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Abstract
Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) 
and induced PSCs (iPSCs), have the potential to differentiate into various cells 
types and may be used as cell sources for regenerative medicine in the context of 
various diseases, including severe heart failure. However, one of the biggest hur-
dles in the use of human PSCs for clinical applications is tumor formation due to 
contamination with residual tumor-forming cells, primarily undifferentiated 
PSCs. In addition, hundreds of millions of cardiomyocytes are required for heart 
repair. Two approaches have been developed for achievement of safer cardiac 
regenerative therapy using human PSCs: (1) selective elimination of residual 
tumor-forming cells before cell transplantation and (2) purification of PSC- 
derived cardiomyocytes. Many methodologies, including genetic and nongenetic 
modification, have been developed using these strategies. In this chapter, we 
focus on the current status of selective elimination of residual PSCs and purifica-
tion of cardiomyocytes for safe stem cell therapy.
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8.1  Introduction

The prognosis of patients with severe heart failure is extremely poor, and heart 
transplantation is the only effective treatment (Lund et al. 2015). However, lack of 
donors is a major problem worldwide. Cardiac regenerative therapy using human 
pluripotent stem cells (PSCs) may represent an effective alternative treatment option 
for heart transplantation. Human induced PSCs (iPSCs) have the potential to dif-
ferentiate into various types of cells, similar to human embryonic stem cells (ESCs) 
(Takahashi 2007; Thomson et al. 1998), and may have applications as a new cell 
source for regenerative medicine in the context of various diseases, including severe 
heart failure (Burridge et al. 2012; Passier et al. 2008).

Although cardiac differentiation protocols have dramatically improved 
(Laflamme et al. 2007; Burridge et al. 2014; Lian 2012; Zhang et al. 2012; Willems 
et al. 2011; Minami et al. 2012), it may be impossible to stably differentiate into 
only target cells because many factors, including the specific cell lines used, affect 
differentiation efficiency (Kattman et al. 2011; Elliott et al. 2011; Osafune et al. 
2008). Moreover, cardiac regenerative medicine using human PSCs will require 
hundreds of millions of cardiomyocytes. The use of this many cells increases the 
risk of contamination with residual PSCs or noncardiac proliferating cells, which is 
a major cause of tumor formation (Hentze et al. 2009; Miura et al. 2009; Kawamura 
et al. 2016; Zhang et al. 2014). Thus, many technologies have been developed to 
prevent tumor formation in cardiac regenerative medicine, including selective elim-
ination of residual PSCs (Fig. 8.1a) and complete purification of cardiomyocytes 
(Fig. 8.1b).

In this chapter, we introduce these two strategies and discuss the use of these 
approaches for safe cardiac regeneration.

8.2  Elimination of Residual Pluripotent Stem Cells

Many studies have described methods for selective elimination of residual PSCs 
that have the capacity for teratoma formation (Fig. 8.1a). This strategy could theo-
retically have applications in all fields and is discussed in more detail in the follow-
ing sections.

8.2.1  Cell Sorting by Stem Cell Markers

Separation strategies based on cell sorting using fluorescent-activated cell sorting 
(FACS) or magnetic-activated cell sorting (MACS) have been reported to eliminate 
residual undifferentiated PSCs. In such cell sorting methods, human PSC surface 
markers, such as TRA1–60, SSEA-4, and SSEA-5, are used (Fong et al. 2009; Tang 
2011). In addition, claudin 6, a tight-junction protein specific for human PSCs, is 
also a useful surface marker for selective elimination of residual human PSCs 
through FACS (Ben-David et al. 2013). While these strategies are simple, they are 
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not suitable for large-scale culture because they require single-cell dissociation, 
which would be a time-consuming process when sorting a large number of cells.

8.2.2  Small Molecules or Toxins

Many studies have reported the elimination of undifferentiated human PSCs by uti-
lization of toxins or small molecules. Of the toxins commonly used for this purpose, 
podocalyxin-like protein 1, a primary cytotoxic antibody for human PSCs, can 
eliminate residual PSCs (Choo 2008; Tan et al. 2009). In addition, Clostridium per-
fringens enterotoxin, which binds to claudin 6, has been reported to eliminate undif-
ferentiated PSCs (Ben-David et al. 2013). Recently, Tateno et al. identified a human 
PSC-specific lectin (rBC2LCN) by glycome analysis and created a recombinant 
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Fig. 8.1 Strategies for prevention of tumor formation. (a) Selective elimination of residual PSCs. 
(b) Purification of only cardiomyocytes from PSC-derived mixed cell populations

8 Purification of Pluripotent Stem Cell-Derived Cardiomyocytes



166

lectin-toxin fusion protein (rBC2LCN) using the catalytic domain of Pseudomonas 
aeruginosa exotoxin A (Tateno et al. 2015). This fusion protein could be specifi-
cally taken up into human PSCs and could kill residual PSCs.

Of the small molecules commonly used for elimination of undifferentiated PSCs, 
Bieberich et al. showed that ceramide analogs induce apoptosis and eliminate resid-
ual PSCs; indeed, treatment with ceramide analogs prevents teratoma formation 
after transplantation (Bieberich et al. 2004). Lee et al. targeted the hPSC-specific 
anti-apoptotic factor survivin and demonstrated that inhibition of survivin could 
selectively eliminate pluripotent stem cells with teratoma potential (Lee 2013). 
Using chemical screening, Dabir et al. identified a small molecule that inhibits the 
translocation of redox-regulated proteins to the mitochondria and showed that this 
small molecule induces apoptosis in human ESCs but not in differentiated cells 
(Dabir Deepa et al. 2013). Furthermore, Ben-David et al. identified a small mole-
cule that inhibits the biosynthesis of oleic acid and specifically kills human PSCs 
using a screening library of more than 50,000 small molecules (Ben-David 2013).

These strategies using small molecules or toxins have many advantages because 
they are simple, efficient, and applicable for large numbers of cells and do not 
require single-cell dissociation. However, the cost of these strategies may be high 
owing to the need for large amounts of antibodies or small molecules. In addition, 
the components of these systems may affect other PSC-derived differentiated cells.

8.2.3  Metabolism

Improving our understanding of metabolic processes in human PSCs is necessary in 
order to remove undifferentiated tumor-forming cells by exploiting the metabolic 
environment (Fig. 8.2). Many studies have examined glucose metabolism in mouse 
and human PSCs (Kondoh et al. 2007; Panopoulos et al. 2011; Folmes Clifford et al. 
2011). Folmes et al. reported that human iPSCs exhibit characteristics of elevated 
glucose utilization compared with mouse embryonic fibroblasts (MEFs) and that 
inhibition of glucose metabolism reduces the reprogramming efficiency of the cells 
(Folmes Clifford et al. 2011). Our group also showed that mouse and human PSCs 
mainly depend on activated glycolysis for ATP and biomass production and that 
glucose deprivation efficiently removes residual PSCs (Tohyama 2013).

In contrast, few studies have examined the effects of amino acid metabolism on 
mouse or human PSCs. Shyh-Chang et al. reported that mouse ESCs are critically 
dependent on threonine catabolism, which is important for synthesis of S-adenosyl- 
methionine (SAM) and nucleotides (Shyh-Chang et al. 2013). Threonine starvation 
leads to decreased SAM levels, resulting in inhibition of histone H3K4 trimethyl-
ation and preventing mouse ESCs from maintaining pluripotency (Shyh-Chang 
et al. 2013; Wang et al. 2009). Additionally, Shiraki et al. evaluated the effects of 
essential amino acid deprivation on cell survival in human PSCs and found that 
methionine deprivation was the most effective inhibitor of human PSCs. They also 
reported that methionine is the main source of SAM production in human PSCs 
(Shiraki et al. 2014). Furthermore, Moussaieff et al. revealed that glucose-derived 
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cytosolic acetyl-CoA contributes to the maintenance of pluripotency by induction 
of histone pan-acetylation (Moussaieff et al. 2015), and Carey et al. reported that 
naïve mouse ESCs utilize both glucose and glutamine catabolism to maintain a high 
level of intracellular α-ketoglutarate (αKG), which promotes histone and DNA 
demethylation and maintains pluripotency (Carey and Finley 2014). Recently, our 
group demonstrated that glutamine oxidation during the later steps of the tricarbox-
ylic acid (TCA) cycle plays a key role in cell survival in human PSCs. In glucose- 
depleted conditions, glutaminolysis activation is increased, thereby promoting ATP 
production via oxidative phosphorylation (OXPHOS). Interestingly, human PSCs 
cannot utilize pyruvate efficiently because the expression levels of metabolic 
enzyme-related genes in the early steps of the TCA cycle are low, whereas those 
involved in the synthesis of cytosolic acetyl CoA are high. As a result, glucose 
deprivation and glutamine deprivation are most effective for elimination of residual 
human PSCs (Tohyama et al. 2016). Glutamine metabolism also contributes to syn-
thesize reduced glutathione that plays a role in maintenance of pluripotency via 
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Fig. 8.2 Metabolism in human PSCs. Human PSCs depend on glucose and glutamine metabo-
lism. Glycolysis contributes to ATP and biomass (amino acids and nucleotides) production. 
Glutamine metabolism contributes to not only ATP generation via OXPHOS but also to the main-
tenance of pluripotency via reduced glutathione synthesis. Methionine metabolism plays a role to 
produce S-adenosyl-methionine (SAM) that leads to maintain pluripotency via histone methyla-
tion. G6P glucose-6-phosphate, 3PG glycerate 3-phosphate, Gln glutamine, Glu glutamate, αKG 
α-ketoglutarate
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prevention of OCT4 (Marsboom et al. 2016). Similar to approaches using small 
molecules and toxins, these approaches have many advantages, such as simplicity, 
efficiency, and suitability for large-scale culture, and do not require single-cell dis-
sociation. Furthermore, these approaches are not expensive because they do not 
utilize antibodies or small molecules. However, these metabolic approaches also 
have the potential to cause damage to the other PSC-derived differentiated cells. 
Therefore, supplementation with alternative metabolites may be required to mini-
mize the effects on other cells (Tohyama 2013).

8.3  Purification of Target Cells

Recently, both undifferentiated PSCs and other immature proliferating cells have 
been shown to have potential for tumor formation (Nori et al. 2015). In addition, 
contamination with noncardiomyocytes may induce arrhythmia after transplanta-
tion. Thus, complete purification of cardiomyocytes derived from human PSCs is 
necessary for safe realization of cardiac regenerative medicine (Fig. 8.1b).

8.3.1  Genetic Manipulation

Several studies have reported fluorescent protein expression-based purification of 
cardiomyocytes derived from mouse PSCs using various combinations of 
cardiomyocyte- specific promoters (e.g., αMHC, Mlc2v, Nkx2–5, and ANP) and 
reporters (e.g., green fluorescent protein [GFP]) (Gassanov et al. 2004; Anderson 
et al. 2007; Huber et al. 2007; van Laake et al. 2010). In humans, Elliott et al. intro-
duced sequences encoding enhanced GFP (EGFP) into the NKX2–5 locus (NKX2–
5-EGFP) by homologous recombination (Elliott et al. 2011). Furthermore, Ma et al. 
generated hiPSCs expressing a blasticidin-resistance gene under the control of the 
MYH6 promoter (MYH6-blasticidin) and obtain pure cardiomyocytes (Ma et al. 
2011). While these methods are useful for basic research, they are not suitable for 
clinical application because they lack stability and safety. Therefore, it is necessary 
to establish nongenetic methods of purifying cardiomyocytes for clinical 
applications.

8.3.2  Nongenetic Cell Sorting

In nongenetic cell sorting strategies, some groups have attempted to obtain cardiac 
progenitor cells, whereas other groups, including ours, have attempted to isolate 
only cardiomyocytes. Yamashita et al. succeeded in obtaining mouse ESC-derived 
Flk-1-positive mesodermal cells, which could differentiate into several mesodermal 
lineages, including cardiomyocytes, smooth muscle cells, and endothelial cells 
(Yamashita et al. 2000). Hidaka et al. reported that prion protein and platelet-derived 
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growth factor (PDGF) receptor α double-positive cells derived from mouse ESCs 
could differentiate into cardiomyocytes and smooth muscle cells (Hidaka et al. 
2009).

On the other hand, it is difficult to isolate only cardiomyocytes because 
cardiomyocyte- specific surface markers have not yet been identified. Therefore, to 
isolate pure cardiomyocytes, we focused on the structural characteristics of cells 
rather than surface markers; using this approach, we succeeded in developing a non-
genetic cardiomyocyte purification method (Hattori 2010). In short, because cardio-
myocytes have many mature mitochondria and high mitochondrial membrane 
potential, we successfully purified cardiomyocytes (>99% purity) derived from 
mouse and human PSCs by a combination of FACS and the mitochondrial dye tetra-
methylrhodamine methyl ester perchlorate (TMRM). The fluorescence intensity of 
TMRM dye disappeared within 1 day, while that of other mitochondrial dyes was 
sustained over 5 days. Therefore, the effects of TMRM dye were suppressed. Other 
groups have also established nongenetic cardiomyocyte purification methods using 
FACS or MACS with antibodies against cell surface markers, including ALCAM 
(CD166) (Rust et al. 2009), signal-regulatory protein alpha (SIRPA) (Dubois et al. 
2011), and vascular cell adhesion molecule 1 (VCAM1) (Uosaki 2011). Although 
cell sorting methods using antibodies or mitochondrial dyes are useful for the pro-
duction of small numbers of cardiomyocytes, these methods are time consuming 
when using human PSC-derived mixed cell populations as the source cells (Fig. 8.3a). 
In addition, these methods require single-cell dissociation, which can damage the 
target cells, and transplantation of target cells with antibodies may result in immuno-
genicity. Therefore, further studies are needed to establish methods for scalable pro-
duction of human PSC-derived pure cardiomyocytes for clinical applications.

8.3.3  Metabolic Selection

To establish an ideal method for scalable production of human cardiomyocytes for 
clinical applications, our group aimed to purify cardiomyocytes using specific met-
abolic culture conditions in which only cardiomyocytes and not residual PSCs can 
survive (Fig. 8.3b). To evaluate metabolic differences between PSCs and cardio-
myocytes, we performed metabolome and transcriptome analyses. As mentioned 
above, we found that the PSCs mainly depended on activated glycolysis and that 
glucose deprivation could eliminate residual PSCs. However, because glucose- 
depleted conditions are also fatal for cardiomyocytes, supplementation with an 
alternative energy source is necessary for survival of cardiomyocytes. Interestingly, 
glucose and lactate are major energy substrates in fetal hearts, while fatty acids are 
major energy substrates in adult hearts based on the levels of energy substrates in 
the blood (Neely and Morgan 1974). Because PSC-derived cardiomyocytes show a 
fetal phenotype (Uosaki et al. 2015), we hypothesized that PSC-derived cardiomyo-
cytes could efficiently utilize lactate for energy production and showed that mouse 
and human PSC-derived cardiomyocytes could survive under glucose-depleted and 
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lactate-supplemented conditions. Moreover, because human PSC-derived noncar-
diac proliferating cells also depended on glycolysis like PSCs and cannot survive 
under these conditions, we were able to obtain pure cardiomyocytes (>95%) under 
these conditions (see Fig. 8.4).

As mentioned above, our group has recently reported that human PSCs depend 
on glycolysis and glutamine oxidation for ATP generation. Glucose and glutamine 
deprivation enabled complete removal of human PSCs in a much shorter period 
(Tohyama et al. 2016). Surprisingly, lactate supplementation could rescue only 
human PSC-derived cardiomyocytes because cardiomyocytes efficiently utilize lac-
tate not only for ATP generation via OXPHOS but also for glutamate synthesis 
under glucose- and glutamine-depleted conditions. In short, lactate can compensate 
for the lack of intermediate metabolites and overcome the problem of cell damage 
in human PSC-derived cardiomyocytes, whereas residual human PSCs cannot uti-
lize lactate-derived pyruvate, as mentioned above (Tohyama et al. 2016). In addi-
tion, most of the obtained pure cardiomyocytes were myosin light chain 2v 
(MLC2v)-positive ventricular cells. This metabolism-based method has the 
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Fig. 8.3 Purification of only cardiomyocytes from PSC-derived mixed cell populations. (a), 
Purification of cardiomyocytes by a combination of FACS and antibodies or dyes. (b) Purification 
of cardiomyocytes by metabolic culture conditions
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following advantages: (1) suitability for large-scale production of pure cardiomyo-
cytes (Fonoudi et al. 2015; Hemmi et al. 2014), (2) simple procedure without spe-
cialized instrumentation, (3) low cost of culture medium, and (4) high yield of target 
cells (Aalto-Setala et al. 2015).

8.3.4  Other Nongenetic Methods

Xu succeeded in enriching human PSC-derived cardiomyocytes using a Percoll 
density gradient procedure (Xu et al. 2006), yielding cultures containing 35–66% 
cardiomyocytes. Nguyen et al. reported that the formation of cardiospheres derived 
from human PSCs enabled the enrichment of cardiomyocytes to over 80% (Nguyen 
Doan et al. 2014).

Ban et al. reported the purification of cardiomyocytes from mouse and human 
PSCs by a combination of FACS and molecular probes consisting of 15–30-bp dual- 
labeled oligonucleotides with a fluorophore and a quencher. In short, molecular 
probes could be used to identify and visualize cardiomyocyte-specific mRNA in live 
cells (Ban 2013). Recently, Miki et al. succeeded in establishing an efficient method 
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for purifying cardiomyocytes based on endogenous microRNA (miRNA) activity 
(Miki et al. 2015). They utilized synthetic mRNAs encoding a fluorescent protein 
with sequences targeted by cardiomyocyte-specific miRNAs and purify cardiomyo-
cytes with or without FACS.

 Conclusions

To realize safe cardiac regenerative medicine using human PSCs, it is important to 
provide systems for producing target cells with high quality and sufficient quantity. 
Based on this requirement, metabolic selection systems may be an ideal method to 
efficiently obtain large numbers of cardiomyocytes derived from human PSCs 
(Tohyama 2013; Tohyama et al. 2016). This method using glucose-depleted media is 
also applicable to drug screening and elucidation of pathogenesis using patient- 
specific iPSCs (Burridge et al. 2016; Kodo et al. 2016; Matsa et al. 2016; Hinson 
et al. 2015; Dudek et al. 2015). At the same time, methods are needed to detect tumor-
forming PSCs with higher sensitivity. Several studies have reported the detection of 
PSCs at a ratio of 0.001–0.01% (Tano et al. 2014; Kuroda et al. 2012). Further studies 
are needed to determine whether this sensitivity is sufficient for evaluation of the 
safety of techniques for regenerative medicine. Recent studies showed that human 
PSC-derived transplanted cardiomyocytes could electrically integrate with the host 
heart (Shiba et al. 2012; Gerbin et al. 2015) and mature over time (Hattori 2010; 
Chong et al. 2014; Funakoshi et al. 2016). Although the effectiveness of transplanta-
tion of human PSC-derived cardiomyocytes has been demonstrated in large animals 
(Chong et al. 2014; Ye et al. 2014; Kawamura et al. 2012), there is a risk of ventricu-
lar arrhythmia (Chong et al. 2014; Shiba et al. 2014). While the mechanism is 
unknown, there are two major possibilities: contamination with noncardiac cells 
derived from human PSCs and immaturity of PSC-derived cardiomyocytes. Large-
scale purification methods for cardiomyocytes may yield solutions for overcoming 
both of these challenges in order to realize safe cardiac regenerative medicine.
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