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Abstract. In this paper we investigate the following problem: Given a
database workload (tables and queries), which data layout (row, column
or a suitable PAX-layout) should we choose in order to get the best pos-
sible performance? We show that this is not an easy problem. We explore
careful combinations of various parameters that have an impact on the
performance including: (1) the schema, (2) the CPU architecture, (3) the
compiler, and (4) the optimization level. We include a CPU from each
of the past 4 generations of Intel CPUs.

In addition, we demonstrate the importance of taking variance into
account when deciding on the optimal storage layout. We observe con-
siderable variance throughout our measurements which makes it difficult
to argue along means over different runs of an experiment. Therefore,
we compute confidence intervals for all measurements and exploit this
to detect outliers and define classes of methods that we are not allowed
to distinguish statistically. The variance of different performance mea-
surements can be so significant that the optimal solution may not be the
best one in practice.

Our results also indicate that a carefully or ill-chosen compilation
setup can trigger a performance gain or loss of factor 1.1 to factor 25 in
even the simplest workloads: a table with four attributes and a simple
query reading those attributes. This latter observation is not caused by
variance in the measured runtimes, but due to using a different compiler
setup.

Besides the compilation setup, the data layout is another source of
query time fragility. Various size metrics of the memory subsystem are
round numbers in binary, or put more simply: powers of 2 in decimal. Sys-
tem engineers have followed this tradition over time. Surprisingly, there
exists a use-case in query processing where using powers of 2 is always
a suboptimal choice, leading to one more cause of fragile query times.
Using this finding, we will show how to improve tuple-reconstruction
costs by using a novel main-memory data-layout.

Keywords: Main-memory databases · Data layouts · Robust query
processing · Tuple reconstruction

1 Introduction

The two most common data layouts used in todays database management sys-
tems are row and column layout. These are only the two extremes when vertically
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partitioning a table. In-between these extremes there exists a full spectrum of
column-grouped layouts, which under certain settings can beat both of the afore-
mentioned traditional layouts for legacy disk-based row-stores [7]. However, for
main-memory systems column grouped layouts have not proved to be of much
use for OLTP workloads [5], unless the schema is very wide [9].

Another axis of partitioning a table is horizontal partitioning, where the
partitions are created along the tuples instead of along the attributes. This is
usually based on the values of an attribute with low cardinality, e.g. geograph-
ical regions, but this is not a strict requirement. Forming horizontal partitions
can also be done by simply taking repeatedly k records from the table, which
we will call chunks in the following. Within a horizontal partition we can have
any vertically partitioned layout, including row and column as well. One notable
example in disk-based database systems is the PAX-layout [1], where the hor-
izontal partitions have a size that is the multiple of the hard disk’s block size,
and inside these partitions the tuples are laid out in column layout. Another
notable example is MonetDB X/100 [2,12], which chooses the chunk size such
that all column chunks needed by a query fit into the CPU cache.

We can apply a strategy similar to PAX in main memory as well, however,
we have more freedom in choosing the size of the horizontal partitions. Therefore
in main-memory we can simply form so-called chunks of the table by repeatedly
taking k records from the table and laying them out in column layout within
the chunk. We denote this layout by memPAXk. In this sense, row layout is the
same as memPAX1, and column layout is equivalent to memPAXn, where n is
larger or equal to the cardinality of the table. The chunks of these layouts are
analogous to PAX pages [1], however, there are two important differences: (1) we
can choose any chunk size (in bytes or tuples) that is a multiple of the tuple size,
while for PAX we are restricted to multiples of the disk’s block size, and (2) we
neither store any helper data structures per chunk, nor use mini-pages as in
the disk-based PAX-layout. The possible memPAX layouts of a table having
2 columns and 8 records, and using chunk sizes of powers of 2 are illustrated in
Fig. 1. Here we can see the two extremes: row- and column layout, and memPAX
layouts with a chunk size of 2- and 4 tuples.

Row a b a b a b a b a b a b a b a b

a a b b a a b b a a b b a a b b

a a a a b b b b a a a a b b b b

Column a a a a a a a a b b b b b b b b

memPAX2

memPAX4

Fig. 1. memPAX layouts of a table having 2 columns and 8 records, considering powers
of 2 chunk sizes.
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2 The Six-Dimensional Parameter Space of Our
Experiments

We are going to explore a six-dimensional parameter space of a fairly simple
workload: a table with four attributes and two simple queries reading those
attributes. The whole experiment is conducted on memory resident tables, and
using hand-coded queries implemented in C++. We are going to refer to this
workload as our micro-benchmark. In the following we specify the dimensions:

(1) The datatype used in the schema. Our dataset is a single memory-
resident table with four integer columns, with a total size of 10 GB. Depending
on the data type chosen (1-byte, 4-byte, or 8-byte integers denoted by int1,
int4, and int8, respectively) we get the following scenarios (Table 1):

Table 1. The schemas used in our experiments

Label Schema Tuple count

char (a int1, b int1, c int1, d int1) 2560 ∗ 10242

int (a int4, b int4, c int4, d int4) 640 ∗ 10242

long (a int8, b int8, c int8, d int8) 320 ∗ 10242

(2) The presence of conditional statements in the query code. We use
two queries requiring all tuples to be reconstructed for processing as shown
in Fig. 2. Q1 performs a minimum-search on the sum of all attributes of a
tuple, which being a conditional expression yields a branch in the implemen-
tation. We have tried out a branch-free implementation of the min1 calculation
as well, which, however, was consistently slower. Q2 on the other hand performs
a branchless calculation: it sums up the product of the attribute values of each
tuple. Since Q2 has no branches, the measured query times are not affected by
branch-mispredictions.

Q1: SELECT MIN(a+b+c+d) FROM T;

Q2: SELECT SUM(a*b*c*d) FROM T;

Fig. 2. The queries used in the experiments

(3) The CPU architecture. The performance characteristics of a main-
memory database system are influenced the most by the machine’s CPU. As
there are usually significant changes between the subsequent CPU architectures,
we have chosen machines equipped with Intel CPUs of four subsequent archi-
tectures, all running Debian 7.8.0 with Linux kernel version 3.2.0-4-amd64 as
shown in Table 2, with hyper-threading either disabled or not supported.
1 min = min XOR ((temp XOR min) AND NEG(temp < min)).
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Table 2. The machines used in our experiments

CPU Architecture RAM

Xeon 5150 Core 16 GB DDR2 @ 266 MHz

Xeon X5690 Westmere 192 GB DDR3 @ 1066 MHz

Xeon E5-2407 Sandy Bridge 48 GB DDR3 @ 1333 MHz

Xeon E7-4870 v2 Ivy Bridge 512 GB DDR3 @ 1600 MHz

(4) The compiler. In our experiments we have chosen the three most com-
monly used compilers2: clang (3.0-6.2), gcc (Debian 4.7.2-5), and icc (15.0.0).
clang and gcc are both open-source, while icc is proprietary software. clang is
actually a C-compiler front-end to the LLVM compiler infrastructure. It compiles
C, Objective-C, and C++ code to the LLVM Intermediate Representation (IR),
similar to other LLVM front-ends, which allows for a massive set of optimizations
to be performed on the IR before translating it to machine code. GCC is short
for GNU Compiler Collection, a compiler supporting among others the C/C++
language. It support almost all hardware platforms and operating systems, and
it is the most popular C/C++ compiler, and also the default one in most Linux
distros. Intel’s C/C++ compiler can take advantage of Intel’s insider knowledge
on Intel CPUs. It is said to generate very efficient code especially for arithmetic
operations.

(5) The optimization level. We intuitively expect to get higher performance
from higher optimization levels, yet there is no guarantee from the compiler’s
side that this will also hold in practice. Thus, we have decided to evaluate all
three standard optimization levels: -O1, -O2, and -O3.

(6) Compile time vs. runtime layouts. The tables in our dataset are phys-
ically stored in a one-dimensional array of integers, using a linearisation order
conforming to one of the layouts described in Sect. 1. Any query fired against this
dataset needs to take care of determining the (virtual) address of any attribute
value, and possibly reconstructing tuples as well. To do this it is required to
know the chunk size, which can either be specified prior to compiling a given
query, i.e. at compile time, or only provided at runtime.

To allow for any compiler optimization to take place, we have been extensively
using templates to create a separate executable for each element of the parameter
space, i.e. we have an executable for every dataset, query, machine, compiler, O-
level, and layout. In case of compile time chunk sizes we have created a separate
executable for each chunk size, while for runtime memPAX layouts only a single
generic one. The generic executable processes the query chunk by chunk, for
which it needs the chunk size provided the latest at runtime. For smaller chunk

2 More precisely their C++ front-ends: clang++, g++, and icpc.
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sizes this approach has an inherent CPU-overhead caused by the short-living
loops.

3 Methodology

3.1 Motivating Example

The most common way of measuring the performance of algorithms, systems, or
components in the database community is to report the average runtime out of
3 or 5 runs. Let’s look at an example: assume we measured runtimes of a query
when executed against two different layouts. Layout A has an average runtime
of 1.75 s and Layout B of 1.82 s. In this case we would clearly declare Layout A
as superior to Layout B.
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Fig. 3. Query times
for two different lay-
outs, each measured
five times

However, if we take a look at the runtimes of all 5 runs
in Fig. 3, we can see that Layout A has a high variance
(0.06), whereas the query time for Layout B is rather sta-
ble (its variance is 0.00075). Most system designers would
probably prefer Layout B, due to its performance being
more predictable. This example demonstrates that report-
ing the average runtime alone is not sufficient for compar-
ing two solutions [6, Chap. 13]. Therefore at a minimum
the variance or standard deviation of the sample should be
provided along with the average to get a proper description
of the sample.

We should keep in mind that when experimentally com-
paring multiple systems, we only get a sample of their per-
formance metrics which can only be used to estimate the
populations’ performance metrics. Thus, there is always
a level of uncertainty in our estimates, which renders the
necessity of expressing this uncertainty in some way. One
possible way to do this is to use confidence intervals, which express the following
in natural language: “There is a 95% chance that the actual average runtime of
System A is between 1.7 and 1.8 s.”

3.2 Confidence Intervals

To create a confidence interval we first have to choose our confidence level, typi-
cally 90%, 95% or 99%, denoted by 1−α, where α is called the significance level.
We require the sample size n, the sample mean x, sample standard deviation σ,
and the significance level α. Then the confidence interval is defined as follows:
(x − C × σ√

n
, x + C × σ√

n
), where C is the so-called confidence coefficient. The

choice of the confidence coefficient is determined by the sample size [6, p. 206].
If we have a large sample (n ≥ 30), we can use the 1 − α/2-quantile of the stan-
dard normal distribution for the confidence coefficient: C = Z1−α/2. However,
in experiments we usually run only 5 measurements, thus we have a sample size
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of n = 5. Therefore, we should only use the 1 − α/2-quantile of the Student’s
t-distribution with n − 1 degrees of freedom: C = t[1−α/2,n−1]. The prerequi-
site is that the population needs to have a normal distribution, which is a fair
assumption for our runtime measurements. For instance, the 95% confidence
intervals for our example in Fig. 3 are: (0.23, 3.27) for Layout A, and (1.65, 1.99)
for Layout B. This makes Layout B a safer choice, if predictability is of great
importance for the system designer. (See [6, Chap. 13] for details.) When looking
at the measured query times on Layout A in Fig. 3, we can see that the relatively
wide confidence interval for Layout A is due to the large variance of the sample:
the points are scattered out across the (1.4, 2.0) interval. However, a sample can
have a large variance even if most measured values are “near” to each other, and
only a few of them having a higher or lower value than the rest. These latter are
called outliers.

3.3 Outlier Detection

An outlier is an element of a sample that does not “fit” into the sample in some
way. It is hard to quantify the criteria for labelling an element as an outlier, and
it also depends heavily on the use-case. Therefore, the most common technique
used for detecting outliers is plotting the sample on a scatter plot, and visually
inspecting the plot by a human. If we assume, that there is only one outlier in
the sample, and it is either the minimum, or the maximum value, then we can
use Grubbs’ test [4] to automatically detect outliers. The only problem is that
this method tends to identify outliers too often for samples with less than eight
elements. To counter the error rate of the method we have included an additional
condition for labelling an outlier: margin of error/x ≥ 2.5%, where the margin
of error is defined as the radius of the confidence interval.

3.4 Choosing the Best Solution When There Is No Single Best
Solution

Choosing the best solution using the average runtime is easy, we simply take
the one with the smallest one. We have also seen that this can be arbitrarily
wrong, and that is why confidence intervals provide a better basis of compari-
son than the sample mean. However, comparing confidence intervals is not that
straight-forward as comparing scalars. If two intervals are disjoint, they are eas-
ily comparable. If they are not disjoint, and the mean of one sample is inside the
other sample’s confidence interval, they are indistinguishable from each other
with the same level of confidence, as that of the intervals. Finally, if they are
not disjoint, but their means do not fall into the other sample’s interval, an
independent two-sample t-test (Welch’s t-test [11]) can decide whether they are
distinguishable, and if so, which one is better.

4 Micro Benchmark Results

In this section we investigate the connection between the query time and the
elements of the parameter space. We will consider all dimensions mentioned in
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Sect. 2, and show their effect on performance. We have executed all executables
single-threaded, and have pinned the process to a given CPU core to avoid
runtime variance cased by data- and thread shuffling. We have noticed that
varying the chunk size of the memPAX layouts between 216 and the biggest
possible one does not make a significant difference in the query times, regardless
of the query, machine, and compiler. Thus, we have excluded those results from
our discussion.

4.1 Runtime Fragility

We start our discussion with runtime fragility, by which we denote the perfor-
mance difference caused by using another layout, compiler, O-level, etc. Note the
difference between query time variance and fragility: fragility is not caused by
query time variance, but by using another parameter combination that simply
yields a different runtime, potentially a factor better or worse.
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Fig. 4. Runtime fragility of the various data layouts in our micro benchmarks

Let us first consider the runtime fragility of compiling, i.e. the effects of
changing the compiler setup which consists of the compiler, O-level, and runtime
vs. compile time layouts. In Fig. 4 in each subplot we show the median query
times, when fixing only the machine, query, and the dataset, but changing the
compiler setup and the data layout. The fragility is presented by using box
plots, which show the minimum, first quartile, median, third quartile, and the
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maximum value of the median query times for each data layout. To help us
compare the fragility of compiling across the different scenarios, the vertical
axis displays the performance overhead of each compiler setup over the best one
(displayed till at most 250% overhead; notice that some boxes leave their plot).

The most apparent finding is that the query time of both queries on the char
schema is extremely fragile compared to that of the int and long schemas.
This is quantified in Table 3, where we show the performance drop between
the worst and the best query times, drilled-down along machine, schema, and
query. We observe up to a factor 25 difference in runtime. For char we can
get factor 3.3 to factor 25 worse by choosing the wrong layout and/or compiler
setup. Furthermore, for char there is not only a much larger fragility across the
different data layouts as seen in Table 3, but even inside a given layout as well.
In the majority of the cases the compiler setup can make a factor 0.5 to 1.0
more performance drop compared to the best layout and compiler setup for Q2
on char.

Table 3. The performance drop between worst and best query times caused by chang-
ing the compiler setup and the layout.

Machine char int long

Q1 Q2 Q1 Q2 Q1 Q2

Core 6.8 3.3 1.3 1.4 1.1 2.0

Westmere 25.0 3.8 1.9 2.5 1.0 1.3

Sandy Bridge 13.2 3.6 1.6 2.4 1.5 1.9

Ivy Bridge 14.4 3.3 1.7 2.6 1.3 1.7

Let us now investigate how exactly the compiler setup determines perfor-
mance. In Fig. 5 we can see the query times on the char schema for runtime-
layouts (plus row and column). Please note that the query times of compile time
layouts are not shown to enhance readability. For Q1 we can see that g++ -O1
and -O2 consistently yield a very bad performance, which is at least 3 times
worse for chunk sizes above 8. The worst query times are produced by g++ -O3
on memPAX1 and memPAX2. It is clear that the short-living loops of these
two layouts incur a large CPU overhead, yet it is surprising to see that g++ -O3
makes the layouts with chunk sizes not bigger than 16 even more inefficient.
Considering the other two compilers, clang++ performs in between the other
two, and icpc consistently yields the best runtimes. On the other hand, for Q2
icpc -O2 and icpc -O3 perform the worst for chunk sizes above 2.

4.2 Best Solutions

Our second major finding is not about fragility, but a substantial difference
between the effectiveness of the different layouts depending on the machine the
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Fig. 5. Query times on the char schema across compiler setups and runtime-layouts
in our micro benchmarks.

query is executed on. To highlight this we show in Fig. 6 the query times of
the best layouts, drilled-down along machine, schema, and query. We can imme-
diately notice the radical difference between Core and the other three CPU
architectures. The oldest one, Core, prefers layouts with smaller chunk sizes,
i.e. close to row layout. The three newer ones on the other hand prefer larger
chunk sizes, i.e. close to column layout. For the latter CPUs we can further notice
that the best layout for a dataset is often the one, where the following holds:
k * attribute size * tuple count = 4KB, k ∈ {1 . . . attribute count } —
which is when the chunk or an attribute’s column inside a chunk perfectly fits the
memory page: memPAX4096 for char, memPAX1024 for int and memPAX512
for long.
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Fig. 6. Best layouts and their query times. Drilled-down along machine, schema, and
query.

4.3 Conclusions and Guidelines

We can conclude that when using the int and long schemas, we can focus on
choosing a proper data layout only, since the compiler setup is not expected to
cause significant fragility. However, for the char schema care has to be taken to
choose both layout and compiler setup wisely.

Our overall guideline for choosing the best layout is as follows: For servers
equipped with a Core CPU it is a safe bet to use row layout, while for machines
with the subsequent Westmere, Sandy Bridge, and Ivy Bridge architectures it is
just fine to use column layout. For the latter machines we can exploit the schema
for some fine-tuning, by creating PAX-blocks with the same size as the virtual
memory pages. Having branches in the query is an additional argument for this
optimization. The compiler, O-level, and compile time vs. runtime layouts will
not change the choice of best layout (see Q2 on int run on Ivy Bridge), but they
are to be chosen very carefully for the best performance. In cases like the char
schema, for the optimal compiler setup, however, one has to try out all possible
combinations, since it highly depends on the target system.

We have also shown how misleading it can be to choose the best solution along
means. Take the case of Q2 on char run on Core, where the 6 best solutions
are statistically indistinguishable from each other with 95% confidence, yet they
differ either in the layout, the compiler, or the optimization level.



160 E. Palatinus and J. Dittrich

5 Revisiting Strided Memory Access

5.1 Motivation

Various size metrics of the memory subsystem are round numbers in binary, or
put more simply: powers of 2 in decimal. System engineers have followed this
tradition over time. Some well known examples of objects with powers of 2 sizes:
cachelines, caches, RAM modules, HDD blocks, virtual memory pages, and even
HDFS blocks. Surrounded by this flood of round binary numbers a data engineer
feels pressed to develop data structures with similarly “round” sizes. So did we
feel, until one day we started to question the optimality of this tradition, and
dared to look at memPAX layouts with chunk sizes in between powers of 2.

5.2 Background

One of the CPU events debunking the random-access nature of main memory
is the memory bank conflict. To understand this event, we first have to explain
interleaved memory. DRAM and caches are both organised into banks. In case of
DDR3 there are typically 4 banks. Caches on the other hand can have a varying
number of banks, depending on the actual CPU generation. Interleaved memory
means that the memory addresses are split among the banks in a round-robin
fashion, i.e. membankID = address mod 4, which allows for requests to different
banks to be fetched — though not transferred — in parallel, thereby improving
the bandwidth utilisation. (See [8, Sect. 5.2] for more details.)

8 banks

Fig. 7. The architecture diagram of Intel Sandy Bridge. Image source: http://www.
realworldtech.com/sandy-bridge/7

In Fig. 7 we can see the part of the Sandy Bridge architecture diagram that
is related to the memory subsystem. There are two important improvements
over previous generations [3]. Firstly, the Sandy Bridge architecture has two
memory read ports where previous Intel processors had only one. The maximum

http://www.realworldtech.com/sandy-bridge/7
http://www.realworldtech.com/sandy-bridge/7


Runtime Fragility in Main Memory 161

throughput is now 256 bits read and 128 bits write per clock cycle. The flip side
of this coin is that the risk of contentions in the data cache increases when there
are more memory operations per clock cycle. It is quite difficult to maintain
the maximum read and write throughput without being delayed by cache bank
conflicts. The second improvement is, that there is no performance penalty for
reading or writing misaligned memory operands, except for the fact that it uses
more cache banks so that the risk of cache conflicts is higher when the operand
is misaligned.

Getting back to memory bank conflicts, the Intel Architecture Optimization
Manual [3, Sects. 2.2.5.2 and 3.6.1.3] gives a precise description on this event for
the Sandy Bridge architecture: “A bank conflict happens when two simultaneous
load operations have the same bit 2–5 of their linear address but they are not
from the same set in the cache (bits 6–12).” Thus, in contrast to our expectations,
it is actually not beneficial for the performance of load bandwidth-bound code to
perform a strided access of addresses with a stride that is a multiple of the cache
line size. In that case the addresses will have the same bits 5–0, but different
bits 12–6, thus a bank conflict will occur.

5.3 Performance Implications on Tuple-Reconstruction

To demonstrate the effects of bank conflicts on the performance of an application,
lets consider Q1 and Q2 executed on Sandy Bridge on char fields, compiled
with g++ -O2, and the chunk sizes being provided at compile time. Let us take
a look at the query times for all chunk sizes [measured in tuples] between 2 and
1024, considering multiples-of-2 chunk sizes as well, in Fig. 8. The black symbols
on the left show the query times for row layout, while the ones on the right
show the query times for column layout. The red line shows the query times for
powers-of-2 chunk sizes, while the blue line shows the runtimes for multiples-of-2
chunk sizes, which is more fine granular. This exemplifies the details that can
get overlooked when not performing a fine-granular exploration of the parameter
space. Interestingly, there is a periodic spike in the query time, with a period
size of 64, which happens to be the cache line size. Recall, that when executing
Q1 we have to reconstruct the tuples for computing the aggregate value. As we
have two attributes only, the stride of the memory access equals to the chunk size
multiplied by the field size. Thus, for char fields the stride equals the chunk size.
From the above discussion we know that a strided access of memory addresses
with a multiple of 64 stride should result in a bank conflict.

Therefore, we have decided to validated this claim by letting VTune find the
hardware events responsible for the spikes in the query time. We have taken a
sample of the experiments, those with a chunk size between 448 and 512. Both
endpoints of this interval are multiples of 64, and where the query time has its
spikes. We have measured all existing PMU events and looked for those that
have a linear correlation with the query time. We have found out that out of the
ca. 200 PMU events available for Sandy Bridge, only three correlate significantly
with the query time:
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Fig. 8. Query times of Q1 and Q2 executed on Sandy Bridge on char fields, compiled
with g++ -O2, and the chunk size being provided at compile time. (Color figure online)

DTLB LOAD MISSES.STLB HIT: data TLB load misses that hit in the
second level TLB

HW PRE REQ.DL1 MISS: hardware prefetch requests that miss in the L1
data cache

L1D BLOCKS.BANK CONFLICT CYCLES: memory bank conflict in
the L1 data cache
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Fig. 9. PMU events of Q1 and Q2 executed on Sandy Bridge on char fields, compiled
with g++ -O2, for chunk sizes in {448, 450, . . . , 510, 512}.

We have plotted these three PMU events and the query time in Fig. 9, nor-
malised to the respective values measured for chunk size 512. As we have the
same spikes in the query time for the two endpoints of the chunk size interval,
the normalised query times equal 1 at these points, and are below 1 for all other
points. We can see that the memory bank conflicts in the L1 data cache have a
very strong linear correlation to the query time. Basically, both the query time
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and the latter metric have only 3 different values. The query time is the lowest
when there are no L1D bank conflicts at all, and it increases together with the
metric just next to the chunk sizes where the spikes are, and reaches its maximum
together with the metric. The other two events also show a strong correlation,
however, they do not drop to 0 inside the considered chunk size intervals.

As we can see in Fig. 8, for Q2 choosing a memPAX layout which is not a
power of 2 improves the query time by approximately 20%. This is definitely
a significant improvement in the spectrum of what can be expected from data
layouts. Q2 is a typical example of tuple-reconstruction, and thus memPAX
layout can also be used for improving the tuple-reconstruction part of more
complex queries.

6 TPC-H Experiments

Real world analytical workloads are significantly more complex, than our micro-
benchmarks. They have a wider schema with different attribute types, and the
queries use more expensive operators as well, including aggregation and joins.
In order to investigate the runtime fragility of more complex workloads, let us
consider the TPC-H benchmark [10].

6.1 Experimental Setup

We have implemented Q1 and Q6 of the TPC-H benchmark as hand-coded
applications written in C++. These two queries are single-table queries touching
only the Lineitem table. We have implemented two variants of the Lineitem table:
one matching the schema described in the benchmark, which we will refer to as
uncompressed. The second version, on the other hand, is a compressed table. We
have applied some compression schemes to the Lineitem table, as explained in
Table 4, using the information in Sect. 4.2.3 “Test Database Data Generation”
of the TPC-H Standard Specification [10].

Table 4. The compression schemes applied to the TPC-H Lineitem table

Field name DDL-compliant

data type

Compressed

type

Encoding Reason

L LINENUMBER int32 t uint8 t domain in [1..7]

L QUANTITY int64 t uint8 t domain random value [1..50]

L DISCOUNT int64 t uint8 t domain random value [0.00 .. 0.10]

L TAX int64 t uint8 t domain random value [0.00 .. 0.08]

L SHIPINSTRUCT char[25] uint8 t dictionary random string from list

Instructions

L SHIPMODE char[10] uint8 t dictionary random string from list

Modes

L COMMENT char[44] uint32 t dictionary random text [10,43]
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6.2 Runtime Fragility

We show the runtime fragility of the various data layouts for Q1 and Q6 in the
TPC-H benchmarks in Fig. 10, for both the uncompressed and the compressed
Lineitem table. For the uncompressed Lineitem table, column layout is the clear
winner in terms of performance. What is more important, is that it also has the
lowest fragility across the different compiler setups, and for Q6 it has almost no
fragility compared to the other layouts.

On the other hand, for the compressed Lineitem table column layout is not
a clear winner. If we consider the median query times inside a given layout
— depicted by the strong dash inside the boxes — for Q6 column layout is
significantly worse than the memPAX layouts with larger chunk sizes. There
is one very interesting difference when comparing to the query times on the
uncompressed Lineitem table: the layouts of the compressed Lineitem table are
much less fragile, as for Q6 the boxes are 2–5 times narrower than that of the
uncompressed table.
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Fig. 10. Runtime fragility of the various data layouts for TPC-H queries

7 Conclusions

In this paper we have identified various sources of query time fragility – imple-
mentation factors that can change the performance of a query by factors in an
unpredictable way. We have investigated the fragility of both micro-benchmarks
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and complex analytical benchmarks. We have considered the CPU architecture,
the compiler, and the compiler flags as important factors. We have introduced
the memPAX layout and compared its fragility to column layout and row layout.

We have shown that when querying tables with 1–byte integer columns a very
high fragility is to be expected, in our case leading to a performance drop of up to
factor 25. In case of more complex schemas and queries the inhomogeneity of
the schema has a direct effect on the fragility. Applying dictionary- and domain
encoding to the columns have reduced fragility by 50% to 80% in our experiments
on the TPC-H benchmark.

We have found a use-case in query processing where using powers of 2 is
always a suboptimal choice, leading to one more cause of fragile query times.
We have shown how to choose the chunk sizes of the memPAX layouts to improve
tuple-reconstruction costs by 20%.
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