
Spyros Blanas
Rajesh Bordawekar
Tirthankar Lahiri
Justin Levandoski
Andrew Pavlo (Eds.)

 123

LN
CS

 1
01

95

7th International Workshop on Accelerating
Data Analysis and Data Management Systems Using
Modern Processor and Storage Architectures, ADMS 2016
and 4th International Workshop on In-Memory Data
Management and Analytics, IMDM 2016
New Delhi, India, September 1, 2016, Revised Selected Papers

Data Management
on New Hardware

Lecture Notes in Computer Science 10195

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Spyros Blanas • Rajesh Bordawekar
Tirthankar Lahiri • Justin Levandoski
Andrew Pavlo (Eds.)

Data Management
on New Hardware
7th International Workshop on Accelerating
Data Analysis and Data Management Systems Using
Modern Processor and Storage Architectures, ADMS 2016
and 4th International Workshop on In-Memory Data
Management and Analytics, IMDM 2016
New Delhi, India, September 1, 2016
Revised Selected Papers

123

Editors
Spyros Blanas
Ohio State University
Columbus, OH
USA

Rajesh Bordawekar
IBM Thomas J Watson Research Center
Yorktown Heights, NY
USA

Tirthankar Lahiri
Oracle Cor.
Redwood Shores, CA
USA

Justin Levandoski
Microsoft Corporation
Redmond, WA
USA

Andrew Pavlo
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-56110-3 ISBN 978-3-319-56111-0 (eBook)
DOI 10.1007/978-3-319-56111-0

Library of Congress Control Number: 2017935567

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The International Workshop on Accelerating Analytics and Data Management Systems
Using Modern Processor and Storage Architectures (ADMS) and the International
Workshop on In-Memory Data Management (IMDM) were held jointly this year.

The objective of this workshop is to investigate opportunities in accelerating
analytics/data management systems and workloads (which include traditional OLTP,
data warehousing/OLAP, ETL, streaming/real-time, business analytics, and XML/RDF
processing) running in memory-only environments, using processors (e.g., commodity
and specialized multi-core, GPUs, and FPGAs), storage systems (e.g., storage-class
memories like SSDs and phase-change memory), and hybrid programming models
such as CUDA, OpenCL, and OpenACC. The workshop hopes to explore the interplay
between overall system design, core algorithms, query optimization strategies, pro-
gramming approaches, as well as performance modeling and evaluation, from the
perspective of data management applications.

In addition, over the past 30 years, memory prices have been dropping by a factor of
10 every 5 years. Main memory is the “new disk” for data storage. The number of I/O
operations per second (IOPS) in DRAM is far greater than other storage media such as
hard disks and SSDs. DRAM is readily available in the market at a better price point in
comparison with DRAM alternatives. These trends make DRAM a better storage media
for latency-sensitive database applications, large-scale Web applications, and future
applications such as wearable devices. The International Workshop on In-Memory
Memory Data Management and Analytics (IMDM) aims to bring together researchers
and practitioners interested in the proliferation of in-memory data management and
analytics infrastructures.

These proceedings contain papers from the joint ADMS/IMDM workshop that was
co-located with VLDB 2016 in New Delhi, India. The workshops were well-attended
and sparked interesting technical discussions.

All papers in these proceedings were peer-reviewed by an expert Program Com-
mittee comprising experts from both industry and academia. We would like to thank
these committee members as well as the authors for contributing high-quality work.

February 2017 Spyros Blanas
Rajesh Bordawekar
Tirthankar Lahiri
Justin Levandoski

Andrew Pavlo

Organization

Workshop Organizers

Spyros Blanas Ohio State University, USA
Rajesh Bordawekar IBM T.J. Watson Research Center, USA
Tirthankar Lahiri Oracle, USA
Justin Levandoski Microsoft Research, USA
Andrew Pavlo Carnegie Mellon University, USA

Program Committee

Reza Azimi Huawei, China
Nipun Agarwal Oracle Labs, USA
Christoph Dubach University of Edinburgh, UK
Qiong Luo Hong Kong University of Science and Technology

(HKUST), Hong Kong
Sina Merji IBM Toronto, Canada
Mohammad Sadoghi IBM T.J. Watson Research, USA
Nadathur Satish Intel, USA
Sudhakar Yalamanchili Georgia Tech, USA
David Schwalb Hasso-Plattner Institute (HPI), Germany
Viktor Rosenfeld TU Berlin, Germany
Shirish Tatikonda Target, USA
Christian Lang Acelot, USA
Vincent Kulandaisamy IBM Analytics, USA
Eric Boutin MemSQL, USA
Badrish Chandramouli Microsoft Research, USA
Martin Grund Amazon, USA
Ryan Johnson LogicBlox, USA
Hideaki Kimura Hewlett Packard Enterprise, USA
Viktor Leis TU Munich, Germany
Ippokratis Pandis Amazon, USA
Evangelia Sitaridi Columbia University, USA
Ryan Stutsman University of Utah, USA
Sandeep Tata Google, USA
Pinar Tozun IBM Research, USA
Oded Shmueli Technion, Israel

Contents

Cache-Sensitive Skip List: Efficient Range Queries on Modern CPUs 1
Stefan Sprenger, Steffen Zeuch, and Ulf Leser

Exploit Every Cycle: Vectorized Time Series Algorithms on Modern
Commodity CPUs . 18

Bo Tang, Man Lung Yiu, Yuhong Li, and Leong Hou U

Compression-Aware In-Memory Query Processing: Vision, System Design
and Beyond . 40

Juliana Hildebrandt, Dirk Habich, Patrick Damme,
and Wolfgang Lehner

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic
Processing with Parallelism-Friendly Execution Plan Optimization 57

Adnan Agbaria, David Minor, Natan Peterfreund, Eyal Rozenberg,
and Ofer Rosenberg

To Copy or Not to Copy: Making In-Memory Databases Fast
on Modern NICs. 79

Aniraj Kesavan, Robert Ricci, and Ryan Stutsman

DBMS Data Loading: An Analysis on Modern Hardware 95
Adam Dziedzic, Manos Karpathiotakis, Ioannis Alagiannis,
Raja Appuswamy, and Anastasia Ailamaki

Locality-Adaptive Parallel Hash Joins Using Hardware
Transactional Memory . 118

Anil Shanbhag, Holger Pirk, and Sam Madden

SwingDB: An Embedded In-memory DBMS Enabling Instant
Snapshot Sharing . 134

Qingzhong Meng, Xuan Zhou, Shiping Chen, and Shan Wang

Runtime Fragility in Main Memory . 150
Endre Palatinus and Jens Dittrich

Author Index . 167

http://dx.doi.org/10.1007/978-3-319-56111-0_1
http://dx.doi.org/10.1007/978-3-319-56111-0_2
http://dx.doi.org/10.1007/978-3-319-56111-0_2
http://dx.doi.org/10.1007/978-3-319-56111-0_3
http://dx.doi.org/10.1007/978-3-319-56111-0_3
http://dx.doi.org/10.1007/978-3-319-56111-0_4
http://dx.doi.org/10.1007/978-3-319-56111-0_4
http://dx.doi.org/10.1007/978-3-319-56111-0_5
http://dx.doi.org/10.1007/978-3-319-56111-0_5
http://dx.doi.org/10.1007/978-3-319-56111-0_6
http://dx.doi.org/10.1007/978-3-319-56111-0_7
http://dx.doi.org/10.1007/978-3-319-56111-0_7
http://dx.doi.org/10.1007/978-3-319-56111-0_8
http://dx.doi.org/10.1007/978-3-319-56111-0_8
http://dx.doi.org/10.1007/978-3-319-56111-0_9

Cache-Sensitive Skip List:
Efficient Range Queries on Modern CPUs

Stefan Sprenger(B), Steffen Zeuch, and Ulf Leser

Institute for Computer Science, Humboldt-Universität zu Berlin,
Unter den Linden 6, 10099 Berlin, Germany

{sprengsz,zeuchste,leser}@informatik.hu-berlin.de

Abstract. Due to ever falling prices and advancements in chip technolo-
gies, many of today’s databases can be entirely kept in main memory.
However, reusing existing disk-based index structures for managing data
in memory leads to suboptimal performance due to inefficient cache usage
and negligence of the capabilities of modern CPUs. Accordingly, a num-
ber of main-memory optimized index structures have been proposed,
yet most of them focus entirely on single-key lookups, neglecting the
equally important range queries. We present Cache-Sensitive Skip Lists
(CSSL) as a novel index structure that is optimized for range queries and
exploits modern CPUs. CSSL is based on a cache-friendly data layout and
traversal algorithm that minimizes cache misses, branch mispredictions,
and allows to exploit SIMD instructions for search. In our experiments,
CSSL’s range query performance surpasses all competitors significantly.
Even for lookups, it is only surpassed by the recently presented ART
index structure. We therefore see CSSL as a serious alternative for mixed
key/range workloads on main-memory databases.

Keywords: Index structures · Main-memory databases · Scientific
databases

1 Introduction

Over the last years, various index structures were designed for fast and space-
efficient execution of search operations in main memory, like the adaptive radix
tree (ART) [13] or Cache-Sensitive B+-tree (CSB+) [18]. By reducing cache
misses, improving cache line utilization, and exploiting vectorized instructions,
they outperform conventional database index structures, like B-trees [5], which
were mostly designed to reduce disk accesses. Most of these novel index methods
focus on single-key lookups and show suboptimal performance for range queries,
despite their importance in many applications. Use cases for range queries are
numerous, such as: queries in a data warehouse that ask for sales in a certain price
range, analysis of meteorological data that considers certain yearly time periods
in long time series, and Bioinformaticians who build databases of hundreds of
millions of mutations in the human genome that are analyzed by ranges defined
by genes [9].
c© Springer International Publishing AG 2017
S. Blanas et al. (Eds.): ADMS 2016/IMDM 2016, LNCS 10195, pp. 1–17, 2017.
DOI: 10.1007/978-3-319-56111-0 1

2 S. Sprenger et al.

In this paper, we introduce the Cache-Sensitive Skip List (CSSL), a novel
main-memory index structure specifically developed for efficient range queries
on modern CPUs. CSSL is based on skip lists as described in [16], yet uses
a very different memory layout to take maximal advantage of modern CPU
features like CPU-near cache lines, SIMD instructions, and pipelined execution.
In this work, we focus on read performance but provide a technique for handling
updates, too. Besides many other use cases, we see CSSL as perfectly suited for
scientific databases that prefer fast reads over fast writes and need range queries
in many cases. Especially the bioinformatics community, which is confronted
with an exponentially growing amount of genomic data that is mostly analyzed
with range queries to investigate certain genomic regions [20], may benefit from
our approach.

We evaluated CSSL on data sets of various sizes and properties and com-
pared its performance to CSB+-tree [18], ART [13], B+-tree [7], and binary
search on a static array. We also include experiments with real-world data from
the bioinformatics domain to investigate performance on non-synthetic key dis-
tributions. For range queries and mixed workloads, CSSL is consistently faster
than all state-of-the-art approaches, often by an order of magnitude; also its
lookup performance is way ahead of all competitors except ART.

The remaining paper is structured as follows. The next section introduces skip
lists, the index structure that CSSL is based on. Section 3 presents the Cache-
Sensitive Skip List as our main contribution. Section 4 describes algorithms for
executing lookups and range queries on CSSL. In Sect. 5, we compare CSSL
against other state-of-the-art index structures using synthetic as well as non-
synthetic data. Section 6 discusses related work, and Sect. 7 concludes this paper.

2 Preliminaries

Skip lists were originally presented as a probabilistic data structure similar to
B-trees [16]. Skip lists consist of multiple lanes of keys organized in a hierarchical
fashion (see Fig. 1). At the highest level of granularity, a skip list contains a
linked list of all keys in sorted order. In addition to this so-called data list, skip
lists maintain fast lanes at different levels. A fast lane at level i contains n ∗ pi

elements on average, where n is the number of keys to be stored and 0 < p < 1 is
a parameter. Skip lists were originally proposed as probabilistic data structures,
as the elements to be stored in higher lanes are randomly chosen from those
at lower lanes: Every element of fast lane i appears in fast lane i + 1 with
probability p. This scheme allows for efficient updates and inserts, yet makes the
data structure less predictable.

In our work, we use a deterministic variant of skip lists, so-called perfectly
balanced skip lists [15]. In balanced skip lists, the fast lane at level i+1 contains
every 1/p’th element of the fast lane at level i. Accordingly, for p = 0.5 a lane
at level i + 1 contains every second element of level i, in which case a skip list
resembles a balanced binary search tree. Figure 1 shows a balanced skip list over
nine integer keys with two fast lanes for p = 0.5.

Cache-Sensitive Skip List: Efficient Range Queries on Modern CPUs 3

Fig. 1. A balanced skip list that manages nine keys and two fast lanes; each fast lane
skips over two elements (p = 1/2).

In case of a low p value, fast lanes skip over many elements, therefore, fast
lanes can be considered sparse. In case of a high p value, fast lanes skip over
few elements, therefore, fast lanes can be considered dense. Fast lanes are used
to narrow down the data list segment that may contain the searched element to
avoid a full scan. For instance, a search for key 6 would traverse the skip list
of Fig. 1 as follows. First, search determines the first element of the highest fast
lane at level 2 by using the head element. Second, the fast lane will be traversed
until the subsequent element is either equal to the searched element, in which
case search terminates, or greater than the searched element. In this example,
search stops at element 5. Third, search moves down to the next fast lane. In
this example, traversal jumps to element 5 of the fast lane at level 1. Fourth,
steps two and three are repeated until the data list is reached. Fifth, the data
list is scanned until the searched element is found or proven to be non-existing.
In a fully built balanced skip list for p = 0.5, search requires O(log(n)) key
comparisons in the worst case. Parameter p directly influences the structure of
the fast lane hierarchy and should be chosen depending on the expected number
of keys. If p is too high, only few keys need to be compared per fast lane when
searching, but a lot of fast lane levels are required to fully build a balanced
skip list. If p is too low, a lot of keys need to be compared per fast lane when
searching, but only few fast lane levels are required to fully build a balanced
skip list.

Besides single-key lookups, skip lists also offer very efficient range queries.
Since the data list is kept in sorted order, implementing a range query requires
two steps: (1) Search the first element that satisfies the queried range, and (2)
traverse the data list to collect all elements that match the range boundaries.

In the original paper [16], skip lists are implemented using so-called fat keys.
A fat key is a record that contains a key and an array, which holds pointers to
subsequent elements for every fast lane and for the data list. The advantage of
this approach is that all nodes are uniform, which simplifies the implementation.
Furthermore, if a key is found in an upper lane, search immediately stops as
all instances of a key are kept in the same record. On the other hand, such
an implementation is space inefficient, because it requires space for O(m ∗ n)

4 S. Sprenger et al.

pointers (if m is the number of fast lane levels), although most values in higher
levels are padded with NULL.

Searching in skip lists using fat keys requires to follow many pointers. This
layout is suboptimal on modern CPUs, as it incurs many cache misses due to
jumps between non-contiguous parts of allocated memory. Even when searching
the data list, cache utilization is suboptimal due to the fatness of keys. For
instance, in a skip list that stores 32-bit integer keys and maintains five fast
lanes in addition to the data list, each node takes 4 bytes+6 ∗ 8 bytes = 52 bytes
of memory on a 64-bit architecture. Given that a cache line is typically 64 bytes,
each traversal step fills almost an entire cache line although only a small part
of it is used. Typically, traversal steps just need the key and one pointer to find
the subsequent element on a certain fast lane, i.e., 4 bytes + 8 bytes = 12 bytes.

3 Cache-Sensitive Skip List

In this paper, we present Cache-Sensitive Skip List as alternative implementa-
tion for balanced skip lists, which uses a radically different memory layout that
leads to much higher efficiency in today’s CPU architectures. The first and most
obvious idea is to keep fast lanes as separate entities in dense arrays. This leads
to less cache misses, improves the utilization of cache lines, and allows to use
SIMD instructions. Figure 2 shows a Cache-Sensitive Skip List that manages 32
integer keys with two fast lanes for p = 0.5. The traversal path, which search
would take to find key 7, is highlighted in red.

CSSL’s main contributions are threefold: First, fast lanes are linearized and
managed in one dense array, which is called Linearized Fast Lane Array, instead

Fig. 2. A cache-sensitive skip list that manages 32 keys with two fast lanes (p = 1/2).
(Color figure online)

Cache-Sensitive Skip List: Efficient Range Queries on Modern CPUs 5

of being kept in data list nodes. This improves utilization of cache lines when
executing a lookup or range query. Second, by linearizing fast lanes we eliminate
the need to store and follow pointers. For a given n, the number of fast lane
elements is known a-priori since we build on balanced skip lists. Thus, we can
simply compute the position of follow-up elements within the array, making
pointers completely superfluous. In Fig. 2, pointerless traversal over fast lanes is
indicated by dotted arrows. In our current implementation, we always preallocate
a certain amount of memory per fast lane based on a hypothetical maximum t of
keys. As long as n < t, all inserts can be managed inside the data structure; as
soon as n exceeds t, we rebuild fast lanes and increase t by a fixed fraction (see
Sect. 3.2 for details on an update strategy). Third, CSSL uses SIMD instructions
to iterate over matching keys when executing range queries, which is especially
useful in the case of large ranges. We exploit the lowest fast lane, i.e., the fast
lane at level 1, to search for the last key that satisfies the queried range. To the
best of our knowledge, CSSL is the first index structure that can make significant
use of SIMD instructions when executing range queries.

Our approach to linearization of fast lanes has the following benefits com-
pared to conventional skip lists: First, CSSL need less memory. Let k be the
size of a key and r be the size of a pointer. Ignoring space requirements for
data objects, which is equal in both layouts, conventional skip lists require
n∗ (m∗ r+ r+k) space, whereas CSSL only require n∗ (r+k)+

∑m
i=1 p

i ∗ n ∗ k.
Second, traversing linearized fast lanes has a better cache line utilization because
we always use the whole cache line content until we abort search and jump to a
lower layer. In the case of 32-bit keys, 16 fast lane elements fit into one 64-byte
cache line while only one fat key of a conventional skip list fits into it. Third,
since traversal of linearized fast lanes accesses successive array positions, we can
make use of prefetched cache lines. Fourth, array-based storage of fast lane ele-
ments allows the usage of SIMD instructions and enables data-level parallelism.
Given that s is the size of a SIMD register and k is the key size, s

k fast lane
elements can be compared in parallel. Modern CPUs usually feature SIMD reg-
isters having a size of 128 or 256 bits, thus four or eight 32-bit integers can be
processed per instruction. For the implementation of CSSL, we use Intel’s AVX
instructions [2] that support 256-bit SIMD registers.

3.1 Optimizations

Besides these main concepts, we apply a number of further optimizations to fully
exploit modern CPUs. First, we always tailor the size of fast lanes as multiples
of the CPU cache line size (see Fig. 3). This especially affects the highest fast
lane level. Second, we introduce an additional lane, called proxy lane, between
the lowest fast lane and the data list (see Fig. 2). For each key, the proxy lane
maintains a pointer to its corresponding data object. Connections between the
proxy lane, which is implemented as an array of structs, and the fast lane at
level 1 are implicit: The i’th fast lane element is part of the struct that can be
found at index i − 1 of the proxy lane. We use the proxy lane to connect the
lowest fast lane with the data list. Third, in practice we observed that searching

6 S. Sprenger et al.

Fig. 3. Linearized fast lane array of a CSSL that indexes all 32-bit integers in {1, .., 64}
with two levels (p = 1/2).

the highest fast lane is very expensive in terms of CPU cycles if it contains lots
of elements. This is especially the case if the number of fast lanes is kept small
and the highest fast lane contains a lot more than 1/p elements. In the worst
case, we have to scan the whole lane, while searching the remaining fast lanes
can never require more than 1/p comparisons per lane. We accelerate searching
the highest fast lane by using a binary search instead of sticking to a sequential
scan.

3.2 Updates

In our implementation, a CSSL is initialized with a sorted set of keys. Nonethe-
less, we still want to support online updates. In the following, we describe tech-
niques for inserting new keys, updating existing keys, and removing keys.

Inserting Keys: Since CSSL employs dense arrays for managing fast lanes,
directly inserting keys into fast lanes would require a lot of shift operations
to preserve the order of fast lane elements. For this reason, new keys are only
inserted into the data list, which is implemented as a common linked list. We
create a new node and add it at the proper position. As soon as the fast lane
array gets rebuilt to allocate more space, new keys are also reflected in the fast
lane hierarchy. Nonetheless, we can find new keys in the meantime. If search
does not find a key in the fast lanes, it moves down to the data list and scans
it until the key is found or proven to be non-existing. The insert algorithm can
be implemented latch-free by using an atomic compare-and-swap instruction for
changing pointers in the data list.

Deleting Keys: In contrast to insertions, we cannot delete keys from the data
list but leave fast lanes untouched, because this would lead to invalid search
results. In the first step of deleting a key from CSSL, we need to eliminate it
from the fast lane array. Just changing the corresponding entry to NULL would
require reshift operations to close gaps in the array. Therefore, we replace to-be-
deleted entries with a copy of the successive fast lane element. This allows fast
deletes but leaves the fast lane structure intact. We end up with duplicates in

Cache-Sensitive Skip List: Efficient Range Queries on Modern CPUs 7

the fast lane array that are removed as soon as the array gets rebuilt. As last
step, the next pointer of the preceding node in the data list is changed to point
to the successor of the to-be-removed-node and the node is deleted.

Updating Keys: Updates are basically implemented as an insert operation
followed by a deletion.

Though being based on balanced skip lists, which leads to less flexibility
compared to common skip lists, CSSL is able to handle online updates. By
limiting in-place updates on the fast lane array, we can keep the number of
cache invalidations small.

4 Algorithms

In this section, we describe in detail algorithms for executing lookups and range
queries using CSSL. We start by presenting the lookup algorithm, because the
execution of range queries is based on it.

Lookups: Pseudocode for lookups is shown in Algorithm 1. If search is suc-
cessful the element’s key will be returned, if not INT MAX will be returned.
The algorithm can be split into multiple parts. First, the highest fast lane is
processed with a binary search (see Line 1). Second, the remaining fast lanes
are searched hierarchically to narrow down the data list segment that may hold
the search key (see Lines 2–8). We scan each fast lane sequentially instead of
employing a binary search, because we need to compare only 1/p elements per
fast lane level. Third, if the last fast lane contains the searched element, it is
immediately returned (see Line 9); otherwise the associated proxy node is loaded
and all keys of the data list are compared with the searched element (see Lines
10–12). INT MAX is returned if no matching element is found (see Line 13).
Algorithm 1: lookup(key)
1: pos = binary_search_top_lane(flanes, key);
2: for (level = MAX_LEVEL - 1; level > 0; level--) {
3: rPos = pos - level_start_pos[level];
4: while (key >= flanes[++pos])
5: rPos++;
6: if (level == 1) break;
7: pos = level_start_pos[level-1] + 1/p * rPos;
8: }
9: if (key == flanes[--pos]) return key;

10: proxy = proxy_nodes[pos - level_start_pos \cite{bib1}];
11: for (i = 1; i < 1/p; i++)
12: if (key == proxy->keys[i]) return key;
13: return INT_MAX;

8 S. Sprenger et al.

Range Queries: Pseudocode for range queries is shown in Algorithm 2. Search
returns pointers to the first and last data list element that match the given range
defined by start and end, i.e., it returns a linked list that can be used for further
processing. Execution of range queries is implemented as follows.

First, the first matching element is searched similar to executing a lookup
(see Lines 1–16 of Algorithm 2). Second, the algorithm jumps back to the lowest
fast lane and scans it using vectorized instructions to find the last element that
satisfies the queried range. Using AVX, CSSL can process eight 32-bit integer
keys in parallel (see Lines 17–25). Third, the proxy node, which is associated
with the matching fast lane entry, is loaded and compared with the range end
to determine the last matching element (see Lines 29–35). Fourth, range search
returns a struct that provides pointers to the first and last matching element in
the data list (see Line 36).
Algorithm 2: searchRange(start, end)
1: RangeSearchResult res;
2: pos = binary_search_top_lane(flanes, start);
3: for (level = MAX_LEVEL - 1; level > 0; level--) {
4: rPos = pos - level_start_pos[level];
5: while (start >= flanes[++pos])
6: rPos++;
7: if (level == 1) break;
8: pos = level_start_pos[level-1] + 1/p * rPos;
9: }

10: proxy = proxy_nodes[rPos];
11: res.start = proxy->pointers[1/p - 1]->next;
12: for (i=0; i < 1/p; i++) {
13: if (start <= proxy->keys[i]) {
14: res.start = proxy->pointers[i]; break;
15: }
16: }
17: sreg = _mm256_castsi256_ps(_mm256_set1_epi32(end));
18: while (rPos < level_items \cite{bib1} - 8) {
19: creg = _mm256_castsi256_ps(
20: _mm256_loadu_si256((__m256i const *) &flanes[pos]));
21: res = _mm256_cmp_ps(sreg, creg, 30);
22: bitmask = _mm256_movemask_ps(res);
23: if (bitmask < 0xff) break;
24: pos += 8; rPos += 8;
25: }
26: pos--; rPos--;
27: while (end >= flanes[++pos] && rPos < level_items \cite{bib1})
28: rPos++;
29: proxy = proxy_nodes[rPos];
30: res.end = proxy->pointers[1/p - 1];
31: for (i=1; i < 1/p; i++) {
32: if (end < proxy->keys[i]) {

Cache-Sensitive Skip List: Efficient Range Queries on Modern CPUs 9

33: res.end = proxy->pointers[i - 1]; break;
34: }
35: }
36: return res;

5 Evaluation

We compare CSSL to other index structures optimized for in-memory storage.
We also include B+-tree [7] as baseline approach, though we note that it is
designed to be stored on disk. We compare competitors w.r.t. performance of
range queries (see Sect. 5.1), performance of lookups (see Sect. 5.2), performance
on a mixed workload (see Sect. 5.3), and space consumption (see Sect. 5.5). An
evaluation with real-world data from the bioinformatics domain can be found
in Sect. 5.4; results are very similar to those for synthetic data sets. Search per-
formance is measured in throughput, i.e., how many queries are processed per
second. For our main evaluation, we use n 32-bit integer keys with dense and
sparse distribution. For dense distribution, every key in [1, n] is indexed; for
sparse distribution n random keys from [1, 231) are indexed. We evaluate CSSL
with two configurations, CSSL2 with p = 1/2 and CSSL5 with p = 1/5, to inves-
tigate effects on dense and sparse fast lanes. In both cases, we use nine fast lanes,
because this setting results in a balanced number of inter- and intra-fast lane
traversals in our experiments.

We compare to the following approaches:

– the adaptive radix tree (ART) [13], a recent radix tree variant designed for
main memory,

– the CSB+-tree [18], a cache-sensitive variant of the B+-tree,
– a binary search (BS) on a static array,
– and a B+-tree [1] as baseline approach.

For ART and CSB+, we used implementations provided by the authors. For
CSB+, we had to implement range queries. We consider BS as the only index
structure that is read-only by design.

Our test system consists of the following hardware: a Intel Xeon E5-2620
CPU with 6 cores, 12 threads, 15 MB Level 3 Cache, 256-bit SIMD registers
(AVX) and a clock speed of 2 GHz. The evaluation system runs Linux and has
32 GB RAM. All experiments are single-threaded. All competitors including
CSSL were compiled with GCC 4.8.4 using optimization −O3. We use PAPI [3]
to collect performance counters.

5.1 Range Queries

The goal of CSSL is to achieve high range query performance by employing a
data layout tailored to the cache hierarchy of modern CPUs, which also can be
traversed using SIMD instructions. In this section, we evaluate all approaches for

10 S. Sprenger et al.

Fig. 4. Range query throughput for 16 M 32-bit integer keys w.r.t. different range sizes
(logarithmic scale).

Fig. 5. Range query throughput for 256M 32-bit integer keys w.r.t. different range
sizes (logarithmic scale).

range queries on 16 M and 256 M 32-bit integer keys w.r.t. different range sizes
(0.1%, 1%, and 10% of n). We determine to-be-evaluated ranges by selecting
a random key from the set of indexed elements as lower bound and adding the
range size to define the upper bound. For dense distribution, this creates a range
covering |upper bound − lower bound| elements. For sparse distribution, ranges
are created in the same way, yet contain less elements, which usually leads to
higher throughput.

Figure 4 shows results for executing range queries on 16 M keys. Both CSSL
configurations outperform all contestants for both key distributions and all

Cache-Sensitive Skip List: Efficient Range Queries on Modern CPUs 11

Fig. 6. Performance counters per range query on 16M 32-bit integer keys (10% range
size).

evaluated range sizes. In contrast to all competitors, CSSL does not need to fol-
low pointers when iterating over matching keys but can use SIMD instructions
to traverse the fast lane array, which results in an outstanding performance.
The usage of SIMD instructions accelerates the performance of CSSL by a fac-
tor between 2 to 3. CSSL5 is faster than CSSL2, which is due to the fact that
fast lanes skip over five instead of only two elements, thus less keys have to be
compared when searching for the range end (see Lines 17–28 of Algorithm 2).
The sequential access pattern of CSSL has several benefits as revealed by ana-
lyzing performance counters (see Fig. 6). CSSL utilizes most prefetched cache
lines, which leads to only few cache misses. Furthermore, CSSL generates less
branch mispredictions than the contestants, because it processes mostly consec-
utive positions of the fast lane array. This benefits the number of CPU cycles
needed to execute a range query.

For this experiment, BS is the second best competitor followed by CSB+,
ART and B+. By eliminating pointer accesses and taking cache line sizes into
account, CSB+ is able to reduce cache misses significantly compared to B+-tree
as shown in Fig. 6.

For 16 M dense keys, CSSL5 is up to 16.8X faster (10.4X for sparse data) than
the second best competitor BS. Compared to all competitors, CSSL achieves the
best relative performance for large range sizes, i.e., the speedup factor is the
highest for large ranges, because it can traverse matching keys without chasing
pointers. Figure 5 shows results for executing range queries on 256 M keys. Both
CSB+ and B+ were not able to index this amount of data, because they ran out
of memory. Again, CSSL outperforms BS and ART significantly.

12 S. Sprenger et al.

5.2 Lookups

We evaluate the execution of single-key lookups. Lookups are a common opera-
tion in database management systems and needed for various use cases. Figure 7
shows our evaluation results concerning lookup performance on 16 M 32-bit inte-
ger keys for all contestants. ART achieves the best performance for both distri-
butions. Furthermore, ART is the only competitor that can boost performance
on dense keys, for instance by using lazy expansion; the remaining competitors
show identical results on both distributions. CSSL achieves the second best per-
formance, closely followed by BS and CSB+. B+ shows the worst performance.
The density of fast lanes has almost no influence on executing lookups as CSSL2

and CSSL5 show an identical performance. ART is 4.4X faster than CSSL for
dense keys, and 2.4X faster than CSSL for sparse keys.

In Fig. 8, we present performance counters per lookup on 16 M 32-bit integer
keys for all competitors. ART produces no branch mispredictions and only few
level 3 cache misses, while B+-tree shows the worst performance parameters. As
in the case of range queries, CSSL produces only few cache and TLB misses.
Though being optimized for range queries, CSSL is able to achieve a lookup
throughput that outperforms BS, CSB+ and B+ and is almost as fast as ART
in the case of sparse keys.

5.3 Mixed Workload

Many real-world applications do neither use lookups nor range queries exclu-
sively, but employ a mix of both. We investigate the throughput when executing
a mixed workload consisting of an equal number of lookups and range queries.
In this experiment, we run a benchmark of 1 M randomly generated queries, i.e.,
500 k lookups and 500 k range queries, on 16 M dense and sparse 32-bit integer

Fig. 7. Lookup throughput for 16M 32-bit integer keys.

Cache-Sensitive Skip List: Efficient Range Queries on Modern CPUs 13

Fig. 8. Performance counters per lookup on 16M 32-bit integer keys.

Fig. 9. Throughput for a mixed lookup/range query workload on 16M 32-bit integer
keys (logarithmic scale).

keys. For range queries, we always use a range size of 500 k. Figure 9 shows the
results of this experiment.

CSSL shows the best performance across all competitors when confronted
with a mixed workload. As in the case of the range query benchmark, it is
followed by BS, CSB+, ART and B+. Although ART shows the best single-key
lookup performance, CSSL is magnitude faster when running a workload that
also includes range queries besides lookups. This emphasizes the need for a fast
range query implementation in index structures.

5.4 Evaluation with Genomic Data

We evaluate all competitors on real-world data from the bioinformatics
domain to investigate their performance when managing data that features

14 S. Sprenger et al.

a non-synthetic key distribution. As data source, we used the 1000 Genomes
Project [19] that sequenced the whole genomes of 2,504 people from across the
world. Data is provided in text files and can be downloaded from the project
website for free. We indexed the genomic locations of all mutations that were
found on chromosomes 1 and 2, i.e., 13,571,394 mutations in total, and queried
them using randomly generated ranges of different sizes (0.1%, 1%, and 10% of
the featured genomic interval). Figure 10 shows results of this benchmark.

Fig. 10. Range query throughput for genomic data (13,571,394 mutations) w.r.t. dif-
ferent range sizes (logarithmic scale).

As for synthetic data, CSSL dominates all competitors in executing range
queries. Again, BS achieves the second best throughput, followed by CSB+,
ART and B+. All competitors, except B+, show better performance for smaller
range sizes, which is due to the fact that less mutations are covered, i.e., less
keys need to be compared. For a range size of 10%, CSSL5 is 16.7X faster than
BS, 121.6X faster than CSB+, and 696X faster than ART.

5.5 Space Consumption

We compare the space consumption of all competitors for storing 16 M 32-bit
integer keys, i.e., 64 MB of raw data (see Fig. 11). As already seen in the eval-
uation of search performance, ART is better suited for managing dense data
than sparse data. For a dense key distribution, ART requires the least space
followed by BS and CSSL. The tree-based approaches B+ and CSB+ show the
worst memory consumption. For a sparse key distribution, BS achieves the best
result followed by CSSL5 and ART. Again, B+ and CSB+ achieve the worst
results. For 16M keys, CSSL2 requires 1.8X more memory than CSSL5, because
fast lanes hold more entries.

ART’s space efficiency would probably grow for larger keys. Then, ART is
able to employ further optimization techniques, e.g., path compression, that are
not beneficial for small keys [13].

Cache-Sensitive Skip List: Efficient Range Queries on Modern CPUs 15

Fig. 11. Space consumption for 16 M 32-bit integer keys (lower is better).

6 Related Work

Although concepts like tailored data layouts, index traversal with SIMD instruc-
tions, and pointer elimination have been investigated before [11,17,18], to the
best of our knowledge, we are the first to combine these to accelerate range
queries. Skip lists [16] were proposed as a probabilistic alternative to B-trees [5].
In the last years, they have been applied in multiple areas and have been adapted
to different purposes, e.g., lock-free skip list [8], deterministic skip list [15], or
concurrent skip list [10]. In [21], Xie et al. present a parallel skip list-based main-
memory index, PI, that processes query batches using multiple threads. CSSL
is based on [15], but employs a cache-friendly data layout that is tailored to
modern CPUs.

There are several others approaches addressing in-memory indexing [6,11–
13,17,18], yet few specifically target range queries. CSS-trees [17] build a tree-
based dictionary on top of a sorted array that is tailored to cache hierarchy and
can be used to search in logarithmic time. CSS-trees are static by design and
need to be completely rebuilt when running updates. Rao and Ross [18] introduce
the CSB+-tree, a cache-conscious B+-tree [7] variant, which minimizes pointer
accesses and reduces space consumption. As shown in Sect. 5, CSSL outperforms
CSB+-tree significantly for all workloads. Masstree [14] is an in-memory database
that employs a trie of B+-trees as index structure. It supports arbitrary-length
keys, which may be useful when indexing strings. We did not include Masstree
in our evaluation, because its implementation is multi-threaded, which prevents
a fair comparison. Instead, we considered its base index structure, the B+-tree,
as competitor. In [22], Zhang et al. introduce a hybrid two-stage index that can
be built on top of existing index structures like B-trees or skip lists. They also
propose a paged-based skip list implementation that is tailored to main memory.

16 S. Sprenger et al.

In contrast to CSSL, it is completely static by design and does not exploit SIMD
instructions.

The adaptive radix tree [13] is a main-memory index structure based on radix
trees. ART employs adaptive node sizes and makes use of CPU features like
SIMD instructions to boost search performance. While it achieves high lookup
performance currently only superseded by hash tables [4], its support for range
queries is much less efficient since these require traversing over the tree by chas-
ing pointers. As shown in Sect. 5, CSSL outperforms ART significantly for range
queries. We assume that the results of our comparison between CSSL and ART
would carry over to other index structures based on prefix trees, such as gener-
alized prefix trees [6], or KISS-Tree [12]. Another recent data structure is FAST
[11], a binary search tree tuned to the underlying hardware by taking archi-
tecture parameters like page or cache line size into account. It achieves both
thread-level and data-level parallelism, the latter by using SIMD instructions.
Similar to CSSL, FAST does not need to access pointers when traversing the
tree. However, FAST is optimized for lookup queries only, where it is clearly
outperformed by ART [13]. Therefore, we did not include it in our evaluation.

7 Conclusions

We presented the Cache-Sensitive Skip List (CSSL), a main-memory index struc-
ture for efficiently executing range queries on modern processors. CSSL linearizes
fast lanes to achieve a CPU-friendly data layout, to reduce cache misses, and to
enable the usage of SIMD instructions. We compared CSSL with three main-
memory index structures, the adaptive radix tree, a CSB+-tree, and binary
search, and one baseline, a B+-tree. CSSL outperforms all competitors when
executing range queries on synthetic and real data sets. Even when confronted
with a mixed key/range workload, CSSL achieves the best results in our eval-
uation. CSSL’s search performance and memory consumption is influenced by
the number of elements each fast lane skips over (1/p). Sparse fast lanes show
better results regarding memory consumption and range query execution.

In future work, we will add multithreaded query execution to further accel-
erate read performance. We plan to work on both inter- and intra-query
parallelism.

Acknowledgments. Stefan Sprenger and Steffen Zeuch are funded by the Deutsche
Forschungsgemeinschaft through graduate school SOAMED (GRK 1651).

References

1. B+ tree source code (C 1999). http://www.amittai.com/prose/bpt.c
2. Introduction to inteladvanced vector extensions. https://software.intel.com/en-us/

articles/introduction-to-intel-advanced-vector-extensions
3. PAPI. http://icl.cs.utk.edu/papi/

http://www.amittai.com/prose/bpt.c
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
https://software.intel.com/en-us/articles/introduction-to-intel-advanced-vector-extensions
http://icl.cs.utk.edu/papi/

Cache-Sensitive Skip List: Efficient Range Queries on Modern CPUs 17

4. Alvarez, V., Richter, S., Chen, X., Dittrich, J.: A comparison of adaptive radix
trees and hash tables. In: 31st IEEE International Conference on Data Engineering
(2015)

5. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indices.
In: SIGFIDET (1970)

6. Boehm, M., Schlegel, B., Volk, P.B., Fischer, U., Habich, D., Lehner, W.: Efficient
in-memory indexing with generalized prefix trees. In: BTW (2011)

7. Comer, D.: Ubiquitous B-tree. ACM Comput. Surv. 11(2), 121–137 (1979)
8. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: Proceedings of

23rd Annual ACM Symposium on Principles of Distributed Computing, pp. 50–59
(2004)

9. Hakenberg, J., Cheng, W.Y., Thomas, P., Wang, Y.C., Uzilov, A.V., Chen, R.:
Integrating 400 million variants from 80,000 human samples with extensive anno-
tations: towards a knowledge base to analyze disease cohorts. BMC Bioinf. 17(1),
1 (2016)

10. Herlihy, M., Lev, Y., Luchangco, V., Shavit, N.: A provably correct scalable con-
current skip list. In: Conference on Principles of Distributed Systems (2006)

11. Kim, C., Chhugani, J., Satish, N., Sedlar, E., Nguyen, A.D., Kaldewey, T., Lee,
V.W., Brandt, S.A., Dubey, P.: FAST: fast architecture sensitive tree search on
modern CPUs and GPUs. In: Proceedings of the International Conference on Man-
agement of Data, pp. 339–350 (2010)

12. Kissinger, T., Schlegel, B., Habich, D., Lehner, W.: KISS-Tree: Smart latch-free
in-memory indexing on modern architectures. In: Proceedings of the Eighth Inter-
national Workshop on Data Management on New Hardware, pp. 16–23 (2012)

13. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: ARTful indexing
for main-memory databases. In: 29th IEEE International Conference on Data
Engineering (2013)

14. Mao, Y., Kohler, E., Morris, R.T.: Cache craftiness for fast multicore key-value
storage. In: Proceedings of the Seventh EuroSys Conference, pp. 183–196 (2012)

15. Munro, J.I., Papadakis, T., Sedgewick, R.: Deterministic skip lists. In: Proceedings
of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 367–375
(1992)

16. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM
33(6), 668–676 (1990)

17. Rao, J., Ross, K.A.: Cache conscious indexing for decision-support in main memory.
In: Proceedings of 25th International Conference on Very Large Data Bases, pp.
78–89 (1999)

18. Rao, J., Ross, K.A.: Making B+-trees cache conscious in main memory. In: Pro-
ceedings of the 2000 ACM SIGMOD International Conference on Management of
Data, pp. 475–486 (2000)

19. The 1000 Genomes Project Consortium: A global reference for human genetic
variation. Nature 526(7571), 68–74 (2015)

20. Xie, X., Lu, J., Kulbokas, E., Golub, T.R., Mootha, V., Lindblad-Toh, K., Lander,
E.S., Kellis, M.: Systematic discovery of regulatory motifs in human promoters and
3’ UTRs by comparison of several mammals. Nature 434(7031), 338–345 (2005)

21. Xie, Z., Cai, Q., Jagadish, H., Ooi, B.C., Wong, W.F.: PI: a parallel in-memory
skip list based index. arXiv preprint (2016). arXiv:1601.00159

22. Zhang, H., Andersen, D.G., Pavlo, A., Kaminsky, M., Ma, L., Shen, R.: Reducing
the storage overhead of main-memory OLTP databases with hybrid indexes. In:
Proceedings of the International Conference on Management of Data, pp. 1567–
1581 (2016)

http://arxiv.org/abs/1601.00159

Exploit Every Cycle: Vectorized Time Series
Algorithms on Modern Commodity CPUs

Bo Tang1(B), Man Lung Yiu1, Yuhong Li2, and Leong Hou U2

1 Hong Kong Polytechnic University, Hung Hom, Hong Kong
{csbtang,csmlyiu}@comp.polyu.edu.hk

2 University of Macau, Av. Padre Tomás Pereira, Taipa, Macau
{yb27407,ryanlhu}@umac.mo

Abstract. Many time series algorithms reduce the computation cost by
pruning unpromising candidates with lower-bound distance functions. In
this paper, we focus on an orthogonal research direction that further
boosts the performance by unlocking the potentials of modern commod-
ity CPUs. First, we conduct a performance profiling on existing algo-
rithms to understand where does time go. Second, we design vectorized
implementations for lower-bound and distance functions that can enjoy
characteristics (e.g., data parallelism, caching, branch prediction) pro-
vided by CPU. Third, our vectorized methods are general and applicable
to many time series problems such as subsequence search, motif discovery
and kNN classification. Our experimental study on real datasets shows
that our proposal can achieve up to 6 times of speedup.

1 Introduction

Time series data has various applications in medical diagnosis, speech processing,
climate analysis, financial analysis, etc. It has attracted extensive research in the
literature [4,9,14,20–22,25,30]. We illustrate representative problems in Fig. 1:
(a) the subsequence search problem, which takes a query sequence q and finds its
most similar subsequence tc of a time series t, (b) the motif discovery problem,
which reports the most similar pair of subsequences in a time series t, and (c) the
kNN classification problem. These problems typically use the Euclidean Distance
(ED) and Dynamic Time Warping (DTW) as the similarity measure.

These problems are computation bound rather than disk I/O bound [22].
Many time series algorithms have been evaluated on commodity CPU [4,9,14,
20–22,25,30] in single machine. These works focus on devising lower-bound dis-
tance functions to prune unpromising candidates and thus reduce calling expen-
sive distance computations.

Even with these effective lower bounds, the above time series problems are
still computation intensive, especially for increasingly long time series nowadays
(e.g., medical physiological signals1). For example, the subsequence search on a
trillion scale time series [22] would take 3.1 hours (under the Euclidean distance)
and 34 hours (under Dynamic Time Warping) on a commodity PC.
1 http://www.physionet.org/physiobank/.

c© Springer International Publishing AG 2017
S. Blanas et al. (Eds.): ADMS 2016/IMDM 2016, LNCS 10195, pp. 18–39, 2017.
DOI: 10.1007/978-3-319-56111-0 2

http://www.physionet.org/physiobank/

Exploit Every Cycle 19

(a) subsequence search

query q time series t

result

(b) motif discovery

result pair

(c) kNN classification

s1

s2

s11

query q
class 1

class 2s12

……

……

result class

Fig. 1. Problems on time series data

Nevertheless, existing techniques overlook the characteristics of CPU and
they have not studied the effect of those characteristics on the CPU time. In
general, the CPU time consists of (i) busy cycles, for executing instructions, and
(ii) stall cycles, for waiting for instructions or data.

We raise the following questions:
Q1: “In these algorithms, where does time go?”

To answer this question, we profile the performance [3,27] of existing time-
series algorithms (cf. Sect. 3). Surprisingly, most of the CPU time (70%) is spent
on stalling.
Q2 “What cause CPU stall cycles?”

According to our performance profiling, the CPU stall is mainly (more than
80%) caused by branch mispredictions, cache misses, and ALU stall in lower-
bound and distance functions.
Q3 “How to reduce CPU stall cycles in modern CPUs?”

Modern CPUs have built-in hardware for branch prediction, caching, and
processing vector data efficiently (through SIMD instructions). Recent researches
have utilized these characteristics to offer speedup on different problems like
join [10], sorting [11], set intersection [16]. In this paper, we will design effi-
cient implementations for lower-bound and distance functions by exploiting the
characteristics of modern commodity CPUs. Note that our research direction is
orthogonal to the development of lower-bound functions [4,9,14,20–22,25,30].
Besides, our proposed techniques are also applicable to mobile time series appli-
cations (e.g., continuous heart rate monitoring on Apple watch) as Apple mobile
processors (e.g., A5) have supported advanced SIMD instructions since 20112.

Our proposed techniques achieve performance gain through: (i) reducing
branch mispredictions and cache misses, (ii) incorporating parallelism for vector
processing in our computations. We then elaborate these issues in the following
two paragraphs.

Conditional branches (e.g., if-then-else, case statements) are commonly used
in the lower-bound and distance functions on time series. With branch pre-
diction, a CPU can speculatively execute one path of a conditional branch.
A correct prediction can improve the performance due to the CPU’s instruc-
tion pipeline. However, if the prediction is wrong (i.e., branch misprediction),
then many CPU cycles will be wasted to flush the instruction pipeline, flush and

2
https://en.wikipedia.org/wiki/Apple mobile application processors.

https://en.wikipedia.org/wiki/Apple_mobile_application_processors

20 B. Tang et al.

fetch the relevant data, and restart the execution for the other branch. Therefore,
it is desirable to rewrite algorithms to use fewer branching statements and avoid
cache pollution. Also, we need to reduce non-compulsory cache misses brought
by random memory accesses in our algorithms.

Data-intensive functions, like lower-bound and distance functions on time
series, execute certain arithmetic operations (e.g., multiplication, division) that
incur many CPU cycles and thus cause ALU stall. To reduce ALU stall, we use
SIMD instructions to process multiple data values per instruction. For example,
a SIMD division instruction takes two vectors of values Va and Vb as input, and
perform division Va[i]/Vb[i] for each position i simultaneously. In this paper, we
present vectorized implementations for lower-bound and distance functions by
using SIMD. In addition, our vectorized implementations are designed to avoid
using conditional branches.

Besides, our proposed techniques are generic and applicable to many time
series problems (e.g., subsequence search, motif discovery, kNN classification).
In summary, our contributions are:

• We profile the performance of existing time series algorithms and summarize
the key insights (Sect. 3).

• We design vectorized implementations for lower-bound and distance functions.
They incur fewer branch mispredictions, cache misses, and ALU stall (Sect. 4).

• We evaluate the efficiency of our proposed techniques for different time series
algorithms on different datasets. Our techniques can achieve up to 6 times of
speedup (Sect. 5).

The rest of this paper is organized as follows. Section 2 clarifies the pre-
liminaries of our research problem. We present the profiling of existing time
series algorithms in Sect. 3. Then, we propose our vectorized implementations
in Sect. 4, perform experimental evaluation on existing time series algorithms in
Sect. 5. Finally, we discuss the related work in Sect. 6, and conclude this paper
in Sect. 7.

2 Preliminaries

2.1 Fundamental Distance Measurement

In this work, we consider two most popular distance functions, i.e., Euclidean
Distance (ED) and Dynamic Time Warping (DTW), in time series problems [13,
18,19,21,22,24]. We follow the suggestion from prior literatures [19,22] that
every subsequence should be Z-normalized in order to capture the similarity
between the shapes of the sequences. Formally, the i-th value of a Z-normalized
sequence q̂ can be calculated by q̂[i] = q[i]−μq

σq
, where μq and σq are the mean

and standard deviation of q, respectively, and q[i] indicates the i-th element of q.
For ease of presentation, we use dist(q, t) to denote the distance dist(q̂, t̂) between
Z-normalized subsequences in this paper.

Exploit Every Cycle 21

Euclidean Distance: This is the most common similarity metric in time
series [13,19,22,25,30] due to its simplicity. We give the definition of squared
ED3 in Eq. 1. It takes O(m) time for a query q of length m.

ED(q, tc) =

m∑

i=1

(q̂[i] − t̂c[i])
2 (1)

Dynamic Time Warping: DTW can capture the similarity of two sequences
which may vary in time or have missing values. It is shown to be effective in
time series applications [5,18,24]. DTW aims to find the optimal alignment (i.e.,
minimum distance) between two sequences, according to the following recursive
equation.

DTW (q, tc) =(q̂[1] − t̂c[1])
2

+ min

⎧
⎪⎨

⎪⎩

DTW (q̂[2...last], t̂c)

DTW (q̂[2...last], t̂c[2...last])

DTW (q̂, t̂c[2...last])

(2)

where q̂[2...last] denotes the subsequence of q̂ containing values from the 2nd

to the last offset. To avoid pathological warping (and reduce the computational
cost), the literature [22] suggests to limit the warping length r such that q̂[i]
can be matched with t̂c[j] when |i − j| ≤ r. This reduces the time complexity of
DTW from O(m2) to O(mr).

2.2 Time Series Algorithms

In Table 1, we summarize the computation techniques (e.g., lower-bounds func-
tions and distance functions) that can be used in three representative time series
problems: subsequence search, motif discovery, and classification. Where LB pre-
fixed function provides a lower bound of the exact distance.

Table 1. Computation techniques and distance functions used in time series problems

Problem Technique(s) Distance

Subsequence search Early distance stop ED

Motif discovery LBKimFL, LB
EQ
Keogh, LB

EC
Keogh DTW

LBref (uses reference indices) ED

Classification (by kNN) Early distance stop ED

LBKimFL, LB
EQ
Keogh, LB

EC
Keogh DTW

Subsequence search. Formally, given a time series t of length n, a query q
of length m, and a distance function dist(·), the subsequence search problem
returns a length-m subsequence tc ∈ t such that dist(q, tc) is the minimum
(among all length-m subsequences in t).
3 The squared distance preserves the relative ordering of distances, and it avoids expen-

sive square root calculations.

22 B. Tang et al.

To the best of our knowledge, UCR Suite [22] is the state-of-the-art solution
for the subsequence search problem. It adopts the filter-and-refinement para-
digm to reduce exact distance computations. Let bsf be the best-so-far distance
obtained during the search process. For ED subsequence search, UCR Suite does
not apply any lower-bound function. It accumulates the distance step-by-step
and early stops the distance computation dist(q, tc) as soon as the accumulated
value exceeds bsf . For DTW subsequence search, UCR Suite examines each can-
didate subsequence tc and applies lower-bound functions on tc in ascending order
of their computation cost: first LBKimFL, then LBEQ

Keogh and finally LBEC
Keogh. tc

gets pruned as soon as some LB(q, tc) exceeds bsf . If tc survives, then UCR Suite
executes the distance function on tc. We proceed to introduce these lower-bound
functions as follows.

LBKimFL is derived from the First and the Last sequence values, taking only
O(1) time to compute. It is defined as

LBKimFL(q, tc) = (q̂[1] − t̂c[1])2 + (q̂[m] − t̂c[m])2 (3)

LBEQ
Keogh is derived from the distance between the candidate subsequence t̂c

and the envelop of q̂. Given the warping length r, the upper and lower envelop
of q̂ are defined as q̂u[i] = maxi+r

j=i−r q̂[j] and q̂l[i] = mini+r
j=i−r q̂[j], respectively,

Accordingly, we have

LBEQ
Keogh(q, tc) =

m∑

i=1

⎧
⎪⎨

⎪⎩

(t̂c[i] − q̂u[i])2 if t̂c[i] > q̂u[i]
(t̂c[i] − q̂l[i])2 if t̂c[i] < q̂l[i]
0 otherwise

(4)

LBEC
Keogh is derived similarly to LBEQ

Keogh but the lower-bound is derived from

the distance between the query and the envelop of t̂c (i.e., switching roles).

Motif Discovery. Formally, given a time series t of length n, and a query length
m, the motif discovery problem returns a pair of length-m subsequences tc, t

′
c ∈ t

such that the Euclidean distance ED(tc, t′c) is the minimum among all pairs.
MK [20] is a representative solution for motif discovery. To avoid examining

every subsequence pair, it proposes a reference based lower-bound. Given a set
of subsequences and their distances to a set of references R, the lower-bound of
two subsequences ta and tb can be derived as follows.

LBref (ta, tb) = max
ri∈R

|distRef [ri][ta] − distRef [ri][tb]| (5)

where distRef [ri][t] = ED(ri, t).
MK first constructs a sorted list of every subsequence in terms of their dis-

tances to a reference. Intuitively, if the lower-bound of every 1st neighbor pair
(in terms of their positions in the sorted list) is worse than bsf , then it is not
necessary to examine further neighbor pairs (e.g., 2nd neighbor pairs) due to
the monotonicity of the sorted list. Thereby, MK iteratively examines the sub-
sequence pairs based on their sorted list positions. At the end of an iteration,
the search terminates when no neighbor pair has lower-bound better than bsf .

Exploit Every Cycle 23

Classification. ED and DTW are widely accepted for describing the similarity
between time series in the classification problem [12]. We can apply the same
techniques for subsequence search (i.e., early distance stop for ED and lower-
bound techniques for DTW) to boost the classification process.

2.3 Modern Commodity CPUs

Modern commodity CPUs share the following hardware characteristics that can
be further exploited in algorithm design.

• (1) Single instruction multiple data: Modern commodity CPUs provide
vector instructions (SIMD) operating on 256-bit vector registers that allow to
perform the same instruction on multiple data values in parallel.

• (2) Hardware prefetcher: Modern commodity CPUs have built-in hardware
prefetcher. It allows to prefetch additional lines of instruction or data into the
L1 or L2 cache in CPU cores.

The modern commodity CPUs also have multiple cores and simultaneous
multithreading technique. We leave the study on multi-threading issues for time
series algorithms as future work. All algorithms in this paper run in single thread
model by default.

3 Profiling of Algorithms

We first describe our experimental platform and then present the profiling result
on existing time series algorithms.

3.1 Experimental Setting

In all experiments, we use a machine with a 3.40 GHz Intel(R) Core(TM) i7-
4770 CPU based on Haswell micro-architecture, 16 GB main memory, and a
SSD (solid state drive, 256 GB capacity, 545 MB/s sequential read throughput).
The CPU has 4 physical cores and supports simultaneous multithreading. The
machine runs Ubuntu 14.04. All algorithms have been implemented in C++ and
compiled by GNU C++ compiler with level 3 optimization.

We use the following real datasets and list their information in Table 2. All
datasets are stored in the SSD.

• For the subsequence search problem, we use three datasets. Both ECG-E4

and ECG-L5 are electrocardiography (ECG) recordings, and we use the same
query sequences (of length 421) as in [22] as the default query sequences.
EEG-C6 contains electroencephalography (EEG) recordings, and we ran-
domly extract query sequences (of length 128) from the epileptic seizure
recording as in [26]. For each dataset, we follow the experimental methodology
in [22], and obtain a single time series by concatenating all data sequences.

4
http://www.physionet.org/physiobank/database/edb/.

5
http://www.physionet.org/physiobank/database/ltstdb/.

6
http://www.physionet.org/pn6/chbmit/.

http://www.physionet.org/physiobank/database/edb/
http://www.physionet.org/physiobank/database/ltstdb/
http://www.physionet.org/pn6/chbmit/

24 B. Tang et al.

• For the kNN classification problem, we use Weather7 dataset, which contains
the temperature data extracted from weather forecast records. It contains
11,508 sequences, each sequence in Weather corresponds to a one-year time
series collected from 5,936 locations. We use the attribute “Country” as the
class attribute. We randomly choose data sequences as queries and exclude
them from the data.

• For the motif discovery problem, we use two datasets: EEG-MK8 and TAO-
MK [19].

3.2 Measurement Methodology

Program execution time: According to the Intel performance analysis man-
ual [1], the program execution time (TR) consists of: computation time (TC),
branch misprediction stall (TBr), backend stall (TBe), and frontend stall (TFe).
The computation time (TC) is regarded as ‘CPU busy’, and the rest as ‘CPU
stall’. The backend stall occurs when the requested resource is being held-up
in back end. It includes ALU stall (TALU) and memory stall (TCache). TALU is
the ALU execution unit stall, which is caused by the execution of arithmetic
operations (e.g., divide, square root) that require many cycles. TCache is the
memory-bound stall, which is caused by L1 data cache misses, L2 cache misses,
L3 cache misses or TLB cache misses.

Table 2. Dataset information

Dataset Sequence length Data size Problem

ECG-E 1.60 · 108 611 MB Subsequence search

ECG-L 1.89 · 109 7.06 GB

EEG-C 1.01 · 1010 37.5 GB

EEG-MK 1.80 · 105 704 KB Motif discovery

TAO-MK 7.42 · 105 2.82 MB

Weather 1.81 · 103, 19.86 MB kNN classification

We summarize the breakdown of execution time in a CPU as follows:

TR = TC + Tstall; where TStall = TBr + TALU + TCache + TF e

Profiling experiments: To measure the above components of CPU time, we
used PAPI [8] to obtain hardware performance counters from CPU, e.g., the num-
ber of stall cycles and the number of CPU cycles. In each subsequence search
and classification experiment, we report the average CPU time over 10 queries.

7
http://data.gov.uk/metoffice-data-archive.

8
http://www.cs.ucr.edu/∼mueen/OnlineMotif/index.html.

http://data.gov.uk/metoffice-data-archive
http://www.cs.ucr.edu/~mueen/OnlineMotif/index.html

Exploit Every Cycle 25

To ensure the confidence level, we repeat running each query until the maximum
standard deviation of the important counters (UOPS RETIRED:RETIRE SLOTS,

CPU CLK UNHALTED:THREAD P) is less than 3%.

Experimental reproducibility: For the sake of experimental reproducibility,
we have posted the datasets and source codes at [2]9.

3.3 Identifying the Performance Bottleneck

In this section, we profile the performance of existing solutions and then identify
the performance bottleneck. We conduct experiments to profile the performance
of representative solutions: (i) UCR Suite [22] for the subsequence search prob-
lem, (ii) MK [20] for the motif discovery problem, and (iii) kNN classification [22]
for the classification problem.

CPU stall and CPU busy: Figures 2(a) and (b) report the CPU time break-
down of existing solutions into busy time and stall time, for subsequence search
and motif discovery, respectively.

Observation: The majority (65–70%) of the CPU time is spent on stalling (i.e.,
wasted CPU cycles).

CPU stall breakdown: We then delve into CPU stall and plot the breakdown
of CPU stall time in Figs. 2(c) and (d).

Observation: The CPU stall is dominated (more than 80%) by ALU stall, cache
misses, and branch mispredictions penalties.

CPU time of different functions: The DTW function and its lower-bound
functions (LBKimFL, LBEQ

Keogh, LBEC
Keogh) are applicable to the subsequence

search problem and the classification problem [22]. We profile the performance
of [22] on these two problems in Fig. 2(e). Different functions incur different por-
tions of time and pruning ratio (cf. Fig. 2(f)) in different scenarios. For example,
lower-bound functions LBEQ

Keogh, LBEC
Keogh dominate the time for subsequence

search. However, the DTW computation incurs more time in kNN classification
problems.
Observation: Different time series problems spend very different proportions of
time on different functions. Therefore, it is important to optimize the computa-
tion of both lower-bound functions LBEQ

Keogh, LBEC
Keogh and the DTW function.

4 Accelerating Distance Functions with SIMD

As shown in the previous section, the majority of CPU stall is caused by ALU
stall, cache misses and branch mispredictions. In this section, we will design
vectorized implementations for exact distance and lower-bounds functions to
reduce those stalls. We will also evaluate the efficiency of our implementations
with experiments.
9

For consistency, we use the ‘float’ data type to represent time series values in all evaluated
methods.

26 B. Tang et al.

Fig. 2. Profile existing solutions

4.1 How Do SIMD Instructions Reduce Stall?

SIMD Vectorization: Reduce ALU Stall. The ALU stall is caused by the
execution of arithmetic operations that require many CPU cycles. For example,
the ‘division’ instruction for two floating-point values takes 24 CPU cycles [1].

Modern CPU provides SIMD instructions to perform the same instruction
(e.g., +,−,×, /,min,max) on multiple data values in parallel. For instance, Intel
i7-4770 and AMD Phenom II support the AVX2 instruction set (SIMD instruc-
tions on 256-bit registers). The SIMD instruction simd div (e.g., mm256 div ps
in AVX2) performs division on 8 pairs of values in two SIMD registers Ra and
Rb simultaneously. It takes only 21 CPU cycles [1], which is much cheaper than
executing the ‘division’ instruction on 8 pairs one-by-one (using 24 * 8 = 192
cycles). Thus, SIMD instructions help reduce the ALU stall significantly.

Distance computation indeed fits well with SIMD instructions. As we illus-
trate in Fig. 3, we may divide subsequences into groups of length 8, and then
apply SIMD instructions on each group to compute distances for pairs.
Typical SIMD width: Our CPU (Intel i7-4770) is a modern commodity CPU.
It supports the following SIMD widths and instruction sets: (i) 64 bits (i.e., MMX
instruction set), (ii) 128 bits (i.e., SSE instruction set), (iii) 256 bits (i.e., AVX
instruction set). Since the MMX instruction set does not support floating-point
values, it cannot be used in time series problems. Thus, we report the results
for 128 bits (SIMD-128) and 256 bits (SIMD-256) in following experiments. For
simplicity, we set 256 bits (SIMD-256) as default SIMD register.

Exploit Every Cycle 27

Fig. 3. Using SIMD for distance computation

Hardware Prefetching: Reduce Branch Misprediction. Modern CPU is
equipped with a branch prediction unit and it speculatively executes a condi-
tional branch to maximize the utilization of CPU resources. A correct prediction
can improve the performance due to the built-in instruction pipeline and hard-
ware prefetching. However, incorrect prediction will bring cache pollution10 and
waste CPU cycles to flush instructions and restart execution.

Fig. 4. Example for reducing branching statements

Some SIMD instructions help reduce branch misprediction. For example, for
the code fragment in Fig. 4(a), the CPU may incur up to 8 branch mispredictions
in the worst case. In contrast, the alternative implementation in Fig. 4(b) has
no branch mispredictions because it uses a single instruction simd max instead
of conditional branches.

We observe that DTW and its lower-bound functions (cf. Sect. 2) have many
conditional branches. Therefore, we need to design SIMD implementations for
DTW and its lower-bound functions without using conditional branches.

4.2 Accelerating ED with SIMD

Before presenting our SIMD solutions, we first introduce the existing implemen-
tation of Euclidean distance. We call it as SISD-ED (cf. Algorithm 1) because it
uses traditional CPU instructions, i.e., Single Instruction, Single Data (SISD).

10
http://en.wikipedia.org/wiki/Cache pollution.

http://en.wikipedia.org/wiki/Cache_pollution

28 B. Tang et al.

According to Sect. 2, we perform Z-normalization on the subsequence tc (cf.
Line 3). It early stops the computation if the accumulated distance dist exceeds
the best-so-far distance bsf (cf. Line 5).

Algorithm 1. SISD-ED(q, tc)
Input: best-so-far bsf , mean μ and stdev. σ of candidate tc,
Output: squared distance dist

1: dist := 0
2: for i := 1 to m do
3: c := (tc[i] − μ)/σ � Z-normalization
4: dist := dist + (c − q̂[idx])2 � accumulation
5: if dist ≥ bsf break � early stop

6: return dist

Next we demonstrate how we employ SIMD to accelerate ED(·) in different
steps. The intuition is to compute 8 offsets between q and tc by batch. In the
Z-normalization step, we can normalize 8 offset values simultaneously as follows.

SIMD Z-normalization
1: Rc := simd_load(&tc[i]) � load tc

2: Rc := simd_sub(Rc, Rμ) � vectorized tc[i] − μ
3: Rc := simd_div(Rc, Rσ) � vectorized (tc[i] − μ)/σ

where Rc, Rμ, Rσ are the corresponding SIMD registers of variables c, μ
and σ, respectively. Note that each register stores 8 floating-point values. In
the accumulation step, we can compute the distance of 8 offsets (t̂[i] − q̂[i])2 as
follows.

SIMD distance computation

1: Rq̂ := simd_load(&q̂[i]) � load q̂[0]...q̂[7]

2: Rd := simd_sub(Rq̂, Rc) � vectorized t̂[i]−q̂[i]

3: Rd := simd_mul(Rd, Rd) � vectorized (t̂[i] − q̂[i])2

Before examining the early stop condition (cf. Line 5 of Algorithm 1), we need
to accumulate 8 offset distances into dist. Since the AVX2 instruction set has no
single instruction to accumulate the values of an SIMD register, we accomplish
the accumulation by the following sequence of SIMD instructions.

SIMD distance accumulation
1: Rd := simd_hadd(Rd, Rd) � add horizontal pairs
2: Rd := simd_hadd(Rd, Rd) � add horizontal pairs
3: Sd := simd_extractf(Rd, 1)
4: Sd := simd_sadd(simd_cast(Rd), Sd)
5: dist := dist+ simd_scvt(Sd)

The accumulation employs instruction simd hadd (e.g., mm256 hadd ps)
twice that horizontally adds adjacent pairs of 32-bit floating-point elements in
the input registers, and stores the results into an output register. Then decom-
pose the vector into two parts by simd extractf and simd cast. Next, we sum

Exploit Every Cycle 29

Fig. 5. Example for early stop

the first value of two decomposed vectors (by simd sadd), extract the lower 32-
bit floating-point element from the vector (by simd scvt), and accumulate it
into dist. The accumulation process takes logarithmic cost to the SIMD register
length.

Our vectorized implementation reduces CPU cycles by (i) incorporating par-
allelism for Z-normalization and distance computation, and (ii) reducing branch-
ing statements for the early stop condition. Figure 5(a) shows that SISD-ED
requires verifying the early stop for every accumulation (i.e., 8 comparisons
in total). In SIMD-ED, we only verify the early termination once per 8 accumu-
lations as shown in Fig. 5(b).

4.3 Accelerating DTW with SIMD

For the sake of our discussion, we first present the pseudo code of DTW com-
putation in Algorithm 2. It employs a matrix C[1..m][1..m] whose entry C[i][j]
is used to store the DTW value between subsequences q̂[1..i] and t̂c[1..j]. Then,
we fill the matrix C by row-by-row ordering (Lines 2–3). Observe that we can-
not compute values in the same row (e.g., C[i][j − 1], C[i][j]) in parallel because
C[i][j] depends on C[i][j − 1].

Algorithm 2. SISD-DTW (q, tc)
Input: warping constraint length r, normalized query q̂ and candidate t̂c

Output: squared distance dist
1: Distance array C[1..m][1..m], initialized to +∞
2: for i := 1 to m do
3: for j := max(0, i − r) to min(m, i + r) do
4: if i = 1 and j = 1 then
5: C[1][1] := (q̂[1] − t̂c[1])

2

6: else
7: C[i][j] := (q̂[i] − t̂c[j])

2+
min(C[i − 1][j], C[i − 1][j − 1], C[i][j − 1])

8: return C[m][m] as dist

30 B. Tang et al.

To better utilize SIMD instructions, we rewrite the equation of C[i][j] into
an alternative form as follows.

C[i][j] = (q̂[i] − t̂c[j])
2

+ min(Bi−1[j], C[i][j − 1]) (6)

where Bi−1[j] = min(C[i − 1][j − 1], C[i − 1][j]). Since Bi−1[j] depends only on
values in the previous row of C (i.e., row i − 1), we can calculate consecutive
values of Bi−1 (e.g., Bi−1[j] to Bi−1[j + 7]) in a batch.

The above discussion enables us to rewrite Line 7 in SISD-DTW as the
following pseudo code using SIMD instructions.

Rewrite inner for-loop (i fixed) in Algorithm 2

1: jmin := max(0, i − r); jmax := min(m, i + r)
2: for j := jmin to jmax, 8 offsets do
3: load Rx1 with C[i − 1][j, · · · , j + 7]
4: load Rx2 with C[i − 1][j − 1, · · · , j + 6]
5: RB := simd_min(Rx1, Rx2)
6: Bi−1[j, · · · , j + 7] = simd_store(RB)

7: C[i][j] := (q̂[i] − t̂c[j])
2

8: C[i][jmin] := C[i][jmin] + Bi−1[jmin]
9: for j := jmin + 1 to jmax do
10: increment C[i][j] by min(C[i][j − 1], Bi−1[j])

The rewritten code has two nice properties: (i) avoid branch mispredictions by
using the simd min instruction (Lines 3–5), (ii) reduce cache misses by utilizing
the data locality of C[i][j − 1] and C[i][j] (Line 10). Figure 6 illustrates how our
SIMD implementation works (when i = 4).

Fig. 6. SIMD DTW illustration, at i = 4 Fig. 7. LBEQ
Keogh SIMD illustration

Optimized implementation: For ease of understanding, we employ m × m
matrices in the above algorithms. An optimized implementation is to use 2 float
arrays with size 2r + 1 (i.e., store C[i − 1] and C[i] in Line 7, Algorithm2)
to compute DTW (for both SISD-DTW and SIMD-DTW). Since these 2 float
arrays can fit in low latency cache (e.g., L2 cache rather than L3 cache), we
use this optimized implementation for both SISD-DTW and SIMD-DTW in our
code.

Exploit Every Cycle 31

4.4 Accelerating Lower Bounds for DTW with SIMD

We proceed to present SIMD optimizations for lower-bound functions LBEQ
Keogh

and LBEC
Keogh. Since these two functions are similar, our discussion focuses on

LBEQ
Keogh.

Algorithm 3. SISD-LBEQ
Keogh(q, tc)

Input: best-so-far bsf , mean μ and stdev. σ of candidate tc, upper and lower envelops q̂u and q̂l

Output: lower-bound distance lb
1: lb := 0
2: for i := 1 to m do
3: c := (tc[i] − μ)/σ � Z-normalization
4: if q̂u[i] < c then � distance of t̂c and the envelop of q̂
5: lb := lb + (c − q̂u[i])2

6: else if q̂l[i] > c then

7: lb := lb + (q̂l[i] − c)2

8: if dist ≥ bsf break � early stop

9: return lb

Similar to ED(·), we present the SISD implementation of LBEQ
Keogh in

Algorithm 3. It derives the lower-bound lb from the candidate subsequence tc
and the envelop of q which is handled by the if-then-else statement at Lines 4–
7. However, the if-then-else statement may cause many branch mispredictions
in CPU, leading to high stalling time (e.g., 10–20 clock cycles in modern CPU on
average). In addition, as reported in [15], the hardware prefetching (for reducing
cache misses) technique becomes less effective in the presence of multiple code
paths.

To avoid branch mispredictions and better utilize hardware prefetching,
we should remove branching, i.e., the if-then-else statement, in Algorithm 3.
Lemma 1 shows the alternative form of LBEQ

Keogh (cf. Eq. 4 in Sect. 2).

Lemma 1. (Alternative form of LBEQ
Keogh).

LB
EQ
Keogh =

m∑

i=1

((t̂c[i] − min{t̂c[i], q̂
u
[i]}) + (max{t̂c[i], q̂

l
[i]} − t̂c[i]))

2

Proof. LBEQ
Keogh (cf. Eq. 4) consists of three cases.

Case 1: When t̂c[i] < q̂u[i], the first part (i.e., t̂c[i]−min{t̂c[i], q̂u[i]}) becomes
zero so that the equation reduces to (q̂l[i] − t̂c[i])2.

Case 2: When t̂c[i] > q̂l[i], the second part (i.e., max{t̂c[i], q̂l[i]} − t̂c[i])
becomes zero so that the equation reduces to (t̂c[i] − q̂u[i])2.

Case 3: Otherwise, none of the first or the second part contributes so the
equation returns 0. �

Since this form uses only min,max,+,−,×, we can readily implement them by
the corresponding SIMD instructions. Accordingly, the first part and the second
part of LBEQ

Keogh can be computed as follows. Then, we sum up both parts.

32 B. Tang et al.

SIMD t̂c[i] − min{t̂c[i], q̂u[i]} computation, 8 offsets

1: Rq̂u := simd_load(&q̂u[i]) � vectorized load q̂u[i]..q̂u[i+7]

2: Rdu := simd_min(Rq̂u , Rc) � vectorized min{t̂c[i], q̂u[i]}
3: Rdu := simd_sub(Rc, Rq̂u) � vectorized t̂c[i] − min{t̂c[i], q̂u[i]}

SIMD max{t̂c[i], q̂l[i]} − t̂c[i] computation, 8 offsets

1: R
q̂l := simd_load(&q̂l[i]) � vectorized load q̂l[i]..q̂l[i+7]

2: Rdl := simd_max(R
q̂l , Rc) � vectorized max{t̂c[i], q̂l[i]}

3: Rdl := simd_sub(R
q̂l , Rc) � vectorized max{t̂c[i], q̂l[i]} − t̂c[i]

SIMD combining the result of Rdu and Rdl, 8 offsets

1: Rd := simd_add(Rdu, Rdl) � vectorized sum
2: Rd := simd_mul(Rd, Rd) � vectorized square

We illustrate our idea by a concrete example in Fig. 7. First we extract the
min values between q̂u and t̂c of 8 offsets by simd min and then store them into
Rdu. Next we subtract Rdu from tc to finish the first part computation. The
second part is performed similarly where the max values are stored into Rdl.
Next we combine the distance values from Rdu and Rdl to produce Rd. Finally
we multiply the values of Rd to generate the squared distance, and then execute
SIMD distance accumulation as described in Sect. 4.2.

4.5 Cost Analysis

We proceed to analyze the cost of the SISD and SIMD implementations based
on the latency cycle information given in the Intel architecture optimization
manual [1].

ED: Our analysis covers four steps in ED: (i) Z-normalization, (ii) distance com-
putation, (iii) distance accumulation, and (iv) early stop, as shown in Table 3(a).
In each step, we list all used instructions and their latency cycles. For SIMD-ED,
the denominator in latency is 8 as it processes 8 offset values simultaneously. In
summary, SIMD-ED is 41/7 = 5.86 times faster than SISD-ED.

DTW: We analyze the latency of both SISD and SIMD implementations of
DTW in Table 3(b). The speedup of the SIMD implementation over SISD one
is: 48

14.625 = 3.28.

LBEQ
Keogh: We analyze the latency for two implementations of LBEQ

Keogh. We only
list the detail cost at step (ii) distance computation in Table 3(c) as the other
three steps are the same as in SIMD-ED (cf. Table 3(a)). SIMD-LBEQ

Keogh out-
performs SISD-LBEQ

Keogh by 43/9 = 4.78 times.

4.6 Accelerating Reference Index with SIMD

Before proposing our SIMD solution, we first present the existing implementation
of LBref in Algorithm 4.

As the absolute value computation is not supported by the AVX2 instruction
set, we rewrite |distref [i][a] − distref [i][b]| as:

max(distref [i][a], distref [i][b]) − min(distref [i][a], distref [i][b])

Exploit Every Cycle 33

Table 3. Instruction latency of SISD and SIMD functions

Algorithm 4. SISD-LBref (ta, tb)
Input: best-so-far bsf , reference distance distref , # of reference R, two subsequences ta, tb

Output: Boolean value
1: for i := 1 to R do
2: if |distref [i][a] − distref [i][b]| > bsf then
3: return true � can be pruned

4: return false � cannot be pruned

Then, we design the SIMD implementation below for LBref . It avoids using
branching statements for early termination in Lines 7–8. We verify the early
stop only once by executing simd cmp for 8 pairs of candidates.

SIMD LBref , for 8 offsets

1: Ra := simd_load(distref [i][a], · · · , distref [i + 7][a])
2: Rb := simd_load(distref [i][b], · · · , distref [i + 7][b])
3: Rbsf := simd_set1(bsf)
4: Rmax := simd_max(Ra, Rb)
5: Rmin := simd_min(Ra, Rb)
6: Rsub := simd_sub(Rmax, Rmin)
7: Ra := simd_cmp(Rsub, Rbsf , >)
8: return simd_testz(Ra, Ra)

We can further optimize LBref by sequentializing the memory access (and
reducing CPU cache misses). This requires changing the memory layout of
distref to distref [a][i] (i.e., swapping the role of rows and columns) so that
Lines 1–2 have sequential main memory accesses.

Cost analysis: For each reference point i, SISD-LBref takes 6 cycles and SIMD-
LBref takes 27/8 cycles. We omit the detailed analysis here.

Alternative implementation: Another implementation for |distref [i][a] −
distref [i][b]| is to use simd sub, simd set and simd andnot instructions only.
Since this implementation spends the same number of CPU cycles as in the
above algorithm, we omit its detail discussion in following experiments.

5 Experimental Study

In this section, we conduct extensive experiments to evaluate our proposed tech-
niques with existing solutions. Unless otherwise stated, we use the experimental

34 B. Tang et al.

platform and measurement methodology in Sect. 3. Note that the execution time
includes both disk I/O time and CPU computation time. We denote SISD as
the original implementation [20,22] (for corresponding problems), SIMD as the
implementation with our proposed techniques.

5.1 Subsequence Search

UCR-ED: UCR-ED [22] is a representative solution for the ED-based sub-
sequence search. It employs the early abandoning technique to accelerate the
Euclidean distance computation. We show the performance of SISD-based and
SIMD-based UCR-ED in Fig. 8.

First, we investigate the components of CPU stall of the methods on the
dataset ECG-E in Fig. 8(a). Since our SIMD-based solutions exploit SIMD vec-
torization techniques, they incur fewer instructions and ALU stall (TALU) than
the SISD-based solution. The results on other datasets are similar to Fig. 8(a),
so we omit them for space reasons.

Second, we compare the CPU time of the methods in Fig. 8(b). We omit
the results of SIMD-128, as it is similar to SIMD-256. Clearly, our SIMD-based
UCR-ED can reduce CPU stalls significantly (e.g., ∼20%).

UCR-DTW: Regarding the DTW-based subsequence search, UCR-DTW [22]
cascades three lower bound techniques (i.e., LBKimFL, LBEQ

Keogh, and LBEC
Keogh)

to pruning unpromising candidates without invoking expensive DTW compu-
tations. We breakdown the components of CPU stall of the methods on the
dataset ECG-E in Fig. 9(a). Since our SIMD-based UCR-DTW accelerated both
the exact distance (cf. Sect. 4.3) and the lower bound computations (cf. Sect. 4.4),
SIMD-based UCR-DTW introduces fewer CPU stall cycles than the SISD-based
solution. Second, we compared the CPU time of the methods on three datasets
in Fig. 9(b). The CPU busy ratio of SIMD-based UCR-DTW is almost 50%,
which is much higher than SISD-based UCR-DTW.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Total stall TCache TALU TBr TFe

C
P

U
 c

yc
le

s
(X

10
7)

SISD
SIMD-128
SIMD-256

0%

20%

40%

60%

80%

100%

ECG-E ECG-L EEG-C

P
er

ce
nt

ag
e

of
 C

P
U

 ti
m

e

dataset

SISD SIMD-256 SISD SIMD-256 SISDSIMD-256

BUSY STALL

(a) stall breakdown on ECG-E (b) CPU time breakdown

Fig. 8. SISD-based and SIMD-based UCR-ED

Exploit Every Cycle 35

 0

 50

 100

 150

 200

 250

Total stall TCache TALU TBr TFe

C
P

U
 c

yc
le

s
(X

10
9)

SISD
SIMD-128
SIMD-256

0%

20%

40%

60%

80%

100%

ECG-E ECG-L EEG-C

P
er

ce
nt

ag
e

of
 C

P
U

 ti
m

e

dataset

SISD SIMD-256 SISD SIMD-256 SISDSIMD-256

BUSY STALL

(a) stall breakdown on ECG-E (b) CPU time breakdown

Fig. 9. SISD-based and SIMD-based UCR-DTW

Fig. 10. [Subsequence search] vary query length

Execution Time Speedup: In this set of experiments, we report the execution
time of the methods on three time series datasets (i.e., ECG-E, ECG-L, and
EEG-C) varying on query lengths in Fig. 10, where the lengths are from 256 to
4096 in UCR-ED and 128 to 1024 in UCR-DTW. Our proposed SIMD-based
methods are 1.8–3.8 and 1.5–3.2 times faster than UCR-ED and UCR-DTW,
respectively.

5.2 Motif Discovery

MK [20] makes use of (i) the exact distance calculation ED and (ii) the
lower-bound calculation LBref . The SIMD-based implementation of these two
functions has been introduced in Sects. 4.2 and 4.6, respectively. Figure 11(a)
illustrates the reduced cycles of each CPU stall component in SISD-based and
SIMD-based MK. Figure 11(b) shows the improvement of the CPU cycles with

36 B. Tang et al.

Fig. 11. SISD-based and SIMD-based MK, EEG-MK

Fig. 12. [Motif discovery] vary query length

respect to different query lengths. Again, the SIMD-based solution introduces
fewer stall cycles as compared with the SISD-based solution.

We then compare the performance of the methods on the motif discovery
problem. Figure 12 plots the execution time (logscale) of the methods with
respect to the query length. The performance gap between our methods and
SISD widens as the query length increases. The speedup of SIMD over SISD
ranges from 2.2 to 6.0.

5.3 kNN Classification

We show the breakdown of CPU stalls of UCR Suite based kNN classification
problem on Weather dataset in Fig. 13. We set k = 1 which is the default setting
in [12]. This problem is less computational intensive (one candidate per sequence)
when compared to the subsequence search problem (O(n) subsequences per
sequence) and the motif problem (O(n2) subsequence pairs per sequence). Even
though it is less computational intensive, the SIMD-based solution still saves
∼50% stall cycles for DTW as compared to the SISD-based solution (cf. Fig. 13).
Next we show the execution time speedup of the methods on the kNN classi-
fication problem in Fig. 13(c). kNN classification problem is less computational
intensive, Thus, the speedup by SIMD is lower than before. Nevertheless, SIMD
still outperforms all other methods.

Exploit Every Cycle 37

Fig. 13. Breakdown of CPU stalls and speedup, kNN Classification

6 Related Work

Time series: The representative problems on time series data are (i) the subse-
quence search problem [9,12,14,21,22,25,30], (ii) the motif discovery problem [20]
and (iii) the kNN classification problem [12,22]. The typical distance functions
are the Euclidean distance (ED) and Dynamic Time Warping (DTW). Existing
algorithms rely on software-level optimizations such as lower-bound functions and
indexing structures [4,13,21,22,30]. However, existing solutions incur high CPU
stall times and there are rooms to further improve the efficiency of distance and
lower-bound computations. To our best knowledge, our work is the first to exploit
data parallelism to speedup the above computations on modern CPU. Our pro-
posed techniques are orthogonal to the above software-level optimizations.

Modern CPU: Modern CPU provides data parallelism via single instruction
over multiple data (SIMD) and offer thread parallelism through multiple cores
and simultaneous multi-threading (SMT). In the relational database area, SIMD
and multi-core CPUs have been used to speedup database operations [29], sort-
ing [11], and joining [6,7,23]. In contrast, we focus on accelerating lower-bound
and distance computations on time series data.

Other computing devices: We are aware of methods that accelerate DTW
subsequence search on GPUs and FPGAs [24,28]. They aim at parallelizing the
computation of DTW, which however is not always the dominant cost as shown in
our performance profiling. Note that the performance of GPU degrades if it works
on a dataset much larger than its video RAM (2 GB). The typical bandwidth
between GPU and the main memory is 15 GB/s, which is much smaller than the
bandwidth between CPU and the main memory.

7 Conclusion and Future Work

Summary and Lessons Learnt: In this paper, we conduct performance profil-
ing on existing solutions for time series problems. We find that the performance
bottleneck is caused by CPU stalls. We have redesigned vectorized lower-bound
and distance functions with SIMD instructions for time series problems. Through
our experimental results and analysis, we have two key findings, which will shed

38 B. Tang et al.

light on the design and implementation of time series algorithms on modern com-
modity CPUs.

Firstly, the performance bottlenecks of different time series applications are
different. Even for the same time series algorithm, it may incur different bottle-
necks on different datasets, depending on the pruning power of each specific lower
bound function. Secondly, the characteristics of modern CPUs (e.g., branch pre-
diction unit, hardware prefetching, vectorization) play important roles in the exe-
cution time of an implementation. Frequently-used functions (e.g., lower-bound
and exact distance computations) need to be redesigned in order to unlock the
full potentials of modern commodity CPUs.

Future Research Directions: Emerging processor architectures have new char-
acteristics and lead to opportunities for further optimization. For example, the
‘Many Integrated Core’ (MIC) architecture [17] combines a large number cores
on a single chip (e.g., Intel Xeon Phi), so that the access time of data items
across different cores may depend on the distances between those cores. It becomes
important to distribute the workload and transfer data carefully among different
cores/threads.

Although our proposed techniques can accelerate existing algorithms by 2–
6 times in a single machine, they would take a few hours for very long queries
(especially for DTW similarity search). It becomes important to investigate par-
allel algorithms that run on multiple machines. Some open issues include how to
distribute the load among machines, and how to reduce the communication cost
among machines.

Acknowledgement. This project was supported by grant GRF 152043/15E from the
Hong Kong RGC and grant MYRG2014-00106-FST from UMAC Research Committee
and grant NSFC 61502548 from National Natural Science Foundation of China.

References

1. Intel 64 and IA-32 architecutres optimization reference manual. http://
www.intel.com/content/dam/www/public/us/en/documents/manuals/
64-ia-32-architectures-optimization-manual.pdf. Accessed 20 June 2016

2. Source codes and datasets for experimental study. http://goo.gl/mwDTxP.
Accessed 20 June 2016

3. Ailamaki, A., DeWitt, D.J., Hill, M.D., Wood, D.A.: DBMSs on a modern processor:
where does time go? In: VLDB, Edinburgh, UK, pp. 266–277 (1999)

4. Assent, I., Krieger, R., Afschari, F., Seidl, T.: The ts-tree: efficient time series search
and retrieval. In: EDBT (2008)

5. Athitsos, V., Papapetrou, P., Potamias, M., Kollios, G., Gunopulos, D.: Approxi-
mate embedding-based subsequence matching of time series. In: SIGMOD (2008)

6. Balkesen, C., Teubner, J., Alonso, G., Özsu, M.T.: Main-memory hash joins on
multi-core cpus: tuning to the underlying hardware. In: ICDE (2013)

7. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join
algorithms for multi-core CPUs. In: SIGMOD (2011)

http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
http://goo.gl/mwDTxP

Exploit Every Cycle 39

8. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl. 14(3), 189–204 (2000)

9. Camerra, A., Palpanas, T., Shieh, J., Keogh, E.J.: iSAX 2.0: Indexing and mining
one billion time series. In: ICDM (2010)

10. Chen, S., Ailamaki, A., Gibbons, P.B., Mowry, T.C.: Improving hash join perfor-
mance through prefetching. TODS 32(3), 17 (2007)

11. Chhugani, J., Nguyen, A.D., Lee, V.W., Macy, W., Hagog, M., Chen, Y.-K.,
Baransi, A., Kumar, S., Dubey, P.: Efficient implementation of sorting on multi-
core simd CPU architecture. PVLDB 1(2), 1313–1324 (2008)

12. Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., Keogh, E.J.: Querying and
mining of time series data: experimental comparison of representations and distance
measures. PVLDB 1(2), 1542–1552 (2008)

13. Faloutsos, C., Ranganathan, M., Manolopoulos, Y.: Fast subsequence matching in
time-series databases. In: SIGMOD (1994)

14. Fu, A.W., Keogh, E.J., Lau, L.Y.H., Ratanamahatana, C.A., Wong, R.C.: Scaling
and time warping in time series querying. VLDB J. 17(4), 899–921 (2008)

15. Hennessy, J.L., Patterson, D.A.: Computer Architecture - A Quantitative App-
roach, 5th edn. Morgan Kaufmann, San Francisco (2012)

16. Inoue, H., Ohara, M., Taura, K.: Faster set intersection with simd instructions by
reducing branch mispredictions. Proc. VLDB Endowment 8(3), 293–304 (2014)

17. Jha, S., He, B., Lu, M., Cheng, X., Huynh, H.P.: Improving main memory hash
joins on intel xeon phi processors: an experimental approach. PVLDB 8(6), 642–
653 (2015)

18. Keogh, E., Ratanamahatana, C.A.: Exact indexing of dynamic time warping.
Knowl. Inform. Syst. 7(3), 358–386 (2005)

19. Li, Y., U, L.H., Yiu, M.L., Gong, Z.: Discovering longest-lasting correlation in
sequence databases. PVLDB 6(14), 1666–1677 (2013)

20. Mueen, A., Keogh, E.J., Zhu, Q., Cash, S., Westover, M.B.: Exact discovery of time
series motifs. In: SDM (2009)

21. Papapetrou, P., Athitsos, V., Potamias, M., Kollios, G., Gunopulos, D.: Embedding-
based subsequence matching in time-series databases. ACM TODS 36(3), 17 (2011)

22. Rakthanmanon, T., Campana, B.J.L., Mueen, A., Batista, G.E., Westover, M.B.,
Zhu, Q., Zakaria, J., Keogh, E.J.: Searching and mining trillions of time series sub-
sequences under dynamic time warping. In: KDD (2012)

23. Ross, K.A.: Efficient hash probes on modern processors. In: ICDE (2007)
24. Sart, D., Mueen, A., Najjar, W.A., Keogh, E.J., Niennattrakul, V.: Accelerat-

ing dynamic time warping subsequence search with GPUs and FPGAs. In: ICDM
(2010)

25. Shieh, J., Keogh, E.J.: iSAX: indexing and mining terabyte sized time series. In:
KDD (2008)

26. Shoeb, A.H., Guttag, J.V.: Application of machine learning to epileptic seizure
detection. In: ICML (2010)

27. Sridharan, S., Patel, J.M.: Profiling R on a contemporary processor. Proc. VLDB
Endowment 8(2), 173–184 (2014)

28. Xiao, L., Zheng, Y., Tang, W., Yao, G., Ruan, L.: Parallelizing dynamic time warp-
ing algorithm using prefix computations on GPU. In: HPCC/EUC (2013)

29. Zhou, J., Ross, K.A.: Implementing database operations using SIMD instructions.
In: SIGMOD (2002)

30. Zhu, H., Kollios, G., Athitsos, V.: A generic framework for efficient and effective
subsequence retrieval. PVLDB 5(11), 1579–1590 (2012)

Compression-Aware In-Memory Query
Processing: Vision, System Design and Beyond

Juliana Hildebrandt, Dirk Habich(B), Patrick Damme, and Wolfgang Lehner

Database Systems Group, Technische Universität Dresden, Dresden, Germany
{juliana.hildebrandt,dirk.habich,patrick.damme,

wolfgang.lehner}@tu-dresden.de
https://wwwdb.inf.tu-dresden.de

Abstract. In-memory database systems have to keep base data as well
as intermediate results generated during query processing in main mem-
ory. In addition, the effort to access intermediate results is equivalent to
the effort to access the base data. Therefore, the optimization of inter-
mediate results is interesting and has a high impact on the performance
of the query execution. For this domain, we propose the continuous use
of lightweight compression methods for intermediate results and have
the aim of developing a balanced query processing approach based on
compressed intermediate results. To minimize the overall query execu-
tion time, it is important to find a balance between the reduced transfer
times and the increased computational effort. This paper provides an
overview and presents a system design for our vision. Our system design
addresses the challenge of integrating a large and evolving corpus of
lightweight data compression algorithms in an in-memory column store.
In detail, we present our model-driven approach and describe ongoing
research topics to realize our compression-aware query processing vision.

1 Motivation

In-memory database systems pursue a main memory-centric architecture app-
roach and assume that all relevant data can be fully kept in main memory of
a computer or of a computer network (cluster configuration) [1,5]. Lightweight
data compression methods play an important role in this approach [2,27]. Aside
from reducing the amount of data, compressed data offers several advantages
such as less time spent on load and store instructions, a better utilization of the
cache hierarchy and less misses in the translation lookaside buffer. Moreover,
this approach is characterized by the fact that all performance-critical opera-
tions and internal data structures are designed for efficiently accessing the main
memory hierarchy (e.g., efficient use of the cache hierarchy) [14,17]. Furthermore,
any access to an intermediate result generated during query processing is just as
expensive as access to the base data [15,19]. Accordingly, the optimization of the
intermediate results is extremely important for an efficient query processing.

c© Springer International Publishing AG 2017
S. Blanas et al. (Eds.): ADMS 2016/IMDM 2016, LNCS 10195, pp. 40–56, 2017.
DOI: 10.1007/978-3-319-56111-0 3

Compression-Aware In-Memory Query Processing 41

1.1 Vision of Compression-Aware In-Memory Query Processing

Generally, two orthogonal techniques are possible to optimize the handling of
intermediate results. On the one hand, intermediate results should be no longer
produced during query processing. Methods to avoid the generation of interme-
diate results are (i) adopted code generation for query plans [19] or (ii) the usage
of cooperative operators [15]. On the other hand, intermediate results—if they
cannot be avoided—should be organized so that an efficient further processing is
enabled. In this context, we want to utilize lightweight compression techniques
for intermediates as for base data. With the explicit compression of all interme-
diates, we want

1. to increase the efficiency of individual analytical queries or the throughput
of an amount of analytical queries since the main memory requirement is
reduced for intermediate results and the extra effort for the generation of the
compressed form is minimized, and

2. to establish the continuous handling of compression from the base data to
the intermediate results during query processing (holistic approach).

This type of query optimization has been already discussed [6], but not exam-
ined in detail since the computational effort for compression and decompression
exceeded the benefits of a reduced transfer cost between CPU and main mem-
ory. Due to the ever-increasing gap between computing power and main memory
bandwidth in modern multiprocessor systems [20] and the recent developments
in the domain of efficient lightweight compression methods [18,22,25,27], this
argument loses increasingly its validity. Nevertheless, to minimize the overall
query execution time, it is important to find a balance between the reduced
transfer times and the increased computational effort. To achieve such a bal-
ance, not only the query processing but also the necessary part of the query
optimization has to be addressed (compression-aware query processing).

1.2 System Design Challenge for Compression-Aware Processing

In-memory database systems usually store data according to the decomposi-
tion storage model (DSM) [7] to efficiently support analytical and long-running
queries. For DSM compression, a large corpus of lightweight data compression
algorithms has been developed to efficiently support different data character-
istics. Examples are: dictionary compression [2,27], run-length encoding [2,21],
and null suppression [2,18,21]. The optimal compression method depends on the
properties of the data. If we look at intermediate results, we observe that their
properties usually change dramatically during the processing of a single query.
Consequently, the compression for intermediate results have to be decided and
changed during query processing. For example, a selection might get dictionary-
compressed data as input and let only small values pass, such that afterwards a
null suppression scheme would be more appropriate.

In order to realize our vision, we require an appropriate in-memory system
supporting the large corpus of lightweight data compression algorithms. To best

42 J. Hildebrandt et al.

of our knowledge, there is no in-memory database system available providing this
large corpus of compression algorithms. Therefore, the most challenging task is
now to define a system design allowing us to integrate the large and evolving
corpus of data compression algorithms.

1.3 Our Contribution and Outline of the Paper

In this paper, we are primarily focusing on the system design challenge as a fun-
damental basis for our vision. The näıve approach would be to natively imple-
ment the compression algorithms in the DSM storage layer of an in-memory
database system as done today. However, this näıve approach has several draw-
backs, e.g., (1) massive effort to implement every possible lightweight compres-
sion algorithm as well as (2) the integration of new and specific algorithms is
time consuming. Therefore, we propose a novel and model-based approach for
the integration in this paper. In detail our contributions are:

1. We start with a system design overview in Sect. 2. As we are going to intro-
duce, our solution consists of two components: (i) the unified conceptual
model for lightweight compression algorithms and (iii) the transformation
of model instances to executable storage layer code.

2. We present our unified conceptual model in detail. We begin with a systematic
treatment of the lightweight compression aspect and present a derived system
description in Sect. 3. Afterwards, we propose our novel conceptual model
COLLATE in Sect. 4.

3. We show the applicability of COLLATE model by describing two algorithms
as model instances in Sect. 5. Then, we highlight our transformation approach
to derive efficient executable code out of the model instances.

Furthermore, we close the paper with a description of our ongoing research topics
realize our vision of compression-aware in-memory query processing. Finally, we
conclude the paper in Sect. 7.

2 System Design Overview

Without loss of generality, we restrict our attention to in-memory column stores,
because they are perfectly suited for complex analytical queries from a perfor-
mance perspective [2,27]. The left side of Fig. 1 shows an abstract architecture
of a typical in-memory column-store consisting of three layers: durability, stor-
age, and processing layer. While the durability layer guarantees data persistence
on non-volatile medium, the storage and processing layer are the main layers
and they are responsible for storing and processing data in main-memory. The
storage layer itself maintains relational data using the decomposition storage
model (DSM) [7]. That means, each attribute is separately stored and the stor-
age equals to a value-based storage model in form of a sequence of values. For the

Compression-Aware In-Memory Query Processing 43

Processing Layer

Storage Layer

Durability Layer

Storage
Format

Compression
Format

In-memory DBMS Architecture

In-Memory

Persistence

Model-based Approach for Compression

Compression
Format

Instance 1 Instance n

Model-2-Code-Transformer

COLLATE-Model

Database
Code

Instance 1
Code

Instance n

Integration

Concept

Fig. 1. Model-driven approach for the integration of data compression algorithms.

compression of sequences of values, a large variety of algorithms has been devel-
oped [2–4,11,18,21–24,27]. The landscape evolves further because it is impossi-
ble to design an algorithm that always produces optimal results for any kind of
data.

To avoid the näıve approach by natively implementing each single compres-
sion algorithm, we pursue a model-driven approach. Fundamentally, the model-
driven architecture (MDA) is a software design approach for the development of
software systems [16]. In this approach, the system functionality is defined with
a platform-independent model (PIM) using an appropriate domain-specific lan-
guage [16]. Then, the PIM is automatically translated into one or more platform-
specific models (PSM) [16]. The MDA paradigm is widely used in the area of
database applications for database creations. On the one hand, the model-driven
data modeling and the generation of normalized database schemas should be
mentioned. On the other hand, there is the generation of full database applica-
tions, including the data schema as well as data layer code, business logic layer
code, and even user interface code [12].

In this paper, we propose to use the MDA paradigm for the system-internal
domain of lightweight data compression algorithms as illustrated at the right
side of Fig. 1. To achieve this, we defined a conceptual model called COLLATE
for this specific domain. The aim of COLLATE is to provide a holistic, abstract
and platform-independent view of necessary concepts including all aspects of
data, behavior, and interaction. Based on that, a specific compression algorithm
can be expressed as model instance. To transform a model instance to executable
code, we pursue a generator approach. The generated and optimized code can
be used in a column store in a straightforward way.

3 Survey of Lightweight Data Compression Algorithms

Before we present our novel model in the following section, we start with a
comparison of basic compression techniques, followed by specific algorithms, and
conclude with a system description in this section.

44 J. Hildebrandt et al.

3.1 Analysis of Basic Lightweight Compression Techniques

The basis of lightweight data compression algorithms are six basic techniques:
frame-of-reference (FOR) [11,27], delta coding (DELTA) [18,21], dictionary com-
pression (DICT) [2,27], bit vectors (BV) [26], run-length encoding (RLE) [2,21],
and null suppression (NS) [2,21]. FOR and DELTA represent each value as the
difference to a certain given reference value (FOR) respectively to its prede-
cessor value (DELTA). DICT replaces each value by its unique key given by a
dictionary. The objective of these three well-known techniques is to represent
the original data as a sequence of small integers, which is then suited for actual
compression using the NS technique. NS is the most well-studied kind of light-
weight compression techniques. Its basic idea is the omission of leading zeros in
the bit representation of small integers. In contrast to DICT, the technique BV
replaces each input value with a bit vector representation in the output. Finally,
RLE tackles uninterrupted sequences of occurrences of the same value, so called
runs. In its compressed format, each run is represented by its value and length.
Therefore, the compressed data is a sequence of such pairs.

If we analyze these techniques without their application in specific algo-
rithms, we observe the following characteristics:

1. The techniques address different data levels. While FOR, DELTA, DICT,
BV, and RLE consider the logical data level, NS addresses the bit or byte
level. Therefore, it is clear why algorithms usually combine techniques from
the logical level with NS.

2. We are able to distinguish two approaches how input values are mapped
to output values. FOR, DELTA, DICT, and BV map each input value to
exactly one integer as output value (1:1 mapping). The goal is to achieve
smaller numbers which can be better compressed on bit level. In RLE, not
every input value is necessarily mapped to an encoded output value, because
a successive subsequence of equal values is encoded in the output as a pair
of run value and run length (N:1 mapping). The NS technique is either a 1:1
mapping or an N:1 mapping depending on the concrete expression.

3. The techniques are either parameter-dependent or data-dependent. Most of
the 1:1 mapping techniques except DELTA are parameter-dependent. That
means, each input value is independently encoded from other values within
the input sequence to an output representation, but the encoding depends
on some parameter, i.e., the reference value in FOR or the bit width for
NS. DELTA is a data-dependent technique, because it encodes the values in
dependency of their predecessor. The same is valid for RLE, therefore we
define RLE as data-dependent technique.

Each technique has its own characteristics and objectives, which are applied
in the algorithms in different ways. In particular, the algorithms precisely define
some open questions regarding the application. For example, one open question is
how the parameter values for parameter-dependent techniques are determined. A
second open question is whether the whole input sequence is processed with the
same parameter value, or if the sequence is partitioned and for each subsequence
a separate parameter value is used.

Compression-Aware In-Memory Query Processing 45

3.2 Analysis of Lightweight Compression Algorithms

Without claiming completeness, we analyzed a large variety of algorithms and
classified the algorithms in families as follows:

Algorithms in the family of Byte-oriented Encodings rely on the basic
technique NS [24]. They map uncompressed values to codewords of a bit length
that is a multiple of eight. These algorithms implement NS according to a 1:1
mapping, whereas the corresponding parameter for encoding is determined for
each single input value (number of essential bytes). That means, byte-oriented
encodings compute the parameters for the parameter-dependent NS technique
data-dependent by computing one parameter per input data value. For decoding,
it is necessary to store the length of a codeword as a parameter. The algorithms
have a lot of similarities. The only difference between two algorithms is the
arrangement of bits and they also differ in the encoding of the length value.

Simple-based Algorithms apply only the NS technique, again [3]. Here,
the algorithms try to pack as many binary encoded integer values in a 32 resp.
64 bit codeword by suppressing leading zeros. In contrast to the previous family,
the algorithms follow an N:1 mapping for NS. The algorithms subdivide the
input sequence in subsequences depending on the size of the input values. In
each codeword of a fixed length, several descriptor bits serve as parameters to
determine the bit width for all values that are encoded with this codeword.
The remaining bits are filled with NS compressed data values. Simple-based
algorithms apply the parameter-dependent NS technique in a data-dependent
fashion with one parameter per input data subsequence.

PFOR-based Algorithms implement the FOR technique [27] in combi-
nation with NS. They subdivide the input in subsequences of a fix length and
calculate two parameters per subsequence: a reference value for the FOR tech-
nique and a common bit width for NS. Each subsequence is encoded using their
specific parameters, thereby the parameters are data-dependently derived. The
values that cannot be encoded with the given bit width are stored separately
with a greater bit width.

Adaptive FOR algorithms [10,23] bundle a lot of NS algorithms, but they
focus on the problem of how to optimize the subdividing of a finite sequence
of integer values in subsequences, such that every value in a subsequence is
encoded with the same bit width. These algorithms use the parameter-dependent
technique NS in a data-dependent fashion with a N:1 mapping approach.

All described families apply one or more basic lightweight compression tech-
niques, but the application is different. For the last three families, data subdi-
vision into subsequences plays an important role. Also the calculation of para-
meter values that are related to all values within a subsequence like a common
bit width is a core part of the algorithms. In general, this aspect influences the
encoding of the values in each subsequence differently. That is not addressed on
the level of basic techniques, but on the level of the algorithms. Furthermore,
the parameters for each subsequence have to be included in the encoded output
sequences for decompression purposes. Generally, the parameter-dependent basic

46 J. Hildebrandt et al.

techniques are applied in a data-dependent fashion in algorithms by computing
the parameters based on the input data sequence.

3.3 Derived System Description and Properties

Based on the decomposition storage model [7], the input for every lightweight
data compression algorithm is a finite sequence of (integer) values. The output is
a sequence of codewords and parameters representing the compressed data. The
parameters like bit width or run length are required for decoding/decompression
or are part of an access path within the compressed data format. Input and
output data have a logical representation (semantic level) and a physical repre-
sentation (bit or encoding level). While for some compression techniques it is
useful to focus on the semantic level (FOR and DELTA), for other techniques
the physical level is more important (NS).

For the transformation from input to output, two further characteristics play
an important role for every algorithm. First, most of the basic lightweight com-
pression techniques are parameter-dependent. Within the algorithms, a number
of parameter values has to be calculated. Second, the basic techniques and algo-
rithms differ in their mapping cardinalities as described above. For parameter-
dependent N:1 mappings, parameters are calculated for each subsequence of
N values. In general, a lot of algorithms subdivide input data hierarchically in
subsequences (i.e. PFOR) for which the parameters can be calculated. Moreover,
the further data processing of a subsequence depends on the subsequence itself.
That means, data subdivision and parameter calculation are important and
the application of the basic techniques is then straightforward. Finally, for an
exact algorithm description, the combination and arrangement of codewords
and parameters have to be defined. Here, the algorithms also differ widely.

4 COLLATE Model

We now introduce our novel conceptual and platform-independent model called
COLLATE for the domain of lightweight data compression algorithms. As
described in Sect. 3.3, input is a sequence of (integer) values and output is a
sequence of codewords and parameters representing the compressed data. To
convert input data to its compressed output data, several functional concepts
with regard to our system description are necessary. Fundamentally, our model
consists of the following five main concepts (functional components):

Recursion: This concept is responsible for the hierarchical data subdivision
and for applying the included concepts in the Recursion on each data sub-
sequence. Each modeled algorithm is a Recursion.

Tokenizer: This concept is responsible for dividing an input sequence into finite
subsequences or single values.

Parameter Calculator: The concept Parameter Calculator determines
parameter values for finite subsequences or single values. The specification
of the parameter values is done using parameter definitions.

Compression-Aware In-Memory Query Processing 47

Tokenizer
Parameter
Calculator

Encoder/
Recursion

Combiner

Recursion

input
sequence

parameter/
set of valid
tokens/. . .

tail of
input sequence

adapted pa-
rameters/

adapted set of
valid tokens/. . .

fix
para-
meters

adapted value

fix
para-
meters

compressed
value or

compressed
sequence

calculated parameters

token:
finite sequence

encoded
sequence

Fig. 2. Interaction and data flow of our COLLATE model.

Encoder: The third concept determines the encoded form for values to be com-
pressed at bit level. Again, the concrete encoding is specified using functions
representing the basic techniques.

Combiner: The Combiner is essential to arrange the encoded values and the
calculated parameters for the output representation.

Figure 2 illustrates the interactions of our concepts and the data flow through
the concepts for lightweight data compression for a simple case with only one
pair of Parameter Calculator and Encoder. In general, this arrangement can
be used as blueprint for lightweight compression algorithms as we will show in
the next section. The dashed lines highlight several properties of the concepts.
The properties of the concepts Tokenizer, Parameter Calculator and Encoder
are as follows:

For the Tokenizer concept, we identified three classifying characteristics.
The first one is the data dependency. A data independent Tokenizer outputs a
special number of values without regarding the value itself, while a data depen-
dent Tokenizer is used if the decision how many values to output is led by
the knowledge of the concrete values. A second characteristic is the adaptivity.
A Tokenizer is adaptive if the calculation rule changes depending on previ-
ously read data. The third property is the necessary input for decisions. Most
Tokenizers need only a finite prefix of a data sequence to decide how many val-
ues to output. The rest of the sequence is used as further input for the Tokenizer
and processed in the same manner. Only those Tokenizers are able to process
data streams with potentially infinite data sequences. There are also Tokenizers
needing the whole (finite) input sequence to decide how to subdivide it.

All of these eight combinations are possible. Some of them occur more fre-
quently than others in existing algorithms. Some analyzed algorithms are very
complex concerning sequence subdivision. It is not sufficient to assume that
Tokenizers subdivide sequences in a linear way. As an example for PFOR-
based algorithms, we also need Tokenizers that arrange somehow subsequences,
mostly regarding content of single values of the sequence. With such kinds of
Tokenizers (mostly categorizable as non adaptive, data dependent and with the

48 J. Hildebrandt et al.

need of finite input sequences), we can rearrange the values in a different (data
dependent) order than the one of the input sequence.

A second task of the Tokenizer is to decide for each output sequence which
pair of Parameter Calculator and Encoder is used for the further data process-
ing. Most algorithms process all data in the same way, some of them distinguish
several cases, so that this choice is necessary. The finite output sequence of the
Tokenizer serves as input for the Parameter Calculator.

Parameters are often required for the encoding and decoding. Therefore, we
introduce the Parameter Calculator concept, which knows special rules (para-
meter definitions) for the calculation of several parameters. There are different
kinds of parameter definitions. We often need single numbers like a common bit
width for all values or mapping informations for dictionary based encodings. We
call a parameter definition adaptive, if the knowledge of a calculated parameter
for one token (output of the Tokenizer) is needed for the calculation of parame-
ters for further tokens at the same hierarchical level. For example, an adaptive
parameter definition is necessary for DELTA. Calculated parameters have a logi-
cal representation for further calculations and the encoding of values as well as a
representation at bit level, because on the one hand they are needed to calculate
the encoding of values, on the other hand they have to be stored additionally to
allow the decoding. If an algorithm is characterized by hierarchically calculated
parameters, it is possible that a parameter definition depends on other calculated
parameters that are additional input for a Parameter Calculator.

The Encoder processes an atomic input, where the output of the Parameter
Calculator and other parameters are additional inputs. The input is a token
that cannot or shall not be subdivided anymore. In practice the Encoder mostly
gets a single integer value to be mapped into a binary code (1:1 mapping tech-
niques). An exception is RLE as N:1 mapping technique, where the Parameter
Calculator maps a sequence of equal values to its run length and the Encoder
maps the sequence to the special value. Equally to the parameter definitions, the
Encoder calculates a logical representation of its input value and an encoding
at bit level.

5 Transformation of Model Instances

In this section, we deal with the application and the transformation of COL-
LATE model instances into executable code, thereby we focus on algorithms
from the class of Byte-oriented Encodings. Nevertheless, all algorithms belong-
ing to the algorithm families described in Sect. 2 can be modeled with COLLATE
as demonstrated on our project website1. Due to space constraints, we only high-
light the basic feasibility of our transformation approach.

5.1 Model Instances for Byte-oriented Encoding Algorithms

The two simple algorithms varint-SU and varint-PU belong to the class of Byte-
oriented Encodings and they are designed to suppress leading zeros [24]. Both
1 Website - https://wwwdb.inf.tu-dresden.de/research-projects/projects/collate/.

https://wwwdb.inf.tu-dresden.de/research-projects/projects/collate/

Compression-Aware In-Memory Query Processing 49

Fig. 3. Example for varint-SU (green) and varint-PU (blue) (Color figure online).

take 32-bit integer values as input and map them to codewords of variable length.
This is shown in Fig. 3 for the binary representation of the value 104, 125. Both
algorithms determine the smallest number of 7-bit units that are needed for
the binary representation of the value without losing any information. In our
example, we need at least three 7-bit units and we are able to suppress 11 leading
zero bits. To support the decoding, we have to store the number three—number
of necessary 7-bit units—as additional parameter. This is done in a unary way
as 011. The algorithm varint-SU stores each single parameter bit at the high
end of a 7-bit data unit, whereas varint-PU stores the complete parameter at
one end of the 21 data bits.

Both algorithms are similar, which is also observable in their model instances
as depicted in Fig. 4. Both algorithms use a very simple Tokenizer subdividing
an input sequence of length n into single integer values (indicated by |ni=1mi).
For each value, the Parameter Calculator determines the number of neces-
sary 7-bit units using an appropriate function (bw = �log128(max(1, •))� + 1).
The determined number is used in the subsequent Encoder. This one does not
transform the logical value, but it subdivides the bit level representation of the
input value into bw 7-bit units (indicated by |bwj=1 •7j−1 . . . •7(j−1)). Up to now,
both algorithms have the same behavior. The only difference between both’

Fig. 4. Model instances for varint-SU (green) and varint-PU (blue) (Color figure
online).

50 J. Hildebrandt et al.

algorithms can be found in the Combiner, because only the output is different.
The algorithm varint-SU concatenates each 7-bit unit of one logical value with
one bit of the bit level representation of the parameter bw in a loop (indicated
by :bwj=1) corresponding to the subdivision inside the Encoder. It uses a second
loop corresponding to the Tokenizer to concatenate all n values (indicated by
:ni=1). The algorithm varint-PU concatenates the whole bit level representation
of a parameter bw and all 7-bit units of one value (indicated by :bwj=1) as well as
all encoded values (indicated by :ni=1).

5.2 Transformation to Executable Code

As illustrated above, the algorithms are specified in an abstract way with our
novel model approach and appropriate mathematical functions. The next chal-
lenge is the transformation in efficient executable code. Figure 5 depicts our
developed overall approach for this task, thereby we follow a generator app-
roach. The input of our Model-2-Code Transformer are (i) a specification of
a model instance in the GNU Octave2 high-level programming language and
(ii) code templates for our model concepts. Our Model-2-Code Transformer is
written in C and outputs algorithms in C. On the COLLATE model level, we
have 5 specific concepts and we require one code template for each model con-
cept. The code templates have to be implemented once for each specific database
system, e.g., MonetDB [5]. This is necessary to get access to the data on the
specific storage layer implementation.

Fig. 5. Transformation of model instances to executable code.

2 https://www.gnu.org/software/octave/.

https://www.gnu.org/software/octave/

Compression-Aware In-Memory Query Processing 51

The transformation is actually a topic for itself, that is why we want to
explain here only the core idea of our approach using the varint-SU algorithm as
shown in Fig. 4. The Recursion concept indicates that we iterate over the input
sequence, thereby the Tokenizer specifies how we iterate over the input data.
That means for our templates, the Recursion is a loop and Tokenizer informa-
tion is used to concretize the loop. This approach is shown Fig. 6(a) representing
the unoptimized output of our Model-2-Code Transformer for varint-SU. Fur-
thermore, the Tokenizer determines which values have to processed in each
loop pass. In our example, we process a single integer value in each loop pass.
Then, the concept Parameter Calculator includes mathematical rules defin-
ing which and how parameters values have to be computed. These definitions
are translated in a straightforward way. Generally, Recursion, Tokenizer and
Parameter Calculator are working on the logical representation of input val-
ues. Afterwards, the Encoder gets the calculated parameter values and a single
integer value as input. Here, we have to distinguish three opportunities. Either
the Encoder works on the logical level, on the physical level, or on both levels.
On the logical level, the encoding rules are translated again in a straightforward
way. If the Encoder operates at the physical level, the logical value is usually
decomposed in bits or bytes. This is represented in our template using a loop
iterating over the bit/byte representation. In our example, the integer value is
decomposed in bw 7-bit units (see corresponding loop in Fig. 6(a)). This decom-
position or bit shifting is extracted from the encoder rule. If the Encoder works
on the logical as well as physical level, we combine both approaches. Then, the
Combiner works on the output of the Encoder and gets also the parameter as
additional input. Again, if the Combiner works on the physical level, the corre-
sponding template includes a loop iterating over the bit/byte representation.

To summarize, the templates reflect a foundation and the mathematical rules
of the concepts are used to concretize the foundation. Figure 6(a) shows our
generated C code we obtained with this approach for varint-SU. It is easy to
see that this code is not optimal since encoder and combiner contain the same
loop. To improve the generated code, we are able to optimize the code using
well-known compiler techniques. In this case, we are able to fuse the code for the
encoding and combining as illustrated in Fig. 6(b) resulting in one loop iterating
over the bw 7-bit units. The code can be further optimized by unrolling the loop
for encoding and decoding as there are maximal 5 7-bit unit opportunities. That
means, we have a specific code part for compression a integer value using one
7-bit unit, specific code part for two 7-bit units, etc. The resulting optimized
code is depicted in Fig. 6(c). This optimization is currently executed manually,
because the automatically determination of code variants is challenging. This
optimization has to be investigated more precisely.

Figure 7(a) shows an evaluation based on single threaded versions of varint-
SU running on a standard server. We compare our generated and optimized
codes to an efficient implementation of Lemire [18]. In this experiment, we
vary the number of integer values to be compressed, thereby the compressed
representations randomly vary between 1 and 5 7-bit units per integer value.

52 J. Hildebrandt et al.

Fig. 6. Generated and optimized code for our varint-SU example.

The evaluation is done outside of any column store. As we can see, the unop-
timized generated code performs poorly, but with our optimizations, we come
close to the native implementation of Lemire. Figure 7(b) indicates the slowdown
of our generated and optimized code compared to implementation of Lemire. As
we can see, our unoptimized code is around seven times slower than the native
code. The fusion of encoder and combiner reduces the slowdown to around 1.5
time, while the unrolling optimization offers the most improvement. Here, our
slowdown is around 1.12 compared to the native implementation of Lemire. That
means, our generated and optimized code is marginally slower than native code
of Lemire.

Fig. 7. Evaluation results for varint-SU.

Compression-Aware In-Memory Query Processing 53

In summary it can be established that we are able generate efficient code
with our approach. Nevertheless, the whole code optimization has to be worked
out in detail, whereby the SIMD-parallelization must be considered with [22,25].

6 Future Work

As mentioned in the introduction, our central aim is to establish a compression-
aware query processing concept. With the explicit compression of all interme-
diates, we want to increase the efficiency of individual analytical queries or the
throughput of an amount of analytical queries since the main memory require-
ment is reduced for intermediate results and the extra effort for the generation
of the compressed form is minimized. With our presented system design, we
have now an appropriate foundation. Generally, our ongoing research activities
cover: (i) the integration and optimization of lightweight compression algorithms
(structural aspect) in column stores, (ii) the execution of operators on a com-
pressed data format as far as possible (operational aspect), and (iii) the design
of an optimization component to decide depending on the situation which com-
pression method should be used for intermediate results (optimization aspect).

6.1 Structural Aspect

With this paper, we have systematically analyzed classical lightweight data com-
pression algorithms. Furthermore, we have proposed a model-driven approach
to efficiently integrate the large corpus of algorithms in a column store, e.g.,
MonetDB [5]. Here, we have focused on the data compression part. The same
applies for decompression using a slightly adjusted conceptual model. Our ongo-
ing research topics in this direction are: (i) simplification of algorithm modeling
and (ii) extending the transformation/optimization to enable the utilization of
SIMD capabilities of modern CPUs. Especially, the second point is interesting
because we do not want to parallelize one specific algorithm, but the entire
corpus.

A further interesting topic with regard to our vision is the transformation of
compressed data in format X into compressed data in format Y. This is important
since the optimal compression format depends on the properties of the data [2].
While the properties of the base data might change only incrementally over time
caused by DML operations, the properties of intermediate results usually change
dramatically during the processing of a single query. Consequently, operators
should be able to output data in another format than their input. For example, a
selection might get dictionary-compressed data as input and let only small values
pass, such that afterwards a null suppression scheme would be more appropriate.
Not adapting the format of the operator’s output implies a waste of performance
potential. At this point, transformation algorithms are our proposed solution
as described here [9]. Our direct transformation techniques convert compressed
data in format X to another compression format Y in a direct and interleaved
way. They could be applied to the output of an operator or even inside an

54 J. Hildebrandt et al.

operator. The transformation algorithms can be also handled with our system
design approach.

6.2 Operational Aspect

The operational aspect is another key component for our compression-aware
query processing aim because physical plan operators have to be designed and
implemented, which accept compressed data as an input and provide compressed
data as result. The challenge in this task is to ensure that the cost of integrating
different combinations of compression formats and operators is as low as possible.
There are currently three different strategies for the query execution available
which differ in timing and nature of data decompression: eager decompression
[13], lazy decompression[27] and transient decompression [6]. In particular, the
integration strategy transient decompression is very important for our aim. For
operators, who can not work on compressed data, the data is decompressed
partially and temporarily, however, the compressed representation is used as
output. This strategy is intended to form the basis of our approach. However,
the fundamental difference is that the intermediate results are transferred in
different compression formats in the query plan. This allows changing the optimal
compression method in the execution plan, depending on the operators and the
data properties.

6.3 Optimization Aspect

At this level, both reduced transfer costs and the overhead of compression and
decompression in the search of an optimal execution plan for our compression-
aware query processing must be considered. Furthermore, the choice of com-
pression methods for intermediate results and the choice of operator alterna-
tives that can operate on compressed data, are important factors for the query
optimization. Our goal is to design a common processing model which includes
compression in the query processing as well as optimization. Therefore, further
optimization techniques for the compression-sensitive query optimization have to
be developed, which can have a major impact on processing times of analytical
queries. Our query optimization will be based on a cost model, this cost model
has explicit knowledge about the lightweight compression and transformation.
This knowledge should be acquired on an empirical evaluation process, thereby
we already defined an appropriate benchmark framework [8].

7 Conclusion

In-memory database systems have to keep base data as well as generated inter-
mediate results during query processing in main memory. Furthermore, any
access to any intermediate result is just as expensive as access to the base
data. Therefore, the intermediate results should be considered separately for
an efficient query processing offering two orthogonal optimization approaches:

Compression-Aware In-Memory Query Processing 55

(i) avoid the generation of intermediate results [15,19] or (ii) organize the inter-
mediate result—if they cannot be avoided—so that an efficient further processing
is enabled. In this latter context, we propose to use lightweight compression tech-
niques for intermediates as for base data. In this paper, we explained our overall
vision of a compression-aware query processing concept. In particular, we have
proposed a model-driven approach to integrate the large and evolving corpus
of lightweight data compression algorithms in a column store. Furthermore, we
have highlighted our ongoing research activities.

References

1. Abadi, D., Boncz, P.A., Harizopoulos, S., Idreos, S., Madden, S.: The design and
implementation of modern column-oriented database systems. Found. Trends Data-
bases 5(3), 197–280 (2013)

2. Abadi, D.J., Madden, S.R., Ferreira, M.C.: Integrating compression and execution
in column-oriented database systems. In: SIGMOD, pp. 671–682 (2006)

3. Anh, V.N., Moffat, A.: Inverted index compression using word-aligned binary
codes. Inf. Retr. 8(1), 151–166 (2005)

4. Arroyuelo, D., González, S., Oyarzún, M., Sepulveda, V.: Document identifier reas-
signment and run-length-compressed inverted indexes for improved search perfor-
mance. In: SIGIR, pp. 173–182 (2013)

5. Boncz, P.A., Kersten, M.L., Manegold, S.: Breaking the memory wall in MonetDB.
Commun. ACM 51(12), 77–85 (2008)

6. Chen, Z., Gehrke, J., Korn, F.: Query optimization in compressed database sys-
tems. SIGMOD Rec. 30(2), 271–282 (2001)

7. Copeland, G.P., Khoshafian, S.N.: A decomposition storage model. SIGMOD Rec.
14(4), 268–279 (1985)

8. Damme, P., Habich, D., Lehner, W.: A benchmark framework for data compression
techniques. In: Nambiar, R., Poess, M. (eds.) TPCTC 2015. LNCS, vol. 9508, pp.
77–93. Springer, Cham (2016). doi:10.1007/978-3-319-31409-9 6

9. Damme, P., Habich, D., Lehner, W.: Direct transformation techniques for com-
pressed data: general approach and application scenarios. In: Morzy, T., Valduriez,
P., Bellatreche, L. (eds.) ADBIS 2015. LNCS, vol. 9282, pp. 151–165. Springer,
Cham (2015). doi:10.1007/978-3-319-23135-8 11

10. Delbru, R., Campinas, S., Samp, K., Tummarello, G., Dangan, L., Delbru, R.,
Campinas, S., Samp, K., Tummarello, G.: Adaptive frame of reference for com-
pressing inverted lists (2010)

11. Goldstein, J., Ramakrishnan, R., Shaft, U.: Compressing relations and indexes. In:
ICDE, pp. 370–379 (1998)

12. Habich, D., Richly, S., Lehner, W.: GignoMDA - exploiting cross-layer optimization
for complex database applications. In: VLDB (2006)

13. Iyer, B.R., Wilhite, D.: Data compression support in databases. In: VLDB Con-
ference, pp. 695–704 (1994)

14. Kissinger, T., Schlegel, B., Habich, D., Lehner, W.: KISS-Tree: smart latch-free
in-memory indexing on modern architectures. In: DaMoN, pp. 16–23 (2012)

15. Kissinger, T., Schlegel, B., Habich, D., Lehner, W.: QPPT: query processing on
prefix trees. In: CIDR 2013 (2013)

16. Kleppe, A., Warmer, J., Bast, W.: MDA Explained. The Model Driven Architec-
ture: Practice and Promise. Addison-Wesley, Massachusetts (2003)

http://dx.doi.org/10.1007/978-3-319-31409-9_6
http://dx.doi.org/10.1007/978-3-319-23135-8_11

56 J. Hildebrandt et al.

17. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: artful indexing for
main-memory databases. In: ICDE, pp. 38–49 (2013)

18. Lemire, D., Boytsov, L.: Decoding billions of integers per second through vector-
ization. Softw. Pract. Exper. 45(1), 1–29 (2015)

19. Neumann, T.: Efficiently compiling efficient query plans for modern hardware.
PVLDB 4(9), 539–550 (2011)

20. Qiao, L., Raman, V., Reiss, F., Haas, P.J., Lohman, G.M.: Main-memory scan
sharing for multi-core cpus. PVLDB 1, 610–621 (2008)

21. Roth, M.A., Van Horn, S.J.: Database compression. SIGMOD Rec. 22(3), 31–39
(1993)

22. Schlegel, B., Gemulla, R., Lehner, W.: Fast integer compression using SIMD
instructions. In: DaMoN (2010)

23. Silvestri, F., Venturini, R.: Vsencoding: efficient coding and fast decoding of integer
lists via dynamic programming. In: CIKM, pp. 1219–1228 (2010)

24. Stepanov, A.A., Gangolli, A.R., Rose, D.E., Ernst, R.J., Oberoi, P.S.: SIMD-based
decoding of posting lists. In: CIKM, pp. 317–326 (2011)

25. Willhalm, T., Popovici, N., Boshmaf, Y., Plattner, H., Zeier, A., Schaffner, J.:
SIMD-scan: ultra fast in-memory table scan using on-chip vector processing units.
PVLDB 2(1), 385–394 (2009)

26. Williams, R.: Adaptive Data Compression. Kluwer International Series in
Engineering and Computer Science: Communications and Information Theory.
Springer, US (1991)

27. Zukowski, M., Heman, S., Nes, N., Boncz, P.: Super-scalar RAM-CPU cache com-
pression. In: ICDE, p. 59 (2006)

Overtaking CPU DBMSes with a GPU
in Whole-Query Analytic Processing

with Parallelism-Friendly
Execution Plan Optimization

Adnan Agbaria1, David Minor2, Natan Peterfreund3, Eyal Rozenberg4(B),
and Ofer Rosenberg3

1 Intel, Santa Clara, USA
adnan.agbaria@intel.com

2 GE Global Research, Niskayuna, USA
david.minor1@ge.com

3 Huawei Research, Ramot Menashe, Israel
natan.peterfreund@huawei.com, oferrose73@gmail.com

4 CWI Amsterdam, Amsterdam, Netherlands
E.Rozenberg@cwi.nl

Abstract. Existing work on accelerating analytic DB query process-
ing with (discrete) GPUs fails to fully realize their potential for speedup
through parallelism: Published results do not achieve significant speedup
over more performant CPU-only DBMSes when processing complete
queries.

This paper presents a successful effort to better meet this challenge, in
the form of a proof-of-concept query processing framework. The frame-
work constitutes a graft onto an existing DBMS, altering some parts
of it and replacing its execution engine entirely. It intensively refactors
query execution plans, making them better-parallelizable, before exe-
cuting them on either a CPU or on GPU. This results in a significant
speedup even on a CPU, and a further speedup when using a GPU, over
the chosen host DBMS (MonetDB) — which itself already bests most
published results utilizing a GPU for query processing.

Finally, we outline some concrete future improvements on our results
which can cut processing time by half and possibly much more.

1 Introduction

Database Management Systems (DBMSes) in wide use today were designed for
execution on a ‘serial’ processing unit. Even when multi-thread and multi-core
capabilities are taken into account in the design, massive parallelism is typically
not a significant consideration: The execution strategy, the fundamental inter-
nal operations used in executing queries, the representation of data in memory

Work carried out by all authors as members of the Heterogeneous Computing Group
at Huawei Research, Israel. Authors appear in alphabetical order.

c© Springer International Publishing AG 2017
S. Blanas et al. (Eds.): ADMS 2016/IMDM 2016, LNCS 10195, pp. 57–78, 2017.
DOI: 10.1007/978-3-319-56111-0 4

58 A. Agbaria et al.

— these are all incarnations of original designs with serial execution in mind,
even if these days. Even when multiple threads are used, they mostly behaving
like so many single-thread DBMSes, each processing a large chunk of the data,
independently.

As the use of GPUs for computation more general than graphics processing
is spreading, industry and academic have begun exploring its potential use in
processing relational database queries. Initially, contributions such as [5] focused
on efficient implementation of primitive query-processing-related computational
operations: These relatively self-contained pieces of code are what the CPU
actually spends time on; and replacing them with carefully-optimized kernels
running on the GPU does accelerate them. However, this does not immediately
translate to impressive acceleration in processing entire queries.

This fact has motivated two avenues of research. One of them, not explored
here, focuses on integrated CPU-GPU processors, such as AMD’s APUs. These
remove the bandwidth limitations of the PCIe bus, a key reason for the under-
whelming performance of GPU DBMSs; [14] is a recent contribution in this vein,
with references to additional work. A second approach is processing queries as a
whole rather than only their constituent operations. Most experimental work in
this avenue (ours included) involves grafts onto an existing host DBMS. A graft
overrides parts of the normal compilation process and modifies existing code to
create interfaces and hooks for new and replacement functionality of complete
sub-sections of the query plan. Instead of merely replacing the code for execu-
tion of individual query plan operations, they alter and substitute large sections
of the entire plan. Thus the generated plans are significantly different, and so
is the execution mechanism, which is sometimes replaced altogether. Prominent
recent examples of such frameworks include Red Fox [21] and GPU-DB [23] (also
cf. [4]). However, despite the progress made so far, these efforts have not pro-
duced systems with query processing speed on par with the more performant
free-software DBMSes, such as MonetDB [10,11] (which are themselves bested
by some closed-source DBMSes, such as Actian Vector [24] and HyPerDB [7]).

We perceived previous work as being overly attached to existing DBMS’
massive-parallelism-unfriendly execution planning — in other words, it seems
that most often they are still having a GPU “do a CPU’s job”.

To gain a performance benefit from using a GPU, we decided that instead of
optimizing its execution of the tasks it is given by the traditional SQL optimizer,
we should instead focus our effort on creating new GPU-friendly tasks and feed-
ing them conveniently-represented data on which they could shine. Very roughly,
such computational work is characterized by:

– Less code path divergence;
– More work by related threads on small, localized data;
– Well-coalesced memory accesses;
– Avoidance and circumvention of data dependencies, or at least the ‘flattening

out’ of dependency relation into a shallow forest;
– a focus on throughput rather than on latency;

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing 59

Some constituent operations in CPU-targeted execution plans cannot be
implemented as-is in this fashion; but often their semantics can be tweaked,
or their input or output formats altered, so that they admit a GPU-parallelism-
friendly implementation (as is well-evidenced by the recent study of approaches
for optimizing LIKE pattern matching on string columns [16]). Although many
operations do not allow for such an adaptation, or do not benefit from it as
significantly as others — we need to remind ourselves of our objective: It is the
plan whose execution we wish to speed up, not the individual operations that
are just a means to that end. Often including a less-then-optimal operation in an
optimal GPU query plan will still lead to an overall improvement for the entire
plan. In most cases, however, we can, in fact, avoid computational operations
which the GPU does not favor, choosing alternate (sub)plans for that part of
the query’s execution. This approach underpins the query processing framework
we developed as a proof-of-concept, and as the rest of this article demonstrates,
it provides a significant improvement over other state-of-the-art in processing
systems for full TPC-H queries.

2 The Processing Framework

With numerous query processing frameworks utilizing GPUs already in exis-
tence, Breß, Heimel et al. devised a classification scheme for these in [4, Sect. 4.3].
Before describing our framework, here is how it fits into this scheme (Table 1):

Table 1. Breß-et-al.-style classification

Storage: location In-memory only

Storage: model Column store

JIT compilation None (but with IR transforms)

Processing: [x] at-a-time Operator (not tuple or block)

Device support Single-device and multi-device

Transactions Not supported (read-only)

Hardware portability CPUs & (CUDA) GPUs

Implemented Breß-et-alia-listed optimizations: GPU-aware
query optimizer; Efficient data placement strategy; Overlap of
data transfer and processing (partial); Pinned host memory.

2.1 From Query to Execution Run

The processing framework adopts the common approach of grafting onto an
existing DBMS; our choice was the analytics-oriented column store MonetDB.
Figure 1 summarizes which components of MonetDB are replaced or modified

60 A. Agbaria et al.

Fig. 1. The processing framework as a graft onto MonetDB

and which additions the graft introduces. It is helpful to the diagram keep in
mind as the processing of incoming queries is described further below and in
Sect. 3.

As a new (analytic) query arrives, the host DBMS parses it, considers its
relational algebra, and generates an initial execution plan using its internal
representation — for MonetDB, the single-assignment language MAL [19]. We
interrupt the usual sequence of optimizers which MonetDB applies, replacing
some of the final optimizers with a mock optimizer, whose task is to convert
the sequence of MAL instructions into an alternative intermediate representa-
tion. Specifically, MonetDB’s data-parallelism-inducing transformations are not
applied; our execution engine will later transform the plan to utilize multiple
CPU cores and/or GPU devices instead. Finally, instead of invoking MonetDB’s
execution engine/MAL program interpreter (named GDK), our own execution
engine is invoked, ignoring the MAL sequence itself.

Our execution engine takes the following input: A (directed acyclic) graph,
the ‘execution’ of which should obtain the query results; access to a library
of GPU optimized computational primitive implementations (as these are not
inherent to the engine); access to a library of similar implementations for CPUs;
locations of buffers in the system’s main memory (for schema columns and aux-
iliary data; see Subsect. 2.3); and a set of analytic-query-related transformation
rules it may apply to its execution graph. When the execution engine completes

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing 61

its work, results are present in main memory and are passed back to MonetDB
as though produced by its own native execution of the query.

2.2 The Execution Engine

Our query processing framework had at its core an execution engine called AXE
(Adaptive Execution Engine) developed by the Heterogeneous Computing group
of Huawei’s Shannon Lab; this engine was designed independently of its specific
use in this work — as the group’s areas of interest are not limited to analytic
DB query processing. It was designed to accommodate multiple types of com-
putational devices and applications. It is built on the abstraction of a DAG of
computational operations. Operations are drawn from a pool of hand-optimized
domain-specific libraries. A run of the execution engine involves the concurrent
and sequential execution of multiple operations. Some of these operations are
massively parallel (e.g. binary vector operations) and others are run in task
parallel fashion (e.g. host to device data transfers). AXE operations operate on
buffers — an abstraction of regions of memory, which may be instantiated on the
memory space of different devices, copied between memory spaces, pre-allocated,
resized and set as inputs or outputs for operations both on and off the device.
The AXE engine’s IR (intermediate representation) is a DAG-like execution
plan, describing the dependencies, operations and buffers needed for execution,
along with additional information to help guide transformations by the engine.
An internal queuing and scheduling mechanism allows for asynchronous exe-
cution of operations, dependency enforcement, synchronization and task level
parallelism. Fine-grained, regularized (often synchronous) parallelism — typi-
cal of GPU code — is encapsulated into the implementations of the operations
themselves, so that the engine is not GPU-specific. AXE also supports data
parallelism, by cloning subgraphs at the IR level, splitting inputs among the
subgraphs, and finally joining the results computed by each of these partition
subgraphs. In order to accommodate the variegated of SQL semantics, a variety
of partitioning and joining schemes are used (e.g. duplicate all, bit-or). Which
scheme to use is providing by annotations over the inputs/outputs of individual
operations, or reverts to a standard default.

Execution plan transformations occur at two distinct stages in the compila-
tion/execution process. To see why this is so, consider the following: The higher
strata of transformations, those within the DBMS interpreter itself, are oblivious
of the hardware on which the plan will eventually execute, e.g. which compu-
tational devices, device capabilities, communication buses, memory space sizes,
etc. The lower stratum of transformations, those taking place within our execu-
tion engine, is oblivious to the original application which provided the engine
with the plan. It holds no information regarding databases, queries, relational
tables, foreign-key relations and so on. This separation of concerns between
the domain-specific (higher-strata, within DBMS) and hardware-specific (lower-
strata, within AXE) is a useful technique, allowing for effective execution opti-
mization catering to different applications (some more on this in Sect. 3). Of
course, the separation is somewhat artificial, as hardware-related choices impact

62 A. Agbaria et al.

the benefit of domain-specific choices w.r.t. the plan; we therefore compensate
with hints, statistics and suggested partitioning and transformation options,
passed down to the runtime engine in addition to the actual plan, compensate
address this fact partially. This aspect of the design merits a separate discussion
which is beyond the scope of this paper.

2.3 Schema Preprocessing

When the modified host DBMS passes the execution engine a plan to execute,
this execution will not be applied merely to the DB columns themselves, as-is.
Instead, the execution engine receives references to the results of some offline
preprocessing of the schema. In a row-oriented DBMS such preprocessed data
might be multiple indices into different tables; and MonetDB has its “imprints”
structure [15]. Preprocessing can theoretically be quite extensive (and time-
consuming); in some work on GPU acceleration, authors go as far as pre-joining
tables or materializing full denormalizations. Also, the more auxiliary informa-
tion one maintains, the less one can scale a DBMS while remaining entirely
in-memory; but such economy of resources is beyond the scope of this work
(especially since we do not use compression; see Sect. 6).

For our work with the TPC-H benchmark, our preprocessing adhered strictly
to its rules and restrictions, i.e. we limited it to single columns of data, never
involving information regarding multiple columns. Of course, the different choices
of preprocessed data made available to a query processor muddy the waters to
some extent when measuring and comparing performance, and this is especially
true for comparisons with processing frameworks not bound by TPC-H restric-
tions (such as GPU-DB [23] or the recent results in [14]).

The data derived from each column and used in this work falls into one the
following categories:

scalars: Data of the column’s own type (e.g. minimum, maximum, median,
mode), integral statistics (e.g. support size) and binary predicates (e.g.
sorted/unsorted)

same-dimension auxiliary columns: Such as a sorted copy of a column, or
a breakdown of date/time columns into their constituent subfields

support-dimension auxiliary columns: Essentially a small auxiliary table
with one row per distinct value in the original column, containing the his-
togram, as well as minimum and maximum positions of incidence, for each
value (i.e. a reverse-index for the column).

The host DBMS, MonetDB, is not made aware of this preprocessed data —
nor does our framework use MonetDB’s Imprints or any other such auxiliary
data.

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing 63

3 Making Execution Plans More Amenable to (GPU)
Parallelism

Setting aside the specifics of our framework design, and how it differs from the
host DBMS’s, this paper’s title begs the following question: Why is query plan
optimization particularly critical for GPU execution performance?

The general importance of query optimization to processing performance
is well-recognized [17, Chap. 7] and widely studied; Join order, nested query
reformulation, intelligent estimation of intermediary result cardinality and so
on. Our framework does not actually brave this important task: It does not try
to second-guess most of the host DBMSes decisions; while this would probably be
useful as well, the focus of this work is more lower-level. Namely, our optimizing
transformations regard.

Implementation special-casing for generally-challenging computations using
statistics & predicates obtained by preprocessing the schema (or in some rare
cases at query runtime).

Representation format change including mostly two aspects of how data is
represented: dense vs. sparse representations of subsets/subsequences (see Sub-
sect. 3.1), and sortedness constraints (whether plan operations are required to
produce sorted output, and whether they require their inputs to be sorted).

Missing implementation circumvention: Replacement of operations with-
out GPU implementations by multi-node subgraphs with equivalent output.

Fusion of certain particularly-suitable consecutive operations. This is not the
comprehensive fusion of multiple operations using compilation infrastructure
used in HyPer [12] or Spark 2.0 Catalyst [1]; instead, we apply more complex
fusion, implemented a-priori in CUDA code, which a compiler could not auto-
matically derive.

Fission: Some plan operations have inherently multi-staged implementations (at
least on a GPU); others can be semantically decomposed (e.g. in a reversal of the
fusion described above). This can be reflected in the plan, allowing constituent
parts or phases to be involved with other operations in the further application
of transformation rules.

Cleanup when duplicate/inverse operations are left in the plan following other
transformations, or when an operation’s outputs are unused, etc.

These transformations are applied greedily — that is, no change is made to
the plan unless it is certain to be positively beneficial (to the plan as a whole,
individual operations may not be optimal). Having examined the various kinds of
query plans that MonetDB generates, we formulated a number of transformation
rules — limited to small subgraphs — which are likely to speed up execution.
For each of these we formulated constraints on columns, intermediary buffers
and operations involved, under which this likelihood of benefit becomes a cer-
tainty. These constraints are expressible in terms of the statistics and predicates
we obtain regarding the data as part of the schema preprocessing described in

64 A. Agbaria et al.

Subsect. 2.3. Of course, we strove to formulate rules with the weakest possi-
ble applicability constraints, to maximize variety and usefulness over multiple
queries. Rules are applied repeatedly until a fixed point is reached, with the
exception of an initial analytic phase. Thus our optimization of an execution
plan is rule-based, and mostly heuristic.

It should also be noted our current set of rules is not very extensive. Even
for the queries for which we present results, one could well conceive of additional
rules applicable as-is (see the end of Subsect. 3.3 below), or additional auxiliary
data (Bloom filters, Imprints, etc.) and new rules able to utilize it. Although
we probably missed many opportunities for further optimization, this paucity
of rules prevented us from facing the problem of inopportune choice of rule
application order leading our framework away from better optimization routes.

The rest of this section is an elaboration on two of the aspects mentioned
above, followed by a detailed example of how all aspects combine in the opti-
mization for a single specific query.

3.1 Optimization Aspect: Subset/Sequence Representation

Consider the result of some predicate applied to a DB column. In MonetDB
(v11.15.11) this result is sparse — a column of matching record indices — rather
than a dense bit vector. Computing the former, a (serial) CPU core repeatedly
appends matching indices to the output; but this does not parallelize very well,
since the final location to write to for any individual element satisfying the
predicate requires information regarding previous matches. Some parallelization
is still possible here: For example, one may compute a prefix-sum of the number
of elements passing the filter — and well-optimized prefix sum implementations
on GPUs are available [9,18] — but this is still much slower than element-wise
bit-setting.

From a complexity-theoretical perspective, a sparse representation is cer-
tainly the appropriate choice: Further computation is linear, based on the length
of the result, not of the original data. But in practice, we count bits: A record
index is likely 4 or 8 bytes; and memory is typically read in units of a cache
line (64 B on Intel Haswell, 32 B/128 B on nVIDIA Kepler & Maxwell). So only
for very selective predicates does the benefit-in-principle actually manifest. A
sequential-CPU-oriented DB might prefer the sparse representation earlier: It has
fewer elements to perform writes for, i.e. less sequential work (ignoring caching
at least); and presumably this is the case for MonetDB. A DBMS oriented for
massive regular parallelism will opt for the dense representation in most cases.

Most existing GPU acceleration frameworks seem to resign themselves to
respecting the DBMS’ data-structure choices, and will compute this sparse result
as best they can; after all, the plan uses this array of indices later on. But
you can ask the question — does the plan really have to use it? As will be
illustrated in Subsect. 3.3 below, this use is itself conditioned on this choice,
which can be undone or overruled. When doing so, one often ends up avoiding
some reordering of data, a costly effort in itself, and expanding the opportunities
for using more parallel-efficient computational primitives. Last but not least,

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing 65

dense subset representation often lends itself to avoiding the need to produce
sorted intermediary results (again, see below).

3.2 Optimization Aspect: Join Special-Casing

A general-case single-column inner Join in a (MonetDB-like) column-store takes
as inputs two columns (the LHS and the RHS; assume they hold integral values).
The result of the Join are two columns, LHSout and RHSout, whose length is the
number of matching pairs; the tuple (LHSout[i],RHSout[i]) is the ith match found
by the Join, so i may range from 0 to |LHS×RHS| − 1 theoretically (and the
output is sorted lexicographically).

Our framework observes the following noteworthy features for each column
with respect to a Join operation (phrased in terms of the LHS below):

– Is this a column coming directly from the schema, or is it an intermediate
result following other operations?

– Are the column values sorted? If so, do they appear consecutively with no
gaps (i.e. LHS[i + 1] = LHS[i] + 1)?

– What are the minimum and maximum column values?
– What are the minimum and maximum multiplicities of individual values

within the column?
– Is the other input column known to contain all values in this one?
– Is every value in the column known to have at least one match on the other

side?
– Is the Join output only used to filter the input column?

After applying our preprocessing, whenever a query comes in we have most of
this information readily available, without computing anything — using scalar
values and predicates regarding individual columns, and the schema structure.
Some of these statistics may not be available — minimum and maximum values,
multiplicities for non-schema columns — and in some cases (see below) we may
take the time to compute them. Now, here are several cases of Joins for which
we had special Join implementations (each corresponding to combinations of the
above criteria):

FK to dense PK: LHS: All values match. RHS: Dense.
Self-join of filtered schema column: LHS: All values match. RHS: Subset

of a schema column, sorted, known max. multiplicity.
FK to small-support PK: LHS: All values match. RHS: max. multiplicity 1;

LHS values are in the range [vmin, vmin]; there’s sufficient memory for a bit
vector of length vmax − vmin + 1.

RHS-Unique Join: LHS: No assumptions. RHS: max multiplicity 1.

For each of these special cases we have a corresponding transformation rule;
and these rules are applied, when applicable, in the above order of priority,
to all Join operations encountered in the execution plan. Some of these rules

66 A. Agbaria et al.

are replacements of the single Join operation DAG node with the appropriate
special-case-Join node — for which we’ve written hand-optimized special-case
implementations. In other rules, the Join is replaced with a small subgraph of
non-Join computations (e.g. using original values instead of hash keys).

3.3 A Query Example: Optimizing TPC-H Q4 Execution

Typically, no single transformation rule mentioned above is sufficient to fun-
damentally change how a query is processed; it’s rather a combination of rules
which allows for more fundamental changes. We illustrate how the rules combine
using the sequence of transformations our framework applies for TPC-H Q4. We
consider the main part of the original plan, but for brevity, dropping the part
retrieving a string column at the end.1

Figure 2 represents our initial derivation of a plan from the one obtained
from MonetDB. Without going into detail, this involves removing some redun-
dant/irrelevant MAL statements from MonetDB’s own plan, and more impor-
tantly: Splitting up these operations into constituent parts, to the extent we have
kernels for them — particularly when sparse/dense format changes are involved.
Now, this can be considered a non-greedy transformation — as fusing these
operations back causes a slowdown — which our subsequent repeated transfor-
mation process would not apply. However, this slowdown is usually marginal:
It’s a write an intermediary buffer to global memory by the first constituent
operation, and a read of that buffer by the second. This opens up the possibility
of some proper optimization (see below); and if any such non-trivial optimization
can be applied, it will most likely compensate for the extra I/O. The diagram is
a dataflow DAG, with source nodes being schema columns or constant values,
and all other nodes being computational operations. The full plan for TPC-H Q4
has two sink nodes — for the order counts and priority string columns— but the
part of the plan generating the latter has been removed to focus the example on
the former. Also removed — for brevity and legibility — are the details of which
edge targets which parameter of its destination operation. Table 2 describes the
semantics of the operations used on the plan and its transformed versions.

Considering the operations appearing in the initial plan, in Fig. 2, one notices
they produce mostly sorted sparse-representations (sorted indices into columns)
intermediary columns; and that many of the operations require inputs of this
kind. Our optimizer performs the following transformations; note that for some
of these transformations there are requirements not represented in the diagrams,
most frequently “no other outgoing edges” when removing operations:

1. Subsequence semi-join special-casing: Initially it seems we cannot get
rid of the DenseToSparse operations. Consider, however, the use of the ORDERS
table in the plan: The table is ‘first’ used is to Gather data for the Foreign

1 Q4 was chosen for this example for being a query with a short plan with few opera-
tions, but involving more than one table.

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing 67

Fig. 2. The initial execution plan for Q4 (string output column clipped)

Table 2. TPC-H Q4 execution plan operation semantics

Operation Column inputs Output description

Select data D bit vector F Values in D whose corresponding
bit in F is set

Gather data D indices I ouput[i] = D[I[i]]

Scatter Disjunction data D indices I
zero-initialized T

T [I[i]] = D[i]

DenseToSparse bit vector D The indices of all bits set in D

DenseToSparse indices I A bit vector with bit i set iff i ∈ I

LessThan, BitwiseAnd L, R (of same type) Elementwise binary operations

Between input X A bit vector with bit i set iff
c1 ≤ X[i] < c2

Join L, R (of same type) all pairs (i, j) such that
L[i] = R[j], in the form of columns
of corresponding i’s and j’s

Count indices I A histogram of I, where the bins
are 0 . . .m for a known maximum
value m

Key – Primary Key Join. The combination of DenseToSparse and Gather
admits an optimization in itself (see below); but, there is a far more beneficial
transformation possible here: The supposedly-general-case Join is actually
made in the context of a Semi-join, a filtering of the ORDERS table. This can

68 A. Agbaria et al.

be inferred locally (seeing how the o orderdate DenseToSparse output is used
both in the Join and immediately with the Join’s output); Now, instead of
Join’ing, we can apply the filter on a dense representation in the value space
of {l|o} orderkey as a BitwiseAnd (Fig. 3).

2. Cleanup I: The previous transformation leaves us with a dense-to-sparse-to-
dense conversion sequence; we can’t eliminate it entirely, since the interme-
diate sparse result is still in use, but we may bypass it and thus discard one
of its constituent operations (Fig. 4).

3. Pushing DenseToSparse down: The remaining use of the sparse ORDERS
filter results is in Selecting from the semi-join results, which themselves are
in the form of a dense subsequence representation due to transformation 1.
The DenseToSparse can therefore be “pushed down” past the Select, which
becomes a bitwise AND to preserve its semantics (Fig. 5).

4. Cleanup II: We now have an artifact due to previous transformations: redun-
dant BitwiseAnd operations; we remove one of them (Fig. 6).

5. Fusing DenseToSparse and Gather: We note that the action of Select can
be described as converting a bit vector input into a sparse representation,
then replacing the indices with actual data using a Gather; and that if the
DenseToSparse has sorted output, so will the Select. In the other direction,
these two operations can be fused together into a Select (Fig. 7); we now do
so for both our DenseToSparse’s.

6. Fusing Select and SparseToDense: These two operations may be fused into
a ScatterDisjunction (Fig. 8), similarly to transformation 5. This transforma-
tion has an attractive side-effect: We are now rid of the sortedness constraints
for one of the filters, as its sorted (sparse) results are no longer used anywhere.

7. Dropping last sortedness constraint: The output of the remaining Select
operation (of the created earlier by fusions), is only used by a Count operation.
While Count might benefit from its input being sorted — it certainly doesn’t
require sortedness (and in this specific case the benefit would be marginal).
Thus we have pushed the sortedness requirement further enough down the
plan DAG to a point where it can be simply discarded (Fig. 9).

Fig. 3. TPC-H Q4 Transformation 1

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing 69

Fig. 4. TPC-H Q4 Transformation 2

Fig. 5. TPC-H Q4 Transformation 3

Fig. 6. TPC-H Q4 Transformation 4

Fig. 7. TPC-H Q4 Transformation 5 (applied twice)

70 A. Agbaria et al.

Fig. 8. TPC-H Q4 Transformation 6

Fig. 9. TPC-H Q4 Transformation 7

Fig. 10. Final execution plan for Q4 (string output column clipped) (Color figure
online)

The end result is the pleasing, relatively parallelism-friendly execution plan
in Fig. 10; the kernels corresponding to each of the green nodes would now
gets scheduled to execute on the GPU. However, on closer inspection we note
that even further optimization of the plan is possible: ScatterDisjunction can be
avoided in favor of Gathering after applying a fixed offset to the indices, and

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing 71

Select can be avoided altogether in favor of a predicated Count; this would make
the plan embarrassingly parallel except for the final aggregation — so much
so that it might theoretically be compiled into a single GPU kernel. However,
these additional optimizations were not supported by our framework when the
experimental results (Sect. 4) were obtained.

4 Experimental Results

4.1 Test Platform, Protocol and Procedures

Results were all obtained using a 2-socket machine, with 2 Intel Xeon E5-2690
CPUs (8-core each) clocked 2.9 GHz. Each socket had its won independent PCIe
3 bus, through which it was connected to a GeForce GTX 780 Ti card (MSI
TwinFrozer, clocked at 875 MHz). The machine ran Kubuntu GNU/Linux 14.04,
CUDA 7.0 RC and nVIDIA driver v346.29. The reference DBMS was an unal-
tered version of MonetDB [11] v11.15.11 (by now not the latest version), using
32 threads.

We tested using queries from the TPC-H benchmark [20]: Q1, Q4, Q9 and
Q21 (ranging from simple to complex). This limitation is the result of a con-
strained amount of time and effort to put into this proof-of-concept — which
is not a full-fledged query processor. We did not send random queries to the
host DBMS repeatedly over a prolonged period of time (as in the actual TPC-H
procedure); rather, we tested individual queries separately on the cold DBMS,
immediately after it was loaded. Timing figures are the mean over 3 runs, in
milliseconds. The database Scale Factor (SF) is 1 unless otherwise stated.

4.2 TPC-H Query Processing Time Comparison

A ‘bottom line’ of our results appears in Table 3: Execution time for the final
query plan for all of our benchmarked queries. A result for CPU execution of Q21
is missing as it requires a yet-unimplemented feature of our subgraph partitioning
feature; and without it, performance is dismal (as our multi-threaded execution
depends on subgraph partition).

Table 3. Final plan execution times (SF 1 including I/O)

TPC-H query Q1 Q4 Q9 Q21

MonetDB 159.4 ms 54.0 ms 125.9 ms 217.5 ms

MonetDB/AXE CPU 41.9 ms 24.5 ms 31.1 ms

MonetDB/AXE GPU 25.8 ms 18.4 ms 21.5 ms 44.0 ms

The speedup over MonetDB execution ranges from 2.9 to 6.8; in a more
apples-to-apples comparison — the same modified plan on a CPU rather than
a GPU — the speedup factor ranges from 1.3 to 1.6. This too should be taken

72 A. Agbaria et al.

with a large grain of salt, since the comparison is between two CPUs “against”
just one GPU. The more important figure is the GPU plan execution time itself.

The results charted in Table 3 do not include the time spent by MonetDB or
our framework on parsing the query and preparing the plan; Fig. 11 adds this
information, as part of a breakdown of the overall query processing time into
(mostly-consecutive) phases.

Fig. 11. Processing time breakdown (SF 1); clipped at 250ms

One obvious problem is the large amounts of time spent before query execu-
tion even begins. This is particularly bad in our CPU-only configuration, which
is unfortunately inefficient in transforming the plan (it performs a 32-way parti-
tioning of the execution graph, in an unoptimized fashion; and this takes more
time than all other transformations combined). MonetDB also seems to suffer
from a similar phenomenon when adapting a complex execution plan such as Q21
to accommodate many threads. Such deficiencies can be mostly be done away
with by straightforward optimization of our code (as opposed to optimizing the
execution plan); we simply lacked the time to do so before our work needed to
be wrapped up for publication.

Another issue noticeable in the chart is the ‘GPU idle overhead’, comprising
an initial period before the GPU receives any data, and a final period after it has
sent back all of its results. Some of this time is taken up by subgraph partition
splitters and joiners; some is due to implementation artifacts which can probably
be optimized away; and some of if it are some final operations on a tiny amount
of data, which are not scheduled to run on the GPU (but possibly could have).

4.3 GPU Activity Breakdown

Let us dig into the GPUs’ activity with Fig. 12, which breaks the GPU time
down into the activities of I/O (over PCI/e) and Compute.

This illustrates very clearly what is the “bane” of discrete GPU; Most of the
time is spent on nothing but I/O over the PCIe bus. This point is discussed

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing 73

Fig. 12. GPU time breakdown (single-GPU, SF 1)

in Sect. 6 below. An interesting question is how much would this disappear in
a multi-query situation, where contention over the GPU’s and PCIe bus would
be high.

Note that Fig. 12 shows some of the GPU time as entirely idle; this is an
artifact of our implementation, due to over-conservative stream synchronization,
and can be reduced to a negligible level with some programming effort, but no
degradation of performance elsewhere.

Going another level deeper, let us consider the breakdown the GPU’s Com-
pute activity, presented in Fig. 13. A query execution run involves a few dozens
of technically distinct kernels, but for clarity of presentation we place them in
several groups (e.g. elementwise arithmetic of all data types), and limit ourselves

Fig. 13. Top time-consuming operations (msec)

74 A. Agbaria et al.

to the top six time consumers for each query. These take up between 92% and
98.8% of kernel execution time, making 6 a reasonable cutoff point.

Space constraints preclude a discussion relating these time consumption dis-
tributions to the relevant queries. It is the authors’ belief that, in general, such
query-specific breakdowns of time by computational operation are lacking in
many papers on DBMS performance enhancements, especially those involving
GPUs — while they are an important guide for the researcher or engineer regard-
ing what merits further optimization (or rather, circumvention).

4.4 Effects of Increasing Database Size

We tested our frameworks with scale factors 1–8 (1 GB–8 GB total size); these
are not so high by today’s standards, but our framework lacks a GPU mem-
ory management mechanism, and our GPU’s available memory was just 3 GB.
Fortunately, the sample points of SF 1,2,4,8 already allow some visualization of
trends as the DB scales, in Fig. 14.

Fig. 14. TPC-H Q4 processing time breakdown with increasing DB size, GPU execution

Besides the obvious decrease in weight of the initial work on the plan relative
execution proper, we note a further increase in the fraction of time spent on I/O
only, i.e. the “bane of the discrete GPU” from Fig. 12 becomes even more pro-
nounced. On the other hand, we note an improvement in Compute-I/O overlap,
as deeper computation nodes in the execution DAG tend to scale sub-linearly
in their duration with DB size. Note we have taken TPC-H Q4 as the example,
but the trends are similar in the other three queries.

5 Comparison with Other Work

Unfortunately, most frameworks using GPUs for query processing presented so
far are not pairwise-comparable in performance: For some, no benchmark results
are presented; others focus on transactions rather than analytics; some use hard-
ware for which comparison is difficult; and some alter the TPC-H schema sig-
nificantly (e.g. by denormalization). Most work surveyed in [4] falls into one of
those categories (and there’s GPU-DB [23], which uses a different benchmark —
SSB rather than TPC-H). The design of these various frameworks is interesting

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing 75

to compare with, however, as some of them exhibit desirable features missing in
this work (and vice-versa); unfortunately, space constraints preclude this.

A GPU-featuring processing framework which is close-to comparable is the
MonetDB-based Ocelot [6]: It was benchmarked with a “hot cache”, i.e. much
of the data already in GPU memory [6, Sect. 5.3]; with an older GPU (GeForce
GTX 460); and with a focus on portable implementation rather than maximum
performance. Still, the Ocelot on-GPU time of TPC-H queries 1, 4 and 21 is
200, 30 and 300 ms respectively (for SF1), compared to our 16.8, 4.7 and 9.6 ms.
We believe this factor of 7-30x in execution speed is mostly the result of Ocelot
adhering closely to MonetDB’s CPU-oriented execution plan on the GPU as well.

The few remaining frameworks, which are possible to compare against, were
executed on hosts DBMSs that were rather slow to begin with. The interesting
example in this category is the Red Fox framework [21]: Its Breß-et-al classifica-
tion is similar to ours; it has a similar IR–Compilation–Second-IR chain design,
and its motivation also goes beyond the execution of SQL query plans (see [21,
Sect. 4.3]; again, we skip a more in-depth comparison of design features). Red
Fox is grafted onto LogicBlox [8] as its host DBMS; comparing [21, Table 3] with
Table 3, we note that MonetDB is 5.3-14.7x faster than the unmodified Log-
icBlox2. This seems to be a foil for Red Fox: Despite its solid speedup over its
reference (7x average), it still only gets close to MonetDB speed, and is 5-12x
slower than our framework on the four queries. One can also get a rough notion
of how the execution plans differ by comparing the breakdown of execution time
by computational operation: [21, Fig. 10] compared to Fig. 13 above.

Another example is Galactica [22]: Based on PostgreSQL, it also does not
speed up execution to Monet-level speed, and is an order-of-magnitude slower
than our framework (compare [22, Sect. 3.1.3] with Table 3 above).

Finally, a GPU-utilizing query processor named GPL (for “GPU Pipelining”)
has been described in the very-recently published [13] by Johns et alia. They take
up the challenge of execution in chunks (a.k.a. tiles, or tablets), a concept first
explored with Viriginian [2]. This reduces the size of materialized intermediary
results and the overhead of communicating them via global memory. GPL also
utilizes pipelining support in OpenCL 2.x, a theoretically promising approach.
The paper does not report results for any TPC-H query with which we had
tested, except Q9, and it does not make absolute results available for execution
on a discrete GPU — making a proper, explicit comparison difficult. Still, the
performance comparison it makes vis-a-vis Ocelot [13, Figs. 21 and 22] shows a
speedup of up to 2.5x, and typically under 1.5x. It thus seems to be the case that
this new query processor is still significantly slower than the one presented in
this work (and typically slower on an nVIDIA K40 than MonetDB on a typical
dual-socket Xeon system).

2 LogicBlox figures normalized by 0.85 to account for HW differences.

76 A. Agbaria et al.

6 Discussion and Further Performance Enhancement

Our framework does not process queries quickly; and it is certainly not a good
measure of the potential for processing performance with a GPU. This much
is evident merely from observing how most of our execution time is spent idly
waiting for I/O over PCIe. Thus, instead of resolving the shortcoming of discrete
GPUs our work has merely masked it with performance improvements elsewhere.
This is an unintended and somewhat ironic outcome: During the initial phases
of our work, the picture was the exact opposite: 80%–90% of the time was being
spent on GPU Compute. As we were laboring on providing the GPU with a
better-parallelizable plan and data that is more easily accessible in parallel (as
well as improving some of naive kernel implementations), total Compute time
decreased further and further, eventually losing its dominance — so that squeez-
ing it even more no would no longer yield much benefit. This phenomenon was
discussed in [23], with the metaphor of a changing “balance of Yin and Yang”.

Having put much effort into suppressing the “Yang” (improving GPU Com-
pute time), three actions now come to mind for curbing the effects of the “Yin”
(PCIe transfer):

I/O-Compute overlap via mapped memory: GPUs offer the feature of
host-device-mapped memory, which triggers PCIe transactions on memory reads.
Using these can allow computation on the GPU to begin immediately, with data
transferred on on-demand; this approach is taken in [23] (although it does not
present an I/O-Compute breakdown). It does have several drawbacks, however
(less cache-friendly; PCIe transaction overhead; potential underuse of the bus).

I/O-Compute overlap via ‘chunk-at-a-time’ execution: Several DBMSes
process data at the resolution of a column/table chunk rather than an operator-
at-a-time on entire columns. In the CPU world this is a key feature of Actian
Vector [24] (although more for the reason of fitting data in the CPU’s cache).
With regard to GPU-utilizing query processing frameworks, Virginian [3,4] has
employed it, but a more in-depth exploration of its merit and a case for its
significance is the recent [13]. Considering our own results, even rough chunks of
size, say, 1MB-4MB should already cut most of the initial idle period of the GPU
waiting for data to arrive with nothing to work on. Chunk-at-a-time execution
would also enable the use of chunk-level meta-data, potentially allowing a query
processor to filter-out entire chunks rather than sending them to the GPU.

A refined variation of this approach is GPU pipelining, as in [13] (see Sect. 5).
While not yet available in CUDA, it could theoretically allow for avoiding not
only the initial idle time, but also much of the overhead inherent in manipulating
chunks.

Data compression: In most real-world scenarios column data has many regu-
larities and correlations, lower effective domain etc. — making it very amenable
to compression; and this is true even for the somewhat artificial example of
the TPC-H. Also, it just so happens we have a mostly-idle ALU-rich computa-
tional device to use for decompression on the receiving end. While the other two

Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing 77

methods are limited in benefit by the amount of Compute Time (100% over-
lap), compression is limited the information inherent in the data and the GPU’s
ability to decompress effectively. Of course, such computation will itself contend
with actual query operation application, so a different balance will need to be
struck.

A fourth option we could have listed is using bit weaving, transferring columns
one bit at a time; but we are skeptical of the utility in this approach, among
other reasons because most of its potential benefit is subsumed by compressing
the data.

Another important challenge in evaluating GPU-accelerated query processors
is the scaling of benchmark schema. With only 1 GB of data overall, some queries
take as little as 3 ms or less of actual computation time — with results potentially
skewed by some minor inefficiency here or there. A larger scale also forces the
more realistic setting of inability to hold all data in GPU memory, being limited
on discrete GPUs compared to main system memory. For our framework, imple-
mentation of either memory management would obviously allow scaling beyond
the equivalent of scale factor 10 for TPC-H queries, with no significant cost —
even with ‘operator-at-a-time’ execution. The ‘chunk-at-a-time’ approach, men-
tioned above, automatically enables scaling to handle much larger benchmark
data.

References

1. Armbrust, M., Xin, R.S., Lian, C., Huai, Y., Liu, D., Bradley, J.K., Meng, X.,
Kaftan, T., Franklin, M.J., Ghodsi, A., Zaharia, M.: Spark SQL: relational data
processing in spark. In: Proceedings of the SIGMOD, SIGMOD 2015, pp. 1383–
1394. ACM (2015)

2. Bakkum, P., Chakradhar, S.: Efficient data management for GPU databases. NEC
Laboratories America, Princeton, NJ, Technical report (2012)

3. Bakkum, P., Chakradhar, S.: Efficient data management for GPU databases. NEC
Laboratories America, Princeton, NJ, Technical report [2]

4. Breß, S., Heimel, M., Siegmund, N., Bellatreche, L., Saake, G.: GPU-accelerated
database systems: survey and open challenges. In: Proceedings of BigDataScience.
ACM/IEEE (2014)

5. He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander, P.V.:
Relational query coprocessing on graphics processors. Trans. DB Sys. 34(4), 21:1–
21:39 (2009)

6. Heimel, M., Saecker, M., Pirk, H., Manegold, S., Markl, V.: Hardware-oblivious
parallelism for in-memory column-stores. In: Proceedings of VLDB, vol. 9, pp.
709–720 (2013)

7. Kemper, A., Neumann, T., Garching, D.: HyPer: A hybrid OLTP&OLAP main
memory database system based on virtual memory snapshots. In: Proceedings of
ICDE (2011)

8. http://www.logicblox.com/
9. Luitjens, J.: Faster parallel reductions on Kepler (2014). http://devblogs.nvidia.

com/parallelforall/faster-parallel-reductions-kepler/

http://www.logicblox.com/
http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/
http://devblogs.nvidia.com/parallelforall/faster-parallel-reductions-kepler/

78 A. Agbaria et al.

10. Manegold, S., Kersten, M., Boncz, P.: Database architecture evolution: mammals
flourished long before dinosaurs became extinct. Proc. VLDB 2(2), 1648–1653
(2009)

11. MonetDB webpage. http://www.monetdb.org
12. Neumann, T.: Efficiently compiling efficient query plans for modern hardware.

Proc. VLDB 4(9), 539–550 (2011)
13. Paul, J., He, J., He, B.: GPL: A GPU-based pipelined query processing engine. In:

Proceedings of SIGMOD. ACM (2016)
14. Power, J., Li, Y., Hill, M.D., Patel, J.M., Wood, D.A.: Toward GPUs being main-

stream in analytic processing: an initial argument using simple scan-aggregate
queries. In: Proceedings of DaMoN, p. 11. ACM (2015)

15. Sidirourgos, L., Kersten, M.: Column imprints: a secondary index structure. In:
Proceedings of SIGMOD, pp. 893–904. ACM (2013)

16. Sitaridi, E.A., Ross, K.A.: GPU-accelerated string matching for database applica-
tions. J. VLDB, 1–22 (2015)

17. Stonebraker, M., Hellerstein, J., Bailis, P.: Readings in Database Systems (The
Red Book), 5th edn (2015). http://www.redbook.io/

18. The CUB library. http://nvlabs.github.io/cub/
19. https://www.monetdb.org/Documentation/Manuals/MonetDB/MALreference
20. The TPC Council: TPC Benchmark H (rev 2.17.1) (2014). http://www.tpc.org/

tpch
21. Wu, H., Diamos, G., Sheard, T., Aref, M., Baxter, S., Garland, M., Yalamanchili,

S.: Red fox: an execution environment for relational query processing on GPUs.
In: Proceedings of CGO, p. 44. ACM (2014)

22. Yong, K.K., Karuppiah, E.K., See, S.: Galactica: A GPU parallelized database
accelerator. In: Proceedings of BigDataScience. ACM/IEEE (2014)

23. Yuan, Y., Lee, R., Zhang, X.: The Yin and Yang of processing data warehousing
queries on GPU devices. Proc. VLDB 6(10), 817–828 (2013)

24. Zukowski, M., Boncz, P.: Vectorwise: beyond column stores. IEEE Data Eng. Bull.
35(1), 21–27 (2012)

http://www.monetdb.org
http://www.redbook.io/
http://nvlabs.github.io/cub/
https://www.monetdb.org/Documentation/Manuals/MonetDB/MALreference
http://www.tpc.org/tpch
http://www.tpc.org/tpch

To Copy or Not to Copy: Making In-Memory
Databases Fast on Modern NICs

Aniraj Kesavan(B), Robert Ricci, and Ryan Stutsman

University of Utah School of Computing, Salt Lake City, USA
{aniraj,ricci,stutsman}@cs.utah.edu

Abstract. When databases resided primarily on disks, the problem of
data layout was focused on structures that enabled efficient reads and
writes from that medium, as well the as effective use of main memory as a
cache. With in-memory databases, this part of the I/O problem is largely
gone, but that does not mean that I/O considerations can be completely
ignored. We argue for the importance of considering the “other” side of
the I/O equation—network communication with clients—when design-
ing in-memory databases.

Modern NICs include a number of optimizations intended to improve
I/O performance, including kernel bypass, zero-copy and scatter-gather
DMA. Applied carefully, these features can reduce the involvement of the
CPU in network transfers and can save memory bandwidth. However, our
experiments show that some optimizations do not always provide a ben-
efit in a database context, and using them can be tricky, as they affect
strategies for processing updates and managing data lifetimes. In this
paper, we explore the application of zero-copy NIC DMA to in-memory
databases, and we explore how the NIC can influence and explicitly lever-
age data layout and concurrency control. We apply these results to the
Bw-Tree structure by proposing a client-assisted design for transmitting
large range scan results. Overall, the approach boosts throughput by
1.7× and reduces CPU overhead by 75% compared to simple zero-copy
DMA.

1 Introduction

For decades, the performance characteristics of storage devices have dominated
thinking in database design and implementation. From data layout to concur-
rency control, to recovery, to threading model, disks touch every aspect of data-
base design. In-memory databases effectively eliminate disk I/O as a concern,
and these systems now execute millions of operations per second, sometimes
with near-microsecond latencies. It is tempting to believe that database I/O is
solved; however, another device now dictates performance: the network interface
(NIC).

As the primary I/O device in modern databases, NICs’ performance char-
acteristics should now be taken into consideration from the start in database
designs. However, modern network cards have grown incredibly complex, partly

c© Springer International Publishing AG 2017
S. Blanas et al. (Eds.): ADMS 2016/IMDM 2016, LNCS 10195, pp. 79–94, 2017.
DOI: 10.1007/978-3-319-56111-0 5

80 A. Kesavan et al.

in response to demands for high throughput and low latency. Their complex-
ity makes understanding them difficult, and it makes designing software to take
advantage of them even harder. To design for NICs effectively, database engineers
must understand their characteristics.

Database designers encounter a number of trade-offs when trying to use the
NIC effectively. For example, when can the NIC efficiently transmit data directly
from database records via direct memory access (DMA)? Should records be
pre-materialized in a way that makes transmission efficient? Or can the NIC
efficiently assemble scattered data on-the-fly? Does concurrent access to data
records by the NIC complicate memory management? To answer these questions,
and to understand how NICs can impact database design, we profiled a modern
kernel-bypass capable NIC with remote direct memory access (RDMA) with
specific attention to large transfers and query responses. This paper details our
findings and makes several concrete suggestions on how NICs might influence
data layout and concurrency control.

Specifically, we have found three factors that make it especially challenging
to design NIC-friendly database engines:

– Zero-copy DMA engines reduce server load for transferring large data blocks,
but large, static blocks are uncommon for in-memory databases, where records
can be small and update rates can be high.

– The performance gains from zero-copy DMA do not generalize to finer-grained
objects for two reasons: (1) transmit descriptors grow linearly in the number
of records; (2) NIC hardware limits descriptor length, limiting speed for small
records. Despite this, we find that zero-copy can make sense for small objects
under certain conditions, such as small “add-ons” to larger transmissions.

– Zero-copy introduces complications for locking and object lifetime, as objects
must remain in memory and must be unchanged for the life of the DMA
operation (which includes transmission time).

These factors make advanced DMA difficult to use effectively. In fact, we find
that conventional copy-out that assembles responses in transmit buffers has some
advantages over zero-copy transmission. Most surprisingly, explicit copy-out can
outperform zero-copy in transmit throughput even for “heavy” responses like
large range query results from secondary indexes. Explicit copy-out does use
more CPU and memory bandwidth: our experiments show it adds a modest 5%
to CPU load, but more significantly, consumes up to one-third of the server’s
total memory bandwidth. In-memory databases are often capacity bound [4],
not CPU or memory bandwidth bound; this may make copy-out preferable for
some workloads, especially since the relative cost is likely to decrease over time.

To provide a concrete illustration of these issues, we investigate in the context
of the Bw-Tree, an index whose properties give it flexibility in how it interacts
with the NIC. Ultimately, we find that zero-copy can be a benefit. However, for
significant gains, data layout has to be adjusted to suit the NIC, and the costs
of maintaining that layout must be considered against the NIC performance
benefits. Our findings yield a preliminary design for efficient transmission of
heavy range query results that improves throughput by 1.7× (from 3.4 GB/s to

Making In-Memory Databases Fast on Modern NICs 81

5.7 GB/s) and reduces CPU overhead by 75% compared to fully scattered zero-
copy by relaxing the structure of the results that clients receive. We start with
an overview of related work in this space, then describe a modern kernel-bypass
NIC and the Bw-Tree. We continue with a set of microbenchmarks and draw
conclusions for data structure/networking layer co-design.

2 Motivation and Related Work

Our analysis is inspired by in-memory database work that focuses on lock-
freedom and/or no-update-in-place [5,10–13]. The unique features of these struc-
tures make them well positioned to leverage the sophisticated userlevel DMA
capabilities of modern networking hardware (we explore the reasons for this
in Sect. 4). A major goal of our work is to help in tuning these structures for
low-overhead, high-throughput network transmission.

Several efforts are now underway to use userlevel NIC access and/or RDMA
as a fabric for high-performance distributed databases [6,7,17,19,20]. Our find-
ings should also aid in their design, especially those that build on the abstraction
of a network-attached atomic record store [11,15].

Small, fixed-size request/response cycles have been optimized by existing
research [6,8,9,14,17], but the efficient transmission of larger responses like range
query results or data migrations has been less well studied. Studies focused on
large transmissions have so far been limited to relatively static block-oriented
data. Our work focuses on optimizing transmission of large and complex query
results, which differs from these two categories. Database queries do access and
transmit many fine-grained records, but the transmissions can be comprised of
many records sent together. This makes the transmissions large like block data,
but the contents are much more dynamic. This is because the set of records
returned varies, and because the records themselves may be rapidly updated.

A complementary study by Kalia, Kaminsky, and Andersen [9] provides an
analysis of host interaction with Mellanox Infiniband network adapters, and they
extract rules of thumb to help developers get the best performance from the hard-
ware. The low-level nature of their analysis is especially suited for optimizing
dispatch-heavy workloads with a high-volume of small request-response opera-
tions. Our focus is on operations that require heavy responses where the precise
content of the response cannot be anticipated or is under heavy mutation.

3 User-Level NIC Access

NICs have been rapidly adding features in the past decade in response to the
demands of data center, cloud, and HPC networking. Direct application access
to the NIC, or kernel bypass, is now available from several commodity NIC ven-
dors [1,2], along with a myriad of offload and packet steering features to reduce
CPU and message dispatch overheads. Kernel bypass allows an application to
send and receive data without OS involvement. This results in several efficiency

82 A. Kesavan et al.

Fig. 1. Key structures involved in transmission for both zero-copy and copy-out. With
zero-copy, transmit descriptors list several chunks of data for the NIC to DMA. With
copy-out, all data to be transmitted is first explicitly copied into a transmit buffer by
the host CPU; then, a transmit descriptor is posted that references just the transmit
buffer rather than the original source data. (Color figure online)

gains. Latency is improved; in many cases kernel and syscall time is the domi-
nant factor in round-trip time [17]. It can also improve throughput while reducing
host load. One key feature is that the NIC can directly transmit application data
rather than copying data from userspace to kernel buffers; this is called “zero
copy”. (Despite the colloquial zero-copy name, the NIC must still copy the data
via DMA to on-device buffers and “copy” those bits onto the network cable.)

More interestingly, zero-copy isn’t constrained to sending simple contiguous
buffers. Because zero-copy already relies on the NIC’s DMA capabilities, the
application can provide a gather list to the NIC of chunks of data to be trans-
mitted. The NIC assembles the chunks on-the-fly as it DMAs the data from host
memory into NIC buffers. The rearrangement of the data happens “for free”,
since the NIC must perform DMA to get the data. This makes zero-copy espe-
cially promising for applications like databases where responses can be made up
of near arbitrary arrangements of small or even variable size records.

Figure 1 details how the application interacts with a Mellanox ConnectX3, a
modern 56 Gbps NIC that uses kernel bypass. Both zero-copy and the traditional
copy-out approaches to transmission are shown. In both cases the same three
key data structures are involved. The first important structure is the data to be
transmitted, which lives in heap memory. For zero-copy, the memory where the
records live must first be registered with the NIC. Registration informs the NIC
of the virtual-to-physical mapping of the heap pages. This is required because
the NIC must perform virtual-to-physical address translation since the OS is not
involved during transmission and the application has no access to its own page

Making In-Memory Databases Fast on Modern NICs 83

tables. Registration is done at startup and is often done with physical memory
backed by 1 GB hugepages to minimize on-NIC address translation costs.

The second key structure is the descriptor that a thread must construct to
issue a transmission. With Mellanox NICs, a thread creates a work request and a
gather list on its stack. The work request indicates that the requested operation
is a transmission, and the gather list is a contiguous list of base-bound pairs that
indicate what data should be transmitted by the NIC (and hence DMAed). For
zero-copy, the gather list is as long as the number of chunks that the host would
like to transmit, up to a small limit. The NICs we use support posting up to 32
chunks per transmit operation. Later, we find that this small limit bottlenecks
NIC transmit performance when chunks are small and numerous (Sect. 5.1).

The key difference between zero-copy and copy-out is shown with the wide,
red arrows in Fig. 1. Copy-out works much like conventional kernel-based net-
working stacks: chunks of data are first copied into a single transmit buffer in
host memory. Then, a simple, single-entry descriptor is posted to the NIC that
DMAs the transmit buffer to an on-device buffer for transmission. As a result,
copy-out requires an extra and explicit copy of the data, which is made by the
host CPU. Making the copy uses host CPU cycles, consumes memory bandwidth,
and is pure overhead. Surprisingly, though, copy-out has advantages including
better performance when records are small and scattered. In those cases, complex
gather descriptors bottleneck the NIC, and using the host CPU to pre-assemble
the responses can improve performance.

The final important structure is the control interface between the NIC and
the host CPU. When the NIC is initially set up by the application, a region of the
NIC’s memory is mapped into the application’s virtual address space. The NIC
polls this region, and the host writes new descriptors to it from the thread’s stack
to issue operations. The region is mapped as write-combining; filling a cacheline
in the region generates a cacheline-sized PCIe message to the NIC. The NIC
receives it, and it issues DMA operations to begin collecting the data listed
in the descriptor. The PCIe messages are posted writes, which means they are
asynchronous from the CPU’s perspective. Even though PCIe latencies are much
higher than DRAM access, the CPU doesn’t stall when posting descriptors, so
the exchange is very low overhead.

4 Bw-Tree: Lock-Free Indexing

To show how these NIC features can be applied to in-memory database systems,
we now examine a data structure that is well-positioned to take advantage of
them. The Bw-Tree [13] is an atomic record store designed for extreme concur-
rency. It is an ordered index that supports basic record create, update, and delete
(CRUD) operations in addition to search and range scans. It is fully lock-free
and non-blocking, and is optimized for modern multicore workloads. It can store
to flash, but is also intended for in-memory workloads; it serves as the ordered
secondary index structure for in-memory SQL Server Hekaton [5] engine.

In many ways, the Bw-Tree is a conventional paged B-link tree, but it
also has unique characteristics that interact with network-layer design choices.

84 A. Kesavan et al.

Fig. 2. The Bw-Tree avoids update-in-place by creating delta records “off to the side”
that describe a logical modification to a page. Delta records are prefixed to a chain
ultimately attached to a base page. When delta chains grow long they are compacted
together with the base page to create a new base page.

Its lock-freedom, its elimination of update-in-place, and its lazily consolidation
of updated records in virtual memory give it tremendous flexibility in how query
results are transmitted by the NIC.

Records may be embedded within leaf pages, or the leaf pages may only
contain pointers to data records. When used as a secondary index, typically
leaf pages would contain pointers, since otherwise each record would have to be
materialized twice and the copies would need to be kept consistent.

The key challenge in a lock-free structure is providing atomic reads, updates,
inserts, and deletes without ever being able to quiesce ongoing operations (not
even on portions of the tree). Bw-Tree solves this problem by eliminating update-
in-place. All mutations are written to newly allocated memory, then the changes
are installed with a single atomic compare-and-swap instruction that publishes
the change. Figure 2 shows how this works. All references to pages are translated
through a mapping table that maps page numbers to virtual addresses. This
allows pages to be relocated in memory, and it allows the contents of a page to
swapped with a single atomic compare-and-swap (CAS) operation.

One of the key innovations of the Bw-Tree is its use of delta records, which
make updates inexpensive. Delta records allow the Bw-Tree to logically modify
the contents of an existing page without blocking concurrent page readers, with-
out atomicity issues, and without recopying the entire contents of the page for
each update. Whenever a mutation is made to a page, a small record is allocated,
and the logical operation is recorded within this delta record. The delta record
contains a pointer to the page that it logically modifies. It is then atomically
installed by performing a CAS operation on the mapping table that re-points the
virtual address for a particular page number to the address of the delta record.

Some threads already reading the original page contents may not see the
update, but all future operations on the Bw-Tree that access that page will see
the delta record. As readers traverse the tree, they consider the base pages to be
logically augmented by their delta records. Delta records can be chained together
up to a configurable length. When the chain becomes too long, a new base page

Making In-Memory Databases Fast on Modern NICs 85

is formed that combines the original base page contents with the updates from
the deltas. The new page is swapped-in the same way as other updates.

Read operations that run concurrent to update operations can observe super-
seded pages and delta records, so their garbage collection must be deferred. To
solve this, each thread that accesses the tree and each unlinked object is associ-
ated with a current epoch. The global epoch is periodically incremented. Memory
for an unlinked object can be recycled when no thread belongs to its epoch or
any earlier epoch. The epoch mechanism gives operations consistent reads of
the tree, even while concurrent updates are ongoing. However, there is a cost; if
operations take a long time they remain active within their epoch and prevent
reclamation of memory that has been unlinked from the data structure.

4.1 NIC Implications for Bw-Tree

Lock-freedom has major implications on the in-memory layout of the Bw-Tree.
Most importantly, readers (such as the NIC DMA engine) can collect a consis-
tent view of the tree without interference from writers, and holding that view
consistent cannot stall concurrent readers or writers to the tree. This natural
record stability fits with the zero-copy capabilities of modern NICs; because the
NIC’s DMA engine is oblivious to any locks in the database engine, structures
requiring locking for updates would have to consider the NIC to have a non-
preemtible read lock for the entire memory region until the DMA completes.
Instead of copying records “out” of the data structure for transmission, records
can be accessed directly by the NIC. Eliminating the explicit copy of the records
into transmit buffers can save database server CPU and memory bandwidth.

Page consolidation can also benefit the NIC and improve performance.
Records in the Bw-Tree are opportunistically packed into contiguous pages in vir-
tual memory, but the view of a page is often augmented with (potentially many)
small delta records that are scattered throughout memory. A database might
save CPU and memory bandwidth by more aggressively deferring or even elimi-
nating consolidation of records into contiguous regions of memory or pages. We
show in Sect. 5.4 that highly discontinuous data can slow transmission through-
put but that aggressive consolidation is inefficient; delta records can dramatically
reduce consolidation overheads while keeping records sufficiently contiguous to
make the NIC more efficient.

Overall, we seek to answer these key questions:

– When should records be transmitted directly from a Bw-Tree? Are there cases
where explicitly copying records into a transmit buffer is preferable to gather
DMA operations?

– How aggressive should a Bw-Tree be in consolidating records to benefit indi-
vidual clients and to minimize database server load?

– How does zero-copy impact state reclamation in the Bw-Tree? Might long
transmit times hinder performance by delaying garbage collection of stale
records?

86 A. Kesavan et al.

5 Experimental Results

To explore how different designs trade-off database server efficiency and perfor-
mance, we built a simple model of an in-memory database system that concen-
trates on data transfer rather than full query processing. In all experiments, one
node acts as a server and transmits results to 15 client nodes. Our experiments
were run on the Apt [18] cluster of the CloudLab testbed: this testbed provides
exclusive bare-metal access to a large number of machines with RDMA-capable
Infiniband NICs. Details of the configuration are given in Table 1. All of the
experiments are publicly available online1.

Table 1. Experimental cluster configuration. The cluster has 7 Mellanox SX6036G
FDR switches arranged in two layers. The switching fabric is oversubscribed and pro-
vides about 16 Gbps of bisection bandwidth per node when congested.

CPU Intel Xeon E5-2450 (2.1 GHz, 2.9 GHz Turbo) 8 cores, 2 hardware
threads each

RAM 16 GB DDR3 at 1600 MHz

Network Mellanox MX354A ConnectX-3 Infiniband HCA (56 Gbps Full Duplex)
Connected via PCIExpress 3.0× 8 (63 Gbps Full Duplex)

Software CentOS 6.6, Linux 2.6.32, gcc 4.9.2, libibverbs 1.1.8, mlx4 1.0.6

Experiments transmit from a large region of memory backed by 4 KB pages
that contains all of the records. The region is also registered with the NIC, which
has to do virtual-to-physical address translation to DMA records for transmis-
sion. In some cases, using 1 GB hugepages reduces translation look aside buffer
(TLB) misses. The NIC can benefit from hugepages as well, since large page
tables can result in additional DMA operations to host memory during address
translation [6,9]. For our experiments, the reach of the NIC’s virtual-to-physical
mapping is sufficient, and hugepages have no impact on the results.

5.1 Zero-Copy Performance

The first key question is understanding how database record layout affects the
performance of the transmission of query results. The transmission of large result
sets presents a number of complex choices that affect database layout and design
as well as NIC parameters. Range query results can be transmitted in small
batches or large batches and either via copy-out or zero-copy.

To understand these trade-offs, we measure the aggregate transmission
throughput of a server to its 15 clients under several configurations. In each
experiment, the record size, s, is either 1024 B or 128 B. Given a set of records
that must be transmitted, they are then grouped for transmission. For zero-copy,

1 https://github.com/utah-scs/ibv-bench.

https://github.com/utah-scs/ibv-bench

Making In-Memory Databases Fast on Modern NICs 87

Fig. 3. Transmission throughput when using conventional copy-out into transmit
buffers and when the NIC directly copies records via DMA (zero-copy). The line for
128-byte zero-copy stops at 4 K, as this is the maximum size of a send with 32 records
of this size.

an n entry DMA gather descriptor is created to transmit those records where ns
bytes are transmitted per NIC transmit operation. For copy-out, each of the n
records is copied into a single transmit buffer that is associated with a transmit
descriptor that only points to the single transmit buffer. Each transmission still
sends exactly ns bytes, but copy-out first requires ns bytes to be copied into the
transmit buffer. Intuitively, larger groups of records (larger sends) result in less
host-to-NIC interaction, which reduces host load and can increase throughput;
the benefits depend on the specific configuration and are explored below.

Figure 3 shows how each of these configurations impact transmission through-
put. For larger 1024 B records, using the NIC’s DMA engine for zero-copy shows
clear benefits (aside from CPU and memory bandwidth savings, which we explore
in Sect. 5.2). The database server is able to saturate the network with zero-copy
so long as it can post 6 or more records per transmit operation to the NIC (that
is, if it sends 6 KB or larger messages at a time).

The figure also shows that using copy-out with 1024 B records, the NIC can
also saturate the network, but records must be packed into buffers of 16 KB or
more. This is significant, since it determines the transmission throughput of the
database when range queries only return a few results. In this case, the DMA
engine could provide a throughput boost of up to 29% over copy-out, but the
benefit is specific to that scenario. If range scans return even just 16 records per
query, the throughput benefits of zero-copy are almost eliminated.

Next, we consider 128 B records. The decreased access latency of in-memory
databases makes them well-suited to smaller, finer-grained records than were pre-
viously common. One expectation is that this will drive databases toward more
aggressively normalized layouts with small records. This seems to be increasingly
the case as records of a few hundreds bytes or less are now typical [3,16].

Figure 3 shows that for small 128 B records, the NIC DMA engine provides
little throughput benefit. Our NIC is limited to gather lists of 32 entries, which

88 A. Kesavan et al.

is insufficient to saturate the network with such a small record size. Transmission
peaks at 3.5 GB/s. Copying 128 B records on-the-fly can significantly outperform
zero-copy transmission when there are enough results to group per transmission.
In fact, copy-out can saturate the network with small records, and it performs
identically to copy-out with larger 1024 B records.

5.2 Zero-Copy Savings

In addition to improved performance, a goal of zero-copy DMA is to mitigate
server-side CPU and memory load. Figure 4 breaks down CPU time for each
of the scenarios in Fig. 3: small and large records both with and without zero-
copy. Most of the server CPU time is spent idle waiting for the NIC to complete
transmissions. The results show that zero-copy always reduces the CPU load of
the server, and, as expected, the effect is larger for larger records. With 1024 B
records, the memcpy step of copy-out uses 6.8% of the total CPU cycles of the
socket at peak transmission speed.

Zero-copy eliminates copy overhead, but it adds overhead to create larger
transmit descriptors. Each gather entry adds 16 B to the descriptor that is posted
to the NIC. These entries are considerable in size compared to small records, and
they are copied twice. The gather list is first staged on the thread’s stack and
passed to the userlevel NIC driver. Next, the driver makes a posted PCIe write
by copying the descriptor (including the gather entry) into a memory-mapped
device buffer. For large records, constructing the list uses between 1 and 4% of
total CPU time, so zero-copy saves about 3 to 6% of CPU time over copy-out.

Fig. 4. Breakdown of server CPU time for transmission of small 128 B records and
1024 B records using copies into transmit buffers (Copy-Out) and zero-copy DMA.

Making In-Memory Databases Fast on Modern NICs 89

Fig. 5. Cycles per transmitted byte for large and small records with zero-copy and
copy-out. Note the log-scale axes.

The memory bandwidth savings for zero-copy are more substantial. Figure 3
shows that copy-out transmit performance nearly matches zero-copy (5.6 GB/s
versus 5.8 GB/s). Copy-out introduces exactly one extra copy of the data, and
memcpy reads each cache line once and writes it once. So, copy-out increases mem-
ory bandwidth consumption by 2× the transmit rate of the NIC or 11.2 GB/s in
the worst case. This accounts for about 32% of the available memory bandwidth
for the machine that we used. Whether using zero-copy or copy-out, the NIC
must copy data from main memory, across the PCIe bus, to its own buffers,
which uses another 6 GB/s of memory bandwidth.

For smaller 128 B records, the CPU and memory bandwidth savings are
nearly the same as for larger records. In this case, copy-out uses up to 10.8% of
the CPU cycles on the socket, and zero-copy uses 5.5%. Eliminating the extra
memcpy halves CPU overhead for transmission; a savings of about 5% of the total
socket’s CPU cycles. Just as before, the memory bandwidth savings is twice the
transmission rate or 11.2 GB/s. Overall, this makes copy-out reasonable for small
records scattered throughout memory, especially since zero-copy cannot saturate
the network in these cases (Sect. 5.1).

The results break down where the CPU and memory bandwidth savings come
from, but not all configurations result in the same transmit performance. For
example, Fig. 3 shows that when transmitting 128 B records, copy-out gets up to
53% better throughput than zero-copy. As a result, minimizing CPU overhead
can come at the expense of transmit performance. The real efficiency of the server
in transmission is shown in Fig. 5. The figure shows how many cycles of work
the CPU does to transmit a byte in each of the configurations, which reveals
two key things. First, it shows that, though the absolute savings in total CPU
cycles is small for zero-copy, it does reduce CPU overhead due to transmission
by up to 76%. Second, the improvement is a modest 12% for small records, since
copy-out can transmit in larger, more efficient batches.

90 A. Kesavan et al.

5.3 Extending the Delta Format to Clients

The experiments so far consider delivering a clean, ordered set of records to the
client. That is, the server collects and transmits the precise set of records in the
correct order, either via copy-out or zero-copy. Another option is to transmit base
pages along with their deltas and have clients merge the results. This approach is
attractive because it organically fits with the design of the Bw-Tree and it suits
the DMA engine of the NIC well. The NIC can transmit the large contiguous base
pages (16 KB, for example) with little CPU overhead. It also eliminates copy-out
for small records, but avoids the transmission throughput ceiling longer gather
lists suffer (Sect. 5.1). Merging records on the client side is cheap; the server can
even append them to the response in a sort order that matches the record order
in the base page for efficient O(n) iteration over the records that requires no
copies or sorting.

Fig. 6. Zero-copy transmit performance when a single 16 KB base page is transmitted
at along with a varying number of delta records. Results are shown for delta records
of both 128B and 1024B.

Figure 6 shows the benefits of this approach. In this experiment, each trans-
mission consists of a single 16 KB base page while the number and size of the
delta records attached to each transmission is varied. The NIC benefits from the
large base page, and it manages to keep the network saturated. CPU overhead
ranges from less than 1% when there are a few delta records up to about 2% when
there are more. Compared to zero-copy of scattered small records this approach
also yields a 1.7× throughput advantage; Fig. 3 shows that throughput peaks at
3.4 GB/s when records are scattered, while the delta format achieves 5.7 GB/s.
The main cost to this approach is the cost of consolidating delta records into
new base pages when chains grow long; we consider this overhead in more detail
in the next section.

5.4 Tuning Page Consolidation

Bw-Tree and many indexing structures are paged in order to amortize storage
access latency, and paging can have similar benefits for network transmission as
well. However, the userlevel access of modern NICs makes interacting with them

Making In-Memory Databases Fast on Modern NICs 91

much lower-latency than storage devices. This raises the question of whether
paging is still beneficial for in-memory structures. That is, is the cost of preemp-
tively consolidating updates into pages worth the cost, or is it better to transmit
fine-grained scattered records via zero-copy or copy-out?

The results of our earlier experiments help answer this question. If copy-out is
used to gain faster transmission of small records, then the answer is simple. Even
if every update created a complete copy of the full base page, the extra copies
would still be worthwhile so long as more pages are read per second than updated.
This true for most update/lookup workloads, and read-only range queries make
this an even better trade-off.

However, consolidation must be more conservative when using zero-copy to
yield savings, since zero-copy can collect scattered records with less overhead
than copy-out. Yet, there is good reason to be optimistic. Delta records reduce
the cost of updates for paged structures. If each base page is limited to d delta
records before consolidation, the number of consolidations is 1

d . This means that
allowing short delta chains dramatically reduces consolidation costs, while longer
chains offer decreasing returns. This fits with the NIC’s preference for short
gather lists; allowing delta chains of length 4 would reduce consolidation by 75%
while maintaining transmit throughput that meets or exceeds on-the-fly copy-
out. The large 16 KB base pages also improve transmit throughput slightly, which
improves efficiency.

For small records, transmitting compacted base pages that have a few deltas
gives a total CPU savings of about 8%. For the same CPU cost, a server can
perform about 5.2 GB/s of page compaction or about 340,000 compactions per
second for 16 KB pages. Even in the worst case scenario where all updates are
focused on a single page, delta chains of length 4 would tolerate 1.3 million
updates per second with CPU overhead lower than copy-out. So, delta records
can give the efficiency of zero-copy with the performance of copy-out.

5.5 Impact on Garbage Collection

Using zero-copy tightly couples the higher-level database engine’s record alloca-
tion and deallocation, since records submitted must remain stable until transmis-
sion completes. Fortunately, existing mechanisms in systems that avoid update-
in-place accommodate this well, like Bw-Tree’s epoch mechanism described in
Sect. 4. Normally, the Bw-Tree copies-out returned records. While an operation
and its copy-out are ongoing, memory that contains records that have been
unlinked or superseded cannot be reclaimed. Zero-copy effectively defers the
copy until the actual time of transmission. As a result, transmissions comple-
tions must notify the higher level database of transmission completion to allow
reclamation. This delay results in more latent garbage and hurts the effective
memory utilization of the system.

In practice, this effect will be small for two reasons. First, zero-copy adds
a transmission, which completes within a few microseconds; however, it also
saves a memcpy which accounts for 1 to 2µs for a 16 KB transmission. Second,
the amount of resulting data held solely for transmission should generally be

92 A. Kesavan et al.

more than compensated for by eliminating the need for explicit transmit buffers.
With copy-out, the size of the transmit buffer pool is necessarily larger than the
amount of data under active transmission, and internal fragmentation in the
transmit buffers makes this worse.

5.6 Inlining Data into Transmit Descriptors

Mellanox NICs allow some data to be inlined inside the control message sent
to the NIC over PCIe. Our NICs allow up to 912 B to be included inside the
descriptor that is posted to the NIC control ring buffer. Inlining can improve
messaging latency by eliminating the delay for the NIC to DMA the message data
from host DRAM, which can only happen after the NIC receives the descriptor.
Inlining benefits small request/response exchanges, but it does not help for larger
transmissions. This is because even though there is an extra delay before the NIC
receives the actual record data, that delay can be overlapped with the DMA and
transmission of other responses. Other researchers have shown that sending data
to the NIC via MMIO also wastes PCIe bandwidth [9]. All experiments in this
paper have inlining disabled. Enabling inlining gives almost identical throughput
and overhead to copy-out, except it only works for transmissions of 912 B or less.

6 Conclusions

Our findings show that understanding NIC performance has significant conse-
quences for modern in-memory databases, and that careful co-design of data lay-
out, concurrency control, networking impacts both performance and efficiency.
Summarizing the key findings of our experiments:

– The sophisticated DMA capabilities of modern NIC’s can be used to transmit
directly from database records without any intermediate copying.

– For workloads with small records of a few hundred bytes or less where no sig-
nificant computation is done server-side, using conventional copy-out trans-
mission will yield better overall throughput even when the result sets are
large.

– Zero-copy yields only a few percent total CPU savings, but may reduce server
memory bandwidth load by one-third.

– Increasing core counts mean zero-copy CPU savings will become less significant
over time, as per-server network speeds are likely remain in the 100s of gigabits
per second for some time.

– The memory bandwidth savings are likely to be more important, but memory
bandwidth is still growing faster than network bandwidth.

– Zero-copy is highly efficient when records can be transmitted from large con-
tiguous blocks.

Revisiting the key questions posed by the Bw-Tree’s unique structure, we
apply our findings.

Making In-Memory Databases Fast on Modern NICs 93

� When should records be transmitted directly from a Bw-Tree? Are
there cases where explicitly copying records into a transmit buffer is
preferable to gather DMA operations?

Gather list length limitations means that copy-out yields better throughput
than zero-copy for small, scattered records. For example, this makes copy-out
preferable when the tree is a secondary index that only holds pointers to records.
Zero-copy always results in less server-side load, so zero-copy is preferable if the
server also hosts computationally heavy operations. However, the load reduction
is small and may be offset by increased delays at the clients.
� How aggressive should a Bw-Tree be in consolidating records to
benefit individual clients and to minimize database server load?

If clients can receive and apply delta records themselves, then using zero-copy
to directly transmit base pages and their deltas results in the best throughput
and the lowest CPU load. Section 5.4 shows that short delta chains of up to
length 4 will sustain millions of updates per second to a database with lower
CPU load than either copy-out or zero-copy for transmission.
� How does zero-copy impact state reclamation in the Bw-Tree?
Might long transmit times hinder performance by delaying garbage
collection of stale records?

Transmission delays garbage collection of unlinked records, but the amount of
accumulated state will be less than the amount that traditional transmit buffers
would consume. This effect is compounded by the number of ongoing client
operations, so Bw-Tree’s ability to leverage zero-copy could improve fan-out to
large numbers of clients.

Overall, our client-assisted design for bulk returning small records with the
Bw-Tree reduces server-side CPU overhead by 75% and increases throughput by
1.7× compared to zero-copy DMA. With care, modern NICs can saturate the
network with low overhead while returning 10s of billions of records per second,
even with difficult workloads returning dynamic sets of fine-grained records.

We are applying these techniques to a high-bandwidth, low-impact data
migration mechanism for RAMCloud that works to evacuate data away from
hot servers with minimal disruption to its already overloaded CPU. Looking
forward, we also plan to apply these findings to build a network-attached high-
performance access method using techniques similar to the Bw-Tree.

Acknowledgments. This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1338155.

References

1. DPDK documentation. http://dpdk.org/doc/guides-16.04/
2. Mellanox ConnectX-4 product brief. http://www.mellanox.com/related-docs/

prod adapter cards/PB ConnectX-4 VPI Card.pdf. Accessed 04 Aug 2016
3. Atikoglu, B., Xu, Y., Frachtenberg, E., Jiang, S., Paleczny, M.: Workload analy-

sis of a large-scale key-value store. In: Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measurement and
Modeling of Computer Systems, SIGMETRICS 2012. ACM, New York (2012)

http://dpdk.org/doc/guides-16.04/
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf
http://www.mellanox.com/related-docs/prod_adapter_cards/PB_ConnectX-4_VPI_Card.pdf

94 A. Kesavan et al.

4. Bronson, N.: Personal Communication (2016)
5. Diaconu, C., Freedman, C., Ismert, E., Larson, P., Mittal, P., Stonecipher, R.,

Verma, N., Zwilling, M.: Hekaton: SQL server’s memory-optimized OLTP engine.
In: SIGMOD (2013)

6. Dragojević, A., Narayanan, D., Castro, M., Hodson, O.: FaRM: fast remote mem-
ory. In: USENIX NSDI, Seattle, WA, April 2014. USENIX Association (2014)

7. Dragojević, A., Narayanan, D., Nightingale, E.B., Renzelmann, M., Shamis, A.,
Badam, A., Castro, M.: No compromises: distributed transactions with consistency,
availability, and performance. In: SOSP (2015)

8. Kalia, A., Kaminsky, M., Andersen, D.G.: Using RDMA efficiently for key-value
services. In: Proceedings of the 2014 ACM SIGCOMM Conference, SIGCOMM
2014. ACM, New York (2014)

9. Kalia, A., Kaminsky, M., Andersen, D.G.: Design guidelines for high performance
RDMA systems. In: 2016 USENIX Annual Technical Conference (USENIX ATC
2016), Denver, CO, June 2016. USENIX Association (2016)

10. Kejriwal, A., Gopalan, A., Gupta, A., Jia, Z., Yang, S., Ousterhout, J.: SLIK:
scalable low-latency indexes for a key-value store. In: USENIX Annual Technical
Conference, Denver, CO, June 2016

11. Levandoski, J., Lomet, D., Sengupta, S., Stutsman, R., Wang, R.: High perfor-
mance transactions in Deuteronomy. In: Proceeding of CIDR (2015)

12. Levandoski, J., Lomet, D., Sengupta, S., Stutsman, R., Wang, R.: Multi-version
range concurrency control in Deuteronomy. In: Proceeding VLDB Endowment
(2016)

13. Levandoski, J.J., Lomet, D.B., Sengupta, S., Bw-Tree, T.: A B-tree for new hard-
ware platforms. In: International Conference on Data Engineering (ICDE). IEEE
(2013)

14. Lim, H., Han, D., Andersen, D.G., Kaminsky, M.: MICA: a holistic approach to
fast in-memory key-value storage. In: 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 2014), Seattle, WA, April 2014

15. Loesing, S., Pilman, M., Etter, T., Kossmann, D.: On the design and scalability
of distributed shared-data databases. In: Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2015. ACM, New
York (2015)

16. Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C., McElroy,
R., Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T., Venkataramani, V.:
Scaling memcache at Facebook. In: Symposium on Networked Systems Design and
Implementation (NSDI). USENIX, Lombard (2013)

17. Ousterhout, J., Gopalan, A., Gupta, A., Kejriwal, A., Lee, C., Montazeri, B.,
Ongaro, D., Park, S.J., Qin, H., Rosenblum, M., Rumble, S., Stutsman, R., Yang,
S.: The RAMCloud storage system. ACM Trans. Comput. Syst. 33(3), 7:1–7:55
(2015)

18. Ricci, R., Wong, G., Stoller, L., Webb, K., Duerig, J., Downie, K., Hibler, M.: Apt:
a platform for repeatable research in computer science. ACM SIGOPS Operating
Syst. Rev. 49(1), 100–107 (2015). http://dl.acm.org/citation.cfm?id=2723885

19. Rödiger, W., Mühlbauer, T., Kemper, A., Neumann, T.: High-speed query process-
ing over high-speed networks. In: Proceeding VLDB Endowment, December 2015

20. Wei, X., Shi, J., Chen, Y., Chen, R., Chen, H.: Fast in-memory transaction process-
ing using RDMA and HTM. In: Proceedings of SOSP, SOSP 2015. ACM, New York
(2015)

http://dl.acm.org/citation.cfm?id=2723885

DBMS Data Loading:
An Analysis on Modern Hardware

Adam Dziedzic1, Manos Karpathiotakis2(B), Ioannis Alagiannis2,
Raja Appuswamy2, and Anastasia Ailamaki2,3

1 University of Chicago, Chicago, USA
ady@uchicago.edu

2 Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
{manos.karpathiotakis,ioannis.alagiannis,raja.appuswamy,

anastasia.ailamaki}@epfl.ch
3 RAW Labs SA, Lausanne, Switzerland

Abstract. Data loading has traditionally been considered a “one-time
deal” – an offline process out of the critical path of query execution. The
architecture of DBMS is aligned with this assumption. Nevertheless, the
rate in which data is produced and gathered nowadays has nullified the
“one-off” assumption, and has turned data loading into a major bottle-
neck of the data analysis pipeline.

This paper analyzes the behavior of modern DBMS in order to quan-
tify their ability to fully exploit multicore processors and modern stor-
age hardware during data loading. We examine multiple state-of-the-art
DBMS, a variety of hardware configurations, and a combination of syn-
thetic and real-world datasets to identify bottlenecks in the data loading
process and to provide guidelines on how to accelerate data loading.
Our findings show that modern DBMS are unable to saturate the avail-
able hardware resources. We therefore identify opportunities to accelerate
data loading.

1 Introduction

Applications both from the scientific and business worlds accumulate data at
an increasingly rapid pace. Natural science experiments produce unprecedented
amounts of data. Similarly, companies aggressively collect data to optimize busi-
ness strategy. The recent advances in cost-effective storage hardware enable stor-
ing the produced data, but the ability to organize and process this data has been
unable to keep pace with data growth.

Extracting value out of gathered data has traditionally required loading it
into an operational database. For example, in data warehouse scenarios, ETL
involves Extracting data from outside sources, Transforming it to fit operational
needs, and then Loading it into the target database [16,23]. The demand for
reduced data-to-query time requires data loading to be a fast operation [27].

A. Dziedzic—Work done while the author was at EPFL.

c© Springer International Publishing AG 2017
S. Blanas et al. (Eds.): ADMS 2016/IMDM 2016, LNCS 10195, pp. 95–117, 2017.
DOI: 10.1007/978-3-319-56111-0 6

96 A. Dziedzic et al.

The demand for high availability requires minimizing, if not eliminating, batch
loading windows during which Database Management Systems (DBMS) can be
taken offline. Finally, the ever-increasing growth of data requires data loading
to be a scalable operation that can exploit hardware parallelism to load massive
amounts of data in very short amounts of time [16,23]. Unfortunately, traditional
DBMS are built around the assumption that data loading is a “one-time deal”;
data loading is considered an offline process out of the critical path, with the
user defining a schema and loading the majority of the data in one go before
submitting any queries. When this architectural design assumption is combined
with the explosive data growth, the result is the emergence of data loading as a
major bottleneck in the data analysis pipeline of state-of-the-art DBMS.

While much research over the past few years has focused on innovative tech-
niques to avoid or accelerate data loading [8,13,21,24], there has been no sys-
tematic study till date that quantifies the ability of modern DBMS to exploit
multicore processors and modern storage hardware in order to parallelize data
loading. The importance of such quantification has been recognized by the Big
Data community, and has led the “BigData Top100” benchmark to consider the
time spent to load data into the system as part of the benchmark metric [11].
Still, although there is a wide variety of benchmarks [5–7] which use diverse
queries to evaluate the query processing capabilities of DBMS, a similar analysis
of the (bulk) data loading capabilities of DBMS is missing.

This paper presents a detailed data loading analysis with the following goals:
(1) analyze how parallel data loading scales for various DBMS, (2) identify bot-
tlenecks, and (3) provide development guidelines to enable the design of efficient
data loading pipelines, and administration guidelines to accelerate the time-
consuming loading process. The analysis considers three dimensions: software,
hardware, and application workloads. Along the software dimension, we investi-
gate architectural aspects (row stores vs column stores) of four state-of-the-art
DBMS, implementation aspects (the threading model used for parallel loading),
and runtime aspects (degree of parallelism, presence and absence of logging/-
constraints). Along the hardware dimension, we evaluate the impact of storage
configurations with different I/O capabilities (HDD, SATA SSD, hardware RAID
controller with SCSI disks, and DRAM). Finally, along the workload dimension,
we consider data from popular benchmarks and real-world datasets with diverse
data types, field cardinality, and number of columns. The results of the analysis
show that:

– Bulk loading performance is directly connected to the characteristics of the
dataset to be loaded: Each evaluated DBMS is stressed differently by the
involved datatypes, the number of columns, the underlying storage, etc.

– Both single-threaded and parallel bulk loading leave CPU and/or storage
underutilized. Improving CPU utilization requires optimizing the input I/O
path to reduce random I/O and the output I/O path to reduce pauses caused
by data flushes. Such optimizations bring a 2–10x loading time reduction for
all tested DBMS.

DBMS Data Loading: An Analysis on Modern Hardware 97

– Despite data loading being 100% CPU bound in the absence of any I/O over-
head, the speedup achieved by increasing DoP is sub-linear. Parsing, tokeniz-
ing, datatype conversion, and tuple construction dominate CPU utilization
and need to be optimized further to achieve further reduction in loading time.

– In the presence of constraints, different DBMS exhibit varying degrees of scal-
ability. We also list cases in which the conventional drop indexes-load data-
rebuild indexes rule-of-thumb which is applicable to single-threaded index
building and constraint verification is inappropriate under parallel loading.

– Under high DoP, constraints can create unwarranted latch contention in the
logging and locking subsystems of a DBMS. Such overheads are a side-effect
of reusing the traditional query execution code base for bulk data loading and
can be eliminated by making data loading a first-class citizen in DBMS design.

2 Setup and Methodology

We now describe the experimental setup, the workloads employed to study and
analyze the behavior of the different DBMS during data loading, and the applied
methodology.

2.1 Experimental Setup

Hardware: The experiments are conducted using a Dell PowerEdge R720 server
equipped with a dual socket Intel(R) Xeon(R) CPU E5-2640 (8 cores, 2 threads
per core resulting in 32 hardware contexts) clocked at 2.00 GHz, 64 KB L1 cache
per core, 256 KB L2 cache per core, 20 MB L3 cache shared, and 64 GB RAM
(1600 MHz DIMMs).

The server is equipped with different data storage devices, including (i) indi-
vidual SATA hard disk drives (HDD), (ii) a hardware RAID-0 array with SAS
HDD (DAS), and (iii) a hardware RAID-0 array with SAS solid state drives (SSD).
Table 1 summarizes the available storage devices and their characteristics.

OS: We run all the experiments using Red Hat Enterprise Linux 6.6 (Santiago -
64 bit) with kernel version 2.6.32.

Analyzed Systems: The analysis studies four systems: a commercial row-store
(DBMS-A), an open-source row-store (PostgreSQL [2]), a commercial column-
store (DBMS-B), and an open-source column-store (MonetDB [1]). To preserve

Table 1. Storage devices and characteristics.

Name Capacity Configuration Read Speed Write Speed RPM

HDD 1.8 TB 4 x HDD (RAID-0) 170MB/s 160MB/s 7.5 k

DAS 13TB 24 x HDD (RAID-0) 1100 MB/s 330MB/s 7.5 k

SSD 550GB 3 x SSD (RAID-0) 565MB/s 268MB/s n/a

98 A. Dziedzic et al.

anonymity due to legal restrictions, the names of the commercial database systems
are not disclosed. PostgreSQL (version 9.3.2) and MonetDB (version 11.19.9) are
built using gcc 4.4.7 with -O2 and -O3 optimizations enabled respectively.

2.2 Datasets

The experiments include datasets with different characteristics: both industry-
standard and scientific datasets, as well as custom micro-benchmarks. All
datasets are stored in textual, comma-separated values (CSV) files.

Industrial Benchmarks. We use the TPC-H decision support benchmark [7],
which is designed for evaluating data warehouses, and the transaction processing
benchmark TPC-C [5], which models an online transaction processing database.

Scientific Datasets. To examine more complex and diverse cases compared to
the synthetic benchmarks, we also include in the experiments a subset of the
SDSS [3] dataset and a real-life dataset provided by Symantec [4].

SDSS contains data collected by telescopes that scan parts of the sky; it
includes detailed images and spectra of sky objects along with properties about
stars and galaxies. SDSS is a challenging dataset because (i) it includes many
floating point numbers that require precision and (ii) most of its tables contain
more than 300 attributes.

The Symantec spam dataset consists of a collection of spam e-mails collected
through the worldwide-distributed spam traps of Symantec. Each tuple contains
a set of features describing characteristics of the spam e-mails, such as the e-mail
subject and body, the language, the sender’s IP address, the country from which
the spam e-mail was sent, and attachments sent with the e-mail. NULL values
are common in the Symantec dataset because each e-mail entry may contain
different types of features. In addition, the width of each tuple varies based
on the collected features (from a few bytes to a few KB). The Symantec spam
dataset also contains wide variable length attributes (e.g., e-mail subject) that
considerably stress systems which use compression for strings.

2.3 Experimental Methodology

The goal of the experiments is to provide insight on “where time goes” during
loading in modern DBMS – not to declare a specific DBMS as the fastest option
in terms of bulk loading performance. The experiments thus explore a number
of different configurations (software and hardware) and datasets, and highlight
how different parameters and setups affect loading performance.

All DBMS we use in this analysis support loading data either by using a
bulk loading COPY command or by using a series of INSERT statements. We
found bulk loading using COPY to be much faster than using INSERT statements
for all DBMS. Therefore, all experimental results reported in this paper were
obtained by using the COPY command.

DBMS Data Loading: An Analysis on Modern Hardware 99

In addition to bulk loading, DBMS-A, MonetDB, and DBMS-B also offer
built-in support for parallel loading. PostgreSQL, in constrast, does not support
parallel loading. We work around this limitation by building an external parallel
loader which we describe in Sect. 3.

Tuning. All tested systems are tuned following guidelines proposed by the
DBMS vendors to speed up loading. For MonetDB, we also provide the number
of tuples in the dataset as a hint to the parallel loader as we found that loading
does not scale without providing this hint. To ensure fair comparison between
the systems, we map datatypes used in benchmarks to DBMS-specific datatypes
such that the resulting datatype size remains the same across all DBMS. Thus,
the difference in loaded database size across DBMS is due to architectural dif-
ferences, like the use of data compression.

Profiling. We collect statistics about CPU, RAM, and disk I/O utilization of
the OS and the DBMS. We use sar to measure the CPU and RAM utilization,
and iostat to measure disk utilization statistics. In addition, we use iosnoop to
record disk access patterns and the Intel VTune Amplifier to profile the different
systems and derive performance breakdown graphs.

3 Experimental Evaluation

We conduct several experiments to evaluate the bulk loading performance of
the tested systems. We start with a baseline comparison of single-threaded data
loading using a variety of datasets. We then consider how data loading scales as
we increase the degree of parallelism. Following this, we analyze I/O and CPU
utilization characteristics of each DBMS to identify where time is spent during
data loading and investigate the effect of scaling the storage subsystem. Finally,
we examine how each system handles the challenge of enforcing constraints dur-
ing data loading.

3.1 Baseline: Single-Threaded Data Loading

This experiment investigates the behavior of PostgreSQL, MonetDB, DBMS-
A and DBMS-B as their inputs increase progressively from 1 GB to 100 GB.
Each variation of the experiment uses as input (a) TPC-H, (b) TPC-C,
(c) SDSS, or (iv) Symantec dataset. The experiment emulates a typical enterprise
scenario where the database is stored on a high-performance RAID array and
the input data to be loaded into the database is accessed over a slow medium.
We thus read the input from HDD, a slow data source, and store the database
on DAS, a high-performance RAID array.

Figure 1(a-d) plots the data loading time for each system under the four
benchmarks. As can be seen, the data loading time increases linearly with the
dataset size (except when we load the SDSS dataset in DBMS-Aand the Syman-
tec dataset in DBMS-B). DBMS-A outperforms the rest of the systems in the
majority of the cases; when considering 100 GB database instances, DBMS-A is

100 A. Dziedzic et al.

Fig. 1. Data loading time increases linearly with the dataset size (single-threaded load-
ing, raw input from HDD, database on DAS).

1.5× faster for TPC-H, 2.3× faster for TPC-C, and 1.91× faster for Syman-
tec compared to the second fastest system in each case. DBMS-A, however,
shows the worst performance for the SDSS dataset (5× slower than the fastest
system). The reason is that SDSS contains numerous floating-point fields, which
are meant to be used in scientific processing. DBMS-A offers a compact datatype
for such use cases, which facilitates computations at query time but is expensive
to instantiate at loading time, thus stressing the storage engine of DBMS-A.
Among the other systems, PostgreSQL exhibits robust performance, having the
second fastest loading time in most experiments.

PostgreSQL and DBMS-A outperform DBMS-B and MonetDB under the
Symantec dataset because of the architectural differences between the two types
of DBMS. PostgreSQL and DBMS-A are row stores that follow the N-ary storage
model (NSM) in which data is organized as tuples (rows) and is stored sequen-
tially in slotted pages. OLTP applications benefit from NSM storage because it
is more straightforward to update multiple fields of a tuple when they are stored
sequentially. Likewise, compression is used less frequently because it makes data
updates more expensive. On the other hand, DBMS-B and MonetDB are column
stores that follow the decomposition storage model (DSM) and organize data in
standalone columns; since they typically serve scan-intensive OLAP workloads,
they apply compression to reduce the cost of data scans.

Table 2 shows the ratio between the input data file and the final database
size for the experiments of Fig. 1. Even though the tested systems read the same

DBMS Data Loading: An Analysis on Modern Hardware 101

Table 2. Input data file/Database size ratio for each dataset (10GB instance). Column
stores achieve a better ratio (less is better).

Name TPC-H TPC-C SDSS Symantec

DBMS-A 1.5 1.3 1.5 1.5

PostgreSQL 1.4 1.4 1.4 1.1

DBMS-B 0.27 0.82 0.18 0.25

MonetDB 1.1 1.4 1.0 0.92

amount of data, they end up writing notably different amounts of data. Clearly,
DBMS-B and MonetDB have smaller storage footprint than PostgreSQL and
DBMS-A. The row-stores require more space because they store auxiliary infor-
mation in each tuple (e.g., a header) and do not use compression. This directly
translates to improved performance during query execution for column stores
due to fewer I/O requests.

The downside of compression, however, is the increase in data loading time
due to the added processing required for compressing data. DBMS-B compresses
all input data during loading. Thus, it has the worst overall loading time in
almost all cases. MonetDB only compresses string values. Therefore, the com-
pression cost is less noticeable for MonetDB than it is for DBMS-B. The string-
heavy Symantec dataset stresses MonetDB, which compresses strings using dic-
tionary encoding. This is why MonetDB exhibits the second worst loading time
under Symantec. Despite this, its loading time is much lower than DBMS-B.
The reason is that MonetDB creates a local dictionary for each data block it
initializes, and flushes it along with the data block. Therefore, the local dictio-
naries have manageable sizes and reasonable maintenance cost. We believe that
DBMS-B, in contrast, chooses an expensive, global compression scheme that
incurs a significant penalty for compressing the high-cardinality, wide attributes
in the Symantec dataset (e.g., e-mail body, domain name, etc.).

Summary. The time taken to load data into a DBMS depends on both the
dataset being loaded and the architecture used by the DBMS. No single system
is a clear winner in all scenarios. A common pattern across all experiments in
the single-threaded case is that the evaluated systems are unable to saturate
the 170 MB/s I/O bandwidth of the HDD – the slowest input device used in
this study. The next section examines whether data parallelism accelerates data
loading.

3.2 Parallel Data Loading

The following experiments examine how much benefit a DBMS achieves by
performing data loading in a parallel fashion. As mentioned earlier, Post-
greSQL lacks support for parallel bulk loading out-of-the-box. We thus develop

102 A. Dziedzic et al.

Fig. 2. Data loading time increases linearly with the dataset size (parallel loading,
input on HDD, database on DAS).

an external loader that invokes multiple PostgreSQL COPY commands in paral-
lel. To differentiate our external loader from native PostgreSQL, we will refer to
it as PCOPY. PCOPY differs from other systems that support parallel loading
as native feature in that it uses PostgreSQL as a testbed to show how paral-
lelism can be introduced to an existing RDBMS without tweaking its internal
components. PCOPY is a multithreaded application that takes as input the file
to be loaded into the database, memory maps it, computes aligned logical par-
titions, and assigns each partition to a different thread. Each thread sets up a
pipe and forks off a PostgreSQL client process that runs the COPY command
configured to read from a redirected standard input. Then the thread loads the
data belonging to its partition by writing out the memory mapped input file to
the client process via the pipe.

Figure 2(a-d) plots the results for each dataset. We configure all systems to
use 16 threads – the number of physical cores of the server. Comparing Figs. 1
and 2, we can see that parallel loading improves performance compared to single-
threaded loading in the majority of cases. Similar to the single-threaded case,
loading time increases almost linearly as the dataset size increases. DBMS-
B shows the same behavior as in the single-threaded case for the Symantec
dataset. On the other hand, parallel loading significantly improves the loading
time of DBMS-A for SDSS; abundant parallelism masks the high conversion cost
of floating-point values intended to be used in scientific computations.

The data loading code path of PostgreSQL proves to be more paralleliz-
able for this experiment as PCOPY achieves the lowest loading time across the

DBMS Data Loading: An Analysis on Modern Hardware 103

different datasets. Compared to single-threaded PostgreSQL, PCOPY is 2.77×
faster for TPC-H, 2.71× faster for TPC-C, 3.13× faster for SDSS, and 1.9×
faster for Symantec (considering the 100 GB instances of the datasets). Mon-
etDB benefits from parallel loading as well, being 1.72× faster for TPC-H,
1.49× faster for TPC-C, 3.07× faster for SDSS, and 2.16× faster for Syman-
tec (100 GB instances). The parallel version of DBMS-A is 1.25× faster for
TPC-H and 10.78× faster for SDSS compared to the single-threaded version
(100 GB instances). On the other hand, DBMS-A fails to achieve a speed-up
for TPC-C and Symantec. Finally, DBMS-B is 2.84× faster for TPC-H, 1.34×
faster for TPC-C, and 2.28× faster for SDSS (100 GB instances) compared to its
single-threaded variation. Similar to the single-threaded case, DBMS-B requires
significantly more time to load the long string values of the Symantec dataset.
As a result, DBMS-B still processes the 10 GB dataset when the other systems
have already finished loading 100 GB.

Summary. Figure 2 again shows that there is no system that outperforms the
others across all the tested datasets. Generally, parallel loading improves data
loading performance in comparison to single-threaded loading in many cases.
However, scaling is far from ideal, as loading time does not reduce commen-
surately with the number of cores used. In fact, there are cases where a 16×
increase in the degree of parallelism fails to bring any improvement at all (e.g.,
DBMS-A for TPC-C and Symantec).

3.3 Data Loading: Where Does Time Go?

The next experiment looks into CPU and I/O resource usage patterns to identify
where time goes during the data loading process so that we understand the reason
behind lack of scalability under parallel data loading. This experiment presents
an alternative view of Fig. 2(a): It monitors the usage of system resources (CPU,
RAM, I/O reads and writes) when a 10 GB version of TPC-H is loaded using
the parallel loaders for various DBMS. As before, raw data is initially stored on
HDD and the database is stored on DAS. There are two patterns that can be
observed across all systems in Fig. 3:

First, both CPU utilization and write I/O bandwidth utilization exhibit alter-
nating peak and plateau cycles. This can be explained by breaking down the data
loading process into a sequence of steps which all systems follow. During data
loading, blocks of raw data are read sequentially from the input files until all
data has been read. Each block is parsed to identify the tuples that it contains.
Each tuple is tokenized to extract its attributes. Then, every attribute is con-
verted to a binary representation. This process of parsing, tokenization, and
deserialization causes peaks in the CPU utilization. Once the database-internal
representation of a tuple is created, the tuple becomes part of a batch of tuples
that are written by the DBMS and buffered by the OS. Periodically, these writes
are flushed out to the disk. This caching mechanism is responsible for the peaks
in write I/O utilization. During these peaks, the CPU utilization in all systems
except PCOPY drops dramatically. This is due to the buffer cache in DBMS

104 A. Dziedzic et al.

Fig. 3. Different CPU, Read/Write bandwidth utilization per system (Input TPC-H
10 GB, source on HDD, database on DAS).

DBMS Data Loading: An Analysis on Modern Hardware 105

Fig. 4. I/O Wait per system (Input TPC-H 10 GB, source on HDD, database on DAS).

blocking on a write operation that triggers a flush, thereby stalling the loading
process until the flush, and hence the issued I/O operation, complete.

The second pattern that can be observed across all systems is that CPU
and I/O resources remain under-utilized. MonetDB exhibits the lowest CPU
utilization among all systems. This is due to the fact that it uses one “producer”
thread that reads, parses, and tokenizes raw data values, and then N “consumer”
threads convert the raw values to a binary format. The parsing and tokenization
steps, however, are CPU-intensive and cause a bottleneck on the single producer;
CPU utilization is therefore low for MonetDB. The CPU usage for DBMS-B has
bursts that are seemingly connected with the system’s effort to compress input
values, but is otherwise very low. DBMS-B spawns a very high number of threads
with low scheduling priority; they get easily pre-empted due to their low priority
and they fail to saturate the CPU. PCOPY and DBMS-A have higher CPU usage
(61% and 47% on average, respectively) compared to MonetDB and DBMS-B,
yet they also fail to fully exploit the CPU resources.

Figure 4 illustrates the percentage of time that each DBMS spends waiting
for I/O requests to be resolved during each second of execution. Except Mon-
etDB, all other systems spend a non-trivial portion of time waiting for I/O
which explains the low CPU utilization. Still, read throughput utilization of var-
ious systems in Fig. 3 barely exceeds 60% even in the best case. This clearly
indicates that all systems except MonetDB issue random read I/O requests dur-
ing parallel data loading which causes high I/O delays and an underutilization
of CPU resources.

Summary. Contrary to single-threaded loading, which is CPU bound, parallel
data loading is I/O bound. Except MonetDB, parallel data loaders used by all
systems suffer from poor CPU utilization due to being bottlenecked on random
I/O in the input data path. MonetDB, in contrast, suffers from poor CPU uti-
lization due to being bottlenecked on the single producer thread that parses and
tokenizes data.

3.4 Impact of Underlying Storage

The previous experiments showed that a typical DBMS setup under-utilizes both
I/O bandwidth as well as the available CPUs because of the time it spends
waiting for random I/O completion. This section studies the underutilization

106 A. Dziedzic et al.

issue from both a software and a hardware perspective; it investigates (i) how
the different read patterns of each tested DBMS affect read throughput, and
(ii) how different storage sub-systems affect data loading speed.

I/O Read Patterns. This set of experiments uses as input an instance of
the orders table from the TPC-H benchmark with size 1.7 GB and records the
input I/O pattern of different systems during data loading. We extract the block
addresses of the input file and the database file using hdparm, and we use iosnoop
to identify threads/processes that read from/write to a disk. The input data file
is logically divided on disk into 14 pieces (13 with size 128 MB and a smaller one
with size 8 MB). To generate each graph, we take (i) the start and end times
of the disk requests, (ii) the address of the disk from where the reading for the
request starts and (iii) the size of the operation in bytes. Then, we draw a line
from the point specified by (start time, start address) to the (end time, start
address + # of read bytes). There are two kinds of plots: The first one depicts
the whole file address space, while the other zooms in the first contiguous LBAs
(Logical Block Addresses), further on called chunk. Different colors in the graphs
represent distinct processes/threads.

Figures 5, 6, 7, and 8 plot the read patterns for PCOPY, MonetDB, DBMS-A,
and DBMS-B respectively. All systems operate in parallel mode. MonetDB reads
data from disk sequentially using one thread, while the other systems use multiple

Fig. 5. Read pattern for PCOPY (parallel).

Fig. 6. Read pattern for MonetDB (both single-threaded and parallel).

DBMS Data Loading: An Analysis on Modern Hardware 107

Fig. 7. Read pattern for DBMS-A (parallel).

Fig. 8. Read pattern for DBMS-B (parallel).

concurrent readers (plotted with different colors in the graphs). Figure 6(a) depicts
the 13 pieces read serially which mirror the 13 main contiguous address spaces of
the input file. By looking closer into Fig. 6(b) we observe that MonetDB reads big
contiguous chunks. In total, the plots depict four different read patterns:

– PCOPY exploits 16 threads to read different parts of the file simultaneously.
Then, each thread reads consecutive blocks of the assigned part of the file
(Fig. 5(b)).

– MonetDB uses a single “producer” thread to read data and provide each data
block to a “consumer” (Fig. 6).

– DBMS-A accesses a part of the file and processes it using multiple threads.
Each thread is assigned its own contiguous area within the accessed chunk
(Fig. 7(b)).

– DBMS-B first samples the whole file with one process, and then it accesses
a big chunk of the file (roughly 1 GB) in one go. Similar to DBMS-A, each
thread is assigned a contiguous portion of a chunk. Contrary to DBMS-A,
which reads one part of the file at a time (1 out of the 13 chunks), DBMS-
B accesses a wider address space in the same period of time (8 out of the
13 chunks). However, they behave alike on the lower level where each thread
reads a contiguous sequence of blocks.

108 A. Dziedzic et al.

Fig. 9. Using a serial reader improves the read throughput of PCOPY.

Analyzing each system further reveals that MonetDB uses a sequential read
pattern, whereas the rest of the systems use parallel readers that read small data
chunks from different seeks to the disk and cause random I/O. To gauge which of
the two approaches is more beneficial for a system, we implement PCOPY++,
which is a variation of PCOPY that uses a single serial reader. As depicted in
Fig. 9, PCOPY++ achieves higher read throughput because it uses a serial data
access pattern, which minimizes the costly disk seeks and is also disk-prefetcher-
friendly. As a result, PCOPY++ reduced loading time by an additional 5% in
our experiments.

Effect of Different Storage Devices. While sequential accesses are certainly
useful for slow HDD-based data sources, it might be beneficial to use multiple
readers on data sources that can sustain large random IOPS, like SSD. Thus,
another way to eliminate the random I/O bottleneck is to use faster input and
output storage media.

Fig. 10. Loading 10 GB TPC-H: Varying
data destination storage with slow data
source storage (HDD).

Fig. 11. Loading 10GB TPC-H: Vary-
ing data source storage with DAS data
destination storage.

To examine the impact of the underlying data storage on parallel loading, we
run an experiment where we use as input a 10 GB instance of TPC-H and vary
the data source and destination storage devices. Figure 10 plots the loading time
when the slow HDD is the data source storage media, as in previous experiments,
while varying the destination storage used for storing the database. Varying the
database storage has little to no impact on most systems despite the fact that

DBMS Data Loading: An Analysis on Modern Hardware 109

Fig. 12. Varying data destination stor-
age with fast data source storage (ramfs).

Fig. 13. CPU Utilization for ramfs-based
source and destination.

ramfs is an order of magnitude faster than DAS. This again shows that all
systems are bottlenecked on the source media. The random I/O requests that
the DBMS trigger when loading data in parallel force the HDD to perform many
seeks, and therefore the HDD is unable to serve data fast enough.

For MonetDB, the loading time increases when the database resides on ramfs.
To clarify this trend, we analyze the performance of MonetDB using VTune. We
notice that most of the CPU time is spent in the internal fallocate function.
MonetDB by default uses the posix fallocate function, which instructs the ker-
nel to reserve a space on disk for writes. ramfs, however, lacks support for the
posix fallocate function and as a result the glibc library has to re-create its
semantics – a factor that slows down the loading process1.

Figure 11 plots the loading time when we vary the data source storage while
using DAS as the data destination storage. Using a faster data source storage
accelerates loading for all the systems. Nevertheless, the difference between the
configurations that use SSD- and ramfs-based source storage is marginal, which
implies that the write performance of DAS eventually becomes a bottleneck for
very fast input devices.

To further look into the write bottleneck, Fig. 12 plots the loading time when
we vary the data destination storage while using ramfs – the fastest option – as
the data source storage. The observed behavior varies across systems: DBMS-
B has little benefit from ramfs because of its thread overprovisioning; the numer-
ous low-priority threads it spawns get pre-empted often. For PCOPY and DBMS-
A, using ramfs as the data destination storage achieves the best overall perfor-
mance. Loading time reduces by 1.75× for DBMS-A and 1.4× for PCOPY when
ramfs is used as the destination storage compared to DAS. This clearly shows
that DAS, despite being equipped with a battery-backed cache for buffering
writes, is still a bottleneck to data loading due to the negative impact that dirty
data flushing has on the data loading pipeline.

Figure 13 shows the CPU utilization for the DBMS that support parallel
loading when source and destination are ramfs. Only DBMS-A reaches 100%

1 We reported this behavior to the MonetDB developers, and it is fixed in the current
release.

110 A. Dziedzic et al.

CPU utilization, with its performance eventually becoming bound by the CPU-
intensive data parsing and conversion tasks.

Summary. The experiments demonstrate the effect of the interaction between
the DBMS and the underlying storage subsystem, both from a software and a
hardware perspective. Our analysis showed that the way in which DBMS issue
read requests and the degree of parallelism they employ has an effect on the read
throughput achieved.

Writes are also challenging for parallel loading because multiple writers might
increase I/O contention due to concurrent writes. In fact, slow writes can have a
bigger impact on the data loading performance than slow reads, as slow flushing
of dirty data stall the data loading pipeline. Thus, it is important to use storage
media that perform bulk writes quickly (using write caches or otherwise) to limit
the impact of this problem.

Finally, for the fastest combinations of data source and destination storage,
which also allow a high degree of IOPS, there are DBMS that become CPU-
bound. However, on measuring the storage bandwidth they use in that case
(250 MB/s), we found that they will still be unable to fully utilize modern storage
devices, like PCIe SSD, indicating that the data loading code path needs to be
optimized further to reduce loading time.

3.5 Hitting the CPU Wall

Data loading is a CPU-intensive task – a fact that becomes apparent after
using the fastest data source and destination storage combination. This section
presents a CPU breakdown analysis using VTune for the two open-source sys-
tems (PostgreSQL and MonetDB). For this experiment, we use as input a cus-
tom dataset of 10 GB which contains 10 columns with integer values and we
examine the CPU overhead of loading this data file. Figure 14 shows the results;
we group together the tasks corresponding to the same functionality for both
systems based on the high-level steps described above.

Fig. 14. CPU breakdowns for PostgreSQL and MonetDB during data loading of inte-
gers. Most of the time is spent on parsing, tokenizing, conversion and tuple creation.

DBMS Data Loading: An Analysis on Modern Hardware 111

Even though PostgreSQL is a row-store and MonetDB is a column-store, both
databases go through similar steps to perform data loading. Both systems spend
the majority of their processing time to perform the parsing, tokenizing, and data
type conversion steps (69% for PostgreSQL and 91% for MonetDB). Overall,
data loading is CPU-intensive; however, parsing and tokenizing data from a
file and generating tuples can be decomposed into tasks of smaller size. These
tasks do not require any communication (i.e., there are no dependencies between
them), thus they are ideal candidates for parallel execution. Modern DBMS are
based on this property to provide parallel loading. The CPU cost for parsing
and tokenizing can also be further reduced if the general-purpose file readers
used by the DBMS for bulk loading are replaced by custom, file-specific readers
that exploit information regarding the database schema [21] (e.g., number of
attributes per tuple, datatype of each attribute). Finally, PostgreSQL spends
8% of the time creating tuples and 9% of the time for logging related tasks. On
the other hand, MonetDB spends 5% of the loading time on the same steps.

3.6 Data Loading in the Presence of Constraints

Enforcing integrity constraints adds overheads to the data loading process. An
established rule of thumb claims that populating the database and verifying con-
straints should be separated and run as two independent phases. Following this
adage, database administrators typically drop all preexisting primary and for-
eign key constraints, load data, and add constraints back again to minimize the
total data loading time. This section investigates the performance and scalability
implications of primary-key (PK) and foreign-key (FK) constraint verification,
and tests conventional knowledge.

Primary Key Constraints. Figure 15 shows the total time taken to load
the TPC-H SF-10 dataset in the single-threaded case when (a) no constraints
are enabled, (b) primary key constraints are added before loading the data
(“Unified” loading and verification), (c) primary key constraints are added
after loading the data (“Post”-verification). All the experiments use an HDD as
the input source and DAS to store the database. We omit results for DBMS-
B because it lacks support for constraint verification, and for MonetDB because
its Unified variation enforces a subset of the constraints that this section bench-
marks2. We consider PK constraints as specified in the TPC-H schema.

Figure 15 shows that for both DBMS-A and PostgreSQL, enabling constraints
before loading data is 1.16× to 1.82× slower than adding constraints after load-
ing. The traditional rule of thumb therefore holds for single-threaded data load-
ing. A natural question that arises is whether parallel loading techniques chal-
lenge this rule of thumb.

DBMS-A supports explicit parallelization of both data loading and constraint
verification phases. Thus, DBMS-A can parallelize the Unified approach by load-
ing data in parallel into a database which has PK constraints enabled, and
2 https://www.monetdb.org/Documentation/SQLreference/TableIdentityColumn.

https://www.monetdb.org/Documentation/SQLreference/TableIdentityColumn

112 A. Dziedzic et al.

parallelize the Post approach by performing parallel data loading without
enabling constraints and then triggering parallel PK constraint verification. Post-
greSQL is unable to independently parallelize constraint verification. Thus, the
Post approach for PostgreSQL performs parallel data loading (using PCOPY)
and single-threaded constraint verification.

Figure 16 shows the total time taken to load the database using 16 physical
cores. Comparing Figs. 15 and 16, the following observations can be made:

Fig. 15. Single-threaded loading in the
presence of PK constraints.

Fig. 16. Parallel loading in the presence
of PK constraints.

– Parallel loading reduces the execution time of both Unified and Post
approaches for both DBMS (4.08× under PCOPY, 2.64× under DBMS-A).

– The conventional rule of thumb is no longer applicable to both DBMS shown
in Fig. 16: While Post provides a 2.14× reduction in loading time over Unified
under DBMS-A, the trend reverses under PostgreSQL as Unified outperforms
Post by 19%. The reason is that the Post configuration for PostgreSQL per-
forms single-threaded constraint verification while Unified parallelizes loading
and constraint verification together as a unit.

– Despite outperforming Post, Unified is still 1.45× slower than the No-
Constraints case for PostgreSQL. Similarly, Post is 1.34× slower than No-
Constraints for DBMS-A. The PostgreSQL slowdown is due to a cross inter-
action between write-ahead logging and parallel index creation; Fig. 17 shows
the execution time of No-Constraints and Unified over PostgreSQL when log-
ging is enabled/disabled. DBMS-A lacks support for an explicit logging deac-
tivation, therefore it is not presented. Logging has minimal impact in the
absence of constraints, but it plays a major role in increasing execution time
for Unified. In the presence of a PK constraint, PostgreSQL builds an index
on the corresponding attribute. As multiple threads load data into the data-
base, the index is updated in parallel, and these updates are logged. Profiling
revealed that this causes severe contention in the log manager as multiple
threads compete on latches.

Foreign Key Constraints. Figure 18 shows the time taken to load the TPC-
H dataset in the single-threaded case when both PK and FK constraints are
enabled. Comparing Figs. 15 and 18, it is clear that FK constraints have a sub-
stantially larger impact on loading time compared to PK constraints. Unified is

DBMS Data Loading: An Analysis on Modern Hardware 113

Fig. 17. Effect of logging in PostgreSQL. Fig. 18. Single-threaded loading in the
presence of FK constraints.

7.8× and 6.1× slower under PostgreSQL and DBMS-A when the systems per-
form FK checks as well, compared to 1.38× and 2.1× when they only perform
PK checks.

Figure 19 shows the time it takes to enforce FK constraints in parallel. Unlike
the PK case, each approach tested benefits differently from additional paral-
lelism. While the Unified approach benefits from a 4× reduction in loading
compared to the single-threaded case for PostgreSQL, it fails to benefit at all
for DBMS-A. However, the Post approach benefits from parallelism under both
systems; DBMS-A and PostgreSQL achieve a 3.45× and 1.82× reduction in
loading time respectively. In addition, similarly to the PK case, disabling log-
ging has significant impact on loading time: Unified (No Log) is 1.73× faster
than the logging approach.

Fig. 19. Parallel loading in the presence
of FK constraints.

Fig. 20. Re-organizing input to facilitate
FK validation.

The conventional rule of enforcing constraints after data has been loaded is
again only applicable under specific scenarios: Under DBMS-A, Post is indeed
the only approach to scale and thus, the rule of thumb holds. Under PostgreSQL,
Post lags behind Unified (NoLog) by 1.12×.

In total, adding constraint verification to the loading process increases time
by 1.43× under DBMS-A and 5.1× under PostgreSQL for the parallel case. We
profiled PostgreSQL with logging disabled to identify the root cause of per-
formance drop; latching was the reason. PostgreSQL implements foreign keys as
triggers, therefore each record insertion into a table fires a trigger which performs
a select query on the foreign table to verify that the insertion does not violate

114 A. Dziedzic et al.

the FK constraint. Such selections acquire a Key-Share lock on the target record
to preserve consistency. As multiple threads load data into the database, they
compete over the latch (spin lock) that must be acquired as a part of Key-Share
locking. This contention causes performance deterioration.

Reducing Contention. One way to reduce contention is to modify the DBMS
by implementing more scalable locks. An alternative that this study adopts is
to avoid contention by re-organizing the input. Specifically, we partition the raw
data of the “child” table so that any records having an FK relationship with the
same “parent” record are grouped together within a partition. Therefore, two
threads loading two different partitions will never contend over latches while
acquiring Key-Share locks.

Figure 20 shows the speedup achieved when loading the TPC-H lineitem table
using the Unified approach over partitioned input data, compared to the case
when the input is not partitioned. In the partitioning case, we split lineitem in
N chunks, one per thread, such that two records in different partitions will never
refer to the same parent record in the supplier table. In cases of low contention
(1–4 threads), speedup is marginal. When multiple threads are used to load the
input data, the input partitioning strategy yields up to a 1.68× reduction in
loading time.

Summary. The traditional rules of thumb for loading data with constraints have
to be updated. This section showed that enforcing constraints during loading
(i.e., the Unified approach) offers performance which is competitive to applying
constraints after loading the data (the Post approach), and even outperforms
it in almost all cases. Besides the performance benefits, the Unified approach
enables a DBMS to be kept online while loading data, compared to the Post
approach which requires the DBMS to be taken offline. Thus, administrators
should be wary of these trade offs to optimize bulk loading.

In addition, it is time to refactor the loading pipeline in traditional DBMS.
The loading pipeline is typically implemented over the same code base that han-
dles single-record insertions and updates, therefore parallelizing loading exter-
nally using several client threads results in latch contention in several DBMS
subsystems like the lock and log managers. Instead, DBMS should make bulk
loading a first-class citizen and develop a code path customized for loading. With
such changes, the loading time can be substantially reduced further even in the
presence of constraints, all while the DBMS remains online during data loading.

4 Related Work

As the growth of collected information has turned data loading into a bottleneck
for data analysis tasks, researchers from industry and academia have proposed
ideas to improve the data loading performance and in some cases to enable data
processing without any requirement for data loading. This section briefly reviews
this body of related work.

DBMS Data Loading: An Analysis on Modern Hardware 115

Bulk loading. Numerous approaches examine ways to accelerate data loading.
Starting from general-purpose approaches, the authors of [10] introduce the idea
of partitioning the input data and exploiting parallelism to load the data parti-
tions faster. Instant loading [24] presents a scalable bulk loader for main-memory
systems, designed to parallelize the loading phase of HyPer [22] by utilizing vec-
torization primitives to load CSV datasets as they arrive from the network. It
applies task- and data- parallelization on every stage of the data loading phase to
fully leverage the performance of modern multi-core CPUs and reduce the time
required for parsing and conversion. Disk-based database systems can also ben-
efit from such vectorized algorithms to reduce the CPU processing cost. Sridhar
et al. [26] present the load/extract implementation of dbX, a high performance
shared-nothing database system that can be deployed on commodity hardware
systems and the cloud. To optimize the loading performance the authors apply
a number of techniques: (i) asynchronous parallel I/O (aio) for read and write
operations, (ii) forcing every new load to begin at a page boundary and using
private buffers to create database pages to eliminate lock costs, (iii) using a min-
imal WAL log, and (iv) forcing worker threads to check constraints on column
values.

Other related works offer specialized, domain-specific solutions: The authors
of [9,28] consider the problem of bulk loading an object-oriented DBMS, and
focus on issues such as inter-object dependencies. Bulk loading for specialized
indexing structures is also an active research area [14,25]. Finally, the authors
of [12] put together a parallel bulk loading pipeline for a specific repository of
astronomical data.

Querying external data. Motivated by the blocking nature of data loading,
vendor lock-in concerns, and the proliferation of different data formats, numerous
works advocate launching queries directly over raw data. Multiple DBMS allow
SQL queries over data files without loading them a priori. Such approaches,
such as the External tables of Oracle and the CSV Engine of MySQL, tightly
integrate data file accesses with query execution. The integration happens by
“linking” a data file with a given schema and by utilizing a scan operator with
the ability to access data files and create the internal structures (e.g., tuples)
required from the query engine. Still, external tables lack support for advanced
database features such as DML operations, indexes or statistics.

Speculative loading [13] proposes an adaptive loading mechanism to load
data into the database when there are available system resources (e.g., disk
I/O throughput). Speculative loading proposes a new database physical oper-
ator (SCANRAW) that piggybacks on external tables. Adaptive loading [15]
was presented as an alternative to full a priori loading. The main idea is that
any data loading operations happen adaptively and incrementally during query
processing and driven by the actual query needs. NoDB [8] adopts this idea and
extends it by introducing novel data structures to index data files, hence making
raw files first-class citizens in the DBMS and tightly integrating adaptive loads,
caching, and indexing. RAW and Proteus [19–21] further reduce raw data access
costs by generating custom data access paths at runtime via code generation.

116 A. Dziedzic et al.

Data vaults [17] aim at a symbiosis between loaded data and data stored in
external repositories. Data vaults are developed in the context of MonetDB and
focus on providing DBMS functionality over scientific file formats, emphasizing
on array-based data. The concept of just-in-time access to data of interest is
further extended in [18] to efficiently handle semantic chunks: large collections
of data files that share common characteristics and are co-located by exploiting
metadata that describe the actual data (e.g., timestamps in the file names).

5 Conclusion

Data loading is an upfront investment that DBMS have to undertake in order to
be able to support efficient query execution. Given the amount of data gathered
by applications today, it is important to minimize the overhead of data loading
to prevent it from becoming a bottleneck in the data analytics pipeline.

This study evaluates the data loading performance of four popular DBMS
along several dimensions with the goal of understanding the role that various
software and hardware dimensions play in reducing the data loading time of
several application workloads. Our analysis shows that data loading can be par-
allelized effecively, even in the presence of constraints, to achieve a 10× reduction
in loading time without changing the DBMS source code. However, in order to
achieve such improvement, administrators need to be cognizant of the fact that
conventional wisdom that applies to single-threaded data loading might no longer
hold in for parallel loading under some circumstances.

Despite such improvement, we still find that most of the systems are not able
to fully utilize the available CPU resources or saturate available storage band-
width. This suggests there is still room for improving the data loading pipeline.
Our analysis reveals that moving forward, DBMS designers should refactor the
data loading pipeline by using a dedicated code base for bulk loading to avoid
latch contention in various subsystems. While some systems do use such tech-
niques when the database can be taken offline, we believe that it is necessary
to apply the same principles to load data while keeping the database online in
order to eliminate DBMS down time.

Acknowledgments. This work is partially funded by the EU FP7 Programme (ERC-
2013-CoG) under grant agreement number 617508 (ViDa), and the EU FP7 Programme
(FP7 Collaborative project) under grant agreement number 317858 (BigFoot).

References

1. MonetDB. http://www.monetdb.org/
2. PostgreSQL. https://www.postgresql.org/
3. SkyServer project. http://skyserver.sdss.org
4. Symantec Enterprise. https://www.symantec.com/
5. TPC-C Benchmark: Standard Specification. http://www.tpc.org/tpcc/
6. TPC-DS Benchmark: Standard Specification. http://www.tpc.org/tpcds/

http://www.monetdb.org/
https://www.postgresql.org/
http://skyserver.sdss.org
https://www.symantec.com/
http://www.tpc.org/tpcc/
http://www.tpc.org/tpcds/

DBMS Data Loading: An Analysis on Modern Hardware 117

7. TPC-H Benchmark: Standard Specification. http://www.tpc.org/tpch/
8. Alagiannis, I., Borovica, R., Branco, M., Idreos, S., Ailamaki, A.: NoDB: efficient

query execution on raw data files. In: SIGMOD (2012)
9. Amer-Yahia, S., Cluet, S.: A declarative approach to optimize bulk loading into

databases. ACM Trans. Database Syst. 29(2), 233–281 (2004)
10. Barclay, T., Barnes, R., Gray, J., Sundaresan, P.: Loading databases using dataflow

parallelism. SIGMOD Record 23(4), 72–83 (1994)
11. Baru, C., Bhandarkar, M., Nambiar, R., Poess, M., Rabl, T.: Benchmarking big

data systems and the bigdata top100 list. Big Data 1(1), 60–64 (2013)
12. Cai, Y.D., Aydt, R.A., Brunner, R.: Optimized data loading for a multi-terabyte

sky survey repository. In: SC2005, p. 42 (2005)
13. Cheng, Y., Rusu, F.: Parallel in-situ data processing with speculative loading. In:

SIGMOD (2014)
14. den Bercken, J.V., Seeger, B.: An evaluation of generic bulk loading techniques.

In: VLDB, pp. 461–470 (2001)
15. Idreos, S., Alagiannis, I., Johnson, R., Ailamaki, A.: Here are my data files. Here

are my queries. Where are my results? In: CIDR (2011)
16. Imhoff, C., Galemmo, N., Geiger, J.: Mastering Data Warehouse Design, 2nd edn.

Wiley Publishing Inc., Indianapolis (2003)
17. Ivanova, M., Kersten, M.L., Manegold, S.: Data vaults: a symbiosis between data-

base technology and scientific file repositories. In: Proceedings of International
Conference on Scientific and Statistical Database Management, June 2012

18. Kargin, Y., Kersten, M.L., Manegold, S., Pirk, H.: The DBMS - your big data
sommelier. In: ICDE (2015)

19. Karpathiotakis, M., Alagiannis, I., Ailamaki, A.: Fast queries over heterogeneous
data through engine customization. PVLDB 9(12), 972–983 (2016)

20. Karpathiotakis, M., Alagiannis, I., Heinis, T., Branco, M., Ailamaki, A.: Just-
in-time data virtualization: lightweight data management with ViDa. In: CIDR
(2015)

21. Karpathiotakis, M., Branco, M., Alagiannis, I., Ailamaki, A.: Adaptive query
processing on RAW data. PVLDB 7(12), 1119–1130 (2014)

22. Kemper, A., Neumann, T.: HyPer: a hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In: ICDE (2011)

23. Kimball, R., Ross, M.: The Data Warehouse Toolkit: The Complete Guide to
Dimensional Modeling, 2nd edn. Wiley, New York (2002)

24. Mühlbauer, T., Rödiger, W., Seilbeck, R., Reiser, A., Kemper, A., Neumann, T.:
Instant loading for main memory databases. Proc. VLDB Endow. 6(14), 1702–1713
(2013)

25. Papadopoulos, A., Manolopoulos, Y.: Parallel bulk-loading of spatial data. Parallel
Comput. 29(10), 1419–1444 (2003)

26. Sridhar, K.T., Sakkeer, M.A.: Optimizing database load and extract for big data
era. In: Bhowmick, S.S., Dyreson, C.E., Jensen, C.S., Lee, M.L., Muliantara, A.,
Thalheim, B. (eds.) DASFAA 2014. LNCS, vol. 8422, pp. 503–512. Springer, Cham
(2014). doi:10.1007/978-3-319-05813-9 34

27. Vassiliadis, P., Simitsis, A.: Near real time ETL. In: Kozielski, S., Wrembel, R.
(eds.) New Trends in Data Warehousing and Data Analysis. Annals of Information
Systems, vol. 3, pp. 1–31. Springer, London (2009)

28. Wiener, J.L., Naughton, J.F.: OODB bulk loading revisited: the partitioned-list
approach. In: VLDB, pp. 30–41 (1995)

http://www.tpc.org/tpch/
http://dx.doi.org/10.1007/978-3-319-05813-9_34

Locality-Adaptive Parallel Hash Joins
Using Hardware Transactional Memory

Anil Shanbhag(B), Holger Pirk, and Sam Madden

MIT CSAIL, Cambridge, USA
{anil,holger,madden}@csail.mit.edu

Abstract. Previous work [1] has claimed that the best performing
implementation of in-memory hash joins is based on (radix-)partitioning
of the build-side input. Indeed, despite the overhead of partitioning, the
benefits from increased cache-locality and synchronization free paral-
lelism in the build-phase outweigh the costs when the input data is
randomly ordered. However, many datasets already exhibit significant
spatial locality (i.e., non-randomness) due to the way data items enter
the database: through periodic ETL or trickle loaded in the form of
transactions. In such cases, the first benefit of partitioning — increased
locality — is largely irrelevant. In this paper, we demonstrate how hard-
ware transactional memory (HTM) can render the other benefit, freedom
from synchronization, irrelevant as well.

Specifically, using careful analysis and engineering, we develop an
adaptive hash join implementation that outperforms parallel radix-
partitioned hash joins as well as sort-merge joins on data with high spa-
tial locality. In addition, we show how, through lightweight (less than 1%
overhead) runtime monitoring of the transaction abort rate, our imple-
mentation can detect inputs with low spatial locality and dynamically
fall back to radix-partitioning of the build-side input. The result is a hash
join implementation that is more than 3 times faster than the state-of-
the-art on high-locality data and never more than 1% slower.

1 Introduction

As the clock rate of processor cores has stagnated, parallelization has become
the primary means to saturate the increasing memory bandwidth of modern
computers. Fortunately, in the field of data management, many problems have
efficient data-parallel solutions. In particular analytical queries can often satu-
rate the bandwidth using horizontal partitioning of the input and parallelized
computation by different cores on each partition, followed by merging of results.

This approach works particularly well, when the result is small and the merge
trivial, as in operations such as grouped aggregation with few groups.

When the result is large, as, e.g., in the case of hash joins the balance shifts:
the overhead of partitioning and/or merging may well become the most expensive
step. One way to avoid this overhead is to update the hash table in-place. Doing
so requires the use of locks or atomic instructions during inserts, which, unfor-
tunately, also introduces significant overhead. Which of these two approaches is
c© Springer International Publishing AG 2017
S. Blanas et al. (Eds.): ADMS 2016/IMDM 2016, LNCS 10195, pp. 118–133, 2017.
DOI: 10.1007/978-3-319-56111-0 7

Locality-Adaptive Parallel Hash Joins Using HTM 119

Fig. 1. Sharing vs. partitioning in hash-building

better is not immediately evident and depends on spatial locality in the under-
lying data.

Such locality may stem from many real-world effects such as, (a) periodic bulk
updates (common in data warehouses) which create locality in date attributes or
an attribute that is correlated with the load order (e.g., physical location), (b)
trickle loading through transactions in OLTP systems which also creates locality
in date columns, (c) automatically assigned IDs which are often monotonically
increasing counters or (d) the occurence of temporarily hot items (e.g., star wars
action figures before movie releases). In fact, spatial locality, is one of the most
commonly exploited aspects of code and data in computer architecture design.

To illustrate the relative costs of these two approaches depending on the
degree of spatial locality, we compared a state-of-the-art, hand-optimized radix-
based hash-building phase [1] to an implementation using a shared hash table
with linear probing, that is protected using atomic instructions (both implemen-
tations use identity hashing). To isolate the effects of insert locality, the input
data keys are unique (from 1 to 227) but (knuth-)shuffled within a sliding window
(the authors of [1] study the case of fully shuffled data, i.e., window size equal to
input data size). By varying the size of the window, we can study the sensitiv-
ity to locality in the input data. Figure 1 shows that for small shuffle windows,
the shared hash table approach using atomic instructions (“Atomic”) performs
slightly better than the radix-based partitioning approach (“PRJ”). For larger
shuffle windows, we observe the typical effects of poor cache locality: a staircase
like pattern that exposes the sizes of the CPU’s caches. The (radix-)partitioned
implementation is robust against poor locality because the partitioning creates
locality using a hardware-conscious implementation.

However, neither implementation performs close to the memory bandwidth,
which gives hope for an even faster implementation. To illustrate this, we imple-
mented a third variant: insert values into the shared hash table without pro-
tecting the buckets (“NoCC”). Since the values are unique and there are no
collisions, this implementation yields the correct result in this case (although,
of course, this would not be true in general). The graph shows that this

120 A. Shanbhag et al.

implementation outperforms the others by more than a factor 3. NoCC comes
very close to the time taken by memcopy to write the same amount of data. While
this illustrates the overhead of the existing approaches, unfortunately, it is not
easily generalizable to cases in which there are conflicts.

Fortunately, there is a third technique that can achieve correctness and per-
formance close to the “NoCC” approach by exploiting the hardware transactional
memory (HTM) features in modern (Intel) processors (and, hopefully, AMD
soon). In this paper, we explore the potential of this (relatively new) technology
for the purpose of parallel hash-joins. In particular:

– We extensively study the effect of locality and transaction size on the perfor-
mance of HTM-protected parallel hash-building.

– We devise a hash-building technique that dynamically balances the per-
transaction overhead and the abort rate that comes with larger transactions.

– We use the number of aborted transactions as an indicator of poor locality
allowing us to adaptively fall back to the partitioning implementation [1] when
appropriate.

This results in a hash join implementation that outperforms existing ones by
about a factor 3 when spatial locality in the input is high and never performs
significantly (i.e., more than 1%) worse than the state of the art.

We structured the rest of this paper as follows: in Sect. 2, we discuss primitives
to ensure memory consistency. In Sect. 3, we present the current state of the art
in parallel hash joins. In Sect. 4, we develop our approach to parallel hash joins
by step-by-step analyzing and addressing the relevant bottlenecks. This section
also contains our evaluation. We conclude in Sect. 5.

2 Synchronization Primitives

Building a hash table in parallel involves concurrent inserts into to the table. In
this section, we briefly review the different means used to ensure correct results:
transactional memory, atomic instructions and input partitioning.

2.1 Transactional Memory

The key idea of a transaction is that multiple operations can be combined into
a unit that is executed atomically and in isolation from others. Multiple trans-
actions can be executed concurrently as long as they affect different objects -
otherwise one of the transactions fails. Transactional memory is the application
of this concept to the reading and writing of a system’s memory, thus provid-
ing an alternative to fine-grained locking which is more expensive and prone to
deadlocks.

The concept of Transactional Memory existed for a long time [4]. Shavit and
Touitou [12] are credited for the first Software Transactional Memory (STM)
proposal. Due to entirely software controlled validation overhead, STM causes
significant slowdown during execution and found little resonance in the database

Locality-Adaptive Parallel Hash Joins Using HTM 121

systems community. Only recently hardware vendors, such as Intel [14] and IBM
[5] realized transactional memory support in hardware (HTM).

While IBM relies on dedicated HTM components, Intel extended the CPU’s
cache-coherence infrastructure, based on the well known MESI protocol [3], to
enable HTM. In MESI, each cache line can be in one of the four states: modified,
exclusive, shared or invalid. Different caches are kept in-sync by snooping each
other’s load and store requests. For example, when a core updates a cache line
which is also present on other caches in shared state, the local state is updated
to modified and other caches update their state for the cache line to invalid.
The key idea used to implement HTM in Haswell is to use the L1 cache as a
buffer for executing transactions. All the updates made by the transaction hap-
pen locally in the L1 cache and the changes are propagated to main memory
only if the transaction successfully commits. Since the cache coherence proto-
col is an integral part of multicore CPUs and commits/aborts require no extra
communication across cores, the transactional execution has very little overhead.

The downside of using HTM in Haswell is that the transaction size is limited
to size of L1 cache. Even though this limitation imposes constraints on the type
of transactions that can be executed, it has caught the attention of database
researchers due to its low overhead. The HTM support has been used to imple-
ment database transactions in in-memory databases [7,13]. To the best of our
knowledge, ours is the first work that explores using HTM for adaptive parallel
hash-building in hash joins.

2.2 Atomic Instructions

Another means to provide mutual exclusion without using a lock is using atomic
instructions. Atomic instructions allow the programmer to concurrently access
and update variables of basic data types. Like HTM, atomic instructions rely on
the MESI cache coherence protocol to provide atomicity and isolation. When a
core wishes to read a variable, the corresponding cache line is loaded in shared
mode. On a store request, the core sets the cache line to modified and the
cache line gets invalidated on the other cores. A more expensive operation like
compare-and-swap requires loading the cache line as exclusive before comparing
and swapping.

Spinlocks are implemented using atomic instructions and require one atomic
operation to set the lock variable and one store to update the variable. Since join
columns are often integers or dictionary-encoded strings, atomic instructions can
be used to directly update the hash table entries, making it much faster than
using spinlocks in low-contention scenarios.

2.3 Partitioning

Consistency primitives are needed in the event of concurrent data access to the
same address. An alternative approach is to partition the input such that no
such conflicts arise. While partitioning itself can be expensive, there is no need

122 A. Shanbhag et al.

for synchronization in the processing phase. In particular for the construction of
hashes, this technique has been applied to great effect.

3 State-of-the-Art Hash-Building

One of the fundamental differences when comparing a database’s hash-table
requirements to those of generic hash-tables implementations stems from the
bulk-processing nature of database query processing: where generic hash-tables
have to guarantee consistent reads after every insert, database query processing
usually only requires consistency at the end of the build process. For that reason,
few databases incorporate off-the-shelf hash-table implementations.

Consequently, hash building has been extensively studied in the database
literature in the context of hash joins. Two main lines of thought exist: the first
argues that the best performance can be achieved by using a hardware-conscious
(radix) partitioning to minimize cache misses during the build-phase [6]. The
second approach holds that a hash-build implementation can be efficient by
using a single shared hash table across threads and synchronizing using locks [2].
Through careful evaluation, Balkesen et al. [1] showed that the radix partitioning
approach performs significantly better than the shared hash table approach for
fully shuffled data. Since this approach is the current state-of-the-art (and also
our prime competitor), we discuss it in more detail in the following.

3.1 Radix Partitioned Hash Joins

The main insight motivating radix partitioning based hash-building is that when
the hash table is larger than the cache size, almost every insert into the hash table
causes a cache miss. This can be avoided by pre-partitioning the data using an
approximation of the hash-function and building a hash-table per partition, thus
improving insert locality. Since the partitions are filled sequentially, the memory
access locality in the partitioning phase is improved. Manegold et al. [9] noted
that since each partition ends up residing on a different memory page, having a
very high fanout (=inputSize/L1Size) results in excessive TLB thrashing. To
circumvent this, the input data is partitioned in multiple passes (two is usually
sufficient). Each pass has a fanout less than or equal to the number of TLB
entries. Each pass looks at a different set of bits from the hashed value, hence
the name Radix Partitioning.

In addition to its cache-friendliness, the radix partitioning approach is easily
parallelized. The input relation is divided into horizontal partitions. In the first
pass, each part is scanned independently to generate a histogram over the input
data, so that the exact output size is known per thread per partition. A single
contiguous output array is allocated. A synchronization barrier is used to indi-
cate the end of first pass, at which point each thread computes the prefix-sum
over the relevant histograms to find the exact offset of each partition it writes to.
Finally, the threads execute a second pass over its partition of the data to write
the tuples to the right place in the output array, without any synchronization.

Locality-Adaptive Parallel Hash Joins Using HTM 123

We end up having two passes over data per radix partition pass. For our evalu-
ation dataset, we require two radix partitioning passes i.e. four passes in total.

3.2 Using Atomics

To access the suitability of atomic instructions for parallel hash-building, we
implemented a shared hash table using the built-in C++11 atomics. The imple-
mentation performs linear probing on insert and a single catch-all overflow bucket
that is used after checking a configurable number of slots. Note that, while it
is possible to implement a lock-free hash-table with bucket chaining, the build-
time overhead (most importantly creating an intermediary copy of a bucket) is
much higher than the catch-all scheme we implemented. The implementation is
mostly straight forward with a single optimization: we first use an atomic read
to ensure the slot is empty, following which a compare-and-swap is used to insert
the tuple. The swap might fail if the slot has been filled by another thread since
the read was performed. We found that the benefits of cheap checking to ensure
a slot is free outweighs the cost for occasionally failing to insert.

3.3 Hash-Function Design

Naturally, the selection of an appropriate hash-function is crucial when designing
a hash-table. The desirable property of uniform output distribution has to be
balanced against locality preservation and computational efficiency. The design
space ranges from cryptographic hash functions [11] that have near-perfect out-
put through efficient hashes such as Murmur Hashing1 to simple modulo hash-
ing. Different in-memory database systems took different decisions to address
this question: while HyPeR and Pivotal Gemfire/Apache Geode aim for skew-
resilience using Murmur Hashing, MonetDB implements the locality-preserving
and cheap modulo hashing. In this paper, we limit ourselves to modulo hash-
ing. We leave the development of a hybrid hash-function (preserving cache-line
locality while mitigating global skew) to future work.

4 Exploiting Locality Using HTM

The hypothesis we want to establish and substantiate in this section is that is
possible to develop a single pass hash table implementation that, given enough
locality in the input data, becomes (close-to) memory bandwidth bound. While
the ultimate goal of our efforts is an adaptive hash-join, we construct it “bottom
up”: by analyzing the impact of the relevant hardware- and data-characteristics.
We analyze the effects and costs of Virtual Memory (Sect. 4.2), Atomic Instruc-
tions (Sect. 4.3), HTM overhead (Sect. 4.4) and the impact of locality (Sect. 4.5).
Only after establishing the importance of these factors, do we develop our final
contribution (Sects. 4.6 to 4.8): a hash-join implementation that adapts to the

1 https://sites.google.com/site/murmurhash.

https://sites.google.com/site/murmurhash

124 A. Shanbhag et al.

degree of locality in the underlying data, using an HTM-based approach for
high-locality and the state-of-the-art partition-based approach [1] for low-locality
data.

The key ingredient of our approach is the use of Intel’s Restricted Transac-
tional Memory (RTM). Before diving into the experiments and implementation,
however, let us briefly discuss our experimentation setup as well as the data-
structure we use for the hash-table.

4.1 Setup

To ensure comparability with previous work, we adopted the same workload
as previous work [1,2]: unique keys (32 bit) carrying a 32 bit payload with
every tuple finding exactly one join-partner (AppendixB contains the results for
non-unique keys including conflict handling). Note that, while there is currently
some discussion about the prevalence of this specific case in practical applica-
tions, it constitutes a harder challenge than the case of larger payloads in which
copy overhead dominates the costs. We also feel that, in particular in highly-
optimized, column-oriented databases, small payloads are the rule, rather than
the exception.

The parameter we are interested in is the locality of the input: where previous
work applied a global (knuth-)shuffle to the input, we slide window through the
array and shuffle one value in the window per slide step - the size of the window is
the primary parameter of our experiments. This allows us to create data locality
ranging from fully sorted (window size 1) to fully shuffled (window size equal to
input size).

The structure of our hash-table is similar to that of bucket-chaining based
hash table implementations [1,2]: insert conflicts are handled using buckets of
size three that are chained in a linked list on overflow. Later in Sect. 4.6 we
describe the full design with pseudocode. While bucket chaining is vulnerable
to inputs with a very high number of conflicts, we found that performance for
(non-unique) uniform random data is very similar to that of unique, shuffled
data (see Appendix B)

The experiments were run on a single socket Intel E3-1270 v5 @ 3.60 GHz
(Skylake with 4 Cores, 8 hardware threads) fully equipped with 64 GB DDR-
4 RAM (2133 MHz bus clock) running Ubuntu Linux 15.10 (Kernel 4.2.0-30).
The input sizes were 134 million tuples (227) on each side, fitting comfort-
ably in main-memory. All experiments were compiled using gcc 5.2.1 using the
“-O3-march=native” flags and we report the average of 5 runs.

An interesting aspect to study, would be the interplay of HTM and NUMA.
Unfortunately, multi-socket CPUs that reliably2 implement RTM only became
available in early 2016 - too late to be included in this study. We did, however,
find a number of relevant, hitherto undocumented, effects that we describe in
the following.

2 Earlier implementations suffered from a bug that caused Intel to deactivate the
feature in a microcode update.

Locality-Adaptive Parallel Hash Joins Using HTM 125

4.2 Interaction with Virtual Memory

The first effect we noticed when developing our approach is the fragility of Intel’s
transactional memory implementation with respect to the events that cause
transactions to abort. The hazardous effects of, e.g., the size of the working
set of the transaction or evictions due to associativity are well documented [14]
and are of little importance to us. However, in our experiments, we noticed an
effect that has substantial impact on our design: when accessing unmapped vir-
tual memory, transactions fail with no chance of success upon retry but without
indicating so using the respective status flags. This is due to the intricate inter-
play of restricted transactional memory and lazy physical page allocation. When
allocating zeroed-out memory using calloc, the Linux Kernel does not eagerly
allocate the memory and run a loop to initialize it. Instead, it maps all allocated
pages to a single, read-only page that is statically initialized to zero. Any write
to that page causes a page fault and subsequent copying of the read-only page
(copy-on-write). If the write is protected by a transaction, however, the page
fault immediately aborts the transaction without triggering the page fault. Con-
sequently, the read-only page is never copied and a retry of the transaction will
fail. This problem percolates to subsequent transactions on the page causing all
transactions to fail.

This effect has been reported in the context of updates to tree-indices [8]
and resolved by initializing pages using an atomic instruction before retrying a
transaction. In the case of hash-building, an alternative is to eagerly pre-fault
memory which avoids complex conflict handlers in the critical path. Unfortu-
nately this prevents some optimizations that are often applied to the process of
hash-building. Generously over-allocating the hash table is, e.g., an effective to
means deal with the unknown domain of input values. This optimization is no
longer feasible when the entire table has to be pre-faulted. We’re considering the
extension of our work to cases with unknown domains for future work.

4.3 Hardware Transactions vs. Atomics

To establish a baseline for the usefulness of hardware transactions, we started
by comparing them to their most direct competitor: atomic instructions. Note
that this comparison is not entirely apples to apples because Intel’s restricted
transactions are not guaranteed to succeed. However, we will show in the rest of
this section that, given enough locality, restricted transactions virtually always
succeed (fewer than one abort in 10,000 transactions) when protecting every
insert with its own transaction (denominated TS = 1).

In Fig. 2, we compare the cost of the two techniques in the extreme cases:
building a hash table using identity hashing on fully sorted or fully shuffled
data. The figure illustrates that protecting an insert using a hardware transac-
tion is, in fact, cheaper than using atomic instructions in both cases. This is to be
expected because Compare-and-Swap (used in atomic insert) is a more expensive
operation compared to an optimistic load and store. The reason for this lies in
the fact that the CPU has to guarantee that the write was actually performed.

126 A. Shanbhag et al.

Fig. 2. Transactional memory vs. atomic instructions

For that, it has to MESI-invalidate the cache line in all other cores and (poten-
tially) write it back to memory. This makes little difference in the sorted case
(since virtually no cache-lines are shared) but is substantial in the shuffled case
because cache-lines are frequently shared. However, using HTM is still signifi-
cantly more expensive than processing without concurrency control: around 5
times in the sorted case and 20% on shuffled data. Consequently, we, turn our
attention to means to reduce the per-transaction cost next.

4.4 Transaction Overhead

It is natural to expect some overhead for setting up a transaction. This overhead
is, of course, relative to the cost for other operations. As established in Fig. 1
on page 2, locality in the input data, which translates into access locality for
the hash-buckets, is arguably the determining factor for overall performance.
Consequently, we assessed the overhead to protect hash-inserts by transactions
for the two extreme input data distributions: sorted (optimal locality) and fully
shuffled (least locality3), while varying the number of inserts per transaction.
The per-transaction overhead can, thus, be amortized over multiple inserts. The
results (Fig. 3a and b, respectively) show that, in the presence of locality, the
overhead of setting up a transaction for every insert is almost 4x4 and becomes
apparent in the steep drop left of the plateau in Fig. 3a. The picture changes
when considering fully shuffled data: while the overhead is still significant, it is
no longer the dominating cost factor (cache misses are).

However, larger transactions increase the chance of transaction aborts even if
there are no actual conflicts at CPU word granularity: factors such as suboptimal
cache associativity and context switching which lead to L1 cache evictions lead
to aborts. This effect can even be observed in the sorted data case (Fig. 3a):
the abort rate starts to increase notably at around 64 inserts per transaction.
3 Note that fully shuffled unique data items have even worse locality than uniform

randomly generated (non-unique) data items because there is zero probability for
re-accessing a data item.

4 The ratio is even higher for smaller datatypes.

Locality-Adaptive Parallel Hash Joins Using HTM 127

(a) Sorted Data (b) Fully Shuffled Data

Fig. 3. Assessing per transaction overhead

When the active set size grows beyond the size of the L1 cache, all transactions
abort - as expected.

For fully shuffled data (Fig. 3b), the abort rate increases much earlier as the
inserts are spread out over many cache lines, which amplifies the active set size
and increases the probability of false conflicts. This naturally raises the question
of the impact of locality on performance and abort rate, which we study in the
following.

4.5 Impact of Locality

To assess the impact of locality on the build performance and abort rate we
applied the same shuffle that was used to create Fig. 1 to the input data and
evaluated the HTM-based implementation. In addition to the shuffle window
size, we varied the size of the transactions and measured build time (Fig. 4a) and
abort rate (Fig. 4b). Figure 4a re-iterates the point that, given enough locality,
larger transactions perform better. The point of the (inevitable) cost explosion,
however, is only slightly influenced by the transaction size.

(a) Time (b) Aborts

Fig. 4. Varied size and shuffle window

128 A. Shanbhag et al.

Figure 4b, on the other hand, shows that the abort rate is strongly influenced
by the size of the transactions (as expected): transactions of size 1 rarely fail
when locality is high (left side of the chart) while larger transactions have a
significantly higher chance of failing. With less locality (right side of the chart),
the abort rate for all transaction sizes increases up to around two orders of
magnitude.

Note that these experiments did not include the retrying of transactions
and would, thus, not guarantee that values to actually get inserted into the
hash table. We will discuss an implementation without that shortcoming in the
following.

4.6 Putting it Together

The last step to providing a full hash-build implementation is to develop a strat-
egy to deal with aborted transactions. For that purpose, we simply record the
input position range associated with the aborted transactions in a preallocated
buffer while building the hash table. We also record the tuples that landed in
full buckets in an overflow buffer. When the build-phase is complete, we per-
form a wrap-up phase that traverses the abort- and overflow-buffers, resolves
the positions and inserts the values into the hash table. Note that the bucket
chaining happens only in the wrap-up phase, we do not do bucket chaining in
the transactions to keep their cache line footprint small. The pseudocode of the
full implementation is given in Fig. 5.

We found that it is not worth parallelizing the wrapup phase due to its
unique characteristics: for high-locality data, its cost are insignificant relative to
the overall runtime because there are few failed transactions. For low-locality
data, the cost of the wrap-up phase is dominated by cache- and TLB-thrashing,
leaving even a single CPU core mostly idle.

With the wrap-up in place, the hash-build implementation is complete. As
established, however, optimal performance hinges on the appropriate selection of
the transaction size. To remove transaction size as a tuning parameter we adopt
a simple adaptation strategy: we start with a transaction size of 16, monitor
the abort rate and define a high- and a low-watermark. When the abort rate
exceeds the high-watermark we half the transaction size, when it drops below
the low-watermark we double it. We found 0.4% to be a good low and 2% a good
high watermark and check every 16 × 1024 inserts.

Figure 6 shows the total runtime of the static transaction sizes as well as our
adaptive approach (TSize-Adaptive). Note how the adaptive approach matches
the performance of the best static case and occasionally outperforms them,
selecting optimal parameters between the static values.

We experimented with varying number of threads and noticed that the per-
formance does not improve after 3 threads, indicating that the application is
memory-bound. While hyper-threading is expected to increase cache contention,
we did not observe any significant difference in performance with 4 thread (one
per core) and using all 8 threads. This is because the adaptive approach used in

Locality-Adaptive Parallel Hash Joins Using HTM 129

struct Bucket:

Tuple tuples[3]

int count

int nextBucketIndex

HashTable table

table.buckets = Bucket[ceil(numTuples/3)]

// Each thread gets an input range [start,end)

for (i = start; i<end; i += transactionSize):

status = _xbegin()

if status == _XBEGIN_STARTED:

for (j = i; j < i + transactionSize; j++):

slot = hash(tuple[j].key)

for (k = slot; k < slot + probeLength; k++):

if table.buckets[k] is not full:

table.buckets[k].add(tuple); break

if not inserted:

overflow.add(tuple)

xend()

else: // Transaction Failed

failedTransactionRanges.add(i)

// Wrap-Up

for (i in failedTransactionRanges)

// Insert tuples[i] to tuples[i + transactionSize]

for (i in overflow)

// Insert overflow[i]

Fig. 5. HTM-enabled hash-building

Fig. 6. Adaptive hash building (including wrap-up)

130 A. Shanbhag et al.

TSize-Adaptive adjusts the transaction size to keep the abort rates low and the
application remains memory-bound.

4.7 Fallback for Fully Shuffled Data

When there is sufficient locality in the data, our adaptive approach performs
best. However, for large shuffle windows, the radix-partitioned approach is still
more efficient. Fortunately, as can be see in Fig. 4b, the large shuffle windows
coincide with high transaction abort rates. We use this insight to develop a
hybrid approach that falls back to the radix-partitioned approach when it detects
poor locality. We implement this in a straight-forward manner: we use the first
16×1024 tuples of each thread for training and inspect the average abort rate at
the end of the training phase5. If the abort rate exceeds a threshold (we found
4% to be appropriate in our experiments), we fall back to the radix-partitioning
implementation. The training phase runs on a small subset of tuples and hence
the overhead (about 4ms when using 8 threads) is negligible. Figure 6 shows
how the adaptive approach with fallback (HTM-Adaptive) effectively adapts to
the data distribution. While our approach does not currently deal with skewed
data locality, the identical data structure format of the two approaches make
the development of a fully adaptive strategy straight forward.

4.8 Probing

To assess the impact of the presented optimizations on the performance of a
full join, we also evaluated performance including the probe phase (counting
the number of matches). Note that parallelizing the probe itself is usually not
difficult because it does not modify the hash table. However, probe performance
is, just as build performance, affected by data access locality. Just like the build,
the probe can, therefore benefit from a pre-partitioning step if the tuples are
partitioned according to their hashes (or an approximation thereof). Since this
effect is independent of the way the hash table is built, we only evaluated the
probe using input data with perfect locality (i.e., sorted input data).

In Fig. 7, we present the final result of our efforts: an adaptive hash-join imple-
mentation using HTM abort rate as runtime feedback variable. The figure illus-
trates the performance of the full join: build and probe (labeled HTM-Adaptive).
It shows that, while our implementation effectively falls back to partitioning the
input if locality is low, it outperforms the partitioned approach by more than
3× when locality is high.

For reference, we also included the results of a fully parallel sort-merge join
and the Non-Partitioned Join implementation that was used for comparison by
Balkesen et al. [1] (labeled “NPJ” in the figure).

The sort-phase of the sort-merge join is based on Timsort [10] which is
designed to work well an almost-sorted data. We observe that, only for data

5 We considered breaking it down by abort code but found no useful correlation (see
Appendix A).

Locality-Adaptive Parallel Hash Joins Using HTM 131

Fig. 7. Full hash join (build and probe)

that is perfectly sorted (shuffle window size equal to 1) does the sort-merge join
outperform our adaptive implementation.

The Non-Partitioned Join was implemented (by Balkesen et al.) using per-
bucket spinlocks. As apparent in Fig. 7, NPJ performs about 42% worse than
HTM for sorted data but degrades in performance once randomness (and thus
contention) increases. The reason is two-fold: firstly, the use of spinlocks instead
of HTM leads to a 14% slowdown. Second, in NPJ, the locks are co-located with
the tuples in the buckets which increases the memory footprint of the resulting
table. The HTM approach does not use locks, hence is able to fit 3 tuples per 32
byte bucket compared to 2 tuples in the case of NPJ, which results in another
25% speed-up. Finally, and most apparently, the implementation is not adaptive
which can be seen by the performance for inputs with low-locality.

5 Conclusion

Locality in input data is an important, yet often underutilized, factor when devel-
oping and selecting appropriate implementations of data management operators.
We demonstrated how the state-of-the-art parallel hash join implementations fail
to recognize and exploit locality of the input data. To mitigate that problem,
we developed an adaptive hash join implementation that uses hardware trans-
actional memory to protect inserts into a shared hash table. We recognized the
number of inserts per transaction as the most important performance factor
and adaptively tune this parameter at runtime. In addition, our implementation
recognizes input data with poor locality and automatically falls back to the cur-
rent state-of-the-art: parallel radix-partitioned hash joins. The result is a hash
join implementation that is more than 3 times faster than the state-of-the-art
on high-locality data and never more than 1% slower.

A Transaction Abort Breakdown

When studying the pseudocode of our approach in Sect. 4.6, a reader may note
that one might use the status code to determine the reason for aborted trans-
actions and use this as runtime feedback. Figure 8 shows a breakdown of the

132 A. Shanbhag et al.

reason for aborts observed with when running the TSize-Adaptive implementa-
tion (when varying the shuffle window size). Capacity aborts occur if transaction
working set exceeds L1 cache size or if more than A cache lines of the same cache
set are accessed, where A is the L1 cache associativity. Conflict abort happens
if two transactions read/write sets overlap. The main reason we cannot use this
information as runtime feedback is that most transaction aborts have return
code set to 0, i.e., giving no information about the reason for abort (RC = 0
line) and degree of noise is high for the other return codes.

Fig. 8. Reason for transaction abort Fig. 9. Processing uniform random data

B Non-unique Inputs

While we consider the problem of efficient conflict handling out of scope of this
paper, we still consider it important to establish that the presented techniques
do not prevent conflict handling. To illustrate this, consider Fig. 9 which cor-
responds to Fig. 7 run on uniform randomly generated integers in the domain
1 to n (the size of the input) which, naturally, includes duplicate values. As in
Fig. 7, the experiment is to perform the full join but only counting the number
of matches. As stated in Sect. 4, we use bucket-chaining to handle overflows of
the buckets and re-inserting to handle aborted transaction. The figure shows a
similar pattern to Fig. 7 but exposes a suboptimal configuration of the thresh-
old for switching to the radix-partitioned implementation. This indicates that a
conflict-aware fallback strategy may be worthwhile.

References

1. Balkesen, C., et al.: Main-memory hash joins on multi-core CPUs: tuning to the
underlying hardware. In: ICDE (2013)

2. Blanas, S., Li, Y., Patel, J.M.: Design and evaluation of main memory hash join
algorithms for multi-core CPUs. In: SIGMOD (2011)

3. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative App-
roach. Elsevier, Amsterdam (2011)

4. Herlihy, M., Moss, J.E.B.: Transactional memory: architectural support for lock-
free data structures. ACM (1993)

Locality-Adaptive Parallel Hash Joins Using HTM 133

5. Jacobi, C., Slegel, T., Greiner, D.: Transactional memory architecture and imple-
mentation for IBM system Z. In: MICRO (2012)

6. Kim, C., et al.: Sort vs. hash revisited: fast join implementation on modern multi-
core CPUs. In: VLDB (2009)

7. Leis, V., Kemper, A., Neumann, T.: Exploiting hardware transactional memory in
main-memory databases. In: ICDE (2014)

8. Makreshanski, D., Levandoski, J., Stutsman, R.: To lock, swap, or elide: on the
interplay of hardware transactional memory and lock-free indexing. Proc. VLDB
Endow. 8(11), 1298–1309 (2015)

9. Manegold, S., Boncz, P., Kersten, M.: Optimizing main-memory join on modern
hardware. In: TKDE (2002)

10. Peters, T.: Description of timsort. http://bugs.python.org/file4451/timsort.txt
11. Rogaway, P., Shrimpton, T.: Cryptographic hash-function basics: definitions, impli-

cations, and separations for preimage resistance, second-preimage resistance, and
collision resistance. In: Roy, B., Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp.
371–388. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25937-4 24

12. Shavit, N., Touitou, D.: Software transactional memory. Distrib. Comput. 10, 99–
116 (1997)

13. Tran, K.Q., Blanas, S., Naughton, J.F.: On transactional memory, spinlocks, and
database transactions. In: ADMS (2010)

14. Yoo, R.M., et al.: Performance evaluation of Intel transactional synchronization
extensions for high-performance computing. In: SC (2013)

http://bugs.python.org/file4451/timsort.txt
http://dx.doi.org/10.1007/978-3-540-25937-4_24

SwingDB: An Embedded In-memory DBMS
Enabling Instant Snapshot Sharing

Qingzhong Meng1(B), Xuan Zhou1, Shiping Chen2, and Shan Wang1

1 MOE Key Laboratory of DEKE,
Renmin University of China, Beijing 100872, China

mqz@ruc.edu.cn
2 CSIRO Data61, PO Box 76, Epping, NSW 1017, Australia

Abstract. Data transmission between an in-memory DBMS and a data
analytical program is usually slow, partially due to the inadequate
IPC support of modern operating systems. In this paper, we present
SWING, a novel inter-process data sharing mechanism of OS, which
allows processes to share physical memory through an instant system
call. Based on SWING, we develop an embedded in-memory DBMS
called SwingDB, which enables data analytical applications to access
databases in their own memory space, instead of resorting to traditional
inter-process communication. Extensive experiments were conducted to
demonstrate the advantage of such a DBMS-OS co-design.

1 Introduction

As the capacity of RAM keeps growing exponentially, it has become an important
instrument for big data processing. In the emerging paradigm of in-memory
computing, people prefer to store an entire database in RAM, and perform data
processing completely on RAM. This can substantially speed up the processes of
data manipulation and data analysis. However, most data analytical workflows
are multi-stage. They usually involves a number of data processing programs and
services that cooperate to generate results. In a typical case of data analysis, data
is usually stored in a DBMS; when an analytical process starts, it first issues
queries (e.g., in SQL) to the DBMS to retrieve required data; then, the data is
passed to a data analytical program to perform data preparation and statistical
analysis; finally, a data visualization program is used to present the analytical
results to the end user. Sometimes, large volume of data needs to be transmitted
across various programs and services. If data transmission is slow, as it always
is, it will obliterate the performance advantage of in-memory computing.

To the best of our knowledge, the mechanisms of inter-program data exchange
provided by today’s operating systems can hardly meet the performance require-
ment of in-memory computing. The IPC Mechanisms of FIFO and Socket appear
extremely slow, as they need to move data physically. While the shared memory
mechanism does not move data, the programs using shared memory have to deal
with space allocation and data synchronization on their own, which incurs extra
cost. On the one hand, when multiple programs are tied to a single piece of
c© Springer International Publishing AG 2017
S. Blanas et al. (Eds.): ADMS 2016/IMDM 2016, LNCS 10195, pp. 134–149, 2017.
DOI: 10.1007/978-3-319-56111-0 8

SwingDB: An Embedded In-memory DBMS 135

shared memory, they become tightly coupled, which may raise the cost of soft-
ware development and maintenance. On the other hand, it is sometimes unsafe to
allow applications to access the memory space of a DBMS – once an application
is malfunctioning, it may impair the integrity of the data.

In this paper, we introduce a new copy-on-write solution to inter-process data
sharing. It is fast and convenient. In contrast to shared memory, it enables loose
coupling between data processing programs, so that it matches today’s practice
of software engineering. We call our approach SWING, which analogizes the
transmission of data to how Tarzan swings from a tree to another. The memory
allocated by the SWING mechanism is called COW Memory, which is a type of
virtual memory with the following characteristics:

1. Two chunks of COW memory can be mapped to the same set of physical
memory pages, to share data.

2. Modifications on different chunks of COW memory (that share physical mem-
ory pages) are isolated through copy-on-write.

When a process wants to share data to another process, it can place the
data in a COW memory area and let the other process allocate another COW
memory area that is mapped to the same physical memory space. After the
allocation, both processes can see the same contents in their own COW memory
areas. This approach allows us to avoid physical movement of data. Afterwards,
the two processes can modify their own COW memory areas independently. A
copy-on-write mechanism makes sure that their modification should be invisible
to each other, so that no synchronization is required.

Based on SWING, we create a new in-memory DBMS called SwingDB.
SwingDB works as an embedded DBMS, such that each application operates on
a database in its own memory space, without incurring inter-process communica-
tion. Each database instance of SwingDB is completely placed in a COW memory
area, so that independent applications can share the snapshots of their databases
using the SWING mechanism. SwingDB is especially suitable to multi-stage in-
memory data processing, in which several loosely coupled programs cooperate
in performing data analysis.

We implemented the SWING mechanism in Linux1, and then constructed
our SwingDB system by re-engineering an open-source in-memory DBMS called
SuperSonic. We conducted experiments to characterize the performance of
SWING and SwingDB. We also compared SwingDB against traditional in-
memory DBMS, to demonstrate its suitability in in-memory data analytics.

The rest of the paper is organized as follows. Section 2 introduces the related
work. Section 3 presents the design and implementation of SWING. Section 4
introduces SwingDB and discusses its potential applications. Section 5 presents
the results of our experimental evaluation. Section 6 concludes the paper and
discusses our future research plans.

1 Source code: http://swinglinux.github.io/swing/.

http://swinglinux.github.io/swing/

136 Q. Meng et al.

2 Related Work

In-memory Databases. Data movement is an expensive operation for data
intensive applications, while it often occurs between a DBMS and a data analyt-
ical application. Especially when conducting large scale statistical analysis, we
need to transmit large volumes of data from a DBMS to an analytical tool, such
as R or SAS. In the context of in-memory computing, such data transmission is
heavy and may kill the performance.

Folk wisdom believes that it is cheaper to move programs to data than to
move data between programs. To this end, a number of database systems inte-
grate components of data analysis and data mining [5], and expect applications
to perform data analysis within the database systems. Some in-memory DBMS
even combines the database server and the application server into one single sys-
tem, to minimize the cost of data movement [7,15]. However, the tight coupling
between database systems and data analytical tools is a double-edged sword –
while it reduces the communication cost, it raises the cost of software engineer-
ing [4,8], which regards “separation of concerns” as an essential principle. In
many cases, developers of a DBMS do not know what analytical algorithms
applications will demand, while developers of applications have little knowledge
about how a DBMS works. The design of SwingDB aims to minimize the cost of
data exchange, while keeping the coupling between DBMS and data analytical
programs as loose as possible.

The most relevant work to SwingDB is the in-memory DBMS named
Hyper [9]. Hyper was designed to support OLTP and OLAP simultaneously.
Hyper’s main process is responsible for maintaining the integrity of a database
and performing updates. When an analytical request arrives, the main process
invokes the system call fork() to initiate a child process. As the child process
shares the memory space of the main process, it can immediately see a complete
snapshot of the in-memory database and conduct data analysis independently
on that snapshot. A copy-on-write mechanism is employed by the operating sys-
tem to guard the isolation between the parent and child processes. To the best
of our knowledge, SAP HANA [7,15] also utilizes fork() to share data between
the DBMS and the analytical applications. Although the fork() approach suc-
cessfully avoids the cost of data movement, it does not offer good usability. To
perform data analysis, an application needs to pack its analytical program and
ships it to the DBMS (e.g., in the form of dynamic link libraries). This makes
the development of analytical applications complicated. On the other hand, it
does not allow joint analytics over multiple database systems, as multiple parent
processes cannot share the same child process. By comparison, SwingDB is more
flexible and efficient than the fork() approach.

There have been several recently proposed techniques which utilizes copy-
on-write to realize concurrency control on in-memory data [2,11,14]. As their
use cases are different from that of SWING, we regard them less relevant to our
work.

SwingDB: An Embedded In-memory DBMS 137

Inter-process Communication. The most commonly used inter-process com-
munication methods include named pipe (FIFO), socket and shared memory.
When transmitting data, both FIFO and socket need to move data physically.
In particular, they need to copy data from the source to a buffer, and then copy
it from the buffer to the destination. Sometimes multiple layer buffers exist, such
that data needs to be copied for multiple times [12]. Copying data physically is
expensive in the context of in-memory computing.

Shared memory is so far regarded as the fastest IPC approach, as it does not
move data physically. Normally, an operating system offers two modes to access
shared memory. In the shared mode, a process’ writes to the shared memory
are completely visible to the others. In the private mode, a process’ writes to
the shared memory are only visible to itself – once it attempts to write to the
shared memory, copy-on-write operations will be invoked to hide the write from
the other processes.

Applying shared memory to data transmission between a DBMS and an
analytical process, the DBMS can choose the shared mode, and the analytical
process can choose the private mode. Although this setting seems safe, it is
not as powerful as our SWING approach. First, the DBMS’ writes on the shared
memory are constantly visible to the analytical process. As a result, concurrency
control is required, to prevent the DBMS from further updating the snapshot. In
SWING, after the transmission of data, the DBMS’ updates are no longer visi-
ble to the receiver. Thus, synchronization is not required. Second, the analytical
process cannot further share the memory to other processes. Sometimes, an ana-
lytical workflow is multi-stage. For instance, in the early stage of data analysis,
some intermediate results are generated and added to the data as annotation;
then, the annotated data is passed to the subsequent stage for more advanced
analysis. Such multi-stage data processing is difficult to realize on shared mem-
ory. In contrast, SWING allows recursive data sharing, which suits multi-stage
data processing much better.

3 The SWING Mechanism

3.1 The Data Sharing Model

The data sharing model of SWING is illustrated in Fig. 1. Processes A and B
are two applications. They both send copies of their data to Process C, which
performs data integration and data preparation. After the work, Process C sends
its copies of data, with its modification, to the Processes D and E, which are
responsible for data analysis. Such a data transmission process can be repeated
infinitely. After the data sharing, all processes can work on their own copies of
data independently, such that their modification of the data is invisible from
each other.

The same effect can be achieved by FIFO and socket. In contrast to those
approaches, the SWING method does not replicate or move data physically. It
just maps the physical memory space containing the data to the virtual memory
space of the target processes. The actual replication is delayed to the time when

138 Q. Meng et al.

Fig. 1. Data sharing model of SWING

a process attempts to modify a block of the data – upon modification, a copy-
on-write operation is invoked and a new version of the data block is created. In
typical data processing scenarios, write operations are much less frequent than
read operations. Therefore, the overhead of data replication can be minimized
through SWING.

Using the SWING mechanism, the processes involved in data sharing are
kept loosely coupled – they share only data and the code/library for interpreting
data. They do not share any controlling code, such as the code to ensure data
consistency. According to the principles of software engineering [3], data coupling
is much more flexible than code coupling. If using shared memory, the processes
have to share the code dealing with concurrency control.

Such a data sharing model cannot be realized by the fork() approach either,
as Process A and Process B cannot both be the parent of Process C.

3.2 The Interfaces

We implemented five system calls to realize the SWING mechanism. In SWING,
the memory space used to transmit data is called COW (Copy-on-Write)
memory.

1. long createarea(long length). A process uses this system call to apply for
a COW memory area. The input parameter length indicates the size of the
COW memory. The return value (64 bits on an x86 64 platform) contains two
parts of information. The lowest 12 bits are a token, a unique identifier in the
whole system to identify the COW memory area. It works as a file descriptor
of shared memory. The other 52 bits point to the start address of the COW
memory. As the size of a memory page is normally 4 KB, the address of a
COW memory area is aligned with 4 KB.

2. long hook(int token). A process uses this system call to obtain a new COW
memory area and maps it to the physical memory space of an existing
COW memory area. Its input parameter is token, representing an existing

SwingDB: An Embedded In-memory DBMS 139

COW memory area. The returned value of hook() is the same as that of
createarea(), which contains a token and an address. The returned token
is different from the input token, as they represent different COW memory
areas.

3. void enablehook(int token). A process uses this system call to inform the
operating system kernel that a COW memory area is ready to be mounted
(by calling hook()). This system call is used to ensure data consistency. Before
a process finishes modifying the data in its COW memory area, it may not
wish other processes to hook the area and see a dirty version of the data. If
a COW memory cannot be mounted, hook() returns −1.

4. void disablehook(int token). A process uses this system call to inform the
operating system kernel that a COW memory area cannot be hooked. It
reverses the effect of enablehook(). When a COW memory area is just created,
it is automatically disabled.

5. void release(int token). A process uses this system call to release a COW
memory area created by createarea() or hook(). After the call, the input
token is released and available to represent a new COW memory area. When
a process terminates, its COW memory areas will be automatically released.

3.3 The Implementation

In modern operating systems, when a process accesses a byte in its virtual mem-
ory space, the virtual address of the byte will first be translated to a physical
address, through which the processor addresses the physical memory on the
memory bus [1]. In a typical x86-64 architecture, a 4-level page table is used to
perform the translation. Basically, a linear address space is divided into pages,
normally 4 KB in size. Each virtual memory page of a process is mapped to a
physical page in the physical memory, and the mapping is recorded in the page
table of the process.

Page entries of different page tables can be mapped to the same physical page,
such that multiple processes can share the same segment of physical memory.
For instance, when fork() is invoked, Linux will replicate the entire page table
of the parent process to that of the child process, so that their memory space
are identical. After fork(), all the page entries of the page tables are marked as
read-only. When a process attempts to write to a page marked as read-only, a
page fault occurs; then the operating system will allocate a new physical memory
page to the process, copy the contents of the original page to the new page and
flags the new page as writable. Then, the write operation can be conducted on
the new page. This is known as a typical copy-on-write process.

One possible way to implement SWING is to reuse the mechanism of fork().
Instead of replicating an entire page table as what fork() does, we can replicate
only the fraction of the page table that corresponds to the COW memory area.
However, partial replication of page table is still costly, especially when the COW
memory area is big. In addition, as the replication procedure will block both the
sending and receiving processes, it may prevent hook() from being frequently
invoked. To avoid the cost of replication, SWING abandons the fork() approach

140 Q. Meng et al.

(a) after hook() (b) after Process A updates Page 1

Fig. 2. Memory sharing on SWING

and allows different processes to share page tables or parts of page tables [13] as
well. This is illustrated in Fig. 2(a). When hook() is invoked, the subtree of the
page table of Process A that corresponds to the COW memory area is entirely
shared to Process B. The whole procedure only requires an update on a single
entry in the page table of Process B. Afterwards, both processes can see the
same contents in their COW memory areas.

After the hook() operation, when a process attempts to update a page in the
shared subtree, a copy-on-write process is invoked and the shared subtree is split
into a double rooted tree. This is illustrated in Fig. 2(b). When Process A writes
on Page 1, a new version of Page 1 is created to receive the write, and a new
path to this version is instantiated and merged into the subtree. Afterwards,
the subtree contains two roots, belonging to Processes A and B respectively.
As updates continue to occur on other pages, the part of the subtree rooted at
A and that rooted at B will become more and more detached. To ensure the
correctness of the copy-on-write mechanism, we only need to mark the shared
parts of the subtree as read-only and the parts exclusively belonging to one
process as writable. When one of the processes quits or releases its COW memory,
only the part of the subtree exclusively belonging to that process is removed.

In our SWING mechanism, the data sharing step (i.e., invocation of hook())
is extremely fast and almost nonblocking. Therefore, it can be invoked frequently.
Although it incurs additional copy-on-write overhead during updates, this over-
head is controllable.

4 SwingDB

SwingDB is an embedded in-memory DBMS dedicated for data analytical appli-
cations. It provides the basic functionality of a stand alone relational DBMS. In
particular, it allows an application to include an entire database in its memory
space, so as to avoid expensive inter-program communication. SwingDB achieves
this by utilizing the SWING mechanism.

SwingDB: An Embedded In-memory DBMS 141

4.1 The Functionality of SwingDB

SwingDB works as an embedded DBMS – an application requiring data man-
agement functionality can have the entire SwingDB system in its program; each
database instance of SwingDB resides entirely in the memory space of the appli-
cation’s process, so that data manipulation does not require any inter-process
communication. Another application attempting to perform data analysis can
retrieve a snapshot of the database and places it in its own memory space, so
that it can access the database cheaply too. Moreover, the second application
can further share its snapshot to a third application for more advanced data
analysis. This process is illustrated in Fig. 3.

Fig. 3. SwingDB allows in-process data access

SwingDB assigns each snapshot of a database a unique name. An application
can retrieve a database snapshot into its space simply through the following
function call:

bool getsnapshot(string proposedname, string targetname)

Basically, this function retrieves a database snapshot named targetname into
the memory space of the active process, and names the new snapshot as
proposedname. Afterwards, the process can perform standard database oper-
ations on its own snapshot through SQL queries. Or it can directly address the
data records in the snapshot through low-level interfaces, to perform advanced
data analysis and data mining. As a result, each database snapshot of SwingDB
resides in only one process and can be accessed only within that process. When
an application no longer needs a database snapshot or regards a snapshot out-
dated, it can abandon the snapshot through the following function call:

bool discardsnapshot(string name)

The advantage of SwingDB lies in the efficiency of its snapshot sharing, which
is almost costless. By utilizing the SWING mechanism, the snapshot sharing of
SwingDB requires no physical data movement.

142 Q. Meng et al.

4.2 The Implementation of SwingDB

SwingDB stores each database instance or snapshot in a single COW memory
area of SWING. When a database is created, a new COW memory area is allo-
cated for the database. Initially, the COW memory area consumes no physical
memory, though it takes 512 GB of virtual space. When more data is inserted
into the database, more physical memory is allocated to the corresponding COW
memory area. The memory space manager of SwingDB is responsible for man-
aging the space allocation within the COW memory areas, as shown in Fig. 4.
Based on such a design, the function getsnapshot() can be realised through the
SWING function hook(), which is highly efficient.

Fig. 4. The basic architecture of SwingDB

We built our SwingDB on top of Supersonic2, an in-memory column store
developed by google. We re-engineered the storage layer of Supersonic to move
the entire storage space into COW memory of SWING. To enable snapshot
sharing, we locate the meta data of a database in the first segment of its COW
memory area, so that a database can be easily identified by a new process. The
source code of SwingDB can be found in GitHub (see Footnote 1).

4.3 Application Scenarios

In a traditional setting of multi-stage data analysis, data is physically trans-
mitted from program to program. Each program receives data from its previous
programs, performs a certain type of data processing and sends its results, along
with the original data, to the subsequent programs. Transmission of data can
be conducted in several ways – each program can transmit data individually, or
all programs can send and receive data to and from a mediated database. Such
multi-stage data analysis is commonly used in modern scientific study [6,10,17].

2 https://code.google.com/archive/p/supersonic/.

https://code.google.com/archive/p/supersonic/

SwingDB: An Embedded In-memory DBMS 143

When performing in-memory data analysis, we store data entirely in RAM. In
this context, we expect the whole process of data analysis can be finished in a few
seconds, such that the data analytical application can become really interactive
[18]. Such a speed cannot be achieved, if data has to be moved physically from
program to program or between programs and a mediated database. SwingDB
provides an efficient solution to multi-stage in-memory data analysis. Data is
always stored in SwingDB, and the snapshots of the data are passed around
by the programs. Each program retrieves the data snapshots from its previous
programs, performs data processing within its own memory space and passes
the resulting snapshots to its subsequent programs. No matter how complex the
workflow is, no physical data movement is actually performed.

5 Performance Evaluation

We conducted experiments to study the performance characteristics of the
SWING mechanism and SwingDB. The experiments were conducted on a HP
Z820 workstation, equipped with two 2.60 GHz Intel Xeon processors E5-2670
and 64 GB DDR3 RAM. The operating system installed on the workstation was
CentOS 7.1.

5.1 Overheads of SWING

Our first set of experiments was intended to measure the overhead of data trans-
mission. We compared the SWING mechanism against FIFO (a.k.a. pipe) and
shared memory. For FIFO, the overhead was measured by the execution time
of the entire data transmission process. As to shared memory, we assume that
the receiving process needs to block the sending process when reading the data.
Its overhead is measured by the execution time of mmap() and the time for
locking and scanning the data. Fine grained concurrency control can be used to
improve the concurrency of shared memory. However, due to the complexity of
the implementation of a fine grained concurrency controller, we did not consider
it in our experiments. For SWING, its overhead is measured by the executing
time of hook(). In the experiments, we varied the amount of data from 1 GB to
8 GB. The measured overheads are shown in Fig. 5. As expected, SWING is way
faster than FIFO and shared memory when transmitting data.

Our second set of experiments was intended to measure the overhead incurred
by copy-on-write operations. In the experiments, we let Process A allocate a
COW memory area of 8 GB and keep updating the data in the area; then, we
let Process B hook the COW memory periodically. Thus, Process A’s updates
will incur copy-on-write operations. Our experiments were intended to quantify
how much Process A is slowed down by copy-on-write.

In the first experiment, we let Process A perform sequential update. We
varied the frequency of the invocations of hook() and measured the variation of
Process A’s throughput. We compared the results against the case where no data
sharing was performed. As shown in Fig. 6(a), copy-on-write operations do affect

144 Q. Meng et al.

Fig. 5. Overhead of data transmission

(a) sensitivity to frequency (b) sensitivity to locality

Fig. 6. Overhead of copy on write

performance. The influence increases as we raise the frequency of data sharing.
Nevertheless, the overhead is controllable. In the worst case, the performance of
updating drops by around 50%. If we keep the frequency of data sharing to a
moderate level (e.g. once per 20 s), the performance loss can be minimized.

In the second experiment, we fixed the frequency of hook() to once per 8 s
and let Process A perform random updates. We varied the skewness of update
distribution and measured the variation of Process A’s throughput. This allows
us to see how data locality affects the overhead of copy-on-write. As shown in
Fig. 6(b) (on x-axis, 80/20 means that 80% of updates were performed on 20%
of data), when the locality of updates increases, the penalty caused by copy-on-
write drops. In most real world applications, data accesses normally show strong
locality. Thus, the overhead of copy-on-write should not be outstanding most of
the time.

5.2 Experiments on OLTP Workload

Our second set of experiments aimed to evaluate how the copy-on-write opera-
tions of SWING affects the performance of database update. As SwingDB does
not specialize in OLTP, we used Redis, an OLTP oriented in-memory database.

SwingDB: An Embedded In-memory DBMS 145

We applied SWING to Redis, by moving the entire storage space of Redis to a
single COW memory area. Then, we let a data analytical process to hook the
COW memory of Redis periodically. After each hook() operation, the analytical
process performs a sequential scan of the data. At the same time, we ran the
YCSB Benchmark on Redis, to see how data sharing affects Redis’ performance.
We compared the COW mechanism against FIFO and shared memory. (When
using shared memory, the analytical process needs to block Redis while reading
the data, as Redis does not support fine grained access control.)

In the experiments, we set recordcount of YCSB to 900,000 for Workloads
A, B, C, F and 500,000 for Workloads D,E. With such a data size, Redis’ stor-
age space can be accommodated in an 8 GB COW memory area. We set oper-
ationcount of YCSB to 10,000,000. As to the other parameters, we used the
default values of YCSB. We varied the frequency of invocation of hook() from
once per 10 s to once per 80 s. The performance of Redis is shown in Fig. 7. (Due
to limited space, we only show the results on Workloads A, B, D, F.)

Workload A (w/r = 50/50) Workload B (w/r = 5/95)

Workload D (w/r = 5/95) Workload F (w/r = 50/50)

Fig. 7. Performance on YCSB

As we can see, SWING does not have significant influence on Redis’s normal
work. Even when the frequency of data sharing went up to once per 10 s, we
still could not see any significant drop of Redis’ performance. (The TPS of the

146 Q. Meng et al.

original Redis is a bit more than 30 thousands. While some recent experimental
in-memory systems [16] claim to achieve a million TPS, such throughput does
not apply to Redis, which is a single threaded full-fledged system.) As updates
in YCSB show strong locality, the performance penalty caused by copy-on-write
seems quite limited. (Note that YCSB’s data accesses follow the Zipfian distrib-
ution.) For update intensive workloads, such as Workloads A, the performance of
Redis falls slightly when SWING is used. This indicates that copy-on-write can
be an overhead for update intensive applications, though its influence is limited.
In contrast to SWING, FIFO and shared memory did affect the performance of
Redis significantly, especially when the frequency of data sharing is high.

5.3 Experiments on SwingDB

To evaluate the performance of SwingDB, we compared it against Vectorwise
(Version 4.2.0), one of the most efficient in-memory DBMS specializing in OLAP.
While it is difficult for SwingDB to beat Vectorwise in OLAP performance,
SwingDB is way faster than Vectorwise in data transmission. We put both sys-
tems in a workflow of data analytics, consisting of a DBMS and a data analyt-
ical application. SwingDB and Vectorwise play the role of the DBMS, which is
responsible for data management and query processing. The analytical applica-
tion retrieves data from the DBMS through SQL queries, and performs advanced
analytical study on the data. To work with Vectorwise, the application makes
use of the APIs of Vectorwise to establish a connection with the database, issue
queries and move the query results from Vectorwise to its own space. To work
with SwingDB, the analytical application first retrieves the whole snapshot of
the database into its own space, and then executes SQL queries and advanced
analysis on the data. The main difference is that SwingDB does not require
inter-process data movement.

In our experiments, we created a simple database composed of only one
relational table and loaded 10 GB of data into the database. To retrieve data,
we used a selection query with varying selectivity. When data is retrieved, the
application conducts statistical analysis over the data, which mainly consists of
calculation of standard deviation. The execution time of the whole analytical
process was recorded and plotted in Fig. 8.

As we can see, when the size of query results is very small (i.e., selectivity as
low as 1%), SwingDB does not necessarily perform as well as Vectorwise. In this
case, query execution consumes the majority of the time, and SwingDB is not
as optimized as Vectorwise in query processing. When the size of query results
become larger (i.e., selectivity higher than 5%), SwingDB starts to outperform
Vectorwise. In this case, the transmission of query results from Vectorwise to the
application becomes more expensive than query execution. When large amount
of data needs to be transmitted, the superiority of SwingDB becomes obvious.
For instance, when the selectivity is as high as 100% and 2 GB of data needs to
be transmitted, SwingDB is faster than Vectorwise by two orders of magnitude.

SwingDB: An Embedded In-memory DBMS 147

Fig. 8. Execution time of data analysis

Fig. 9. Breakdown of the execution time

If we break down the execution time of data analysis, as shown in Fig. 9,
we can see that the majority of the cost for Vectorwise was incurred by inter-
process data transmission. In large scale data analysis, data transmission can be
intensive. It may obliterate the performance advantage of in-memory databases.
In contrast, SwingDB successfully avoids physical data movement by utilizing
SWING. Therefore, it can be much more efficient in multi-stage data analysis
than traditional in-memory DBMS.

6 Conclusion

In this paper, we introduced SWING, a new inter-process data sharing mech-
anism, and SwingDB, an embedded database system built on top of SWING.
Different from traditional database systems, SwingDB is able to share database
snapshots instantly among processes. This DBMS-OS co-design proves to be
suitable for multi-stage data analytics, in which multiple loosely coupled systems
or components cooperate to generate analytical results. (We believe that such
multi-stage settings/cases will be increasingly common for future data analytics,

148 Q. Meng et al.

as witnessed by today’s scientific data management [6,17].) We conducted exten-
sible performance evaluation on our systems. The results showed that SwingDB
is highly efficient in snapshot sharing and its extra overhead caused by copy-on-
write operations is moderate and controllable.

As our future work, we will continue to enrich the functionality of SwingDB
as both a database system and a tool for advanced data analytics. We would
also like to invite the communities of DB and OS to join our effort of making
SWING a standard instrument in data processing platforms.

References

1. Intel R© 64 and IA-32 architectures software developer’s manual. Basic Architecture,
vol. 1. Intel Corporation, August 2012

2. Aviram, A., Weng, S.-C., Hu, S., Ford, B.: Efficient system-enforced deterministic
parallelism. Commun. ACM 55(5), 111–119 (2012)

3. Beck, F., Diehl, S.: On the congruence of modularity and code coupling. In: Pro-
ceedings of the 19th ACM SIGSOFT Symposium and the 13th European Con-
ference on Foundations of Software Engineering, ESEC/FSE 2011, pp. 354–364.
ACM, New York (2011)

4. Castellano, G.V.: System object model (SOM) and Ada: an example of CORBA
at work. In: ACM Sigada Ada Letters XVI, pp. 39–51 (1996)

5. Chaudhuri, S.: Review - integrating mining with relational database systems: alter-
natives and implications. In: ACM SIGMOD Digital Review, vol. 2 (2000)

6. Curcin, V., Ghanem, M.: Scientific workflow systems - can one size fit all? In: 2008
Cairo International Biomedical Engineering Conference, pp. 1–9, December 2008

7. Färber, F., Cha, S.K., Primsch, J., Bornhövd, C., Sigg, S., Lehner, W.: SAP HANA
database: data management for modern business applications. ACM SIGMOD Rec.
40(4), 45–51 (2012)

8. Garlan, D., Schmerl, B., Garlan, D., Schmerl, B.: Component-based software engi-
neering in pervasive computing environments. In: Proceedings of the 4th ICSE
Conference (2001)

9. Kemper, A., Neumann, T.: Hyper: a hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In: Proceedings of 27th ICDE, pp.
195–206. IEEE (2011)

10. Leipzig, J.: A review of bioinformatic pipeline frameworks. Brief. Bioinform. (2016).
doi:10.1093/bib/bbw020

11. Liu, T., Curtsinger, C., Berger, E.D.: Dthreads: efficient deterministic multithread-
ing. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, pp. 327–336. ACM (2011)

12. Majer, K.: Linux Kernel Internals, 2nd edn. Addison-Wesley, US (1998)
13. McCracken, D.: Sharing page tables in the Linux kernel. In: Linux Symposium, p.

315 (2003)
14. Merrifield, T., Eriksson, J.: Conversion: multi-version concurrency control for main

memory segments. In: Proceedings of the 8th ACM European Conference on Com-
puter Systems, pp. 127–139. ACM (2013)

15. Sikka, V., Färber, F., Goel, A.K., Lehner, W.: SAP HANA: the evolution from a
modern main-memory data platform to an enterprise application platform. PVLDB
6(11), 1184–1185 (2013)

http://dx.doi.org/10.1093/bib/bbw020

SwingDB: An Embedded In-memory DBMS 149

16. Tu, S., Zheng, W., Kohler, E., Liskov, B., Madden, S.: Speedy transactions in
multicore in-memory databases. In: Proceedings of the Twenty-Fourth ACM Sym-
posium on Operating Systems Principles, pp. 18–32. ACM (2013)

17. Yu, J., Buyya, R.: A taxonomy of scientific workflow systems for grid computing.
SIGMOD Rec. 34(3), 44–49 (2005)

18. Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., Mccauley, M., Franklin,
M., Shenker, S., Stoica, I.: Fast and interactive analytics over hadoop data with
spark. USENIX Login 37(4), 45–51 (2012)

Runtime Fragility in Main Memory

Endre Palatinus(B) and Jens Dittrich

Information Systems Group, Saarland University, Saarbrücken, Germany
palatinuse@gmail.com

http://infosys.cs.uni-saarland.de

Abstract. In this paper we investigate the following problem: Given a
database workload (tables and queries), which data layout (row, column
or a suitable PAX-layout) should we choose in order to get the best pos-
sible performance? We show that this is not an easy problem. We explore
careful combinations of various parameters that have an impact on the
performance including: (1) the schema, (2) the CPU architecture, (3) the
compiler, and (4) the optimization level. We include a CPU from each
of the past 4 generations of Intel CPUs.

In addition, we demonstrate the importance of taking variance into
account when deciding on the optimal storage layout. We observe con-
siderable variance throughout our measurements which makes it difficult
to argue along means over different runs of an experiment. Therefore,
we compute confidence intervals for all measurements and exploit this
to detect outliers and define classes of methods that we are not allowed
to distinguish statistically. The variance of different performance mea-
surements can be so significant that the optimal solution may not be the
best one in practice.

Our results also indicate that a carefully or ill-chosen compilation
setup can trigger a performance gain or loss of factor 1.1 to factor 25 in
even the simplest workloads: a table with four attributes and a simple
query reading those attributes. This latter observation is not caused by
variance in the measured runtimes, but due to using a different compiler
setup.

Besides the compilation setup, the data layout is another source of
query time fragility. Various size metrics of the memory subsystem are
round numbers in binary, or put more simply: powers of 2 in decimal. Sys-
tem engineers have followed this tradition over time. Surprisingly, there
exists a use-case in query processing where using powers of 2 is always
a suboptimal choice, leading to one more cause of fragile query times.
Using this finding, we will show how to improve tuple-reconstruction
costs by using a novel main-memory data-layout.

Keywords: Main-memory databases · Data layouts · Robust query
processing · Tuple reconstruction

1 Introduction

The two most common data layouts used in todays database management sys-
tems are row and column layout. These are only the two extremes when vertically
c© Springer International Publishing AG 2017
S. Blanas et al. (Eds.): ADMS 2016/IMDM 2016, LNCS 10195, pp. 150–165, 2017.
DOI: 10.1007/978-3-319-56111-0 9

Runtime Fragility in Main Memory 151

partitioning a table. In-between these extremes there exists a full spectrum of
column-grouped layouts, which under certain settings can beat both of the afore-
mentioned traditional layouts for legacy disk-based row-stores [7]. However, for
main-memory systems column grouped layouts have not proved to be of much
use for OLTP workloads [5], unless the schema is very wide [9].

Another axis of partitioning a table is horizontal partitioning, where the
partitions are created along the tuples instead of along the attributes. This is
usually based on the values of an attribute with low cardinality, e.g. geograph-
ical regions, but this is not a strict requirement. Forming horizontal partitions
can also be done by simply taking repeatedly k records from the table, which
we will call chunks in the following. Within a horizontal partition we can have
any vertically partitioned layout, including row and column as well. One notable
example in disk-based database systems is the PAX-layout [1], where the hor-
izontal partitions have a size that is the multiple of the hard disk’s block size,
and inside these partitions the tuples are laid out in column layout. Another
notable example is MonetDB X/100 [2,12], which chooses the chunk size such
that all column chunks needed by a query fit into the CPU cache.

We can apply a strategy similar to PAX in main memory as well, however,
we have more freedom in choosing the size of the horizontal partitions. Therefore
in main-memory we can simply form so-called chunks of the table by repeatedly
taking k records from the table and laying them out in column layout within
the chunk. We denote this layout by memPAXk. In this sense, row layout is the
same as memPAX1, and column layout is equivalent to memPAXn, where n is
larger or equal to the cardinality of the table. The chunks of these layouts are
analogous to PAX pages [1], however, there are two important differences: (1) we
can choose any chunk size (in bytes or tuples) that is a multiple of the tuple size,
while for PAX we are restricted to multiples of the disk’s block size, and (2) we
neither store any helper data structures per chunk, nor use mini-pages as in
the disk-based PAX-layout. The possible memPAX layouts of a table having
2 columns and 8 records, and using chunk sizes of powers of 2 are illustrated in
Fig. 1. Here we can see the two extremes: row- and column layout, and memPAX
layouts with a chunk size of 2- and 4 tuples.

Row a b a b a b a b a b a b a b a b

a a b b a a b b a a b b a a b b

a a a a b b b b a a a a b b b b

Column a a a a a a a a b b b b b b b b

memPAX2

memPAX4

Fig. 1. memPAX layouts of a table having 2 columns and 8 records, considering powers
of 2 chunk sizes.

152 E. Palatinus and J. Dittrich

2 The Six-Dimensional Parameter Space of Our
Experiments

We are going to explore a six-dimensional parameter space of a fairly simple
workload: a table with four attributes and two simple queries reading those
attributes. The whole experiment is conducted on memory resident tables, and
using hand-coded queries implemented in C++. We are going to refer to this
workload as our micro-benchmark. In the following we specify the dimensions:

(1) The datatype used in the schema. Our dataset is a single memory-
resident table with four integer columns, with a total size of 10 GB. Depending
on the data type chosen (1-byte, 4-byte, or 8-byte integers denoted by int1,
int4, and int8, respectively) we get the following scenarios (Table 1):

Table 1. The schemas used in our experiments

Label Schema Tuple count

char (a int1, b int1, c int1, d int1) 2560 ∗ 10242

int (a int4, b int4, c int4, d int4) 640 ∗ 10242

long (a int8, b int8, c int8, d int8) 320 ∗ 10242

(2) The presence of conditional statements in the query code. We use
two queries requiring all tuples to be reconstructed for processing as shown
in Fig. 2. Q1 performs a minimum-search on the sum of all attributes of a
tuple, which being a conditional expression yields a branch in the implemen-
tation. We have tried out a branch-free implementation of the min1 calculation
as well, which, however, was consistently slower. Q2 on the other hand performs
a branchless calculation: it sums up the product of the attribute values of each
tuple. Since Q2 has no branches, the measured query times are not affected by
branch-mispredictions.

Q1: SELECT MIN(a+b+c+d) FROM T;

Q2: SELECT SUM(a*b*c*d) FROM T;

Fig. 2. The queries used in the experiments

(3) The CPU architecture. The performance characteristics of a main-
memory database system are influenced the most by the machine’s CPU. As
there are usually significant changes between the subsequent CPU architectures,
we have chosen machines equipped with Intel CPUs of four subsequent archi-
tectures, all running Debian 7.8.0 with Linux kernel version 3.2.0-4-amd64 as
shown in Table 2, with hyper-threading either disabled or not supported.
1 min = min XOR ((temp XOR min) AND NEG(temp < min)).

Runtime Fragility in Main Memory 153

Table 2. The machines used in our experiments

CPU Architecture RAM

Xeon 5150 Core 16 GB DDR2 @ 266MHz

Xeon X5690 Westmere 192GB DDR3 @ 1066 MHz

Xeon E5-2407 Sandy Bridge 48 GB DDR3 @ 1333MHz

Xeon E7-4870 v2 Ivy Bridge 512GB DDR3 @ 1600 MHz

(4) The compiler. In our experiments we have chosen the three most com-
monly used compilers2: clang (3.0-6.2), gcc (Debian 4.7.2-5), and icc (15.0.0).
clang and gcc are both open-source, while icc is proprietary software. clang is
actually a C-compiler front-end to the LLVM compiler infrastructure. It compiles
C, Objective-C, and C++ code to the LLVM Intermediate Representation (IR),
similar to other LLVM front-ends, which allows for a massive set of optimizations
to be performed on the IR before translating it to machine code. GCC is short
for GNU Compiler Collection, a compiler supporting among others the C/C++
language. It support almost all hardware platforms and operating systems, and
it is the most popular C/C++ compiler, and also the default one in most Linux
distros. Intel’s C/C++ compiler can take advantage of Intel’s insider knowledge
on Intel CPUs. It is said to generate very efficient code especially for arithmetic
operations.

(5) The optimization level. We intuitively expect to get higher performance
from higher optimization levels, yet there is no guarantee from the compiler’s
side that this will also hold in practice. Thus, we have decided to evaluate all
three standard optimization levels: -O1, -O2, and -O3.

(6) Compile time vs. runtime layouts. The tables in our dataset are phys-
ically stored in a one-dimensional array of integers, using a linearisation order
conforming to one of the layouts described in Sect. 1. Any query fired against this
dataset needs to take care of determining the (virtual) address of any attribute
value, and possibly reconstructing tuples as well. To do this it is required to
know the chunk size, which can either be specified prior to compiling a given
query, i.e. at compile time, or only provided at runtime.

To allow for any compiler optimization to take place, we have been extensively
using templates to create a separate executable for each element of the parameter
space, i.e. we have an executable for every dataset, query, machine, compiler, O-
level, and layout. In case of compile time chunk sizes we have created a separate
executable for each chunk size, while for runtime memPAX layouts only a single
generic one. The generic executable processes the query chunk by chunk, for
which it needs the chunk size provided the latest at runtime. For smaller chunk

2 More precisely their C++ front-ends: clang++, g++, and icpc.

154 E. Palatinus and J. Dittrich

sizes this approach has an inherent CPU-overhead caused by the short-living
loops.

3 Methodology

3.1 Motivating Example

The most common way of measuring the performance of algorithms, systems, or
components in the database community is to report the average runtime out of
3 or 5 runs. Let’s look at an example: assume we measured runtimes of a query
when executed against two different layouts. Layout A has an average runtime
of 1.75 s and Layout B of 1.82 s. In this case we would clearly declare Layout A
as superior to Layout B.

1.4

1.5

1.6

1.7

1.8

1.9

2

Ru
nti

me
 [s

ec
]

Layout A
Layout B

Fig. 3. Query times
for two different lay-
outs, each measured
five times

However, if we take a look at the runtimes of all 5 runs
in Fig. 3, we can see that Layout A has a high variance
(0.06), whereas the query time for Layout B is rather sta-
ble (its variance is 0.00075). Most system designers would
probably prefer Layout B, due to its performance being
more predictable. This example demonstrates that report-
ing the average runtime alone is not sufficient for compar-
ing two solutions [6, Chap. 13]. Therefore at a minimum
the variance or standard deviation of the sample should be
provided along with the average to get a proper description
of the sample.

We should keep in mind that when experimentally com-
paring multiple systems, we only get a sample of their per-
formance metrics which can only be used to estimate the
populations’ performance metrics. Thus, there is always
a level of uncertainty in our estimates, which renders the
necessity of expressing this uncertainty in some way. One
possible way to do this is to use confidence intervals, which express the following
in natural language: “There is a 95% chance that the actual average runtime of
System A is between 1.7 and 1.8 s.”

3.2 Confidence Intervals

To create a confidence interval we first have to choose our confidence level, typi-
cally 90%, 95% or 99%, denoted by 1−α, where α is called the significance level.
We require the sample size n, the sample mean x, sample standard deviation σ,
and the significance level α. Then the confidence interval is defined as follows:
(x − C × σ√

n
, x + C × σ√

n
), where C is the so-called confidence coefficient. The

choice of the confidence coefficient is determined by the sample size [6, p. 206].
If we have a large sample (n ≥ 30), we can use the 1 − α/2-quantile of the stan-
dard normal distribution for the confidence coefficient: C = Z1−α/2. However,
in experiments we usually run only 5 measurements, thus we have a sample size

Runtime Fragility in Main Memory 155

of n = 5. Therefore, we should only use the 1 − α/2-quantile of the Student’s
t-distribution with n − 1 degrees of freedom: C = t[1−α/2,n−1]. The prerequi-
site is that the population needs to have a normal distribution, which is a fair
assumption for our runtime measurements. For instance, the 95% confidence
intervals for our example in Fig. 3 are: (0.23, 3.27) for Layout A, and (1.65, 1.99)
for Layout B. This makes Layout B a safer choice, if predictability is of great
importance for the system designer. (See [6, Chap. 13] for details.) When looking
at the measured query times on Layout A in Fig. 3, we can see that the relatively
wide confidence interval for Layout A is due to the large variance of the sample:
the points are scattered out across the (1.4, 2.0) interval. However, a sample can
have a large variance even if most measured values are “near” to each other, and
only a few of them having a higher or lower value than the rest. These latter are
called outliers.

3.3 Outlier Detection

An outlier is an element of a sample that does not “fit” into the sample in some
way. It is hard to quantify the criteria for labelling an element as an outlier, and
it also depends heavily on the use-case. Therefore, the most common technique
used for detecting outliers is plotting the sample on a scatter plot, and visually
inspecting the plot by a human. If we assume, that there is only one outlier in
the sample, and it is either the minimum, or the maximum value, then we can
use Grubbs’ test [4] to automatically detect outliers. The only problem is that
this method tends to identify outliers too often for samples with less than eight
elements. To counter the error rate of the method we have included an additional
condition for labelling an outlier: margin of error/x ≥ 2.5%, where the margin
of error is defined as the radius of the confidence interval.

3.4 Choosing the Best Solution When There Is No Single Best
Solution

Choosing the best solution using the average runtime is easy, we simply take
the one with the smallest one. We have also seen that this can be arbitrarily
wrong, and that is why confidence intervals provide a better basis of compari-
son than the sample mean. However, comparing confidence intervals is not that
straight-forward as comparing scalars. If two intervals are disjoint, they are eas-
ily comparable. If they are not disjoint, and the mean of one sample is inside the
other sample’s confidence interval, they are indistinguishable from each other
with the same level of confidence, as that of the intervals. Finally, if they are
not disjoint, but their means do not fall into the other sample’s interval, an
independent two-sample t-test (Welch’s t-test [11]) can decide whether they are
distinguishable, and if so, which one is better.

4 Micro Benchmark Results

In this section we investigate the connection between the query time and the
elements of the parameter space. We will consider all dimensions mentioned in

156 E. Palatinus and J. Dittrich

Sect. 2, and show their effect on performance. We have executed all executables
single-threaded, and have pinned the process to a given CPU core to avoid
runtime variance cased by data- and thread shuffling. We have noticed that
varying the chunk size of the memPAX layouts between 216 and the biggest
possible one does not make a significant difference in the query times, regardless
of the query, machine, and compiler. Thus, we have excluded those results from
our discussion.

4.1 Runtime Fragility

We start our discussion with runtime fragility, by which we denote the perfor-
mance difference caused by using another layout, compiler, O-level, etc. Note the
difference between query time variance and fragility: fragility is not caused by
query time variance, but by using another parameter combination that simply
yields a different runtime, potentially a factor better or worse.

Q1, char

0%
50%

100%
150%
200%
250%

Q2, char Q1, int Q2, int Q1, long

C
ore

Q2, long

0%
50%

100%
150%
200%
250% W

estm
ere

0%
50%

100%
150%
200%
250% S

andy B
ridge

ro
w

m
em

PA
X2

m
em

PA
X8

m
em

PA
X3

2

m
em

PA
X1

28

m
em

PA
X5

12

m
em

PA
X2

04
8

m
em

PA
X8

19
2

m
em

PA
X3

27
68

co
lu

m
n

0%
50%

100%
150%
200%
250%

ro
w

m
em

PA
X2

m
em

PA
X8

m
em

PA
X3

2

m
em

PA
X1

28

m
em

PA
X5

12

m
em

PA
X2

04
8

m
em

PA
X8

19
2

m
em

PA
X3

27
68

co
lu

m
n

ro
w

m
em

PA
X2

m
em

PA
X8

m
em

PA
X3

2

m
em

PA
X1

28

m
em

PA
X5

12

m
em

PA
X2

04
8

m
em

PA
X8

19
2

m
em

PA
X3

27
68

co
lu

m
n

ro
w

m
em

PA
X2

m
em

PA
X8

m
em

PA
X3

2

m
em

PA
X1

28

m
em

PA
X5

12

m
em

PA
X2

04
8

m
em

PA
X8

19
2

m
em

PA
X3

27
68

co
lu

m
n

ro
w

m
em

PA
X2

m
em

PA
X8

m
em

PA
X3

2

m
em

PA
X1

28

m
em

PA
X5

12

m
em

PA
X2

04
8

m
em

PA
X8

19
2

m
em

PA
X3

27
68

co
lu

m
n

Ivy B
ridge

ro
w

m
em

PA
X2

m
em

PA
X8

m
em

PA
X3

2

m
em

PA
X1

28

m
em

PA
X5

12

m
em

PA
X2

04
8

m
em

PA
X8

19
2

m
em

PA
X3

27
68

co
lu

m
n

Layout

S
lo

w
do

w
n

co
m

pa
re

d
to

 b
es

t

Fig. 4. Runtime fragility of the various data layouts in our micro benchmarks

Let us first consider the runtime fragility of compiling, i.e. the effects of
changing the compiler setup which consists of the compiler, O-level, and runtime
vs. compile time layouts. In Fig. 4 in each subplot we show the median query
times, when fixing only the machine, query, and the dataset, but changing the
compiler setup and the data layout. The fragility is presented by using box
plots, which show the minimum, first quartile, median, third quartile, and the

Runtime Fragility in Main Memory 157

maximum value of the median query times for each data layout. To help us
compare the fragility of compiling across the different scenarios, the vertical
axis displays the performance overhead of each compiler setup over the best one
(displayed till at most 250% overhead; notice that some boxes leave their plot).

The most apparent finding is that the query time of both queries on the char
schema is extremely fragile compared to that of the int and long schemas.
This is quantified in Table 3, where we show the performance drop between
the worst and the best query times, drilled-down along machine, schema, and
query. We observe up to a factor 25 difference in runtime. For char we can
get factor 3.3 to factor 25 worse by choosing the wrong layout and/or compiler
setup. Furthermore, for char there is not only a much larger fragility across the
different data layouts as seen in Table 3, but even inside a given layout as well.
In the majority of the cases the compiler setup can make a factor 0.5 to 1.0
more performance drop compared to the best layout and compiler setup for Q2
on char.

Table 3. The performance drop between worst and best query times caused by chang-
ing the compiler setup and the layout.

Machine char int long

Q1 Q2 Q1 Q2 Q1 Q2

Core 6.8 3.3 1.3 1.4 1.1 2.0

Westmere 25.0 3.8 1.9 2.5 1.0 1.3

Sandy Bridge 13.2 3.6 1.6 2.4 1.5 1.9

Ivy Bridge 14.4 3.3 1.7 2.6 1.3 1.7

Let us now investigate how exactly the compiler setup determines perfor-
mance. In Fig. 5 we can see the query times on the char schema for runtime-
layouts (plus row and column). Please note that the query times of compile time
layouts are not shown to enhance readability. For Q1 we can see that g++ -O1
and -O2 consistently yield a very bad performance, which is at least 3 times
worse for chunk sizes above 8. The worst query times are produced by g++ -O3
on memPAX1 and memPAX2. It is clear that the short-living loops of these
two layouts incur a large CPU overhead, yet it is surprising to see that g++ -O3
makes the layouts with chunk sizes not bigger than 16 even more inefficient.
Considering the other two compilers, clang++ performs in between the other
two, and icpc consistently yields the best runtimes. On the other hand, for Q2
icpc -O2 and icpc -O3 perform the worst for chunk sizes above 2.

4.2 Best Solutions

Our second major finding is not about fragility, but a substantial difference
between the effectiveness of the different layouts depending on the machine the

158 E. Palatinus and J. Dittrich

Q1 Q2

0

10

20

0

10

20

0

10

20

0

10

20

C
ore

W
estm

ere
S

andy B
ridge

Ivy B
ridge

ro
w

m
em

PA
X

1
m

em
PA

X
2

m
em

PA
X

4
m

em
PA

X
8

m
em

PA
X

16
m

em
PA

X
32

m
em

PA
X

64
m

em
PA

X
12

8
m

em
PA

X
25

6
m

em
PA

X
51

2
m

em
PA

X
10

24
m

em
PA

X
20

48
m

em
PA

X
40

96
m

em
PA

X
81

92
m

em
PA

X
16

38
4

m
em

PA
X

32
76

8
m

em
PA

X
65

53
6

co
lu

m
n

ro
w

m
em

PA
X

1
m

em
PA

X
2

m
em

PA
X

4
m

em
PA

X
8

m
em

PA
X

16
m

em
PA

X
32

m
em

PA
X

64
m

em
PA

X
12

8
m

em
PA

X
25

6
m

em
PA

X
51

2
m

em
PA

X
10

24
m

em
PA

X
20

48
m

em
PA

X
40

96
m

em
PA

X
81

92
m

em
PA

X
16

38
4

m
em

PA
X

32
76

8
m

em
PA

X
65

53
6

co
lu

m
n

Data layout

M
ed

ia
n

qu
er

y
tim

e
[s

ec
]

Compiler + O level
clang++ O1

clang++ O2

clang++ O3

g++ O1

g++ O2

g++ O3

icpc O1

icpc O2

icpc O3

Fig. 5. Query times on the char schema across compiler setups and runtime-layouts
in our micro benchmarks.

query is executed on. To highlight this we show in Fig. 6 the query times of
the best layouts, drilled-down along machine, schema, and query. We can imme-
diately notice the radical difference between Core and the other three CPU
architectures. The oldest one, Core, prefers layouts with smaller chunk sizes,
i.e. close to row layout. The three newer ones on the other hand prefer larger
chunk sizes, i.e. close to column layout. For the latter CPUs we can further notice
that the best layout for a dataset is often the one, where the following holds:
k * attribute size * tuple count = 4KB, k ∈ {1 . . . attribute count } —
which is when the chunk or an attribute’s column inside a chunk perfectly fits the
memory page: memPAX4096 for char, memPAX1024 for int and memPAX512
for long.

Runtime Fragility in Main Memory 159

0
2

4 Q1, char
Q1, int
Q1, long

Q2, char
Q2, int
Q2, long

C
ore

0
2

4

W
estm

ere

0
2

4

S
andy B

ridge

ro
w

m
em

PA
X

1

m
em

PA
X

2

m
em

PA
X

4

m
em

PA
X

8

m
em

PA
X

16

m
em

PA
X

32

m
em

PA
X

64

m
em

PA
X

12
8

m
em

PA
X

25
6

m
em

PA
X

51
2

m
em

PA
X

10
24

m
em

PA
X

20
48

m
em

PA
X

40
96

m
em

PA
X

81
92

m
em

PA
X

16
38

4

m
em

PA
X

32
76

8

m
em

PA
X

65
53

6

co
lu

m
n

0
2

4

Ivy B
ridge

A
ve

ra
ge

 q
ue

ry
 ti

m
e

[s
ec

on
ds

]

Best data layouts

Fig. 6. Best layouts and their query times. Drilled-down along machine, schema, and
query.

4.3 Conclusions and Guidelines

We can conclude that when using the int and long schemas, we can focus on
choosing a proper data layout only, since the compiler setup is not expected to
cause significant fragility. However, for the char schema care has to be taken to
choose both layout and compiler setup wisely.

Our overall guideline for choosing the best layout is as follows: For servers
equipped with a Core CPU it is a safe bet to use row layout, while for machines
with the subsequent Westmere, Sandy Bridge, and Ivy Bridge architectures it is
just fine to use column layout. For the latter machines we can exploit the schema
for some fine-tuning, by creating PAX-blocks with the same size as the virtual
memory pages. Having branches in the query is an additional argument for this
optimization. The compiler, O-level, and compile time vs. runtime layouts will
not change the choice of best layout (see Q2 on int run on Ivy Bridge), but they
are to be chosen very carefully for the best performance. In cases like the char
schema, for the optimal compiler setup, however, one has to try out all possible
combinations, since it highly depends on the target system.

We have also shown how misleading it can be to choose the best solution along
means. Take the case of Q2 on char run on Core, where the 6 best solutions
are statistically indistinguishable from each other with 95% confidence, yet they
differ either in the layout, the compiler, or the optimization level.

160 E. Palatinus and J. Dittrich

5 Revisiting Strided Memory Access

5.1 Motivation

Various size metrics of the memory subsystem are round numbers in binary, or
put more simply: powers of 2 in decimal. System engineers have followed this
tradition over time. Some well known examples of objects with powers of 2 sizes:
cachelines, caches, RAM modules, HDD blocks, virtual memory pages, and even
HDFS blocks. Surrounded by this flood of round binary numbers a data engineer
feels pressed to develop data structures with similarly “round” sizes. So did we
feel, until one day we started to question the optimality of this tradition, and
dared to look at memPAX layouts with chunk sizes in between powers of 2.

5.2 Background

One of the CPU events debunking the random-access nature of main memory
is the memory bank conflict. To understand this event, we first have to explain
interleaved memory. DRAM and caches are both organised into banks. In case of
DDR3 there are typically 4 banks. Caches on the other hand can have a varying
number of banks, depending on the actual CPU generation. Interleaved memory
means that the memory addresses are split among the banks in a round-robin
fashion, i.e. membankID = address mod 4, which allows for requests to different
banks to be fetched — though not transferred — in parallel, thereby improving
the bandwidth utilisation. (See [8, Sect. 5.2] for more details.)

8 banks

Fig. 7. The architecture diagram of Intel Sandy Bridge. Image source: http://www.
realworldtech.com/sandy-bridge/7

In Fig. 7 we can see the part of the Sandy Bridge architecture diagram that
is related to the memory subsystem. There are two important improvements
over previous generations [3]. Firstly, the Sandy Bridge architecture has two
memory read ports where previous Intel processors had only one. The maximum

http://www.realworldtech.com/sandy-bridge/7
http://www.realworldtech.com/sandy-bridge/7

Runtime Fragility in Main Memory 161

throughput is now 256 bits read and 128 bits write per clock cycle. The flip side
of this coin is that the risk of contentions in the data cache increases when there
are more memory operations per clock cycle. It is quite difficult to maintain
the maximum read and write throughput without being delayed by cache bank
conflicts. The second improvement is, that there is no performance penalty for
reading or writing misaligned memory operands, except for the fact that it uses
more cache banks so that the risk of cache conflicts is higher when the operand
is misaligned.

Getting back to memory bank conflicts, the Intel Architecture Optimization
Manual [3, Sects. 2.2.5.2 and 3.6.1.3] gives a precise description on this event for
the Sandy Bridge architecture: “A bank conflict happens when two simultaneous
load operations have the same bit 2–5 of their linear address but they are not
from the same set in the cache (bits 6–12).” Thus, in contrast to our expectations,
it is actually not beneficial for the performance of load bandwidth-bound code to
perform a strided access of addresses with a stride that is a multiple of the cache
line size. In that case the addresses will have the same bits 5–0, but different
bits 12–6, thus a bank conflict will occur.

5.3 Performance Implications on Tuple-Reconstruction

To demonstrate the effects of bank conflicts on the performance of an application,
lets consider Q1 and Q2 executed on Sandy Bridge on char fields, compiled
with g++ -O2, and the chunk sizes being provided at compile time. Let us take
a look at the query times for all chunk sizes [measured in tuples] between 2 and
1024, considering multiples-of-2 chunk sizes as well, in Fig. 8. The black symbols
on the left show the query times for row layout, while the ones on the right
show the query times for column layout. The red line shows the query times for
powers-of-2 chunk sizes, while the blue line shows the runtimes for multiples-of-2
chunk sizes, which is more fine granular. This exemplifies the details that can
get overlooked when not performing a fine-granular exploration of the parameter
space. Interestingly, there is a periodic spike in the query time, with a period
size of 64, which happens to be the cache line size. Recall, that when executing
Q1 we have to reconstruct the tuples for computing the aggregate value. As we
have two attributes only, the stride of the memory access equals to the chunk size
multiplied by the field size. Thus, for char fields the stride equals the chunk size.
From the above discussion we know that a strided access of memory addresses
with a multiple of 64 stride should result in a bank conflict.

Therefore, we have decided to validated this claim by letting VTune find the
hardware events responsible for the spikes in the query time. We have taken a
sample of the experiments, those with a chunk size between 448 and 512. Both
endpoints of this interval are multiples of 64, and where the query time has its
spikes. We have measured all existing PMU events and looked for those that
have a linear correlation with the query time. We have found out that out of the
ca. 200 PMU events available for Sandy Bridge, only three correlate significantly
with the query time:

162 E. Palatinus and J. Dittrich

Fig. 8. Query times of Q1 and Q2 executed on Sandy Bridge on char fields, compiled
with g++ -O2, and the chunk size being provided at compile time. (Color figure online)

DTLB LOAD MISSES.STLB HIT: data TLB load misses that hit in the
second level TLB

HW PRE REQ.DL1 MISS: hardware prefetch requests that miss in the L1
data cache

L1D BLOCKS.BANK CONFLICT CYCLES: memory bank conflict in
the L1 data cache

0

0.25

0.50

0.75

1.00

1.25

448 450 452 454 456 458 460 462 464 466 468 470 472 474 476 478 480 482 484 486 488 490 492 494 496 498 500 502 504 506 508 510 512

No
rm

ali
ze

d e
ve

nt
co

un
ts

Chunk size

Querty time HW_PRE_REQ.DL1_MISS L1D_BLOCKS.BANK_CONFLICT_CYCLES DTLB_LOAD_MISSES.STLB_HIT

(a) Q1

0

0.25

0.50

0.75

1.00

1.25

448 450 452 454 456 458 460 462 464 466 468 470 472 474 476 478 480 482 484 486 488 490 492 494 496 498 500 502 504 506 508 510 512

No
rm

ali
ze

d e
ve

nt
co

un
ts

Chunk size

Query time HW_PRE_REQ.DL1_MISS L1D_BLOCKS.BANK_CONFLICT_CYCLES DTLB_LOAD_MISSES.STLB_HIT

(b) Q2

Fig. 9. PMU events of Q1 and Q2 executed on Sandy Bridge on char fields, compiled
with g++ -O2, for chunk sizes in {448, 450, . . . , 510, 512}.

We have plotted these three PMU events and the query time in Fig. 9, nor-
malised to the respective values measured for chunk size 512. As we have the
same spikes in the query time for the two endpoints of the chunk size interval,
the normalised query times equal 1 at these points, and are below 1 for all other
points. We can see that the memory bank conflicts in the L1 data cache have a
very strong linear correlation to the query time. Basically, both the query time

Runtime Fragility in Main Memory 163

and the latter metric have only 3 different values. The query time is the lowest
when there are no L1D bank conflicts at all, and it increases together with the
metric just next to the chunk sizes where the spikes are, and reaches its maximum
together with the metric. The other two events also show a strong correlation,
however, they do not drop to 0 inside the considered chunk size intervals.

As we can see in Fig. 8, for Q2 choosing a memPAX layout which is not a
power of 2 improves the query time by approximately 20%. This is definitely
a significant improvement in the spectrum of what can be expected from data
layouts. Q2 is a typical example of tuple-reconstruction, and thus memPAX
layout can also be used for improving the tuple-reconstruction part of more
complex queries.

6 TPC-H Experiments

Real world analytical workloads are significantly more complex, than our micro-
benchmarks. They have a wider schema with different attribute types, and the
queries use more expensive operators as well, including aggregation and joins.
In order to investigate the runtime fragility of more complex workloads, let us
consider the TPC-H benchmark [10].

6.1 Experimental Setup

We have implemented Q1 and Q6 of the TPC-H benchmark as hand-coded
applications written in C++. These two queries are single-table queries touching
only the Lineitem table. We have implemented two variants of the Lineitem table:
one matching the schema described in the benchmark, which we will refer to as
uncompressed. The second version, on the other hand, is a compressed table. We
have applied some compression schemes to the Lineitem table, as explained in
Table 4, using the information in Sect. 4.2.3 “Test Database Data Generation”
of the TPC-H Standard Specification [10].

Table 4. The compression schemes applied to the TPC-H Lineitem table

Field name DDL-compliant

data type

Compressed

type

Encoding Reason

L LINENUMBER int32 t uint8 t domain in [1..7]

L QUANTITY int64 t uint8 t domain random value [1..50]

L DISCOUNT int64 t uint8 t domain random value [0.00 .. 0.10]

L TAX int64 t uint8 t domain random value [0.00 .. 0.08]

L SHIPINSTRUCT char[25] uint8 t dictionary random string from list

Instructions

L SHIPMODE char[10] uint8 t dictionary random string from list

Modes

L COMMENT char[44] uint32 t dictionary random text [10,43]

164 E. Palatinus and J. Dittrich

6.2 Runtime Fragility

We show the runtime fragility of the various data layouts for Q1 and Q6 in the
TPC-H benchmarks in Fig. 10, for both the uncompressed and the compressed
Lineitem table. For the uncompressed Lineitem table, column layout is the clear
winner in terms of performance. What is more important, is that it also has the
lowest fragility across the different compiler setups, and for Q6 it has almost no
fragility compared to the other layouts.

On the other hand, for the compressed Lineitem table column layout is not
a clear winner. If we consider the median query times inside a given layout
— depicted by the strong dash inside the boxes — for Q6 column layout is
significantly worse than the memPAX layouts with larger chunk sizes. There
is one very interesting difference when comparing to the query times on the
uncompressed Lineitem table: the layouts of the compressed Lineitem table are
much less fragile, as for Q6 the boxes are 2–5 times narrower than that of the
uncompressed table.

Q1, SF 10

0%
50%

100%
150%
200%
250%

C
ore

Q6, SF 10

0%
50%

100%
150%
200%
250% W

estm
ere

0%
50%

100%
150%
200%
250% S

andy B
ridge

ro
w

m
em

PA
X2

m
em

PA
X8

m
em

PA
X3

2
m

em
PA

X1
28

m
em

PA
X5

12
m

em
PA

X2
04

8
m

em
PA

X8
19

2

m
em

PA
X3

27
68

co
lu

m
n

0%
50%

100%
150%
200%
250% Ivy B

ridge

ro
w

m
em

PA
X2

m
em

PA
X8

m
em

PA
X3

2
m

em
PA

X1
28

m
em

PA
X5

12
m

em
PA

X2
04

8
m

em
PA

X8
19

2

m
em

PA
X3

27
68

co
lu

m
n

Layout

S
lo

w
do

w
n

co
m

pa
re

d
to

 b
es

t

(a) Over uncompressed tables

Q1, SF 10

0%
50%

100%
150%
200%
250%

C
ore

Q6, SF 10

0%
50%

100%
150%
200%
250% W

estm
ere

0%
50%

100%
150%
200%
250% S

andy B
ridge

ro
w

m
em

PA
X2

m
em

PA
X8

m
em

PA
X3

2
m

em
PA

X1
28

m
em

PA
X5

12
m

em
PA

X2
04

8
m

em
PA

X8
19

2

m
em

PA
X3

27
68

co
lu

m
n

0%
50%

100%
150%
200%
250% Ivy B

ridge

ro
w

m
em

PA
X2

m
em

PA
X8

m
em

PA
X3

2
m

em
PA

X1
28

m
em

PA
X5

12
m

em
PA

X2
04

8
m

em
PA

X8
19

2

m
em

PA
X3

27
68

co
lu

m
n

Layout

S
lo

w
do

w
n

co
m

pa
re

d
to

 b
es

t

(b) Over compressed tables

Fig. 10. Runtime fragility of the various data layouts for TPC-H queries

7 Conclusions

In this paper we have identified various sources of query time fragility – imple-
mentation factors that can change the performance of a query by factors in an
unpredictable way. We have investigated the fragility of both micro-benchmarks

Runtime Fragility in Main Memory 165

and complex analytical benchmarks. We have considered the CPU architecture,
the compiler, and the compiler flags as important factors. We have introduced
the memPAX layout and compared its fragility to column layout and row layout.

We have shown that when querying tables with 1–byte integer columns a very
high fragility is to be expected, in our case leading to a performance drop of up to
factor 25. In case of more complex schemas and queries the inhomogeneity of
the schema has a direct effect on the fragility. Applying dictionary- and domain
encoding to the columns have reduced fragility by 50% to 80% in our experiments
on the TPC-H benchmark.

We have found a use-case in query processing where using powers of 2 is
always a suboptimal choice, leading to one more cause of fragile query times.
We have shown how to choose the chunk sizes of the memPAX layouts to improve
tuple-reconstruction costs by 20%.

Acknowledgments. Research supported by BMBF.

References

1. Ailamaki, A., et al.: Weaving relations for cache performance. In: VLDB 2001, pp.
169–180 (2001)

2. Boncz, P.A., Zukowski, M., Nes, N.: MonetDB/X100: hyper-pipelining query exe-
cution. In: CIDR, vol. 5, pp. 225–237 (2005)

3. Intel Corporation: Intel 64 and IA-32 Architectures Optimization Reference Man-
ual

4. Grubbs, F.E.: Sample criteria for testing outlying observations. Ann. Math. Stat.
21, 27–58 (1950)

5. Grund, M., et al.: HYRISE: a main memory hybrid storage engine. PVLDB 4(2),
105–116 (2010)

6. Jain, R.: The Art of Computer Systems Performance Analysis. Wiley, New York
(1991)

7. Jindal, A., Palatinus, E., Pavlov, V., Dittrich, J.: A comparison of knives for bread
slicing. PVLDB 6(6), 361–372 (2013)

8. Patterson, D., Hennessy, J.: Computer Organization and Design, Fourth Edition:
The Hardware/Software Interface. The Morgan Kaufmann Series in Computer
Architecture and Design, 4th edn. Elsevier Science, Amsterdam (2008)

9. Pirk, H., et al.: CPU and cache efficient management of memory-resident databases.
In: ICDE 2013, pp. 14–25 (2013)

10. TPC-H Standard Specification. http://www.tpc.org/tpc documents current
versions/pdf/tpc-h v2.17.1.pdf

11. Welch, B.L.: The generalization of Student’s problem when several different pop-
ulation variances are involved. Biometrika 34, 28–35 (1947)

12. Zukowski, M., Boncz, P.A., Nes, N., Héman, S.: MonetDB/X100-A DBMS in the
CPU cache. IEEE Data Eng. Bull. 28(2), 17–22 (2005)

http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.17.1.pdf

Author Index

Agbaria, Adnan 57
Ailamaki, Anastasia 95
Alagiannis, Ioannis 95
Appuswamy, Raja 95

Chen, Shiping 134

Damme, Patrick 40
Dittrich, Jens 150
Dziedzic, Adam 95

Habich, Dirk 40
Hildebrandt, Juliana 40

Karpathiotakis, Manos 95
Kesavan, Aniraj 79

Lehner, Wolfgang 40
Leser, Ulf 1
Li, Yuhong 18

Madden, Sam 118
Meng, Qingzhong 134
Minor, David 57

Palatinus, Endre 150
Peterfreund, Natan 57
Pirk, Holger 118

Ricci, Robert 79
Rosenberg, Ofer 57
Rozenberg, Eyal 57

Shanbhag, Anil 118
Sprenger, Stefan 1
Stutsman, Ryan 79

Tang, Bo 18

U, Leong Hou 18

Wang, Shan 134

Yiu, Man Lung 18

Zeuch, Steffen 1
Zhou, Xuan 134

	Preface
	Organization
	Contents
	Cache-Sensitive Skip List: Efficient Range Queries on Modern CPUs
	1 Introduction
	2 Preliminaries
	3 Cache-Sensitive Skip List
	3.1 Optimizations
	3.2 Updates

	4 Algorithms
	5 Evaluation
	5.1 Range Queries
	5.2 Lookups
	5.3 Mixed Workload
	5.4 Evaluation with Genomic Data
	5.5 Space Consumption

	6 Related Work
	7 Conclusions
	References

	Exploit Every Cycle: Vectorized Time Series Algorithms on Modern Commodity CPUs
	1 Introduction
	2 Preliminaries
	2.1 Fundamental Distance Measurement
	2.2 Time Series Algorithms
	2.3 Modern Commodity CPUs

	3 Profiling of Algorithms
	3.1 Experimental Setting
	3.2 Measurement Methodology
	3.3 Identifying the Performance Bottleneck

	4 Accelerating Distance Functions with SIMD
	4.1 How Do SIMD Instructions Reduce Stall?
	4.2 Accelerating ED with SIMD
	4.3 Accelerating DTW with SIMD
	4.4 Accelerating Lower Bounds for DTW with SIMD
	4.5 Cost Analysis
	4.6 Accelerating Reference Index with SIMD

	5 Experimental Study
	5.1 Subsequence Search
	5.2 Motif Discovery
	5.3 kNN Classification

	6 Related Work
	7 Conclusion and Future Work
	References

	Compression-Aware In-Memory Query Processing: Vision, System Design and Beyond
	1 Motivation
	1.1 Vision of Compression-Aware In-Memory Query Processing
	1.2 System Design Challenge for Compression-Aware Processing
	1.3 Our Contribution and Outline of the Paper

	2 System Design Overview
	3 Survey of Lightweight Data Compression Algorithms
	3.1 Analysis of Basic Lightweight Compression Techniques
	3.2 Analysis of Lightweight Compression Algorithms
	3.3 Derived System Description and Properties

	4 COLLATE Model
	5 Transformation of Model Instances
	5.1 Model Instances for Byte-oriented Encoding Algorithms
	5.2 Transformation to Executable Code

	6 Future Work
	6.1 Structural Aspect
	6.2 Operational Aspect
	6.3 Optimization Aspect

	7 Conclusion
	References

	Overtaking CPU DBMSes with a GPU in Whole-Query Analytic Processing with Parallelism-Friendly Execution Plan Optimization
	1 Introduction
	2 The Processing Framework
	2.1 From Query to Execution Run
	2.2 The Execution Engine
	2.3 Schema Preprocessing

	3 Making Execution Plans More Amenable to (GPU) Parallelism
	3.1 Optimization Aspect: Subset/Sequence Representation
	3.2 Optimization Aspect: Join Special-Casing
	3.3 A Query Example: Optimizing TPC-H Q4 Execution

	4 Experimental Results
	4.1 Test Platform, Protocol and Procedures
	4.2 TPC-H Query Processing Time Comparison
	4.3 GPU Activity Breakdown
	4.4 Effects of Increasing Database Size

	5 Comparison with Other Work
	6 Discussion and Further Performance Enhancement
	References

	To Copy or Not to Copy: Making In-Memory Databases Fast on Modern NICs
	1 Introduction
	2 Motivation and Related Work
	3 User-Level NIC Access
	4 Bw-Tree: Lock-Free Indexing
	4.1 NIC Implications for Bw-Tree

	5 Experimental Results
	5.1 Zero-Copy Performance
	5.2 Zero-Copy Savings
	5.3 Extending the Delta Format to Clients
	5.4 Tuning Page Consolidation
	5.5 Impact on Garbage Collection
	5.6 Inlining Data into Transmit Descriptors

	6 Conclusions
	References

	DBMS Data Loading: An Analysis on Modern Hardware
	1 Introduction
	2 Setup and Methodology
	2.1 Experimental Setup
	2.2 Datasets
	2.3 Experimental Methodology

	3 Experimental Evaluation
	3.1 Baseline: Single-Threaded Data Loading
	3.2 Parallel Data Loading
	3.3 Data Loading: Where Does Time Go?
	3.4 Impact of Underlying Storage
	3.5 Hitting the CPU Wall
	3.6 Data Loading in the Presence of Constraints

	4 Related Work
	5 Conclusion
	References

	Locality-Adaptive Parallel Hash Joins Using Hardware Transactional Memory
	1 Introduction
	2 Synchronization Primitives
	2.1 Transactional Memory
	2.2 Atomic Instructions
	2.3 Partitioning

	3 State-of-the-Art Hash-Building
	3.1 Radix Partitioned Hash Joins
	3.2 Using Atomics
	3.3 Hash-Function Design

	4 Exploiting Locality Using HTM
	4.1 Setup
	4.2 Interaction with Virtual Memory
	4.3 Hardware Transactions vs. Atomics
	4.4 Transaction Overhead
	4.5 Impact of Locality
	4.6 Putting it Together
	4.7 Fallback for Fully Shuffled Data
	4.8 Probing

	5 Conclusion
	A Transaction Abort Breakdown
	B Non-unique Inputs
	References

	SwingDB: An Embedded In-memory DBMS Enabling Instant Snapshot Sharing
	1 Introduction
	2 Related Work
	3 The SWING Mechanism
	3.1 The Data Sharing Model
	3.2 The Interfaces
	3.3 The Implementation

	4 SwingDB
	4.1 The Functionality of SwingDB
	4.2 The Implementation of SwingDB
	4.3 Application Scenarios

	5 Performance Evaluation
	5.1 Overheads of SWING
	5.2 Experiments on OLTP Workload
	5.3 Experiments on SwingDB

	6 Conclusion
	References

	Runtime Fragility in Main Memory
	1 Introduction
	2 The Six-Dimensional Parameter Space of Our Experiments
	3 Methodology
	3.1 Motivating Example
	3.2 Confidence Intervals
	3.3 Outlier Detection
	3.4 Choosing the Best Solution When There Is No Single Best Solution

	4 Micro Benchmark Results
	4.1 Runtime Fragility
	4.2 Best Solutions
	4.3 Conclusions and Guidelines

	5 Revisiting Strided Memory Access
	5.1 Motivation
	5.2 Background
	5.3 Performance Implications on Tuple-Reconstruction

	6 TPC-H Experiments
	6.1 Experimental Setup
	6.2 Runtime Fragility

	7 Conclusions
	References

	Author Index

