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Abstract
The field of heart regeneration has witnessed significant advancements toward 
developing new therapeutics in the past decade. Strategies to regenerate the adult 
human heart are in constant development in both the experimental and clinical 
arenas. Although stem cell therapies remain controversial, cell-based heart repair 
is a promising approach toward regenerating the adult human heart. Experience 
with cell therapy has resulted in several important milestones in clinical studies. 
There are still important roadblocks ahead before cell therapy can achieve the 
regeneration potential for broad numbers of patients. In this chapter, we focus on 
the history of cardiac cell repair and therapeutic strategies and discuss the les-
sons learned in cell-based heart regeneration.

1.1	 �Introduction

Cardiovascular diseases remain to be one of the leading causes of mortality world-
wide and represent an enormous health and economic burden (Whelan et al. 2010). 
Identifying strategies to regenerate the adult human heart after injury has spurred a 
furiously paced experimental race toward this goal.

Historically, the mammalian heart has been considered to be a postmitotic organ, 
without any capacity for cell turnover and regeneration post-injury (Laflamme and 
Murry 2011). Instead of regenerating muscle, a scar is formed to maintain the integ-
rity of the mammalian heart following injury; hypertrophy of the remaining myocar-
dium takes place, but the loss of myocardium can eventually lead to the development 
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of heart failure (Jessup and Brozena 2003). Mechanical approaches for treatment of 
heart failure aimed to counteract the weakening of the heart muscle following injury 
include left ventricular assist devices (Terracciano et  al. 2010). Other approaches 
include neurohormonal inhibition, which is widely used in clinical practice (Sharpe 
et al. 1991). These approaches are beneficial for patients with heart failure, but the 
potential to completely regenerate lost myocardium remains an important goal.

Early discoveries showed that endogenous cardiac regeneration can occur in 
some vertebrate organisms such as the newt and zebrafish (Oberpriller and 
Oberpriller 1974; Poss et al. 2002). Recently, the neonatal mouse heart was reported 
to regenerate in response to injury in a manner similar to lower vertebrates (Porrello 
et al. 2011, 2013). The regenerative response has been attributed to the ability of 
cardiomyocytes to proliferate with restoration of functional myocardium (Jopling 
et  al. 2010; Kikuchi et  al. 2010; Porrello et  al. 2011). Cardiomyocyte cell cycle 
activity is maintained throughout the adult life of vertebrates, but rapidly declines 
with age in mammals (Li et al. 1996; Poss et al. 2002; Walsh et al. 2010). The les-
sons learned from lower vertebrates as well as the neonatal mouse suggest that 
endogenous heart regeneration can occur, and understanding this process could 
allow new therapeutic approaches to regenerate the human heart.

Early mouse studies showed that cardiomyocyte turnover in the adult murine 
heart occurs at low levels, around 1% annually (Soonpaa and Field 1997). 
Cardiomyocyte turnover in the adult mouse heart during aging and following injury 
was demonstrated at high resolution using mouse genetic lineage tracing and multi-
imaging mass spectrometry showing similar levels of myocyte turnover (Senyo 
et al. 2013; Hsieh et al. 2007). To measure the levels of cell turnover in the adult 
human heart, a landmark study exploited the rise of 14C levels during the cold war 
testing of nuclear weapons, which created an opportunity to trace the levels of 14C 
from human heart samples and thus enabled the researchers to determine the rate of 
cardiomyocyte turnover in the adult human heart (Bergmann et al. 2009). Similar to 
the murine heart, the adult human heart showed cardiomyocyte turnover at extremely 
low levels, around 1% annually (Bergmann et al. 2009). Although the cardiomyo-
cyte refreshment is insufficient for a substantial regenerative response following 
injury, this indicates that the heart is much more resilient than previously consid-
ered. Surprisingly, a recent study reported that the human neonatal heart can regen-
erate after a myocardial infarction (Haubner et al. 2015). The similarities between 
the neonatal mouse and neonatal human heart, as well as the adult mouse and adult 
human heart, suggest that regenerating the adult heart will be feasible.

1.2	 �Cell Therapy for Cardiac Repair

The development of many tools in regenerative medicine has inspired cardiovascu-
lar investigators to utilize these methods to regenerate the human heart to restore 
contractile function following injury. Stem cells have generated particular excite-
ment for their potential for cell-based cardiac repair (Garbern and Lee 2013). The 
plasticity of stem cells and their ability to differentiate into multiple cell types has 
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generated hope for the future of regenerative medicine. The past decade has wit-
nessed numerous studies that used different cell types with varying abilities for 
cardiac repair, which led to many clinical trials. The results from these trials con-
tinue to generate controversy regarding the impact of cellular therapy, but it is clear 
that cell therapy may have an important future for human heart regeneration.

The collective knowledge of cellular plasticity in the mammalian heart as well as 
the explosion of the stem cell field fueled the hope to either harness the endogenous 
potential of the mammalian heart or utilize the potential of exogenous stem cells 
that can differentiate into functional myocardium. In the following paragraphs, we 
will discuss the utility of different types of exogenous stem cells, as well as the 
potential of different endogenous cardiac progenitors for cellular transplantation, in 
addition to cellular reprogramming, to regenerate the adult human heart.

1.2.1	 �Skeletal Myoblasts

Skeletal myoblasts were among the initial cell types to be introduced for clinical 
cardiac cell therapy. Skeletal myoblasts were reasonable candidates due to their 
resistance to ischemia, as well as their differentiation potential (Durrani et al. 2010). 
In addition, early results showed the promise of skeletal myoblasts in heart repair 
following injury in multiple experimental animal models (Durrani et  al. 2010). 
However, it was shown that myoblasts fail to integrate with the host myocardium 
and thus fail to beat in sync with the heart (Leobon et al. 2003). Furthermore, the 
first multicenter, randomized, placebo-controlled human clinical trial for myoblast 
autologous grafting in ischemic cardiomyopathy (MAGIC) did not enhance cardiac 
contractile function (Menasche et al. 2008). These results led to a reduced enthusi-
asm toward the use of skeletal myoblasts, and regenerative approaches moved 
onward toward more promising cell types.

1.2.2	 �Bone Marrow-Derived Stem Cells

Bone marrow-derived stem cells have the capacity to differentiate into multiple cell 
types including vascular and cardiac cell fates both in vitro and in vivo (Hirschi and 
Goodell 2002). The detection of Y-chromosome-positive cardiomyocytes in female 
hearts that were transplanted into male patients suggested that bone marrow-derived 
stem cells can differentiate into cardiomyocytes (Quaini et al. 2002). Over a decade 
ago, bone marrow-derived stem cells that express the surface marker c-kit emerged 
as candidates for regenerating the heart following injury through transdifferentiation 
into cardiomyocytes (Orlic et al. 2001). The differentiation potential of c-kit + cells 
in vivo led to controversy. Although the initial report suggested transdifferentiation 
of these cells into cardiomyocytes, subsequent studies by other groups found no evi-
dence of transdifferentiation into cardiomyocytes, but rather showed the formation of 
more mature hematopoietic cell lineages following transplantation (Murry et  al. 
2004; Balsam et  al. 2004). Improved ventricular function was detected following 
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bone marrow-derived stem cell injections in multiple studies; several reports sug-
gested that this effect is due to a paracrine effect through enhancing proliferation and 
differentiation of endogenous cardiac progenitors, thus promoting cardiac repair 
indirectly (Loffredo et al. 2011; Hatzistergos et al. 2010; Urbich et al. 2005; Mathieu 
et al. 2009; Kinnaird et al. 2004; Gnecchi et al. 2006; Hong et al. 2014).

REPAIR-AMI was the first randomized, blinded clinical trial to use autologous 
bone marrow cells through intracoronary infusion for acute myocardial infarction 
(MI) patients (Schachinger et al. 2006). There was a significant improvement in the 
left ventricular function following bone marrow transplantation, an effect that per-
sisted up to 2–5 years after transplantation but with no impact on survival, though 
the trial had insufficient power to study survival (Assmus et  al. 2010, 2014). 
However, a subsequent trial (TIME) using autologous bone marrow cells in 
ST-segment elevation MI (STEMI) showed no effect on improving cardiac function 
(Traverse et al. 2012). These mixed results generated debate on the impact of bone 
marrow-derived cells on improving function and survival of MI patients (Marban 
and Malliaras 2012). Retrospective evaluation of these clinical trials revealed some 
of the discrepancies and potential pitfalls to be avoided for proper assessment of the 
value of these cells as a clinical treatment (Simari et al. 2014; Nowbar et al. 2014). 
A large phase 3 clinical trial to assess the value of bone marrow cells in myocardial 
infarction patients is currently underway (BAMI trial).

1.2.3	 �Endothelial Progenitors

Endothelial progenitor cells (EPCs) are a small population of adult hematopoietic 
CD34+ progenitors that were identified in 1997 and which have the capacity to dif-
ferentiate into endothelial cells (Asahara et al. 1997). Preclinical studies of EPCs 
showed promising results in enhancing recovery following ischemia in different 
tissues, mainly by enhancing neovascularization (Kawamoto and Losordo 2008). 
Following myocardial infarction, EPC transplantation may enhance functional 
recovery and myocardial integrity in vivo (Iwasaki et  al. 2006; Kawamoto et  al. 
2001). This requires the homing of the EPCs to the site of ischemia followed by 
proliferation and differentiation into functional endothelial cells (Hristov et  al. 
2007). In addition to neovascularization, endothelial cells enhance cardiomyocyte 
survival and organization and contraction of surrounding cardiomyocytes through 
paracrine signaling (Narmoneva et al. 2004). These data suggest that endothelial 
cells can promote cardiac repair through different mechanisms.

Early phase clinical trials using cell transplantation of EPCs showed promising 
results for functional recovery following a cardiac insult (Vrtovec et al. 2013; Stamm 
et  al. 2007). Similarly, pharmacological mobilization of EPCs using granulocyte 
colony-stimulating factor (G-CSF) showed enhanced cardiac function post-injury 
(Achilli et al. 2010). A major impediment to the understanding the full potential of 
EPCs is the different isolation methods for EPCs between different groups; thus the 
identity and purity of the EPC populations have not been consistent. Owing to the 
limited size of previous trials, large studies would be required to establish the 
efficacy of EPCs for heart repair.
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1.2.4	 �Mesenchymal Stem Cells

Another subset of progenitors within the bone marrow is mesenchymal stem 
cells (MSCs). MSCs are multipotent and can differentiate into adipocytes, chon-
drocytes, and osteoblasts (Pittenger et  al. 1999). MSCs are found in multiple 
tissues, and they can be expanded to the large numbers necessary for transplan-
tation. Furthermore, MSCs appear less immunogenic due to the absence of 
MHC-II complex and may have lower probability of rejection (Kuraitis et  al. 
2011). Allogeneic MSCs showed therapeutic benefits following transplantation 
in the injured rodent and swine heart (Williams and Hare 2011). Initially there 
was evidence that allogeneic MSCs can differentiate into cardiomyocytes 
in vivo following engraftment in the adult murine and swine heart (Toma et al. 
2002; Quevedo et  al. 2009). Subsequent studies showed that MSCs probably 
accomplish beneficial effects via paracrine mechanisms (Mirotsou et al. 2007; 
Gnecchi et al. 2005, 2008). MSC transplantation in large animals showed acti-
vation and differentiation of cardiac stem cells (Hatzistergos et al. 2010). The 
POSEIDON trial showed improved patient outcome and ventricular remodeling, 
but no significant improvement in ventricular function (Hare et  al. 2012). A 
randomized phase 3 clinical trial using MSCs for ischemic heart failure is cur-
rently ongoing (CHART-1), and the results from this trial will shed light on the 
future of MSCs in the clinic.

1.2.5	 �Endogenous Cardiac Stem Cells

1.2.5.1	 �C-kit + Cardiac Progenitors
Following the developments in the hematopoietic stem cell (HSC) field, c-kit, the 
receptor for stem cell factor, was described as a surface marker of HSC stemness. 
It was reported that the heart has an endogenous cardiac progenitor cell (CPC) 
population that is c-kit + without any hematopoietic lineage marker expression 
(Lin-) (Beltrami et al. 2003). These cells were described as clonogenic and mul-
tipotent due to their ability to differentiate into cardiomyocytes, endothelial 
cells, and smooth muscle cells in vitro and in vivo. Expansion of the c-kit + CPCs 
ex vivo and injection of the cells in vivo following MI showed a dramatic regen-
erative effect on the heart (Beltrami et al. 2003). Furthermore, a similar popula-
tion of c-kit + CPCs was reported in the adult human heart and could repopulate 
the infarcted murine myocardium (Bearzi et al. 2007). The ability of c-kit + CPCs 
to enhance myocardial regeneration was demonstrated by different groups in 
small and large animal studies (Linke et  al. 2005; Fischer et  al. 2009; Angert 
et al. 2011). In contrast, other groups showed that c-kit + CPCs from adult hearts 
do not differentiate into cardiomyocytes ex vivo (Zaruba et al. 2010; Jesty et al. 
2012). One study reported that c-kit + CPCs are not only necessary but also suf-
ficient for myocardial regeneration following cardiac injury (Ellison et al. 2013). 
These conflicting results regarding the differentiation potential and functional 
impact of c-kit + CPCs on myocardial regeneration were addressed by a very 
well-designed lineage tracing study aimed to label the putative c-kit + CPCs in 
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the heart to trace their lineage during aging and following injury (Van Berlo et al. 
2014). Although this study showed that c-kit  +  CPCs could differentiate into 
cardiomyocytes, this occurred at negligibly low rates, which suggested that 
c-kit + CPCs would have no impact on myocyte replenishment following injury 
(Van Berlo et al. 2014). In contrast, c-kit + CPCs produced a high percentage of 
cardiac endothelial cells, suggesting that the endogenous c-kit + CPCs are more 
likely to be endothelial progenitor cells rather than true cardiomyocyte 
progenitors.

Although it is still unclear how c-kit + CPCs can enhance myocardial repair, their 
impact over the past decade has led to a number of clinical trials to assess their 
therapeutic potential. An early clinical trial to test the safety of c-kit + CPCs was a 
phase 1, randomized clinical trial for CPC intracoronary infusion in patients with 
ischemic cardiomyopathy (SCIPIO) (Bolli et al. 2011). This trial showed that CPC 
injection is safe with no adverse effects up to 1 year, with an improvement in LV 
function. The phase 1 trial was very small, however.

1.2.5.2	 �Cardiosphere and Cardiosphere-Derived Cells
Cardiosphere-derived cells represent another subset of cardiac progenitor cells 
in both murine and human hearts that are multipotent and can differentiate into 
different cardiac cell types (Messina et  al. 2004). Cardiosphere-derived cells 
(CDCs) can be isolated from cells cultured from endomyocardial biopsies, and 
injection of CDCs in a large animal model of infarct has led to enhancement of 
cardiac function (Smith et al. 2007). Cardiosphere-derived cells were isolated 
from human hearts as well, and intracoronary injection of human CDCs in a pig 
infarct model improved cardiac function and reduced scar formation (Johnston 
et al. 2009). A phase 1 clinical trial using cardiosphere-derived autologous stem 
cells to reverse ventricular dysfunction (CADUCEUS) for intracoronary injec-
tion in myocardial infarction patients suggested the safety of these cells for 
clinical use, with potential benefits on cardiac function (Makkar et  al. 2012). 
Further mechanistic studies of cardiosphere-derived cells showed that intracor-
onary injection of CDCs post MI stimulate endogenous cardiomyocyte prolif-
eration, as well as recruitment of endogenous progenitors (Malliaras et  al. 
2013). These dual mechanisms may explain the beneficial outcomes following 
CDC cell therapy. Larger studies will be necessary to reveal the impact of car-
diospheres and CDCs on this cell type as a candidate for myocardial regenera-
tion in humans.

1.2.5.3	 �Side Population Cells
Side population (SP) cells are a population of cells characterized by their ability to 
exclude the Hoechst dye, since they express the ATP-binding cassette transporter 
proteins. These cells were first characterized as a hematopoietic stem cell population 
in the bone marrow (Goodell et al. 1996). To determine whether SP cells from the 
bone marrow can enhance cardiac repair, SP cells were transplanted in mice follow-
ing an ischemia reperfusion injury and shown to have some therapeutic benefit and 
enhance myocardial repair (Jackson et  al. 2001). Cardiac SP cells were further 
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isolated from the developing and adult mouse heart, with the capacity to differentiate 
into cardiomyocytes, endothelial cells, and smooth muscle cells (Martin et al. 2004). 
Intravenous infusion of cardiac SP cells into rats that underwent myocardial infarc-
tion demonstrated that cardiac SP cells were able to migrate and home to the injured 
myocardium, differentiate into different cardiac cell types, and enhance heart regen-
eration (Oyama et al. 2007). These preclinical studies suggest a potential benefit for 
SP cells for cell therapy, although human clinical trials have not been performed with 
SP cells injected into the heart.

1.2.5.4	 �Sca1+ Cardiac Progenitors
Stem cell antigen1 (Sca1) is a cell surface marker expressed on the surface of 
multiple tissue-specific resident stem cells (Holmes and Stanford 2007). A 
Sca1+ cardiac stem cell population has been identified in the adult mouse heart 
and can differentiate into cardiomyocytes in  vitro following treatment with 
5-azacytidine as well as oxytocin (Oh et  al. 2003; Matsuura et  al. 2004). 
Intravenously injected Sca1+ cells were able to home to injured myocardium, 
differentiate into cardiomyocytes or fuse with host cells, and enhance repair fol-
lowing ischemia reperfusion injury (Oh et al. 2003). Similarly, intramyocardial 
transplantation of Sca1+ cardiac stem cells improved LV function post MI, 
although this effect was probably mediated through a paracrine effect by 
increased neovascularization and enhanced cardiomyocyte function (Wang et al. 
2006). Lineage tracing of Sca1+ cells in the heart suggested that Sca1+ cells 
contribute to cardiomyocyte renewal in the adult heart, as well as in response to 
injury (Uchida et  al. 2013). A major impediment to the clinical potential of 
Sca1+ cardiac stem cells is the lack of the Sca1 antigen in humans, which limits 
the use of these cells for human therapy.

1.2.5.5	 �Islet1+ Cardiac Progenitors
Islet1 (Isl1) is a transcription factor that marks a cardiac progenitor population from 
the second heart field that can differentiate into multiple cardiac lineages during 
heart embryonic development (Moretti et al. 2006; Cai et al. 2003). Interestingly, an 
Isl1+ cardiac progenitor population was identified in the early postnatal heart that 
can differentiate into mature cardiac lineages (Laugwitz et al. 2005). However, the 
Isl1+ progenitor population only persists in the sinoatrial node in the adult murine 
heart and is nearly absent from the left ventricle either at baseline or following MI 
(Weinberger et al. 2012). Isl1+ cardiac progenitors have not been studied for human 
cell therapy.

1.2.5.6	 �Epicardial Progenitors
Epicardial progenitor cells that express the transcription factor Wt1 have an impor-
tant role during murine heart development, as they contribute to the formation of 
functional cardiomyocytes (Zhou et al. 2008). This role of epicardial progenitors led 
to the search for a similar progenitor population in the adult mammalian heart. 
Lineage tracing of Wt1 in the adult heart showed that Wt1 epicardial progenitors are 
present in the adult mouse heart and can give rise to bona fide cardiomyocytes 
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following MI (Smart et al. 2011). Priming the Wt1 epicardial progenitors with thy-
mosin β4 before MI may be an important step for these progenitors to give rise to 
cardiomyocytes, as priming them with thymosin β4 after MI does not seem to con-
tribute to the differentiation of epicardial progenitors into cardiomyocytes (Zhou 
et al. 2012). However, embryonic and adult epicardial progenitors seem to be differ-
ent subpopulations, as adult epicardial progenitors are more heterogeneous and 
have a different expression profile at the molecular level than embryonic progeni-
tors (Bollini et al. 2014). Interestingly, a recent protocol described the derivation of 
primary human epicardial-derived cells from right atrial appendage biopsies, which 
can serve as a platform to further identify the therapeutic potential of epicardial 
progenitors for adult cardiac cell repair (Clunie-O’Connor et al. 2015).

1.2.6	 �ES-Derived Cardiomyocytes

Generation of differentiated, mature, and functional cardiomyocytes from pluripo-
tent ES cells is a promising approach to replenish lost myocardium following injury 
(Xu et al. 2002). The development of directed differentiation protocols of pluripo-
tent embryonic stem cells (ES) into cardiomyocytes has witnessed significant 
advances (Mummery et al. 2012). Purified human ES cell-derived cardiomyocytes 
(hESC-CM) can be derived when cultured with activin A and bone morphogenetic 
protein 4, which can improve cardiac function of the infarcted rat heart (Laflamme 
et al. 2007). Transplantation of cardiovascular progenitors derived from hESC led to 
engraftment in the infarcted hearts of nonhuman primates (Blin et al. 2010).

To establish the electrophysiological properties of hESC-CM, purified hESC-
CM were transplanted in guinea pigs following injury (Shiba et al. 2012). These 
grafts led to reduced arrhythmias and were able to electrically couple with the host 
myocardium and thus efficiently enhance myocardial function following cryoinjury 
(Shiba et al. 2012). Recently, a large animal study in macaques showed that hESC-
CM was able to remuscularize and regenerate the infarcted monkey heart (Chong 
et al. 2014). These recent promising results show the significant potential of hESC-
CM. However, the ability of the transplanted hESC-CM to integrate efficiently in 
syncytium and prevent arrhythmias is still a concern (Chong et  al. 2014). These 
issues will need to be addressed before hESC-CMs can be used for clinical trials. 
While ethical concerns might hamper ES use in the clinic, induced pluripotent stem 
cells (iPSCs) could replace hESC as the source of cardiomyocytes for cell therapy.

1.2.7	 �Induced Pluripotent Stem Cells and Reprogramming

1.2.7.1	 �iPSCs
Reprogramming adult mouse and human fibroblasts into a pluripotent state by trans-
duction of four transcription factors, OCT4, SOX2, KLF4, and c-MYC (OSKM), was 
a revolutionary moment in biomedicine (Takahashi and Yamanaka 2006; Takahashi 
et al. 2007). iPSCs resemble ES cells morphologically and molecularly, and thus they 
provide an alternative to ES cell use, in addition to the advantage of generating 
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patient-specific cell lines for autologous regenerative therapies. Although there was an 
initial concern toward using iPSCs clinically due to the use of oncogenes and viral 
vectors which can lead to teratoma formation, new methods and protocols are emerg-
ing that utilize small molecules, episomes, or proteins for reprogramming, which will 
increase the safety of the generated iPSCs (Zhou et al. 2009; Lin et al. 2009; Okita 
et al. 2008). Human iPSCs (hiPSCs) have been successfully used to generate numer-
ous cell types including cardiomyocytes (Karakikes et al. 2015; Zhang et al. 2009). 
More importantly, hiPSCs provide a novel platform to dissect the underlying mecha-
nisms of disease in patients (Bellin et al. 2012; Wang et al. 2014; Davis et al. 2012). 
Furthermore, intramyocardial transplantation of hiPSC-derived cardiomyocytes 
(hiPSC-CM) in a large animal model following MI led to a significant improvement 
of ventricular function and reduction of scar size while abrogating ventricular arrhyth-
mias (Ye et al. 2014). Although further studies are required to truly understand the 
optimal way to use hiPSC-CMs, the recent developments indicate that this approach 
holds significant promise for future cell therapy (Okano et al. 2013).

1.2.7.2	 �Direct Reprogramming into Cardiomyocytes
Reprogramming fibroblasts into pluripotent cells led to a race toward reprogram-
ming one cell type to another differentiated cell type. Transdifferentiation of fibro-
blasts to cardiomyocytes is an appealing approach as it could use the fibroblasts in 
the scar region to generate new myocardium. Using multiple combinations of car-
diac transcription factors, a combination of three transcription factors, GATA4, 
MEF2C, and TBX5 (known as GMT), was able to reprogram mouse fibroblasts into 
induced cardiac-like myocytes in vitro (Ieda et al. 2010). To further examine whether 
direct reprogramming can occur in vivo, GMT and GHMT (H for HAND2) retrovi-
ral injections successfully reprogrammed cardiac fibroblasts into cardiomyocytes 
in vivo that resulted in an improved cardiac function and reduced scar following MI 
(Qian et al. 2012; Song et al. 2012). Furthermore, reprogramming fibroblasts into 
cardiomyocytes was achieved using microRNAs both in  vitro and in  vivo with 
improved cardiac regeneration (Jayawardena et al. 2012, 2015). Similar to iPSCs, 
reprogramming fibroblasts into cardiomyocytes occurs at low efficiency and may 
lead to the formation of immature cardiomyocyte-like cells rather than bona fide 
mature cardiomyocytes. Interestingly, recent studies showed that reprogramming 
efficiency could be enhanced significantly via upregulation of Akt1, as well as 
through inhibition of pro-fibrotic signaling (Zhou et  al. 2015; Zhao et  al. 2015). 
Further studies are necessary in order to generate mature and functional cardiomyo-
cytes, as well as to fully understand the molecular mechanisms of reprogramming 
before moving forward to the clinic.

1.3	 �Future of Cell Therapy

Cardiac cell therapy has witnessed enormous achievements over the past decade. 
Cardiac cell therapy appears to be safe, with minimal adverse effects, while show-
ing potential therapeutic benefits. However, cardiac cell therapy is not yet a clear 
success, as some analyses revealed no therapeutic benefit in acute myocardial 
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infarction patients (Gyongyosi et al. 2015; Fisher et al. 2015). There is no consensus 
on which cell type will prove to be most effective. A recent study aimed at compar-
ing hESC-CMs, cardiovascular progenitors (CVPs), and bone marrow mononuclear 
cells in a nude rat model of myocardial infarction (Fernandes et  al. 2015). 
Interestingly, hESC-CMs and CVPs showed comparable improvement of cardiac 
repair, while bone marrow cells were less efficient (Fernandes et  al. 2015). 
Comparing different cells is an important step in order to understand the optimal 
cell therapy for humans.

The results from large outcome trials are highly anticipated in order to deter-
mine the impact and the usefulness of cells in cardiac therapy. Although the mech-
anism of action of different cell types may vary, whether through direct 
differentiation into new myocardium, neovascularization, or paracrine effects, we 
need to expand our understanding at the molecular level. Clinical trials are the 
gold standard for assessing any treatment, but owing to the controversies within 
the cell therapy field, it is important to take a step back and progress at both the 
bench and the bedside. The lessons learned from heart regeneration in lower ver-
tebrates and neonatal mice should improve our understanding of the promising 
approaches to regenerating the adult heart. Cardiac cellular therapy does lead to 
the complete regenerative response seen in animal models of endogenous heart 
regeneration, and thus there are many lessons to be learned from nature.
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