaÞj j þ Sð2fChaÞj j þ Sð3fChaÞj jPfs=2
f¼0 Sðf Þj j

ð50Þ

where Sðf Þ denotes the amplitude of nth order harmonic component of fCha.
Equation (50) calculates the overall energy of xðtÞ as f ! 1.

5.3 Adaptive ESW Based Kurtogram

The procedure of the ESW based kurtogram is illustrated in Fig. 22. The proposed
method is composed of three major steps:
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Fig. 22 The procedure of the proposed adaptive feature extraction method based on the TQWT
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(1) Selection of decomposition level J;
(2) Selection of optimal Q-factor;
(3) Adaptive fault feature extraction.

Note that the value of r is specified to be 3.0. The detailed descriptions of these
steps are presented in the following subsection.

(a) Selection of decomposition level J

For a given TQWT parameter pair (Q, r), the maximum number of decomposition
levels is

Jmax ¼ logðbN=8Þ
logð1=aÞ


 ð51Þ

where a and b are the low-pass scaling parameter and the high-pass scaling
parameter, N is the length of the input signal. The maximum number of decom-
position levels Jmax increased with an increase in Q or N.

Although TQWT can be efficiently implemented using radix-2 FFTs, too much
computational time introduced by a large number of decomposition levels is still
computationally intractable, especially when different Q-factors are used to analyze
large data. Meanwhile, excessive decomposition levels may result in inappropriate
decomposition of useful signatures or redundant processing of useless signal
components. Therefore, an appropriate decomposition level J is needed. Addressing
this problem, a decomposition stopping criterion is devised to select the decom-
position level J adaptively. The relationship between the energy ratio of last sub-
band to the total energy (LER) and decomposition level J when applying TQWT to
process dynamic signals is illustrated in Fig. 22. Here for the convenience of the
comparative, the LER on the vertical axis remains equal to the value calculated
when the decomposition level is Jmax if J on the horizontal axis exceeds Jmax. The
LER is given by

LER ¼ EJþ 1

Etot
ð52Þ

where EJþ 1 is the energy of the last low-pass subband (namely the J + 1 subbands)
after performing a J-stage TQWT decomposition, Etot is the total energy in wavelet
domain. It can be clearly observed from Fig. 22 that the LER decreased as
decomposition level J increased. The stopping criterion is based on the assumption
that if a proper decomposition level J is obtained, then the LER keeps nearly
unchanged. Here the relative difference of adjacent LER constrained is used to
obtain a threshold T to achieve a proper decomposition level J. Specifically, an
appropriate J is obtained when the following stopping criterion is satisfied.
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LER1� LER2j j þ LER1� LER3j j � T ð53Þ

where LER1, LER2 and LER3 are the energy ratio corresponding to J, J + 1 and
J + 2 levels. The threshold value T should be set appropriately. Generally, T can be
set as 2%. Using a smaller value will result in more decomposition levels. Using a
greater value will result in less decomposition levels. Note that setting an appro-
priate decomposition level is always a difficult task when using wavelet transform
to extract fault features in engineering applications.

To reduce the computation cost, the initial decomposition levels J should be set.
In this case, the number of initial decomposition levels corresponding to Q = 1.0 is
chosen to be 5, then one more level is needed if the Q is updated with an increase
of 0.5.

The procedures of selecting an appropriate J can be summarized as follows.

Decompose the input vibration signal by using TQWT bases into J + 1, J + 2 and
J + 3 (J represents the initial decomposition levels);
Calculate the energy ratio LER1, LER2 and LER3;

If the stopping criterion is not satisfied, then increase J and repeat steps (1) and
(2) until an appropriate J is obtained to stop the circulation.

Back bearing of generator

Front bearing of generator

Gearbox
Cooler

Fig. 23 Schematic draw a wind turbine system
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5.4 Engineering Applications

In this engineering application, a rolling element bearing fault developed in a wind
turbine is detected by the proposed adaptive method. The structure sketch of a wind
turbine is shown in Fig. 23, which mainly consists of a three-phase induction
generator, a cooler, a single-stage planetary gearbox, etc. Both the front and back
bearings of the generator are deep groove ball bearings. The bearing type is 6324
and its parameters are displayed in Table 4. Accelerometers for vibration detection
were mounted on the housings of the front and back bearings. The sampling fre-
quency is 12.8 kHz and the average rotating speed is 1501.2 r/min.

A measured vibration signal with a length of 4096 is shown in Fig. 24.
However, only several aperiodic impulses can be revealed clearly in the time
domain.

The frequency spectrum and the Hilbert envelope spectrum of the signal are
shown in Fig. 25. The rotating frequency 25 Hz can be seen in Fig. 25a. In the
envelope spectrum, the fault characteristic frequency of the front bearing inner race
125 Hz (calculated value fi ¼ 120:74 Hz) can be found, but it is surrounded by
heavy noise frequencies and its harmonic components are not revealed. Therefore,
the vibration signal and the spectral analysis cannot provide useful diagnosis
information effectively.

The proposed method is introduced to analyze this vibration signal and extract the
useful fault features hidden in the signal. Figures 26 and 27 show the processing
results. Here the optimal Q-factor is chosen to be 2.5. It can be seen from Fig. 27a,
strong periodic impulses with intervals of 0.04 s are clearly revealed, which is exactly
in accordance with the rotating frequency 25 Hz. Moreover, we can find some weak
periodic impulses, which is relevant to the fault characteristic frequency of inner race

Table 4 Parameters of the generator bearing in the wind turbine

Inner diameter
(mm)

Outer diameter
(mm)

Roller diameter
(mm)

Number of
rollers (mm)

Contact angle
(mm)

120 280 41.275 8 0

Time (s)

A
m

pl
itu

de
(g

)

Fig. 24 The measured vibration signal
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fi. As shown in Fig. 27b, the Hilbert spectrum of the reconstructed signal not only
extracts the rotating frequency 28 Hz (calculated value 25.02 Hz) but also indicates
the characteristic frequency of inner race 125 Hz (calculated value 120.74 Hz), its
second and third harmonic frequencies 246.9 Hz (calculated value 241.48 Hz) and
365.6 Hz (calculated value 362.22 Hz). Moreover, both of the characteristic fre-
quency of inner race and its second harmonic frequency are surrounded by sidebands
spaced at rotating frequency 25 Hz. Hence, the extracted features indicate that there
existed a localized defect on the inner race of the front bearing. As comparison, the
processing results derived by non-adaptive TQWT feature extraction method are
displayed in Fig. 28, in which the fault features were not successfully identified.

6 Conclusions

Spectral kurtosis is an efficient and effective way to indicate impulsive transients
masked by interfering components. The continuous development of wavelet
decomposition theory significantly enhances the robustness of SK. In this chapter,
we introduce the fundamentals of kurtogram, and focus on the recent advancements
of fast kurtogram. QAWTF and SW are beneficial variations of discrete wavelet
transform that exhibit non-dyadic time-frequency paving. With a range of engi-
neering applications, the wavelet based kurtogram is verified to possess more robust
noise-resistance and interference suppressing ability.
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Time-Frequency Manifold for Machinery
Fault Diagnosis

Qingbo He and Xiaoxi Ding

Abstract In this chapter a new method called time-frequency manifold (TFM) is
reported for signature enhancement and sparse representation of non-stationary
signals for machinery fault diagnosis. In the framework of the TFM analysis, the
phase space reconstruction is firstly employed to reconstruct the dynamic manifold
embedded in an analysed signal, then the time-frequency distributions (TFDs) are
generated in the reconstructed phase space to represent the non-stationary infor-
mation, and manifold learning is finally addressed on the TFDs to discover intrinsic
TFM structure. In this process, the TFM combines non-stationary information and
nonlinear information simultaneously. This will provide a better time-frequency
signature with the merits of noise suppression and resolution enhancement for
machine health diagnosis. Furthermore, a TFM synthesis approach is further
reported to explicitly recover the transient signal from the TFM signature by
combining the sparse theory with the TFM structure. The objective of the intro-
duced work is to exploit a TFM technology for enhancing the time-frequency
signature and representing the transient feature with in-band noise suppression for
machine fault signature analysis and transient feature extraction.

1 Introduction

Effective analysis of vibration signals is the basis of machinery fault diagnosis.
However, in practice there always exists lots of background noise in collected
vibration data, which will corrupt the fault-induced transient impulses. It is always
an important aim to de-noise the measured vibration signal and extract the intrinsic
fault signatures for a reliable fault diagnosis. During the past two decades, advanced
signal processing techniques have been widely developed for effective machine
fault feature extraction in machine health diagnosis area. Emerged techniques
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include wavelet transform [1], time-frequency distribution (TFD) [2],
Hilbert-Huang transform (HHT) [3], multivariate statistical analysis [4] and spectral
kurtosis [5], etc. Due to the nonlinear nature of machine vibrations, nonlinear
features have attracted lots of attentions, e.g., fractal dimensions [6], complexity
measure [7], phase space features [8], and kernel-based features [9], etc. In sum-
mary, nonlinear features can mainly be generated from two sources: one is the
high-dimensional phase space data being reconstructed from raw signals, and the
other is the information hidden in multi-dimensional vibration signals or multi-
variate features.

The signals generated by the defect-induced machine faults have the nature of
nonstationarity for the varying frequency characteristics with time. For this type of
signals, neither the time-domain techniques nor the frequency-domain ones can
provide enough information for effective diagnosis due to their lack of information
in each other domain. The time-frequency distribution (TFD) combines the infor-
mation in time and in frequency, and is thus an effective approach for
non-stationary signal analysis in machine fault diagnosis. Time-frequency repre-
sentation can characterize varying frequency information at different time locations,
providing plentiful non-stationary information of the analyzed signal. The TFD in
the same health conditions will indicate a similar structure. If the machine condition
changes, the TFD will also become significantly different. Hence, the TFD is
beneficial to machine health diagnosis. However, the health pattern-related
time-frequency structure will generally be corrupted by the other irrelevant com-
ponents such as noise, which can worsen the resolution of useful time-frequency
features. Many techniques have been addressed for de-noising the corrupted signals
and extract the defective transient dynamics, such as, the time-domain averaging
method [10], band-pass filtering [11], frequency-domain thresholding [12],
empirical mode decomposition (EMD) [13], matching pursuit (MP) [14], orthog-
onal matching pursuit (OMP) [15]. These methods didn’t focus on de-noising in the
time-frequency domain, and thus may sacrifice part of the time-frequency resolu-
tion. Meanwhile, due to the lack of consideration for the relevancy and locality
among the transient features of the signals, the in-band noise cannot be effectively
removed from the raw transients while the pulse waveform structure is still well
maintained.

Manifold learning has emerged in nonlinear feature extraction. It can identify
low-dimensional nonlinear structure hidden in high-dimensional data, through
several techniques including locally linear embedding (LLE) [16], isometric feature
mapping (IsoMap) [17], and local tangent space alignment (LTSA) [18], etc. This
merit has attracted increasing attentions in machine fault diagnosis area. Many
studies have been focused on extracting nonlinear manifold features from
high-dimensional system condition parameters, such as multi-dimensional time
series in a reconstructed phase space [19], multivariate statistical feature extraction.
In the sense of machine health diagnosis, manifold learning may be employed to
reveal the change of machine health pattern through analyzing the inherent structure
related to the nature of different faults. Different from traditional studies on man-
ifold feature extraction, in this chapter, a TFM theory is thoroughly described by
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well considering the merits of TFD and nonlinear features simultaneously [20, 21].
The TFM describes a kind of dynamic manifold of the time-frequency structure for
the non-stationary signal. It can be extracted by a technique which addresses
manifold learning on a series of TFDs in the reconstructed phase space [21]. The
corresponding TFM signature represents an intrinsic time-frequency structure with
a high resolution for representing impulse components of interest and excellent
suppression effect for the noise. Due to its capability of combining the nonsta-
tionarity and the nonlinearity, this new signature is exactly suited for representing
machine fault pattern and even demodulating the fault information in the
time-frequency domain [22–24].

Furthermore, according to the merits of TFM analysis in noise suppression and
resolution enhancement in the time-frequency domain [20, 21], it can be foreseen
that it has the potential to solve the problem in TFA-based denoising approach. That
is to say, theoretically the signals reconstructed from the TFM signature will have
satisfactory denoising effects. Then a TFM synthesis approach was further reported
for machinery fault signal denoising [25, 26]. The basic idea of this method is to
synthesize a clearer TFD for the fault signal based on the TFM signatures of the raw
signal by importing sparse theory into the TFMs. Based on the synthetic techniques,
the clean fault signal can be synthesized again in the time domain. Hence, the
recovered signal will have an excellent denoising performance in the application of
machine transient feature extraction.

In this chapter, we present the theory of TFM technology for machine fault
signature analysis and transient feature extraction, which aims to enhance the
time-frequency signature and represent the transient feature with the in-band noise
suppression. The TFM technology contains two aspects: TFM analysis and TFM
synthesis. The TFM analysis mainly contributes on the time-frequency signature
enhancement and noise suppression, but the waveform and amplitude of the fault
signal will be seriously weakened. To overcome this shortcoming, the TFM syn-
thesis is developed based on the TFM analysis and is used to extract and recover the
transient feature. These two aspects will refine and extend the ability of the TFM
technology in the application of machine health condition diagnosis.

2 Time-Frequency Manifold Analysis

2.1 Principle

It is known that the TFD, (which can be achieved by various TFA methods such as
STFT, Continuous WT and Wigner-Ville distribution) can reveal the non-stationary
pattern of a dynamic system. For samples under the same health condition, the TFD
will display an intrinsic structure, which corresponds to a kind of nonlinear man-
ifold. Nevertheless, the TFD will also indicate slight variance with the change of
initial time and working condition, and can be seen as an output sample from the
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underlying manifold. For a simulated bearing fault signal with −10 dB white noise,
the TFDs of the noiseless signal and noisy signal are drawn in Fig. 1a, b respec-
tively. It can be seen that the noise is distributed among the whole time-frequency
plane including locations of the transient impulses. Meanwhile, it can be also found
that basically the dynamic structure with the elliptical shape of TFD in Fig. 1c is
submerged in the noise as displayed in Fig. 1d. The dynamic structure depicts the
non-stationary information of the machinery health condition. For the noiseless
signal, the dynamic structure can be seen as a manifold structure in the
time-frequency domain, so here it is called the TFM. For the noisy non-stationary
signal, the TFM is embedded on the TFD as an intrinsic nonlinear manifold
structure in the time-frequency domain. For different vibration signals, the TFM
corresponds to different time-frequency patterns. The TFM can be extracted by a
technique which addresses manifold learning on a series of TFDs in the recon-
structed phase space [20, 21]. This technique combines non-stationary information
and nonlinear information together and can contribute a new TFD signature with
the advantage of noise suppression. The basic idea of the TFM learning is to
address manifold learning on reconstructed multi-dimensional TFDs of a
non-stationary signal by implementing the following three steps: phase space
reconstruction (PSR), TFD, and manifold learning. The following subsections
describe the detailed theory of the TFM analysis technique.

Fig. 1 Dynamic structure of the TFD: a the TFD and c the corresponding dynamic structure of
the noiseless signal; b the TFD and d the corresponding dynamic structure of the noisy signal
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2.2 Phase Space Reconstruction

The TFM learning requires firstly reconstructing the manifold of signal in a
high-dimensional phase space by the phase space reconstruction (PSR) technique.
The PSR is an effective method to reconstruct an inherent dynamic system that is
embedded in an observed time series [27–29], which aims to trace out the orbit of
the dynamic system in the reconstructed high-dimensional space. The manifold
reveals the dynamic nature of the system, but is embedded in the observed time
series. By applying this time-delay reconstruction, we can reconstruct the under-
lying manifold being embedded in a given signal. For a signal x(t) with N data
points, the ith phase point vector in an m-dimensional phase space is given as:

Xm
i ¼ xi; xiþ s; . . .; xiþðm�1Þs

� � ð1Þ

where xi is the ith data point in x(t), m is the embedding dimension, and s is the time
delay (an integer). For most real systems, the embedding dimension m is not a prior
knowledge. There are many methods to calculate the dimension parameter, such as
false neighbors [27] and the Cao’s method [28]. In the process of determining the
embedding dimension, the time delay could be set to be one by Takens’ theory [29].
In this study, to keep a high time resolution for the TFM signature, the time delay
should also be set to be one.

By the PSR, the phase point vectors {Xi
m | i = 1, 2, …, n} can be constructed

after determining the embedding dimension m and the time delay s. These vectors
form an m � n matrix P (s = 1, n = N − m + 1) in phase space as below:

Xm
1

Xm
2

� � �
Xm
i� � �

Xm
n

2
6666664

3
7777775

T

¼

x1 x2 � � � xm
x2 x3 � � � xmþ 1
� � �
xi
� � �

� � �
xiþ 1

� � �

� � �
� � �
� � �

� � �
xiþðm�1Þ

� � �
xn xnþ 1 � � � xN

2
666664

3
777775

T

¼
P1
x

P2
x

� � �
Pm
x

2
664

3
775 ð2Þ

According to Eq. (2), aligning the vectors {Xi
m | i = 1, 2, …, n} in the order of

time produces m vectors Pj
x 2 R1�n; j ¼ 1; 2; . . .;m; whose element indices corre-

spond to the time. The time-series vectors Pj
x j ¼ 1; 2; . . .;mð Þ are the rows of matrix

P and can be considered as m signals denoted by Pj
x kð Þ j ¼ 1; 2; . . .;mð Þ for

convenience.

2.3 Time-Frequency Distribution

The TFD is an effective technique to analyze non-stationary signals [2]. It is
employed to provide a 2-D representation that combines the information of time
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and frequency for the constructed signal Pj
xðkÞ. In this paper, the STFT is taken to

generate the TFD called the spectrogram. The spectrogram is a real-valued and
non-negative energy distribution in the TF domain. Firstly, each row (with the time
sense) of the data matrix P is analyzed by the STFT to provide a time-frequency
representation as shown in the following equation:

Sjðk; vÞ ¼
X1

l¼�1
Pj l½ �w k � l½ �e�i2pMvl; j ¼ 1; 2; . . .;m ð3Þ

where k and v are the location of time axis and frequency axis, respectively,M is the
discrete frequency points number in STFT, w(k) is a short-time analysis window,
and Pj is the jth row of matrix P with length n. The result Sj(k, v) is in the complex
form, which can be also expressed in two parts: amplitude Aj (k, v) and phase ɵj(k,
v). The amplitude part is just the TFD of the analysed signal. Therefore, m TFDs
can be generated from the constructed data P. As displayed in Fig. 1, the dynamic
structure can be reconstructed in the phase space by PSR. Generally, the
spectrogram-based TFD reveals a synthetic structure to evaluate machine faults.
However, the background noise will also corrupt the TFD, which will hence worsen
the resolution of time-frequency features related to the faults. This issue will be
addressed by the following manifold learning technique.

In the following step, these m TFDs will be inputted into a manifold learning
algorithm for TFM calculation to extract the dynamic structure. It should be noted
that due to the nonlinear learning process of manifold learning for 3-D structure of
m TFDs (m � 2-D TFD with the size of L � n in a high dimension, where L is the
number of time points, n is the number of frequency points), there will be huge
computation time cost in the process of TFM learning, which influences the use of
the TFM in analyzing a long signal in diagnosis or multiple signals in monitoring.
To improve the computational efficiency, a pre-processing technique needs to be
employed to reduce the size of the calculated TFDs before TFM learning. Here, two
simple but effective methods, including frequency band selection and
two-dimensional discrete wavelet transform (2-D DWT), are suggested on the
m TFDs to reduce the computational work. In the process of frequency band
selection method, only the frequency band of interest is selected where the main
vibration pattern can be revealed. For 2-D DWT, a low resolution “approximation”
image can be obtained for manifold learning based on the multi-resolution analysis
theory. Through the pre-processing techniques, m TFDs (the size of each TFD is
L′ � n′, where L′ is less than or equal to L and n′ is less than n) are generated by the
constructed data Pj

x kð Þ j ¼ 1; 2; . . .;mð Þ in the phase space.
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2.4 TFM Learning

With the PSR and TFD, all of m TFDs form a 3-D matrix with the size of
m � L′ � n′. As demonstrated in Fig. 2a, the original TFD of the simulated signal
suffers a severe problem in time-frequency resolution due to noise corruption. This
problem has also been brought into the phase space as shown in Fig. 2b, which
displays the 3-D structure of m TFDs. To solve the problem above, the manifold
learning is employed. The basic idea is illustrated in Fig. 2c. Due to the time-delay
operation, each TFD in the phase space also results in a time-delayed representa-
tion. But note that the time delay of the TFDs is not rigorous. This is because the
Fourier transform operation in each short-time frame would cover different time
information for different constructed signals in phase space. The TFM intends to
reveal varying time-frequency characteristics among these multi-dimensional sig-
nals as illustrated in Fig. 2c. The revealed solid time-frequency structure corre-
sponds to a specific function contained in a specific range of time, and can be
imagined as a skeleton form, e.g., as shown in Fig. 1c. By the manifold learning in
the phase space, the deterministic information (e.g., the fault information) will be
kept for its inherent manifold form; however, the random information (e.g., the
noise) will not be equally processed as there is not a solid skeleton structure for the
noise (although they are partly correlated) among different TFDs. This is just the
motivation to study the TFM from the time-delayed TFDs for machine fault sig-
nature representation.

Manifold learning aims at discovering the intrinsic and dynamic structure of the
TFM from the generated m TFDs. Since these TFDs form a 3-D matrix with the size

Fig. 2 Demonstration of TFM learning: a original TFD, b m TFDs in reconstructed phase space,
and c illustration of TFM learning theory
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of m� L0 � n0, we should change the matrix to a 2-D one to satisfy the input of
manifold learning algorithm. This is realized by organizing each 2-D TFD matrix to
a 1-D vector by connecting one column by one column. The manifold learning is
then performed on the reorganized TFDs matrix with the size of m� ðL0 � n0Þ This
study employs the LTSA algorithm, which is to construct an approximation for the
tangent space at each data point, and then align those tangent spaces to obtain the
global coordinates of the data points with respect to the underlying manifold.
Details and derivation of the algorithm can be found in [18]. The following gives a
simple description of the algorithm for the TFM learning.

Given a data set Z ¼ ½z1; . . .; zðL0�n0Þ� 2 Rm�ðL0�n0Þ with zi 2 Rm, sampled (pos-
sibly with noise) from a d-dimensional TFM d � m. The data set Z represents the
TFD pixels in the m-dimensional phase space. The LTSA algorithm produces
ðL0 � n0Þ d-dimensional coordinates T 2 Rd�ðL0�n0Þ for the manifold constructed
from a series of local nearest neighbors. The algorithm is conducted in the fol-
lowing steps.

Step 1 Local neighborhood construction

For each zi; i ¼ 1; . . .; ðL0 � n0Þ, determine its k nearest neighbors zij ; j ¼
1; . . .; k; and form a neighborhood set Z ¼ ½z1; . . .; zðL0�n0Þ�.

Step 2 Local linear fitting

Compute the orthonormal basis matrix Qi for the d-dimensional tangent space at
zi based on the local neighborhood Zi. It can be taken as the matrix of d left singular
vectors of Zi(I − eeT/k) corresponding to its d largest singular values through the
singular value decomposition (SVD) as Zi(I − eeT/k) = Qd

P
dVd

T, where e is a
vector of all ones. Each data point zij in the neighborhood of zi is then projected to

the computed tangent space as hðiÞj ¼ QT
i ðzij � �ziÞ, where �zi is the mean of zij ’s.

Then we can get (L � n′) local coordinates Hi = [h1
(i),…, hk

(i)], i = 1, …, (L � n′).

Step 3 Local coordinates alignment

Align the (L � n′) local projectionsHi = [h1
(i),…, hk

(i)], i = 1, …, (L′ � n′), to
obtain the global coordinates gi, i = 1, …, (L′ � n′). Denote Ti ¼ ½gi1 ; . . .; gik � with
the index set {i1,…, ik} determined by the neighbors of each zi. Let Ei = Ti(I − eeT/
k) − LiHi be the local reconstruction error matrix, where Li is the local affine
transformation matrix. To minimize the local reconstruction error, the optimal
alignment matrix Li is given by Li = Ti(I − eeT/k) Hi

+ = TiHi
+, where Hi

+ is the
Moore-Penrose generalized inverse of Hi. Then Ei can be written as

Ei ¼ TSiWi ð4Þ

where Si is the 0 − 1 selection matrix such that TSi = Ti and Wi = (I − eeT/k)
(I − Hi

+Hi). The single data set manifold alignment of LTSA is achieved by
minimizing the following global reconstruction error:
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X

i

Eik k2 �
X

i

TSiWik k2F ¼ TSWk k2F ð5Þ

where S = [S1, …, S(L�n′)] and W = diag(W1, …, W(L′�n′)). To uniquely determine
T, impose TTT = Id. The alignment matrix can be formed as B = SWWTST to solve
the optimal problem.

Step 4 Aligning global coordinates

Compute the d + 1 smallest eigenvectors of B, and pick up the eigenvector
matrix [u2, …, ud+1] corresponding to the 2nd to the d + 1 smallest eigenvalues,
and set T = [u2, …, ud+1]

T. The results of Tð2 Rd�ðL0�n0ÞÞ then correspond to the
global coordinates of the low-dimensional TFMs. The TFM matrix can be reor-
ganized to be a 3-D matrix with the size of d � L′ � n′. The 3-D TFM structure can
be denoted by Mtf

d(k, v). Each dimensional TFM signature has the same appearance
as the TFD. Note the dimension d is far less than the phase space dimension
m. Meanwhile, as demonstrated in Fig. 3a, the learned TFM signature for the
simulated signal extracts the time-frequency structure with noise suppression and
resolution enhancement. And the corresponding dynamic structure embedded in the
TFM signature as displayed in Fig. 3b is obviously improved with elliptical shape,
which is similar to the dynamic structure in Fig. 1c.

2.5 Procedure of Time-Frequency Manifold Analysis

In summary, the procedure of the proposed TFM analysis can be described briefly
as follows:

Fig. 3 a The TFM and b the corresponding dynamic structure
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Step 1 Given a signal x(t) with N data points, calculate the data matrix P of size
m � n (n = N − m + 1) by PSR according to Eq. (2).

Step 2 Do the STFT for each row of matrix P via Eq. (3) to get Sj(k, v), j = 1,2,
…, m, and calculate the corresponding amplitude Aj (k, v) and phase
ɵj(k, v).

Step 3 Do the pre-processing technique to get m TFDs with the size of L′ � n′.
Step 4 Calculate the TFM signature Mtf

d(k, v) of size L′ � n′ by the LTSA
algorithm.

The TFM structures Mtf
d(k, v) reflect the time-frequency nature of system health

condition by combining the nonstationarity and the nonlinearity. So the new
structures are exactly suited for representing the system health signature for
machinery fault diagnosis, which will be verified in the following Sect. 4.

3 Time-Frequency Manifold Synthesis

Motivated by the benefit of TFM in noise suppression, the elements of T can be
applied as the principal sparse components, which are unit orthogonal vectors
orderly corresponding to the d smallest eigenvalues in the LTSA algorithm. And the
manifold T represents the nonlinear structure pattern of the original signals. Thus,
this section reports an approach called TFM synthesis for signal denoising and
transient signal detection, which mainly combines the techniques of TFD
re-generation, time-frequency synthesis and PSR synthesis. The new principle of
data denoising aims to reduce background noise of signals effectively, and at the
same time keep the essence of transient signals to the maximum extent. Therefore,
the proposed method is especially suited for denoising of machinery faulty vibra-
tion signals.

3.1 Principle

As manifold learning can keep the intrinsic nonlinear structure in dimension
reduction of a high-dimensional data matrix, the TFM signature represents the
time-frequency structure nature of the original signal in the sense of noise sup-
pression, which can exhibit excellent denoising performance in the time-frequency
domain. However due to the nonlinear process of the LTSA algorithm (the principle
in Sect. 2.4), the TFM signature that is organized from the global coordinates
T learned by LTSA will loss the amplitude information as compared to the TFD of
the original signal. Mathematically, the LTSA is an optimal alignment algorithm by
solving an eigenvalue problem. In order to uniquely determine the global coordi-
nates T (the physical meaning is to reveal the intrinsic time-frequency structure), the
following constraint condition is imposed:
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TTT ¼ Id ð6Þ

where each row of T corresponds to a TFM signature and d is the given dimension.
The eigenvector Ti i 2 1; d½ �ð Þ is thus the TFM with a similar structure to the input
TFD. Therefore, one of the most important issues is how to recover the amplitude
information in the time domain.

3.2 TFD Re-Generation

In the principle of TFM synthesis, the m original TFDs are represented by the
achieved TFM patterns respectively. That is to say, the principal time-frequency
structure of the transient impulses in the raw signal can be learned by TFM. Hence,
the m original TFDs can be realized again by a few learned TFMs of T as follows:

Âj ¼
XK

l¼1

cj;lM
l
tf ðK � d; j ¼ 1; 2; . . .;mÞ ð7Þ

where Mtf
l is the lst TFM matrix corresponding to the vector component Tl and cj,l

is the corresponding sparse coefficient. According to Eq. (6), the sparse coefficient
cj,l can be calculated from an inner product operation (sum of dot product of two
matrices) between the original jth TFD matrix Aj and the lth TFM matrix Ml

tf.
Since the dynamic information and transient feature are mainly extracted and kept

in thefirst or twoTFMs, for simplification, only thefirst manifoldMtf
1(k, v) represented

as T1 is employed in this process of TFM synthesis in this chapter. Thus, for each TFD
of the vector Px

j (j = 1, 2, …, m), the synthesis can be rewritten as follows:

Âj ¼ cj;1M1
tf ðj ¼ 1; 2; . . .;mÞ ð8Þ

By treating the TFM signature as a processed time-frequency base, the original
amplitude Aj (k, v) can be re-generated as Âj (k, v), which can keep the intrinsic
time-frequency structure while the random noise can be restrained. Moreover, it
should be noted that, corresponding to the pre-processing techniques as mentioned in
the TFM learning of Sect. 2.4, the learned TFM signature with the size of L′ � n′will
finally receive a matrix zero padding for the frequency band selection case, or a 2-D
inverse DWT (2-D IDWT) to recover the same size of L � n with the original TFD.

3.3 Time-Frequency Synthesis

Furthermore, as the original phase ɵj(k, v) keeps the information of waveform
structures in the raw signal, combining the re-generated amplitude Âj (k, v) with the
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original phase information will improve the description errors of the re-generated
signal compared to the real vibration signal. Then, m updated STFT results, denoted
by Ŝj(k, v), j = 1,2, …, m, can be generated. Then time-frequency synthesis is
employed on each updated STFT result to calculate a new data matrix P̂ in the
phase space. The time-frequency synthesis of STFT can be expressed as follow:

P̂j k½ � ¼ 1
Mw 0½ �

XM�1

v¼0

Ŝj k; vð Þei2pn kv; j ¼ 1; 2 � � � ;m ð9Þ

Assume w[n] (with the window band width wc and the window length Nw) is not
equal to zero in the limited window length, then Eq. (9) holds under the following
constraints [14]: (a) the time sampling factor L of STFT should satisfy the Nyquist
criteria, that is L� 2p

wc; (b) the frequency sampling interval should satisfy 2p
N � 2p

Nw,
that is N 	 Nw. As each STFT result can generate a time series by time-frequency
synthesis, m time series could thus construct a data matrix P̂ with the same size as
original data matrix P.

3.4 PSR Synthesis

After getting the updated data matrix P̂ in the phase space, the PSR synthesis is
applied to reconstruct the signal with denoising effect. In the process of recon-
struction, it should be considered that every element of the original time series may
appear at several places in the phase space data matrix. The PSR synthesis is
presented as follows to reconstruct the signal from data matrix P̂:

x̂i ¼

P
q2 Ii j;kð Þf g

P̂q

Ci
; i ¼ 1; 2 � � � ;N; j ¼ 1; 2 � � � ;m ð10Þ

where {Ii(j, k)} is the subscript set of the signal elements that meets the requirement
of k + (j − 1)s = i (k 2 [1, N − (m − 1)s]), and Ci is the number of elements in
{Ii(j, k)}. The final result of the denoised signal can be thus represented as x̂ðtÞ with
N data points.

According to the principle of TFM synthesis, the denoised results of the simu-
lated signal not only inherit the merits of TFM but also further improve the
waveform shape of the transients as drawn in Fig. 4a. Moreover, as compared to the
dynamic structures in Figs. 1c and 3b, the amplitude of the corresponding dynamic
structure can be recovered as shown in Fig. 4b. Thus, the TFM synthesis is an
advanced TFM analysis which is effective for signal denoising and transient feature
extraction.
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3.5 Procedure of TFM Synthesis

In summary, the procedure of the proposed TFM Synthesis can be described briefly
as follows:

Step 1 Obtain the TFM signature according to the procedure of TFM learning in
Sect. 2.5.

Step 2 Re-generate the amplitude Aj (k, v) (j = 1,2, …, m) of the original TFD
as Âj (k, v) based on Eq. (8).

Step 3 Update the STFT results using the original phase part ɵj(k, v) and
reconstructed amplitude Âj (k, v) to get Ŝj(k, v), j = 1,2, …, m.

Step 4 A new data matrix P̂of size L � n in phase space is generated by
time-frequency synthesis according to the Eq. (9).

Step 5 The denoised signal x̂ðtÞ is finally reconstructed by PSR synthesis by
Eq. (10).

The reconstructed signal inherits the merits of TFM in well representing the
non-stationary information with good in-band noise suppression. Thus the new
manifold synthesis approach is quite suitable for machine transient feature
extraction, which will be verified in the next Sect. 4.

Moreover, based on the merits of TFM analysis in noise suppression and res-
olution enhancement in the time-frequency domain, the sparse representation can be
also employed on the TFM signature to learn the sparse components for transient
feature extraction. In this way, the original TFD can be synthesized in the view of
sparse expression. This will bring much better denoising effect for machinery fault
diagnosis [30].

Fig. 4 The denoised signal based on TFM synthesis: a the TFD and b the corresponding dynamic
structure
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4 Experiments for Machinery Fault Diagnosis

The defect-induced rotating machine fault contains three typical characteristics:
periodic due to the rotating nature, impulsive as induced by the defect, and transient
in the amplitude. These defect-induced faults include the breakage of gear teeth,
defects of typical bearing components, etc. However, the fault information is
usually buried in heavy noise in measured vibration signals. With the capability of
combining the nonstationarity and the nonlinearity, the TFM analysis is expected to
effectively reveal the underlying time-frequency structure related to the
defect-induced fault. Moreover, the TFM synthesis is used to recover the transient
features, as well as inherent time-frequency structure keeping. To verify the
effectiveness of the proposed TFM analysis and TFM synthesis for machinery fault
diagnosis, the applications to gear fault diagnosis and bearing defect diagnosis are
studied in the following.

4.1 Gear Fault Diagnosis

The experimental data was generated from an automobile transmission gearbox,
which has 5 forward speeds and one backward speed as shown in Fig. 5. Vibration
signals were acquired by using an accelerometer mounted on the outer case of the
gearbox when it was loaded on the third speed. During a fatigue test, a tooth-broken
fault occurred at the driving gear of the third speed at the beginning of Cycle 7.
Thus Cycle 6 corresponds to the severe wearing fault stage. In the experiment, the
input rotating speed was 1600 rpm and the sampling frequency was set at 3000 Hz.
The working parameters of the third speed are shown in Table 1, where the

Fig. 5 Structure of the automobile transmission gearbox
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meshing frequency and the rotating frequency of the tested gear are calculated to be
500 Hz and 20 Hz, respectively.

In this section, the healthy and severe wearing faulty signals are taken for further
analysis. The healthy signal as shown in Fig. 6 is first analyzed. The original
spectrogram shows a synthetic but also corrupted result with heavy noise and
couldn’t tell when the frequency component occurs. However, as seen from Fig. 7,
the first TFM signature shows a much clearer result in comparison with the original
TFD. It can be found that the TFM signature for the healthy signal just contains the
frequency component of 500 Hz that exists at any time, corresponding to the
meshing frequency of the tested gear. In addition, based on TFM synthesis, Fig. 8a
describes an irregular volatility for the healthy wearing signal. Figure 8b gives a
much clearer TFD with only one meshing frequency band which is similar to the
ones in Fig. 6b. Therefore, this result confirms that the proposed denoising method
can depict the health condition of the tested gear.

For the severe wearing faulty signal, the fault signature cannot be clearly
identified in the time domain as shown in Fig. 9. The spectrogram as shown in
Fig. 9b represents a combination of time and frequency information, which can tell

Table 1 Working parameters of the third speed gears

Gear Number of teeth Rotating frequency (Hz) Meshing frequency (Hz)

Driving gear 25 20 500

Driven gear 27 18.5 500

Fig. 6 The healthy gear
signal: a waveform and
b spectrogram
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how the frequencies happen with the time. However, it can be seen that the
time-frequency signature is corrupted by background noise. Then the proposed
TFM analysis is employed to extract the time-frequency nature reflecting system
health condition. As plotted in Fig. 10, it can be seen that the extracted TFM
signature shows a rather clearer representation on the non-stationary structure in
comparison with the original spectrogram. Meanwhile, the first TFM signature
shows two typical frequencies, 500 and 280 Hz. The frequency of 500 Hz exists at
any time locations corresponding to the meshing frequency but has a relatively
weak energy. The frequency of 280 Hz appears periodically in a certain interval of

Fig. 7 The first TFM
signature of the healthy gear
signal

Fig. 8 The denoised healthy
gear signal based on TFM
synthesis: a waveform and
b spectrogram
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about 0.05 s, which reflects the appearance of periodic impulses. Therefore, the first
TFM signature can be judged as the existence of the severe wearing fault on the
tested gear.

To further investigate the effect of the transient feature extraction, the TFM
synthesis is applied to re-generate the original TFD based on the TFM signature.
The reconstructed signal is shown in Fig. 11. It can be seen that the waveform of
the denoised signal has much less noise and the periodic impulses could be iden-
tified effectively, which shows a good sparse property of periodic impulses.
Meanwhile, the natural TF structure of the impulses is very well retained with the

Fig. 9 The severe wearing
faulty gear signal:
a waveform and
b spectrogram

Fig. 10 The first TFM
signature of the severe
wearing faulty gear signal
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in-band noise being greatly reduced in the TFD of the reconstructed signal. The
result confirms that the TFM synthesis can effectively maintain the original periodic
impulse structure and the meshing components while reducing noise, which is
suitable for gear fault diagnosis.

4.2 Bearing Defect Diagnosis

The experimental data were collected by an experimental setup as shown in Fig. 12
from Case Western Reserve University Bearing Data Center [31]. Single point
faults were set on the testing drive-end bearings (deep groove ball bearing with the
Type 6205-2RS JEM SKF) separately at the rolling element and outer raceway
using electric discharge machining method. The resulting vibration from the motor
was measured by accelerometers being mounted to the motor’s shell with magnetic
bases, at a sampling frequency of 12 kHz. In this case study, the single-fault
bearing with outer-race and rolling-element defect were analyzed. The
outer-element defective bearing was at the rotating speed 1749 rev/min with
0.11 � 0.014 inches depth while the rolling-element defective bearing was at the
rotating speed 1796 rev/min with 0.11 � 0.021 inches depth. The defective char-
acteristic frequencies can be calculated to be 104.5 Hz and 141.1 Hz, respectively.

In the following, the defective signals with outer-race and rolling-element defect
types are analyzed by the TFM analysis and TFM synthesis, respectively. In this
chapter, the parameters for PSR are set to be m = 13 and s = 1 in the process of

Fig. 11 The denoised severe
wearing faulty gear signal
based on TFM synthesis:
a waveform and
b spectrogram
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TFM learning. Figure 13 shows the waveform and the TFD of the raw outer-race
defective bearing signal. It can be seen that in the waveform there are a series of
periodic impulses submerged in the noise. Although the TFD presents a combi-
nation of time and frequency information, the noise corruption exists in a wide
frequency band. This will influence the diagnostic performance. As drawn in
Fig. 14, the achieved TFM signature shows an excellent result for the
defect-induced fault signature with a good time-frequency resolution. The TFM
reveals that the defect was located on the outer raceway of the tested bearing. In this
process, the TFM analysis shows its effectiveness in extracting the underlying
structure of the defect-induced fault.

Fig. 12 The bearing test stand

Fig. 13 The outer-race
defective bearing signal:
a waveform and
b spectrogram
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However, it can be also easily found that the extracted impulses lost its
amplitudes compared to the raw ones in Fig. 13b. Due to the assumption TTT = Id
in the nonlinear manifold learning process as introduced in Sect. 2.4, the TFM
result will lose the available amplitudes heavily. Moreover, the shapes of the raw
time-frequency transients are pruned to some extent. Therefore, the TFM synthesis
is used to recover the transients of the raw signal with the amplitudes recovered and
waveforms remained. From Fig. 15a, it can be seen that the impulses are much
clearer than those in Fig. 13a with a high SNR and the in-band noise has been very
well removed. At the same time, comparing the TFDs in Figs. 13b, 14 and 15b, the
TFD of the synthetic signal clearly shows the merits in amplitude recover and

Fig. 14 The first TFM
signature of the outer-race
defective bearing signal

Fig. 15 The denoised
outer-race defective bearing
signal based on TFM
synthesis: a waveform and
b spectrogram
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waveform remaining. Therefore, the proposed denoising method is verified to be
able to reduce noise effectively, as well as to keep the nature of fault signals.

Next, the rolling-element defective signal is analyzed by the proposed method.
The waveform and the TFD of the defective signal are shown in Fig. 16. It can be
seen that the waveform indicates a series of similar periodic impulses along the
time, but the repetitive period of impulses cannot be identified from the waveform
as there is noise corruption. Although the original spectrogram shows an obvious
concentration of energy at the band near 3200 Hz, the noise being contained in this
band reduces the resolution of the defect-induced impulses. The TFM signature as
shown in Fig. 17 only keeps the natural structure related to the fault, and thus
shows a rather clearer result for emphasizing the fault characteristics. Therefore, the
TFM signature reveals the exact defect physics for the rolling element defect with
its merits in enhancing the time-frequency resolution. The waveform and its TFD of
the denoised signal based on TFM synthesis are demonstrated in Fig. 18. It can be
easily seen that the transient features are much more obvious with regularity in
Fig. 18a and the time-frequency impulses remain the shapes as the original ones in
Fig. 16b in a certain degree, although the synthesis only recovers part of the
amplitudes. This performance will be further improved by employing more TFMs
to synthetize the original m TFDs. Thus, the result confirms that the proposed
denoising method can reduce noise effectively and keep the natural structure of fault
signals.

Fig. 16 The rolling-element
defective bearing signal:
a waveform and
b spectrogram

Time-Frequency Manifold for Machinery Fault Diagnosis 151



5 Conclusions

This chapter describes a new TFM analysis approach by combining the
time-frequency analysis and the nonlinear manifold for a better representation of
machine health pattern. The TFM signature can reveal an intrinsic time-frequency
structure related to the machine health pattern, and hence it is especially suited for
analyzing the non-stationary fault signature of rotating machines. Motivated by the
merits of the TFMs in high-resolution time-frequency signature analysis, a TFM
synthesis approach is further presented for the time-domain information represen-
tation in the application of transient feature extraction. The TFM synthesis inherits

Fig. 17 The first TFM
signature of the
rolling-element defective
bearing signal

Fig. 18 The denoised
rolling-element defective
bearing signal based on TFM
synthesis: a waveform and
b spectrogram
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the merits of TFM signature in noise suppression and resolution enhancement to
represent an intrinsic time-frequency structure, so it does not only reduce back-
ground noise effectively, but also keeps the intrinsic time-frequency structure of the
periodic transient impulses. This is significant for intrinsic vibration data charac-
teristics and reliable fault diagnosis. In conclusions, the TFM analysis provides an
effective time-frequency approach to contribute useful features for fault diagnosis
and the TFM synthesis builds a helpful approach to extract transient feature for
signal denoising. Experimental studies on machine fault signature analysis (in-
cluding gear fault diagnosis and bearing defect diagnosis) show the excellent merits
of the TFM analysis and TFM synthesis, which indicates a potential of the TFM
theory in enhancing time-frequency signature analysis for practical engineering
applications.
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Matching Demodulation Transform
and Its Application in Machine Fault
Diagnosis

Xuefeng Chen and Shibin Wang

Abstract In this chapter, matching demodulation transform (MDT), an iterative
algorithm, is introduced to generate a time-frequency (TF) representation with
satisfactory energy concentration, and thus to extract the highly oscillatory
frequency-modulation (FM) feature of rotating machine fault. As opposed to con-
ventional time-frequency analysis (TFA) methods, this algorithm does not have to
devise ad hoc parametric TF dictionary. Assuming the FM law of a signal can be
well characterized by a determined mathematical model with reasonable accuracy,
the MDT algorithm can adopt a partial demodulation and stepwise refinement
strategy for investigating TF properties of the signal. The practical implementation
of the MDT involves an iterative procedure that gradually matches the true
instantaneous frequency (IF) of the signal. Moreover, because the MDT is a linear
TFA method, it can reconstruct individual components from a multicomponent
signal’s TF representation. Theoretical analysis of the MDT’s performance is
provided, including quantitative analysis of the IF estimation error and the con-
vergence condition. The validity and practical utility of the MDT is then demon-
strated on simulation study, an experiment rotor system and a practical heavy oil
catalytic cracking machine set with rotor rub-impact fault. The analysis results show
that the MDT method is powerful in the analysis of FM signals and is an effective
tool for the feature extraction of machine faults.

1 Introduction

Rotating machinery plays an important role in industrial applications, and its fault
diagnosis is useful to prevent economic loss and catastrophic failure. Because
vibration signals carry key information related to the health condition of rotating
machinery, the study concerning how to extract useful feature from vibration sig-
nals has been attracted considerable interests in recent years [1, 2]. Some effective
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methods have been widely studied and used, such as empirical mode decomposition
and Hilbert-Huang transform (HHT) [3–6], wavelet transform [7–9], time-
frequency analysis (TFA) based methods [10–13], and sparsity-based methods
[14–17].

Rotor, as one of the key components of mechanical devices, is widely used in
rotating mechanical equipment. Rub-impact is a common and serious fault in the
rotor system. The rub-impact phenomenon occurs when a rotating element peri-
odically hits a stationary part in rotating machinery. Causes of rubbing can be
imbalances, thermal misalignment, rotor/stator relative motion, fluid-dynamic for-
ces producing instabilities and self-excited vibrations [18]. Accordingly, the
vibration signal collected from rotor system will present nonlinear FM feature. It
has a periodic time-varying instantaneous frequency (IF). The extraction of the
periodic oscillatory IF is one effective way to diagnose the rub-impact fault in rotor
systems [5].

The concept of IF is a nature extension of the conventional Fourier frequency. It
describes how fast a signal oscillates locally at a time instant, or more generally, the
different rates of oscillation at a given time [19, 20]. Thus, for nonstationary signal,
the frequency at a particular time is well depicted by the concept of IF, and in many
practical applications, such as radar and sonar [21], communications [22],
biomedical engineering [23], and mechanical engineering [11, 24], IF characterizes
important physical information of the signal, although the concept of IF still
remains somewhat heuristic and lacks a rigorous and satisfactory mathematical
definition.

Diverse IF estimation methods have been proposed to analyze FM signals
masked by noise [20]. Among these IF estimators, the phase differencing-based and
TFA-based methods are two well-known classes. The former is based on the def-
inition, given by Gabor and later Ville, that the IF of a real signal is the derivative of
the phase of its analytic signal. The effectiveness of this method is greatly hampered
by noise. TFA itself is the core of the latter, TFA-based IF estimation methods.
TFA provides a powerful tool to effectively characterize the time-frequency
(TF) pattern of nonstationary signals. TF representations obtained by TFA methods
map a one-dimensional signal, as a function of time only, to a two-dimensional
function of time and frequency, and therefore give insight into the complex
structure of the signal consisting of several components [25–27]. Therefore,
TFA-based IF estimation method is an effective way to extract the IF from FM
signals. However, the effectiveness depends on the property of the time-frequency
representation (TFR) about concentrating the energy of a signal at and around the IF
in the TF plane. The first moment of the TFR and the local maxima of TFR are two
kinds of TFA-based IF estimation methods. The first moment estimate provides an
unbiased estimation and is not affected by the multiplicative noise. However, the
presence of additive noise leads to the serious degradation. It may have a high
statistical variance even at high values of input SNR. The local maxima estimate is
based on the detection of distributed maxima, it is hence used for signals con-
taminated with the additive noise [28, 29].
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There exist many types of TFA methods, and the majority can be divided into
two categories: the linear and the quadratic transforms. In linear transforms, the
signal is characterized by its inner product with a dictionary of TF atoms, generated
from a basis function by translation, modulation or dilation operations. Many linear
methods, including conventional non-parametric methods (such as short-time
Fourier transform (STFT), wavelet transform (WT)) and parametric methods (such
as chirplet transform, local polynomial Fourier transform [30], adaptive STFT [31],
and generalized demodulation approach [32]), make it possible to reconstruct the
whole signal or parts of the signal. There is no doubt that the interpretation of the
TF representation calculated by all these linear methods is dependent on the dic-
tionary used in the method. Thus the essential issue of TFA methods is how to
devise TF atoms that will be adapted to describe the energy density of a signal in
time and frequency domain simultaneously. When adequate parameters are selected
and TF atoms well present the IF trajectory of the signal, parametric TF transforms
will be much more effective in characterizing the TF patterns of FM signals (even
nonlinear FM signals) by providing a TF representation with satisfactory energy
concentration. However, because of the complex parameters of parametric TFA
methods, the excessive computational cost limits its application.

In this chapter, matching demodulation transform (MDT) [33, 34] is introduced
as an iterative algorithm to generate a TFR with satisfactory energy concentration
for multicomponent FM signal and to analyze the nonlinear FM signal of rotor
rub-impact fault. Assuming the IF law of a signal can be well characterized by a
determined mathematical model with reasonable accuracy, the MDT algorithm can
adopt a partial demodulation and stepwise refinement strategy for investigating TF
properties of the signal. However, we constantly confront applications where IF is
unknown or difficult to be determined prior, especially for machine fault diagnosis.
Even if it meets the seeming inapplicability in such situation, the applications can
be well solved by the MDT, which involves an iterative procedure: a low-accuracy
IF, estimated from a low-concentration TF representation, is used to roughly
demodulate the signal and thus enhance the energy concentration of TF represen-
tation; then a high-accuracy IF, estimated from the enhanced representation, is used
to further demodulate the signal and thus enhance the concentration again. In each
iteration of the MDT algorithm, the estimated parameters of IF function can be used
to build a bivariate demodulation operator and demodulate the signal partially into a
bivariate signal with less FM, thus the corresponding TF representation has more
concentrated energy distribution than the previous representation. With the
implementation of the iterative procedure, the MDT gradually matches the true IF
of the signal. This is the reason why this algorithm is named as “matching
demodulation transform”. Moreover, the MDT’s performance is analyzed theoret-
ically, including quantitative analysis of the IF estimation error and the convergence
condition.

This iterative algorithm is adaptive to match the nonlinear IF rule of the analyzed
signal, which enables the MDT to be suitable to extract the feature of periodic
oscillatory IF for rotor fault diagnosis. The effectiveness of the method is verified
by an experiment which is performed on Bently RK-4 Rotor Kit with a rub-impact
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fault. Moreover, the application in rotor fault diagnosis of a heavy oil catalytic
cracking machine set further demonstrates the effectiveness of the MDT. The
periodic IF oscillation is successfully extracted. The comparison study indicates that
the MDT behaves better than HHT.

The rest of the chapter is organized as follows. Section 2 reviews the back-
ground of the FM signal and STFT. The detailed information of the MDT’s
demodulation procedure for both mono- and multi- component signal is described
in Sect. 3. The MDT’s performance is analyzed theoretically in Sect. 4, including
quantitative analysis of the IF estimation error and the convergence condition, and
further analyzed by simulation study in Sect. 5. Section 6 provides an experimental
verification of the MDT, which is followed by the application in a practical machine
set with rotor rub-impact fault in Sect. 7. The conclusions are drawn in Sect. 8.

2 Theoretical Background

In this research, we will focus on signals which can be modelled with sums of
sinusoidal functions, i.e. the signal xðtÞ can be represented by the following model:

x ðtÞ ¼
XK
k¼1

xkðtÞ ð1Þ

with xkðtÞ ¼ AkðtÞ cos /kðtÞð Þ and AkðtÞ[ 0; /0
kðtÞ[ 0, where the amplitude AkðtÞ

and phase /kðtÞ are defined in terms of the analytic signal zkðtÞ given by Hilbert
transform as follows

zkðtÞ ¼ xkðtÞþ iH½xkðtÞ�; ð2Þ

and the Hilbert transform of xkðtÞ is defined as

H ½xkðtÞ� ¼ p�1P:V:
Zþ1

�1

xkðsÞ
t � s

ds ð3Þ

where P.V. means that the integral is taken in the sense of the Cauchy principal
value. The construction of the analytic signal zkðtÞ permits the amplitude AkðtÞ and
phase /kðtÞ to be uniquely defined as

AkðtÞei/kðtÞ ¼ zkðtÞ ð4Þ

and the original signal is recovered by xkðtÞ ¼ < zkðtÞf g. The instantaneous angular
frequency of the component is the first derivative of the phase xkðtÞ ¼ /0

kðtÞ.
Typically, the changes of AkðtÞ and /0

kðtÞ are much slower than the change of /kðtÞ

158 X. Chen and S. Wang



itself, which means that locally (i.e. in a short time interval) the component xkðtÞ
can be regarded as a harmonic signal with amplitude AkðtÞ and frequency /0

kðtÞ.
In this model, if K ¼ 1, the signal can be referred to as mono-component signal;

if K� 2, the signal is referred to as multicomponent signal. The model defined by
(1)–(4) applies for multicomponent signals and allows the modelling of
K time-varying frequency laws.

2.1 Short-Time Fourier Transform

A linear TF transform correlates the signal with a dictionary of TF atoms that are
concentrated in time and frequency. Let a general dictionary be denoted by D ¼
/c

� �
c2C where c may be a multi-index parameter set. Suppose that /c 2 L2ðRÞ, the

corresponding linear TF transform of x 2 L2ðRÞ is defined as

UxðcÞ ¼ hx;/ci ¼
Zþ1

�1
xðtÞ/cðtÞ dt ð5Þ

where /cðtÞ is the complex conjugate of /cðtÞ, and \x;/c [ denotes the inner
product of x;/c 2 L2ðRÞ.

A short-time Fourier atom is constructed with a window function gðtÞ modulated
by the frequency n and translated by time-shift u:

/cðtÞ ¼ gu;nðtÞ ¼ gðt � uÞeinðt�uÞ

The resulting STFT of x 2 L2ðRÞ is

Sxðu; nÞ ¼ hx; gu;ni ¼
Zþ1

�1
x ðtÞg ðt � uÞ e�inðt�uÞ dt ð6Þ

Because the Gaussian window function has the minimal area of the Heisenberg box,
it is usually used as the window. The parametric Gaussian function is obtained by
scaling the Gaussian function g ðtÞ by the variance r:

grðtÞ ¼ 1ffiffiffi
r

p gð t
r
Þ ¼ ðpr2Þ�1=4e

�t2

2r2

and the resulting STFT is
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Sxðu; nÞ ¼
Zþ1

�1
x ðtÞgrðt � uÞ e�inðt�uÞ dt ¼

Zþ1

�1
x ðtþ uÞgrðtÞ e�int dt ð7Þ

2.2 Performance Analysis of the IF Estimator

Consider noisy discrete-time observations

xðnTÞ ¼ x0ðnTÞþ eðnTÞ ð8Þ

where x0ðnTÞ is a sampled version of the continuous signal x0ðtÞ ¼ AðtÞei/ðtÞ with
T being a sampling interval, and e ðnTÞ is a complex-valued white Gaussian noise
with i.i.d. real and imaginary parts. Thus, < e ðnTÞf g and = e ðnTÞf g are
N 0; r2e = 2
� �

and the total variance of the noise is equal to r2e .
According to the STFT definition of the continuous signal in (7), the STFT of the

discrete sequence x ðnTÞ is defined as

Sxðt;xÞ ¼ T
Xþ1

n¼�1
x ðtþ nTÞgrðnTÞ e�ixnT ð9Þ

The spectrogram, as a TF energy density representation of the signal, is defined as

P ðt;xÞ ¼ T2
Xþ1

n1¼�1

Xþ1

n2¼�1
x ðtþ n1TÞ x ðtþ n2TÞ grðn1TÞgrðn2TÞ eixðn2�n1ÞT ð10Þ

The value of instantaneous angular frequency x ðtÞ ¼ /0ðtÞ can be estimated in the
TF plane as

~x ðtÞ ¼ arg max
x

P ðt;xÞ ð11Þ

The estimation error, at a time instant t, is defined as

D~x ðtÞ ¼ ~x ðtÞ � x ðtÞ ð12Þ

and due to the presence of the white Gaussian noise, the estimation error D~x ðtÞ can
be considered as a random variable as well, and characterized by its bias
Bias D~x ðtÞf g and variance Var D~x ðtÞf g.
Proposition 1 [35, 36] Let ~x ðtÞ be a solution of (11), and the continuous signal
x0ðtÞ ¼ A ðtÞ ei/ðtÞ satisfies: A 2 C1ðRÞ; / 2 C1ðRÞ, and A0ðtÞj j � /0ðtÞj j. As
T ! 0, the bias and variance of the IF estimator are given by
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Bias D~x ðtÞf g !
Xþ1

k¼1

/ð2kþ 1ÞðtÞr2kM1;2kþ 2

ð2kþ 1Þ!M1;2
ð13Þ

Var D~x ðtÞf g ! r2eM2;2

2 A ðtÞj j2ðM1;2Þ2
1þ r2eTM2;0

r A ðtÞj j2 M1;0
� �2

" #
T
r3

ð14Þ

where Mm;k ¼
R þ1
�1 tkgmðtÞ dt.

Special case: For the Gaussian window function g ðtÞ ¼ ðpÞ�1=4e�t2=2, we have
M1;0 ¼

ffiffiffi
2

p
p1=4; M2;0 ¼ 1, M1;2 ¼

ffiffiffi
2

p
p1=4; M2;2 ¼ 1=2, and M1;2kþ 2

ð2kþ 1Þ! ¼ M1;2

2kk!. Then

Bias D~x ðtÞf g !
Xþ1

k¼1

/ð2kþ 1ÞðtÞr2k
2kk!

Var D~xðtÞf g ! r2e
8
ffiffiffi
p

p
A ðtÞj j2 1þ r2eT

2
ffiffiffi
p

p
r A ðtÞj j2

 !
T
r3

Remark The value of the estimation error is determined by the variance r2e of noise,
the variance r of the window function, and the nonlinear degree of the signal IF
law. (1) The increase of the variance r2e of the noise induces the increase of the
variance of the estimation error. (2) The value of variance r affects the estimation
error from two aspects: increasing the window size r decreases the variance of the
estimation error but increases its bias. These two aspects should be taken into
account to achieve a trade-off. (3) The nonlinear degree of the signal IF law induces
the estimation error.

Note that if the nonlinear degree of the IF law can be decreased to a lower level,
then we can use a larger variance r to reduce the variance of the estimation error,
and the bias can be kept at a low value. Therefore, we can get a more accurate IF
estimation and a more concentrated TF representation of the signal. In this research,
we propose an iterative algorithm, called matching demodulation transform, using a
partial demodulation and stepwise refinement strategy, to decrease the nonlinear
degree of the IF law, and thus to get an accurate IF estimation and a concentrated
TF representation of a signal.

3 Matching Demodulation Transform

Matching demodulation transform (MDT) is an iterative algorithm to gradually
improve the TF representation of signals. In this section, we first motivate the idea
of MDT for both mono- and multi-component FM signal with determined
frequency-modulation (FM) sources, and then give an iterative procedure for
practical implementation of MDT.
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3.1 Matching Demodulation Transform
for Mono-Component Signal

To motivate the idea of MDT, let us start with an analytic mono-component FM
signal

z ðtÞ ¼ A ðtÞei/ðtÞ ¼ A ðtÞei½2p fctþuðtÞ�; ð15Þ

with a carrying frequency fc and a determined FM source u ðtÞ. The IF of the signal
is

fi;zðtÞ ¼ /0ðtÞ = 2p ¼ fc þu0ðtÞ = 2p: ð16Þ

Considering that the FM source u ðtÞ can be expanded into a linear part
u ðuÞþu0ðuÞ ðt � uÞ and a remainder DuuðtÞ in the vicinity of u, i.e.,

u ðtÞ ¼ u ðuÞþu0ðuÞ ðt � uÞþDuuðtÞ; ð17Þ

if we restrict ourselves to a small window in time around u, of the type
u� DT ; uþDT½ �, with DT � 2p =/0ðuÞ, then the signal can be approximated as

z ðtÞj u�DT ;uþDT½ � � A ðuÞ ei½/ðuÞþ/0ðuÞðt�uÞ�

¼ A ðuÞ ei½2p fctþuðuÞþu0ðuÞ ðt�uÞ�;
ð18Þ

which is essentially a truncated Taylor expansion in which terms on the order
O ðA0ðuÞÞ; O ðu00ðuÞÞ, have been neglected.

According to the determined FM source uðtÞ, a bivariate function of time
variable t and time-shift variable u:

fdðt; uÞ ¼ e�i½uðtÞ�uðuÞ�u0ðuÞðt�uÞ� ¼ e�iDuuðtÞ ð19Þ

is introduced as a demodulation operator to transform the original signal z ðtÞ into a
bivariate signal

zdðt; uÞ ¼ z ðtÞ � fdðt; uÞ ¼ A ðtÞ ei½2p fctþuðuÞþu0ðuÞ ðt�uÞ�: ð20Þ

Thus,

z ðtÞj u�DT ; uþDT½ �� zdðt; uÞ: ð21Þ

The STFT of the bivariate signal zdðt; uÞ is defined as
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Szd ðu; nÞ ¼
Zþ1

�1
zdðt; uÞgrðt � uÞ e�inðt�uÞ dt; ð22Þ

Then the TF representation of the signal z ðtÞ can be approximated by

Szðu; nÞ � Szd ðu; nÞ: ð23Þ

Because the MDT is a linear TFA method, it can reconstruct the signal from its
MDT representation by the inverse MDT of Szd ðu; nÞ defined as

z ðtÞ ¼ 1

2p grðtÞk k2 �
Zþ1

�1

Zþ1

�1
Szd ðu; nÞ � fdðt; uÞ � grðt � uÞ einðt�uÞ dudn ð24Þ

In the demodulation procedure of this motivating example, the bivariate demodu-
lation operator of time and time-shift is introduced to transform the
one-dimensional signal, as a function of time only, into a two-dimensional bivariate
function of time and time-shift. Moreover, the IF of the bivariate signal zdðt; uÞ is

fi;zd ðtÞ ¼
1
2p

@

@t
2p fctþu ðuÞþu0ðuÞ ðt � uÞf g ¼ fc þu0ðuÞ = 2p; ð25Þ

which is identical to the IF of the original signal at the corresponding time instant u,
i.e.,.

fi;zd ðtÞ ¼ fi;zðuÞ; ð26Þ

In fact, the bivariate demodulation operator fdðt; uÞ eliminates the high order terms
of the FM source u ðtÞ.

Figure 1 illustrates the demodulation procedure at the time instant u. To begin
with, the spectrum of the windowed signal is widely spread around the frequency
fc þu0ðuÞ = 2p. The demodulation operation includes two steps. Firstly, a forward

Fig. 1 The illustration of the
MDT (solid line the IF law of
the original nonlinear FM
signal; dash line the IF law of
the forward demodulated
signal; dash dot line the IF
law of the backward
modulated signal zdðt; uÞ)
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demodulation operator e�iu ðtÞ which is a univariate function of the time variable
t only, is used to demodulate the original signal into a pure carrier signal A ðtÞ ei2p fct,
i.e., the nonlinear IF law is transformed into a constant frequency fc. Thus, the
spectrum of the demodulated signal is more concentrated than the original spec-
trum. However, this demodulated spectrum can not reflect the actual TF pattern of
the original signal. Therefore, this demodulated signal is further modulated to
another pure carrier signal by a backward modulation operator ei½u

0ðuÞtþuðuÞ�u0ðuÞ u�,
a bivariate function of time variable t and time-shift variable u, and the frequency is
equal to the IF of the original signal at the time instant u. Moreover, the concen-
tration of the spectrum is preserved. As a whole, this two-step procedure performed
at the time instant u greatly enhances the concentration of the spectrum.

If we apply this procedure to the signal at each time instant, we can retrieve the
signal’s TF representation with excellent energy concentration at every instant. The
next step is to represent the demodulated signal in the TF plane, that is, the
two-dimensional demodulated signal is transformed into another two-dimensional
function of time and frequency. The result has a concentrated TF representation and
can well characterize TF properties of the signal.

3.2 Matching Demodulation Transform
for Multicomponent Signal

In some real-life applications, analyzed signals can be characterized as multicom-
ponent signals, with TF representation consisting of several parallel (or approxi-
mately parallel) linear or nonlinear energy paths with low instantaneous bandwidth.
For example, the Doppler signature of micro-multipath signals in over-the-horizon
radar is typically composed of three components having close nonlinear TF
behaviors [37, 38]. In these cases, each component zkðtÞ of the signal has the same
modulation source u ðtÞ as follows

z ðtÞ ¼
XK
k¼1

zkðtÞ ¼
XK
k¼1

AkðtÞ ei ½2p fc;k tþuðtÞ�: ð27Þ

Because of the same modulation source, if one component can be demodulated by
an appropriate demodulation operator, the other components would be demodulated
by the same operator.

However, in many practical applications, the analyzed signal can be character-
ized as multicomponent signals with different modulation sources,

z ðtÞ ¼
XK
k¼1

zkðtÞ ¼
XK
k¼1

AkðtÞ ei½2p fc;k tþukðtÞ�: ð28Þ
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The IF of the kth component is

fi;zk ðtÞ ¼ fc;k þu0
kðtÞ = 2p: ð29Þ

In this research, we consider that the multicomponent signal is a superposition of
K well-separated FM components with separation distance d, that is, the IF satisfies

fi;zk ðtÞ � fi;zk�1ðtÞ� d; 8t 2 R:

In this situation, the MDT runs into an inevitable problem that a single demodulation
operator cannot be equally suitable for demodulating the mixed multiple compo-
nents subjected to distinct modulation sources. So each component should have its
own demodulation operator. The signal is demodulated to different forms by these
demodulation operators, and their different TF representations concentrate around
their corresponding IF trajectories in the TF plane. The following work is to fuse
these different TF representations. Because all components are well separated, and
each component has its own TF subregion, in this research, the fusion strategy is to
partition the TF plane according to the TF patterns of the signal. That is, according to
the IF trajectory of each component, the corresponding TF subregion is picked,
divided from the TF plane, so that the information contained can be processed
individually, and eventually all processed TF representations in different subregions
are assembled together to provide the TF representation of the analyzed signal.

The TF lower boundary and TF upper boundary of the TF subregion of the
component zk are

xlb;kðtÞ ¼ p fi;zk ðtÞþ p fi;zk�1ðtÞ; for 1\k�K; ð30Þ

xub;kðtÞ ¼ p fi;zk ðtÞþ p fi;zkþ 1ðtÞ; for 1� k\K; ð31Þ

where xlb;1ðtÞ is set to zero and xub;KðtÞ equals to the sample frequency of the
signal system. Then, each component has its own TF subregion:

Dk ¼ ðt;xÞ : xlb;kðtÞ�x\xub;kðtÞ
� �

: ð32Þ

According to the MDT algorithm for monocomponent signals, the bivariate
demodulation operator for the component zk is

fd;kðt; uÞ ¼ e�i ½ukðtÞ�ukðuÞ�u0
kðuÞðt�uÞ� ¼ e�iDuk;uðtÞ: ð33Þ

This operator can be used to demodulate the component zkðtÞ into the corre-
sponding carrier signal,

zd;k;kðt; uÞ ¼ zkðtÞ � fd;kðt; uÞ ¼ AkðtÞ ei ½2p fc;k tþukðuÞþu0
kðuÞðt�uÞ�; ð34Þ

and its IF is
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fi;zd;k;k ðtÞ ¼ fc;k þu0
kðuÞ = 2p: ð35Þ

Then, the analytic signal zðtÞ is transformed into

zd;kðt; uÞ ¼ zd;k;kðt; uÞþ
XK

j¼1;j6¼k

zjðtÞ � fd;kðt; uÞ ¼ zd;k;kðt; uÞþ
XK

j¼1;j6¼k

zd;j;kðt; uÞ

ð36Þ

where the component zd;j;kðt; uÞ is transformed from the jth component zjðtÞ via the
kth bivariate demodulation operator fd;kðt; uÞ, i.e.,

zd;j;kðt; uÞ ¼ zjðtÞ � fd;kðt; uÞ ¼ AjðtÞ ei½2p fc;j tþujðtÞ�Duk;uðtÞ�; ð37Þ

and the IF is

fi;zd;j;k ðtÞ ¼ fc;j þ u0
jðtÞ � u0

kðtÞþu0
kðuÞ

h i
= 2p for j ¼ 1; 2; � � � ;K; j 6¼ k:

When we restrict ourselves to a small window in time around u, of the type
u� DT ; uþDT½ �, the IF can be approximated as

fi;zd;j;k ðtÞ
��
u�DT; uþDT½ �� fc;j þu0

jðuÞ = 2p � fi;zjðtÞ
��
u�DT; uþDT½ �; for j ¼ 1; 2; � � � ;K; j 6¼ k:

According to (36), the transformed signal via the kth bivariate demodulation
operator consists of two parts: the pure carrier component zd;k;kðt; uÞ in (34) and the
FM components zd;j;kðt; uÞ; j 6¼ k in (37). Then, the TF representation of the signal
zd;kðt; uÞ also consists of two parts,

Szd;kðu; nÞ ¼
Zþ1

�1
zd;kðt; uÞgrðt � uÞe�inðt�uÞdt

¼
Zþ1

�1
zd;k;kðt; uÞgrðt � uÞe�inðt�uÞdt

þ
XK

j¼1;j6¼k

Zþ1

�1
zd;j;kðt; uÞgrðt � uÞe�inðt�uÞdt

¼ Szd;k;k ðu; nÞþ
XK

j¼1;j6¼k

Szd;j;kðu; nÞ

ð38Þ
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Note that the TF representation of the pure carrier component zd;k;kðt; uÞ is well
located around the IF trajectory fi;zk ðtÞ in the TF subregion Dk , and the others
zd;j;kðt; uÞ; j 6¼ k are located around their respective IF trajectory fi;zjðtÞ in their
respective subregion Dj. Therefore, the TF representation of the analytic component
zkðtÞ can be approximated by Szd;k ðu; nÞ in the TF subregion Dk,

Szk ðu; nÞ � Szd;k;k ðu; nÞ � Szd;k ðu; nÞ; ðu; nÞ 2 Dk

0; ðu; nÞ 62 Dk:

�

Thus, the final TF fusion result of the signal z ðtÞ is the sum of all TF representations
of K components,

Szðu; nÞ ¼
XK
k¼1

Szk ðu; nÞ: ð39Þ

Meanwhile, the analytic component zkðtÞ can be reconstructed by the inverse MDT
of Szk ðu; nÞ in the TF subregion

zkðtÞ ¼ 1

2p grðtÞk k2 �
Zþ1

�1

Zþ1

�1
Szd;k;k ðu; nÞ � fd;kðt; uÞ � grðt � uÞeinðt�uÞ dudn

� 1

2p grðtÞk k2 �
ZZ

ðu;nÞ2Dk

Szk ðu; nÞ � fd;kðt; uÞ � grðt � uÞeinðt�uÞ du dn

¼ 1

2p grðtÞk k2 �
ZZ

ðu;nÞ2Dk

Szðu; nÞ � fd;kðt; uÞ � grðt � uÞeinðt�uÞ du dn

ð40Þ

Thus, the analytic signal z ðtÞ can be reconstructed as the sum of all the recon-
structed components:

z ðtÞ ¼
XK
k¼1

zkðtÞ

�
XK
k¼1

1

2p grðtÞk k2 �
ZZ

ðu;nÞ2Dk

Szðu; nÞ � fd;kðt; uÞ � grðt � uÞ einðt�uÞ du dn

2
64

3
75

ð41Þ

Note that the MDT for multicomponent signal is an improvement of the MDT for
monocomponent signal. Each component should be associated with an individual
demodulation operator and an individual TF subregion so that the sum of all
representations in different subregions can be used to illustrate the actual TF pattern
of multicomponent signal.
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3.3 Practical Iterative Implementation of Matching
Demodulation Transform

In the previous two subsections, the MDT algorithm assumes that the FM law of a
signal can be well characterized by a determined model, and thus a bivariate
operator can be adopted to demodulate the signal and investigate TF properties of
the signal. However, in most applications, the IF or the modulation source of the
analyzed FM signal is unknown. The direct demodulation strategy is therefore
unavailable. The practical implementation involves a novel iterative procedure: a
low-accuracy IF estimated from a low-concentration TF representation is used to
roughly demodulate the FM signal and enhance the energy concentration of the TF
representation; then a high-accuracy IF estimated from the enhanced representation
is used to further demodulate the signal and thus enhance the concentration again.
With the implementation of the iterative procedure, the MDT gradually matches the
true IF of the signal. This is the reason why this algorithm is named as “matching
demodulation transform”.

The pseudocode for the MDT’s iterative implementation is shown in Fig. 2. The
iterative procedure matches the true IF of the analyzed signal step by step, and the
corresponding demodulation operator is used to demodulate the signal and enhance
the concentration of its TF representation. In this subsection, some specifics of the
implementation are described in detailed.

Fig. 2 Pseudocode for the MDT iterative implementation
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(1) The initialization of the MDT algorithm: In the initialization stage, we have to
choose the parameters of the MDT, including the variance r of the window
function and parameters for iterative terminal condition. Moreover, we have to
choose the IF model to fit the discrete TF ridges for IF estimation.
As we known, the TF resolution is determined by the variance r of the window
function, which further affects the estimation error from two aspects, as men-
tioned in Sect. 2. In this paper, the initial variance rð0Þ is approximately
inversely proportional to the analyzed frequency band.
On the other hand, the IF model should be chosen to fit all the extracted discrete
TF ridges. If the mathematical model with undetermined parameters is available
in some application, we can use this model to estimate the IF of the FM signal,
and the parameters of this model can be identified using least square method
(LSM). In cases where the IF function is unknown, two general models can be
used as expedient alternatives, which also turn out to derive satisfactory results.

• The polynomials: fiðtÞ ¼
PK

k¼0 akt
k; ak 2 R. Mathematically, the

Weierstrass approximation theorem guarantees that any continuous function
on a closed and bounded interval can be uniformly approximated on that
interval by polynomials to any degree of accuracy. The polynomials has
been used to approximate the IF law in many researches [11, 30]. In the
polynomials model, the parameter a0 can be considered as carrying fre-
quency, and the other part is set as m ðtÞ, i.e.

m ðtÞ ¼
XK
k¼1

akt
k: ð42Þ

Thus, the FM source u ðtÞ is

u ðtÞ ¼ 2p
Z t

0

m ðuÞ du ¼ 2p
XK
k¼1

ak
kþ 1

tkþ 1: ð43Þ

Then the forward demodulation operator is

f Idðt; uÞ ¼ e�iuðtÞ ¼ e
�i2p

PK
k¼1

ak
kþ 1t

kþ 1

; ð44Þ

the backward modulation operator is

f IId ðt; uÞ ¼ ei ½u
0ðuÞðt�uÞþuðuÞ� ¼ e

i2p
PK
k¼1

akuktþ ak
kþ 1�akð Þukþ 1½ �

; ð45Þ

and the bivariate demodulation operator is
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fdðt; uÞ ¼ e�i½uðtÞ�uðuÞ�u0ðuÞðt�uÞ�

¼ e
�i2p

PK
k¼1

ak
kþ 1 tkþ 1�ukþ 1ð Þ�akuk t�uð Þ½ � ð46Þ

• The Fourier series: fiðtÞ ¼ a0 þ
PK
k¼1

ak cos ðxktÞþ bk sin ðxktÞ½ �. Fourier

series is extremely useful as a way to break up an arbitrary periodic function
into a set of simple terms that can be plugged in, solved individually, and
then recombined to obtain the solution to the original problem or approxi-
mation to it to whatever accuracy is desired or practical. The Fourier series
has been used to approximate the IF law, such as generalized warblet
transform [39]. In this model, the parameter a0 can be considered as car-
rying frequency, and the other part is set as m ðtÞ, i.e.

m ðtÞ ¼
XK
k¼1

ak cos ðxktÞþ bk sin ðxktÞ½ �: ð47Þ

Thus, the FM source u ðtÞ is

u ðtÞ ¼ 2p
Z t

0

m ðuÞ du ¼ 2p
XK
k¼1

ak
xk

sin ðxktÞ � bk
xk

cos ðxktÞ
	 


: ð48Þ

Then the forward demodulation operator is

f Idðt; uÞ ¼ e�iu ðtÞ

¼ e
�i2p

PK
k¼1

ak
xk
sin ðxk tÞ�bk

xk
cos ðxk tÞ

h i
;

ð49Þ

the backward modulation operator is

f IId ðt; uÞ ¼ ei½u
0ðuÞtþuðuÞ�u0ðuÞu�

¼ e
i2p
PK
k¼1

ak cos ðxkuÞþbk sin ðxkuÞð Þðt�uÞþ ak
xk
sin ðxkuÞ�bk

xk
cos ðxkuÞ

� �h i
;

ð50Þ

and the bivariate demodulation operator is
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fdðt; uÞ ¼ e�i ½uðtÞ�uðuÞ�u0ðuÞðt�uÞ�

¼ e

�i2p
PK
k¼1

ak
xk
sin ðxktÞ � bk

xk
cos ðxktÞ

� �
� ak

xk
sin ðxkuÞ � bk

xk
cos ðxkuÞ

� �
� ak cos ðxkuÞþ bk sin ðxkuÞð Þðt � uÞ

" #

ð51Þ

(2) IF estimation: To guarantee the robustness against noise, the IF estimation is of
paramount importance to be considered during the iterative procedure. In this
paper, the IF estimation method is based on the local maximum energy in the
TF representation in (11). Because of the existence of noise in practical
applications, there are more than one maximum at some time even for mono-
component signals. Thus the practical strategy for local maxima detection is
based on an energy threshold, which is associated with the global maximum
energy in the TF plane, to determine whether a local maximum is an IF ridge or
not. Moreover, to improve the robustness against noise, the energy threshold
should be closer to the global maximum with increased noise.
When the signal contains multiple well-separated components, the local max-
ima can detect the evolution of each component’s IF over time. Thus we can
use the distance d to separate different components. After the local maxima
detection and separation, each IF can be estimated by least-square fitting, and
their corresponding subregion Dk can be calculated as Dk ¼ ðt;xÞ :f
xlb;kðtÞ�x\xub;kðtÞg.

(3) Terminal condition: The iterative procedure terminates until no more evident
change can be detected between two successive estimated IFs, and for each
component, the termination condition is expressed as

MSE ¼
~fi;ðmþ 1ÞðtÞ � ~fi;ðmÞðtÞ
 

2
~fi;ðmÞðtÞ
 

2

\dM ð52Þ

where �k k2 denotes the ‘2-norm, ~fi;ðmÞðtÞ denotes the estimated IF from the
(m-1)th iteration and dM is a predetermined threshold.

(4) The variance r update: Note that the value of the variance r of Gaussian
function similarly affects the error of IF estimator by MDT from two aspects:
increasing the variance r decreases the variance of the estimation error, but
increases its bias. Normally, these two aspects should be taken into account to
achieve a trade-off. Since the MDT gradually matches the true IF of the signal
with the implementation of the iterative procedure, and the bias decreases
accordingly, the parameter r can increase to reduce the variance of the IF
estimation error to achieve a new trade-off. That is to say, a small value of r can
be used first to determine the rough IF estimation; when the nonlinear degree of
the IF law of the signal is decreased, a larger value can be used to obtain a high
frequency resolution suitable for a robust IF estimation. Moreover, in a weak
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noisy situation, the parameter r can increase in a fast way for rapid conver-
gence, for example,

rðmÞ ¼ ðmþ 1Þrð0Þ; ð53Þ

where rðmÞ denotes the variance r in the mth iteration and rð0Þ denotes the
initial variance. While in a strong noisy situation, the parameter r increase in a
slow way for robust IF estimation, for example,

rðmÞ ¼ log2ðmþ 1Þrð0Þ: ð54Þ

4 Performance Analysis of Matching
Demodulation Transform

We provide a theoretical analysis of the MDT’s performance in this section,
including quantitative analysis of IF estimation error, and convergence condition
and discussion.

4.1 Quantitative Analysis of IF Estimation Error

Let rðmÞðtÞ denote the unknown phase function of the original signal z ðtÞ ¼
A ðtÞ ei/ðtÞ in the mth iteration, which is estimated from the (m−1)th iterative result
of MDT, and rð1ÞðtÞ denote the phase function estimated from the spectrogram. The

corresponding demodulation operator is fd;ðmÞðt; uÞ ¼ e�iDrðmÞ;uðtÞ, where the phase
DrðmÞ;uðtÞ is a remainder of the first-order Taylor expansion of the estimated phase
rðmÞðtÞ in the vicinity of u, i.e.,

DrðmÞ;uðtÞ ¼ rðmÞðtÞ � ½rðmÞðuÞþ r0ðmÞðuÞðt � uÞ� ¼
X1
k¼2

rðkÞðmÞðuÞ
ðt � uÞk

k!
ð55Þ

The original signal is demodulated into a bivariate signal

zdðt; uÞ ¼ A ðtÞ ei½/ðtÞ�DrðmÞ;uðtÞ�: ð56Þ

According to the same noisy discrete-time observations in (8), the bivariate signal
in the discrete form is
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zdðnT ; uÞ ¼ ½A ðnTÞ ei/ðnTÞ þ e ðnTÞ� � e�iDrðmÞ;uðnTÞ:

According to the MDT definition of the continuous signal in (22), the MDT of the
discrete sequence z ðnTÞ is the STFT of the demodulated signal zdðnT ; uÞ,
defined as

Szd ðu; nÞ ¼ T
Xþ1

n¼�1
zdðuþ nT ; uÞgrðnTÞ e�innT ; ð57Þ

where

zdðuþ nT; uÞ ¼ ½A ðuþ nTÞ ei/ðuþ nTÞ þ e ðuþ nTÞ� � e�iDrðmÞ;uðuþ nTÞ: ð58Þ

Similarly, a TF energy density representation of the signal can be defined by
MDT as

PðmÞðt;xÞ ¼ T2
Xþ1

n1¼�1

Xþ1

n2¼�1
zdðtþ n1T; tÞzdðtþ n2T; tÞgr

ðn1TÞgrðn2TÞeixðn2�n1ÞT
ð59Þ

Then, the value of instantaneous angular frequency can be estimated in the TF
plane as

~xðmÞðtÞ ¼ arg max
x

PðmÞðt;xÞ; ð60Þ

Accordingly, the estimation error is

D~xðmÞðtÞ ¼ ~xðmÞðtÞ � x ðtÞ; ð61Þ

and the estimation error D~xðmÞðtÞ can be also considered to be a random variable,
and characterized by its bias and variance.

Proposition 2 Let ~xðmÞðtÞ be a solution of (60). The continuous signal x0ðtÞ ¼
A ðtÞei/ðtÞ satisfies: A 2 C1ðRÞ; / 2 C1ðRÞ, and A0ðtÞj j � /0ðtÞj j, and the
demodulation operator fdðt; uÞ ¼ e�iDrðmÞ;uðtÞ satisfies: rðmÞ 2 C1ðRÞ. As T ! 0, the
bias and variance of the IF estimator are given by

Bias D~xðmÞðtÞ
� �!

Xþ1

k¼1

/ð2kþ 1ÞðtÞ � rð2kþ 1Þ
ðmÞ ðtÞ

h i
r2kM1;2kþ 2

ð2kþ 1Þ!M1;2
ð62Þ
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Var D~xðmÞðtÞ
� �! r2eM2;2

2 AðtÞj j2ðM1;2Þ2
1þ r2eTM2;0

r AðtÞj j2ðM1;0Þ2
 !

T
r3

ð63Þ

Proof Consider the Taylor expansion of the phase functions /ðtþ nTÞ, and the
signal having slow varying amplitude, the bivariate signal in (59) is expanded as

zdðtþ nT; tÞ ¼ ½A ðtÞ ei½/ðtÞþ/0ðtÞnT þD/ðt;nTÞ�

þ e ðtþ nTÞ� � e�iDrðmÞ;tðtþ nTÞ

¼ A ðtÞ ei½/ðtÞþ/0ðtÞnT þD/ðt;nTÞ�DrðmÞ;tðtþ nTÞ�

þ e ðtþ nTÞ � e�iDrðmÞ;tðtþ nTÞ

ð64Þ

with D/ ðt; nTÞ ¼Pþ1
k¼2 /ðkÞðtÞðnTÞk = k! and DrðmÞ;tðtþ nTÞ ¼Pþ1

k¼2 rðkÞðmÞðtÞðnTÞk = k!.
Since the IF is located at the stationary points of PðmÞðt;xÞ which is determined

by the zero value of the derivation of PðmÞðt;xÞ, that is, the IF estimate ~xðmÞðtÞ is
given by solving @PðmÞðt;xÞ = @x ¼ 0 for x, where

@PðmÞðt;xÞ
@x

¼ T2
Xþ1

n1¼�1

Xþ1

n2¼�1
zdðtþ n1T; tÞzdðtþ n2T ; tÞ

grðn1TÞgrðn2TÞeixðn2�n1ÞTðiðn2 � n1ÞTÞ
ð65Þ

Any error in the IF estimate may be due to the one (or a combination) of the
following [40]:

(1) the estimate error D~xðmÞðtÞ;
(2) the error due to the residual of the deviation dD/;Dr;
(3) the error due to the noise de.

Thus, the linearization of @PðmÞðt;xÞ = @x ¼ 0 with respect to these quantities
gives

@PðmÞðt;xÞ
@x

¼ @PðmÞðt;xÞ
@x

����
0
þ @2PðmÞðt;xÞ

@x2

����
0
D~xðmÞðtÞ

þ @PðmÞðt;xÞ
@x

����
0
dD/;Dr þ

@PðmÞðt;xÞ
@x

����
0
de ¼ 0

ð66Þ

where 0j means that the corresponding expressions are computed at the
point x ¼ /0ðtÞ; D/ ðt; nTÞ ¼ 0; DrðmÞ;tðtþ nTÞ ¼ 0 and e ðnTÞ ¼ 0. The term
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@PðmÞðt;xÞ = @x
��
0dD/;Dr represents variation of the derivative @PðmÞðt;xÞ = @x

caused by small D/ ðt; nTÞ and DrðmÞ;tðtþ nTÞ, and the term @PðmÞðt;xÞ = @x
��
0de

caused by noise e ðnTÞ. Therefore, the general expression of the estimation error is

D~xðmÞðtÞ ¼

� @PðmÞðt;xÞ
@x

����
0
þ @PðmÞðt;xÞ

@x

����
0
dD/;Dr þ

@PðmÞðt;xÞ
@x

����
0
de

� �
=

@2PðmÞðt;xÞ
@x2

����
0

� �

ð67Þ

and the elements of (67) are

@PðmÞðt;xÞ
@x

����
0
¼ 0

@2PðmÞðt;xÞ
@x2

����
0
¼ �2 A ðtÞj j2T2

Xþ1

n1¼�1

Xþ1

n2¼�1
grðn1TÞgrðn2TÞðn1TÞ2

@PðmÞðt;xÞ
@x

����
0
dD/;Dr

¼ A ðtÞj j2T2
Xþ1

n1¼�1

Xþ1

n2¼�1
grðn1TÞgrðn2TÞ iðn2 � n1ÞTð Þ

ei D/ðt;n1TÞ�DrðmÞ;tðtþ n1TÞð Þ� D/ðt;2TÞ�DrðmÞ;tðtþ n2TÞð Þ½ �
@PðmÞðt;xÞ

@x

���
0
de ¼ T2 Pþ1

n1¼�1

Pþ1

n2¼�1
grðn1TÞgrðn2TÞ AðtÞei /ðtÞþ/0ðtÞn1T½ � þ e ðtþ n1TÞ

h i
	 AðtÞ ei /ðtÞþ/0ðtÞn2T½ � þ e ðtþ n2TÞ
h i

� eixðn2�n1ÞT iðn2 � n1ÞTð Þ

where the fact that grðtÞ is a real symmetric window function is considered.
The only random term is @PðmÞðt;xÞ = @x

��
0de. The expression (67) then can be

rewritten as

D~xðmÞðtÞ ¼
A ðtÞj j2LðmÞ;rðtÞþNr

2 A ðtÞj j2MT ;1;2MT ;1;0
ð68Þ

where the notation
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LðmÞ;rðtÞ ¼ T2
Xþ1

n1¼�1

Xþ1

n2¼�1
grðn1TÞgrðn2TÞ iðn2 � n1ÞTð Þ

ei D/ðt;n1TÞ�DrðmÞ;tðtþ n1TÞð Þ� D/ðt;n2TÞ�DrðmÞ;tðtþ n2TÞð Þ½ �

� T2
Xþ1

n1¼�1

Xþ1

n2¼�1
grðn1TÞgrðn2TÞ ðn1 � n2ÞTð Þ

D/ðt; n1TÞ � DrðmÞ;tðtþ n1TÞ � D/ðt; n2TÞþDrðmÞ;tðtþ n2TÞ
� �

¼ 2T2
Xþ1

k¼1

/ð2kþ 1ÞðtÞ � rð2kþ 1Þ
ðmÞ ðtÞ

ð2kþ 1Þ!
Xþ1

n1¼�1
grðn1TÞðn1TÞ2kþ 2

2
4

3
5 Xþ1

n2¼�1
grðn2TÞ

Nr ¼ @PðmÞðt;xÞ
@x

����
0
de

MT ;m;k ¼ Tm
Xþ1

n¼�1
gmr ðnTÞðnTÞk

are used. Considering that the expected value of Nr is equal to zero, i.e.,
E Nrf g ¼ 0, thus the expected value of the estimation error D~xðmÞðtÞ, that is, the
bias is

Bias D~xðmÞðtÞ
� � ¼ E D~xðmÞðtÞ

� � ¼ AðtÞj j2LðmÞ;rðtÞþE Nrf g
2 AðtÞj j2MT ;1;2MT ;1;0

¼ LðmÞ;rðtÞ
2MT ;1;2MT ;1;0

ð69Þ

The variance of the IF estimation error D~xðmÞðtÞ is

Var D~xðmÞðtÞ
� � ¼ Var Nrf g

4 AðtÞj j4ðMT ;1;2MT ;1;0Þ2

¼ AðtÞj j2r2eMT ;2;2 MT ;1;0
� �2 þ r4eMT ;2;2MT ;2;0

2 AðtÞj j4 MT ;1;2MT ;1;0
� �2 ð70Þ

For T ! 0, we have the following approximations:
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MT ;m;k ¼ Tm
Xþ1

n¼�1
gmr ðnTÞðnTÞk ! rk�m=2þ 1Tm�1Mm;k

LðmÞ;rðtÞ � 2T2
Xþ1

k¼1

/ð2kþ 1ÞðtÞ � rð2kþ 1Þ
ðmÞ ðtÞ

ð2kþ 1Þ!
Xþ1

n1¼�1
grðn1TÞðn1TÞ2kþ 2

2
4

3
5

Xþ1

n2¼�1
grðn2TÞ

! 2
Xþ1

k¼1

/ð2kþ 1ÞðtÞ � rð2kþ 1Þ
ðmÞ ðtÞ

h i
r2kþ 3

ð2kþ 1Þ! M1;2kþ 2M1;0

with Mm;k ¼
R þ1
�1 tkgmðtÞ dt. Then, the bias and the variance of the IF estimation

error are

Bias D~xðmÞðtÞ
� �!

Xþ1

k¼1

/ð2kþ 1ÞðtÞ � rð2kþ 1Þ
ðmÞ ðtÞ

h i
r2kM1;2kþ 2

ð2kþ 1Þ!M1;2
;

Var D~xðmÞðtÞ
� �! A ðtÞj j2r2e rTM2;2ðM1;0Þ2 þ r4eT

2M2;2M2;0

2 A ðtÞj j4r4ðM1;2M1;0Þ2

¼ r2eM2;2

2 A ðtÞj j2ðM1;2Þ2
1þ r2eTM2;0

r AðtÞj j2ðM1;0Þ2
 !

T
r3

:

■

Remark The value of the estimation error in (62) and (63) is determined by the
variance r2e of noise, the variance r of the window function, and the estimation
accuracy in the (m−1)th MDT iteration. The former two factors are same with the
effect in the Proposition 1 for STFT, and the last factor is the essential difference
between the MDT-based IF estimation and the STFT-based IF estimation. The more
accurate the IF estimation in the (m−1)th MDT iteration is, the smaller the error
between the estimated IF r0ðmÞðtÞ and the actual IF /0ðtÞ is, and smaller the bias in

the mth MDT iteration is. It means that the phase function of the bivariate
demodulation operator can “weaken” the modulation of the signal, thus the IF
estimated from the TF representation of the demodulated signal is more accurate
than the one estimated from the TF representation of the original signal.

Proposition 3 If the phase function of the bivariate demodulation operator satisfies
the condition:
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0\
Xþ1

n¼�1
grðnTÞnT rðmÞðtþ nTÞ � r0ðmÞðtÞnT

h i

\
Xþ1

n¼�1
grðnTÞnT /ðtþ nTÞ � /0ðtÞnT½ �

ð71Þ

or

0[
Xþ1

n¼�1
grðnTÞnT rðmÞðtþ nTÞ � r0ðmÞðtÞnT

h i

[
Xþ1

n¼�1
grðnTÞnT /ðtþ nTÞ � /0ðtÞnT½ �

ð72Þ

we have

Bias D~xðmÞðtÞ
� ��� ��\ Bias D~xðtÞf gj j:

Proof: Since

/ðtþ nTÞ ¼ /ðtÞþ/0ðtÞnT þD/ðt; nTÞ;
rðmÞðtþ nTÞ ¼ rðmÞðtÞþ r0ðmÞðtÞnT þDrðmÞ;tðtþ nTÞ;

we have

LðmÞ;rðtÞ � 2T2
Xþ1

n1¼�1
grðn1TÞn1T D/ðt; n1TÞ � DrðmÞ;tðtþ n1TÞ

� �� �
Xþ1

n2¼�1
grðn2TÞ

¼ 2T2
Xþ1

n1¼�1
grðn1TÞn1T /ðtþ n1TÞ � /0ðtÞn1T � rðmÞðtþ n1TÞþ r0ðmÞðtÞn1T

� �h i
Xþ1

n2¼�1
grðn2TÞ

where the fact that grðtÞ is a real symmetric window function is considered. If the
condition (71) is satisfied, we have

0\
Xþ1

n¼�1
grðnTÞnT /ðtþ nTÞ � /0ðtÞnT � rðmÞðtþ nTÞþ r0ðmÞðtÞnT

� �h i

\
Xþ1

n¼�1
grðnTÞnT /ðtþ nTÞ � /0ðtÞnTð Þ½ �;
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so

LðmÞ;rðtÞ
2MT ;1;2MT ;1;0

����
����\ LrðtÞ

2MT ;1;2MT ;1;0

����
����;

where the notation

LrðtÞ � 2T2
Xþ1

n1¼�1
grðn1TÞn1T /ðtþ n1TÞ � /0ðtÞn1Tð Þ½ �

Xþ1

n2¼�1
grðn2TÞ;

is used. Then

Bias D~xðmÞðtÞ
� ��� ��� Bias D~xðtÞf gj j:

The other condition is analogous. ■
Special case: For the aforementioned motivating example, the phase of the

bivariate demodulation operator satisfies rðmÞðtÞ ¼ / ðtÞ. Thus we have

/ð2kþ 1ÞðtÞ ¼ rð2kþ 1Þ
ðmÞ ðtÞ, for k 2 Z

þ , and

Bias D~xðmÞðtÞ
� � ¼ 0:

Remark In this special case, the bivariate demodulation operator eliminates the
estimation error due to the residual of the deviation dD/, which is an error in the IF
estimation based on STFT. Despite a general demodulation operator, the bias of
error for the MDT-based IF estimator is smaller than the one for STFT-based IF
estimator if the condition (71) or (72) is satisfied, which means that the phase
function of the bivariate demodulation operator can “weaken” the modulation of the
signal, thus the IF estimated from the TF representation of the demodulated signal is
more accurate than the one estimated from the TF representation of the original
signal.

4.2 Convergence Condition and Discussion

We assume that the phase of the original signal can be modelled by the function
/ ðtÞ with some determined parameter a, i.e., the phase function being denoted by
/ðt; aÞ, then the mth estimated phase function rðmÞðtÞ can be denoted by /ðt; aðmÞÞ,
i.e., rðmÞðtÞ ¼ /ðt; aðmÞÞ. If the condition (71) or (72) is satisfied for m ¼ M, then
the bias of the IF estimation error D~xðMÞðtÞ, based on the TF representation of the
mth MDT iteration, is smaller than the bias of D~xðtÞ from the spectrogram, which
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means that the estimated IF r0ðMþ 1ÞðtÞ ¼ /0ðt; aðMþ 1ÞÞ is closer to the true IF

/0ðt; aÞ than the initial estimated IF r0ð1ÞðtÞ ¼ /0ðt; að1ÞÞ for t 2 R. That is to say, the

estimated parameters aðMþ 1Þ of the IF model /0ðt; aðMþ 1ÞÞ is closer to the actual
parameters a of the true IF /0ðt; aÞ. Therefore, the condition (71) or (72) is further
satisfied for m ¼ Mþ 1, and the signal can be better demodulated by the operator
associated with /0ðt;aðMþ 1ÞÞ, so the bias of the corresponding IF estimation error
D~xðMþ 1ÞðtÞ is further smaller than the bias of D~xðMÞðtÞ. In a word, the imple-
mentation of the iterative procedure will match the true IF step by step and finally
converge to it.

On the other hand, from (62) and (63) it is clear that increasing the variance r of
the Gaussian function decreases the variance of the IF estimation error but increases
its bias. These two aspects should be taken into account to achieve a bias-variance
trade-off. The optical variance r can be obtained by solving the following opti-
mization problem (minimizing the mean squared error of the IF estimation) [40]:

roptðtÞ ¼ argmin
r

E ðD~xðmÞðtÞÞ2
n o

¼ argmin
r

Var D~xðmÞðtÞ
� �þ E D~xðmÞðtÞ

� �� �2n o
:

For the Gaussian window function with small r, the optimal variance can be
approximately expressed as

roptðtÞ � 3Tr2e
8
ffiffiffi
p

p
AðtÞj j2 1þ r2e

2
ffiffiffi
p

p
AðtÞj j2

 !
= /ð3ÞðtÞ � rð3ÞðmÞðtÞ
� �2 !1=7

:

This optimal variance depends on the third derivative of the phase function

/ð3ÞðtÞ and the second derivative of estimated IF rð3ÞðmÞðtÞ, which is time and signal

dependent. Note that if the third derivation /ð3ÞðtÞ is significant different for dif-
ferent t, a time-varying variance of the window function is required for the opti-
mization of the estimation accuracy. Without the effect of the demodulation rðmÞðtÞ,
a time-invariant variance of window function is difficult to simultaneously mini-
mize the IF estimation error for all the times.

If the condition (71) or (72) is satisfied, the MDT can match the true IF with the
implementation of the iterative procedure, and the difference between two deriva-

tion /ð3ÞðtÞ and rð3ÞðmÞðtÞ is reduced, thus the optimal variance r can increased to

achieve a new bias-variance trade-off. Moreover, because of the demodulation

effect, the difference /ð3ÞðtÞ � rð3ÞðmÞðtÞ is much less than the third derivation /ð3ÞðtÞ
itself, thus a time-invariant variance of window function can minimize the IF
estimation error simultaneously. The improvement in estimation accuracy is sig-
nificant even without a time-varying variance.
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5 Simulation Study

In this section we utilize a range of simulation examples to illustrate the effec-
tiveness of the MDT. For all examples in this section, MDT is carried out starting
from a Gaussian window function; other window functions that are well localized in
frequency give similar results.

5.1 Applying the MDT to Simulation Signal

In this case, we consider a nonlinear FM signal, whose IF is an inverse hyperbolic
sine function given by

fiðtÞ ¼ fc0 þ a0 � sinh�1 b0ðt � c0Þð Þ;

where sinh�1ð�Þ is an inverse hyperbolic sine function; the parameters are fc0 ¼
256; a0 ¼ 40; b0 ¼ 100 and c0 ¼ 0:5, respectively. This inverse hyperbolic sine
function IF is shown in Fig. 3a. According to this IF, set m0ðtÞ ¼
a0 sinh�1ðb0ðt � c0ÞÞ, and p0ðtÞ ¼ ln ðb0ðt � c0Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20ðt � c0Þ2 þ 1

q
Þ, then the

modulation source is

u0ðtÞ ¼ 2p
Z t

�1
m0ðuÞ du ¼ 2p a0 ðt � c0Þp0ðtÞ � b�1

0 cosh p0ðtÞ
� �

; ð73Þ

with cosh ð�Þ being a hyperbolic cosine function. Thus, the corresponding simula-
tion signal is

x0ðtÞ ¼ cos 2p fc0tþ 2p a0 ðt � c0Þp0ðtÞ � b�1
0 cosh p0ðtÞ

� �� �
: ð74Þ
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Fig. 3 The inverse hyperbolic sine IF and the simulation signal: a IF, b noise-free signal, and
c noisy signal ðSNR ¼ �6:65 dB)
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The waveform of this noise-free simulation signal is shown in Fig. 3b. The discrete
signal has 1024 samples in the interval t 2 ½0; 1�.

In order to explore the tolerance to noise of the MDT algorithm, white Gaussian
noise with variance r2e ¼ 1:5 is added to the simulation signal. Let e ðtÞ denote the
noise with zero mean and variance r2e ¼ 1. The noisy simulation signal is

x ðtÞ ¼ x0ðtÞþ 1:5e ðtÞ: ð75Þ

The signal-to-noise ratio (SNR) is defined as

SNR ¼ 10 log10 Px =Pnð Þ; ð76Þ

where Px is the energy of the noiseless signal and Pn is the energy of the noise. The
waveform of this noisy signal is shown in Fig. 3c. The SNR of this noisy simu-
lation signal is SNR ¼ �6:65 dB.

The MDT method is applied to analyze the simulation signal. In this case, the IF
model is the inverse hyperbolic sine function with unknown parameters, i.e., the IF
model is

fiðtÞ ¼ fc þ a � sinh�1 b ðt � cÞð Þ;

And the parameters fc, a, b and c are unknown. Set m ðtÞ ¼ a sinh�1ðb ðt � cÞÞ, and
p ðtÞ ¼ ln ðb ðt � cÞþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2ðt � cÞ2 þ 1

q
Þ, the modulation source is

u ðtÞ ¼
Z t

�1
m ðuÞ du ¼ 2p a ðt � cÞpðtÞ � b�1 cosh pðtÞ� �

; ð77Þ

Thus, the forward demodulation operator is

f Idðt; uÞ ¼ e�iuðtÞ; ð78Þ

the backward modulation operator is

f IId ðt; uÞ ¼ ei½u
0ðuÞðt�uÞþuðuÞ� ¼ ei½mðuÞðt�uÞþuðuÞ�; ð79Þ

and the bivariate demodulation operator is

fdðt; uÞ ¼ e�i½uðtÞ�uðuÞ�u0ðuÞðt�uÞ� ¼ e�i½uðtÞ�uðuÞ�mðuÞðt�uÞ�: ð80Þ

In this case, the initial variance of the window is rð0Þ ¼ 1=96 and the threshold is
d ¼ 10�4 for the MDT’s MSE termination condition, the maximal number of
iterations is 20. The STFT result and the MDT result are shown in Fig. 4. It can be
found in the comparison that only a few part ridge in the STFT result can be
observed and the most part are influenced by the noise. However, the IF of the
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simulation signal is clearly represented in the MDT result with high energy
concentration.

In order to illustrate the convergence procedure of the MDT method, Fig. 5
gives the initial IF estimation based on the STFT representation and the first 5
iterations in the MDT iterative procedure. In the TFR of each iteration, the dashed
line describes the estimated IF by fitting the extracted TF ridges. It can be clearly
observed that, with the iterative process, the estimated IF gradually convergent to
the true IF of the simulation signal and the energy concentration of the TFR
gradually is improved, even though the initial IF estimation is less accurate.
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Fig. 4 a The STFT result and b the MDT result
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Fig. 5 The initial IF estimation based on the STFT representation and the first 5 iterations in the
MDT iterative procedure
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In order to further illustrate the convergence procedure of the MDT method,
Fig. 6 shows the evolution of the logarithmic MSE while implementing the iterative
procedure of the MDT algorithm in this noisy case, not only the MSE between the
estimated IF and the simulated IF (denoted by MSE1 and marked with circles), but
also the MSE between two successive estimated IFs (denoted by MSE2 and marked
with squares). It can be observed that the accuracy of IF estimation is improved as
the iteration proceeds on. Moreover, Fig. 7 provides the identified parameters in
each MDT iteration, including fc, a, b, and c. It also can be observed that the
accuracy of identified parameters is improved as the iteration proceeds on. It thus
illustrates the convergence discussion in Sect. 4.2.
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For comparison, some TFA methods are considered, including S-method [41,
42], Hilbert-Huang transform (HHT), reassigned STFT (RSTFT), reassigned
smoothed pseudo Wigner-Ville distribution (RSPWVD), synchrosqueezed wavelet
transform (SWT) [43] and generalized synchrosqueezing transform (GST) [44, 45].
The TF representations obtained by them are presented in Fig. 8. Moreover, the
MSE values of the IF estimation based on these representations are listed in Table 1
to compare the performance of the MDT algorithm.

S-method belongs to the general class of smoothed pseudo Wigner-Ville dis-
tributions. Figure 8a shows the S-method result by applying a rectangular window
with length 37. It can be seen that the representation has a low TF concentration.
Because of the high frequency modulation, the S-method is incapable of tracking
the rapid IF variation, and the strong FM part is cracked. Moreover, because of the
influence of noise, the estimation error (MSE = 7.99 	 10−2) of the IF tracking is
much larger than the MDT result (MSE = 2.19 	 10−4). The HHT is an extension
of the EMD algorithm, which is the Hilbert energy spectrum of the decomposition
result of the EMD. In this case, the HHT spectrum shown in Fig. 8b is incapable of
characterizing the true nonlinear IF law. Figure 8c, d illustrate two reassignment
methods, RSTFT and RSPWVD. The frequency smoothing window of the RSTFT
is a Gaussian window with length 71. The time and frequency smoothing window
of RSPWVD are the hamming window with length 103 and 257, respectively. The
concentration of the RSTFT and RSPWVD results is improved, however the strong
FM part is also cracked and the IF estimation error is larger than the MDT result.
Figure 8e, f provide the results of the original SWT and an improved SWT, i.e., the
GST. The Q-factors of wavelets used in SWT and GST are 20 and 30p,
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Fig. 8 The comparison study of the simulated signal. The TF representations generated by
a S-method, b HHT, c RSTFT, d RSPWVD, e SWT, and f GST
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respectively. The SWT result is influenced by the noise and the nonlinear IF law.
Although the concentration is essentially improved, the IF estimation error is still
larger than the MDT result. The GST requires the phase function to demodulate the
signal, thus the identified phase function by MDT is used in this paper. However, it
can be seen from Table 1 that the IF estimation accuracy (MSE = 3.48 	 10−4) of
GST is lower than the accuracy of the used phase function identified by MDT
(MSE = 2.19 	 10−4). In comparison with these representations, the MDT algo-
rithm provides TF representations with satisfying energy concentration and IF
estimation method with reasonable accuracy. The nonlinear IF law can be clearly
identified in the TF representation shown in Fig. 4b.

To further explore the tolerance to noise of the MDT, different noise levels are
investigated in this paper. Figure 9 illustrates the MSE values of IF estimation while
MDT implementing 10 iterations at different noise levels. It can be seen that the MSE
of the IF estimation increases with noise. That is to say, the noise decreases the
accuracy of the IF estimation. Despite the high noise level (−10 dB), the MDT
algorithm converges to the true IF of the analyzed signal, and theMSE is 7.94 	 10−4.

Finally, we apply the MDT algorithm to a multicomponent signal with three
close IF signatures spaced 10 Hz apart. Each IF is an inverse hyperbolic sine
function given by

fi;kðtÞ ¼ fc;k þ a0 � sinh�1 b0ðt � c0Þð Þ for k ¼ 1; 2; 3;

where the parameters are fc;1 ¼ 246; fc;2 ¼ 256, fc;3 ¼ 266; a0 ¼ 40; b0 ¼ 100
and c0 ¼ 0:5, respectively. These IFs are shown in Fig. 10a. According to these Ifs,
the signal is

Table 1 The MSE
comparison for different
methods

MSE

MDT 2.19 	 10−4

S-method 7.99 	 10−2

RSTFT 7.52 	 10−2

RSPWVD 5.56 	 10−2

SWT 1.25 	 10−2

GST 3.48 	 10−4
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xkðtÞ ¼ cos 2p fc;ktþ 2p a0 ðt � cÞp0ðtÞ � b�1
0 cosh p0ðtÞ

� �� �
for k ¼ 1; 2; 3;

with p0ðtÞ ¼ ln ðb0ðt � c0Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b20ðt � c0Þ2 þ 1

q
Þ. Then, the multicomponent

signal is

x0ðtÞ ¼
X3
k¼1

xkðtÞ

The waveform of this noise-free simulation signal is shown in Fig. 10b. The dis-
crete signal has 1024 samples in the interval t 2 ½0; 1�. In order to explore the
tolerance to noise of the MDT algorithm, white Gaussian noise is added to the
simulation signal. The noisy simulation signal is

x ðtÞ ¼ x0ðtÞþ 1:5 e ðtÞ: ð81Þ

The SNR is −2.06 dB, and the waveform of this noisy signal is shown in Fig. 10c.
In this case, the initial variance of the window is rð0Þ ¼ 1=96 and the threshold is

d ¼ 2	 10�4 for the MDT’s MSE termination condition, the maximal number of
iterations is 20. The STFT result and the MDT result are shown in Fig. 11. It can be
found that the three components in the STFT result are mixed with each other and
can not be distinguished. However, the three IFs of the simulation multicomponent
signal are clearly represented in the MDT result with high energy concentration.

For comparison, some TFA methods are considered, including S-method,
RSTFT, and SWT. The TF representations obtained by them are presented in
Fig. 12a–c, respectively. The length of the rectangular window used in the
S-method is 17. The frequency smoothing window of the RSTFT is same as the
window function used in MDT. The Q-factors of wavelets used in SWT and GST
are also 20 and 30p, respectively. The former three TFA methods cannot distin-
guish the three components in the simulated signal. Compared with these repre-
sentations, the MDT method provides TF representations with satisfying energy
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Fig. 10 The inverse hyperbolic sine IF and the simulation signal: a IF, b noise-free signal, and
c noisy signal ðSNR ¼ �2:06 dB)
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concentration and the three components can be clearly distinguished and identified
in Fig. 11b.

5.2 Applying Signal Reconstruction to Simulation Signal

In this subsection, we explore the reconstruction by the inverse MDT algorithm. As
illustrated in the preceding section, the MDT representation has well-localized
zones of concentration. Thus, one can use these to select the zone corresponding to
one component, and then integrate, in the reconstruction formula (24), over this
zone of the integration domain.

We firstly illustrate this with the monocomponent FM signal shown in Fig. 3.
Figure 13 shows the example of the reconstruction, including the zone selection in
the TF plane and the reconstruction result. The zone selected in this example is
centred around the estimated IF trajectory on the MDT representation, which has a
fixed width inversely proportional to the variance r of the window. In order to
reduce the influence of the noise, the width is as narrow as possible. Moreover, the
selected zone should contain the component of the analyzed signal as much as
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Fig. 11 a The STFT result and b the MDT result
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Fig. 12 The comparison study of the multicomponent signal: The TFR generated by a S-method,
b RSTFT, and c SWT
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possible. These two aspects should be taken into account to achieve a trade-off.
The SNR of the reconstructed signal shown in Fig. 13 is 13.98 dB. For the noisy
signal, the added white Gaussian noise is widely spread out in the TF plane, so the
noise will also spread out in the area of IF trajectory of the analyzed signal. Because
the window used in the MDT is wide, the noise is smoothed and it is reconstructed
into the signal, which leads to the amplitude error in the reconstructed signal.

To further explore the reconstruction of the inverse MDT algorithm, different
noise levels are investigated in this paper. Figure 14 shows the SNR values of the
reconstructed signals at different noise levels. It can be seen that the SNR values of
reconstructed signals decrease linearly with increased noise.

Finally, we illustrate the signal reconstruction for individual components from
the multicomponent FM signal shown in Fig. 10. Figure 15 shows the recon-
structed three components. The SNR values of the reconstructed individual com-
ponents are 12.37, 14.39 and 12.09 dB, respectively.
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Fig. 13 The reconstruction of the inverse hyperbolic sine signal by the inverse MDT algorithm:
a Zone selection for the reconstruction of the simulated signal, and b the reconstruction result
according to the inverse MDT algorithm (plotted in solid line over the original simulated signal in
dot line)
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6 Experimental Verification

In this section we utilize a range of simulation examples to illustrate the effec-
tiveness of the MDT. For all examples in this section, MDT is carried out starting
from a Gaussian window function; other window functions that are well localized in
frequency give similar results.

Rotor is one of the most important components in the rotating machinery.
Rub-impact is a common nonlinear fault in a rotor system, which may bring a
serious hazard to machines. Therefore, it is necessary to monitor the condition of
the rotor system.
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Fig. 15 The reconstruction of the multicomponent signal by the inverse MDT algorithm: a zone
selection for the component x1ðtÞ, b the reconstruction result ~x1ðtÞ, c zone selection for the
component x2ðtÞ, d the reconstruction result ~x2ðtÞ, e zone selection for the component x3ðtÞ, and
f the reconstruction result ~x3ðtÞ
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To verify the effectiveness of the MDT in feature extraction for rotor fault
diagnosis, a simulating experiment of rotor rub-impact fault was performed on
Bently RK-4 Rotor Kit. Figure 16 shows an overall view of the experiment system,
which includes Bently RK-4 Rotor Kit test rig, signal conditioner, and signal
acquisition system.

A radial rubbing fault is simulated by using a rub screw to hit the radial surface
of the shaft. The rub screw is secured in the mounting block with a locknut and it is
adjusted to obtain rub-impact fault in different degrees. In this experiment, the
rubbing fault is slight. Rotor displacement signals in the horizontal and the vertical
directions are collected by eddy current sensors, which are mounted on the probe
base. The sketch of data acquisition system is shown in Fig. 17. The operation
speed of the rotor kit is 2000 r/min, the sample frequency is 2 kHz and 1024 points
are sampled. The vibration signal and its spectrum are shown in Fig. 18. Because

Bently Rotor
Kit RK4

Data Acquisition ComputerMotor Speed Controller

Signal
Conditioner

Sony EX Data
Acquisition System

Fig. 16 The experiment set of Bently RK-4 rotor kit

Eddy Current Sensor

Sony EX Data Acquisition system

Laptop

Signal Conditioner

Fig. 17 The sketch of data acquisition system
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the rubbing fault of this experiment is very slight, only the rotating frequency and
its weak second harmonics can be observed in the spectrum of the vibration signal.

Because of the periodic rubbing between the rotating element and the stationary
part, FM phenomenon will exist in the vibration signal, which is a periodic and
nonlinear FM signal. It has a nonlinear time-varying IF. The MDT is applied to
analyze the vibration signal and to investigate its property. The TFR result obtained
by MDT and the extracted IF are shown in Fig. 19. In this case, the value of r for
the initial IF estimation is 0.005, and the threshold is d ¼ 10�3 for MDT’s MSE
termination condition. Figure 20 shows the evolution of the logarithmic MSE while
implementing iterative procedure of the MDT algorithm. After five iterations, the
algorithm converges to a periodic oscillated IF, which can be found in Fig. 19. That
is to say, although the MDT is an iterative algorithm, and the calculation speed is an
important factor for an iterative algorithm, in this case, the MDT uses only five
iterations to converge to the periodic oscillated IF. Therefore, the calculation time
of the MDT in this case is approximately five times the computing time of STFT.
The extracted periodic oscillatory IF is the feature of periodic rubbing between the
rotating element and the stationary part. Moreover, Fig. 21a redraws the extracted
IF and its mean value which is approximately equal to the rotating frequency of the
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Fig. 18 a The vibration signal of the Bently rotor system and b its Fourier spectrum
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from this representation
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rotor system. The spectrum of the oscillation part of this extracted IF is shown in
Fig. 21b. The oscillation frequency is also equal to the rotating frequency.

For comparison, the TFR of the vibration signal generated by STFT with r ¼
0:01 is given in Fig. 22 to illustrate the concentration enhancement of the MDT.
Moreover, HHT is considered for comparison study. The obtained TFR is presented
in Fig. 23. In this case, the HHT spectrum can reveal some oscillation feature.

1 2 3 4 5
−3.2

−3

−2.8

−2.6

−2.4

lo
g 10

(M
SE

)
Iteration number 

Fig. 20 The logarithmic MSE values of the iterative procedures
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However, because of the shortcoming of mode mixing, it is incapable of charac-
terizing the true nonlinear IF rule at certain times, such as 0.2 and 0.27 s. Compared
with the HHT, the MDT algorithm provides TFR with satisfying energy concen-
tration to represent the nonlinear FM feature and reveal the fault feature of the
rub-impact.

7 Applications

In this section, the MDT algorithm will be applied in the feature extraction of
vibration signal collected from a heavy oil catalytic cracking machine set with a
rub-impact fault. A picture of the machine set and its structure sketch are shown in
Fig. 24a, b, respectively. It consists of a gas turbine, compressor, gearbox and a
motor. The gas turbine is used to transform heat energy to mechanics energy. Two
bearing cases (bushes 1# and 2#) are used to support the gas turbo shaft, another
two (bushes 3# and 4#) are used to support the compressor shaft. The hub and the
laminas (left component of gas turbo) on the shaft are cantilever. The rotating speed
of gas turbo is about 5 800 r/min (96.7 Hz). The instrument of a Bently 3300
system was equipped to monitor its operating condition. Eddy current sensors were
mounted on each bearing case in horizontal and vertical directions to capture
vibration signals. The sampling frequency is 2 kHz and the sampling number is
1024.

After an overhaul this machine set was running again. It was found that the
vibration of bush 2# is over alarm limit, and it is larger than the vibration of bush
1#. The vibration signal of bush 2# and its spectrum are shown in Fig. 25. The
operation condition of the machine set became abnormal, and thus it had to be
stopped. Except the fundamental harmonic component (96.7 Hz) and its second
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Fig. 23 The TFR of the
vibration signal of Bently
RK-4 rotor kit obtained by
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harmonic (193.4 Hz) are distinct in the Fig. 25, no other evident fault feature can be
found.

MDT is used to analyze the vibration signal and to extract the feature of
rub-impact fault. In this case, the value of r for the initial IF estimation is 0.002, and
the threshold is d ¼ 10�3 for MDT’s MSE termination condition. Figure 26 shows
the evolution of the logarithmic MSE while implementing iterative procedure of the
MDT algorithm. The TFR result by MDT is shown in Fig. 27. It can be clearly
found that the FM component has a periodic oscillatory IF. Moreover, the oscil-
lation period is about 10.3 ms, and the corresponding oscillation frequency
96.68 Hz is approximately equal to the rotating speed, as shown in Fig. 28.
Consequently, this periodic oscillation feature provides evidence to judge the
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Fig. 24 a The picture of the heavy oil catalytic cracking machine set and b its structure sketch
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Fig. 25 a A vibration signal of the heavy oil catalytic cracking machine set, and b its Fourier
spectrum
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existence of the rub-impact fault in the rotor system. The analysis results behave
better than HHT shown in Fig. 29.

To further verify the effectiveness of the MDT, another vibration signal sampled
some time later is analyzed. The waveform and its spectrum are shown in Fig. 30.
The rotating frequency and some harmonic components can be clearly seen in this
figure. Compared with the vibration signal in Fig. 25, this signal has more complex
harmonic components. Moreover, the rotating frequency (25.4 Hz) of the low speed
shaft of the gearbox also can be seen in this figure.

The MDT algorithm is used to analyze this measured vibration signal. The TFR
obtained by the MDT for multicomponent signal is shown in Fig. 31. The energy in
the TF plane is well concentrated around the harmonic components. The FM
components could be found clearly in Fig. 31a, where the oscillation phenomena of
all IFs of the fundamental component and harmonic components can be observed.
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Fig. 27 The TFR of the vibration signal obtained by MDT
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The oscillation period of the second harmonic is approximately 10.3 ms, which is
associated with the frequency of the fundamental harmonic component. More
important phenomenon is that the modulation periods of the fourth-harmonic and
higher-order harmonics are approximately 32 ms which is approximately equal to
three times rotating period of the machine set. It means that the oscillation fre-
quency of the fourth-harmonic component is equal to 1/3 of the rotating frequency.
This 1/3 sub-harmonic is another key feature of the rub-impact fault. In order to
observe more clearly, the zoomed plot about the fourth-harmonic is given in
Fig. 31b. Moreover, Fig. 32a redraws the extracted IF and its mean value which is
approximately equal to four times the rotating frequency. The spectrum of the
oscillation part of this extracted IF is shown in Fig. 32b.

For the purpose of comparison, the TFR of HHT is shown in Fig. 33. The HHT
spectrum is also incapable of characterizing the entire oscillation behaviors of the
vibration signal in this case.
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Fig. 29 The comparison study of the vibration signal. The TFRs obained by HHT
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In the overhaul afterward, it was found that a rub-impact fault did exist between
the hub (rotating with the rotor) and the gas seal (static element). The rubbing
position is shown in Fig. 24. The reason is that thermal expansion caused by the
increase of the lube temperature elevates the shaft position, and then induces
rub-impact with the gas seal. After overhaul, the rubbing area is ground, and the
rub-impact becomes slight, and thus the vibration of bush 2# decreased and
becomes normal. Thus, the validity of the proposed MDT method is demonstrated.

8 Conclusions

The MDT algorithm provides an iterative TFA method to generate a TF repre-
sentation with satisfactory energy concentration for both monocomponent signals
and multicomponent signals. With the implementation of the iterative procedure,
the MDT gradually matches the true IF of the signal, and the energy concentration
of TF representation is enhanced and centered around the true IF. Compared with
conventional parametric TFA methods, the concentration of the MDT’s result is
enhanced and the IF estimation accuracy is essentially improved. Moreover,
because the MDT is a linear TFA method, it can reconstruct individual components
from a multicomponent signal’s TF representation.

Then, the validity and practicability of the proposed method are demonstrated by
the simulation study and the experiment study, and further by the application in
fault feature extraction of a heavy oil catalytic cracking machine set with a
rub-impact fault. The simulation signal is used as an example to illustrate the
iterative convergence of the MDT algorithm for strong frequency modulation sig-
nal. The comparison results indicate that the MDT algorithm behaves better than the
other compared methods in providing the TF representation of better energy con-
centration and achieving more accurate IF estimation for the nonlinear FM signals.
The application results show that the MDT method behaves better than HHT and
SWT in extracting the feature of highly oscillatory FM signal.
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Compressive Sensing: A New Insight
to Condition Monitoring of Rotary
Machinery

Gang Tang, Huaqing Wang, Yanliang Ke and Ganggang Luo

Abstract With the development of rotary machinery condition monitoring,
challenges have often been encountered due to the cumbersome nature of data
monitoring. Common methods in signal processing are primarily based on the
Shannon sampling principle, which requires substantial amounts of data to achieve
the desired accuracy from on-line monitoring signals. This limits their applications
in cases for which only small samples can be collected, or cases for which too much
data are generating which needs to be largely reduced with under-sampling. Using
the Shannon sampling principle, it seems impossible to significantly reduce the
quantity of data while preserving adequate useful information for condition mon-
itoring. A newly developed theory termed compressive sensing provides a new
insight to condition monitoring and fault diagnosis. It states that a signal can be
perfectly recovered from under-sampled data, which means that useful condition
information can still be represented by small samples. This study presents novel
methods for rotary machinery fault detection from compressed vibration signals
inspired by compressive sensing, which can largely reduce the data collection and
detect faults of rotary machinery from only a few signal samples. This will greatly
help reduce the amount of monitoring data while still guaranteeing a high accuracy
of fault detection. Case studies related to roller bearing fault signals are also pre-
sented in this study to illustrate the effectiveness of the present strategy.

1 Introduction

As a highly important piece of equipment in various industrial fields, rotary
machinery is integral for ensuring security and stable operations of mechanical
systems. The rotor and its rotating parts are the two main components of rotary
machinery. Critical consequences may result from failures in rotary machinery or its
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rotating units, and can be more detrimental in the absence of adequate monitoring.
In addition, since condition-based maintenance is often required in the modern
machinery management, it is necessary to perform condition monitoring to elimi-
nate excess maintenance and guarantee a safe operation. Based on this, researches
related to fault diagnosis of rotary machinery have attracted great interests from
both academic and industrial communities.

In the past, fault diagnosis was often achieved via equipment disassembly at the
job site by experienced maintenance engineers. This manual method presented
challenges in guaranteeing high accuracy and efficiency. Presently, with the rapid
development of information technology, it is possible to achieve online monitoring
and fault diagnosis of rotary machinery. Various unstable factors may exist during
the operation of rotary machinery. Abundant status information consistently results
from vibrations, allowing vibration signal analysis to be a common and effective
method for condition monitoring. Vibration signal analysis is typically performed in
the time domain, frequency domain or time-frequency domain [1, 2]. Statistical
parameters are adopted to detect and predict faults in the time domain. This method
is easily implemented for fault detection, however, it cannot distinguish fault types
with high precision [3]. Frequency analysis may be applied to extract fault features
[4, 5], identifying fault types by highlighting characteristic fault frequencies in a
spectral domain. Signals acquired by sensors, however, often contain noise, thereby
complicating effective fault features extraction. Time-frequency methods have been
developed to solve these issues, e.g., empirical mode decomposition [6–8] and
wavelet analysis [9, 10], and are generally based on the Shannon sampling theory in
which the sample frequency must be twice the maximum frequency. This theory
indicates that a large amount of data must then be collected, creating an exceptional
challenge for signal acquisition, transmission and processing. In addition, since the
development of database technology and the automation improvements of large
essential equipment, a real-time monitoring techniques have been widely applied.
Using this approach, operation data can be acquired by a distributed control system
with a high-rate collection, e.g., one data point per microsecond or even higher, to
monitor the changes of displacement, acceleration or other parameters. Finally, a
large amount of data is collected, and a large scale database or data warehouse is
built to improve the accuracy of monitoring and its automaticity.

However, the observed data and parameters are often disorderly and unsystem-
atic, i.e., the features are not obvious for condition monitoring. Meanwhile, complex
equipment often generates a large-scale data set to be analysed. Generally, an
intelligent fault diagnosis system is an information processing system, which col-
lects a large set of information about an object with the aid of technologies related to
sensing, information and data transmission [11]. It must be able to accommodate a
lot of original fault information, however, it may also encounter problems of low
quality data that could potentially result in uncertain information. Especially, the
problems of incomplete information are also exacerbated by the limitations of cur-
rent data acquisition and monitoring techniques as well as the diverse information of
rotary machinery. The incompleteness and discordance of the data presents new
challenges to fault diagnosis and condition monitoring. For the fault diagnosis,
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incomplete information primarily refers to missing attributes, incomplete data or
uncertain information, which would result in an inaccurate conclusion regarding a
machine’s status. Therefore, how to deal with incomplete monitoring data and make
a reasonable inference about a machine’s running condition has become a hot topic
in intelligent monitoring of rotary machinery.

Moreover, there is a high requirement on the real-time performance for condition
monitoring of modern rotary machinery. It is expected that a fault can be discovered
once it appears. However, in a big data set generated by continuous monitoring,
there is only a small number of data related to a machine’s abnormality, since the
large majority is healthy and stable information. Thus, it would be much easier if
the monitoring data were greatly reduced, while preserving the most useful infor-
mation. In this case, the pressures on acquisition and post-processing can be
relieved with a guarantee to the diagnosis speed and accuracy. Whereas a large
amount of sampled data is required to be within the limits of traditional Shannon
sampling principle [12] used for perfect post-processing of the observed data.
Therefore, it seems impossible to achieve condition monitoring of rotary machinery
from an abbreviated data set as suggested above.

Compression of large-scale monitoring data to detect fault features directly from
sparse samples is one way to address these challenges. A theory termed com-
pressive sensing is such a way that provides a new insight for solving the above
problems, i.e., condition monitoring from compressed samples or incomplete big
data sets. The theory states that it is still possible to recover a signal from only a few
samples, even with under-sampled incomplete data [13, 14]. It is a big breakthrough
in the signal processing field and great attentions have been placed on it since its
original proposal. Compressive sensing has been widely applied in various fields,
e.g., magnetic resonance imaging [15], seismic wave processing [16] over time, yet
many of the studies reported are associated with signal or image reconstruction.

For condition monitoring of rotary machinery, according to compressive sens-
ing, operation information is possible to be reserved with well-designed sampling,
then it is possible to store and transmit a small amount of samples and reconstruct
them on the receiving side, and detect the fault features from only a few samples.
Moreover, the fault features usually can be identified far before signal recovery is
complete, thus it is not necessary to recover the signal perfectly. Effectiveness of
statistical inference based on compressive sensing has been verified in references
[17–20] in related fields, suggesting the possibility of estimating certain charac-
teristic parameters from only a few compressed measurements without ever
recovering the actual signals.

In the field of condition monitoring, there are also some related reports found in
the relevant literature [21, 22]. Chen et al. [23] built a learning dictionary frame to
extract a fault-impact signal. Zhang et al. [24] performed a preliminary study on
compressive detection issues of bearing faults. Tang et al. [25] developed a sparse
classification method for rotating machinery faults based on a compressive sensing
strategy. Results of these studies validate the effectiveness of compressive sensing
in machinery fault diagnosis; however, focuses were primarily on sparse repre-
sentation or reconstruction of fault signals.
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Considering the complexity of both condition monitoring and compressive
sensing, there are still many obstacles that must be overcome, especially on the
extraction of fault features from compressed signals. The motivation of this paper is
to briefly introduce the compressive sensing theory and present some applications
for the condition monitoring of rotary machinery. These compressive-sampling-
based methods can help to promote the fault detection efficiency of rotary
machinery faults from under-sampled signals, which will provide new insights to
this research fields.

In this paper, roller bearings are used as an example to explain the main concept
of the proposed strategy [26, 27]. Statistical inference based on compressive
sensing has been studied in other fields [28–30] as mentioned above, yet there are
still many obstacles to be overcome when applied to bearing fault detection. The
bearing fault signal consists of impulses and in the commonly utilized Fourier or
wavelet domain, its sparsity does not completely meet the requirements of com-
pressive sensing, thereby increasing difficulty of the compressive sensing process.
Also yet to be resolved also is the identification of bearing fault features to be
extracted from under-sampled signals and the integration process for compressive
sensing into the bearing fault diagnosis. In this study, we try to develop applicable
condition monitoring strategies for bearing faults from under-sampled vibration
signals, and perform simultaneously sampling and detection without a complete
recovery of the incomplete signal.

The rest of this paper is organized as follows. Section 2 states the fault detection
problems in rotary machinery monitoring. Section 3 provides a brief introduction to
compressive sensing. Section 4 shows three proposed methods and case studies for
bearing fault detection with simulation and experiments. Conclusion is drawn in
Sect. 5.

2 Problem Statement

In the condition monitoring of rotary machinery, to reveal the operation status
accurately and comprehensively, a large number of signals are often collected,
including the signal of operating condition (e.g., speed, pressure), the vibration
signals, the surrounding signals (e.g., temperature), etc. This leads to mutual
crosslinking, which complicates the relationship between different signals. The
intensity trends of a vibration signal are often related to the operation state of a
piece of equipment, thus they are important indicators of whether a machine is
running properly or not. Furthermore, the intensity is also closely related to the
working condition and the surroundings. They are closely linked to each other,
therefore none are dispensable. However, the limitations of the field environment,
often result in a lack of data, which adversely affects the judgment of the machine
status. In addition, the complication of a piece of equipment usually causes a
complex signal transmission path, which leads to a serious noise interference, or
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even incorrect signals. Thus we have to pre-processing the observed signals, e.g.,
eliminating invalid signals, which often renders the data incomplete.

In short, the big data related to rotary machinery are often interfered by the
surroundings, which makes the data difficult comprehensively acquired. Therefore,
it is necessary to develop a strategy to deal with the big but incomplete monitoring
data. Ideally, the big data should be compressed or compressively sensed without
losing important information.

Without a loss of generality, a simple detection issue of bearing faults can be
formulated as

x ¼ sþ n ð1Þ

where s is a known signal of interest, x denotes the observation signal, and n is
mixed noise with interference signals from surrounding devices.

Provided s denotes a vibration signal related to a bearing fault, the fault detection
problem then is to distinguish s from x. One of the common methods to distinguish
the fault component s from the mixture signal x is to proceed in a transforming
domain:

y ¼ Ux ¼ UuHuðsþ nÞ ¼ Auðsþ nÞ ð2Þ

where x is a signal of N � 1 dimension, U is an M � N measurement matrix,
M�N, and each row of U represents a sensor to measure x. u is a N � N column
orthonormal basis matrix, and the superscript u denotes a conjugate transposition.
A ¼ uHu is often designated the sensing matrix to measure the transformed data
u ¼ ux. y is a M � 1 measurement vector denoting the observation of y ¼ Au.
When all N measurements are available, i.e., M ¼ N, then, UHU ¼ UUH ¼ IN�N ,
indicating that y is an observation of x with full sampling, which can be solved by
many methods.

However, to facilitate data acquisition and bypass the limitations resulting from
incomplete and imprecise knowledge,M � N is often encountered or expected. y is
then indicated as a compressive sensing of signal x. It would be promising if
required information of the original signal x could be deduced from the compressed
observation y without reconstruction, i.e., the compressed detection problem.

3 Compressive Sensing Theory

3.1 Shannon’s Sampling Theory

Shannon’s sampling theory was first proposed by Shannon in 1949 [31]. According
to the theory, if a continuous signal can be completely represented by a cluster of
samples processed at discrete time, then the samples must occur at more than twice
the sampling frequency of the highest frequency of the signal.

Compressive Sensing: A New Insight … 207



If the signal xt is sampled through the sampling frequency fs (sampling interval
Ts ¼ 1=fs), then the sequence can be generated at
. . .; x �nTsð Þ; . . .; x �Tsð Þ; xð0Þ; x Tsð Þ; . . .; x nTsð Þ; . . .f g,

xsðtÞ ¼
X1
n¼�1

x nTsð Þ � d t � nTsð Þ ¼ xðtÞ �
X1
k¼�1

d t � nTsð Þ ð3Þ

where d t � nTsð Þ ¼ 1 at t ¼ nTs, and d t � nTsð Þ ¼ 0 elsewhere. fs is called the
Nyquist frequency [31]. Based on this theory, the maximum frequency in the signal
xðtÞ is fs=2.

The Nyquist frequency must be reached in signal band-limited processing.
However, with the development of information technology, the bandwidth of the
signals has been so widely expanded that many new troubles arise when dealing
with these signals in data collection, data transmission and data storage.

In addition, a lot of unimportant and redundant information is contained in the
sampled data. It costs large amounts of time to store and transmit data, in addition to
perform an increasing time in signal processing.

3.2 Compressive Sensing

The theory of compressive sensing has been developed in the field of signal pro-
cessing. It brings a new inspiration to solve problems of big data compression,
incomplete data processing and rapid detection from small samples, which is
regarded as a breakthrough of the Shannon sampling theorem. Here we give a brief
introduction about the theory. For more detail, please refer to [13, 14].

Provided that a perceptual measurement matrix A ¼ UuH satisfies the isometric
constraint conditions, u ¼ ux defines a representation of a sparse signal x as

y ¼ Au ð4Þ

where x is a N � 1 vector signal, U is a M � N measurement matrix, M�N, and
each row of U represents a sensor to measure x. u is a N � N column orthonormal
basis matrix and the superscript H denotes a conjugate transposition. A ¼ UuH is
often termed the sensing matrix to measure the transformed data u ¼ ux, y is a
M � 1 measurement vector denoting a compressive sensing of the original full data.

Because M�N, thus Eq. (4) is an under-determined problem, whose solution
can be approximately pursued as

min hk k0 s:t: y ¼ Au ¼ UuHðuxÞ ð5Þ

Owing to the sparsity promotion strategy, if x is sparse in u, u and x can be
recovered from the small observations y.
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The theory employs a sparse space u to represent the signal x and obtain a small
amount of observation data y. In this way, the signal sampling is converted into an
information sampling. Then by solving an optimization problem, the original signal
x can be recovered from compressed observed data y. With this theory, the sample
data no longer depends on the bandwidth of the signal, but on the information
structures and contents of the signal. Compressive sensing makes it possible to
solve inference problems with low sampling rates.

It also provides a new insight to condition monitoring of rotary machinery.
According to the compressive sensing theory, a signal can be represented by or
sufficiently approximated to a linear combination of predefined atoms. Then the
compression efficiency can be greatly improved and processing costs can be largely
reduced. Furthermore, for the condition monitoring of rotary machinery, fault
features extraction from small samples are as important as those from continuously
measured large samples. If we can detect the faults from only a few under-sampled
signals, i.e., overcome the limitations of the traditional Shannon sampling theorem,
then the requirements surrounding the data acquisition and post-processing can be
greatly reduced, in addition to the time costs of condition monitoring.

Generally, sparse representation, sampling schemes and solutions of underde-
termined equations are three key issues for compressive sensing technique.

3.3 Sparse Representation of a Signal

According to the compressive sensing theory, sparse representation of a signal is a
precondition to recover the original signal. In many methods for signal compres-
sion, the signal is often transformed into another domain first with orthogonal
projections. Then only samples at positions with large absolute values in the
transform domain are reserved to obtain a compressed signal. This is called sparsity
which means that a signal can be represented by a liner combination of a small
amount of elements. This signal representation theory was originally developed by
Mallat and Zhang with a complete dictionary sparse decomposition [32].

In general, a set of functions uif g can be found in Hilbert space L2ðRÞ so that
signal y can be expressed as a liner combination of N basis uif g. So,

y ¼ Ux ¼
XN
i¼1

xiui ð6Þ

where xi is the coefficients of y in dictionary U ¼ ðu1; . . .uNÞ. x and y are equiv-
alent representations of the same signal. The difference is that y is in the time
domain and x is in the dictionary U. We say that signal y is K-sparse, which means
that the xi coefficients in formula (6) has K-nonzero elements. In practice, x is
considered to be compressible if there are few large coefficients and many small
coefficients.
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Besides sparsity, the other key point of sparse representations is incoherence
which means that the basis must be obviously different [33]. The coherence
between two orthonormal matrixes /i and /j is defined as,

l /i;/j

� � ¼ ffiffiffi
n

p
max1� k; j� n /i;/j

� ��� �� ð7Þ

There are two main issues in sparse representation: how to build a redundant
dictionary and how to design a decomposition method. At present, the dictionaries
mainly include local cosine dictionary, over-complete wavelets, curvelets and
Gabor dictionary [32]. Furthermore, the decomposition methods mainly include
Matching Pursuit (MP) [34], Orthogonal Matching Pursuit (OMP) [35], Basis
pursuit (BP) [36] and FOCUSS [37].

3.4 Sampling Method

Sampling is the first step of conducting condition monitoring of rotating machinery.
Traditional sampling methods must obey the Nyquist sampling theorem to maintain
essential features of the signal so that the analysis results via Fourier transform,
wavelet transform and Hilbert transform make sense. This usually generates vast
amounts of monitoring data. The sampling frequency based on the compressive
sensing theory may be much lower while still maintaining the signal features well.

In compressive sensing theory, the measurement matrix is the key to sampling.
To ensure different sparse signals is not projected to the same M-dimensional
measurement matrix for the perfect reconstruction of sampled signal, the mea-
surement matrix must satisfy the principle of restricted isometry property (RIP) that
the measurement matrix U is noncoherent with sparse representation basis u.

RIP can be described below. There is an isometric constant constraint e 2 ð0; 1Þ,
that allows the following formula to be true for any K-sparse signal:

ð1� eÞ UWxk k22 �ð1þ eÞ xk k22 ð8Þ

Determination of the sampling method is essential to designing a measurement
matrix U that meets RIP. Gaussian random measurement matrix and Bernoulli
random measurement matrix are often employed in compressive sensing theory.
The former obeys the Nð0; 1Þ normal distribution, and the latter meets the Bernoulli
distribution. It has been proved that the Gaussian random matrix can meet RIP with
great probability. Such an irregular sampling (random sampling) method is simple
to design, and usually performs perfectly in the reconstruction of under-sampled
data. Therefore, a Gaussian random matrix is employed to conduct compression
measurement in condition monitoring and fault diagnosis of rotating machinery.
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3.5 Optimization Solving Strategy

The process of compressive measurement can be described as:

y ¼ Ux ¼ UuHuðsþ nÞ ¼ Au ð9Þ

The sparse solution can be approximately pursued as:

min uk k0 s:t: y ¼ Au ¼ UuHðuxÞ ð10Þ

However, M�N, thus Eq. (10) based on minimum l0-norm is an under-determined
problem within an uncertainty of solutions. Convex-optimum algorithm and greedy
algorithm are most common used methods to solve the above issue. Optimization
objective is replaced by l1-norm that can transform the problem into linear pro-
gramming and insure the uniqueness of the solution, which described as:

min uk k1 s:t: y ¼ Au ¼ UuHðuxÞ ð11Þ

Basis Pursuit (BP) is a typical algorithm based on l1-norm optimization. A local
optimal solution is selected to approximate the original signal in each iteration
of Greedy algorithms, which has a lower computational complexity than
convex-optimum algorithm. Matching Pursuit (MP), Orthogonal Matching Pursuit
(OMP) and their improved algorithm are typically employed in the optimization
solving.

4 Proposed Strategies and Applications

4.1 Experiments

Experiments are carried out to validate the effectiveness of the proposed method.
The test rig and the faulty roller bearings are shown in Fig. 1, which is composed of
a motor, a coupling, a rotor and a shaft with two roller bearings. Here we do the
experiments with roller bearings with single fault in the outer race, inner race and
rolling element, respectively. The fault sizes are all width of 0.7 mm and depth of
0.25 mm. Sample frequency is 100 kHz at a shaft speed of 500, 900 and 1300 rpm,
respectively. Vibration sensors are located at positions near bearings to mitigate the
effects of signal attenuation. The bearing housing is considered to be a superior
location for bearing arrangement. Vibration signals are measured by an
accelerometer located at the top of the bearing house and the theoretical values of
the fault characteristic frequency are shown in Table 1. All data using in this paper
are processed through the normalization.
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4.2 Reconstruction of Incomplete Vibration Signal

Continuous condition monitoring always leads to big data, which is a major
challenge for fault diagnosis. Inspired by the compressive sensing theory, recon-
struction from a limited samples provides a new idea for signal storage and
transmission. If the original vibration signals can be reconstructed from few sam-
ples, it enables the storage of a small amount of samples instead of the whole data
set, in addition to the reconstruction of the limited samples to obtain the raw
vibration signals when necessary. One of the key preconditions for the compressive
sensing theory is that the analyzed signal must be sparse or compressible.
Unfortunately, the vibration signals of rotary machinery are often insufficiently
sparse in the common transform domain, which presents an obstacle to the appli-
cation of compressive sensing in fault diagnosis. Here a compression and recon-
struction strategy based on compressive sensing is presented to show the potential
applications.

(a) 

(b) (c) (d)

Fig. 1 a Fault test rig of roller bearing b outer-race fault c inner-race fault d rolling-element fault

Table 1 Theoretical values of the fault characteristic frequency

Running
speed (rpm)

Fault type

Outer-race fault (Hz) Inner-race fault (Hz) Rolling-element fault (Hz)

500 33.20 56.09 39.33

900 59.76 100.97 70.8

1300 86.32 145.84 102.26

212 G. Tang et al.



Vibration signals measured from faulty bearings are always drowned out by
noise, which weakens the sparsity of the vibration signals. Thus, in this section a
sparsity-promoted approach based on segmentation threshold denoising is
developed.

As shown in Fig. 2, the original vibration signal is first divided into several
segments based on its peaks, which are the significant features in faulty vibration
signals. Then a threshold is set for denoising, through which the vibration signal
becomes sparser. Since the vibration signal becomes adequately sparse, the unit
matrix is selected as a sparse matrix, while the Gaussian random matrix is selected
as the measurement matrix to gain random observations in order to meet the
requirements of compressive sensing. Finally, the signal denoising and recovery are
obtained via implementation of a matching pursuit strategy.

A vibration signal of a roller bearing with an outer-race fault operated at
1300 rpm is shown in Fig. 3, which shows that the signal is not significantly sparse.
Thus, a sparsity-promoted method based on the segmentation threshold denoising is
used to increase the sparsity of the original signals as shown in Fig. 4. After
segmentation threshold denoising, the vibration signal becomes much sparser and

Original 
vibration signal

Divide into several 
segments

Denoising and 
sparsity-promotion

Sparse vibration signals Sparse matrix

Measurement 
matrix

Matching 
pursuit

Reconstructed 
signals

unit matrix

Gaussian 
random matrix

Fig. 2 The flowchart of the proposed compression and reconstruction strategy
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Fig. 3 Original vibration signal of a roller bearing with an outer-race fault operating at 1300 rpm
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Fig. 4 Segmentation threshold denoising: a1–a5 original segmentation, b1–b5 after segmentation
threshold denoising
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smoother as shown in Fig. 5. If the signal is sparse enough, the compressive
sensing theory can be applied to reconstruct the vibration signal. The
dimension-reduced signal with 1000 samples as presented in Fig. 6, is achieved
through random sampling. Through the application of a matching pursuit algorithm,
the original signal can be recovered as shown in Fig. 7, and the envelope spectrum
is shown in Fig. 8, through which the running status of roller bearing can be judged
according to the fault characteristic frequency.
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Fig. 5 Vibration signal after segmentation threshold denoising
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Fig. 6 Compressed sampling with 1000 random samples
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Fig. 7 Reconstructed signal by compressive sensing strategy
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4.3 Fault Classification of Rotating Machinery [25]

The compressive sensing theory has proved its capability in reconstruction,
de-noising and feature extraction of rotating machinery vibration signal.
Additionally, it can be applied to fault diagnosis and classification in the case of
partial reconstruction. Bearing signals are taken for example in this section,
introducing a rotating machine fault classification method based on dimension
reduction sampling and sparse representation.

A redundant dictionary should contain all possible types of signals that any test
signal can be described as the linear combination of the vectors in redundant
dictionary. For bearing signals, the redundant dictionary consists of the normal
signal, inner ring fault signal, outer ring fault signal and rolling elements fault
signal, a total of four signal types. E is defined as the redundant dictionary com-
posed of k categories of samples with the following configuration:

E ¼ E1;E2; � � � ;Ei; . . .;Ek½ �
¼ ½m11; . . .m1N1 ; m21; . . .; m2N2 ; . . .; mi1; . . .miNi ; mk1. . .; mkNk � 2 RM�N

ð12Þ

N ¼ N1 þN2 þN3 þ � � � þNk ð13Þ

where Ei ¼ ½mi1; mi1; . . .; miNi � 2 RM�Ni indicates the number of samples Ni of the ith
category fault.

After configuration of the redundant dictionary, the test signal sample x of ith
category can be described as the linear combination of the vectors in the redundant
dictionary,

x ¼ Eu 2 RM ð14Þ

Thus, the bearing signal x is represented as the sparse vector u ¼
½0; . . .; 0; ui1; ui2; . . .; uini ; 0; . . .; 0; �T 2 RN in the transform base E which consists of
over-complete training samples.
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Fig. 8 Envelope spectrum of the recovered signal
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Gaussian random measurement matrix R 2 RD�MðD � MÞ that contains i.i.d.
Nð0; 1Þ entries processes the bearing signal sample x and redundant dictionary E by
random mapping dimension reduction, to provide compressive observations ~y ¼ Rx
and sensing matrix eE ¼ RE.

y ¼ Rx ¼ REu ¼ eEu 2 RD ð15Þ

For each test sample x, its sparse solution a of the training set E can be obtained
through the SP algorithm. A new set of sparse vector is defined and u ¼ P

i diðuÞ,
setting zero value for all elements except those ones corresponding to the ith signal
category. Thus, the mapping feature of the test sample x in the ith category has the
following formula:

ŷi ¼ eEdiðuÞ ð16Þ

The residual error between compressive observations y and feature value ŷi is
calculated:

mini riðyÞ ¼ y� eEdiðuÞ�� ��
2 ð17Þ

The category of the test sample can be determined by the minimum residual error.
The flow chart of this sparse representation classification framework based on

compressive sensing is shown in Fig. 9.

Fig. 9 Flowchart of the sparse representation classification framework
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Each fault signal test group is 500 at three different speeds, concluding 500, 900
and 1300 rpm. Fault identification and classification accuracy of the proposed
method is presented in Table 2.

Traditional fault pattern recognition methods, such as BP neural network and
SVM methods, are usually based on the characteristic parameters of time and
frequency domains to achieve fault classification. In this section, a compressed
sensing sparse representation classification algorithm (SRC) is proposed. The
solution is a sparse vector by SP algorithm and residual error calculation of the
feature and observed values, determining the category of the test signal.
Comparison analysis is shown in Fig. 10. The SRC method demonstrates its
advantage of having a higher accuracy rate in rotating machinery fault classification
than traditional BP and SVM pattern recognition methods.

To investigate the effect of the length of original signals on the sparse classifi-
cation results, the average classification accuracy rate of the proposed SRC algo-
rithm is observed to be a gradually increased trend at different rotating speeds when
the length of each input signal is varied from 5000 to 50,000. When the signal

Table 2 Fault classification results at different rotating speeds

Category Rotating speed (r/min)

500 900 1300

Inner race fault 0.996 0.964 0.984

Outer race fault 0.948 1 1

Roller element fault 0.880 0.998 0.976

Average classification accuracy rate 0.941 0.987 0.987

Fig. 10 Classification results of SRC method in comparison with BP and SVM
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length is more than 30,000, the average recognition rate by SRC can reach 99.67%,
and more details are shown in Fig. 11.

Sparse dimension reduction parameter D is directly related to the feature
extraction and preserving of original signals, thus it is necessary to discuss the
influence of this measurement dimension D on classification accuracy rate of the
proposed SRC. Figure 12 indicates that the average classification accuracy
increases as the D ¼ 2 jðj ¼ 1; 2; . . .; 8Þ, and when D� 25 ¼ 32, the classification
accuracy of the three kinds of bearing faults can reach 98.5%.

Fig. 11 Effect of the length of signal M on average classification accuracy

Fig. 12 Influence of variable measurement dimension D on average classification accuracy
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4.4 Compressive Sensing of Bearing Fault
via Characteristic Harmonic Detection

As mentioned above, the vibration signal of a roller bearing is insufficiently sparse
in the Fourier domain to meet the requirement of compressive sensing. It is well
known that when a defect occurs in roller bearing, an impulse will be generated
when the bearing strikes another surface and periodic impulses will be generated,
termed fault characteristic frequency. The inadequate sparsity of a vibration signal
exerts a negative effect on a perfect signal reconstruction. If the gathered data is
incomplete or compressed due to some reasons, it should be recovered first before
using post-processing methods to identify the condition of roller bearing. This
makes it difficult to meet the efficiency requirement of real-time condition moni-
toring. Ideally, the fault detection would be performed with compressed samples
directly without complete recovery [26].

The sparsity of a signal is regarded as a priori information for most existing
reconstruction algorithms based on compressive sensing theory. However, in
practice, it is difficult to achieve a perfect sparse representation and obtain a specific
sparsity. Therefore, the sparsity of a signal must be estimated correctly, otherwise,
the sparsity of a signal will be an obstacle to the application of compressive sensing.

In fault diagnosis of roller bearing, the objective is to extract fault features rather
than data reconstruction. Thus, complete reconstruction of a signal is not necessary
in all cases. To our knowledge, the envelope signal of a roller bearing consists of a
variety of harmonic waves as sub-components, which are related to the fault fea-
tures. In addition, it is well known that the sparsity of a harmonic wave in the
Fourier domain has a value of 2. If we can detect these harmonic waves related to
the fault features in Fourier domain, a decision as to whether or not a fault exists in
the roller bearing can be made [26]. Based on this idea, a compressed fault detection
method for roller bearing is developed in this work and the fault detection flowchart
is presented in Fig. 13.

Here the Fourier basis is selected for sparse representation, and a Gaussian
random matrix is chosen as a measurement matrix to reduce the amount of bearing
vibration signal. Finally, the matching pursue algorithm, such as orthogonal
matching pursue (OMP), compressive sensing sampling matching pursue
(CoSaMP), is utilized to detect the harmonic wave with frequencies of interest.

The proposed detection strategy is implemented to extract the fault features with
a fault on the inner race at a shaft speed of 900 rpm. The waveform with impulses
in time domain is presented in Fig. 14. In generally, it is difficult to extract fault
characteristic frequencies from such a large number of samples. Therefore, the
proposed compressed fault detection method is applied to extract the fault features.
As mentioned above, the Gaussian random matrix is selected as a measurement
matrix while Fourier basis is chosen for sparse representation. Next, the detection
method based on CoSaMP is used to extract the fault characteristic frequency,
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where the sparsity K is set to 2. With a measurement matrix, the number of samples
could be compressed to 800 as shown in Fig. 15. The frequency of the first detected
harmonic component is 100.6 Hz, as shown in Fig. 16, which is almost equal to the
theoretical value. Furthermore, the value twice to the fault characteristic frequency
can also be determined, as shown in Fig. 17. Therefore, it could be concluded that a
fault existed on the inner race. Different dimension of 400 is utilized to fully
validated the effective of the proposed method. From the results in Figs. 18, 19 and
20, a conclusion can be drawn that the method proposed in this work can also detect
the faults with 400 observations.

Bearing vibration 
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Fig. 13 Scheme of the proposed fault detection strategy with compressive sensing of
characteristic harmonic waves
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Fig. 14 Time domain waveform of a roller bearing with a fault on the inner-race at 900 rpm
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Fig. 15 Random sampling through compressed sensing with 800 observations
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Fig. 16 Fault characteristic frequency of the first detected harmonic component from 800 samples
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Fig. 17 2 * Fault characteristic frequency of the detected harmonic wave from 800 samples
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Fig. 18 Random sampling through compressed sensing with 400 observations
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5 Conclusions

To solve the problems of big data and incomplete small samples in condition
monitoring of rotary machinery, this paper introduced a newly developed com-
pressive sensing theory to the field of rotary machinery. A threshold denoising
method is used to promote the sparsity of roller bearing and a perfect reconstruction
is achieved, which provides a new insight for signal storage and transmission.
Furthermore, a fault classification based on compressive sensing is developed in
this work without designing a classifier. Compared to other methods of classifi-
cation, the success ratio is much higher. In addition, a compressed fault detection
strategy is proposed to directly detect the fault features from limited samples, which
can increase the efficiency of fault diagnosis. Reconstruction and detection may
proceed simultaneously without complete recovery and significantly improving
detection efficiency is validated by simulations and experiments. The strategy of
compressed detection provides a new insight to condition monitoring of rotary
machinery, making it possible to largely reduce the data sets while preserving
useful information for monitoring. However, there are still lots of un-solved
problems still remain for future investigations. Improvements in elimination of
more redundant information and preservation of more useful samples will be the
focus of our future work regarding compression strategy.
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Fig. 19 Fault characteristic frequency of the first detected harmonic component from 400
samples
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Fig. 20 2 * Fault characteristic frequency of the detected harmonic wave from 400 samples
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Sparse Representation of the Transients
in Mechanical Signals

Zhongkui Zhu, Wei Fan, Gaigai Cai, Weiguo Huang
and Juanjuan Shi

Abstract This chapter focuses on the sparse representation of the transients in
mechanical signals. Sparse representation means that the signal can be represented
by an optimal linear combination of atoms by a specialized over-complete dic-
tionary, leading to the sparsity of representation coefficients. Signal sparse repre-
sentation consists of two main aspects, i.e., dictionary construction and
optimization solution. This chapter also presents the applications of sparse repre-
sentation, mainly in mechanical fault feature detection, such as fault detection of
rolling bearings, gearboxes and compound bearing faults.

1 Introduction

Traditional signal representation methods often express a signal as a linear com-
bination of orthogonal atoms which compose a complete dictionary, thus a large
number of representation coefficients are required to recover the signal because of
the characteristics of the atoms. Instead, by a specialized over-complete dictionary,
the signal can be represented by an optimal linear combination of atoms, leading to
the sparsity of representation coefficients. Sparse representation has been proven to
be one of the powerful tools in signal processing, image processing, computer
vision and pattern recognition [1–3]. Recently, much work has been done to
introduce sparse representation theory to fault feature extraction from mechanical
vibration signals [4–6].

The main purpose of fault diagnosis is to ensure the availability, reliability and
operational safety of the equipment. Fault feature extraction which allows one to
distinguish the faulty condition from the normal condition is one of the important
tasks in fault diagnosis. When there’s a defect occurring on the rotating elements
(e.g. gear or bearings), it will interact with another element and then produce a
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series of impulses in the vibration signal. Under constant speed operating condition,
the vibration responses compose of periodic impulses. These transients display
similarly in terms of waveform morphology in the time domain, thus have sparse
features. Due to such transient and sparse properties, the fault feature extraction task
can be transferred to the task of fault feature sparse representation.

Signal sparse representation consists of two main aspects, i.e., dictionary con-
struction and optimization solution. With a suitably constructed dictionary, few
atoms in the dictionary can be merged to represent the fault features effectively,
while ineffective in representing the noise. Thus, a sparse representation of the fault
features can be obtained, and the background noise can be removed at the same
time. Moreover, with an efficient algorithm, the representation coefficients can be
easily obtained.

This chapter will present an overview of the sparse representation theory.
Moreover it will introduce how to deal with the two main aspects of sparse rep-
resentation for the mechanical vibration signal processing. The application of sparse
representation in mechanical fault feature detection will also be explored in this
chapter, such as fault detection of rolling bearings, gearboxes and compound
bearing faults.

2 Sparse Representation Theory

2.1 Sparse Representation Model

Consider a matrix A 2 RN�M with N\M whose columns are the atoms aif gMi¼1,
there are N linear independent vectors in this matrix. The matrix A spans an N-
dimension Hilbert space. Suppose the measured fault vibration signal can be written
as

yðtÞ ¼ xðtÞþ nðtÞ ð1Þ

where yðtÞ is the measured vibration signal, xðtÞ is the fault-induced signal com-
ponent without noise and nðtÞ is the noise. Equation (1) can also be written as

y ¼ xþ n ð2Þ

x can be represented with an over-complete matrix A as

x ¼
XM
i¼1

ciai ð3Þ

or more compactly x ¼ Ac, where c is an M � 1 column vector of representation
coefficients. If c is not in the span of the columns of A, Eq. (3) has no solution;
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otherwise, this equation has infinite number of solutions, with the general solution
having l free parameters, where l is the difference between the number of variables
and the rank.

Among the general solutions, some may perform better than others. In order to
narrow this choice to a well-defined solution, additional criteria are needed [7].
Traditional way to achieve this is to employ the regularization JðcÞ. Define the
general optimization problem:

min
c

JðcÞ s:t: Ac ¼ x ð4Þ

There are many possible choices for the objective function JðcÞ, from which the
well-known choice is the �k kp, which denotes the lp-norm

ck kp¼
X

i
cij jp

� �1
p ð5Þ

Let p ! 0 of the lp-norm, the l0-norm can be denoted as

ck k0¼ lim
p!0

X
i

cij jp
 !1

p

ð6Þ

In reality, engineers also use the definition of l0-norm below instead

ck k0¼ # i:ci 6¼ 0f g ð7Þ

which represents the total number of non-zero elements in a vector. In such
underdetermined linear systems of Eq. (3), the aim is to find a sparsest coefficient
vector c to “explain” the signal x. The sparsest solution means the solution which
has the fewest non-zero elements, i.e. the lowest l0-norm, thus leading to the
following equation

min
c

ck k0 s:t: Ac ¼ x ð8Þ

Considering the noise component in the measured signal y, Eq. (8) can be
written as

min
c

ck k0 s:t: Ac� yk k22 � e ð9Þ

Equation (9) is the sparse representation model.
After the construction of the representation model, two main aspects should be

taken into consideration: (a) how to construct a suitable dictionary A to ensure the
sparsity of the coefficient vector c; (b) how to solve the model to obtain the sparse
representation vector. These two problems will be elaborated in the following.
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2.2 Construction of the Over-Complete Dictionary

Signal representation can be considered as a way to observe and learn the features
of the signal from different aspects. Signal processing techniques commonly require
more meaningful representations which can capture the useful characteristics of the
signal [8]. The measured signal can be sparsely represented over a dictionary,
which means few atoms in the dictionary can be merged to form the signal, indi-
cating that only few coefficients are involved to seize the concerned information.
Therefore, it is vital to develop a well-constructed dictionary so that a sparse
representation of the signal features can be led. To achieve a proper dictionary, an
over-complete dictionary has been established and commonly used.

(a) Gabor dictionary

Gabor atoms are proposed by Dennis Gabor in which a family of functions is built
from translations and modulations of a generating function. The Gabor atom is
defined as

gcðtÞ ¼ 1ffiffi
s

p gðt � u
s

Þejnt ð10Þ

where gðtÞ ¼ e�pt2 is the Gaussian window function, c ¼ ðs; u; nÞ are the param-
eters of the atom, s is the scaling factor, u is the translation factor, n is the frequency
factor. The function gcðtÞ is centered at u and its energy is mostly concentrated in a
neighborhood of u whose size is proportional to s.

Due to the good time-frequency resolution, the Gabor dictionary has been
commonly used to analyze the EEG signal [9], audio signal [10] and so on.
However, since the atoms of Gabor dictionary are frequency-fixed and divide the
time-frequency plane by rectangular grid, it is weak in analyzing signals with
frequency-converted components.

(b) Chirplet dictionary

A Chirplet atom, which is built from the unit Gaussian window by dilation,
translation, frequency and chirp modulation, is defined as

gcðtÞ ¼ 1ffiffiffi
r

p g
t � u
r

� �
exp j2p 1þ r � t � u

r

� �h i
� fc � t � u

r

� �n o
ð11Þ

Equation (11) can also be written as

gcðtÞ ¼ 1ffiffiffi
r

p g
t � u
r

� �
exp j2p fc � t � u

r

� �
þ 1

2
n � t � u

r

� �2� �� �
ð12Þ

where n ¼ 2rfc is the linear Chirp rate, c ¼ r; u; n; cð Þ is the atom parameters set, r
is the scale operator which controls the width of the function, u is the time center of
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the Chirplet function, n is the frequency-variant factor, fc is the frequency center of
the Chirplet function.

Different parameter values denote different Chirplet functions, which compose
the Chirplet dictionary. As its frequency can change linearly, the Chirplet dictionary
are more likely to be used to describe the signal whose frequency linearly varies
with the time, such as the radar signal and the sonar signal [11]. However, when
dealing with the time varying components, Chirplet becomes less effective and even
inaccurate.

(c) FMmlet dictionary

To characterize both the signal’s time-invariant and time-varying spectral contents,
the dilated and translated windowed exponential frequency modulated functions
(FMmlet) is proposed by Zou et al. [12]. The FMmlet atom is defined as

gcðtÞ ¼ 1ffiffiffi
r

p g
t � u
r

� �
exp j2p 1þ r

t � u
r

� �h im
fc

t � u
r

� �n o
ð13Þ

The atom is expressed by the following five parameters: scaling operator r,
time-center u, frequency center fc, chirp rate r, and FM exponent m.

The FMmlet dictionary is more flexible when dealing with the signal whose
spectral contents vary nonlinearly with respect to time; therefor it has been used to
process earthquake signal [13], ECG signal [14].

2.3 Solution to Sparse Representation Model

After constructing a suitable dictionary, the next important task is to develop a
reliable and efficient algorithm to solve the sparse representation model. It is tough
to find a straightforward approach to solve Eq. (9). A number of methods have been
developed to solve such an equation in recent years. These methods can be clas-
sified into two main categories: the greedy algorithms and the convex relaxation
techniques. The greedy algorithms include matching pursuit (MP) [15], orthogonal
matching pursuit (OMP) [16], regularized orthogonal matching pursuit (ROMP)
[17], etc., and the convex relaxation techniques include basis pursuit (BP) [18],
basis pursuit denoising (BPD) [19], etc. In the following, we put an emphasis on the
MP and BPD algorithm introduction.

(a) Matching pursuit

Originated from Ref. [15], matching pursuit algorithm uses a greedy heuristic to
iteratively construct a best decomposition of the original signal. The basic idea of
matching pursuit algorithm is that it attempts to represent a signal x from Hilbert
space as a weighted sum of atoms /ci taken from an over-complete dictionary /,
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x ¼
Xm
i¼1

aci/ci þ rm ð14Þ

where a is the weighting factor for each atom, c is the parameter of each atom, rm is
the residual signal. rm can be obtained by

ri ¼ ri�1 � aci/ci ð15Þ

when i ¼ 1, r0 ¼ x, the weighting factor a ¼ ri�1;/ci

	 

is the inner product of the

residual signal and the atom.
Given the fixed over-complete dictionary, the matching pursuit algorithm first

finds the atom which has the biggest inner product with the signal, then subtracts
the contribution made by that atom from the residual, and repeats the process until
the stopping criterion is satisfied. The procedures of matching pursuit are illustrated
in Table 1.

(b) Basis pursuit denoising

Naturally, l0-norm is used to measure the sparsity of the representation coefficients.
However, l0-norm minimization is a nondeterministic polynomial (NP) problem
due to its nature of combinational optimization, which is too complex to solve. By
replacing the l0-norm in Eq. (9) with the l1-norm, an approximate solution can be
attained as follows

min
c

ck k1 subject to Ac� yk k22 � e ð16Þ

where �k k1 is the l1-norm defined as ck k1¼
P

i cij j. The basis pursuit denoising can
be defined using such an Eq. (16). Donoho [19] has proven that under certain
conditions, i.e., the solution is sparse enough, the solution to Eq. (16) is equivalent
to the Eq. (9).

Table 1 Procedures of matching pursuit algorithm

a. Input: Dictionary / and signal x
b. Initialization: Iterative parameter i ¼ 1, redisual r0 ¼ x and accuracy requirement e

c. Calculation: Select the optimal atom /ci by maximizing ri�1;/ci

D E2
Compute weighting factor a ¼ ri�1;/ci

D E
Obtain residual ri ¼ ri�1 � aci/ci

d. Stopping rule: If rik k2\e, stop. Otherwise, go to step c

e. Output: Coefficients aci after i iterations
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Equation (16) can also be written as a more general version

JðcÞ ¼ argmin
c

1
2

y� Ack k22 þ k ck k1
� �

ð17Þ

where �k k22 is the l2-norm defined as ck k22¼
P

i cij j2, k is a scalar regularization
parameter which balances the tradeoff between the reconstruction error and the
sparsity.

There are two terms in the right side of Eq. (17): the data fidelity term y� Ack k22
and the penalty term ck k1. To solve Eq. (17), one can optimize either the data
fidelity term or the penalty term. The detailed optimization method will be intro-
duced in Sect. 3.

3 Over-Complete Wavelet Basis Dictionary

3.1 General Over-Complete Wavelet Basis Dictionary

The key point of mechanical fault feature extraction is to construct an appropriate
over-complete wavelet basis dictionary. As is well known, the more similarity
between the wavelet basis and the fault signal, the sparser the representation
coefficients are. According to the experience, the choice of wavelet basis may vary
from one to another. Generally, the single-side wavelet is often used to construct the
basis matrix for bearing fault signature extraction [20]; the double-side wavelets are
usually used for faulty gear vibration signal processing [21]; and chirp signal is
often used for radar signal analysis [22], etc. From the literature, the most widely
used wavelet basis for mechanical fault feature extraction are more likely to be
Laplace wavelet and the Morlet wavelet, which are introduced in detail in the
following.

(a) Laplace wavelet basis

The Laplace wavelet is a complex, analytic, single-sided damped exponential
wavelet. It is firstly constructed by Strang G in 1996 [23]. Since its waveform is
similar to the vibration impulse caused by bearing faults, Laplace wavelet is usually
selected to construct the over-complete dictionary for bearing fault detection. As
one of the most popular non-orthogonal wavelets, the real field of the Laplace
wavelet is defined as

w f ; f; s; tð Þ ¼ wc tð Þ ¼ Ae
�fffiffiffiffiffiffi
1�f2

p 2pf t�sð Þ
sin 2pf t � sð Þ t 2 s; sþWs½ �

0 else

(
ð18Þ
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where the parameter vector c ¼ f ; f; sð Þ determines the wavelet properties. These
parameters f ; f; sð Þ denote frequency f 2 Rþ , damping ratio f 2 ½0; 1Þ � R2, and
time index s 2 R, respectively. The coefficient A is an arbitrary scaling factor used
to scale each wavelet to unity norm. The range Ws ensures that the wavelet is
compactly supported and has nonzero finite length, but the parameter Ws is gen-
erally not explicitly expressed.

(b) Morlet wavelet basis

Morlet wavelet is one of the most popular non-orthogonal wavelets, defined in the
time domain as a harmonic wave multiplied by a Gaussian time domain window

w tð Þ ¼ exp � b2t2

2

� �
cos ptð Þ ð19Þ

It is a cosine signal that decays exponentially on both the left and right sides,
which makes it very similar to an impulse caused by the gear localized defects at a
constant speed in terms of shape. Therefore, Morlet wavelet is often selected to
build the over-complete dictionary when extracting the gear fault feature. In order
to reduce the complexity, the parametric formulation of Morlet wavelet is given

w f ; f; s; tð Þ ¼ wc tð Þ ¼ Ae
�fffiffiffiffiffiffi
1�f2

p ½2pf t�sð Þ�2
cos 2pf t � sð Þ ð20Þ

where the parameter vector c ¼ f ; f; sð Þ also determines the wavelet properties.
These parameters f ; f; sð Þ denote frequency f 2 Rþ , damping ratio f 2 0; 1½ Þ
� Rþ , and time index s 2 R, respectively. The parameter A is used to normalize
the wavelet function.

Setting the discrete parameters f , f and s as the subsets of F, Z and Tc respec-
tively, there is

F¼ f1; f2; . . .; fif g � R

Z ¼ f1; f2; . . .; fj
 � � Rþ \ 0; 1½ Þ

Tc ¼ s1; s2; . . .; skf g � R

ð21Þ

With different parameters, dictionary can be constructed using the following
equation

W ¼ wc tð Þ: c 2 F � Z � Tc
 � ¼ w f ; f; s; tð Þ: f 2 F; f 2 Z; s 2 Tcf g ð22Þ

Each item in the dictionary is called an atom. In this way, the over-complete
dictionary has been constructed systematically.
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3.2 Correlation Filtering

If the suitable wavelet basis (Laplace wavelet, Morlet wavelet or others) is already
chosen, correlation filtering is applied to identify the optimal wavelet atom with the
optimal set of parameters �f ;�f;�s

� �
, which is most similar to the transient impulses

caused by a localized fault.
Correlation, measured by inner product operation, is defined to quantify the

degree of similarity between the wavelet basis and the original signal. The corre-
lation function cc is defined to calculate the correlation degree between the basis
wc tð Þ and the original signal x tð Þ

cc ¼ cos h ¼ wc tð Þ; x tð Þ	 
�� ��
wc tð Þ�� ��2 x tð Þk k2

ð23Þ

where h is the angle between wc tð Þ and x tð Þ. The smaller the angle is, the more
similar the basis wc tð Þ and the original signal is. Therefore, the optimal wavelet

atom with optimal parameters �f ;�f;�s
� �

can be obtained by maximizing the corre-
lation function cc at each time value from the constructed Laplace wavelet or Morlet
wavelet dictionary. Peaks of cc for a given time value s can be represented as

kr sð Þ ¼ max
f2F;f2Z

cc ¼ c �f ;�f; s
� � ð24Þ

and the time index parameter �s can be calculated by maximizing the coefficient
kr sð Þ. With correlation filtering, the optimal parameters �f ;�f;�s

� �
found effectively,

the optimal wavelet atom with these parameters can be constructed.

4 Solution to Representation Coefficients Based on BPDN

4.1 Data Fidelity Optimization

To represent the fault transients by sparse coefficients, the Basis Pursuit Denoising
defined by Eq. (17) should be solved. Only after the minimization of objective
function in Eq. (17), a sparse representation vector c can be obtained. To minimize
J(c), an iterative algorithm is introduced. The traditional gradient descent methods,
such as iterative shrinkage/thresholding algorithm (ISTA) [24], fast IST algorithm
(FISTA) [25] and so on, have the drawback of slow convergence. In order to
improve the speed of convergence, Manya has proposed a novel technique termed
the split augmented Lagrangian shrinkage algorithm (SALSA) using the Hessian of
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the data fidelity term [26]. The algorithm updates the vector c until the optimal
solution ĉ is gained, so as to minimize the objective function J(c).

Considering the unconstrained optimization problem in which the objective
function is the summation of two functions, the Eq. (17) can be written as

min
c

f1 cð Þþ f2 cð Þf g ð25Þ

where f1 cð Þ ¼ 1
2 y� Ack k22, f2 cð Þ ¼ k ck k1. Then variable splitting is introduced to

create a new variable denoted by u, to serve as the augment of f1, under the
constraint that u = c. This leads to the constrained problem

min
u;c

f1 uð Þþ f2ðcÞf g s:t: u ¼ c ð26Þ

which is obviously equivalent to the unconstrained problem in Eq. (25). This
problem can be represented as the so-called augmented Lagrangian problem

min
z

E zð Þ s:t: Hz� b ¼ 0 ð27Þ

where E zð Þ ¼ f1 uð Þþ f2 cð Þ, z ¼ u

c

" #
, b ¼ 0, H ¼ ½I � I�. The augmented

Lagrangian function for this problem is defined as

L z; k; lð Þ ¼ E zð Þþ kTðHz� bÞþ l
2

Hz� bk k22 ð28Þ

where k is a vector of Lagrange multipliers and l� 0 is the penalty parameter. The
augmented Lagrangian method (ALM) is used to minimize the objective function
L z; k; lð Þ, the following results can be obtained

zðkþ 1Þ ¼ argmin
z

E zð Þþ l
2

Hz� d kð Þ
��� ���2

2

� �
ð29Þ

d kþ 1ð Þ ¼ dðkÞ � ðHzðkþ 1Þ � bÞ ð30Þ

where k is the iteration counter. Considering the concrete forms of the function E(z),
matrix H and the vector b, novel results can be written as

uðkþ 1Þ ¼ argmin
u

f1 uð Þþ l
2

u� c kð Þ � d kð Þ
��� ���2

2

� �

¼ argmin
u

1
2

y� Auk k22 þ
l
2

u� c kð Þ � d kð Þ
��� ���2

2

� �
ð31Þ
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cðkþ 1Þ ¼ argmin
c

f2 cð Þþ l
2

u kþ 1ð Þ � c� d kð Þ
��� ���2

2

� �

¼ argmin
c

k ck k1 þ
l
2

u kþ 1ð Þ � c� d kð Þ
��� ���2

2

� �
ð32Þ

d kþ 1ð Þ ¼ dðkÞ � ðuðkþ 1Þ � c kþ 1ð ÞÞ ð33Þ

Equation (31) is a strictly convex quadratic function to be minimized, which
leads to the solution u(k+1) directly, and the soft threshold facilitates the mini-
mization of Eq. (32), after which the iteration procedure of SALSA can be listed as

u kþ 1ð Þ ¼ AHAþ lI
� ��1

AHyþ lðck þ dkÞ� � ð34Þ

c kþ 1ð Þ ¼ soft u kþ 1ð Þ � dk;
k
l

� �
ð35Þ

d kþ 1ð Þ ¼ d kð Þ � u kþ 1ð Þ þ c kþ 1ð Þ ð36Þ

By the iterative numerical algorithm SALSA, the optimal sparse solution ĉ can
be obtained eventually. With the sparse solution ĉ, the reconstructed x̂ can be
represented as x̂ ¼ Aĉ. There are successive periodic non-zero coefficients in ĉ,
which represents the transients in the original signal.

4.2 Penalty Optimization

Unlike SALSA, Majorization Minimization (MM) algorithm mainly focuses on the
penalty optimization to solve the Eq. (17). Based on non-quadratic majorization,
the MM algorithm utilizes a sequence of simpler convex optimization problems to
replace the original ill-posed inverse problems and yet is an effective and a widely
applicable method [27].

The function J(c) can be easily minimized suppose it is quadratic. The MM
algorithm utilizes this characteristic by solving a series of simpler minimization
problems

ckþ 1 ¼ argmin
c

Gk cð Þ ð37Þ

where k is the iteration counter, k = 1, 2, 3, …. The MM algorithm requires that
each function Gk cð Þ should be a majorizer (upper bound) of J(c) and it coincides
with J(c) at c ¼ ck. That is
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8c;Gk cð Þ� J cð Þ
Gk ckð Þ ¼ J ckð Þ ð38Þ

The majorizer should be chosen so as to be easier to minimize. Considering the
data fidelity term in the cost function (17) is strictly quadratic, we simply need to
majorize the penalty term.

We mark the penalty ck k1 as W cð Þ, term cj j as / cð Þ. Hence,
Y cð Þ ¼PN

n¼1 c nð Þj j ¼PN
n¼1 f c nð Þð Þ . / cð Þ is an absolute value function and thus is

non-differentiable and non-strictly convex, which makes the Eq. (17) difficult to
solve. According to the MM algorithm shown in Eq. (38), a quadratic function g cð Þ
can be found to majorize / cð Þ of the general form

g cð Þ ¼ mc2 þ ncþ b ð39Þ

where the parameters m, n and b are constants, the majorizer g cð Þ should be the
upper bound for / cð Þ that coincides with / cð Þ at a specified point ck. For this
quadratic majorizer, conditions in Eq. (38) are equivalent to

g ckð Þ ¼ / ckð Þ
g0 ckð Þ ¼ /0 ckð Þ ð40Þ

Solving for m and b gives m ¼ /0 ckð Þ=2ckð Þ � n=2ckð Þ, b ¼
/ ckð Þ � ck=2ð Þ/0 ckð Þ � n=2ð Þck, thus leading to the majorizer g cð Þ in Eq. (39)
given by

g cð Þ ¼ /0 ckð Þ
2ck

� n
2ck

� �
c2 þ ncþ / ckð Þ � ck

2
/0 ckð Þ � n

2
ck

� �
ð41Þ

Considering a special condition of function g cð Þ, we set the unknown parameter
n = 0; then the parameter m and b become m ¼ /0 ckð Þ=2ckð Þ,
b ¼ / ckð Þ � ck=2ð Þ/0 ckð Þ, thus g cð Þ turns out to be:

g cð Þ ¼ /0 ckð Þ
2ck

c2 þ/ ckð Þ � ck
2
/0 ckð Þ ð42Þ

Taking the concrete form of / cð Þ into consideration, the function g cð Þ can be
written in a matrix format as:

Gk cð Þ ¼ 1
2

y� Ack k22 þ k
1
2
c	K�1

k cþ 1
2

ckk k1
� �

ð43Þ

where Kk denotes the diagonal matrix with vector ckj j along its diagonal. Then, the
MM updates (37) for ck as:
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ckþ 1 ¼ argmin
c

1
2

y� Ack k22 þ k
1
2
c	K�1

k cþ 1
2

ckk k1
� �� �

ð44Þ

The last term in Eq. (44) can be omitted because it does not depend on c; thus a
new update equation also called cost function is transformed into:

ckþ 1 ¼ argmin
c

1
2

y� Ack k22 þ
k
2
c	K�1

k c ð45Þ

Equation (45) is quadratic in terms of c, so the solution to this problem can be
written explicitly using linear algebra as:

ckþ 1 ¼ A	Aþ kK�1
k

� ��1
A	y ð46Þ

Taking the sparsity of c into consideration, the elements of K�1
k would go

towards infinity with the iterative procedure going on. To avoid this problem, the
matrix inverse lemma is introduced. After that, the update equation can be
expressed as:

ckþ 1 ¼ 1
k
Kk A	y� A	 AKkA

	 þ kIð Þ�1AKkA
	y

h i
ð47Þ

By the iterative procedure in Eq. (47) of MM algorithm, the optimal sparse
solution ĉ, which is used to represent the fault feature, can be found. With the sparse
solution ĉ, the reconstructed signal can be represented as x̂ ¼ Aĉ.

5 Applications

5.1 Application in Gearbox Transient Feature Extraction

To verify the effectiveness of the proposed methods for the gearbox fault diagnosis,
the experimental data were acquired from an automobile transmission gearbox
which has five forward speeds and one backward speed. The structure of the
gearbox is shown in Fig. 1. During the test, a broken-tooth fault occurred on the
driving gear of the third speed. The vibration signal was acquired by an
accelerometer mounted on the outer case of the gearbox when it was loaded with
the third speed gearbox.

For a gear transmission, the meshing frequency fm is calculated by

fm ¼ nz
60i

ð48Þ
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where z is the number of the gear teeth, n is the rotating speed of the input shaft in
rpm, and i is the transmission ratio. In this test, n was set as 1600 ± 16 rpm,
generally we use 1600 rpm as the speed of the input shaft. Then the meshing
frequency of the third speed is calculated to be 500 Hz. The sampling frequency
was set as 3000 Hz. The working parameters are shown in Table 2.

(a) Sparsity-based fault feature extraction by optimizing data fidelity term

A measured vibration signal with a length of 900 samples and its Fourier spectrum
are shown in Fig. 2a, b. The fault feature of the gearbox vibration signal cannot be
identified from Fig. 2a. From Fig. 2b, the main frequency component can be
identified as 500 Hz, which is in fact the meshing frequency.

Considering the Morlet wavelet is similar to the impulse caused by the gear
localized defect, it is selected as the atom to construct the over-complete dictionary.
After constructing the dictionary, the sparse representation model can be estab-
lished. Then the SALSA algorithm can be applied to solve the sparse representation
model. Figure 3 presents the analysis result of the vibration signal obtained by the
proposed method. Figure 3a displays the optimal wavelet atom based on correlation
filtering. The related parameters are �f ¼ 272 Hz, �f ¼ 0:0074 and �s ¼ 0:0633 s. The
first N elements of the representation coefficient vector ĉ are given in Fig. 3b. 3r is
used as the threshold to filter away the small values to extract the principle com-
ponents, and then the final estimated vector ĉ0 is illustrated in Fig. 3c. The cyclic
period T̂ ¼ 50:00 ms can be easily identified in Fig. 3c, which is consistent with
the theoretical value T ¼ 50:00 ms. The impulse time can also be identified from
Fig. 3c. The parameter values used in this case are listed in Table 3.
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Fifth
speed

25 13 4218

28 26322724

32
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Input
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Reverse
speed

(a) (b)

Fig. 1 The automobile transmission gearbox: a the structure of gearbox; and b gearbox setup

Table 2 Working parameters of the third speed gears

Number
of teeth

Rotating
period (ms)

Rotating
frequency (Hz)

Meshing
frequency (Hz)

Driving gear 25 50.00 20 500

Driven gear 27 54.00 18.5
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Fig. 2 a The measured vibration signal and b its Fourier spectrum
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Fig. 3 The representation results of the vibration signal by optimizing the data fidelity term: a the
optimal wavelet atom; b the representation coefficients; c the filtered sparse coefficients; and d the
meshing period
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The removed small coefficients representing the meshing frequency are shown in
Fig. 3d. The meshing period T0 ¼ 0:002 s can be observed in Fig. 3d, indicating
that the meshing frequency is 500 Hz. This is consistent with the theoretical
meshing frequency 500 Hz. As a result, it is proved that the proposed method is
effective in identifying the impulse occurrence time and the period parameter.

A comparison between the reconstructed impulse responses and the original
signal is presented in Fig. 4. The interval period between the transients is consistent
with the rotating period of the third speed gears. Hence, it indicates that there is a
localized fault in the third speed gear of the gearbox. After overhaul, it has been
found that the driving gear of the third speed is broken.

(b) Sparsity-based fault feature extraction by optimizing penalty term

Another vibration signal was measured on the same gearbox with a length of 900
and its frequency spectrum is shown in Fig. 5a, b. From Fig. 5a, the impulse period
cannot be identified because of the noise corruption; from Fig. 5b, the frequency of
the main component can be identified as 500 Hz.

Firstly, the optimal Morlet wavelet atom is obtained by using the correlation
filtering to construct the over-complete dictionary. The sparse representation model
can subsequently be built. Then the MM algorithm is applied to solve the sparse
representation model by optimizing the penalty term. The associated parameters of
the optimal wavelet atom are �f ¼ 272 Hz, �f ¼ 0:0074 and �s ¼ 0:0633 s. Figure 6a,

Table 3 Conclusion of all parameters of transient components in the vibration signal of faulty
gearbox

Parameters of
wavelet basis

�f ¼ 272 Hz �f ¼ 0:0074

Impulse time (ms) 12.333 64.333 110.333 166.670 212.670 262.670

Period parameter (ms) 50.00
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Fig. 4 The comparison between a the original vibration signal and b the reconstructed signal
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obtained by the proposed method, shows the sparse coefficients, which represents a
series of periodic impulses. The average time period of these impulses is around
0.0505 s, which is very close to the theoretical value 0.050 s. Figure 6b illustrates
the reconstructed signal, whose periodical features represent the localized fault
existing in the driving gear of the third speed. The analysis results demonstrate that
the proposed transient sparse representation method can extract the transients and
reduce the noise effectively, thus the machinery condition can be identified.
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Fig. 6 The analysis results of vibration signal by optimizing the penalty term: a sparse
coefficients; and b the reconstructed signal
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Fig. 5 a The measured gearbox defective vibration signal; and b its Fourier spectrum
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5.2 Application in Bearing Transient Feature Extraction

To verify the effectiveness of the proposed method for bearing fault diagnosis, the
experimental data were acquired from a test rig, which is shown in Fig. 7. The
vibration signal is measured from a rotating machine test rig with the sampling
frequency 51.2 kHz. The test rig consists of a driving motor and a shaft, which is
driven by the motor and supported by two bearing blocks. The bearing used in this
test is NJ208 (TMB) cylindrical roller bearing. Details of the geometry and fault
frequencies of this type of bearings can be found in Table 4. In this test, the fault
frequency of the outer race, the inner race and the rolling element are 142.8 Hz
(7.003 ms), 206.3 Hz (4.847 ms) and 132.6 Hz (7.541 ms), respectively, when the
shaft rotates at 1496 RPM.

(c) Sparsity-based fault feature extraction by optimizing data fidelity term

The measured outer race fault vibration signal with 4096 samples and its Fourier
spectrum are shown in Fig. 8a, b. The fault feature cannot be seen from Fig. 8.
Considering the Laplace wavelet is morphologically similar to the impulse caused
by the localized defect in rolling bearing, it is selected as the atom to construct the
over-complete dictionary. The sparse representation model can then be founded. To
solving the sparse representation model, the analysis results in Fig. 9 can be

Table 4 The geometry and
fault frequencies of bearings

Rotating speed of motor (rpm) 1496

Number of rolling elements 14

Inside diameter (mm) 40

Outside diameter (mm) 80

Pitch diameter (mm) 60.5

Roller diameter (mm) 11

Contact angle 0

Fig. 7 Rotating machine test rig
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obtained by applying the SALSA algorithm. Figure 9a shows the optimal wavelet
atom by using correlation filtering. The related parameters are �f ¼ 3024 Hz,
�f ¼ 0:0890, �s ¼ 0:0159 s. The first N elements of the representation coefficient
vector ĉ are given in Fig. 9b. The cyclic period T̂ ¼ 7:01 ms can be identified in
Fig. 9c, which is consistent with the theoretical value T ¼ 7:00 ms. The occurrence
time of impulse can also be identified in Fig. 9c.

The measured inner race fault vibration signal and its Fourier spectrum are
shown in Fig. 10a, b. The fault feature cannot be identified from Fig. 10.

Figure 11 exhibits the analysis result of the inner race vibration signal obtained
by the proposed method. The optimal wavelet atom obtained by using correlation
filtering is shown in Fig. 11a. The related parameters are �f ¼ 6402 Hz, �f ¼ 0:1400,
�s ¼ 0:0467 s. The first N elements of the representation coefficient vector ĉ are
presented in Fig. 11b. The cyclic period T̂ ¼ 4:85 ms can be clearly identified in
Fig. 11c, which is consistent with the theoretical value T ¼ 4:85 ms.

The measured rolling element fault vibration signal and its Fourier spectrum are
shown in Fig. 12a, b.

Figure 13 gives the analysis result of the rolling element vibration signal
obtained by the proposed method. The optimal wavelet atom obtained by using
correlation filtering is shown in Fig. 13a. The related parameters are �f ¼ 3024 Hz,
�f ¼ 0:089, �s ¼ 0:0159 s. The first N elements of the representation coefficient
vector ĉ are displayed in Fig. 13b. The cyclic period T̂ ¼ 7:47 ms can be identified
in Fig. 13c, which is consistent with the theoretical value T ¼ 7:54 ms.
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Fig. 8 The measured outer race fault vibration signal. a Vibration signal, and b Fourier spectrum
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Fig. 10 The measured inner race fault vibration signal. a Vibration signal, and b Fourier spectrum
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Fig. 9 The analysis results of the outer race fault vibration signal by optimizing the data fidelity
term. a Optimal Laplace wavelet atom; b sparse representation coefficients, and c reconstructed
signal
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Fig. 11 The analysis results of the inner race fault vibration signal by optimizing the data fidelity
term. a Optimal Laplace wavelet atom, b sparse representation coefficients, c reconstructed signal
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Fig. 12 The measured rolling element fault vibration signal: a vibration signal, and b Fourier
spectrum
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Fig. 13 The analysis results of the rolling element fault vibration signal by optimizing the data
fidelity term: a Optimal Laplace wavelet atom, b sparse representation coefficients, and c recon-
structed signal
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Fig. 14 The measured outer race fault vibration signal: a vibration signal, and b Fourier spectrum
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(d) Sparsity-based fault feature extraction by optimizing penalty term

Another group of fault signals with a length of 5120 samples is also measured from
the same test rig as Fig. 7. The over-complete dictionary is constructed using the
Laplace wavelet, from which a signal sparse representation model can be estab-
lished. Then the MM algorithm is applied to solve the model to obtain the repre-
sentation coefficients. The measured outer race fault vibration signal and its Fourier
spectrum are shown in Fig. 14a, b. No information related to bearing defects can be
recognized.

Figure 15 gives the analysis result of the vibration signal obtained by the pro-
posed method. The representation coefficient vector ĉ is given in Fig. 15a, in which
the cyclic period T̂ ¼ 7:02 ms can be discerned. The reconstructed signal is shown
in Fig. 15b.

The measured inner race fault vibration signal and its Fourier spectrum are
shown in Fig. 16a, b, which cannot easily determine the bearing health condition.

Figure 17 shows the analysis result of the vibration signal obtained by the
proposed method. The representation coefficient vector ĉ is given in Fig. 17a, in
which the cyclic period T̂ ¼ 4:84 ms can be discerned. The reconstructed signal is
shown in Fig. 17b, yielding the easily-observed impulses.

The measured rolling element fault vibration signal and its Fourier spectrum are
shown in Fig. 18a, b. No frequency information associated with rolling elements
can be recognized in Fig. 18b.
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Fig. 15 The analysis results of the outer race fault vibration signal by optimizing penalty term:
a sparse representation coefficients, and b reconstructed signal
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Figure 19 exhibits the analysis result of the vibration signal obtained by the
proposed method. The representation coefficient vector ĉ is shown in Fig. 19a,
where the cyclic period T̂ ¼ 7:51 ms can be identified. The reconstructed signal
shown in Fig. 19b clearly shows the cyclic impulses generated by rolling element
defect.

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

-10

0

10

2000 3000 4000 5000 6000 7000 8000 9000 10000
0

200

400

600

Time (s)

Frequency (Hz)

A
m

pl
itu

de
 

(m
/s

2 )
A

m
pl

itu
de

 
(m

/s
2 )

(a)

(b)

Fig. 16 The measured inner race fault vibration signal: a vibration signal, and b Fourier spectrum
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Fig. 17 The analysis results of the inner race fault vibration signal by optimizing penalty term:
a sparse representation coefficients, and b reconstructed signal
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5.3 Application in Compound Fault Feature Extraction

Apart from single fault detection of rotating machinery, compound fault diagnosis
also has been gaining more attention in recent years. Taking the compound fault in
the gearbox as an example, this section applies the sparse representation method to
separating and extracting the compound fault features of gearbox.
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Fig. 18 The measured rolling element fault vibration signal: a vibration signal, and b Fourier
spectrum
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Fig. 19 The analysis results of the rolling element fault vibration signal by optimizing penalty
term: a sparse representation coefficients, and b reconstructed signal
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The test rig, which is a single stage transmission gearbox in a test-bed, is shown
in Fig. 20. There are both bearing and gear faults in the gearbox, which is shown in
Fig. 21, respectively. The faulty gear is a helical, whose parameters are listed in
Table 5. The bearing model in the experiment is 30,205, taper roller bearing, and its
geometric parameters are listed in Table 6. With the known parameters, the theo-
retical fault feature frequency of the bearing can be calculated as 176.18 Hz.

The measured vibration signal with compound faults is shown in Fig. 22, from
which the characteristics of each fault cannot be identified clearly. Thus, the sparse
representation method is applied to extracting the fault features one by one. In terms
of the sequence of the compound fault feature extraction, we take the influence of
propagation path of signals into consideration. As the sensor is placed on the
bearing end cover, which is closer to the faulty bearing, it is desirable to extract
the bearing fault feature at first. Firstly, the iterative algorithm SALSA is selected as
the optimization algorithm. Then, the optimal Laplace wavelet, which is effective in
bearing fault induced impulse representation and determined using the correlation
filtering, is chosen to construct the over-complete dictionary A1 based on the
explanation in Sect. 2. The selected Laplace wavelet is shown in Fig. 23a.

Fig. 20 Experimental gearbox in a test-bed

Faulty driving gear

Driven gear
Faulty bearing

Fig. 21 Fault components
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Incorporating the dictionary A1 into the iterative procedure of SALSA, the sparse
coefficients ĉ1 of bearing fault can be obtained in Fig. 23b. The corresponding
reconstructed signal illustrated in Fig. 23c can also be obtained by the equation
x̂1 ¼ Aĉ1. To acquire the fault characteristics, the envelope spectrum analysis of the
reconstructed signal is performed, yielding the result in Fig. 23d. The characteristic
frequency of the faulty bearing, 174.1 Hz, can be easily recognized, which is almost
identical to the theoretical value 176.18 Hz. Therefore, it can be concluded that the
bearing is defective.

As we know, the amplitude of each transient impulse caused by localized
bearing fault is represented by the sparse vector ĉ1. In order to estimate the real
amplitude of bearing fault transients, a constrained optimization strategy is pro-
posed is proposed to estimate the amplitude of each single fault component by
introducing the parameter k. The spectrum of the residual fault signal x� kx̂1 is
denoted by F1 fð Þ

min F1 fð Þf g
subject to k[ 0; f ¼ fz1

ð49Þ

where x is the original measured signal, fz1 is the peak frequency and k is a positive
parameter. When F1 fð Þ is minimized subject to its constraints, it indicates that the
bearing fault component in the residual fault signal has been removed to the
largest extent. By solving problem in (48), an optimal value kopt is acquired and
the estimated bearing fault signal can be obtained by the function x1 ¼ koptx̂1.

Table 5 Working parameters of gears in the tested gearbox

Gear Number
of teeth

Rotating
frequency (Hz)

Rotating
period (ms)

Meshing
frequency (Hz)

Driving gear 34 24.67 41 839

Driven gear 42 19.98 50

Table 6 Geometry of the tested bearing

Inside diameter
(mm)

Outside
diameter (mm)

Ball diameter
(mm)

Number of rolling
elements

Contact
angle (°)

30 62 8 17 14
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Fig. 22 The measured signal with compound fault of gearbox
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Based on the above description, we can draw that Fig. 23e shows the estimated
bearing fault component with kopt ¼ 1:332.

Removing the estimated bearing fault signal from the original signal, the residual
signal is shown in Fig. 24. Similar to the bearing fault feature extraction, the
SALSA is firstly chosen as the optimization algorithm. Then, the optimal Morlet
wavelet basis A2 is obtained by correlation filtering, as presented in Fig. 25a.
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Fig. 23 Results of bearing fault signal: a optimal Laplace basis, b sparse coefficients,
c reconstructed signal, d the envelope spectrum analysis of the reconstructed signal, and e the
estimated bearing fault signal
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With the constructed dictionary A2, the iterative procedure can be implemented to
gain the sparse vector ĉ2 representing the gear fault feature, as shown in Fig. 25b.
Its reconstructed signal is obtained in Fig. 25c. The envelope spectrum analysis of
the reconstructed signal is illustrated in Fig. 25d, from which the fault characteristic
frequency of gear can be identified, 25.6 Hz, close to the theoretical value
24.67 Hz. The analysis indicates that there is a gear localized fault in the tested
gearbox.
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Fig. 24 The residual signal after removing the bearing fault signal
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Fig. 25 Results of gear fault signal: a optimal Morlet basis, b sparse coefficients, c reconstructed
signal, and d the envelope spectrum analysis of the reconstructed signal
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6 Discussions

In this chapter, a new transient extraction technique is introduced based on the
sparse representation. To be more specific, the sparse representation model and
over-complete dictionary are first constructed, and then the model can be solved by
optimizing either the data fidelity term or the penalty term. Both are effective in
extracting the transients and identifying the periodic parameters. The effectiveness
has been demonstrated by the experimental applications. However, some issues
about the proposed method still remain to be discussed.

(1) In this chapter, the l1-norm is used to replace the l0-norm in the sparse repre-
sentation model. Another available sparsity measurement method is to use the
lp-norm, leading to the following equation:

min
c

ck kpp s.t: Ac� yk k22 � e ð50Þ

Choosing p < 1 will lead to a sparse solution; however, it will also lead to a
non-convex optimization problem. Thus we can use J cð Þ ¼Pi q cið Þ to replace
the lp-norm. Actually, any function J cð Þ ¼Pi q cið Þ with q cið Þ being sym-
metric, monotonically non-decreasing, and with a monotonic non-increasing
derivative for c� 0 will lead to the sparsity [7].

(2) Selection of the wavelet basis is one of the key issues for the proposed method
due to its influences on the sparsity of the coefficient vector c. With the increase
of the noise amplitudes, the correlation values decrease sharply and thus
leading to an error between the estimated value and the theoretical one. Besides,
the empirical knowledge about the gearbox fault and bearing fault is used to
construct the over-complete dictionary. Therefore, if the dictionary can learn
from the measured signal by adding some rotating component fault features, the
algorithms in this chapter will be more powerful in mechanical fault diagnosis.

(3) The strategy of optimal wavelet atom determination and the algorithms of
solving the sparse representation model are also vital for a successful sparse
representation application to machinery fault feature extraction.

• This chapter employs the correlation filtering for the optimal wavelet atom
selection. The disadvantage is that larger interval range and smaller step of
the parameter subset W, which can increase the accuracy of the result
though, would incur excessive computation, thereby decreasing the effi-
ciency of the method. Therefore, the strategy of optimal wavelet basis
selection should be further exploited to ensure not only the computational
efficiency but also estimation accuracy.

• This chapter utilizes the SALSA and MM algorithm to optimize the BPD
problem. However, the more straightforward and simpler, yet effective,
algorithms have not been largely explored for the solution of sparse rep-
resentation model.
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Fault Diagnosis of Rotating Machinery
Based on Empirical Mode Decomposition

Yaguo Lei

Abstract Rotating machinery covers a broad range of mechanical equipment in
industrial applications. It generally operates under tough working environment and
is therefore subject to faults easily. Vibration signals collected in the working
process have valuable contributions for the presentation of conditions of the
rotating machinery. Consequently, using signal processing techniques, these faults
could be detected and diagnosed. Empirical mode decomposition (EMD) is one of
the most powerful signal processing techniques and has been widely applied in fault
diagnosis of rotating machinery. This chapter attempts to introduce the recent
research and development of EMD in fault diagnosis of rotating machinery,
including basic concepts and fundamental theories about EMD methods and
improved EMD methods. Moreover, the applications of EMD methods and
improved EMD methods in fault diagnosis of common and key components of
rotating machinery, like rotors, gears and rolling element bearings, are described in
details.

1 Introduction

Rotating machinery plays an important role in industrial applications. It generally
works under a tough environment. Thus rotating machinery can suffer from failures
easily, which may decrease the service performance such as manufacturing quality,
operation safety, etc., and even cause the entire mechanical system to break down.
With rapid development of science and technology, rotating machinery is becoming
larger, more precise and more automatic. Its potential faults become more difficult
to be detected. Accordingly, the investigations of rotating machinery fault diagnosis
have attracted considerable interests in recent years. Vibration signals collected in
the working process have valuable contributions for the presentation of conditions
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of the rotating machinery. Consequently, adopting advanced signal processing
techniques to reveal fault characteristics is one of the commonly used strategies in
fault diagnosis of rotating machinery [1, 2]. Empirical mode decomposition
(EMD) is one of the most advanced signal processing techniques [3], which is
proposed as an adaptive time-frequency signal processing method to analyze
non-stationary and nonlinear signals. It is based on the local characteristic time
scales of a signal and could decompose the signal into a set of complete and almost
orthogonal components called intrinsic mode functions (IMFs). The IMFs indicate
the natural oscillatory mode imbedded in the signal and serve as the basis functions,
which are determined by the signal itself, rather than pre-determined kernels. Thus,
it is a self-adaptive signal processing technique that is suitable for nonlinear and
non-stationary processes. Since EMD was proposed in 1998, it has been widely
utilized and extensively studied in a lot of areas, for example, process control [4, 5],
modeling [6–8], surface engineering [9], medicine and biology [10], voice recog-
nition [11], system identification [12, 13], etc.

Although EMD largely contributes to the analysis of non-stationary and non-
linear signals, the algorithm itself has some shortcomings [14–16], such as end
effects, mode mixing, etc. Aiming at these drawbacks, various theoretical analyses
and improved EMD methods have been accomplished [17–22]. In addition, some
improved EMD methods have been applied in the diagnosis of early rub-impact
faults of rotors [21, 22], crack faults of gears [23, 24], and single or compound
faults of locomotive bearings [25, 26].

This chapter attempts to introduce the recent research and development of EMD
in fault diagnosis of rotating machinery. In the rest of this chapter, basic concepts
and fundamental theories about EMD methods and improved EMD methods will be
presented. In addition, the applications of EMD methods and improved EMD
methods in fault diagnosis of rotors, gears and rolling element bearings, which are
the common and key components of rotating machinery, will be described in
details.

2 Empirical Mode Decomposition

2.1 EMD Algorithm

The EMD algorithm was proposed by Huang et al. and could decompose a signal
into a set of IMFs [3]. An IMF is a function that should be satisfied with the
following two conditions: (1) in the whole data set, the number of extrema and the
number of zero-crossings must either equal or differ at most by one, and (2) at any
point, the mean value of the envelope defined by local maxima and the envelope
defined by the local minima is zero [3]. An IMF represents the natural oscillatory
mode embedded in the signal. A typical IMF is shown in Fig. 1.

260 Y. Lei



With the simple assumption that any signal consists of different simple IMFs, the
EMD method could decompose a signal into some IMF components, which are
determined by the signal itself. Thus, it is a self-adaptive signal processing method.
Given a signal xðtÞ, the EMD algorithm can be described as follows.

(1) Initialize: r0 ¼ xðtÞ, and i ¼ 1.
(2) Extract the i-th IMF.

(a) Initialize: hiðk�1Þ ¼ ri, k ¼ 1.
(b) Extract the local maxima and minima of hiðk�1Þ.
(c) Interpolate the local maxima and the minima by cubic spline lines to form

upper and lower envelops of hiðk�1Þ.
(d) Calculate the mean miðk�1Þ of the upper and lower envelops of hiðk�1Þ, as

shown in Fig. 2.
(e) Let hik ¼ hiðk�1Þ � miðk�1Þ.
(f) If hik is a IMF then set IMFi ¼ hik, else go to step (b) with k ¼ kþ 1.
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Fig. 1 Waveform of a typical IMF
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(3) Define riþ 1 ¼ ri � IMFi.
(4) If riþ 1 still has least 2 extrema then go to step (2) else decomposition process is

finished and riþ 1 is the residue of the signal.
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Fig. 3 Flow chart of EMD
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Thus, we can decompose the signal into I IMFs and a residue rI , which is the
mean trend of xðtÞ. Summing up all IMFs and the final residue rI , we get
xðtÞ ¼ PI

i¼1 ci þ rI . The frequency bands of IMFs c1; c2; . . .; cI ranges from high to
low. The frequency components contained in each frequency band are different and
they change with the variation of signal xðtÞ. Figure 3 shows the steps of the EMD
algorithm.

A simulation is presented here to illustrate the decomposition results of EMD
method. Given a signal xðtÞ, it consists of three components: a high-frequency
sinusoidal wave, a low-frequency sinusoidal wave and a trend component. We use
the EMD method to decompose this signal following the steps in Fig. 3. The
decomposed components and the simulated signal xðtÞ are shown in Fig. 4. From
Fig. 4, it can be seen that two IMFs c1 and c2, and a residue r2 are produced.
Among them, c1 and c2 correspond to the two sinusoidal waves with different
frequencies and the residue r2 reflects the trend component embedded in the sim-
ulated signal.
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Fig. 4 Illustration of the EMD method
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2.2 Problems of EMD

Although EMD largely contributes to the analysis of non-stationary and nonlinear
signals, it also has weaknesses as well. For example, EMD produces end effects; the
IMFs are not strictly orthogonal to each other; mode mixing sometimes occurs
between IMFs.

(a) End effects

For a clear understanding of the end effects of EMD, we use the simulated signal
shown in Fig. 4 to illustrate the end effects. We display the two sinusoidal waves
included in the simulated signal and the decomposed IMFs of the simulated signal
by EMD in Fig. 5. It is seen that there are distortions at the two ends of IMFs. This
phenomenon is called end effects and it is caused by the EMD algorithm itself.

(b) Problem of orthogonality

The decomposed IMFs by EMD are not strictly orthogonal to each other. As we
all know, if two components are orthogonal to each other, the dot product between
them is zero. Here we also take the IMFs in Fig. 4 as an example. Calculating the
dot product between the two IMFs c1 and c2, we obtain the value of 1.5 instead of
zero. This means that IMFs c1 and c2 are not strictly orthogonal to each other.
Moreover, the energy of the two IMFs and the residue can be calculated as 514.6,

Simulated sine waves IMFs 

Time (s)

0 0.05 0.1 0.15 0.2 0.25

0 0.05 0.1 0.15 0.2 0.25

-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

A
m

pl
itu

de
 (u

m
)

A
m

pl
itu

de
 (u

m
)

(a) 

(b) 
End effects

Fig. 5 a Simulated high-frequency sine wave and IMF c1, and b simulated low-frequency sine
wave and IMF c2

264 Y. Lei



515.2 and 1161.8, respectively, which means that the total energy of the three
decomposed components is 2191.6. It is not equal to the energy of the simulated
signal 2125.8. This indicates that when a signal is decomposed by EMD, the energy
is not conservative before and after decomposition.

(c) Mode mixing

EMD method has another obvious shortcoming called mode mixing. The mode
mixing of EMD is defined as a single IMF including oscillations of dramatically
disparate scales, or a component of a similar scale residing in different IMFs.

To illustrate the problem of mode mixing in EMD, another simulated signal xðtÞ
is considered in this section. The simulated signal is shown in Fig. 6a. There is a
sine wave of 36 Hz and small impulses included in this simulated signal. Therefore,
it is a combined signal and actually consists of two components. Utilizing EMD on
the signal, the decomposed results are shown in Fig. 6.

From Fig. 6, we can see that mode mixing is occurring between IMFs c1 and c2
since there are neither indications of a sinusoidal wave nor indications of small
impulses. The sinusoidal wave and the impulses are decomposed into the same IMF
(c1). That is to say, these two IMFs obtained by EMD are distorted obviously and
both IMFs c1 and c2 of EMD fail to represent the characteristics of signal xðtÞ
accurately. This is a typical problem of mode mixing.

Mode mixing of EMD is a result of signal intermittency. To solve the problem of
mode mixing in the original EMD, ensemble empirical mode decomposition
(EEMD), was developed by Wu and Huang by adding noise to the investigated
signal [20]. A brief introduction of EEMD is given in the next section.
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Fig. 6 Decomposition result with EMD: a the simulation signal, b IMF c1, and c IMF c2
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Besides the end effects and mode mixing mentioned above, the EMD method
has some other weaknesses, such as lacking a theoretical foundation, sifting stop
criterion, extremum interpolation, etc. More details can be found in Refs. [14–16].

2.3 Hilbert-Huang Transform

Hilbert-Huang transform (HHT) mainly consists of two steps: EMD and Hilbert
transform. EMD can decompose a signal into a collection of IMFs, which are
almost monocomponent. Hilbert transform is defined as the convolution of signal
xðtÞ with 1=t, shown in Eq. (1). Through the Hilbert transform, local properties of
xðtÞ are emphasized.

yðtÞ ¼ 1
p

Zþ1

�1

xðtÞ
t � s

ds ð1Þ

Combining xðtÞ and yðtÞ,we can obtain the analytic signal zðtÞ of xðtÞ

zðtÞ ¼ xðtÞþ iyðtÞ ¼ aðtÞei/ðtÞ
aðtÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2ðtÞþ y2ðtÞp
uðtÞ ¼ arctanðyðtÞ=xðtÞÞ

8<
: ð2Þ

where aðtÞ is the instantaneous amplitude of xðtÞ, which reflects how the energy of
xðtÞ varies with time t, and uðtÞ is the instantaneous phase of xðtÞ. If the signal xðtÞ
is monocomponent, then the time derivative of instantaneous phase uðtÞ will be the
physical meaning of instantaneous frequency xðtÞ of the signal xðtÞ. Then the
instantaneous frequency xðtÞ is given as

xðtÞ ¼ duðtÞ
dt

ð3Þ

As discussed before, EMD can generate almost monocomponent IMFs, which
provides an opportunity for the instantaneous frequency applied to complicated
signals. For the signal xðtÞ, I IMFs are produced by EMD. Applying the Hilbert
transform to each IMF, and calculating the instantaneous frequency and amplitude,
we can express signal xðtÞ in the following representation:

xðtÞ ¼
XI

i¼1

aiðtÞ exp j
Z

xiðtÞdt
� �

ð4Þ

Therefore, based on the IMFs obtained by EMD, the Hilbert transform generates
a time-frequency-energy distribution to depict signal xðtÞ. The EMD-based Hilbert
transform is called Hilbert-Huang transform (HHT).
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3 Improved EMD Methods

3.1 EEMD Method

As we all know, mode mixing is a typical problem of EMD method. When the
problem of mode mixing occurs, an IMF can cease to have physical meaning by
itself, suggesting falsely that there may be different physical processes represented
in a mode [3]. To overcome this problem, ensemble empirical mode decomposition
(EEMD) was proposed based on the statistical properties of white noise. In this new
method, the true IMFs are defined as the mean of an ensemble of trials which
consist of the decomposition results of the signal plus a normally distributed white
noise with a constant standard deviation [20]. When the white noise is decomposed
by EMD, EMD behaves likes a dyadic filter bank: the Fourier spectra of various
IMFs collapse to a single shape along the axis of the logarithm of frequency [27]. In
addition, the result provided by Flandrin, Gonçalvès, and Rilling demonstrated that
the white noise could help data analysis in the EMD method [28]. In the process of
EEMD, different white noise with zero mean and a constant standard deviation is
added to the original signal and the combined signal is decomposed using EMD
method in each trial. When the white noise is added to the signal, the components in
different in different scales of the signal are automatically projected onto proper
scales of reference established by the white noise in the background. The influence
of the added noise can be decreased or even completely canceled out in the
ensemble mean of enough trials. Therefore, the ensemble mean is treated as the true
answer for the reason that only the signal is reserved when more and more trials are
carried out in the ensemble process. The principle of EEMD advanced here is on the
basis of the observations in the following [20].

(1) A collection of white noise cancels each other out in an ensemble mean; hence,
only the signal can be reserved in the final noise-added signal ensemble mean.

(2) White noise is used to force the ensemble to find all possible solutions; it makes
the signals of different scale reside in the corresponding IMFs, and the resulting
ensemble mean can be more meaningful.

(3) The decomposition with truly physical meaning of EMD is not the one without
noise; it is designated to be the ensemble mean of a large number of trials
consisting of the noise-added signal. More detailed description of EEMD can
be found in Ref. [20].

Based on the principle and observations as mentioned earlier, the EEMD
algorithm is given below and Fig. 7 is its flow chart.
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1. Initialize the number of ensemble, M, the amplitude of the added white
noise, and m ¼ 1.

2. Perform the m-th trial on the signal added white noise.

(a) Add a white noise series with the given amplitude to the signal to be
studied
xmðtÞ ¼ xðtÞþ nmðtÞ, where nmðtÞ indicates the m-th added white
noise series, and xmðtÞ represents the noise-added signal of the m-th
trial.

(b) Decompose the noise-added signal xmðtÞ into N IMFs,
cn;m(n ¼ 1; 2; . . .;N), using EMD, where cn;m denotes the nth IMF of
the m-th trial, and N is the number of IMFs.
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Fig. 7 Flow chart of EEMD
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(c) If m\M then go to step (a) with m ¼ mþ 1. Repeat steps (a) and
(b) again and again with different white noise series but having the
same amplitude each time.

3. Calculate the ensemble mean yi of the M trials for each IMF

yn ¼ 1
M

XM
m¼1

cn;m; n ¼ 1; 2; . . .;N; m ¼ 1; 2; . . .;M ð5Þ

(4) Report the mean yn (n ¼ 1; 2; . . .;N) of each of the N IMFs as the final
IMF.

In order to demonstrate the improvement of EEMD method, the simulated signal
in Fig. 6a is decomposed again using EEMD with the ensemble number 100 and
the added noise amplitude 0.01 time standard deviation of the signal. The original
signal is a sine wave of 36 Hz attached by small impulses. The decomposition
results of EEMD method are shown in Fig. 8.

It has been concluded from Fig. 6 that the mode mixing is serious between the
two IMFs obtained by EMD. However, it can be seen from Fig. 8b, c that the two
components contained in the signal are decomposed into two IMFs perfectly using
EEMD. IMF c1 in Fig. 8b denotes the impulse components and IMF c2 in Fig. 8c
indicates the sine wave. Therefore, EEMD is able to overcome the mode mixing
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Fig. 8 a The simulated signal; b and c the decomposition results of EEMD
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problem existing in EMD method and achieve an improved decomposition with
physical meaning.

When EEMD method is used, parameters such as the number of ensemble and
amplitude of the added noise need to be set reasonably. The following part will
discuss the choice of the two parameters.

(a) The number of ensemble

The relationship between the ensemble number and the amplitude of the added
white noise is given in the following equations [20].

e ¼ affiffiffiffi
N

p ð6Þ

or

ln eþ a
2
lnN ¼ 0 ð7Þ

where N is the number of ensemble, a is the amplitude of the added white noise,
and e is the standard deviation of error, which is defined as the difference between
the input signal and the corresponding IMFs.

In the process of EEMD method, small amplitude of the added white noise may
lead to a small error. However, if the amplitude of added noise is too small, it may
not change the distribution of extrema that the EEMD method relies on. This is true
when the investigated signal has a large gradient. Thus, the amplitude of the added
noise should not be too small for the effectiveness of EEMD method. On the other
hand, the error caused by the added white noise could always be reduced to a quite
small even negligible level by increasing the number of ensemble. Generally, an
ensemble number of a few hundred will lead to an exact result, and the remaining
noise would cause less than a fraction of one percent of error if the added noise has
the amplitude that is a fraction of the standard deviation of the investigated
signal [20].

(b) The amplitude of the added white noise

The investigation in references indicated that EMD is a noise-friendly method
[20]. In addition, increasing noise amplitudes and ensemble numbers changes the
decomposition results little as long as the amplitude of added noise is moderate and
the ensemble number is large enough.

The fact is that when the amplitude of noise increases, the number of ensemble
should increase to reduce the influence of the added noise in the decomposed
results. It is suggested that the amplitude of the added white noise is about 0.2
time standard deviation of the investigated signal [20]. However, it is not always
the proper amplitude of the added noise for any cases. Generally, when the signal
is dominated by high frequency components, the noise amplitude needs to be
smaller. On the contrary, when the signal is dominated by low frequency
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components, the noise amplitude should be larger. However, there is no a specific
equation reported in the literature to guide the choice of the noise amplitude until
now. Thus, for an investigated signal, different noise levels should be tried to
select the appropriate one.

3.2 AEEMD Method

As stated above, EEMD, as a noise-assisted data analysis method, is aimed to solve
the problem of mode mixing in EMD [20]. With the help of the added finite white
noise, EEMD is supposed to eliminate the mode mixing problem [21]. The per-
formance of EEMD, however, depends on the parameters adopted in the process of
decomposition, such as the sifting number, and the amplitude of the added noise. In
fact, these parameters were set as constant values whether the signal to be inves-
tigated contains high or low components in most current studies on EEMD [14].
Therefore, the problem of mode mixing is not solved completely and further work
need to be done to improve the performance of EEMD.

On the basis of the investigation of the filtering behavior of EMD/EEMD and the
relation between the signal frequency components and the amplitude of the added
noise, a new adaptive ensemble empirical mode decomposition method (AEEMD)
is proposed [24]. The new method adaptively selects the sifting number and decides
the amplitude of the added noise according to the signal frequency components in
decomposition process. By adopting the two parameters, the performance of EEMD
is going to be improved in feature extraction and fault diagnosis.

In the process of EEMD, high and low frequency components have different
sensitivity to noise. Therefore, larger noise and more sifting number had better be
adopted when high-frequency IMFs are extracted, while smaller noise and less
sifting number had better be used when low-frequency IMFs are extracted. To
satisfy this requirement for noise, different kinds of noise are tried and tested. The
result shows that the noise whose amplitude changes with its frequency in sine form
performs best. Therefore, the noise of this form is constructed and utilized in
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AEEMD in place of white noise adopted in the original EEMD. Figure 9 gives the
frequency spectrum of the constructed noise, in which fs represents the sampling
frequency and e denotes the amplitude at the highest frequency. On the other hand,
EMD method is an effective self-adaptive dyadic filter bank when applied to white
noise. Therefore, the sifting number for each IMF is adaptively set following
Eq. (8). Figure 10 gives the flow chart of AEEMD algorithm. The concrete steps
are as follows.

(1) Initialize the amplitude e of the highest frequency of the added noise, the
number of ensemble M, generally M ¼ 100 and e ¼ 0:2. Let m ¼ 1.

(2) Calculate the number of IMFs based on the signal length [20]

Input signal

Initialize the amplitude e at the highest 
frequency of the added noise, and the 
ensemble number M . Let 1=m

Calculate the number of IMFs
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I ¼ log2 L� 1 ð8Þ

where L is the signal length.
(3) Adaptively set the sifting number pi for the i-th IMF according to the following

equation.

pi ¼ 2ðI�i2Þ þ 2; i ¼ 1; 2; . . .; I ð9Þ

(4) Construct the noise as shown in Fig. 9 and add it to the signal to be
investigated.

(5) Perform EMD on the added-noise signal and obtain the m-th decomposition
result ai;m.

(6) If m\M then go to step (4) with m ¼ mþ 1. Repeat steps (4) and (5).
(7) Calculate the ensemble mean ai of the M trials for each IMF and report the

mean as the final IMF.

ai ¼ 1
M

XM
m¼1

ai;m; i ¼ 1; 2; . . .; I; m ¼ 1; 2; . . .;M ð10Þ

To demonstrate the effectiveness of AEEMD method, a simulation signal is
constructed. For the reason that modulation and impact are two typical fault events
in rotating machinery, the simulation signal contains modulation as well as impact
components. What is more, it also consists of a high-frequency sinusoidal wave and
a low-frequency sinusoidal wave respectively to represent certain rotating fre-
quencies of machinery. Therefore, there are four components having different
physical meaning in the simulation signal. The four components and the simulation
signal combined by them are shown in Fig. 11a–e, respectively.

AEEMD method is used to decompose the simulation signal and the decompo-
sition results are shown in Fig. 12. It can be seen from the result that IMFs 1–4
correspond to the impact component, the modulation component, the high-frequency
sinusoidal wave and the low-frequency sinusoidal wave respectively.

Comparing the decomposed IMFs in Fig. 12 with the real components in
Fig. 11a–d, it can be inferred that the different components embedded in the sim-
ulation signal are extracted accurately by AEEMD. For comparison, the simulation
signal is analyzed using the original EMD too and the decomposition result is
displayed in Fig. 13. It is seen that the problem of mode mixing between different
components is very serious and there are distortions for some IMFs. For example,
the first IMF contains not only the impact component but also the modulation
component. This result illustrates that the original EMD fails to produce the rea-
sonable decomposition. Based on the above simulation and comparison, it could be
inferred that AEEMD performs more effective than the original EMD, by adding
noise with the amplitude varying as a sinusoidal relation with its frequency into the
signal, and adaptively changing the sifting number for different IMFs.
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3.3 CEEMDAN Method

EEMD is mainly to alleviate the problem of mode mixing caused by EMD [20, 29],
however, it still has some shortcomings. For example, the EEMD method
decomposes a signal adding the white Gaussian noise, and the final IMFs are
obtained by averaging the IMFs. This would probably lead to some residual noise
in the reconstructed signal. In addition, if the white Gaussian noise in each
decomposition process is added with different amplitudes, it probably may produce
a different number of IMFs, which makes it difficult for the averaging [30, 31].

To overcome the above shortcomings of EEMD, Torres et al. proposed an
algorithm called a complete ensemble empirical mode decomposition with adaptive
noise (CEEMDAN) [30]. Furthermore, Colominas et al. continued to make
improvements on CEEMDAN [31]. In this improved CEEMDAN method, a par-
ticular noise EkðwðiÞÞ instead of the white Gaussian noise is added at each stage of
the decomposition, where EkðwðiÞÞ means the kth IMF of the white Gaussian noise
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decomposed by EMD. Moreover, this method defines the true IMF as the difference
between the current residue and the average of its local means. As a result, the
problem of remaining noise in IMFs is much alleviated and the problem of the final
averaging because of a different number of IMFs is solved.

Let Mð�Þ represent the operator that produces the local means of the signal x, and
Ekð�Þ be the operator which produces the kth IMF decomposed by EMD. Obviously,
there exists a relation that E1ðxÞ ¼ x�MðxÞ. Considering the relation between the
first IMF c1 and the residue r1:c1 ¼ x� r1, c1 ¼ 1

I

PI
i¼1 E1ðxÞ ¼ x� 1

I

PI
i¼1 MðxðiÞÞ,

where I means the averaging number of IMFs, there exists 1
I

PI
i¼1 MðxðiÞÞ ¼ r1. The

decomposition using CEEMDAN is based on the following principles [30, 31] and a
flow chart of the CEEMDAN algorithm is shown in Fig. 14.

Step 1. Add E1ðwðiÞÞ to the original signal x, xðiÞ ¼ xþ b0E1ðwðiÞÞ, where wðiÞ

indicates the ith added white noise.
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Step 2. Use EMD to calculate the local means of xðiÞ and average them for the first
residue, r1 ¼ 1

I

PI
i¼1 MðxðiÞÞ, then calculate the first IMF c1 as c1 ¼ x� r1.

Step 3. Obtain the second IMF c2 as c2 ¼ r1 � r2, where
r2 ¼ 1

I

PI
i¼1 Mðr1 þ b1E2ðwðiÞÞÞ.

Step 4. Similarly, the k-th IMF ck is computed as ck ¼ rk�1 � rk, where
rk ¼ 1

I

PI
i¼1 Mðrk�1 þ bk�1EkðwðiÞÞÞ; k ¼ 2; 3 . . .N:

The coefficients bk represent the selection of the SNR at each stage, where
bk ¼ e0stdðrkÞ.
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To illustrate the decomposition difference between EEMD and CEEMDAN, a
simulated signal xðtÞ is implemented here. There are four components involved in
this signal: a high-frequency sinusoidal wave, a low-frequency sinusoidal wave, an
impact component and a modulation component. The simulated signal and the four
components are shown in Fig. 15a–e, respectively.

According to Refs. [20, 32], when the value of e0 is close to 0.2, it often has a
remarkable performance of the decomposition results. Consequently, we choose the
noise amplitude e0 ¼ 0:2 and the ensemble size I ¼ 100 in the decomposition of
CEEMDAN. The decomposed results of the simulated signal using EMD method
and the CEEMDAN method are shown in Figs. 16 and 17, respectively. The
components (a–d) in Fig. 16 correspond to high-frequency sinusoidal wave,
low-frequency sinusoidal wave, the impact and the modulation component,
respectively. It can be seen that the high-frequency sinusoidal wave is mixed with
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the low-frequency sinusoidal wave and the impact component is mixed with the
modulation component obviously. In Fig. 17, it is seen that the individual com-
ponents hidden in the simulated signal can be extracted using the method based on
CEEMDAN. Especially, the impact component and the modulation component are
presented clearly in the third and the forth IMF with an accurate waveform,
respectively.

4 Fault Diagnosis of Rotating Machinery
Using EMD Based Methods

4.1 Fault Diagnosis of Rotors

A power generator plays an important role in energy supply. It has a great meaning
to diagnose the faults occurring in the power generator to guarantee the regular
energy supply, avoiding the economic loss and saving the production cost.
A structure sketch of a power generator in a thermal-electric plant in China is given
in Fig. 18. This machine set is composed of a high pressure cylinder, a low pressure
cylinder, a motor and an exciter.

A certain day, it was found that the high pressure cylinder vibrated so intensely
that the virtual value of vibration signal exceeded the safety threshold, and then the
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online monitoring system began to sound the alarm. In the later one month, the
machine vibrated even more violently. When the power generator was stopped to be
maintained, it was found that one of the bearing bushes of the machine set had been
broken. In order to identify the fault pattern, the vibration signal was collected by a
vibration velocity transducer fixed on the high pressure cylinder, which is shown in
Fig. 19. The signal length is 1024, and the sampling frequency is 2000 Hz. The
rotating frequency of the machine set is 50.78 Hz.

First, the vibration signal was decomposed using EMD method, and the first six
IMFs of the decomposed results are given in Fig. 20. A series of impulses could be
seen in some local components of IMFs c1 and c2. Therefore, it can be inferred that
periodic impacts occur in the high pressure cylinder.
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Fig. 16 Decomposed components of the simulated signal using EMD
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However, what is the reason that caused the impacts between the rotor and the
bearing bushes? Unfortunately, it is very difficult to answer this question according
to the information provided by the IMFs of EMD owing to mode mixing occurring
between different IMFs. In addition, there is no more fault information to clarify the
fault cause.
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To overcome the above difficulty, the CEEMDAN method with the ensemble
number of 100 and the white noise amplitude of 0.3 time standard deviation of that
of the vibration signal is applied to the signal decomposition. The decomposition
results are given in Fig. 21. It can be clearly seen that each IMF has its real physical
meaning. IMF c1 corresponds to the added white noise. IMFs c2 and c3 indicate
impulse components. IMF c4 is the rotating frequency component of the machine
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set whose value is 50.78 Hz. IMF c5 is a component of 25.39 Hz, which is the half
rotating frequency of the machine set.

It can be inferred that the fault pattern is not oil whirl in this machine set because
oil whirl usually manifests itself by frequencies ranging from 42 to 48% of the
rotating frequency of the rotor. In a rotor system, both looseness and rub behave
themselves by the half rotating frequency. For the reason that there are impacts
between the rotor and the bearing bushes, we can conclude that the fault of the
power generator is the rub-impact pattern. That implies that the rotor system of the
high pressure cylinder rub and at the same time impact the bearing bushes when
the power generator is operating. Then impulse components are generated. Finally,
the intense impacts broke one of the bearing bushes.

4.2 Fault Diagnosis of Gears

In modern industry, planetary gear boxes are widely used as a kind of special gear
transmission structures owing to their advantages such as large transmission ratio,
strong load-bearing capacity. They have big difference with fixed-axis gearboxes
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and exhibit unique behaviors, which increase the difficulty of fault diagnosis in
planetary gearboxes [33–35].

In this section, experiments are conducted on a planetary gearbox test rig and
vibration signals are collected to demonstrate the effectiveness of the adaptive
EEMD in diagnosing gear faults. The planetary gearbox test rig consisted of two
gearboxes, a 3-hp motor for driving the gearboxes, and a magnetic brake for
loading. There were a planetary gearbox and a fixed-axis gearbox in the test rig. An
inner sun gear is surrounded by several rotating planet gears, and a stationary outer
ring gear in the planetary gearbox, which is our concern [33]. To simulate gear
faults, a crack at the tooth root of one planetary gear is created in our experiments.

An accelerometer is fixed on the planetary gearbox casing to collect the vibration
signals. The motor speed is about 20 Hz and the sampling frequency is set as
5120 Hz. The experimental parameters and the characteristic frequencies of the
planetary gearbox are shown in Table 1. It can be seen from the table that the
rotating frequency of one planetary gear is 2.5 times as large as that of the carrier.
Therefore, when the carrier rotates 2 cycles, the planetary gear meshes 5 periods

Table 1 Parameters and characteristic frequencies of the planetary gearbox

Tooth number of gears Gear number Rotating frequency/Hz Mesh frequency/Hz

Sun Planetary Ring Planetary Sun Planetary Carrier

20 40 100 3 20 8.33 3.33 333.33
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Fig. 22 Experimental signal a time-domain waveform, and b frequency spectrum
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with the ring gear, i.e. 200 teeth. This tooth number is twice as large as that of the
ring gear. That is to say, the ring gear meshes 2 periods with the planetary gear. In
other words, the planetary gear returns to the initial position when the carrier rotates
2 cycles. For the carrier to finish rotating 2 cycles, it takes 2/3.33 = 0.6 s.

The vibration signal collected from the test rig with the cracked planetary gear is
shown in Fig. 22a and its frequency spectrum is shown in Fig. 22b. It can be seen
that there are a series of impulses in the time-domain waveform. The period of the
impulses is nearly t ¼ 0:1 s which means that the frequency of the impulses is about
10 Hz. There are three planetary gears in planetary gearbox and they pass the fixed
accelerometer in turn. Therefore, the pass frequency of the planetary gears equals 3
times as large as the rotating frequency of the carrier, i.e. 10 Hz. It is apparent that
the impulses in the time-domain waveform are caused by the rotation of the carrier,
and they are normal vibration components of the gearbox. Unfortunately, it is
difficult to extract any fault characteristics besides these impulses for the reason that
the fault features of the planetary gearbox are buried by the normal vibration
components. The frequency spectrum of the vibration signal in Fig. 22b shows that
there are rich sidebands around the mesh frequency and the interval of the side-
bands is 3.33 Hz, which equals the rotating frequency of the carrier. Obviously, it is
not the fault characteristics either. Therefore, the fault features of the cracked
planetary gear cannot be found from the time-domain waveform or its frequency
spectrum.

The adaptive EEMD method is used to process the above signal to extract the
fault features of the cracked planetary gear. Among the IMFs decomposed by
adaptive EEMD, the first IMF contains the richest information and consequently it
is selected for further analysis. Figure 23 shows the detail of IMF1 and it can be
seen that there are impulses with the period T ¼ 0:6 s. It can be concluded that once
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the carrier rotates 2 cycles, the cracked planetary gear returns to the initial position.
As a result, the fault period of the cracked planetary gear doubles the rotating period
of the carrier, i.e. 0.6 s. That means that the impulse component with the period
T ¼ 0:6 s is resulted by the cracked planetary gear. Therefore, the adaptive EEMD
method can extract the fault characteristics effectively. For comparison, the same
signal is decomposed by original EEMD and the first IMF is shown in Fig. 24. In
can be seen that there are also periodic impulses in the waveform of the IMF, the
impulse (T ¼ 0:6 s) caused by the cracked gear and those (t ¼ 0:1 s) caused by the
rotation of the carrier. However, these impulses are decomposed in the same IMF
which means the mode mixing happens. It can be concluded from the comparisons
that the adaptive EEMD is more effective than the original EEMD in fault char-
acteristics extraction of the planetary gearbox.

4.3 Fault Diagnosis of Rolling Element Bearings

In this section, to demonstrate the effectiveness of the CEEMDAN based method,
an experiment on a test bench of locomotive rolling element bearings was con-
ducted. The detailed information of the test bench can be seen in Ref. [2]. The
parameters and fault characteristic frequencies of the bearings are listed in Table 2.

It is known that even though a serious single fault occurs on the bearing, peri-
odical impulses characterizing the fault can be submerged by the heavy noise,
which may be even worse for compound faults. This is mainly because in rolling
element bearings, once compound faults occur, different fault characteristics always
couple with each other. Then the fault characteristics of compound faults turned to
be complicated and difficult to be extracted, and the common used methods like
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Fourier spectrum analysis probably will fail to work. Thus for the demonstration of
the CEEMDAN method in the fault diagnosis of bearings, we choose a bearing with
compound faults on the outer race and the roller.

A vibration signal was collected from the test bench with a sampling frequency
of 12800 Hz and a signal length of 16,384 data points. The waveform of the signal
and its corresponding Fourier spectrum is given in Fig. 25. The outer race and the
roller fault characteristic frequencies of the bearing can be calculated as 44.5 and
19.94 Hz, respectively, since the rotation speed is 370 rpm. Obviously, in Fig. 25,
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Fig. 25 a Vibration signal of a bearing with compound faults, and b Fourier spectrum

Table 2 Parameters and fault characteristic frequencies of the locomotive rolling element bearing

Bearing specs 52732QT

Inner race diameter Di (mm) 160

Outer race diameter Do (mm) 290

Roller diameter d (mm) 34

Roller number n 17

Contact angle a (deg) 0

Bearing rotating frequency (Hz) fr
Pitch diameter D (mm) D ¼ 1

2 ðDi þDoÞ
The inner race fault characteristic frequency finner finner ¼ 1

2 frð1þ d
D cos aÞn

The outer race fault characteristic frequency fouter fouter ¼ 1
2 frð1� d

D cos aÞn
The roller fault characteristic frequency froller froller ¼ 1

2 fr½1� ðdDÞ2 cos2 a� Dd
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neither the periodic impulses related to faults in the time-domain waveform nor the
fault characteristic frequencies in the Fourier spectrum can be observed. The
Fourier spectrum analysis fails to detect the compound faults.

To reveal the fault characteristics, EEMD is used to extract the fault charac-
teristics from the signal. 16 IMFs are obtained after the decomposition. However,
there is no obvious fault indication at the characteristic frequency of 44.5 and
19.94 Hz from the first 10 IMFs and their corresponding Fourier spectra in Fig. 26.
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Fig. 26 Decomposition results of the vibration signal of a bearing with compound faults using
EEMD: a The IMFs, and b The Fourier spectra of IMFs
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After carefully checked the Fourier spectra of the 8th and 9th IMFs given in
Fig. 27, we found two obvious peaks at the frequency of 58.59 and 27.34 Hz.
These two frequencies, however, are neither the outer race fault characteristic
frequency of 44.5 Hz nor the roller fault characteristic frequency of 19.94 Hz.
Hence, the EEMD method fails to extract fault characteristics and diagnose the
compound faults of this rolling element bearing.

For comparison, the CEEMDAN based method is applied to analyze the signal
using the same noise amplitude and ensemble size in the EEMD method. There are
totally 15 IMFs obtained by CEEMDAN and Fig. 28 shows the first 10 IMFs and
their Fourier spectra. By examining each Fourier spectrum, we find that there are
peaks at the outer race and the roller fault characteristic frequency (45.31 and
20.31 Hz) in the Fourier spectra of the 9th and 10th IMFs, shown in Fig. 29a, b,
respectively. Therefore, based on the extracted fault characteristics using the
CEEMDAN-based method, the compound faults of this bearing are diagnosed.
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5 Conclusions

In this chapter, the basic theory of EMD and improved EMD methods, such as
EEMD method, adaptive EEMD method, etc., are presented. In addition, the
applications of these methods in fault diagnosis of rotating machinery, including
rotors, gears and rolling element bearings, are described in details.

(a) The empirical mode decomposition (EMD) method has a good performance in
the analysis of nonlinear and non-stationary signals. However, it is often
subject to some problems, like end effects and mode mixing, etc. Thus the
decomposed IMFs sometimes are unable to reflect the fault characteristics in
fault diagnosis of rotating machinery precisely.
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Fig. 28 Decomposition results of the vibration signal of a bearing with compound faults using the
CEEMDAN method: a the IMFs, and b the Fourier spectra of IMFs
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(b) To overcome the shortcomings of EMD, a lot of new methods based on EMD
are proposed to diagnose rotating machinery improve the EMD method. These
methods are developed mainly by adding different kinds of white Gaussian
noise to improve the extrema distribution of the signal.

(c) The EMD and improved EMD methods have been applied in the fault diagnosis
of rotating machinery. EMD sometimes cannot detect the fault in the
machinery, while the improved methods promote the performance of EMD in
different aspects. These methods have been proven to be effective in the
diagnosis of rotors, gears and rolling element bearings.
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Bivariate Empirical Mode Decomposition
and Its Applications in Machine Condition
Monitoring

Wenxian Yang

Abstract Attributed to providing a more realistic representation of the signal
without the artifacts imposed by non-adaptive limitations suffered by both Fourier-
and Wavelet-transform based methods, Empirical Mode Decomposition (EMD) has
been widely accepted as a favored tool for interpreting nonlinear, non-stationary
signals, which are often associated with the occurrence of faults or variable oper-
ations of rotating machinery. In this chapter, the fundamental theory of the EMD
will be explained. But more context will be spent on discussing its two dimensional
form, namely Bivariate Empirical Mode Decomposition, and the powerful capacity
of this innovative technique in the application of machine condition monitoring.

1 Introduction

Since nonlinear and/or non-stationary signal features are often associated with the
occurrence of abnormalities or faults in rotating machinery, time-frequency analysis
(TFA) of condition monitoring (CM) signals has become a popular approach to
implement machine health assessment and thereby condition-based maintenance.
Thus, an efficient and reliable TFA tool will significantly benefit the machine
operation & maintenance (O&M) activities particularly in those industries highly
relying on the intensive use of robotic machines.

In the past two decades, Wavelet transform (WT) has overwhelmed the tradi-
tional Fourier transform (FT) and its extension forms [e.g. Short-time Fourier
Transform (STFT)] and become a favoured tool extensively applied to the TFA of
machine CM signals. Thanks to the innovative multiple resolution analysis syn-
chronously in both time and frequency domains, the invention of the WT does
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significantly promote the TFA and attract lots of interests from a wide range of
communities, including from machine CM researchers and engineers [1–7].
However, this does not mean the WT is non-defective. In fact, the WT has intrinsic
disadvantages as well. For example, despite the unique multiple resolution capa-
bility in time and frequency domains, the WT is still not locally adaptive and unable
to match the transient time-frequency features of the signals of interest, particularly
those intra-wave signals collected from variable speed machines. For this reason,
the WT sometimes cannot provide an accurate representation of the CM signals,
although it does show powerful ability in feature extraction in most cases [8].
Moreover, the DC component contained in the CM signal still preserves in the WT
results, which will affect the identification of the fault-related features in grayscale
time-frequency map of the CM signal where the energies of frequency components
are indicated using various colours [9]. As a consequence, the WT meets difficulty
sometimes especially when the inspected fault is at its early developing stage due to
the resultant ‘overlaps’ in frequency vicinity and the weak fault-related features.
The worse thing is that it has no way to remove these issues because they are inborn
with the WT. This motivates the research on an alternative TFA method, namely
Empirical Mode Decomposition (EMD) [10].

2 Empirical Mode Decomposition

Different from the conventional TFA methods, the EMD is completely a data driven
techniques. Through automatically performing a series of recursive calculations, it
decompose the signal of interest automatically into a finite number of basic oscil-
lation modes, namely Intrinsic Mode Functions (IMFs). Then, the transient
time-frequency features of the inspected signal can be extracted out by interpreting
these IMFs using Hilbert transform. This is the so called Hilbert-Huang Transform
(HHT) [11]. Assume a signal xðtÞ, its EMD can be implemented by following the
steps depicted below [8, 10].

Step 1. Initialise r0 ¼ xðtÞ and i ¼ 1;
Step 2. Extract the i-th IMF by conducting the following recursive calculations.

(1) Initialise hiðk�1Þ ¼ ri; k ¼ 1;
(2) Extract the local extrema and minima of hiðk�1Þ;
(3) Interpolate the local extrema and the minima by cubic spline lines to

form the upper and lower envelops of hiðk�1Þ;
(4) Calculate the mean of the obtained upper and lower envelops and

denote it by miðk�1Þ;
(5) Let hik ¼ hiðk�1Þ �miðk�1Þ;
(6) Check whether the resultant hik satisfies the following two conditions.
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(a) In the whole data set, the number of extrema and the number of
zero crossings must either equal or differ at most by one; and

(b) At any point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero.

If hik satisfies the above two conditions, it is an IMF. Otherwise, it is
not an IMF;

(7) If hik is an IMF, let IMFi ¼ hik, else go to (2) to repeat the calculations
with k ¼ kþ 1 until an IMFi is achieved successfully;

Step 3. Calculate riþ 1 ¼ ri � IMFi;
Step 4. If the obtained riþ 1 still has over 2 extrema, go to Step 2 to iterate the

decomposition to get more IMFs, else finish the EMD calculation and
define riþ 1 as the residue of the signal.

In the end, the original xðtÞ can be represented by the sum of a collection of
IMFs and the residue, i.e.

xðtÞ ¼
Xn
i¼1

IMFi þ rn ð1Þ

where rn is the final residue, n indicates the number of IMFs obtained.
From the above descriptions, it is found that the EMD works directly on the time

waveform of the signal and moreover without doing any assumption of the basic
oscillation mode of the signal. So, it is locally adaptive and thus able to provide a
‘real-life’ representation to the signal of interest. This fully overcomes the disad-
vantages induced by the artefact imposed by the artificial assumptions and therefore
non-adaptive limitations of both the FT and WT.

Attributed to the locally adaptive feature, the EMD is potentially a powerful tool
for interpreting nonlinear and non-stationary signals. Nowadays, the EMD has been
extensively used for detecting the faults occurring in machines. The following is an
example of its application in the field of machine CM.

A defective gearbox is considered in this example. The surface of one gear of
this gearbox is pitted due to overloading. The defective gear is shown in Fig. 1.

In the experiment, the vibration acceleration signals were collected by using a
sampling frequency of 20 kHz. The accelerometer for data acquisition was mounted
on the case of the gearbox. To facilitate understanding, the vibration signals col-
lected before and after the gear surface was pitted are shown in Fig. 2. Where, the
first 0.4 s data is the signal for healthy gearbox, while the second 0.4 s is the signal
obtained after the gear became defective.

Then, apply the EMD to analysing the signal. The corresponding signal
decomposition results are shown in Fig. 3.
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From Fig. 3, it can be found that the raw signal is decomposed into 13 IMFs.
The characteristic impact features induced by the pitted gear surface can be clearly
observed from the first IMF, while they are absent from the time waveform of
‘imf1’ when the gearbox is healthy. Moreover, Fig. 3 shows that all obtained IMFs
are zero-mean oscillations. Therefore, the negative influence of variable operational
conditions of the machine on CM is not an issue for the EMD-based CM technique.
Thus, through observing the time waveforms of the EMD resultant IMFs, the health
condition of the machine may be correctly assessed. Moreover, as the EMD does
not involve any complex transform calculations like the WT does, the EMD-based
CM method is more efficient in computation.

However, the EMD was initially designed to processing one-dimensional sig-
nals. It is unable to execute information fusion, which considers multiple CM
signals collected simultaneously from the inspected machine and has potential to
lead to more reliable CM conclusion. Accordingly, to enhance the capability of the
EMD, Complex Empirical Mode Decomposition [12], also namely Bivariate
Empirical Mode Decomposition (BEMD), was proposed [13].

(a) Gearbox (b) Defective gear surface

Fig. 1 Gearbox being inspected

Fig. 2 Gearbox vibration signal
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3 Bivariate Empirical Mode Decomposition

The BEMD was designed specifically to deal with complex-valued signals. In the
application of rotating machine CM, the complex-valued signal can be constructed
by using the vibration signals collected in two mutually perpendicular directions.
But in the CM of other machinery, specific conversions are often required when
constructing the complex-valued signal. An example of this conversion will be
given in next Section to ease understanding.

The calculation method of the BEMD is similar as that of the EMD except some
necessary modifications in extrema detection and envelope definition. Assume a
complex valued signal xðtÞ, the computing algorithm of its BEMD is described as
follows [13].

Fig. 3 The EMD results of the gearbox vibration signal
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Step 1. Determine the number of projection directions N and calculate the pro-
jection directions un, i.e.

un ¼
2p
N

� n n 2 1; N½ � ð2Þ

Step 2. Project the complex valued signal xðtÞ on the direction un by

Pun
ðtÞ ¼ Re e�jun � xðtÞ� �

j ¼
ffiffiffiffiffiffiffi
�1

p
ð3Þ

Step 3. Find all local maxima of Pun
ðtÞ and record their locations and values

tni ;Pun
tni
� �� �� �

. Herein, i indicates the No. of individual local maxima;
Step 4. Interpolate the set tni ; Pun

tni
� �� �� �

by using cubic spline line to obtain the
envelop curve eun

ðtÞ in direction un;
Step 5. Repeat Steps 2–4 until the envelop curves in all N projection directions are

obtained;
Step 6. Compute the mean of all envelop curves by

mðtÞ ¼ 1
N

XN
n¼1

eun
ðtÞ ð4Þ

Step 7. Subtract mðtÞ from xðtÞ and obtain hðtÞ, i.e.

hðtÞ ¼ xðtÞ � mðtÞ ð5Þ

Step 8. Examine whether the obtained hðtÞ satisfies the conditions of an IMF. If
not, let xðtÞ ¼ hðtÞ and repeat the calculations depicted from Steps 2–7
until the obtained hðtÞ is an IMF. If yes, go to next step;

Step 9. Record the obtained hðtÞ as an IMF and remove it from original signal xðtÞ,
i.e.

IMF1ðtÞ ¼ hðtÞ ð6Þ

r1ðtÞ ¼ xðtÞ � IMF1ðtÞ ð7Þ
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Step 10. Treat r1ðtÞ as a new original signal and repeat above calculations until
achieve a new IMF. Then, calculate the new residual component by

r2ðtÞ ¼ r1ðtÞ � IMF2ðtÞ ð8Þ

Step 11. Iterate the above calculations until all IMFs embedded in the original
signal xðtÞ are obtained. Finally, the signal xðtÞ can be expressed as

xðtÞ ¼
XK
k¼1

IMFk tð Þþ rkðtÞ ð9Þ

where K indicates the total number of the IMFs extracted from the original signal.
From the computing algorithm described above, it is found that the BEMD

performs the decomposition of the real and imaginary parts of the complex-valued
signal simultaneously. Such a calculation method not only significantly improves
the computing efficiency, but also perfectly preserves the phase information of the
signal in the decomposition results. All these advantages will benefit machine CM.
Some examples are given below for demonstration.

4 Applications of the BEMD in Machine Condition
Monitoring

In this section, the superiorities of the BEMD over the traditional EMD in the field
of machine CM will be demonstrated via a few examples.

4.1 The CM of Bearing-Shaft Systems

The bearing-shaft systems have been extensively used in rotatingmachinery. They are
critical subassemblies to assure the machines are able to successfully deliver assigned
tasks. So, it is necessary to understand their instant operational and health conditions
via a reliable CM system. Since allowing the fusion of three dimensional information,
the BEMD is regarded as one of themost promising techniques formachineCM. Such
point of view will be demonstrated by the CM practice depicted below.
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(a) Rotor-stator rubbing

Firstly, the shaft vibration signals collected from a centrifugal compressor with
rotor-stator rubbing fault are investigated by using the BEMD. The signals were
collected by using a sampling frequency of 2 kHz from two mutually perpendicular
proximeters installed on the bearing case. The obtained vibration signals and the
corresponding shaft vibration orbit are shown in Fig. 4.

In [14], both the vibration signals shown in Fig. 4 were processed by using the
EMD in order to extract the purified vibration orbit of the shaft, so that the
rotor-stator rubbing phenomenon can be observed clearly from the purified pattern.
This is indeed an innovative idea to reconstruct the vibration orbit of a shaft-bearing
system by taking advantage of the EMD in signal representation. However, the
separate decomposition of the signals collected in two directions by using the EMD
cannot preserve the relative phase information between two signals. In addition,
owing to the EMD is very sensitive to the noise contained in the signals, different
numbers of the IMFs might be obtained from the two signals if they are respec-
tively processed by the EMD, as shown in Fig. 5. Then, how to select appropriate
IMFs to reconstruct the purified shaft vibration orbit will become a difficult issue.
Due to these limitations, the purified shaft orbit obtained by the traditional EMD
approach might be unable to correctly reflect the actual machine vibration and
probably lead to wrong machine CM conclusion. In view of this, the BEMD is
applied to interpret the signals in [15].

As mentioned in Sect. 3, use the vibration signals collected in two mutually
perpendicular directions xðtÞ and yðtÞ to construct a new complex-valued signal
zðtÞ, i.e.

zðtÞ ¼ xðtÞþ jyðtÞ; j ¼
ffiffiffiffiffiffiffi
�1

p
ð10Þ

Apply the BEMD computing algorithm depicted in Sect. 3 to zðtÞ, the corre-
sponding signal decomposition results are shown in Fig. 6. Where, the black lines
represent the real parts while the red lines are the imaginary parts of the
complex-values IMFs.

Fig. 4 The shaft vibration signals from a compressor with rotor-stator rubbing fault [15]
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(a) x-direction

(b) y-direction 

Fig. 5 The EMD results for the shaft vibration signals in Fig. 4
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Since in the BEMD calculations, the signals xðtÞ and yðtÞ are treated as one
signal and decomposed simultaneously, not only the computational efficiency is
improved, but also the phase information between signals xðtÞ and yðtÞ is perfectly
preserved in the BEMD results. Moreover, they are decomposed into the same
number of IMFs, avoiding the orbit construction difficulties met in the EMD sce-
nario. All these merits of the BEMD are very helpful to improve the reliability of
machine CM results. For comparison, the three dimensional purified shaft vibration
orbits obtained respectively by the EMD and BEMD approaches are shown in
Fig. 7. Both are reconstructed by using the first six IMFs.

From Fig. 7, it is clearly seen that, in comparison of the result by the EMD, the
purified shaft vibration orbit obtained by the approach of the BEMD better reveals
the sharp turning behavior of the shaft due to rotor-stator rubbing.

(b) Fluid excitation

Fluid excitation is a phenomenon often occurs in large steam turbines or com-
pressors. Once happened, they will cause significant vibration to machine structures
thus result in additional fatigue issues, reducing the reliability of the machine and
even causing immediate damage to the machine structure in worse case. Figure 8

Fig. 6 The corresponding BEMD results for the shaft vibration signals in Fig. 4 [15]
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shows the vibration displacement signals collected from a compressor when it was
experiencing fluid excitation. The signals are from two transducers that are mounted
in two mutually perpendicular directions.

From Fig. 8, it is seen that both signals are nonlinear and non-stationary over
time. So, strictly speaking, the traditional FT-based techniques are not suitable to be
applied to process this kind of signals, although the FT and its extension forms have
been extensively used in the past decades. In order to diagnose this fault, both two
dimensional and the corresponding three dimensional shaft vibration orbits are
drawn in Fig. 9, so that more shaft vibration information can be extracted from
them.

(a) The result by the EMD

(b) The result by the BEMD

Fig. 7 The purified shaft vibration orbit
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From Fig. 9, it is found that in contrast to the two dimensional orbit shown in
Fig. 9a, the three dimensional orbit in Fig. 9b obviously discloses more details
about the shaft vibration. The fluid excitation induced nonlinear and non-stationary
vibration of the shaft can be observed more clearly. However, owing to the influ-
ence of background ‘noise’ contained in the signals, the nonlinear and
non-stationary vibration behavior of the shaft is still not vividly displayed in
Fig. 9b. Therefore, the BEMD is adopted to purify the signals. The BEMD results
and the corresponding purified three dimensional shaft vibration orbit are shown in
Fig. 10. Where, the purified shaft vibration signals are reconstructed by using the
third and forth IMFs (i.e. imf3 and imf4) as they are large in amplitude thus
dominate the vibration of the shaft.

Fig. 8 Vibration signals when the machine experience fluid excitation

(a) Two dimensional orbit (b) Three dimensional orbit

Fig. 9 Shaft vibration orbit when fluid excitation happens
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From Fig. 10, it is obviously found that the fluid excitation induced nonlinear
and non-stationary shaft vibration features have been vividly illustrated from both
purified signals and the resultant three dimensional shaft vibration orbit. This will
be very helpful to the operator to obtain right assessment of the machine operational
and health condition.

(c) Looseness

Owing to the poor installation and constant vibration, component looseness could
happen in all kind of machines, including rotating machinery. If it cannot be
detected, the operational performance of the machine will be affected. In the worst
case, it could lead to catastrophic damage to the machine. Therefore, the instant
detection of component looseness fault is helpful not only to ensure the operating
performance of the machine, but also to assure its safety.

In order to demonstrate the contribution of the BEMD to the detection of this
kind of faults, Fig. 11 shows two shaft vibration signals collected from a rotating
machine when the machine suffers component looseness issue. The signals were
collected also from two proximeters installed in mutually perpendicular directions.

To facilitate analysis, the two dimensional and three dimensional shaft vibration
orbits are also considered. They are shown in Fig. 12.

From the vibration signals and shaft vibration orbits shown in Figs. 11 and 12, it
can be sure that the signals are nonlinear and non-stationary over time. However, it
is difficult to relate them to the shaft vibration of a rotating machine. Despite of the
types of the faults, the shaft vibration signals are always associated with the har-
monic oscillations and their compositions by various means. But such an empirical
knowledge can hardly be demonstrated via the signals shown in Figs. 11 and 12.
This could confuse the operator and even mislead them to reach a wrong CM
conclusion. Therefore, the BEMD is tried in the following to see whether it can help
to clarify the misunderstanding. Accordingly, the BEMD is applied to analyze the
complex-valued signal that is constructed by using the two raw vibration signals in
Fig. 11. The BEMD results, the resultant purified shaft vibration signals, and the
corresponding purified shaft vibration orbit are shown in Fig. 13. Where, the
purified shaft vibration signals are reconstructed by using the first four IMFs (i.e.
imf1, imf2, imf3 and imf4) as they are large in amplitude and dominate the
vibration of the shaft.

From Fig. 13, it has no doubt that the looseness induced nonlinear and
non-stationary shaft vibration has been vividly represented by the purified signals
and the corresponding shaft vibration orbit.

From the three examples depicted above, it can be concluded that the BEMD
does show great advantages in both signal decomposition and signal presentation.
In other words, the BEMD perfectly preserves the phase information of vibration
signals, which guarantee the correctness of the reconstructed signals. Attributed to
this merit, the BEMD allows a vivid description of the shaft vibration behavior,
which is of great importance to realizing the reliable CM of rotating machinery.
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(a) The BEMD results

(b) Purified shaft vibration signals

(c) Purified shaft vibration orbit 

Fig. 10 The detection of
fluid excitation fault by the
BEMD
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4.2 The CM of Wind Turbines

The application of the BEMD was also extended to the CM of variable speed
machinery, for example wind turbines. Since wind turbines operate directly in harsh
environment and are subjected to constantly varying loads, they suffer a number of
reliability issues. Thus, it is very necessary to monitor them appropriately.
However, as wind turbines always operate at variable speeds in order to capture
more energy from wind, the varying operational and loading conditions make the
wind turbine CM signals more complex in both time and frequency domains. So,
the CM of wind turbine is more difficult and challenging [16].

(a) Two dimensional orbit (b) Three dimensional orbit

Fig. 12 Shaft vibration orbit in the presence of looseness

Fig. 11 Vibration signals when looseness happens
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(a) The BEMD results

(b) The purified shaft vibration signals

(c) The purified shaft vibration orbit

Fig. 13 The detection of
component looseness fault
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To develop reliable wind turbine CM techniques, a wind turbine CM test rig was
specifically developed at the University of Durham, as shown in Fig. 14.

The test rig comprises a 54 kW DC variable-speed motor, a two-stage gearbox
and a 30 kW three-phase four-pole wound-rotor induction generator, instrumented
and controlled using LabVIEW. In the experiments, a variety of wind speed inputs
could be applied to the test rig via the DC motor, the speed of which is controlled by
an external model incorporating the properties of natural wind at a variety of speeds
and turbulences and the mechanical behavior of a 2 MW wind turbine operating
under closed-loop conditions. Relevant CM signals were collected from the termi-
nals of the generator and the drive train when subjected to this driving speed.

Herein, it is worth to note that the stator of the induction generator fed the
three-phase mains, while its rotor circuit is coupled via slip rings to an external
three-phase resistive load bank, so that the rotor electrical imbalance fault can be
applied to the test rig. In addition, a circular plate was mounted on the input shaft of

(a) Side view

(b) Plan view

Fig. 14 Wind turbine CM test rig
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the generator, on which various sizes of unbalance masses are allowed to install to
emulate the mechanical unbalance fault. To facilitate understanding, the schematic
diagram of the test rig is illustrated in Fig. 15.

(a) Electrical fault detection

Firstly, different severity levels of ‘rotor winding faults’ were emulated on the test
rig by repeatedly adjusting the phase resistances of the generator rotor with the aid
of the external resistive load bank. The obtained electrical current and voltage
signals are shown in Fig. 16.

As shown in Fig. 16, in total 3 line electrical IR; IY ; IBð Þ and 3 phase voltage
signals VR;VY ;VBð Þ were collected in the experiment. Considering the EMD cannot
process multiple signals in parallel, the electric power based on these current and
voltage signals is calculated. The obtained power signals and its EMD results are
shown in Fig. 17.

From the EMD results shown in Fig. 17, it is difficult to find any convincing
evidence that can indicate the rotor winding faults and their severity levels. From
the time waveform of the forth IMF (i.e. imf4), the serious winding fault can be
perceived, but it is still not convincing enough as a proof of CM. Therefore, the
BEMD is applied to analyze the signals. But as mentioned above, a complex-valued
signal should be constructed before the application of the BEMD.

In order to convert these electric current and three voltage signals to be a
complex-values signal zðtÞ that can be processed by the BEMD, the following
conversion is performed based on the idea of Parker’s vector [17].

Fig. 15 The schematic diagram of the test rig [18]
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Then, a complex-valued signal can be constructed from the resultant PðtÞ and
QðtÞ, i.e.

zðtÞ ¼ PðtÞþ jQðtÞ; j ¼
ffiffiffiffiffiffiffi
�1

p
; ð14Þ

Apply the BEMD to the obtained zðtÞ and the corresponding results are shown in
Fig. 18.

From Fig. 18, it is found that both the real and imaginary parts of the third IMF
(i.e. imf3) show changes when the electric asymmetry was applied to the rotor of
the generator. Thus, imf3 can be regarded as the purified signal to conduct further
CM. The amplified time waveforms of the real and imaginary parts of imf3 are
illustrated in Fig. 19 to ease understanding.

Fig. 16 Electrical signals collected from the wind turbine CM test rig [15]
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(a) Electric power signal

(b) The EMD result 

Fig. 17 The electric power signals and its EMD results [15]. a Electric power signal [15]. b The
EMD result
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Fig. 18 The BEMD results of the complex-valued electrical signal [15]

Fig. 19 Purified electrical signals by the BEMD [15]
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However, the fault severity levels still cannot be identified from the purified
signals shown in Fig. 19. Thus, the following CM criterion is employed. The
corresponding calculation result is shown in Fig. 20.

kðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT

t¼0 pðtÞ � �p½ �2PT
t¼0 qðtÞ � �q½ �2

s
ð15Þ

where �p and �q represent the average values of the two purified signals pðtÞ and qðtÞ.
From Fig. 20, it is interestingly found that the severity levels of the faults have

been correctly identified, i.e. the slight fault is indicated by a smaller value of k,
while the serious fault is indicated by a larger value of k.

(b) Mechanical fault detection

Then, a rotor mechanical unbalance fault was emulated on the wind turbine CM test
rig by applying an unbalance mass to the circular plate. It has been shown that the
generator electrical signals are also sensitive to the mechanical faults occurring in
wind turbine drive train as these faults will either disturb the torque transmission by
the drive train or modify the electromagnetic field within the rotor-stator gap of the
generator. However, the mechanical vibration signals are insensitive to the electrical
faults occurring in wind turbine generator. For this reason, the electrical current and
voltage signals were collected from the terminals of the generator before and after
the mechanical unbalance fault was applied. The corresponding signal waveforms
are shown in Fig. 21.

Likewise, to highlight the outstanding capability of the BEMD in both signal
decomposition and signal presentation and therefore its unique contribution to
machine CM, the EMD is employed first for comparison. Considering the EMD is
only able to process one dimensional signals, the electric power signal was cal-
culated from the signals shown in Fig. 21. The time waveform of the resultant
electrical power signal and its EMD results are shown in Fig. 22.

From Fig. 22, it is seen that only the first IMF (i.e. imf1) derived by the EMD
seems indicate the presence of the ‘mechanical unbalance fault’. But the

Fig. 20 CM result obtained by the approach of the BEMD [15]
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fault-induced change in signal amplitude is too small to be accepted as a convincing
CM proof. Thus, the BEMD is adopted for detecting the fault.

As done above, to enable the BEMD analysis the electric current and voltage
signals shown in Fig. 21 are converted to be a complex-valued signal first by using
the Eqs. (11)–(14), and then the BEMD is applied to the resultant complex-valued
signal. The corresponding signal decomposition results are shown in Fig. 23.

From Fig. 23, it is seen that in contrast to the EMD results, both the real and
imaginary parts of the first and second IMFs (i.e. imf1 and imf2) obtained by the
BEMD have presented much clearer indication to the presence of the ‘mechanical
unbalance fault’. Hence, the purified real and imaginary parts, i.e. the purified pðtÞ
and qðtÞ, of the signal are reconstructed by using imf1 and imf2. The resultant
purified signals are shown in Fig. 24.

From Fig. 24, it is found that both the purified pðtÞ and qðtÞ do provide clear
indication to the ‘mechanical unbalance fault’. Furthermore, the CM criterion
depicted by Eq. (15) is calculated by using the purified signals in Fig. 24. The final
CM result is shown in Fig. 25.

From Fig. 25, it is seen that in the presence of the ‘mechanical unbalance fault’,
the calculated value of the CM criterion k increases significantly, while the value of
k returns back normal level as soon as the fault is absent from the test rig. This
demonstrates that the ‘mechanical unbalance fault’ has been successfully detected
with the aid of the BEMD.

Based on the aforementioned two experiments, it can be concluded that

(1) The BEMD inherits all advantages of the EMD. The resultant zero-mean IMFs
completely overcome or significantly mitigate the negative influences of wind
turbine varying operational and loading conditions on its CM signals. Thus, the

Fig. 21 Electrical signals obtained when emulating mechanical unbalance fault [15]
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(a) Electrical power signal

(b) The EMD results

Fig. 22 Detect mechanical unbalance fault by the approach of the EMD
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Fig. 23 The BEMD results for the signals in Fig. 15 [15]

Fig. 24 The purification results based on the signal decomposition results in Fig. 17 [15]
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application of the BEMD has potential to lead to a more reliable wind turbine
CM conclusion;

(2) The BEMD-based CM criterion depicted by Eq. (15) is effective in detecting
both the electrical and mechanical faults occurring in wind turbine drive train.

5 Concluding Remarks

From the work depicted above, the following concluding remarks can be made.

• The EMD enables a ‘real-life’ representation of the CM signal of interest
attributed to its locally adaptive capacity that enable it can exactly match the
signal features. The vivid and correct representation of the signal can signifi-
cantly benefit machine CM, particularly in feature extraction and fault diagnosis.
However, the EMD was designed only to process one-dimensional signals.
Thus, it is unable to deal with information fusion issues in machine CM;

• The BEMD inherits all advantages of the EMD and moreover possesses an
additional unique capacity of information fusion, attributed to which the BEMD
effectively preserves the phase information of the signals in decomposition
process. Thus, in contrast to the traditional EMD and the other TFA methods,
the BEMD makes it more realistic than ever before to conduct reliable machine
CM by the approach of information integration and/or fusion;

• As the resultant IMFs are zero-mean signals, both the EMD and BEMD over-
come the negative influences of varying operational conditions on machine CM
signals. This provides a new clue to develop operational-condition-independent
CM techniques, which are very necessary and important for conducting the CM
of variable speed machines, like wind turbines, helicopters and so on;

• Since the BEMD treats the signals collected from two transducers as one
complex-valued signal, the BEMD is more efficient CM technique in compu-
tation than its counterpart EMD.

Fig. 25 CM result when mechanical unbalance fault occurs
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Time-Frequency Demodulation Analysis
Based on LMD and Its Applications

Yanxue Wang, Xuefeng Chen and Yanyang Zi

Abstract A time-frequency demodulation technique based on local mean
decomposition (LMD) is proposed for rotating machine diagnosis. In addition,
methods for boundary processing and for determining the step size of the moving
average are presented to improve LMD algorithm. Instantaneous amplitude
(IA) and instantaneous frequency (IF) of the signal can be achieved using the
improved LMD method. A well-constructed description of the derived IAs and IFs
is represented in the form of instantaneous time-frequency spectrum (ITFS), which
preserves both the time and frequency information simultaneously. Results of three
synthetic signals indicate that the proposed method is much better in extracting the
comprehensive carrier and modulated components, compared with Hilbert-Huang
transform and stationary wavelet transform. The validity of the technique is further
demonstrated on the rotor system and a gearbox. The transient fluctuations of the IF
and the impulsive signatures can be successfully identified in the ITFS. Moreover, it
has been demonstrated that the proposed time-frequency demodulation technique is
much more effective and sensitive than the other methods in detecting impulsive
and modulated components.

1 Introduction

Modulated signals (AM/FM) widely exist in the vibration signal analysis and
machinery fault diagnosis. Extracting the time-varying amplitude and frequency
information from these signals are of great significance to determine the fault type
and location. Hilbert transform and Teager energy operator (TEO) [1, 2] are
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commonly used for demodulation analysis, but they are only suitable for processing
mono-component signal. A variety of multi-component signal demodulation anal-
ysis techniques have been developed subsequently, such as multiband energy
separation algorithm [3], periodic algebra separation, energy demodulation algo-
rithm [4], iterated Hilbert transform [5, 6], complex shifted Morlet wavelet [7],
EMD combined with TEO modulation [8, 9] and wavelet combined with TEO
modulation [10]. Recently, a time-frequency manifold correlation matching for
periodic fault identification in rotating machines was developed in [11].

Local mean decomposition (LMD) is an iterative decomposition method which
was developed by Smith [12]. LMD provides a new idea to compute the instan-
taneous frequency (IF) and instantaneous amplitude (IA). However, there are
several issues in the practical applications of the LMD. Thus, a new method of
boundary process and a strategy for determining the step size of moving average
(MA) are presented in this research, which improve the LMD method. Based on the
improved LMD, a novel time-frequency demodulated method, which is indepen-
dent of the HT, is proposed in this paper.

The rest of this paper is organized as follows. The instantaneous features of a
signal are first introduced in Sect. 2. The theory of LMD is briefly introduced in
Sect. 3. Section 4 discusses some key issues of LMD, such as boundary processing,
determination of the step size of the moving average and the construction of
instantaneous time-frequency spectrum. The validity of the LMD in the demodu-
lation analysis is verified in Sect. 5 using simulated signals. Several practical
applications of time-frequency demodulation are presented in Sect. 6. Conclusions
are finally given in Sect. 7.

2 Instantaneous Features of a Signal

It’s necessary to introduce the concept of IA and IF corresponding to AM/FM. For a
mono-component signal

xðtÞ ¼ a cos 2pf � tþu0ð Þ ð1Þ

Signal xðtÞ is defined by three parameters, amplitude a, frequency f, and initial
phase u0. For convenience, circular frequency x x ¼ 2pfð Þ is considered instead of
f. Generally speaking, the amplitude and frequency are always the function of time,
thus xðtÞ can be written

xðtÞ ¼ aðtÞ cos 2pf ðtÞ � tþu0½ � ð2Þ

Because of the time-varying characteristic, aðtÞ and f ðtÞ are named as IA and IF
of signal xðtÞ, respectively. When f ðtÞ is changed with a nonzero rate of Df ðtÞ, that
is, f ðtÞ ¼ f0 þDf ðtÞ, and instantaneous phase (IP) can be written below
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uðtÞ ¼ 2pf0 � tþ 2p
Z t

0

Df 1ð Þd1þu0 ð3Þ

in which uðtÞ is an IP. Thus, IF can be seen as first-order derivative of uðtÞ.
Moreover, IA can be obtained via the average of signal local instantaneous period
amplitude.

aðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

TðtÞ
Z t

t�TðtÞ

x2ðfÞdf

vuuut ð4Þ

where TðtÞ ¼ 1=f ðtÞ. Practically, signal demodulation with LMD method is in
nature based on this idea, which can be seen in the following sections.

Indeed, the IP is also able to obtain by applying another solution of the analytic
signal. Equation 2 can be abbreviated as xðtÞ ¼ aðtÞ cos uðtÞ½ �, for a non-analytic
signal xðtÞ. There are many combination form aðtÞ; uðtÞ½ � which can generate xðtÞ.
It’s possible to get an analytic signal by using the original signal and its conjugation
signal.

xþ ðtÞ ¼ xðtÞþ j~xðtÞ ð5Þ

The conjugation signal ~xðtÞ ¼ R1�1
x sð Þ

p t�sð Þ ds is the Hilbert transform of xðtÞ.
Therefore, the analytic signal xþ ðtÞ can be represented as xþ ðtÞ ¼ aþ ðtÞeiuþ ðtÞ via
the unique pair of normalized amplitude and phase aþ ðtÞ;uþ ðtÞ½ � [13], in which
aþ tð Þ and uþ tð Þ are obtained respectively

aþ ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðtÞþ~xðtÞ

p
; uþ ðtÞ ¼ arctan

~xðtÞ
xðtÞ ð6Þ

Moreover, IF is denoted as the derivative of phase of an analytic signal

f ðtÞ ¼ 1
2p

duþ ðtÞ
dt

¼ 1
2p

xðtÞ _~xðtÞ � _xðtÞ~xðtÞ
x2ðtÞþ~x2ðtÞ ð7Þ

It should be noted that the approach for solving IA and IF mentioned above is
widely used in EMD technology.
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3 A Brief Introduction of LMD

LMD is an adaptive signal decomposition method and is first successfully applied
to electroencephalogram signal [12]. LMD can decompose a complicate
multi-component signal into a set of product functions (PFs). Each PF component is
a product of a pure FM signal and an envelope signal. IF of each PF can be directly
deduced from the pure FM signal with clear physical meanings, while the envelope
signal is the IA. For a given signal, the process of LMD is written as follows,

(i) Determine all local maxima nij klð Þ; kl ¼ k1; k2; . . .; kM of original signal, kl is
the index of a maximum, M is the number of maxima, the subscript i indi-
cates the ith PF and the subscript j represents the cycle number. So the local
mean and local magnitude is written below

mijðtÞ ¼ nij klð Þþ nij kiþ 1ð Þ
2

; kl ¼ k1; . . .; kM�1; t 2 kl; klþ 1½ Þ ð8Þ

aij tð Þ ¼
nij klð Þ � nij klþ 1ð Þ�� ��

2
; kl ¼ k1; . . .; kM�1; t 2 kl; klþ 1½ Þ ð9Þ

(ii) The calculated local mean mijðtÞ and local magnitude aijðtÞ gernerated by
Eqs. (8) and (9) are shown in Fig. 1. Then, the local mean ~mijðtÞ and
magnitude ~aijðtÞ are smoothed by using the moving average (MA).

(iii) The first smoothed local mean function ~m11ðtÞ is separated from original
signal x tð Þ, so we can obtain

h11ðtÞ ¼ x tð Þ � ~m11ðtÞ ð10Þ

Fig. 1 The results of local mean and local magnitude
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The FM component s11ðtÞ is achieved using h11ðtÞ divided by ~aijðtÞ,

s11ðtÞ ¼ h11ðtÞ
~a11ðtÞ ð11Þ

It is expected that s11ðtÞ is a pure FM signal which oscillates in the interval of
[–1, 1]. Thus, it is necessary to repeatedly perform the above process (i) * (iii)
until the expected FM signal s1r1ðtÞ is obtained. If r1 represents iterative times
corresponding to the first pure FM signal.

The whole iterative process can be represent by,

h11ðtÞ ¼ xðtÞ � ~m11ðtÞ
h12ðtÞ ¼ s11ðtÞ � ~m12ðtÞ

..

.

h1r1ðtÞ ¼ s1 r1�1ð ÞðtÞ � ~m1r1ðtÞ

8>>><
>>>:

ð12Þ

s11ðtÞ ¼ h11ðtÞ
~a11ðtÞ

s12ðtÞ ¼ h12ðtÞ
~a12ðtÞ

..

.

s1r1ðtÞ ¼ h1r1 ðtÞ
~a1r1 ðtÞ

8>>>>><
>>>>>:

ð13Þ

The stopping criterion for the iteration is

limr1!1 a1r1ðtÞ ¼ 1 ð14Þ

(iv) Multiply all the smoothed envelop functions generated in the above iterative
process, then the first IA function a1ðtÞ is expressed as

a1ðtÞ ¼ ~a11ðtÞðtÞ~a12ðtÞðtÞ . . . ~a1r1ðtÞ ð15Þ

and its corresponding IP can be obtained by the first pure FM function using

u1ðtÞ ¼ arccosðs1r1ðtÞÞ ð16Þ

By the derivation of IP, we can get the IF,

f1ðtÞ ¼ fs � du1ðtÞ
2p � dt ð17Þ

Multiply the first IA a1ðtÞ with the pure FM signal s1r1ðtÞ, the first PF component
of original signal can be derived
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PF1ðtÞ ¼ a1ðtÞs1r1ðtÞ ð18Þ

An example of the IA, FM and PF achieved with Eq. 18 are shown in Fig. 2.

(v) Separate the first PF component PF1ðtÞ from the original signal, we get the
signal u1 tð Þ. Considering this signal as a new original signal, then repeat the
above steps (i) * (iv) p times until up tð Þ becomes a monotone series

u1ðtÞ ¼ xðtÞ � PF1ðtÞ
u2 tð Þ ¼ u1ðtÞ � PF2ðtÞ

..

.

upðtÞ ¼ up�1ðtÞ � PFpðtÞ

8>>><
>>>:

ð19Þ

Thus, the original signal is decomposed into a set of PF components and a
residual,

xðtÞ ¼
Xp
i¼1

PFiðtÞþ upðtÞ ð20Þ

Fig. 2 The achieved three components: IA, pure FM and the correspongding PF
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4 Some Key Issues of LMD

The theory of LMD algorithm has been discussed in the last section. There are
several issues that require further attention for effective application of LMD, for
example, boundary processing, determination of the step size of moving average
and construction of instantaneous time-frequency spectrum.

4.1 Boundary Processing

As is well known, if the upper and lower envelopes mentioned in EMD are not well
constructed, the ends of the time series will oscillate; then the end infection will
propagate inwards and corrupt the subsequent lower frequency IMFs [14]. LMD
adopts Eqs. 8 and 9 to estimate the local mean and local magnitude, and the
endpoint of the signal is not definitely the extrema, thus finding appropriate end
condition methods are also necessary in LMD. However, the issue of end effect is
not mentioned in [12]. According to the above theory of LMD, we develops two
methods for processing boundary in this work which each has their advantages and
disadvantages.

(a) Mirror symmetric extension method

The mirror symmetric extension is an effective method for boundary processing,
which is widely used in EMD, WT and other signal analysis techniques. Supposed
the discrete signal is:

X ¼ X 1ð Þ;X 2ð Þ; . . .;X nð Þ½ �; T ¼ T 1ð Þ; T 2ð Þ; . . .; T nð Þ½ � ¼ ½t1; t2; . . .; tn�; ð21Þ

First, find maxima and minima of XðtÞ with respect to sequence subscript
Im; Inð Þ, their ordinate values Tm; Tnð Þ and their abscissa values U;Vð Þ, denoted as:

Im ¼ Im 1ð Þ; Im 2ð Þ; . . .; Im Mð Þ½ � ð22Þ

In ¼ In 1ð Þ; In 2ð Þ; � � � In Nð Þ½ � ð23Þ

Tm ið Þ ¼ tImðiÞ;U ið Þ ¼ xImðiÞ; i ¼ 1; . . .;M ð24Þ

Tn ið Þ ¼ tInðiÞ;V ið Þ ¼ xInðiÞ; i ¼ 1; . . .;N ð25Þ

(i) Extension of left edge

For the time series X, as is shown in Fig. 3, the procedure that procedure of the
mirror extension is done below. In the case of Im 1ð Þ\In 1ð Þ and X 1ð Þ[V 1ð Þ,
maximum Im 1ð Þ is considered as the center of symmetric for extension of left edge,
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locations Tm; Tnð Þ and abscissa values of two successive minima and maxima are
written as

Tm 0ð Þ ¼ 2Tm 1ð Þ � Tm 2ð Þ; V 0ð Þ ¼ V 2ð Þ ð26Þ

Tm �1ð Þ ¼ 2Tm 1ð Þ � Tm 3ð Þ; V �1ð Þ ¼ V 3ð Þ ð27Þ

Tn 0ð Þ ¼ 2Tm 1ð Þ � Tn 1ð Þ; V 0ð Þ ¼ V 1ð Þ ð28Þ

Tn �1ð Þ ¼ 2Tm 1ð Þ � Tn 2ð Þ; V �1ð Þ ¼ V 2ð Þ ð29Þ

Otherwise, if X 1ð Þ\V 1ð Þ, as is shown in Fig. 4, left edge of time series will be
regarded as the symmetric center for mirror extension. Thus, extended extrema
locations Tm; Tnð Þ and their abscissa values U;Vð Þ are as follows:

Fig. 3 In the case of X 1ð Þ[V 1ð Þ the schematic figure for left edge extension of LMD

Fig. 4 In the case of X 1ð Þ[V 1ð Þ the schematic figure for left edge extension of LMD
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Tm 0ð Þ ¼ 2t 1ð Þ � Tm 1ð Þ; U 0ð Þ ¼ U 1ð Þ ð30Þ

Tm �1ð Þ ¼ 2t 1ð Þ � Tm 2ð Þ; U �1ð Þ ¼ U 2ð Þ ð31Þ

Tn 0ð Þ ¼ t 1ð Þ; V 0ð Þ ¼ X 1ð Þ ð32Þ

Tn �1ð Þ ¼ 2t 1ð Þ � Tn 1ð Þ; V �1ð Þ ¼ V 1ð Þ ð33Þ

In another case of In 1ð Þ\Im 1ð Þ, the left endpoint may not be definitely the
maximum or minimum. If X 1ð Þ\V 1ð Þ, i. e, X 1ð Þ is the first minimum of series, so
In 1ð Þ will be regarded as the symmetric center for left mirror extension:

Tm 0ð Þ ¼ 2t 1ð Þ � Tm 1ð Þ; U 0ð Þ ¼ U 1ð Þ ð34Þ

Tm �1ð Þ ¼ 2t 1ð Þ � Tm 2ð Þ; U �1ð Þ ¼ U 2ð Þ ð35Þ

Tn 0ð Þ ¼ t 1ð Þ; V 0ð Þ ¼ X 1ð Þ ð36Þ

Tn �1ð Þ ¼ 2t 1ð Þ � Tn 1ð Þ; V �1ð Þ ¼ V 1ð Þ ð37Þ

Otherwise, if X 1ð Þ[U 1ð Þ, X 1ð Þ should be regarded as the symmetric center for
left extension using the following equations:

Tm 0ð Þ ¼ t 1ð Þ; U 0ð Þ ¼ X 1ð Þ ð38Þ

Tm �1ð Þ ¼ 2t 1ð Þ � Tm 1ð Þ; U �1ð Þ ¼ U 1ð Þ ð39Þ

Tn 0ð Þ ¼ 2t 1ð Þ � Tn 1ð Þ; V 0ð Þ ¼ V 1ð Þ ð40Þ

Tn �1ð Þ ¼ 2t 1ð Þ � Tn 2ð Þ; V �1ð Þ ¼ V 2ð Þ ð41Þ

(ii) Extension of right edge

For the right edge extension of the time series, it also needs to consider that whether
the right edge is a maximum or a minimum, and the relationship between the right
endpoint and the first extremum. The boundary processes in detail are similar to (i),
thus it is not necessary to cover these again.

(b) Endpoint extrema prediction

Symmetric extension is a common technique in restraining the end effect of LMD.
However, it has some disadvantage, for example increasing the length of data and
the time-consumption. Therefore, a new boundary processing method is proposed
in [15], which uses the mean of extrema on the endings to obtain the controlled
local magnitude and local mean. This boundary processing method could keep
boundary from divergence and does not add additional computation. However, if
insufficient data points both at the beginning and at the end of finite-duration signals
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are used, the performance of this method is not better than that of mirror symmetric
extension.

mijðtÞ ¼
nij k1ð Þþ 2nij k2ð Þþ nij k3ð Þ�� ��

4
; t 2 ½k0; k1Þ ð42Þ

aijðtÞ ¼
nij kMð Þ � nij kM�1ð Þ�� ��

4
þ nij kM�1ð Þ � nij kM�2ð Þ�� ��

4
; t 2 ½k0; k1Þ ð43Þ

mijðtÞ ¼
nij kM�2ð Þþ 2nij kM�1ð Þþ nij kMð Þ�� ��

4
; t 2 kM ; kMþ 1½ Þ ð44Þ

aijðtÞ ¼
nij kMð Þ � nij kM�1ð Þ�� ��

4
þ nij kM�1ð Þ � nij kM�2ð Þ�� ��

4
; t 2 ½kM ; kMþ 1Þ ð45Þ

Actually, there are several methods in handling end-effect, but it is very difficult
for a technique (including the methods proposed in this paper) to be always suitable
for all the cases. Therefore, for the following applications of LMD in this paper, we
will firstly attempt to adopt extreme prediction boundary processing, if necessary
the mirror symmetric extension technique will be further considered.

4.2 Determination of the Step Size of MA

LMD method utilizes MA to generate smooth local mean and local magnitude. If
the step size of MA is not appropriately selected, it can severely influence the
decomposed PFs, IAs and IFs. Generally speaking, the step size of MA is set to
one-third of the longest local mean, which is verified to be effective for the
slow-varying filtered EEG data in [15]. When LMD method is applied to analyze
the impact-type transient vibration signals, such as signals induced by local defect
of bearing outer-race or inner-race, the impulsive features may be gradually pol-
ished with the increase of step size of MA, as is illustrated in Fig. 5. In fact, the

The increase of step 
size gradually increased

Fig. 5 The effects of step
size of MA on impulsive
signature
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influence of step size used in MA is similar to that of wavelet function adopted in
wavelet decomposition. If the selected wavelet function does not match the char-
acteristic embedded in the analyzed signal, the expected features will not be
extracted. However, EMD also suffers from a similar issue. Since many spline
functions can be employed in the EMD technique, such as different order poly-
nomial spline function, B-spline function and Hermite-spline function.
Nevertheless, cubic spline function widely adopted in EMD is still chosen
empirically.

In view of the above problems, a new strategy for the determination of the step
size of MA is proposed in [15]. Since the extrema can be determined with Eq. 12
which is associated with hi j�1ð ÞðtÞ, so

D klð Þ ¼ kl � kl�1; l ¼ 1; 2; . . .;Mþ 1 ð46Þ

ML ¼ maxD klð Þ ð47Þ

w ¼ ML=R ð48Þ

where w is the step size of MA, and R is a constant. When LMD is used to analyze
slow-varying signals, the results may be similar for different R (such as R = 3 or
R = 5). While transient signal is analyzed, R = 5 or bigger value should be selected.
Moreover, it should be noted that when R is greater, on the one hand it results in
better extracting impulsive feature due to the smaller step of MA, on the other hand
it increases the burden of processing. R is set to 3 in the following sections, and the
step-size is determined using Eqs. 46–48.

4.3 Instantaneous Time-Frequency Spectrum

The time-frequency analysis technique can provide information of signal both in
time domain and frequency domain simultaneously, therefore it has found a wider
range of applications. Instantaneous time-frequency spectrum (ITFS) of LMD is
based on the achieved IFs and IAs, which comprehensively reflects the changes of
frequency and amplitude over time [15]. The IA of LMD can be obtained by
Eq. 17, and IF is derived using Eq. 17, i.e., the first derivative of IP. Similar to the
Hilbert-Huang spectrum (HHS) [14, 16], ITFS does not involve the concept of
time- and frequency-resolution but IF. In order to calculate IF, the discrete IP
function ujðtÞ has been deconvoluted and the accurately derivation of IP is written
as its numerical derivation method [17],

_uj n½ � ¼ 1
12

uj n� 2½ � � 8uj n� 1½ � þ 8uj nþ 1½ � � uj nþ 2½ �� � ð49Þ
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On the two endpoints of time series, we can adopt the derivation on the
boundary [17], for example on the left ledge

_uj n½ � ¼ 1
12

�25uj n½ � þ 48uj nþ 1½ � � 36uj nþ 2½ � þ 16uj nþ 3½ � � 3uj nþ 4½ �� �
ð50Þ

and similarly, on the right ledge

_uj n½ � ¼ � 1
12

�25uj n½ � þ 48uj n� 1½ � � 36uj n� 2½ � þ 16uj n� 3½ � � 3uj n� 4½ �� �
ð51Þ

Moreover, smooth window average technology mentioned in [18] can be utilized
to calculate IF via Kaiser window function is written as

h n½ � ¼ 1:5N
N2 � 1

1� n� 0:5N � 1ð Þ
0:5N

� �2
 !

ð52Þ

_uj n½ � ¼
XN�1

n¼1

h n½ � uj nþ 1½ � � uj n½ �� � ð53Þ

Different from EMD method, the HHS can be structured by Hilbert transform
based on the generated IMFs. However, IA and IF have been directly obtained,
ITFS of LMD is constructed independent of Hilbert transform along with decom-
position. The derived ITFS for the time series X can be expressed as follows

ITFSX t; fð Þ ¼
XJ
j¼1

aj t; fj tð Þ
� � ¼XJ

j¼1

X
i

aj tð Þd f � fji tð Þ
� � ð54Þ

ITFS comprehensively reflects the extracted information. Therefore, its appli-
cations in demodulation of simulated and practical signals are investigated in the
following sections.

5 Time-Frequency Demodulation Analysis
for the Simulated Signals

The AM and FM signals are simulated and adopted here. It is very difficult to
distinguish them in frequency, for they have almost similar spectra. Effectiveness of
ITFS in time-frequency demodulation is conducted in this section, compared with
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Hilbert-Huang Spectrum (HHS) [14] and wavelet projection Hilbert spectrum
(WPHS) [17].

5.1 AM Signal Demodulation

An AM signal s1ðtÞ is represented as follows

s1ðtÞ ¼ cos 2p � 400 � tð Þ � 1þ 0:5 cos 2p � 25 � tð Þð Þ; t 2 0; 0:512½ � ð55Þ

Figure 6 illustrates its time-domain waveform and spectrum. It can be seen in the
spectrum there is a dominant 400 Hz frequency associated with 25 Hz sideband.
Figure 7a shows the decomposed PF components, where one can find the boundary
is done well using the proposed technique. The ITFS of LMD is shown in Fig. 7b
where it can be clearly seen that LMD well extracts the carrier and modulated
components of the designated signal. In addition, the derived IF of the carrier
(400 Hz frequency component) is illustrated as a horizontal line with periodically
changed magnitude (25 Hz modulator) which indicates it is an AM signal. The
obtained HHS and WPHS as shown in Fig. 7c, d, respectively. We can find the
HHS is well to extract the 25 Hz modulator component, but the carrier is not
obvious. Though WPHT can better extract carrier component, but modulator
information is missing.
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Fig. 6 The simulated AM signal and its spectrum
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5.2 FM Signal Demodulation

The s2ðtÞ is a FM signal and is expressed as

s2ðtÞ ¼ cos 2p � 400 � tþ 0:5cos 2p � 25 � tð Þð Þ; t 2 0; 0:512½ � ð56Þ

Figure 8 shows its time-domain waveform and spectrum. We can find the
dominant frequency and sideband in Fig. 8 are the same with those shown in Fig. 6.
Figure 9a, b show that PF components and ITFS achieved by LMD. In the ITFS,
we can clearly find the 400 Hz carrier component and 25 Hz modulator component.
Different from the result shown in Fig. 7b, both the carrier and modulator com-
ponents fluctuate (i.e., frequency changes with time), which is actually the nature of
an FM signal. Results of HHS and WPHS are shown in Fig. 9c, d, respectively.
Nevertheless, information can be only partly identified from HHS and WPHS,
which can be seen in Fig. 9c, d.
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Fig. 7 Time-frequency demodulation for simulated AM signal a temporal signal, b its ITFS,
c HHS and d WPHS
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Fig. 8 The simulated FM signal and its spectrum
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Fig. 9 Time-frequency demodulation for simulated FM signal a temporal signal, b its ITFS,
c HHS and d WPHS
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5.3 AM-FM Signal Demodulation

If s3ðtÞ is a hybrid modulation signal:

s3ðtÞ ¼ cos 2p � 400 � tþ 0:5 cos 2p � 25 � tð Þð Þ � 1þ 0:5 cos 2p � 25 � tð Þð Þ ð57Þ

Time-domain waveform of the simulated signal and its spectrum are shown in
Fig. 10. It can be seen its spectrum is very similar to above mentioned cases of AM
and FM signals. Therefore, the modulation information of the signal is very difficult
to be accurately identified from the spectrum of these three cases. At the same time,
Fig. 11a, b show the achieved PF components and the corresponding ITFS. In the
instantaneous time-frequency, it is easy to find that the carrier component locates at
400 Hz and its modulated frequency is 25 Hz (40 ms). As is mentioned above, the
fluctuation of the modulator shows that there is a frequency modulation of the
signal, while the alternation of color reflects amplitude modulation of the signal.
Modulator component can also be seen around 25 Hz. As is shown in Fig. 11c, the
25 Hz modulator component can be seen in the result of HHS, but the carrier cannot
be detected. The result of WPHS is illustrated in Fig. 11d, where the carrier
information can be identified, but modulator cannot be found.

Through the simulation analysis, we can find that the LMD has a strong
time-frequency demodulation ability compared with the HHS and WPHS, and
LMD can simultaneously identify all the modulation information embedded in
signals. Thus, time-frequency demodulation using LMD is very suitable for
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Fig. 10 The simulated AM-FM signal and its spectrum
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processing mechanical non-stationary signals with multi-components. This char-
acteristics will be further demonstrated using practical vibration signals acquired in
a rotating machine.

6 Applications

The proposed time-frequency demodulation with LMD is utilized to detect the
rub-impact fault in a rotor system and a practical rotating machine, as well as to
identify damage in a gearbox.

6.1 Rub Fault Detection in a Rotor System

Rub occurs in rotating machinery with radial clearance between rotor and stator,
such as bearing internal clearance, seal/packing or blade/case. Radial clearance
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Fig. 11 a LMD decomposition of the simulated AM-FM signal and b Its Instantaneous
Time-frequency, c HHS and d WPHS
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between rotor and stator in high-speed rotating machines such as generator sets,
aeroengines, turbines and compressor is of great importance. If the radial clearance
between the rotating rotor and the stator is smaller, the efficiency of these kinds of
machines improves. The smaller the clearance of the modern rotating machinery,
the more the possibility of rubbing occurs. If the rub induces the rotor’s dynamic
instability, a serious accident occurs. Therefore, it is important to detect rub by
using signal processing techniques as early as possible. Rubs may cause impacts,
sub-synchronous and super-synchronous vibrations of the shafts. Complicated
nonlinear behavior is generally associated with a vibrating system of a faulty rotor
and the vibration signals contain very complicated phenomenon including not only
the periodic motion but also the chaotic motion. Rub signal was acquired by eddy
current transducer on the Bently test-rig shown in Fig. 12. Sampling frequency was
set to 2000 Hz and the number of sampling points was 1024. Moreover, friction rod
was used to generate a slight local rub fault.

When the rotating speed is set to 2200 rpm, time-domain signal and its fre-
quency spectrum are illustrated in Fig. 13a. Due to a slight rub fault, it is difficult to
find the abnormal characteristics in time-domain waveform and its spectrum.
Results of time-frequency demodulation of ITFS, HHS, WPHS are shown in
Fig. 13b–d. We can find both ITFS and HHS can successfully detect FM compo-
nents. Actually, the reason for this frequency fluctuation is caused by the friction
between the friction rod and the rotor which will restrict the rotation of the rotor and
decrease its rotating speed.

6.2 Practical Rub-Impact Fault Diagnosis

In this subsection, the proposed time-frequency demodulation method will be
further applied in detecting rub-impact in a machine set named heavy oil catalytic
cracking process. This machine set consists of a gas turbine, compressor, gearbox

Friction rod 

Fig. 12 The test-rig with rotor local rub fault
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Fig. 14 The structural sketch of the machine set
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and an electric motor. Figure 14 shows its structural sketch. The rotating speed of
the gas turbine is 5745 r/min. Eddy current transducers are mounted in 2# bearing to
pick up displacement vibration signals.

Figure 15a shows the measured vibration signal at a sampling rate of 2000 Hz.
As can be seen in the temporal waveform and its FFT spectrum given in Fig. 15a, it
is difficult to find the abnormal information except the fundamental harmonic
component 1X and its second harmonic 2X. As is well known, when the rub-impact
fault occurs under certain circumstances, especially at its early stage, the X/2 or X/3
etc. sub-harmonic components should be observed, besides the multiple harmonic
components such as 2X, 3X etc. The achieved time-frequency distributions of LMD
is presented in Fig. 16. To clearly show the details of the significant components in
the ITFS, the range of the frequency axis is set to [0, 500] Hz. It can be seen that the
proposed time-frequency demodulation technique can well detect the existence of
the sub-harmonic component which oscillates around one third of 1X. In addition,
the sudden change of the IF of the 1X can be identified from ITFS in Fig. 16
(marked by white rectangular), which actually reflects the effect of the opposite
friction during operation. Consequently, the above results provide sufficient evi-
dences to judge the existence of an early local rub-impact fault in this machine.
Meanwhile, a new feature of rub-impact fault, the FM component is also identified
around 1X component with the proposed method, whose modulation period is
about 10.24 ms. Modulation frequency is 97.7 Hz (=1/10.24 ms), which equals to
the fundamental harmonic component (=1X). These characteristics all indicate that
the unit may have slight rub-impact fault. In addition, one more important infor-
mation, when the frequency and X/3 times harmonic occurs down to the mutation,
it will stimulate the characteristics that are similar to shocks (as is shown in the
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rectangular frame). The reason is that when rub-impact occurs, the corresponding
friction force is opposite to the rotating direction, thus the rotating frequency and
the sub-harmonic frequency will decrease naturally.

Figure 17a, b show the results of HHS and WPHS, respectively. However, no
distinct features can be observed in Fig. 17a, b except the 1X component. To sum
up, the proposed time-frequency demodulation technique can successfully detect
the instantaneous features of the signal and is much more powerful in detecting
incipient rub-impact fault than the other two methods.

6.3 Demodulation Analysis of a Gearbox

Gearbox used in this subsection is a key equipment in the hot strip finishing rolling
mill and it can directly affect the products as well as the long-term safety in
operation. The main driven chain comprises a one-stage helical gearbox with a ratio
of 2.9545 which usually works in a low rotating speed (its high speed shaft fre-
quency is only about 2–5 Hz) and in a varying load conditions. Vibration signals
were measured by velocity transducers attached to the outer casing of the gearbox.
Signals in vertical direction are used in this work. The sampling frequency is set to
2560 and the number of sampling is 4096. The gear and pinion are all helical and
their tooth numbers are 65, 22 respectively, and modulus is 30. Because the rolling
mill process speed fluctuated in a range, the speed of high-speed axis was about 3–
4 Hz.

Figure 18a shows a vibration signal and its spectrum which was acquired around
the high-speed axis on the April 9, 2008. We can easy find the meshing frequency is
89.50 Hz in the spectrum, as well as its corresponding high-speed axis rotation
frequency 4.068 Hz. As is well known, local fault gives impulse perturbations in
the signal whose frequency is equivalent to gear shaft rotation. Thus, the proposed
ITFS of the LMD is applied to demodulate the weak impulsive components in
time-frequency domain. Figure 18b shows the ITFS of the temporal signal in
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Fig. 18a, where meshing frequency (white dot line) and periodical impulsive
components (circled with black dash lines) spaced by 0.2462 s (=4.068 Hz) can be
found. The frequency of periodical impacts is the same with the rotating speed of
pinion, which means the possible location of a local defect.

To further demonstrate the result, ITFS of another acquired signal is shown in
Fig. 19. We can find meshing frequency (also white dot line) is changed to
100.6 Hz, as well as much clearer periodical impulsive features (circled with black
dash lines) spaced by 0.2196 s whose frequency is 4.573 Hz (=100.6/22). The
effectiveness of time-frequency demodulation of LMD is verified once more. We
can draw a conclusion that high-speed axis gear has a local fault. Local scuffing on
the pinion gear teeth has been observed in the following maintenance actions and
then a new pinion was replaced as soon as possible. Figure 20 displays the dam-
aged pinion. The ITFS of the vibration signal acquired after the pinion was replaced
is shown in Fig. 21 where the periodical impulsive signatures cannot be observed.
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7 Conclusions

This work investigates the several key issues corresponding to LMD technique and
its time-frequency demodulation analysis for fault detecting applications. We give
two methods to resist end-effect and develops an adaptive strategy for determining
the step size of MA used in LMD. Then, independent of Hilbert transform, ITFS is
constructed for time-frequency demodulation. Simulated AM and FM signals are
utilized to demonstrate the performance of time-frequency demodulation in com-
parison with HHS and WPHS. Results show time-frequency demodulation with
LMD can comprehensively detect the modulator and carrier information. The
proposed technique is then used in detecting rotor rubbing and gearbox local
damage. These two practical applications further verify its effectiveness in complex
multi-component signal demodulation analysis.
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On the Use of Stochastic Resonance
in Mechanical Fault Signal Detection

X.F. Zhang, N.Q. Hu, L. Zhang, X.F. Wu, L. Hu and Z. Cheng

Abstract This chapter focuses on the application of stochastic resonance (SR) in
mechanical fault signal detection. SR is a nonlinear effect that is now widely used in
weak signal detection under heavy noise circumstances. In order to extract char-
acteristic fault signal of the dynamic mechanical components, SR normalized scale
transform is presented and a circuit module is designed based on parameter-tuning
bistable SR. Weak signal detection based on stochastic resonance (SR) can hardly
succeed when noise intensity exceeds the optimal value of SR. Therefore, a signal
detection model based on combination effect of colored noise SR and parallel
bistable SR array, which is called multi-scale bistable stochastic resonance array,
has been constructed. Based on the enhancement effect of the constructed model
and the normalized scale transformation, weak signal detection method has been
proposed. The effectiveness of these methods are confirmed and replicated by
numerical simulations. Applications of bearing fault diagnosis show the enhanced
detecting effects of the proposed methods.

1 Introduction

Weak signal detection under heavy background noise is one of the focuses in
various signal-processing fields. It is commonly concerned by scientists and engi-
neers to detect or enhance weak target signal more expeditiously and precisely in
noisy environment with certain restrictions. In the real-world systems, because
characteristic signals of mechanical component early fault contain a little energy
and are usually annoyed by heavy noise, it is a great challenge to reveal the
characteristic signal. Effective characteristic signal detection approach is significant
to the fault diagnosis of mechanical component, especially when the fault is in its
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early stage. Prognosis of critical mechanical component mandates detecting the
defect signatures as early as possible, so that the corresponding maintenance can be
scheduled and the possible catastrophic accident or machine breakdown can be
avoided. Consequently, detection of characteristic signal has become one of the key
technologies of early fault diagnosis for mechanical component.

A traditional way of weak signal detection generally focuses on suppressing the
noise to improve the output signal-to-noise ratio (SNR). Compared with conven-
tional linear methods, the methods based on stochastic resonance (SR) are
promising in the conditions of short data records and heavy noise. SR is a nonlinear
effect that has been widely used in weak signal detection. Since proposed by Benzi
et al. [1], stochastic resonance has been developing rapidly in signal processing,
detection and estimation [2–9], especially in low SNR cases. It is essentially a
statistical phenomenon resulting from an effect of noise on information transfer and
signal processing that is observed in both man-made and naturally existing non-
linear systems. The counterintuitive SR phenomenon is caused by cooperation of
signal (deterministic force) and noise (stochastic force) in a nonlinear system. In a
certain nonlinear system, noise plays a constructive role, and energy flows from
noise to signal. When noise or system parameters are tuned properly, the output
SNR will reach a maximum.

However, the application of SR to practical problems has been restricted by the
fact that the bistable system is only sensitive to low frequency and weak periodic
signals. This can be explained in a formal way by adiabatic approximation and
linear response theory [2]. In order to apply SR to high frequency signal detection,
several system parameter tuning or noise intensity tuning methods have been
proposed to make them more adaptive, such as normalized scale transform [10, 11],
re-scaling frequency SR [12], frequency-shifted and re-scaling SR [13], adaptive
step-changed [14], etc. In order to apply SR methods to characteristic vibration
signal detection, two methods are discussed in this chapter: (1) normalized scale
transform, a complete computation method for sampled vibration signal;
(2) parameter-tuning SR circuit module for analog application. Basic theory of the
two methods is parameter tuning SR. Simulations are made to validate the
enhancing effect of the two methods.

The equivalence between noise tuning SR and parameter tuning SR in a typical
bistable system with an additive white noise has been addressed in reference [6].
Only when the input noise intensity reaches the system resonance region, the
system response is capable of following the input signal so that the output SNR is
enhanced to conform to the nonlinear mechanism [5, 6]. In practice, tuning noise
intensity is not always feasible. The intensities of signal and noise have been fixed
for the collected raw signal in a practical engineering system. Using noise tuning,
parameter tuning or array SR alone may not be a suitable option when the noise
intensity exceeds the SR resonance region, which is often the case for digital signal
processing and weak signal detection, such as the vibration signals collected from a
gearbox for fault diagnosis and health state assessment. Besides tuning noise
intensity and parameter, SR based signal processing could be improved for a
better performance. The first approach is the cascaded bistable system [15],
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which connects two or more bistable systems in series. The second one is the
coupled or uncoupled parallel bistable array [16–19]. The third one is to make use
of the characteristics of colour noise [20–22].

The SR effect can be driven not only by white noise but also by the band-limited
noise alone, which indicates that it is possible to realize the SR by tuning the band
limited noise. In addition, the array SR theory indicates that an array of bistable
dynamical subsystems constructs a meaningful collective system for further
improvement of output SNR [16–19]. In order to process the noisy signal that is
beyond the SR resonance region, a summing SR array model called multi-scale
bistable array (MSBA) is constructed, which consists of several bistable units. This
parallel bistable array model also combines normalized scale transform with
inherent SR effect driven by colour noise. At first, the processed signal is
decomposed into some different scale signals by wavelet transform. Each unit is
subject to different scale noise, which plays the role of inner noise of the array. The
scale signal containing the target signal is processed as the noisy input signal of the
array. By summing the output signal from each unit, we can obtain a resultant
signal of the entire array. The signal detection method based on the MSBA can
obtain a better output in high frequency signal detection under heavy noise. This
method is verified and confirmed by numerical simulation and a practical case for
mechanical fault diagnosis.

This chapter is organized as follows. In Sect. 2, bistable SR model is presented.
In Sect. 3, normalized scale transform are introduced and validated by simulation
and experiment. In Sect. 4, SR circuit module based on parameter tuning is
designed and validated by simulated and experimental signal. In Sect. 5, the MSBA
model is constructed and the SR effect of the model is analyzed. The signal
detection approach based on MSBA is proposed and numerical simulations are
carried out, which is followed by experiment on enhanced detection of rolling
element bearing. Finally, the conclusions are outlined in Sect. 6.

2 Bistable Stochastic Resonance Model

The study of stochastic resonance in signal processing has received considerable
attention over the last decades. In the context, stochastic resonance is commonly
described as an approach to increase the SNR at the output through the increase of
the special noise level at input signal. The essence of the physical mechanism
underlying classical SR has been described in [1, 5, 9].

Considering the motion in a bistable double-well potential of a lightly damped
particle subjected to stochastic excitation and a harmonic excitation (i.e., a signal)
with low frequency x0. The signal is assumed to have small enough amplitude that,
by itself (i.e., in the absence of the stochastic excitation), it is unable to move the
particle from one well to another. We denote the characteristic rate, that is, the
escape rate from a well under the combined effects of the periodic excitation and
the noise, by a = 2pntot/Ttot, where ntot is the total number of exits from one well
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during time Ttot. We consider the behavior of the system as we increase the noise
while the signal amplitude and frequency are unchanged. For zero noise, a = 0, as
noted earlier. For very small noise, a < x0. As the noise increases, the ordinate of
the spectral density of the output noise at the frequency x0, denoted by Фn(x0), and
the characteristic rate a increases. Experimental and analytical studies show that,
until a � x0, a cooperative effect (i.e., a synchronization-like phenomenon) occurs
wherein the signal output power Фs(x0) increases as the noise intensity increases.
Remarkably, the increase of Фs(x0) with noise is faster than that of Фn(x0). This
results in an enhancement of the SNR. The synchronization-like phenomenon plays
a key role in the mechanism as described in [23].

At present, the most common studied SR system is bistable system, which can
be described by the following Langevin equation

_x ¼ ax� bx3 þA sinðx0tþu0ÞþCðtÞ ð1Þ

where C(t) is noise term and <C(t), C(0)> = 2Dd(t), Asin(x0t + u0) is a periodic
driving signal. Generally, it is also written as the form of Duffing equation

€x ¼ �b _xþ ax� bx3 þA sinðx0tþ/0ÞþCðtÞ ð2Þ

where b is the damping coefficient.

3 Normalized Scale Transform

3.1 Basic Theory of Normalized Scale Transform

Equation (1) has two stable solutions xs ¼ � ffiffiffiffiffiffiffiffi
a=b

p ¼ �c (stable points) and a
unstable solution xu ¼ 0 (unstable point) when A ¼ D ¼ 0, here potential of Eq. (1)
is given by

VðxÞ ¼ � 1
2
ax2 þ 1

4
bx4 ð3Þ

The height of potential is

DV ¼ Vð0Þ � VðcÞ ¼ a2

4b
ð4Þ

When adding the modulation signal, potential function is

Vðx; tÞ ¼ � 1
2
ax2 þ 1

4
bx4 � Ax cosx0t ð5Þ
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For a stationary potential, and for D � DV , the probability that a switching
event will occur in unit time, i.e. the switching rate, is given by the Kramers
formula [2]

r0 ¼ ð2pÞ�1 V 00ð0ÞjV 00ðcÞ½ �1=2expð�DV=DÞ ð6Þ

where V 00ðxÞ � d2V=dx2. We now include a periodic modulation term A sinx0t on
the right-hand-side of (1). This leads to a modulation of the potential (5) with time:
an additional term �Ax cosx0t is now present on the right-hand-side of (5). In this
case, the Kramers rate (6) becomes time-dependent:

rðtÞ � rð0Þ expð�Ax sinx0t=DÞ ð7Þ

which is accurate only for A � DV and x0 � V 00ð�cÞf g1=2. The latter condition is
referred to as the adiabatic approximation. It ensures that the probability density
corresponding to the time-modulated potential is approximately stationary (the
modulation is slow enough that the instantaneous probability density can ‘adia-
batically’ relax to a succession of quasi-stationary states). The slow modulation
means the signal to detect is confined to a rather low frequency range and small
amplitude, and theoretical analysis and deduction are also based on this hypothesis.
As we all know, the characteristic frequency reflecting mechanical system state
exceeds the range of limit, so how to detect the high frequency signal is of great
importance in weak characteristic signal detection of mechanical system. Here we
proposed a kind of transform to solve the problem.

Considering the bistable system modeled by Eq. (1), where A is amplitude of the
input signal, x 	 1 is its frequency, CðtÞ is Gaussian white noise with the corre-
lation CðtÞh i ¼ 0; CðtÞ;Cð0Þh i ¼ 2DdðtÞ, and D is the noise intensity, when a and
b are positive real numbers, take the variable substitutions

z ¼ x
ffiffiffiffiffiffiffiffi
b=a

p
; s ¼ at ð8Þ

Substituting Eq. (8) into Eq. (1), we can obtain

a

ffiffiffi
a
b

r
dz
dt

¼ a

ffiffiffi
a
b

r
z� a

ffiffiffi
a
b

r
z3 þA cos

x0

a
sþ/0

� �
þC

s
a

� �
ð9Þ

where the noise Cðs=aÞ satisfies Cðs=aÞCð0Þh i ¼ 2DadðsÞ. Therefore

C
s
a

� �
¼

ffiffiffiffiffiffiffiffiffi
2Da

p
nðsÞ ð10Þ

where nðsÞh i ¼ 0, nðsÞ; nð0Þh i ¼ dðsÞ.

On the Use of Stochastic Resonance … 351



Substituting Eq. (10) into Eq. (9), then

a

ffiffiffi
a
b

r
dz
dt

¼ a

ffiffiffi
a
b

r
z� a

ffiffiffi
a
b

r
z3 þA cos

x0

a
sþ/0

� �
þ

ffiffiffiffiffiffiffiffiffi
2Da

p
nðsÞ ð11Þ

Equation (11) can be simplified into

dz
dt

¼ z� z3 þ
ffiffiffiffiffi
b
a3

r
A cos

x0

a
sþ/0

� �
þ

ffiffiffiffiffiffiffiffiffi
2Db
a2

r
nðsÞ ð12Þ

Equation (12) is a normalized form and equals to Eq. (1). The frequency of the
signal after the transform is 1/a times of which before transform. Hence, through the
chosen of larger parameter a, high frequency signal can be normalized to low
frequency to satisfy the request of the theory of SR.

During the numerical simulation, the variance r2 is used to describe the statis-
tical property of the white noise. As the noise intensity D is influenced by sample
step h, the actual value D ¼ r2h=2.

Considering the RMS of the noise is r0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
2D=h

p
before transform, after the

transform, the intensity of the noise changed to 2Db=a2. And because the sample
frequency descends, the sample step becomes a times of the original sample
step. Therefore, the RMS of the noise after transform is r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Db= a2 � ahð Þp
. The

ratio of the noise RMS after the transform to which before the transform is

r=r0 ¼
ffiffiffiffiffiffiffiffiffiffi
b=a3

p
ð13Þ

It is easy to be seen that, after the transform, the signal and noise are amplifiedffiffiffiffiffiffiffiffiffiffi
b=a3

p
times.

3.2 Simulation Result of Normalized Scale Transform

In the following, the scale transformwill be validated through a numerical simulation.
We passed the mixed signal through the model of bistable system with parameters
a ¼ b ¼ 1, A ¼ 0:3, f ¼ 0:01 Hz, r ¼ 1:2, and analyze the spectrum of the output
signal. Figure 1a, b shows themixed signal and its spectrum,while Fig. 1c, d gives the
output of the bistable system and the spectrum of the output signal. From Fig. 1d, it
can be seen that although the input SNR ¼ 20 logðA=rÞ ¼ �12:04 dB, there is a clear
spectrum line at f = 0.01 Hz, and the noise fades obviously.

If the signal frequency is changed to f = 1 kHz, according to the transform
principle, we can take the parameters a = b = 105. Conditioned the mixed signal
through the SR model, the result can be shown in Fig. 2. The detection result based
on the normalized scale transform is shown in Fig. 2. Figure 2a, c are the
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waveforms of input and output signals. Figure 2b, d are their FFT spectra. The
component of 1 kHz is revealed clearly in Fig. 2d.

The signal and spectrum in Fig. 2 is consistent with Fig. 1, and the only dif-
ference is time domains and frequency coordinates of the spectrum. The noise
components are greatly suppressed, and the detecting signal is standing out, which
shows that the transform method is suitable to the detection of high frequency
signal.

3.3 Application of Normalized Scale Transform

In cases where it is desired to process sampled discrete vibration signals, we
realized that it would be possible to enhance the bearing characteristic components
using SR method. As mentioned above, the SR normalized scale transform is

(a)

(b)

(c)

(d)

Fig. 1 Time-domain and its
FFT of the input and output
when f ¼ 0:01 Hz. a and b:
the input; c and d: the output
by one-time
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suitable for big parameter signal processing. In this section, SR normalized scale
transform is applied in bearing fault diagnosis. The schematic diagram of bearing
fault enhanced detection method is shown in Fig. 3. After sampling, the analog
vibration signal is converted to input data as depicted in Fig. 3. Then, band-passed
vibration signal is demodulated based on Hilbert transformation, and the output is
bearing vibration envelope signal. The band-pass filter parameters are set to cover
bearing natural resonance frequencies. Finally, envelope signal enhanced by SR
normalized scale transform is transformed to frequency domain through FFT
algorism and fault features are extracted. The procedures of this method from input
vibration data to fault features are carried out by software, in other words, achieved
by computation.

This method based on SR normalized scale transform is applied to vibration
signal from machinery fault simulation test rig shown in Fig. 4. Tests were carried
out on the test rig with normal and planted-in inner fault bearings. The rig is driven
by a variable-speed electric motor. For these tests, the shaft speed is 628 r/min with
two rotor disks on the shaft. The Bearing1 in Fig. 6 is alternated with normal

(a)

(b)

(c)

(d)

Fig. 2 Time-domain and its
FFT of the input and output
when f ¼ 1 kHz. a and b: the
input; c and d: the output by
one-time
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bearing, bearing with 0.2 mm planted inner race fault and bearing with 0.5 mm
planted inner race fault, which are shown in Fig. 5. Signals were measured by an
accelerometer on the casing immediately above it. Details of the geometry of the
bearings are shown in Table 1. The expected inner race fault frequency (Ball pass
frequency, inner race, BPFI) is 70.28 Hz. The raw vibration data was collected with
the sampling rate 50 kHz. And the collected data length is 1 s. Figure 6 displays the
recorded raw time signals from Accelerometer1 denoted in Fig. 6: (1) normal
bearing, (2) bearing with 0.2 mm inner race fault and (3) bearing with 0.5 mm inner
race fault.

From the raw signal we can see that there are more impacts in the vibration
signals of 0.2 and 0.5 mm inner race fault than the signal of normal bearing.

Fig. 3 Schematic diagram of enhanced bearing fault detection method using SR normalized scale
transform

Fig. 4 Machinery fault simulation test rig
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And the signal of 0.2 mm inner race fault contains obvious periodic impacts at
about shaft speed, as shown in Fig. 6b. This should be caused by imbalance of the
rotor system. However, we could not make sure whether there is local damage on
any of the bearing component or not.

The signals were demodulated on frequency range from 8 to 12 kHz, which
covers one of the bearing nature resonance bands. And Fig. 7 shows the envelope
spectra of the three cases, which is up to 500 Hz—the band dominated by shaft
speed, bearing fault characteristic component and their harmonics. The BPFI and its
harmonics are indicated by harmonic cursors in the envelope spectra. It can be seen
in Fig. 7a that there are only shaft speed component and its second harmonic. In the
envelope spectrum of 0.2 mm inner race fault shown in Fig. 7b, discrete spectrum
components including shaft speed, BPFI and their harmonics can be seen, but the
BPFI and the second harmonic is not clear. However, the BPFI and its harmonics
are obvious in Fig. 7c, since 0.5 mm inner race fault is rather severe. We use local
signal to noise ratio (LSNR) as the indicator of the BPFI component, which is
defined as

R ¼ 10lg lim
Df!0

Zf þDf

f�Df

ðSðf Þ=SNðf ÞÞdf

2
64

3
75

8><
>:

9>=
>; ð14Þ

Fig. 5 Inner races of normal, with 0.2 mm planted fault and with 0.5 mm planted fault bearing
(from left to right)

Table 1 Test bearing
parameters

Parameter Value

Roller diameter d/mm 7.50

Pitch diameter D/mm 34.50

Roller number n 11

Contact angle //(°)
Shaft speed m/(r ∙ min–1)

0
628
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where S(f) denotes the power density at signal frequency f, SN(f) is the noise mean
power density around f. The LSNR indicators of envelope spectra of the three cases
are 8.88, 8.58 and 14.01 dB respectively. We could not distinguish the 0.2 mm
inner race fault bearing from normal bearing only by the envelope spectrum.

Figure 8 shows the corresponding spectra of the three signals after the vibration
data are processed using the method shown in Fig. 3. The SR system parameters
were tuned according to a target signal frequency of 200 Hz. It is found that the
inner race fault component of 0.2 mm inner race fault was enhanced greatly, but the
corresponding components of the normal bearing did not show up. The LSNR
indicators of normal bearing and 0.2 mm inner fault are 8.58 and 12.22 dB.
However, we could not see obvious change at the inner race fault component of the
0.5 mm inner fault case, and the LSNR indicator increases slightly to 14.16 dB.
The shaft speed and its second harmonic were enhanced simultaneously in the three
cases.

Although effective in the application of sampled signals processing, due to the
fact that it is realized by software calculation, the normalized scale transform has

(a) Normal bearing

(b) Bearing with 0.2mm inner race fault

(c) Bearing with 0.5mm inner race fault

Fig. 6 Raw vibration signals
of the experiment
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some drawbacks: (1) The sampling frequency should be much higher than the
Nyquist frequency to make sure that the target signal is in the low area of whole
frequency range; (2) A lot of computation is needed to obtain the solution of the
differential equation.

4 SR Circuit Module

4.1 Circuit Module

Because software realization of SR requires intensive computation and high sam-
pling frequency, it would be a practical way to actualize SR by using hardware

(a) Normal bearing

(b) Bearing with 0.2mm inner race fault

(c) Bearing with 0.5mm inner race fault

Fig. 7 Envelope spectra of
the test bearings
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devices. To save the computational resource and the SR processing time, a circuit
module is designed in this section.

The integral form of Eq. (1) is

xðtÞ ¼
Z

ax� bx3 þ sðtÞþCðtÞ� �
dt ð15Þ

where s(t) is the signal to be detected. Equation (15) could be expressed as a
nonlinear system with a feedback loop, which involves amplifier, integrator, mul-
tiplicator etc. The feedback loop could be realized by amplifier, resistance and
capacitances. Figure 9 is the frame and concrete SR circuit module.

According to the circuit principles, the mathematical model (nonlinear stochastic
integral equation) of the circuit module can be written as

(a) Normal bearing

(b) Bearing with 0.2mm inner race fault

(c) Bearing with 0.5mm inner race fault

Fig. 8 Enhanced spectra of
SR normalized scale
transform
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x ¼
Z

K4½sðtÞþCðtÞ�
R1C

� K2K3x3

R3C
þ K1x

R2C

� �
dt ð16Þ

The differential form of Eq. (15) is

_x ¼ K4½sðtÞþCðtÞ�
R1C

� K2K3x3

R3C
þ K1x

R2C
ð17Þ

By comparing Eq. (17) and Eq. (1), the circuit system parameters can be written
as a = K1/R2C, b = K2K3/R3C, A = K4/R1C, C’(t) = AC(t). The two stable status of
the bistable circuit model, i.e., the two penitential wells’ locations are

x1;2 ¼ �
ffiffiffi
a
b

r
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1R3

K2K3R2

r
ð18Þ

The system potential is

VðxÞ ¼ � a
2
x2 þ b

2
x4 ¼ � 1

2
K1

R2C

	 

x2 þ 1

4
K2K3

R3C

	 

x4 ð19Þ

So, the potential height is

DV ¼ a4

4b
¼ 1

4
K2
1R3

R2
2CK2K3

ð20Þ

Equation (17) is consistent with Eq. (1) formally and intrinsically. According to
bistable stochastic resonance system theory, parameter a correlates with signal
frequency, and b influences DV. The circuit module is physically coincident with
the bistable model in theory.

(a) Circuit diagram frame (b) Circuit photo 

Fig. 9 Design of the SR circuit module
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The parameters of the circuit R1, R2 and R3 are 10 kX, C = 150 pF, K3 = 0.01.
Given the other parameters, adjusting K1 could tune a (0–666,667) to adapt to
signal frequency, and adjusting K2 could tune b (0–6667) to adapt to different noise
intensity. Via adjusting resistance coefficients K1, K2 or both, potential height and
stable status could also be tuned. Parameters tuning can be realized by adjusting the
two resistances of the circuit module designed in this section. The difference is that
the input signal amplitude should be retuned based on parameters of the SR module.
The weak target signal will be revealed, when signal, noise and nonlinear system
are matched. Since both the input and output of circuit module are both analog
signals, sampling frequency of the output signal is just demanded to catch the signal
to be revealed. In other words, the high sampling frequency could be avoided. This
will be validated by the simulation test in the next section.

4.2 Simulated Experiment of Circuit Module

The input signal is a sinusoidal signal mixed with a white noise generated by
generators. The signal frequency is 10 kHz and the amplitude is 0.04 mV. The
white noise intensity RMS is 0.6 mV. Then the input signal SNR is −23.52 dB.
The input signal waveform and its spectrum are shown in Fig. 10a, b.

Adjusting circuit module coefficients K1 to 2/63 and K2 to 50/63, that is to say, the
system parameters are a = 21,164, b = 5291 and the stable states are x1,2 = ±2 V.
The highest frequency, which could be enhanced theoretically, is calculated to
2116.4 Hz. The output signal waveform and its spectrum are shown in Fig. 10c, d.
The 10 kHz signal is revealed clear in the spectrum. The signal sample frequency is
100 kHz, and the data length is 2000.

4.3 Application of Circuit Module

If SR is realized by circuit module, it would be possible to replace the SR nor-
malized scale transform with circuit module and then change the input data to
analog signal. As mentioned in Sect. 3, the sampling frequency, which could catch
the signal interested under Nyquist sampling law, would be adequate for SR circuit
module output signal. Moreover, there is no need to sample the signal at the
beginning, if the signal processing procedures before SR circuit module are
implemented by hardware. The bearing fault enhanced detection method using SR
circuit module is shown schematically in Fig. 11. The parameters of SR circuit
module are tuned according to the signal interested. The analog vibration signal
from bearing is filtered by a band-pass filter directly. Then, the band-passed
vibration signal is demodulated by envelope detection. The band-pass filter
parameters are set to cover the bearing nature resonance frequency band. Envelope
signal is enhanced by SR circuit module and then transformed to frequency domain
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through FFT algorithm after signal sampling at a much lower rate than software
method. The signal processing procedures before sampling are all realized by
hardware.

This method based on SR circuit module is applied to vibration signal shown in
Fig. 6. Then, the analog vibration signals of the three cases were processed by
hardware with SR circuit module according to the diagram shown in Fig. 11.
Adjusting circuit module coefficients K1 to 2/63 and K2 to 50/63, which means that
the system parameters are a = 21,164, b = 5291. The output signal of one second
was collected at sampling rate 1 kHz. The FFT spectra of the three cases are shown

Fig. 10 Detection of 10 kHz
signal by SR circuit module
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in Fig. 12. Similar results to Fig. 10 were obtained with the LSNR indicators of
8.11, 12.23 and 13.67 dB. The shaft speed and its second harmonic were also
enhanced simultaneously in the three cases.

5 Multi-scale Bistable Array SR

5.1 Stochastic Resonance Effect in MSBA

The SR effect is still shown in a nonlinear bistable system when the white noise is
changed to band-limited noise, which indicates that it is possible to realize the SR
by tuning the band-limited noise [5, 24]. To improve the signal processing based on
SR when the original noise intensity is beyond the optimal level, the input signal is
decomposed into multi-scale signals by orthogonal wavelet transform. Stationary
white noise with zero mean can be decomposed into independent band-limited
noises by orthogonal wavelet transform. The reconstructed detail at each scale and
the approximation signal at the last scale are independent of each other owing to the
orthogonality of wavelet base.

The SR effect of the bistable model of Eq. (1) is investigated using a sine signal
plus a single scale noise as the input signal. By adjusting the noise intensity at each
scale, Fig. 13 illustrates the SR enhancement effect of each scale noise, which
indicates that SR can also be produced by each scale noise alone. The signal
amplitude A0 = 0.3, frequency f0 = 0.01 Hz, system parameters a = b = 1, sam-
pling frequency fs = 5 Hz, and data length N = 4000. In the context, aj and dj
denote reconstructed approximation signals and detail signals, respectively for
convenience. It can be seen that the scale noise a3 has the effect similar to the white
noise, and the other scale noises still show clear SR effect when taking higher noise
intensity. In a bistable system, the output SNR curves produced by different scale
noises show dissimilar SR mechanisms. Now, an interesting question arises,

Fig. 11 Schematic diagram of enhanced bearing fault detection method using SR circuit module
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namely, can we further improve the output SNR under large noise intensity? The
answer is positive and lies in the different SR effect of each scale noise.

By combining uncoupled parallel array of dynamical subsystems with colored
noise SR effect, an MSBA consisting of bistable units formulated as Eq. (1) is
constructed. Figure 14 illustrates the configuration of the MSBA. The input signal
is decomposed into different scale signals by wavelet transform. The driving signal
of the MSBA, which is in the low frequency region, is supposed to be contained in
the approximate signal aJ. The approximate signal aJ and each scale noise dj
reconstruct the new input signal of each bistable element. Then, the number of array
elements is equal to the scale number J. Being uncoupled between any two ele-
ments, the outputs of all units are averaged together to produce the entire array
output y(t). Similar to uncoupled parallel SR array, each element is subjected to an
independent array noise dj and the same noisy input signal aJ. However, the inner

(a) Normal bearing

(b) Bearing with 0.2mm inner race fault

(c) Bearing with 0.5mm inner race fault

Fig. 12 Enhanced spectra of
SR circuit module
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array noise intensity and characteristics of the MSBA are different from those of the
uncoupled parallel array. The noise intensity of input signal is reduced after
decomposition. The noise at different scale has a different contribution to the SR
effect of the single bistable element in the array.

Numerical simulation is performed according to the MSBA system given in
Fig. 14. Each bistable element in the MSBA is formulated as Eq. (1). The SR effect
of the MSBA is evaluated with tuning the input noise intensity D and the analyzed
scale number J. The other system parameters are chosen as a = b = 1, A0 = 0.3,
f0 = 0.01 Hz and u = 0. The sampling frequency is set to be fs = 500f0 = 5 Hz, and
the data length of the input signal is set to be 4000.

Figure 15 shows the SR effect of the MSBA with tuning noise intensity D and
the analyzed scale number J. The array output SNR curves, from bottom up,
correspond to J = 1, 2, 3, 4, 5, and 6, respectively. The other parameters are chosen
as a = b = 1, A0 = 0.3, f0 = 0.01 Hz and u = 0. The results indicate that the tuning
noise intensity D of the input signal produces an obvious SR effect on the MSBA.

Fig. 13 Output SNR curves
of SR produced by individual
scale noises alone

Fig. 14 MSBA model of
J elements
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When the value of D increases, the array output SNR first increases and then
decreases after reaching a maximum. It can be found that the output SNR resonance
region is broadened with the increase of the analyzed scale number J, and also the
maximum point is moved to a larger noise intensity D with almost the same value.
When the noise intensity D becomes larger, the SNR curves of J > 1 will go up
compared with the curve of J = 1. This means that the output signal of the MSBA
has been enhanced further than that of the single bistable system at a larger input
noise intensity D. Thus, the model of MSBA has admirable capability in signal
processing based on SR under large noise.

The noise intensity curves of the MSBA output signal versus input noise
intensity D and analyzed scale number J are shown in Fig. 16. The noise intensity
curves, from top down, correspond to J = 1, 2, 3, 4, 5, and 6, respectively. The
other simulation parameters are the same as in Fig. 15. The output signal is filtered
by a high pass filter, which is cut off at 0.1 Hz, to eliminate the driving frequency
component. It can be seen that the output noise intensity is reduced gradually when
the analyzed scale number J increases for a given input noise intensity. This
indicates that the MSBA can achieve a better signal quality than that obtained by
the conventional single SR unit.

Figure 17 compares the signal detection result of the conventional single SR unit
with that of the MSBA at fixed noise intensity. The analyzed scale is J = 6 and the
other parameters are the same as in Fig. 15. The target signal is submerged in the
heavy noise (D = 2.3, A0 = 0.3) as seen in the input signal wave in Fig. 17a. The
dashed line and right y-axis in (a), (b) and (c) show the input target signal.

Comparing the output of the conventional single SR unit in Fig. 17b with that of
MSBA in Fig. 17c, we can find that the MSBA can obtain smoother output
waveform and lower noise. Sub-figures (d), (e) and (f) are the spectrums of
sub-figures (a), (b) and (c), respectively. The above study shows that the proposed
MSBA model has the capability of detecting signal under heavy noise background
and can obtain the output signal with lower noise intensity correspondingly.

Fig. 15 Output SNR of the
MSBA versus tuning noise
intensity D and analyzed scale
number J
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Fig. 16 Noise intensity
curves of the MSBA output
signal versus input noise
intensity and analyzed scale
number

Fig. 17 Comparison of
signal detection between
conventional model and
MSBA model
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5.2 Signal Detection and Numerical Simulation

Based on the MSBA model and normalized scale transform, we present a novel
weak signal detection method. The framework of the method is shown in Fig. 18.
The first part is signal decomposition based on wavelet transform. aJ often contains
low frequency interference which will be also enhanced by SR in practical appli-
cation. The selection principle of the decomposition level J is that the dJ should
cover the frequency of the target signal. Then, scale dJ is processed as the input
signal of the MSBA model. The other scales of high frequency noises, as inner
noises of the array, are inputted to the bistable units of MSBA, respectively. The
second part is tuning MSBA parameters (a, b, k) using normalized scale transform
for high frequency target signal detection, where k is the amplitude coefficient of the
input signal. Finally, output signals of the units after parameter tuning are summed
up and divided by the array size to obtain the resultant signal y(t).

High frequency signal detection based on SR can be carried out by normalized
scale transform. The SR effect of MSBA has been validated by simulation in
Sect. 5.1. However, the whole enhancing effect of the combination of normalized
scale transform and MSBA on weak signal still demands further verification.

Normalized scale transform consists of two parts. One is system parameter
tuning for high frequency signal processing, the other is input signal amplitude
tuning for output optimization. Firstly, the effect of normalized scale transform on
MSBA for high frequency signal detection is illustrated by simulation. The MSBA
output SNR curves of different frequency signals are depicted in Fig. 19. The tuft of
six SNR curves (solid line) is corresponding to target signal frequencies f0 = 0.01,
0.1, 1, 10, 100 and 1000 Hz, respectively. The sampling frequency is set to be
fs = 500 f0. a = b = f0/0.01, other parameters are set as the same as in Fig. 15. The
effect of normalized scale transform on a single bistable unit is also shown in
Fig. 19 for comparison. The tuft of six SNR curves (dashed line) is corresponding
to the same target signal frequency as the MSBA model, where the parameters of
the single unit are the same as the parameters of MSBA. By normalized scale
transform, the target signal of different frequencies can be enhanced by SR effect in
the MSBA model and the single bistable model.

Fig. 18 Scheme of weak signal detection based on MSBA and normalized scale transform
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Then, the effects of input signal amplitude tuning on conventional SR and
MSBA are illustrated by simulation. The output SNR curves of conventional SR
model (dashed line) and MSBA (solid line) after amplitude tuning are plotted in
Fig. 20. The signal and system parameters used in the simulation are set to be the
same as those in Fig. 19. The six curves in each tuft correspond to the target signal
frequencies f0 = 0.01, 0.1, 1, 10, 100 and 1000 Hz, respectively. Compared with
the SNR curves in Fig. 19, the SNR curves after amplitude tuning are above the
curves before amplitude tuning. Especially, the SNR is promoted greatly in the low
noise intensity region.

A simulated 1 kHz target signal submerged in heavy noise (D = 2, A0 = 0.3)
was processed by the proposed method and the conventional SR method. The
results are shown in Fig. 21. The analyzed scale is J = 6 and the other parameters
are the same as in Fig. 15. The input signal wave is shown in Fig. 21a. The dashed

Fig. 19 Effect of normalized
scale transform on high
frequency signal detection

Fig. 20 SNR curves
corresponding to different
frequencies after amplitude
tuning
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lines and right y-axis in Figs. 21a–c show the input target signal. Comparing the
output of the conventional single SR unit in Fig. 21b with that of the proposed
method in Fig. 21c, we can find that the proposed method can detect the target
signal explicitly and obtains an output signal with lower background noise.
Figures 21d–f are the spectrums of Figs. 21a–c, respectively.

5.3 Application for Machinery Fault Diagnosis

A vibrational feature detection experiment for rolling element bearing incipient
fault was conducted to verify the effectiveness of the proposed method. Bearings
are widely used in mechanical transmission systems. Their local faults or damages
usually produce characteristic frequency components, whose frequencies depend on
bearing geometry, rotational speed and position of the fault.

Fig. 21 Comparison of
signal detection between
conventional SR and the
proposed method
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Fault or defect is identified when the frequency component corresponding to the
bearing defect induced impulses is found in the frequency domain. Then, the critical
work is the weak characteristic signal detection after the demodulation of vibration
impulses. In fact, vibration signatures in the envelope are taken to be the weak
target signal and the noise and the other components are tuned to play an active role
in the MSBA model. For the experiments in this section, the vibration signals are
decomposed to make the scale dJ contain the characteristic frequency, where
J = 10. In the following cases, the proposed method is verified in comparison with
two other methods. One is the kurtogram for the detection of transient signal based
on kurtosis maximization. The other is the conventional SR based on normalized
scale transform.

The proposed method and the two other methods were applied to vibration
signal from a test rig of machinery fault simulation, as shown in Fig. 22. Tests were
carried out on the test rig with seeded inner and outer race fault bearings. The rig
was driven by an electric motor with rotating speed 665 r/min. The vibration sig-
nals were collected with the sampling frequency of 50 kHz from the bearings with
0.2 mm seeded inner and outer race faults. The bearing with seeded defect was
installed in the position of Bearing I during the test. The collected data time length
was 1 s. The ball pass frequencies over inner and outer race defect, fBPFI and fBPFO,
were computed to be 74.40 and 47.51 Hz.

Figure 23a displays the raw time signal collected from Accelerometer I on the
test rig of the bearing with 0.2 mm inner race defect, which is denoted in the top
right of Fig. 22. Figure 23b is the envelope of the signal in Fig. 23a processed by
signal pre-whitening and signal demodulation [24]. The data in Figs. 23c, d are
the output signals of the conventional SR method and the proposed method.

Fig. 22 Test rig and the 0.2 mm inner and outer race defect bearings
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Their spectra are shown in Figs. 23e, f, respectively. It can be seen that there are
some noisy impulses in the time domain signal and the envelope. The envelope
signal is enhanced by traditional SR using normalized scale transform, which
improves the defect identification as shown in Fig. 23e. The shaft frequency
(marked as 1X) is also enhanced by the conventional SR method. The result pro-
duced by the proposed method makes the inner race fault diagnosis beyond all
doubt. As seen in Fig. 23f, the characteristic component of inner race defect
fBPFI = 74.40 Hz is highlighted clearly.

Figure 24 is the analyzed result of the kurtogram, where Kmax, Bw and fc denote
the maximum kurtosis, bandwidth and central frequency of the selected band,
respectively. Figure 24a is the kurtogram of signal in Fig. 23a. Figure 24b is the
envelope signal of the selected band, which maximizes the kurtogram. Figure 24c is
the spectrum of the envelope signal. The characteristic component fBPFI induced by
inner race defect can be identified in the envelope spectrum. However, there are
also some frequency components disturbing the inner race fault identification.

The vibration signal of 0.2 mm outer race fault is analyzed in Figs. 25 and 26 to
confirm the reliability of the proposed method. Figure 25 displays results similar to
that in Figs. 23 and 26 displays results similar to that in Fig. 24. All the signal and
experimental parameters are set equal to those of the inner race fault identification.
Only the fault type and the target signal frequency are different from the inner race

Fig. 23 Analyzed results of bearing inner race fault using the traditional SR and the proposed
method
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fault identification. Similar to the result in Figs. 23 and 24, the characteristic
component of outer race defect fBPFO = 47.51 Hz is highlighted clearly by the
proposed method. This shows that better performance can be achieved by the
proposed method in comparison with kurtogram and traditional SR method for fault
diagnosis.

Fig. 24 Analyzed results of bearing inner race fault using kurtogram

Fig. 25 Analyzed results of bearing outer race fault by using the traditional SR and the proposed
method
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6 Conclusions

In the chapter, we studied normalized scale transform, circuit module and
multi-scale bistable array to extract characteristic fault signal of the dynamic
mechanical components based on SR theory. The SR normalized scale transform is
flexible and feasible for discrete signal processing, but it demands high sampling
rate and expensive computation. The SR hardware module, which is suitable for
processing analog signal directly, changes nonlinear system parameter tuning into
resistances adjusting. The advantages of implementation by hardware are less
computational task, instantaneous output, and much lower sampling frequency.
The SR effect of the MSBA model could be used to detect weak signal buried by
strong noise. Numerical simulation results show that the SR effect of MSBA can
appear at high input noise intensity. Simulation and experiment results of the
experiment on bearings with planted inner race fault demonstrate that the methods
of this chapter are suitable for application in mechanical fault signal detection.
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