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Abstract. In-memory database systems have to keep base data as well
as intermediate results generated during query processing in main mem-
ory. In addition, the effort to access intermediate results is equivalent to
the effort to access the base data. Therefore, the optimization of inter-
mediate results is interesting and has a high impact on the performance
of the query execution. For this domain, we propose the continuous use
of lightweight compression methods for intermediate results and have
the aim of developing a balanced query processing approach based on
compressed intermediate results. To minimize the overall query execu-
tion time, it is important to find a balance between the reduced transfer
times and the increased computational effort. This paper provides an
overview and presents a system design for our vision. Our system design
addresses the challenge of integrating a large and evolving corpus of
lightweight data compression algorithms in an in-memory column store.
In detail, we present our model-driven approach and describe ongoing
research topics to realize our compression-aware query processing vision.

1 Motivation

In-memory database systems pursue a main memory-centric architecture app-
roach and assume that all relevant data can be fully kept in main memory of
a computer or of a computer network (cluster configuration) [1,5]. Lightweight
data compression methods play an important role in this approach [2,27]. Aside
from reducing the amount of data, compressed data offers several advantages
such as less time spent on load and store instructions, a better utilization of the
cache hierarchy and less misses in the translation lookaside buffer. Moreover,
this approach is characterized by the fact that all performance-critical opera-
tions and internal data structures are designed for efficiently accessing the main
memory hierarchy (e.g., efficient use of the cache hierarchy) [14,17]. Furthermore,
any access to an intermediate result generated during query processing is just as
expensive as access to the base data [15,19]. Accordingly, the optimization of the
intermediate results is extremely important for an efficient query processing.
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1.1 Vision of Compression-Aware In-Memory Query Processing

Generally, two orthogonal techniques are possible to optimize the handling of
intermediate results. On the one hand, intermediate results should be no longer
produced during query processing. Methods to avoid the generation of interme-
diate results are (i) adopted code generation for query plans [19] or (ii) the usage
of cooperative operators [15]. On the other hand, intermediate results—if they
cannot be avoided—should be organized so that an efficient further processing is
enabled. In this context, we want to utilize lightweight compression techniques
for intermediates as for base data. With the explicit compression of all interme-
diates, we want

1. to increase the efficiency of individual analytical queries or the throughput
of an amount of analytical queries since the main memory requirement is
reduced for intermediate results and the extra effort for the generation of the
compressed form is minimized, and

2. to establish the continuous handling of compression from the base data to
the intermediate results during query processing (holistic approach).

This type of query optimization has been already discussed [6], but not exam-
ined in detail since the computational effort for compression and decompression
exceeded the benefits of a reduced transfer cost between CPU and main mem-
ory. Due to the ever-increasing gap between computing power and main memory
bandwidth in modern multiprocessor systems [20] and the recent developments
in the domain of efficient lightweight compression methods [18,22,25,27], this
argument loses increasingly its validity. Nevertheless, to minimize the overall
query execution time, it is important to find a balance between the reduced
transfer times and the increased computational effort. To achieve such a bal-
ance, not only the query processing but also the necessary part of the query
optimization has to be addressed (compression-aware query processing).

1.2 System Design Challenge for Compression-Aware Processing

In-memory database systems usually store data according to the decomposi-
tion storage model (DSM) [7] to efficiently support analytical and long-running
queries. For DSM compression, a large corpus of lightweight data compression
algorithms has been developed to efficiently support different data character-
istics. Examples are: dictionary compression [2,27], run-length encoding [2,21],
and null suppression [2,18,21]. The optimal compression method depends on the
properties of the data. If we look at intermediate results, we observe that their
properties usually change dramatically during the processing of a single query.
Consequently, the compression for intermediate results have to be decided and
changed during query processing. For example, a selection might get dictionary-
compressed data as input and let only small values pass, such that afterwards a
null suppression scheme would be more appropriate.

In order to realize our vision, we require an appropriate in-memory system
supporting the large corpus of lightweight data compression algorithms. To best
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of our knowledge, there is no in-memory database system available providing this
large corpus of compression algorithms. Therefore, the most challenging task is
now to define a system design allowing us to integrate the large and evolving
corpus of data compression algorithms.

1.3 Our Contribution and Outline of the Paper

In this paper, we are primarily focusing on the system design challenge as a fun-
damental basis for our vision. The näıve approach would be to natively imple-
ment the compression algorithms in the DSM storage layer of an in-memory
database system as done today. However, this näıve approach has several draw-
backs, e.g., (1) massive effort to implement every possible lightweight compres-
sion algorithm as well as (2) the integration of new and specific algorithms is
time consuming. Therefore, we propose a novel and model-based approach for
the integration in this paper. In detail our contributions are:

1. We start with a system design overview in Sect. 2. As we are going to intro-
duce, our solution consists of two components: (i) the unified conceptual
model for lightweight compression algorithms and (iii) the transformation
of model instances to executable storage layer code.

2. We present our unified conceptual model in detail. We begin with a systematic
treatment of the lightweight compression aspect and present a derived system
description in Sect. 3. Afterwards, we propose our novel conceptual model
COLLATE in Sect. 4.

3. We show the applicability of COLLATE model by describing two algorithms
as model instances in Sect. 5. Then, we highlight our transformation approach
to derive efficient executable code out of the model instances.

Furthermore, we close the paper with a description of our ongoing research topics
realize our vision of compression-aware in-memory query processing. Finally, we
conclude the paper in Sect. 7.

2 System Design Overview

Without loss of generality, we restrict our attention to in-memory column stores,
because they are perfectly suited for complex analytical queries from a perfor-
mance perspective [2,27]. The left side of Fig. 1 shows an abstract architecture
of a typical in-memory column-store consisting of three layers: durability, stor-
age, and processing layer. While the durability layer guarantees data persistence
on non-volatile medium, the storage and processing layer are the main layers
and they are responsible for storing and processing data in main-memory. The
storage layer itself maintains relational data using the decomposition storage
model (DSM) [7]. That means, each attribute is separately stored and the stor-
age equals to a value-based storage model in form of a sequence of values. For the
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Fig. 1. Model-driven approach for the integration of data compression algorithms.

compression of sequences of values, a large variety of algorithms has been devel-
oped [2–4,11,18,21–24,27]. The landscape evolves further because it is impossi-
ble to design an algorithm that always produces optimal results for any kind of
data.

To avoid the näıve approach by natively implementing each single compres-
sion algorithm, we pursue a model-driven approach. Fundamentally, the model-
driven architecture (MDA) is a software design approach for the development of
software systems [16]. In this approach, the system functionality is defined with
a platform-independent model (PIM) using an appropriate domain-specific lan-
guage [16]. Then, the PIM is automatically translated into one or more platform-
specific models (PSM) [16]. The MDA paradigm is widely used in the area of
database applications for database creations. On the one hand, the model-driven
data modeling and the generation of normalized database schemas should be
mentioned. On the other hand, there is the generation of full database applica-
tions, including the data schema as well as data layer code, business logic layer
code, and even user interface code [12].

In this paper, we propose to use the MDA paradigm for the system-internal
domain of lightweight data compression algorithms as illustrated at the right
side of Fig. 1. To achieve this, we defined a conceptual model called COLLATE
for this specific domain. The aim of COLLATE is to provide a holistic, abstract
and platform-independent view of necessary concepts including all aspects of
data, behavior, and interaction. Based on that, a specific compression algorithm
can be expressed as model instance. To transform a model instance to executable
code, we pursue a generator approach. The generated and optimized code can
be used in a column store in a straightforward way.

3 Survey of Lightweight Data Compression Algorithms

Before we present our novel model in the following section, we start with a
comparison of basic compression techniques, followed by specific algorithms, and
conclude with a system description in this section.
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3.1 Analysis of Basic Lightweight Compression Techniques

The basis of lightweight data compression algorithms are six basic techniques:
frame-of-reference (FOR) [11,27], delta coding (DELTA) [18,21], dictionary com-
pression (DICT) [2,27], bit vectors (BV) [26], run-length encoding (RLE) [2,21],
and null suppression (NS) [2,21]. FOR and DELTA represent each value as the
difference to a certain given reference value (FOR) respectively to its prede-
cessor value (DELTA). DICT replaces each value by its unique key given by a
dictionary. The objective of these three well-known techniques is to represent
the original data as a sequence of small integers, which is then suited for actual
compression using the NS technique. NS is the most well-studied kind of light-
weight compression techniques. Its basic idea is the omission of leading zeros in
the bit representation of small integers. In contrast to DICT, the technique BV
replaces each input value with a bit vector representation in the output. Finally,
RLE tackles uninterrupted sequences of occurrences of the same value, so called
runs. In its compressed format, each run is represented by its value and length.
Therefore, the compressed data is a sequence of such pairs.

If we analyze these techniques without their application in specific algo-
rithms, we observe the following characteristics:

1. The techniques address different data levels. While FOR, DELTA, DICT,
BV, and RLE consider the logical data level, NS addresses the bit or byte
level. Therefore, it is clear why algorithms usually combine techniques from
the logical level with NS.

2. We are able to distinguish two approaches how input values are mapped
to output values. FOR, DELTA, DICT, and BV map each input value to
exactly one integer as output value (1:1 mapping). The goal is to achieve
smaller numbers which can be better compressed on bit level. In RLE, not
every input value is necessarily mapped to an encoded output value, because
a successive subsequence of equal values is encoded in the output as a pair
of run value and run length (N:1 mapping). The NS technique is either a 1:1
mapping or an N:1 mapping depending on the concrete expression.

3. The techniques are either parameter-dependent or data-dependent. Most of
the 1:1 mapping techniques except DELTA are parameter-dependent. That
means, each input value is independently encoded from other values within
the input sequence to an output representation, but the encoding depends
on some parameter, i.e., the reference value in FOR or the bit width for
NS. DELTA is a data-dependent technique, because it encodes the values in
dependency of their predecessor. The same is valid for RLE, therefore we
define RLE as data-dependent technique.

Each technique has its own characteristics and objectives, which are applied
in the algorithms in different ways. In particular, the algorithms precisely define
some open questions regarding the application. For example, one open question is
how the parameter values for parameter-dependent techniques are determined. A
second open question is whether the whole input sequence is processed with the
same parameter value, or if the sequence is partitioned and for each subsequence
a separate parameter value is used.
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3.2 Analysis of Lightweight Compression Algorithms

Without claiming completeness, we analyzed a large variety of algorithms and
classified the algorithms in families as follows:

Algorithms in the family of Byte-oriented Encodings rely on the basic
technique NS [24]. They map uncompressed values to codewords of a bit length
that is a multiple of eight. These algorithms implement NS according to a 1:1
mapping, whereas the corresponding parameter for encoding is determined for
each single input value (number of essential bytes). That means, byte-oriented
encodings compute the parameters for the parameter-dependent NS technique
data-dependent by computing one parameter per input data value. For decoding,
it is necessary to store the length of a codeword as a parameter. The algorithms
have a lot of similarities. The only difference between two algorithms is the
arrangement of bits and they also differ in the encoding of the length value.

Simple-based Algorithms apply only the NS technique, again [3]. Here,
the algorithms try to pack as many binary encoded integer values in a 32 resp.
64 bit codeword by suppressing leading zeros. In contrast to the previous family,
the algorithms follow an N:1 mapping for NS. The algorithms subdivide the
input sequence in subsequences depending on the size of the input values. In
each codeword of a fixed length, several descriptor bits serve as parameters to
determine the bit width for all values that are encoded with this codeword.
The remaining bits are filled with NS compressed data values. Simple-based
algorithms apply the parameter-dependent NS technique in a data-dependent
fashion with one parameter per input data subsequence.

PFOR-based Algorithms implement the FOR technique [27] in combi-
nation with NS. They subdivide the input in subsequences of a fix length and
calculate two parameters per subsequence: a reference value for the FOR tech-
nique and a common bit width for NS. Each subsequence is encoded using their
specific parameters, thereby the parameters are data-dependently derived. The
values that cannot be encoded with the given bit width are stored separately
with a greater bit width.

Adaptive FOR algorithms [10,23] bundle a lot of NS algorithms, but they
focus on the problem of how to optimize the subdividing of a finite sequence
of integer values in subsequences, such that every value in a subsequence is
encoded with the same bit width. These algorithms use the parameter-dependent
technique NS in a data-dependent fashion with a N:1 mapping approach.

All described families apply one or more basic lightweight compression tech-
niques, but the application is different. For the last three families, data subdi-
vision into subsequences plays an important role. Also the calculation of para-
meter values that are related to all values within a subsequence like a common
bit width is a core part of the algorithms. In general, this aspect influences the
encoding of the values in each subsequence differently. That is not addressed on
the level of basic techniques, but on the level of the algorithms. Furthermore,
the parameters for each subsequence have to be included in the encoded output
sequences for decompression purposes. Generally, the parameter-dependent basic
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techniques are applied in a data-dependent fashion in algorithms by computing
the parameters based on the input data sequence.

3.3 Derived System Description and Properties

Based on the decomposition storage model [7], the input for every lightweight
data compression algorithm is a finite sequence of (integer) values. The output is
a sequence of codewords and parameters representing the compressed data. The
parameters like bit width or run length are required for decoding/decompression
or are part of an access path within the compressed data format. Input and
output data have a logical representation (semantic level) and a physical repre-
sentation (bit or encoding level). While for some compression techniques it is
useful to focus on the semantic level (FOR and DELTA), for other techniques
the physical level is more important (NS).

For the transformation from input to output, two further characteristics play
an important role for every algorithm. First, most of the basic lightweight com-
pression techniques are parameter-dependent. Within the algorithms, a number
of parameter values has to be calculated. Second, the basic techniques and algo-
rithms differ in their mapping cardinalities as described above. For parameter-
dependent N:1 mappings, parameters are calculated for each subsequence of
N values. In general, a lot of algorithms subdivide input data hierarchically in
subsequences (i.e. PFOR) for which the parameters can be calculated. Moreover,
the further data processing of a subsequence depends on the subsequence itself.
That means, data subdivision and parameter calculation are important and
the application of the basic techniques is then straightforward. Finally, for an
exact algorithm description, the combination and arrangement of codewords
and parameters have to be defined. Here, the algorithms also differ widely.

4 COLLATE Model

We now introduce our novel conceptual and platform-independent model called
COLLATE for the domain of lightweight data compression algorithms. As
described in Sect. 3.3, input is a sequence of (integer) values and output is a
sequence of codewords and parameters representing the compressed data. To
convert input data to its compressed output data, several functional concepts
with regard to our system description are necessary. Fundamentally, our model
consists of the following five main concepts (functional components):

Recursion: This concept is responsible for the hierarchical data subdivision
and for applying the included concepts in the Recursion on each data sub-
sequence. Each modeled algorithm is a Recursion.

Tokenizer: This concept is responsible for dividing an input sequence into finite
subsequences or single values.

Parameter Calculator: The concept Parameter Calculator determines
parameter values for finite subsequences or single values. The specification
of the parameter values is done using parameter definitions.
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Fig. 2. Interaction and data flow of our COLLATE model.

Encoder: The third concept determines the encoded form for values to be com-
pressed at bit level. Again, the concrete encoding is specified using functions
representing the basic techniques.

Combiner: The Combiner is essential to arrange the encoded values and the
calculated parameters for the output representation.

Figure 2 illustrates the interactions of our concepts and the data flow through
the concepts for lightweight data compression for a simple case with only one
pair of Parameter Calculator and Encoder. In general, this arrangement can
be used as blueprint for lightweight compression algorithms as we will show in
the next section. The dashed lines highlight several properties of the concepts.
The properties of the concepts Tokenizer, Parameter Calculator and Encoder
are as follows:

For the Tokenizer concept, we identified three classifying characteristics.
The first one is the data dependency. A data independent Tokenizer outputs a
special number of values without regarding the value itself, while a data depen-
dent Tokenizer is used if the decision how many values to output is led by
the knowledge of the concrete values. A second characteristic is the adaptivity.
A Tokenizer is adaptive if the calculation rule changes depending on previ-
ously read data. The third property is the necessary input for decisions. Most
Tokenizers need only a finite prefix of a data sequence to decide how many val-
ues to output. The rest of the sequence is used as further input for the Tokenizer
and processed in the same manner. Only those Tokenizers are able to process
data streams with potentially infinite data sequences. There are also Tokenizers
needing the whole (finite) input sequence to decide how to subdivide it.

All of these eight combinations are possible. Some of them occur more fre-
quently than others in existing algorithms. Some analyzed algorithms are very
complex concerning sequence subdivision. It is not sufficient to assume that
Tokenizers subdivide sequences in a linear way. As an example for PFOR-
based algorithms, we also need Tokenizers that arrange somehow subsequences,
mostly regarding content of single values of the sequence. With such kinds of
Tokenizers (mostly categorizable as non adaptive, data dependent and with the
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need of finite input sequences), we can rearrange the values in a different (data
dependent) order than the one of the input sequence.

A second task of the Tokenizer is to decide for each output sequence which
pair of Parameter Calculator and Encoder is used for the further data process-
ing. Most algorithms process all data in the same way, some of them distinguish
several cases, so that this choice is necessary. The finite output sequence of the
Tokenizer serves as input for the Parameter Calculator.

Parameters are often required for the encoding and decoding. Therefore, we
introduce the Parameter Calculator concept, which knows special rules (para-
meter definitions) for the calculation of several parameters. There are different
kinds of parameter definitions. We often need single numbers like a common bit
width for all values or mapping informations for dictionary based encodings. We
call a parameter definition adaptive, if the knowledge of a calculated parameter
for one token (output of the Tokenizer) is needed for the calculation of parame-
ters for further tokens at the same hierarchical level. For example, an adaptive
parameter definition is necessary for DELTA. Calculated parameters have a logi-
cal representation for further calculations and the encoding of values as well as a
representation at bit level, because on the one hand they are needed to calculate
the encoding of values, on the other hand they have to be stored additionally to
allow the decoding. If an algorithm is characterized by hierarchically calculated
parameters, it is possible that a parameter definition depends on other calculated
parameters that are additional input for a Parameter Calculator.

The Encoder processes an atomic input, where the output of the Parameter
Calculator and other parameters are additional inputs. The input is a token
that cannot or shall not be subdivided anymore. In practice the Encoder mostly
gets a single integer value to be mapped into a binary code (1:1 mapping tech-
niques). An exception is RLE as N:1 mapping technique, where the Parameter
Calculator maps a sequence of equal values to its run length and the Encoder
maps the sequence to the special value. Equally to the parameter definitions, the
Encoder calculates a logical representation of its input value and an encoding
at bit level.

5 Transformation of Model Instances

In this section, we deal with the application and the transformation of COL-
LATE model instances into executable code, thereby we focus on algorithms
from the class of Byte-oriented Encodings. Nevertheless, all algorithms belong-
ing to the algorithm families described in Sect. 2 can be modeled with COLLATE
as demonstrated on our project website1. Due to space constraints, we only high-
light the basic feasibility of our transformation approach.

5.1 Model Instances for Byte-oriented Encoding Algorithms

The two simple algorithms varint-SU and varint-PU belong to the class of Byte-
oriented Encodings and they are designed to suppress leading zeros [24]. Both
1 Website - https://wwwdb.inf.tu-dresden.de/research-projects/projects/collate/.

https://wwwdb.inf.tu-dresden.de/research-projects/projects/collate/
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Fig. 3. Example for varint-SU (green) and varint-PU (blue) (Color figure online).

take 32-bit integer values as input and map them to codewords of variable length.
This is shown in Fig. 3 for the binary representation of the value 104, 125. Both
algorithms determine the smallest number of 7-bit units that are needed for
the binary representation of the value without losing any information. In our
example, we need at least three 7-bit units and we are able to suppress 11 leading
zero bits. To support the decoding, we have to store the number three—number
of necessary 7-bit units—as additional parameter. This is done in a unary way
as 011. The algorithm varint-SU stores each single parameter bit at the high
end of a 7-bit data unit, whereas varint-PU stores the complete parameter at
one end of the 21 data bits.

Both algorithms are similar, which is also observable in their model instances
as depicted in Fig. 4. Both algorithms use a very simple Tokenizer subdividing
an input sequence of length n into single integer values (indicated by |ni=1mi).
For each value, the Parameter Calculator determines the number of neces-
sary 7-bit units using an appropriate function (bw = �log128(max(1, •))� + 1).
The determined number is used in the subsequent Encoder. This one does not
transform the logical value, but it subdivides the bit level representation of the
input value into bw 7-bit units (indicated by |bwj=1 •7j−1 . . . •7(j−1)). Up to now,
both algorithms have the same behavior. The only difference between both’

Fig. 4. Model instances for varint-SU (green) and varint-PU (blue) (Color figure
online).
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algorithms can be found in the Combiner, because only the output is different.
The algorithm varint-SU concatenates each 7-bit unit of one logical value with
one bit of the bit level representation of the parameter bw in a loop (indicated
by :bwj=1) corresponding to the subdivision inside the Encoder. It uses a second
loop corresponding to the Tokenizer to concatenate all n values (indicated by
:ni=1). The algorithm varint-PU concatenates the whole bit level representation
of a parameter bw and all 7-bit units of one value (indicated by :bwj=1) as well as
all encoded values (indicated by :ni=1).

5.2 Transformation to Executable Code

As illustrated above, the algorithms are specified in an abstract way with our
novel model approach and appropriate mathematical functions. The next chal-
lenge is the transformation in efficient executable code. Figure 5 depicts our
developed overall approach for this task, thereby we follow a generator app-
roach. The input of our Model-2-Code Transformer are (i) a specification of
a model instance in the GNU Octave2 high-level programming language and
(ii) code templates for our model concepts. Our Model-2-Code Transformer is
written in C and outputs algorithms in C. On the COLLATE model level, we
have 5 specific concepts and we require one code template for each model con-
cept. The code templates have to be implemented once for each specific database
system, e.g., MonetDB [5]. This is necessary to get access to the data on the
specific storage layer implementation.

Fig. 5. Transformation of model instances to executable code.

2 https://www.gnu.org/software/octave/.

https://www.gnu.org/software/octave/
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The transformation is actually a topic for itself, that is why we want to
explain here only the core idea of our approach using the varint-SU algorithm as
shown in Fig. 4. The Recursion concept indicates that we iterate over the input
sequence, thereby the Tokenizer specifies how we iterate over the input data.
That means for our templates, the Recursion is a loop and Tokenizer informa-
tion is used to concretize the loop. This approach is shown Fig. 6(a) representing
the unoptimized output of our Model-2-Code Transformer for varint-SU. Fur-
thermore, the Tokenizer determines which values have to processed in each
loop pass. In our example, we process a single integer value in each loop pass.
Then, the concept Parameter Calculator includes mathematical rules defin-
ing which and how parameters values have to be computed. These definitions
are translated in a straightforward way. Generally, Recursion, Tokenizer and
Parameter Calculator are working on the logical representation of input val-
ues. Afterwards, the Encoder gets the calculated parameter values and a single
integer value as input. Here, we have to distinguish three opportunities. Either
the Encoder works on the logical level, on the physical level, or on both levels.
On the logical level, the encoding rules are translated again in a straightforward
way. If the Encoder operates at the physical level, the logical value is usually
decomposed in bits or bytes. This is represented in our template using a loop
iterating over the bit/byte representation. In our example, the integer value is
decomposed in bw 7-bit units (see corresponding loop in Fig. 6(a)). This decom-
position or bit shifting is extracted from the encoder rule. If the Encoder works
on the logical as well as physical level, we combine both approaches. Then, the
Combiner works on the output of the Encoder and gets also the parameter as
additional input. Again, if the Combiner works on the physical level, the corre-
sponding template includes a loop iterating over the bit/byte representation.

To summarize, the templates reflect a foundation and the mathematical rules
of the concepts are used to concretize the foundation. Figure 6(a) shows our
generated C code we obtained with this approach for varint-SU. It is easy to
see that this code is not optimal since encoder and combiner contain the same
loop. To improve the generated code, we are able to optimize the code using
well-known compiler techniques. In this case, we are able to fuse the code for the
encoding and combining as illustrated in Fig. 6(b) resulting in one loop iterating
over the bw 7-bit units. The code can be further optimized by unrolling the loop
for encoding and decoding as there are maximal 5 7-bit unit opportunities. That
means, we have a specific code part for compression a integer value using one
7-bit unit, specific code part for two 7-bit units, etc. The resulting optimized
code is depicted in Fig. 6(c). This optimization is currently executed manually,
because the automatically determination of code variants is challenging. This
optimization has to be investigated more precisely.

Figure 7(a) shows an evaluation based on single threaded versions of varint-
SU running on a standard server. We compare our generated and optimized
codes to an efficient implementation of Lemire [18]. In this experiment, we
vary the number of integer values to be compressed, thereby the compressed
representations randomly vary between 1 and 5 7-bit units per integer value.
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Fig. 6. Generated and optimized code for our varint-SU example.

The evaluation is done outside of any column store. As we can see, the unop-
timized generated code performs poorly, but with our optimizations, we come
close to the native implementation of Lemire. Figure 7(b) indicates the slowdown
of our generated and optimized code compared to implementation of Lemire. As
we can see, our unoptimized code is around seven times slower than the native
code. The fusion of encoder and combiner reduces the slowdown to around 1.5
time, while the unrolling optimization offers the most improvement. Here, our
slowdown is around 1.12 compared to the native implementation of Lemire. That
means, our generated and optimized code is marginally slower than native code
of Lemire.

Fig. 7. Evaluation results for varint-SU.
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In summary it can be established that we are able generate efficient code
with our approach. Nevertheless, the whole code optimization has to be worked
out in detail, whereby the SIMD-parallelization must be considered with [22,25].

6 Future Work

As mentioned in the introduction, our central aim is to establish a compression-
aware query processing concept. With the explicit compression of all interme-
diates, we want to increase the efficiency of individual analytical queries or the
throughput of an amount of analytical queries since the main memory require-
ment is reduced for intermediate results and the extra effort for the generation
of the compressed form is minimized. With our presented system design, we
have now an appropriate foundation. Generally, our ongoing research activities
cover: (i) the integration and optimization of lightweight compression algorithms
(structural aspect) in column stores, (ii) the execution of operators on a com-
pressed data format as far as possible (operational aspect), and (iii) the design
of an optimization component to decide depending on the situation which com-
pression method should be used for intermediate results (optimization aspect).

6.1 Structural Aspect

With this paper, we have systematically analyzed classical lightweight data com-
pression algorithms. Furthermore, we have proposed a model-driven approach
to efficiently integrate the large corpus of algorithms in a column store, e.g.,
MonetDB [5]. Here, we have focused on the data compression part. The same
applies for decompression using a slightly adjusted conceptual model. Our ongo-
ing research topics in this direction are: (i) simplification of algorithm modeling
and (ii) extending the transformation/optimization to enable the utilization of
SIMD capabilities of modern CPUs. Especially, the second point is interesting
because we do not want to parallelize one specific algorithm, but the entire
corpus.

A further interesting topic with regard to our vision is the transformation of
compressed data in format X into compressed data in format Y. This is important
since the optimal compression format depends on the properties of the data [2].
While the properties of the base data might change only incrementally over time
caused by DML operations, the properties of intermediate results usually change
dramatically during the processing of a single query. Consequently, operators
should be able to output data in another format than their input. For example, a
selection might get dictionary-compressed data as input and let only small values
pass, such that afterwards a null suppression scheme would be more appropriate.
Not adapting the format of the operator’s output implies a waste of performance
potential. At this point, transformation algorithms are our proposed solution
as described here [9]. Our direct transformation techniques convert compressed
data in format X to another compression format Y in a direct and interleaved
way. They could be applied to the output of an operator or even inside an
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operator. The transformation algorithms can be also handled with our system
design approach.

6.2 Operational Aspect

The operational aspect is another key component for our compression-aware
query processing aim because physical plan operators have to be designed and
implemented, which accept compressed data as an input and provide compressed
data as result. The challenge in this task is to ensure that the cost of integrating
different combinations of compression formats and operators is as low as possible.
There are currently three different strategies for the query execution available
which differ in timing and nature of data decompression: eager decompression
[13], lazy decompression[27] and transient decompression [6]. In particular, the
integration strategy transient decompression is very important for our aim. For
operators, who can not work on compressed data, the data is decompressed
partially and temporarily, however, the compressed representation is used as
output. This strategy is intended to form the basis of our approach. However,
the fundamental difference is that the intermediate results are transferred in
different compression formats in the query plan. This allows changing the optimal
compression method in the execution plan, depending on the operators and the
data properties.

6.3 Optimization Aspect

At this level, both reduced transfer costs and the overhead of compression and
decompression in the search of an optimal execution plan for our compression-
aware query processing must be considered. Furthermore, the choice of com-
pression methods for intermediate results and the choice of operator alterna-
tives that can operate on compressed data, are important factors for the query
optimization. Our goal is to design a common processing model which includes
compression in the query processing as well as optimization. Therefore, further
optimization techniques for the compression-sensitive query optimization have to
be developed, which can have a major impact on processing times of analytical
queries. Our query optimization will be based on a cost model, this cost model
has explicit knowledge about the lightweight compression and transformation.
This knowledge should be acquired on an empirical evaluation process, thereby
we already defined an appropriate benchmark framework [8].

7 Conclusion

In-memory database systems have to keep base data as well as generated inter-
mediate results during query processing in main memory. Furthermore, any
access to any intermediate result is just as expensive as access to the base
data. Therefore, the intermediate results should be considered separately for
an efficient query processing offering two orthogonal optimization approaches:
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(i) avoid the generation of intermediate results [15,19] or (ii) organize the inter-
mediate result—if they cannot be avoided—so that an efficient further processing
is enabled. In this latter context, we propose to use lightweight compression tech-
niques for intermediates as for base data. In this paper, we explained our overall
vision of a compression-aware query processing concept. In particular, we have
proposed a model-driven approach to integrate the large and evolving corpus
of lightweight data compression algorithms in a column store. Furthermore, we
have highlighted our ongoing research activities.
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