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Abstract
The adult myocardium harbours a population of resident (endogenous) multipo-
tent cardiac stem and progenitor cells (eCSCs). Manipulation of these cells in 
situ and ex vivo has opened new therapeutic avenues for anatomical and func-
tional myocardial regeneration. However, recently the ability of the c-kitpos stem 
and progenitor cells to transdifferentiate into new cardiomyocytes has been dis-
puted. Within an already highly controversial research field, these publications 
have caused significant confusion in their interpretation. Importantly, identify-
ing, tracing and characterising stem and progenitor cells according to expression 
of a single surface receptor such as c-kit do not identify eCSCs. As discussed in 
this chapter, eCSCs isolated from the adult heart have a specific phenotype, being 
negative for blood lineage markers such as CD34, CD45 and CD31, and exhibit 
properties of stem and progenitor cells, being clonogenic, self-renewing and 
multipotent. Under the appropriate conditions, eCSCs differentiate into fully 
functional beating cardiomyocytes and regenerate cardiomyocytes lost from 
damage in vivo. Finally, eCSCs are susceptible to the effects of ageing, making 
regulation of this parameter highly impactful in the efficacy of myocardial regen-
erative therapies.

Despite the adult mammalian heart being composed of terminally differentiated 
cardiomyocytes that are permanently withdrawn from the cell cycle (Nadal-Ginard 
1978; Chien and Olson 2002), it is now apparent that the adult heart has the capac-
ity, albeit low, to self-renew cardiomyocytes over the human lifespan (Bergmann 
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et al. 2009, 2015). This is supported by the detection of small, newly formed, imma-
ture cardiomyocytes, which incorporate BrdU/EdU and/or stain positive for Ki67, 
Aurora B and embryonic/neonatal myosin heavy chain (Fig. 2.1), as well as cardio-
myocytes undergoing mitosis, under normal conditions and in response to diverse 
pathological and physiological stimuli (Urbanek et al. 2003, 2005; Bergmann et al. 
2009; Boström et al. 2010; Overy and Priest 1966; Kajstura et  al. 1998; Waring 
et al. 2014). The source of these newly formed cardiomyocytes is still a matter of 
debate (Laflamme and Murry 2011). Three main sources of origin of the new car-
diomyocytes have been claimed: (a) circulating progenitors, which through the 
bloodstream home to the myocardium and differentiate into cardiomyocytes (Quaini 
et al. 2002); (b) mitotic division of the pre-existing cardiomyocytes (Boström et al. 

Fig. 2.1  Regenerating cardiomyocytes in the adult rat heart. Two small regenerating cardiomyo-
cytes (arrowheads) detected using a mouse monoclonal myosin heavy chain (developmental) pri-
mary antibody (Novocastra, Leica Biosystems). This antibody recognises a MHC present during 
the embryonic and period in the development of skeletal muscle, and the same MHC is re-expressed 
during regeneration of new skeletal muscle fibres (Ecob-Prince et al. 1989; Williams et al. 2001)
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2010; Bersell et al. 2009; Kühn et al. 2007; Senyo et al. 2013); and (c) a small popu-
lation of resident multipotent stem cells able to differentiate into the main cell types 
of the heart (i.e. cardiomyocytes, smooth and endothelial vascular and connective 
tissue cells) (Torella et al. 2007; Rasmussen et al. 2011).

Blood-borne precursors are well documented for having a role in inflammation 
and healing. When adult mouse bone marrow cells were injected into the chick 
embryo, they converted to a myocardial phenotype (Eisenberg et al. 2006). Their 
cardiomyogenic potential in the damaged adult heart is however at best very much 
limited (Loffredo et al. 2011; Ellison et al. 2013). The evidence so far presented in 
support of re-entry of terminally differentiated cardiomyocytes into the cell cycle 
has been limited to show division of cells that express proteins of the contractile 
apparatus in their cytoplasm (Boström et al. 2010; Bersell et al. 2009; Kühn et al. 
2007; Senyo et al. 2013). This evidence is equally compatible with new myocyte 
formation from the pool of multipotent cardiac stem/progenitor cells, which as pre-
cursor cells express contractile proteins, and because newly born myocytes are not 
yet terminally differentiated, they are capable of a few rounds of division before 
irreversibly withdrawing from the cell cycle (Nadal-Ginard et al. 2003).

The best documented source of the small, immature, newly formed cardiomyo-
cytes in the adult mammalian heart, including the human, is a small population of 
endogenous cardiac stem and progenitor cells (eCSCs) distributed throughout the 
atria and ventricles, which can give rise to functional cardiomyocytes and vascula-
ture in vitro and in vivo (Torella et al. 2007; Ellison et al. 2007a). Importantly, owing 
to genetic labelling and transitional tracking, it is now documented that the newly 
formed cardiomyocytes observed in the adult mammalian heart are the product of 
eCSC differentiation (Hsieh et al. 2007; Ellison et al. 2013; van Berlo et al. 2014).

2.1	 �Phenotype and Characteristics of eCSCs

The first report of endogenous cardiac stem and progenitor cells in the adult mam-
malian heart was in 2003 (Beltrami et al. 2003), and since then their existence has 
been confirmed by a number of independent groups. Although a variety of markers 
(c-kit, Sca-1, PDGFrα, Wt1) have been proposed to identify eCSCs in different spe-
cies and throughout development (Oh et al. 2003; Matsuura et al. 2004; Messina 
et al. 2004; Martin et al. 2004; Laugwitz et al. 2005; Moretti et al. 2006; Kattman 
et al. 2006; Wu et al. 2006; Smart et  al. 2011; Chong et al. 2011; Noseda et  al. 
2015), it still remains to be determined whether these markers identify different 
populations of eCSCs or, more likely, different developmental and/or physiological 
stages of the same cell type (Ellison et al. 2010; Keith and Bolli 2015).

The progeny of a single eCSC is able to differentiate into cardiomyocytes, 
smooth muscle and endothelial vascular cells and, when transplanted into the border 
zone of an infarct, regenerates functional contractile muscle and the microvascula-
ture of the tissue (Beltrami et al. 2003; Ellison et al. 2013). In a normal adult myo-
cardium, at any given time, most of the eCSCs are quiescent, and only a small 
fraction is active to replace the cardiomyocytes and vascular cells lost by wear and 
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tear. In response to stress (hypoxia, exercise, work overload or diffuse damage), 
however, a proportion of the resident eCSCs are rapidly activated; they multiply and 
generate new muscle and vascular cells (Urbanek et al. 2003; Ellison et al. 2007a, 
2013; Waring et al. 2014), contributing to cardiac remodelling. The activation of the 
eCSCs is able to regenerate the myocardial cells lost as a consequence of diffuse 
myocardial damage, which kills up to 10% of the myocardial mass (Ellison et al. 
2013), and their transplantation can regenerate the contractile cells lost as a conse-
quence of a major acute myocardial infarction (AMI) affecting up to 25% of the left 
ventricular mass (Beltrami et al. 2003; Ellison et al. 2013).

2.1.1	 �c-kitpos Stem and Progenitor Cells

c-kit, also known as CD117, is a tyrosine kinase type III receptor, which is expressed 
in several cell types and plays a significant role in a variety of cell functions, includ-
ing identifying haematopoietic stem cells while regulating their cell fate (Roskoski 
2005). c-kit positive (c-kitpos) stem, and progenitor cells have been identified in the 
myocardium that are also positive for Sca-1 and MDR-1 (ABCG2) yet are negative 
for markers of the blood cell lineage, CD31, CD34 and CD45 (described as lineage-
negative). They are self-renewing, clonogenic and multipotent and exhibit signifi-
cant regenerative potential when injected into the adult rat heart following a 
myocardial infarction (MI), forming new cardiomyocytes and vasculature and 
restoring cardiac function (Beltrami et al. 2003; Ellison et al. 2013). c-kitpos eCSCs 
with similar properties to those originally identified in the rat have been identified 
and characterised in the mouse (Messina et  al. 2004; Fransioli et  al. 2008), dog 
(Linke et al. 2005), pig (Ellison et al. 2011) and human (Messina et al. 2004; Torella 
et al. 2006; Bearzi et al. 2007; Arsalan et al. 2012). These cells are present at a simi-
lar density in all species (~1 eCSC per 1000 cardiomyocytes or 45,000 human 
eCSCs per gram of tissue) (Torella et al. 2007). Similar to the rodent heart, the dis-
tribution of c-kitpos eCSCs in the pig and human heart varies with cardiac chamber, 
and this will differ in the human depending on disease status (our unpublished find-
ings). The adult-derived c-kitpos eCSCs are very similar in their characteristics and 
potential to a population of cardiac-specific (c-kitpos/Nkx2.5pos) cells identified in the 
mouse embryo that differentiate into cardiomyocytes and also smooth muscle cells 
(Wu et al. 2006). Indeed, similar to adult-derived eCSCs, embryonic cardiac c-kitpos/
Nkx2.5pos cells possessed the capacity for long-term expansion in vitro, clonogenic-
ity and differentiation into both cardiomyocytes and smooth muscle cells from a 
single-cell-derived colony (Wu et al. 2006).

Recently considerable confusion has mounted because of the development of 
genetic lineage tracing mouse models according to the expression of c-kit. Stem 
cells, as defined by Potten and Loeffler, are “undifferentiated cells capable of (1) 
proliferation, (2) self-maintenance, (3) production of large number of differentiated 
progeny, (4) regeneration of the tissue after injury, and (5) flexibility in the use of 
these options” (Potten and Loeffler 1990). It is important to iterate that a cell must 
possess these characteristics to be defined a stem cell; identifying, tracing and 
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characterising stem cells according to expression of a single surface receptor (Tallini 
et al. 2009; Jesty et al. 2012; van Berlo et al. 2014; Sultana et al. 2015), such as 
c-kit, do not identify eCSCs. Thus, relying on genetic labelling of c-kitpos cells or 
quantifying c-kitpos cells within any tissue, including the heart, to extrapolate their 
plasticity or regenerative potential is in our view a major biological and practical 
pitfall that brings data which require a careful interpretation.

In the adult heart, the total population of c-kitpos cells (including the CD45pos frac-
tion representing cardiac mast cells and CD34/CD31pos cells representing vascular 
progenitors and cells; Fig. 2.2) have little cardiomyogenic potential (van Berlo et al. 
2014; Sultana et al. 2015) and following cryogenic injury (induced by touching a 
1 mm diameter copper probe that is equilibrated in liquid nitrogen to the apex of the 
left ventricle) or myocardial infarction (induced by ligation of left anterior descend-
ing coronary artery) contribute predominantly through revascularisation of the dam-
aged tissue (Tallini et al. 2009; Jesty et al. 2012; van Berlo et al. 2014; Sultana et al. 
2015). These cells express Flk-1 and/or Pecam-1 (CD31) suggesting they are primar-
ily vascular progenitors and bear more resemblance to the bone marrow-derived 
c-kitpos/Sca-1pos/Flk-1pos cells identified by Fazel and colleagues, which following a 
myocardial infarction home to the heart and contribute to the revascularisation of the 
infarcted/damaged area by establishing a pro-angiogenic milieu (Fazel et al. 2006). 
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Fig. 2.2  c-kitpos cells in the adult heart are not all stem/progenitor cells. c-kit-positive cells in the 
adult represent cardiac mast cells (MAST), endothelial cells (EC), endothelial progenitor cells 
(EPC) and cardiac stem cells (CSC). CSCs express c-kit at a lower level compared to mast cells, 
endothelial cells and endothelial progenitor cells. CSCs have a phenotype of c-kitpos/low, CD45neg, 
tryptaseneg, CD31neg and CD34neg and are clonogenic, self-renewing and multipotent, differentiating 
into the three cardiac lineages: cardiomyocyte, endothelial and smooth muscle cells
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Importantly, the c-kitpos eCSCs are CD34 and CD31 negative (Smith et  al. 2014) 
making them distinguishable from these vascular progenitor c-kitpos cells (Fang et al. 
2012) (Fig. 2.2).

Despite the extensive characterisation of c-kitpos eCSCs, where they meet all five 
properties of the ‘stem cell’ definition given above, their role and significance in the 
adult mammalian heart have been continually questioned (Passier et al. 2008; Pouly 
et al. 2008; Zaruba et al. 2010; van Berlo and Molkentin 2014). Pouly et al. investi-
gated c-kitpos cells in endomyocardial, right ventricular (RV) biopsies and right atrial 
appendages of heart transplant recipients 73.5 months post-transplantation. Using 
immunohistochemistry they found that c-kitpos cells were rare (1/mm2 atrial tissue 
and 2.7/mm2 RV tissue). None of the c-kitpos cells identified expressed Nxk2.5 or 
CD105; however, all of these cells expressed CD45 and tryptase, identifying them as 
cardiac mast cells. It is not surprising that the authors only identified mast cells, as 
cardiac mast cells account for ~80% of the total number of c-kitpos cells in the atria 
(Ellison et al. 2011).

An important consideration when isolating c-kitpos eCSCs using the enzymatic 
tissue digestion method (Smith et al. 2014) is to allow liberation of all eCSCs from 
deep within the myocardium, but also being aware that the c-kit receptor can be 
affected by over-enzymatic digestion becoming internalised (Lévesque et al. 2003).

2.1.2	 �Sca-1pos and Side Population Progenitor Cells

Sca-1pos, lineage-negative cardiac progenitor cells (CPCs) were first described in 
2003 and are resident non-myocyte cells from the adult murine heart expressing stem 
cell antigen 1 (Sca-1). While the total Sca-1 CPCs express early cardiac-specific fac-
tors such as Gata-4 and MEF2C (Oh et al. 2003; Matsuura et al. 2004), only a frac-
tion of them exhibit stem cell properties of self-renewal and clonogenicity (Ye et al. 
2012; Chong et al. 2011; Matsuura et al. 2004; Noseda et al. 2015). Sca-1pos CPCs are 
capable of cardiomyogenic differentiation in vitro (Oh et al. 2003; Ye et al. 2012; 
Matsuura et al. 2004; Takamiya et al. 2011; Chong et al. 2011; Wang et al. 2006) and 
exhibit in vivo cardiomyogenic regenerative potential (Oh et al. 2003; Noseda et al. 
2015; Wang et al. 2006; Takamiya et al. 2011). Sca1pos CPCs also show differentia-
tion into both endothelial and smooth muscle lineages (Ye et al. 2012; Wang et al. 
2006; Takamiya et al. 2011; Iwakura et al. 2011; Noseda et al. 2015). It is worth not-
ing that there is also a population of Sca1pos vascular progenitor cells which resides 
within the arterial adventitia (AdvSca1 cells) that have been shown to be regulated 
by sonic hedgehog signalling (Shh) (Passman et al. 2008).

Side population (SP) cells were first characterised as a primitive population of 
haematopoietic stem cells characterised by their unique ability to efflux the DNA-
binding dye, Hoechst 33342 (Goodell et al. 1996). SP cells have since been isolated 
from extra-haematopoietic tissues, including bone marrow, skeletal muscle, liver, 
brain, heart and lung (Asakura and Rudnicki 2002), and the ATP-binding cassette 
transporter (ABCG2) has been identified as a molecular determinant of the SP phe-
notype (Zhou et al. 2001; Martin et al. 2004). Hierlihy et al. first reported that the 
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adult myocardium contained an endogenous cardiac SP with stem cell-like activity 
and identified that this Hoechst dye-excluding population constituted ~1% of total 
cardiac cells in the mouse postnatal heart (Hierlihy et  al. 2002). Transcriptional 
profiling revealed that the cardiac SP exhibits a Sca-1pos, c-kitlow, CD34neg and 
CD45neg phenotype (Martin et  al. 2004), and further interrogation of these cells 
revealed that 75% express the endothelial marker, CD31. However, the Sca-1pos 
CD31neg population was subsequently identified as having the greatest cardiomyo-
genic potential and was found to represent ~10% of the total cardiac SP (Martin 
et al. 2004; Wang et al. 2006; Pfister et al. 2005; Oyama et al. 2007).

Although Sca-1 appears to be an ideal marker for isolating and identifying CPCs, 
its homology hasn’t been confirmed in any species, other than mouse. This poses a 
significant problem when translating research to develop human regenerative thera-
pies. As c-kitpos eCSCs express Sca-1 (Smith et al. 2014) and the c-kitposCD45negCD31neg 
and Sca-1posCD31neg cell populations exhibit similar number, self-renewing, clonoge-
nicity and differentiation potential in vitro and in vivo, it can be concluded that they 
are probably the same cell population and will only differ in their level of expression 
of c-kit and/or Sca-1 depending on their physiological/differentiation state.

2.2	 �Cardiac Differentiation Potential of eCSCs

Despite the extensive published data from different groups in support of the regen-
erative cardiomyogenic potential of the eCSCs in vivo (Ellison et al. 2013; Beltrami 
et al. 2003; Li et al. 2011; Noseda et al. 2015; Hsieh et al. 2007; Mohsin et al. 2012; 
Fischer et al. 2009; Angert et al. 2011), scepticism exists over an eCSC’s potential 
to differentiate into a fully functional synchronised beating cardiomyocyte. The first 
demonstration that a cardiosphere-forming progenitor cell type isolated from the 
mouse heart could form spontaneous beating myocyte colonies in vitro was from 
Messina et  al. (2004). Then it was shown that Sca-1pos/CD31neg/CD34neg/CD45neg 
eCSCs isolated from adult mice hearts differentiated into active contracting cardio-
myocytes in vitro (Pfister et al. 2005). We have also shown that clonal c-kitpos eCSCs 
differentiate into functionally competent beating cardiomyocytes following supple-
mentation with a stage-specific growth factor cocktail targeting TGFβ and Wnt sig-
nalling pathways, recapitulating the morphogens present during embryonic 
development (Smith et al. 2014). This stage-specific regime is not dissimilar to that 
used to induce differentiation of ESCs and iPSCs into the functional cardiomyo-
genic embryoid bodies in vitro (Yang et al. 2007). Therefore, like other stem cells, 
under the appropriate conditions eCSCs do have cardiomyogenic capability, differ-
entiating into functionally competent, beating cardiomyocytes in vitro.

When c-kitpos cells are transplanted intramyocardially in the border/infarct zone of 
myocardial infarcted hearts, reports have also shown lack of their ability to differenti-
ate into cardiomyocytes. This lack of differentiation capability is most likely due to 
lack of characterisation of the transplanted cell type, poor cell survival and retention, 
hostile host environment and subsequent restriction of cell proliferation and integra-
tion and differentiation in this damage-regeneration infarct model. Similar findings 
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have been shown for Sca-1pos CPCs (Noseda et al. 2015) and other stem/progenitor 
cells, including ESCs (Don and Murry 2013). Furthermore, whether the cells are 
injected as freshly isolated or pre-cultured and expanded in vitro or clonogenic cells 
will influence their survival and subsequent proliferation, integration and differentia-
tion post-transplantation. Stem cells are maintained in a quiescent state until activated 
by injury in vivo (Ellison et al. 2007b) or another stimulus ex vivo (i.e. cell culture). 
Therefore, a freshly isolated stem cell, as well as being highly stressed following iso-
lation from its niche, is quiescent and, unless activated, will not exit from G0 and, 
upon transplantation, coupled with the hostile host environment, will be more prone 
to death and/or not likely to proliferate. A cycling-competent stem cell that has been 
propagated in  vitro is more robust and shows increased survival and proliferation 
post-transplantation (our unpublished findings). Additionally, a clonogenic popula-
tion, derived from a single cell, is multipotent and able to give rise to cells of all three 
cardiac lineages. We have shown that clonogenic eCSCs injected intramyocardially 
following myocardial infarction can replenish up to 20% of cardiomyocytes in the 
infarct zone, resulting in improved LV function (Ellison et al. 2013).

As stated above certain criteria need to be met to ensure that a cell can be defined 
as a ‘stem/progenitor’ cell. These include being self-renewing, clonogenic and mul-
tipotent. A cell that is injected in vivo to test its regenerative potential should at least 
show these characteristics in vitro and prior to transplantation. Unfortunately, only 
a few publications show that the cells they inject have the properties of stem and 
progenitor cells. Instead because they express stem cell markers such as c-kit or 
Sca-1 and have been isolated from myocardial tissue, they assume that they are 
eCSCs, when in fact they are very likely not, but rather CD34pos/CD31pos vascular 
progenitors and will give rise to new vasculature once transplanted.

It is currently disputed if adult tissue-specific stem cells possess true pluripotency. 
Indeed, Sca1pos CPCs and c-kitpos eCSCs have shown capability of differentiation into 
noncardiac lineages in vitro and in vivo (Takamiya et al. 2011; Chong et al. 2011; 
Miyamoto et al. 2010). Interestingly it has been reported that the level of Sca-1 expres-
sion may actually play a role in their differentiation potential with Sca-1 high CPCs 
having a broader differentiation potential, showing osteogenic, chondrogenic, smooth 
muscle, endothelial and cardiac differentiation in vitro than Sca-1 low CPCs (Takamiya 
et al. 2011). In vivo teratoma formation assays have also shown that while Sca-1pos 
CPCs alone do not form tumours, when injected alongside ESCs, they differentiate 
into cells of the three germ layers (Chong et al. 2011), although this broad develop-
mental plasticity is yet to be shown in tissue regeneration and repair in vivo.

2.3	 �The Controversy

As outlined above eCSCs are small primitive cells, positive for stem cell surface recep-
tor markers (i.e. c-kit, Sca-1) and negative for markers of the haematopoietic and endo-
thelial lineage (i.e. CD45 and CD31) and mast cells (i.e. tryptase). They exhibit 
properties of stem cells, being clonogenic and self-renewing, and differentiate into car-
diomyocytes, smooth muscle and endothelial cells, both in vitro and in vivo. Despite 
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these reputable published data, recently, by targeting the c-kit locus with multiple 
reporter genes in mice, the significance of c-kitpos eCSCs to give rise to cardiomyocytes 
in vivo has been challenged (van Berlo et al. 2014; Sultana et al. 2015). Instead, these 
papers suggest a largely vasculogenic and advential lineage predisposition of c-kitpos 
cells, which isn’t surprising considering 90% of c-kitpos cells from the adult heart are 
CD31-positive (our unpublished data).

In the following sections we like to point out specific limitations of previous 
studies questioning the existence of eCSCs:

	1.	 c-kitpos cells vs. c-kitpos eCSCs: c-kit is expressed in numerous cell types in the 
bone marrow (haematopoietic stem and progenitor cells and mast cells), endo-
thelial (and circulating progenitor) cells, prostate stem cells and interstitial cells 
of Cajal. Elimination of these cells, and in particular of CD45pos/c-kitpos/tryptas-
epos mast cells and CD34pos/CD31pos/c-kitpos endothelial progenitors which are 
several-fold higher in number in the heart than the eCSCs, from analysis is 
essential (Ellison et al. 2011, 2013; Smith et al. 2014). The CD45neg/CD31neg/
CD34neg/tryptaseneg/c-kitpos eCSCs make up a small population (~2–8%) of the 
total c-kitpos cells (Smith et al. 2014). Therefore, when using genetic lineage trac-
ing to target the c-kit locus at large, definitive conclusions cannot be drawn on 
the cardiomyogenic potential of the eCSCs per se. Finally, the presented data is 
in agreement with our observation that a very small percentage of the tagged 
c-kitpos cells can generate cardiomyocytes and can therefore be considered.

	2.	 Level of c-kit expression: Our preliminary, unpublished data show that c-kit in 
eCSCs is expressed at a significantly lower level than in the mast cells and endo-
thelial progenitor cells. Whether c-kit/cre lineage tracing models are able to tag 
and enable effective cre recombination to occur over the time periods tested in 
the lower c-kit-expressing eCSC cohort has not yet been determined (Nadal-
Ginard et al. 2014).

	3.	 Injury model: The adult heart has a low cardiomyocyte renewal rate, and although 
this rate may increase somewhat after injury, the heart itself is unable to effect 
large-scale cardiac regeneration, as would be expected from it following a myo-
cardial infarction. Since the discovery of eCSCs, investigators have used the 
small animal myocardial infarction model to claim the lack of significance and 
cardiomyogenic regenerative potential of eCSCs. We question whether this spe-
cific model in light of the naturally low abundance of eCSCs is suited to support 
this claim. No solid organ, even with a large stem cell reserve and renewal capa-
bility, can regenerate itself from ligation of its main artery resulting in large 
segmental loss of tissue (Ellison et  al. 2012). Therefore, when using the 
myocardial infarction model there will be very little spontaneous regeneration of 
cardiomyocytes (<0.01%), whether coming from resident, endogenous stem 
cells (Smart et al. 2011; van Berlo et al. 2014; Sultana et al. 2015; Hsieh et al. 
2007) or proliferation of the survived cardiomyocytes (Senyo et al. 2013).

We have developed in our view a more physiologically relevant cardiac 
damage model that is in the presence of a patent coronary circulation and more 
recapitulates muscle wear and tear. When a single excessive (200 mg/kg for 
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mouse; 5 mg/kg for rat) dose injection (s.c.) of the synthetic catecholamine, 
isoproterenol (ISO), is administered, there is significant diffuse sub-endocar-
dial and apical cardiomyocyte necrotic death, resulting in a dropout of ~10% 
cardiomyocytes at 24 h post ISO (Goldspink et al. 2004; Ellison et al. 2007b, 
2013). This leads to the development of acute cardiac failure; however, the 
myocardial damage and heart failure spontaneously reverse anatomically and 
functionally by 28 days (Ellison et al. 2013). Using the acute ISO model, we 
showed that the adult heart has intrinsic regenerative capacity, where the 
eCSCs restore cardiac function by regenerating the lost cardiomyocytes. When 
ISO injury was followed by a 4-week regime of the anti-proliferative agent 
5-FU for ablation of eCSC expansion and consequent differentiation, no car-
diac regeneration and functional recovery was apparent with animals ending in 
overt heart failure. However, the regenerative process is completely restored by 
replacing the ablated eCSCs with the progeny of one eCSC. After regenera-
tion, selective suicide of these exogenous CSCs and their progeny abolishes 
regeneration, severely impairing ventricular performance. Thus, eCSCs are 
necessary and sufficient for the regeneration and repair of myocardial damage 
(Ellison et al. 2013). Incidentally, the acute ISO model should not be confused 
with chronic administration of ISO over a minimum of 7 days leading to heart 
failure and cardiac remodelling with significant fibrotic scar formation and as 
used by van Berlo et al. (2014).

2.4	 �Origin of eCSCs

An intriguing question concerning eCSCs resident in the heart is whether they are 
directly descended from lineages which have been present since early development 
or have possibly ‘migrated’ to the heart later in life. c-kitpos/Nkx2.5pos eCSCs have 
been identified in early cardiogenic mesoderm (Wu et  al. 2006) and in murine 
embryonic hearts at E6.5 (Ferreira-Martins et al. 2012), a period of development 
currently thought to be confined solely to first heart field progenitors during primi-
tive heart tube formation.

A study of Nkx2.5-positive, multipotent cardiac stem/progenitor cells early in 
development found expression of c-kit in ~28% of these cells, which were also 
negative for CD45, demonstrating that c-kit expression marks a major subset of 
cardiac progenitors during development (Wu et al. 2006). Furthermore, Nkx2.5pos, 
c-kitpos cells were more proliferative and less differentiated than Nkx2.5pos, c-kitneg 
cells; this correlation was not found with Sca-1 expression levels in Nkx2.5pos cells 
(Wu et al. 2006). However, it has not been determined if the adult c-kitpos eCSCs are 
directly descended from these cells. Analysis of GFP-positive cells in the embryo of 
a c-kit-GFP transgenic mouse during cardiac development showed a c-kit-expressing 
population of progenitor cells that was resident in the heart and did not migrate from 
extra-cardiac tissue (although a contribution to the c-kit-positive population from 
extra-cardiac sources could not be excluded) and were present in the postnatal 
period (Ferreira-Martins et  al. 2012). These cells were also shown to have 
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comparable properties to c-kitpos eCSCs in adult life in terms of proliferation, mul-
tipotency and myocardial regenerative capacity (Ferreira-Martins et al. 2012).

Recently, using high-resolution genetic fate-mapping approaches with 
c-kitCreERT2/+ and Wnt1::Flpe mouse lines, Hare and colleagues have shown that c-kit 
identifies a population of multipotent progenitors of cardiac neural crest origin 
(Hatzistergos et al. 2015). Recent evidence reviewed by Keith and Bolli (Keith and 
Bolli 2015) support the concept that c-kit-expressing cells in the heart are not lim-
ited to originating from one progenitor cell; rather c-kit expression is a property of 
cells that originate from multiple pools of progenitors in the developing and postna-
tal heart (e.g. FHF, proepicardium). Moreover, c-kit expression by itself does not 
define the embryonic origin, lineage commitment capabilities or differentiation 
potential of the various groups of progenitors (Keith and Bolli 2015).

2.5	 �Impact of Ageing and Senescence on eCSCs

Ageing poses the largest risk factor for cardiovascular disease (North and Sinclair 
2012). Although long-term exposure to known cardiovascular risk factors strongly 
drives the development of cardiovascular pathologies, intrinsic cardiac ageing is 
considered to highly influence the pathogenesis of heart disease (Dutta et al. 2012). 
However, the fields of the biology of ageing and cardiovascular disease have been 
studied separately, and only recently their intersection has begun to receive the 
appropriate attention.

Over the course of ageing, the heart undergoes a number of anatomical, functional 
and cellular alterations. Early diastolic left ventricular (LV) filling, LV contractility 
and ejection fraction all decrease during ageing leading to a reduced cardiac output 
(Schulman et al. 1992; Fleg et al. 1995; Lakatta and Levy 2003a). In an attempt to 
compensate for the reduction in cardiac output, the myocardium is triggered to 
increase its muscle mass by undergoing hypertrophy, which in the long-term results 
in weakened cardiac function. Ageing of the arterial system is exemplified by 
increased arterial thickening and stiffness, luminal enlargement and dysfunctional 
endothelium with decreased responsiveness to stress and injury (Lakatta and Levy 
2003b). Arterial stiffness contributes to LV pathological hypertrophy and stimulates 
fibroblast proliferation causing myocardial and arterial fibrosis. Impaired heart rate 
is another characteristic of the ageing heart. Loss of sinoatrial node cells together 
with fibrosis and hypertrophy, slow electric impulse propagation throughout the 
heart causes decreased maximum heart rate and arrhythmias (Antelmi et al. 2004). 
Thus, age-imposed anomalies of the cardiovasculature led to the onset of a variety of 
age-related pathologies, including ischemia, hypertension, atherosclerosis, age-
related macular degeneration and stroke (North and Sinclair 2012).

Mammalian ageing has been defined as a gradual loss of the capacity to maintain 
tissue homeostasis or to repair tissues after injury or stress (Jeyapalan and Sedivy 
2008). It is now well known that tissue regeneration and homeostasis are controlled 
by the tissue-specific stem-progenitor cell compartment present in every tissue 
(Weissman 2000; Li and Clevers 2010). Therefore, it is logical to postulate that 
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pathological and pathophysiological conditions associated with distorted homeosta-
sis and regenerative capacity, such as ageing, correlate with impairments in the cor-
responding stem cell pool (Sharpless and DePinho 2007; Rossi et al. 2008; Beltrami 
et al. 2011). Indeed, there is an already well-established overlap between ageing and 
stem cell impairment, observed in a number of organs and tissues (Martin et  al. 
1998; Flores et al. 2005; Liang et al. 2005; Nishimura et al. 2005; Janzen et al. 2006; 
Krishnamurthy et  al. 2004; Molofsky et  al. 2006; Beerman et  al. 2010). Tissue-
specific stem cells decline with age due to several factors including telomere short-
ening, DNA damage and external influences affecting stem cell niche homeostasis 
(Sharpless and DePinho 2007). In recent years, accumulated evidence signified that 
cardiac ageing and pathology affects eCSC activity and potency, and therefore this 
diminishes the capacity of the myocardium to maintain homeostasis (Chimenti et al. 
2003; Torella et al. 2004; Urbanek et al. 2005; Sharpless and DePinho 2007; Rossi 
et al. 2008; Thijssen et al. 2009; Kajstura et al. 2010; Cesselli et al. 2011). As the 
majority of cardiovascular disease patients are of advanced age, we should focus on 
the biology of aged CSCs to reflect the aetiology of cardiovascular disease observed 
in the clinic.

In the heart, ageing and disease are shown to be associated with a significant 
accumulation of senescent and dysfunctional cardiomyocytes and eCSCs display-
ing attenuated telomerase activity, telomeric erosion, high incidence of telomere-
induced dysfunction foci and elevated expression of the cyclin-dependent kinase 
inhibitors (CDKIs) p16INK4a and p21Cip1 (Chimenti et  al. 2003; Torella et  al. 
2004; Gonzalez et al. 2008; Kajstura et al. 2010; Cesselli et al. 2011; Rota et al. 
2006; Urbanek et  al. 2005) (Fig.  2.3). Nevertheless, a population of functional 
eCSCs, which express telomerase, lack expression of senescent markers and express 
the cycling protein, Ki67, have been shown to persist in aged hearts (Urbanek et al. 
2003; Dawn et  al. 2005). Indeed, in the setting of pathophysiological ageing, 
telomerase-competent eCSCs with normal telomerases can still be found in various 
cardiac regions, which have the capacity to migrate to injured zones and generate a 
healthy progeny partly reversing the senescent phenotype and improving cardiac 
performance (Gonzalez et al. 2008). Unpublished data from our lab has found that 
the number of eCSCs that can be isolated from human myocardial samples is simi-
lar regardless of age, gender and pathology (~45,000/g of tissue). While eCSCs 
isolated from human hearts showed age-correlated increased expression of ageing/
senescence markers and decreased expression of stemness/multipotency and prolif-
eration markers. Moreover, ‘aged-senescent’ eCSCs show limited cloning and 
growth capacity and impaired cardiac differentiation capacity. Importantly, although 
the cloning efficiency was inversely age-related, single-cell-derived eCSC clones 
obtained from younger and older human hearts are indistinguishable by their gene 
expression and differentiation potential. These data suggest that while the loss of 
functionally competent eCSCs may underlie the progressive functional deteriora-
tion documented with age, eCSC ageing itself may be a stochastic process that does 
not affect all eCSCs in a cell autonomous manner.

Senescent cells are characterised by impaired proliferation, an altered gene 
expression profile, resistance to apoptosis and epigenetic modifications, as well as 
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producing an altered secretome, which acts on adjacent as well as distant cells, 
causing fibrosis, inflammation and a possible carcinogenic response (Kuilman and 
Peeper 2009; Kuilman et al. 2010; Rodier and Campisi 2011; Baker et al. 2011; 
Tchkonia et al. 2013). Although a universal marker exclusively expressed in senes-
cent cells has not been identified, most senescent cells express p16INK4a, which is 
not commonly expressed by quiescent or terminally differentiated cells (Baker et al. 
2011; Rodier and Campisi 2011). p16INK4a, which becomes progressively 
expressed with age, enforces cell-cycle arrest by activating retinoblastoma (RB) 
tumour-suppressor protein (Krishnamurthy et al. 2004; Kim and Sharpless 2006).

Interestingly, a recent study demonstrated silencing of p16INK4a in geriatric 
satellite cells restored their quiescence and regenerative potential (Sousa-Victor 
et al. 2014). Similarly, induction of p16INK4a has been shown to induce features of 
ageing and inhibit proliferation of intestinal stem cells; however, subsequent with-
drawal of p16INK4a even after several weeks of induction is sufficient to allow 
rapid recovery of the affected cells (Boquoi et al. 2015). A recent study demon-
strated that genetic reduction of p16INK4a reverses the pathology observed in 
dilated cardiomyopathy (Gonzalez-Valdes et al. 2015). Together these findings sug-
gest that p16INK4a-expressing cells may exist in a pre-senescent state, which is 
potentially reversible.

Old eCSCs
Rejuvenation

IGF-1
Pim1
Wnt

SASP

e.g. IL-6, MMPs
TNF, TGFβ

Young eCSCs

Self-renewing

Multipotent

Telomere
shortening

Epigenetic changes

Senescence, Apoptosis,
Limited self-renewal

DNA damage

p16INK4a

Mitochondrial dysfunction

ROS

ROS
ROS

Fig. 2.3  Pathways contributing to eCSC dysfunction in the ageing process. eCSC ageing is regu-
lated by a combination of intrinsic and extrinsic factors. Intrinsic changes include increased senes-
cent marker expression, e.g. p16INK4a, DNA damage, telomere attrition, increased intracellular 
ROS, mitochondrial dysfunction and ageing-associated epigenetic changes, all of which are chal-
lenging to reverse in a clinically translatable manner. Extracellular changes include systemic cir-
culating factors, local factors secreted by the niche and the SASP, which can negatively modulate 
cell function. These extrinsic pathways are potentially reversible and provide potential therapeutic 
targets to rejuvenate eCSCs and reverse the senescent, dysfunctional phenotype
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Accumulation of p16INK4a-positive senescent cells within a tissue has been 
reported to exacerbate dysfunction as these impaired cells have an altered secre-
tome consisting of matrix metalloproteinases, growth factors and inflammatory 
cytokines, known collectively as the senescent-associated secretory phenotype 
(SASP) (Coppé et  al. 2010) (Fig.  2.3). The SASP can promote senescence of 
neighbouring cells, and this bystander effect has been shown to negatively affect 
the host tissue composition in a paracrine fashion (Acosta et  al. 2008; Campisi 
2005). Researchers at the Mayo clinic have shown that in the BubR1 progeroid 
mouse, removal of p16Ink4a senescent cells delayed the acquisition of age-related 
pathologies in adipose, skeletal muscle and eye, while late-life clearance attenu-
ated progression of already established age-related disorders (Baker et al. 2011). 
Moreover, recently Kirkland and colleagues have also shown that the SASP can be 
supressed by targeting the JAK pathway and activin A, contributing to alleviating 
frailty (Xu et al. 2015a, b). Once the process of senescence is initiated in an organ 
of limited regenerative potential, such as the heart, this can lead to widespread cel-
lular deterioration with the remaining unaffected cells unable to compensate for 
this cellular loss, ultimately leading to impaired cardiac function (Siddiqi and 
Sussman 2013). Therefore, therapeutic approaches inhibiting the SASP-mediated 
decline may improve eCSC, cardiomyocyte and vascular function and alleviate 
global cardiac deterioration.

2.6	 �Therapeutic Targets to Activate eCSCs and Reverse 
the Senescent, Dysfunctional eCSC Phenotype

To reverse the senescent eCSC phenotype, targeting extracellular signals appears to 
be a promising therapeutic avenue with early work showing that exposure of old 
skeletal muscle satellite cells to a youthful environment promotes restoration of 
their function (Conboy et al. 2005). Thus, manipulation of the cardiac microenvi-
ronment could alleviate eCSC dysfunction (Fig. 2.3). The IGF-1 signalling pathway 
has been implicated as a mediator of eCSC senescence, with increased IGF-1 sig-
nalling shown to attenuate ageing-associated markers (Torella et  al. 2004). In a 
22-month-old mice, c-kitpos eCSCs show senescence, evidenced through impaired 
proliferation and differentiation potential, p16INK4a expression, reduced telomer-
ase activity, telomere shortening, senescence and increased apoptosis (Torella et al. 
2004). Senescent eCSCs become largely unable to generate new functionally com-
petent myocytes, compromising cardiomyocyte turnover and favouring the accumu-
lation of old poorly contracting cardiomyocytes (Torella et al. 2004). These findings 
show that cardiovascular ageing impairs eCSCs, leading to their decline and dys-
function, which leads to the development of cardiac dysfunction and failure. 
Interestingly, this progression is altered favourably in IGF-1 transgenic mice 
(Torella et al. 2004). Moreover, reduced phos-Akt expression associated with age-
ing is now thought to act as a main modulator of telomerase activity; thus, therapies 
aimed at counteracting this through stimulation of Akt have been shown to circum-
vent some of the effects of ageing (Torella et  al. 2004; D'Amario et  al. 2011). 
Another promising study focused on ex  vivo modification with Pim-1, a serine/
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threonine kinase to alleviate senescent characteristics. Mohsin et al. (2013) showed 
that Pim-1 rejuvenated the phenotypic and functional properties of eCSCs with res-
toration of youthful telomeric length, enhanced replicative capacity and decreased 
levels of p16Ink4a and p53 (Mohsin et al. 2013). More recently the cardioprotective 
effects of Pim-1 have been shown to be most effective when targeted to nuclear or 
mitochondrial compartments of eCSCs (Samse et al. 2015).

A number of molecular pathways involved in the reversal of eCSC senescence 
still remain unexplored; however, given the evidence available for other self-
renewing tissues, potential future directions can be identified. One potential target 
is the Wnt signalling pathway, with a shift from canonical to non-canonical Wnt 
signalling reported in aged haematopoietic stem cells (HSCs) due to elevated 
expression of Wnt5a. Conversely, stem cell-intrinsic reduction of Wnt5a expression 
resulted in functionally rejuvenated aged HSCs (Florian et al. 2013). Mice which 
overexpressed the Wnt receptor, Frizzled, had reduced infarct size and improved 
cardiac function (Barandon et al. 2003), suggesting that this pathway may have a 
role to play in maintaining eCSC regenerative capacity. Bmi-1, necessary for self-
renewal and regulator of p16Ink4a and p19, has also been shown to limit dilated 
cardiomyopathy by limiting heart senescence (Gonzalez-Valdes et al. 2015). The 
precise role played by reactive oxygen species, mitochondrial dysfunction and epi-
genetic changes associated with aged eCSCs also remains to be determined. 
Moreover, to date many of these pathways have only been studied either in cardio-
myocytes in vitro or in rodent models; therefore, it is vital that we begin to uncover 
the mechanisms regulating senescence in human eCSCs and cardiomyocytes in 
order to move towards translation into clinical therapies.

In summary, the adult heart harbours a small population of cells, which exhibit 
all the necessary properties to be defined as bona fide stem and progenitor cells, 
being clonogenic, self-renewing and multipotent, in vitro and in vivo. In order to 
assess the role of the eCSCs in the adult myocardium, it is indispensable to first be 
able to identify and track the fate of these cells in contradistinction from other myo-
cardial cells with which they share some specific marker(s), particularly expression 
of c-kit. Therefore, alternative markers should be sought and an in-depth sequenc-
ing analysis carried out. Finally, eCSCs are affected by ageing rendering a propor-
tion of them senescent and dysfunctional. Regulation of eCSC ageing and senescence 
will impact the efficacy of regenerative therapies, considering the majority of 
patients in need of treatment are of advanced age. This should not be overlooked 
and should be considered at the forefront when designing and optimising protocols 
to repair and regenerate the injured and old myocardium.
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