
Chapter 2
Meaning as a Quantity

Considering the meaning of words is necessary for understanding both our own
reasoning and that of others; with meaningless words people’s plain language and
ordinary reasoning would be for nothing, and communication impossible. Hence, a
previous symbolic analysis of the meaning of words is important for better com-
prehending what ordinary reasoning is. In addition, meaning is a twofold concept: it
has two sides, the qualitative and the quantitative, reflecting the situational use of
words, namely that its use is context dependent and purpose driven. Often, and from
a scientific point of view, only considering meaning from its qualitative side is
insufficient; it is the quantitative that facilitates the degrees up to which words
actually mean something in a given context. Meaning should be somehow
measured.

2.1. Given a universe X in which a predicative word P is acting through the
elemental statements “x is P”, let’s symbolically denote by <P the previously
captured relationship “less P than”,

x\P y , x is lessP than y;

translating the either empirically, or theoretically, recognized fact that x verifies less
than y the property p named P. Then, the graph (X, <P) represents how
P semantically organizes the universe of discourse X, and denotes a primary
qualitative meaning of P in X. The inverse relationship “more P than” x is more
P than y, coincides with y <P x, and when it simultaneously holds x <P y and y <P x,
is that x is “equally P than” y, symbolically written x =P y.

Note that, at the end, people’s (intelligent) talking and telling tries to introduce
some organization, or ordering, between the concepts/words under consideration,
and for trying to answer the questions leading to telling something; in this respect, it
seems natural to consider that the symbolic relation <P producing the qualitative
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meaning is the way in which P semantically acts on X, introducing in it some
organization. Usually, words are but names of concepts mastered though the
meaning of the words.

It should be pointed out that as the relation <P is, when P is a word managed in
plain language, empirically recognized, it implies some subjectivism that is, nev-
ertheless, shared with others; <P is here presented as just a kind of primitive idea, as
if it were “point” and “line” in the old Euclidean Elements.

It should be pointed out that the relation <P is not, in general, a linear or
total relation; that is, there can exist pairs of elements x and y such that it is neither
x <P y, nor y <P x; in this case, x and y are not meaning-comparable and are denoted
by x NCP y. For instance, in the toy example of the word P = big in X = [0, 10], it
is x <big y if and only if x � y, in the linear order � of the real line; that
is, <P = � is a total relation under which all the elements of the universe [0, 10]
are big-comparable; hence x is “more” big than y whenever is y � x, and x is
“equally big than” y whenever both numbers coincide, x = y. The qualitative
meaning of “big” in [0, 10] is given by the graph ([0, 10], � ), in which there is the
unique maximal 10 and the unique minimal 0; obviously, in the real interval [0, 10],
10 is always a prototype of big, and 0 is always an antiprototype. In the same
interval, calling “medium” the property of being around 5, the situation is different
provided, for instance, the prototypes were those x in [4.9, 5.1], the antiprototypes
were those x in [0, 3] U [7, 10], and

x\medium y , x� y� 4:9; or 5:1� y� x;

in which case there are elements, such as 4 and 6, that would not be comparable, but
isolated. Note that provided the prototypes were the elements in the open interval
(3, 7), and the antiprototypes those in [0, 3] U [7, 10]; then the use of “medium”
would be precise, and given by the necessary and sufficient condition (definition),

‘x is medium’ if and only if 3\x\7:

Of the symbolic relation <P, it can be easily accepted that it is always reflexive,
such that x <P x for all x in X, but not, for instance, that it is a partial order;
symmetry, antisymmetry, transitivity, and so on cannot always be supposed as
properties <P holds.

Once a graph (X, <P) is recognized as a qualitative meaning of P in X, the
mappings mP: X ! [0, 1], verifying the axioms:

(1) x\P y ) mP xð Þ�mP yð Þ
(2) x is maximal in the graph ) mP xð Þ ¼ 1
(3) y is minimal in the graph ) mP yð Þ ¼ 0
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can be defined, and called measures of the meaning of P. Note that the interval of
values [0, 1] can be changed by any closed interval of the real line, and taking its
extremes instead of, respectively, 0 and 1. As in the case of probabilities, these three
axioms do not allow us to specify a unique measure, but more information on the
measure’s contextual characteristics is necessary for it.

For instance, in the former case of “big” with qualitative meaning given by
([0, 10], � ), provided it were known that the measure should be linear, mbig (x) =
ax + b, from (2) and (3), it follows the single measure mbig (x) = x/10, also verifying
(1) because it is a nondecreasing function; but provided it were contextually known
that the measure should be quadratic, mbig (x) = ax2 + bx + c, because then it should
be c = 0, 100a + 10b = 1, and 2ax + b � 0 for all x in [0, 10], many quadratic
measures would be possible, for instance, x2/100, x2 + 0.99x, − 2x2 + 20.1x, and the
like.

In any case, a full use of P in X associated with the relationship “less P than,” is
given by the quantities (X, <P, mP); each time one of these quantities is specified, a
full meaning is scientifically designated a quantity, or specified, for P in X. It should
be noted that all measures preserve the relationship “equally P than”:

x¼P y , x\P y and y\P x ) mP xð Þ�mP yð Þ andmP yð Þ�mP xð Þ; ormP xð Þ
¼ mP yð Þ:

In this form, each meaning P can have in X can be seen as a quantity.
What about precise words? Because a precise word P specifies, by definition,

a subset P in the universe of discourse, all elements in P are prototypes and it is
x =P y, for each pair x, y of them, and those in Pc are antiprototypes with each
pair also being equally not P; hence, the first are maximal and the second minimal.
The universe is partitioned in the maximal and the minimal, each class having
equal measure for all its elements. Consequently, there is just a single measure
specified by

mP xð Þ ¼ 1 if x is inP; andmP xð Þ ¼ 0 if x is inPc;

which is just the characteristic function of P. The reciprocal is obvious, and then
mP
−1 (1) = P; thus, precise words P are specified by the single graph (X, =P, mP),

with the measure only taking its values in the subset {0, 1} of the interval [0, 1].
Note that it can be cases of words without prototypes or antiprototypes, also

partitioning the universe in several subsets of equally P elements, but with measures
that, constant in each of these parts, have values not 0 or 1, but only values in the
open interval (0, 1); of these words it could be said that their use, or meaning, is
pseudo-precise in X. Changing the measure m by m/Sup m, provided Sup m = Max
m < 1, at least an element with measure one would appear.
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2.2. Once a measure mP is specified, it defines in X a new, and linear, relation � m,

x� my , mP xð Þ�mP yð Þ;

that is larger than the relation <P, because

x\P y ) mP xð Þ�mP yð Þ , x� my:

That is, <P � � m, and, for coinciding, <P should be linear; nevertheless, in
general, both relations are not coincidental, and the second being larger than the
first gives a “larger and linear new meaning” (X, � m, mP) that, reached after mP is
known, can be called a working meaning of P in X; noncomparable elements
under <P are always comparable under � m.

It can be said that measuring enlarges meaning by linearizing the qualitative
meaning <P up to � m Once a working meaning substitutes the qualitative mean-
ing, new working prototypes can appear, and working antiprototypes, those x in X,
respectively verifying mP (x) = 1 and mP (x) = 0, that can be more than the original
prototypes and antiprototypes. This deserves some comments.

The first comment refers to how a fuzzy set and its several membership functions
can be understood. Up to now it is not well known what a fuzzy set in X with
linguistic label P actually is, and it is usually confused with just one of their
membership functions; but because, unless the linguistic label’s use is precise in the
universe, there is not a single membership function characterizing the fuzzy set,
such identification is actually a one-to-many correspondence. It is usual to consider
that fuzzy sets are represented by the functions in [0, 1]X, something only useful for
purely mathematical purposes and once a membership function is specified or,
better, designed. It is not the same with sets that can be quietly identified with the
functions in {0, 1}X thanks to the unicity of their measure, or characteristic func-
tion. The concept of a fuzzy set is not only a matter of degree, as its originator
Lotfi A. Zadeh likes to say, but its membership functions are a matter of careful
design. To capture what is actually a fuzzy set is a question that should be initially
posed in the setting of plain language.

In the first place, such a question refers to the empirical fact that predicative
words “collectivize” in the universe of discourse, that they generate “linguistic
collectives” well anchored in plain language. For instance, in the universe of
London’s inhabitants, the word “young” generates the linguistic collective of
“young Londoners”; in the universe of the real numbers the word “big” creates the
linguistic collective of “big numbers”; in a universe of buildings the word “high”
creates the linguistic collective of “high buildings”, and so on. Obviously, linguistic
collectives are well understood by the speakers, but are kinds of gaseous or cloudy
entities for which no criteria of individuation are known, and, inasmuch as, fol-
lowing W.V.O. Quine, “There is no entity without identity”, linguistic collectives
should be approached through ways of which, right now, the one only at hand
comes from the quantities specifying the meaning of the word at each universe of
discourse.
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It could be said that the linguistic collective P generates in X is in the qualitative
state (X, <P), and that to each qualitative state it corresponds to being in several
quantitative states each given by a measure mP. Each full meaning given by a
quantity (X, <P, mP) shows both a qualitative and a quantitative state of the lin-
guistic collective; it is a state of the collective. States reflect the available infor-
mation on the qualitative and the quantitative use of P in X.

It is a view reflecting the several situations in which the collective can be seen,
and under it, a fuzzy set in X is nothing else than the linguistic collective generated
by its linguistic label. It just consists in renaming the collective of P in X as the
fuzzy set labeled P. In the case where the linguistic label P is precise in X, the
collective “vitrifies” in the set specified by P in X; the collective has just the
qualitative state (X, =P), and just the quantitative state given by its characteristic
function mP giving the vitrified, or crisp, quantitative state mP

−1(1). Precisely used
linguistic labels are in a single state.

When the linguistic label is imprecisely used in X, the collective or fuzzy set will
have as many qualitative states as qualitative meanings (X, <P) can be recognized,
and each measure for them is nothing else than a membership function for the fuzzy
set labeled P. Note, for instance, that there is no difference between the former
measures mbig and the membership functions that can be attributed to the fuzzy set
in [0, 10] labeled “big”.

Conceptualizing a fuzzy set as just an abstract entity, or concept, existing in
language, helps to refine Zadeh’s intuitive view that each membership function is
an extensional meaning of the corresponding linguistic label.

In the imprecise case, the designer of a membership function of a fuzzy set in
X with linguistic label P should proceed by taking into account all the information
available to her or him on the use of P in X that is, usually, incomplete, sometimes
not containing all the relations <P, and to which often the designer still adds some
reasonable hypotheses on the shape of the membership function that can be suitable
for the current problem. For instance, and in the toy example of the fuzzy set in
[0, 10] with linguistic label “big”, the designer could consider that, with her or his
current scarce information, the best that can be done is to take the simple and
above-mentioned linear measure x/10, or if the designer can suppose it should be
quadratic, just take its square (x/10)2 = x2/100. In short, the designer is often limited
to consider some (possibly scarce) information of how P behaves in X, and some
characteristics of the current problem for which the design is done. For instance, by
estimating if the measure of “5 is big” should be 0.5, clearly less than 0.5, or clearly
bigger than 0.5, and so on.

Hence in the praxis of fuzzy logic it cannot always be supposed that a mem-
bership function is actually a measure but, in the best case, that the membership
function is a universal approximation of some measure; that is, a designed mem-
bership function lP could be seen as a good enough one provided some measure mP

exists such that, for instance, it would verify
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mP xð Þ � lP xð Þj j � e; for all e[ 0; and all x;

or, if it is possible, that minimizes the function

Sup jmP xð Þ � lP xð Þj:

Anyway, and in each case, this requires previously counting with a measure mP

that makes the membership function lP unnecessary. Provided it were proven that
such a criterion of approximation actually exists, perhaps a nice existential theorem
for characterizing good membership functions could be obtained and become useful
for the processes of designing them.

In short, and in general, the designed membership functions only can be seen as
potential approximations to measures, with which only a working meaning � l is
often available and, being a linear relation (a partial order indeed), cannot always
coincide with the qualitative meaning. In praxis, the modeling by fuzzy sets is just
an uncertain approximation to the meaning of their linguistic labels, and true
measures are but “ideal” membership functions such as the uniform probability 1/6
reflects an “ideal die” in probability theory; for this reason, membership functions
should be carefully designed on the basis of the best information available on the
behavior of P in X, and with the best possible reasonable hypotheses on their shape
coherently with the requisites of the current problem.

It should be pointed out that, in plain language and ordinary reasoning, it is
sometimes difficult and even unnecessary, to attribute numbers for measuring the
meaning; for instance, there are no rare expressions such as “It is highly possible
that John is rich,” “The degree up to which Jane is wise is up to the middle,” or
“Susan is extremely intelligent.” Hence, in praxis it could be suitable to substitute
the interval [0, 1] in which the measure’s values range by sets such as the subin-
tervals in [0, 1] or the fuzzy numbers in [0, 1] or even a set of linguistic labels. With
them, the meaning of the former examples can be measured by, respectively, a
fuzzy number lhigh, the interval (0.7, 1], and the word “extremely”. Because fuzzy
numbers and intervals are not totally ordered, these kinds of values can still present
the advantage, when <P is not linear, of having more possibilities for the coinci-
dence between the qualitative and the working meanings. Anyway, the set of such
values should be endowed with some algebraic ordering, necessary for defining a
measure, and contextually coming from their uses.

In science complex numbers are sometimes taken to measure some variables
and, in the same vein, instead of the unit real interval [0, 1], the complex unit
interval {a + ib; a, b in [0, 1]} can be taken by submitting the measure to verify the
three former axioms but with its values in the complex unit interval, endowed with
the natural (partial) order of complex numbers:

aþ bi � � cþ di , a� c& b� d;

with maximum and minimum, respectively, 1 + i, and 0 + 0i = 0, giving a non-
linear working relation � m = � � for all measures m; now the working meaning is
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not a total or linear relation, but a partial ordering. Because the complex unit
interval can be seen as isomorphic with the set of closed subintervals of [0, 1],
taking one or another as the range for the measures does not matter. Once accepted
as a natural way of ordering such complex numbers, intervals, fuzzy numbers,
words, and the like, as well as which are their respective maximum and minimum, it
is necessary to take the suitability for the considered problem of the calculus with
them into account, something that should be done at each concrete problem for
having, provided it were the case, a computation with the corresponding words, or
statements.

2.3. Let’s apply what has been said to the (debatable) concept of truth, deriving
from the word “true” applied to statements; it is usual to identify expressions such
as “What you say is true” and “You are saying the truth,” but here “true” is
understood as a predicative word, and not as naming the concept “truth” which can
be seen as its mother-predicate. Concepts are but abstractions generated after using
a word as its mother-predicate to either physical or virtual objects, and usually once
such a word migrated between several universes and suffered some more or less
slight modifications in its respective meanings. It is not “tall” that comes from the
concept of “tallness”, but this (abstract) concept was generated after applying “tall”
to several collections of objects including trees, mountains, people, and so on, and
passing from one to another by analogy; each time, “tall” refers to some particular
objects, but “tallness” refers to all of them. In the same vein, “true” refers to each
statement, but “truth” refers to all of them.

Truth is a concept that, understood as an absolute and universal one, has been
conducive to aberrations and, indeed in both its past and present human history,
carries terrifying consequences coming from such an understanding of “Truth” with
a capital letter.

It should be pointed out that the qualitative meaning of a word applied to the
limiting case of a universe of discourse just consisting in a singleton {x}, is reduced
by the reflexive property to the minimum relation <P = {(x, x)}, of which nothing
can follow, and, first of all, it suggests some comments referring to when it can be
said that the meaning of a word is “metaphysical”, that a word is meaningless in
some universe of discourse and hence cannot generate a concept; that, out of the
singleton, it does not collectivize.

Once a qualitative meaning (X, <P) is captured, it can be said that P is
pseudo-measurable in X, because it is what allows defining measures for P and
there exists at least the one defined by assigning 1 to the prototypes, 0 to the
antiprototypes (provided both exist), and a fixed and common value to the other
elements in X, for instance, 0.5, even if these measures could have nothing to do
with the context in which the word is used and consequently do not reflect anything
but a lot of ignorance on P in X. When at least a measure related to the context can
be specified, it can be said that P is measurable in X, or, perhaps better, is effectively
measurable; for instance, “big” is effectively measurable in [0, 10]. When no
relation <P can be captured, it can be said that the word is meaningless in X, that its
use is currently metaphysical because it is not even pseudo-measurable, and
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measurability is a main characteristic science requires for the predicates it manages.
It is worth to remember Lord Kelvin’s shortened statement, “If you cannot measure
it, it is not Science”.

That P is meaningless in X does not imply that it should also be meaningless in
all possible universes of discourse; for instance, “big” is measurable with real
numbers, but meaningless if applied to dreams, because it seems actually impos-
sible to recognize previously when a dream is “less big than” another one.
Nevertheless, what cannot be inferred is that a nonmeasurable “big” can never be
useful for reaching some new idea; stating “a dream is big” could serve as a useful
metaphor, or analogy, able to induce the study of something related to dreams; P is
meaningless in X does not imply that P cannot excite someone towards a further
searching, but psychological matters are beyond what we are trying to analyze here,
even if it is manifest that metaphorical thinking is important for conducting creative
reasoning; provided, of course, it were to be produced jointly with having some
knowledge of the corresponding subject as pointed out before with the Kekulé
example. It should be noted that, although for scientific purposes measurability is
essential, neither all that is relevant for ordinary reasoning is measurable, nor what
is measurable always important for ordinary reasoning.

What about the meaning of the word T = true in a set X [P] whose elements are
the elemental statements x is P, for x in X, and after knowing that P is measurable in
the universe X? The first to be captured is the relationship “less true than”:

x isP is less true than y isP , x isP\T y isP;

and the second is recognizing which are the maximal and minimal statements in the
graph (X [P], <T), provided they were to exist, that is, specifying a qualitative
primary meaning of T in X [P]. Note that, instead of X and P, it could be considered,
for instance, the union universe X U Y, and the two words {P, Q}, to capture

x isP is less true than y isQ;

for x in X and y in Y, with P acting in X and Q in Y with respective qualitative
meanings (X, <P), and (Y, <Q); but, for simplicity, and even if several words could
be taken into account, only one universe and a single word are considered right
now.

True = T names a property of the elements in X [P] referring to the actual
verification of the property named P for the elements in X, the reality of the
statement “x is P”. That is, the character of “true”, a statement “x is P” can show, is
directly related to the verification by x of the property named by P (as more P is x,
more true is x is P), and that, hence, some relation between the qualitative
meanings <P � X � X, and <T � X [P] � X [P], should exist. It is supposed for it
that “If x <P y, then x is P <T y is P”. It seems, consequently, that for specifying a
measure of T it should be linked with one of P, and the question is how it can be
done.
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Inasmuch as it is mP: X ! [0, 1] and mT: X [P] ! [0, 1], let it be t: [0, 1] !
[0, 1] a nondecreasing mapping such that t (0) = 0, and t (1) = 1, namely an order
morphism of the ordered unit interval ([0, 1], � ), under which conditions can it be
mT (x is P) = (t o mP) (x) a measure of T?

Because x <P y implies x is P <T y is P, it is

mP xð Þ�mP yð Þ; and t mP xð Þð Þ� t mP yð Þð Þ; ormT x isPð Þ�mT y isPð Þ;

that is, the first axiom of a measure for T is verified. For what concerns the other
two axioms relative to maximal and minimal elements, it is immediate that if x
is maximal (resp., minimal) for <P it follows mT (x is P) = t (1) = 1 (resp., mT

(y is P) = t (0) = 0), but the question seems to be opened when “x is P” is maximal,
or “y is P” is minimal for <T without necessarily implying that x or y are,
respectively, maximal and minimal for <P. Nevertheless, by supposing that T is
“coherent” with P, that is,

x is maximal (resp., minimal) for <P if and only if x is P is maximal (minimal)
for <T, the problem is solved. Because coherence is not a bizarre condition, under it,
t o mP is a measure of T.

It is classically and usually said that mT (x is P) is a “degree of truth” of x is P,
thus when it is mT = t o mP, the degrees of truth are obtained through a
“truth-function” t. Then it should be noticed that it is mT (x is P) = mP (x) for all x in
X, provided t = id[0, 1], a case in which the degree of truth of “x is P” just coincides
with that in which x is P, as it is classically understood. Were, for instance,
t (x) = x2, it would be mT (x is P) = mP (x)

2, and then, if x is P with degree 0.7, “x is
P is true” is with degree 0.49; if it were t (x) = x1/2, then x is P would be true with
degree √0.7 = 0. 836. Of course, the truth-function t should be chosen in each case
according to the information available on the characteristics of the current situation,
and by searching if, under them, the degrees of T should be lower or bigger than
those of P, if t is, respectively, contractive (t (x) � x), or expansive (x � t (x)) for
the x in X.

Summing up, provided T were coherent with P, truth-functions t would allow us
to obtain measures of T from those of P, and whenever t is one to one and onto
(bijective, an order automorphism of the unit interval) there are no more statements
with measure one or zero for T than, respectively, the prototypes and the antipro-
totypes of P; nevertheless, a nonbijective truth-function, such as

t xð Þ ¼ 0 for x in 0; 0:4½ �;
t xð Þ ¼ 1 for x in 0; 6; 1½ �; and
t xð Þ ¼ 5x� 2 for x in 0:4; 0:6½ �;

shows more statements with one or zero degrees of true than the prototypes and the
antiprototypes of P.
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2.4. Plain languages are not the creation of a single person, but are slowly gen-
erated by linguistic interactions between groups of people; plain languages are
socially constructed over the course of time, and words acquire meaning along such
interactions. Without sharing common meanings, people cannot actually understand
each other, and communicating is very difficult if not impossible; linguistic
meaning is a social construction that, to some extent, deserves a symbolical analysis
to see how people can arrive at sharing a common meaning for words.

For such a goal, suppose that a person p1 manages a word P in X under the
qualitative meaning given by the graph (X, <P

1), and that this person utters to
another p2 elemental statements “x is P”. Person p2 will understand what p1 is
saying just provided she either captures the relation <P

1, or, at least a nonempty part
of it. That is, she manages P with a qualitative meaning (X, <P

2) such that the
intersection of the respective relations <P

1 and <P
2 is not empty; on the contrary, if

such an intersection is empty, p2 cannot understand what p1 tells her. To understand
what p1 says, p2 can accept as the meaning of P, either all <P

1, or a part of it, that
will be denoted by <P

2 and become a common meaning of P for both p1 and p2.
Provided a third person p3 enters later on in the conversation, the situation would be
repeated, and a common meaning by the three people is reached by either the
intersection of the three corresponding meanings, or by accepting a part of that
meaning previously accepted by the first two, and so on.

Of course, when time passes, P can migrate from X to another universe Y, and so
on; with it, and at the end, one or several meanings can result associated with the
word P. Of course, it can happen that p2 has no meaning for P, or that P is an
unknown word to her, and, then, either the communication between p1 and p2 is
impossible, or p1 explains to p2 the meaning of P by, for instance, practical
exemplification, such as when exemplifying “the door is closed”, by opening the
door and saying “open”, and closing the door and saying “closed” through a
practical, or visual, description of the meaning of P.

Concerning how a quantity reflecting a full meaning of P in X can finally appear,
a way for it could consist in aggregating the several measures assigned by each
successive person in such a way that the aggregation preserves the verification of
the three axioms a measure should satisfy. For instance, given the measures each of
n people (mP

k, 1 � k � n) assigns to its respective qualitative meaning (<P
k), the

function

mP xð Þ ¼ min mP
1 xð Þ; . . .;mP

n xð Þ� �
;
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is a measure for the not empty intersection <P of all relations <P
k because:

(1) x\Py , x\1Py &… & x\P
ny ) mP

1 xð Þ�mP
1 yð Þ &… & mP

n xð Þ�mP
n yð Þ

)minðmP
1 xð Þ; . . .;mP

n xð ÞÞ�min mP
1 yð Þ; . . .;mP

n yð Þð Þ, mP xð Þ�mP yð Þ:
(2) If x is a maximal for <P, then it should be a maximal for all the <P

k. Hence,
mP (x) = min (1, …, 1) = 1.

(3) If x is minimal for <P, then it should be minimal for at least one <P
k, and

because between the brackets of the min at least one zero will appear, it is mP

(x) = 0.

Of course, min is not the only possible function allowing that proof; any n-place
function being nondecreasing at each place, taking the value one for the argument
(1, …, 1), and the value zero for those arguments containing at least one zero,
permits repeating the proof. In sum, there are many ways for reaching a common
full meaning, and some of them can be symbolically represented and linguistically
interpreted.

It should be pointed out that what has been developed does not pretend to be the
only way in which all common meaning is reached; it simply tries to show that
there are ways for it that are describable through a symbolic formalism. Anyway,
the full theoretical problem still remains an open one in which the role analogy
plays in it should be considered, and for whose solution the concourse of some
evidence not only obtainable by means of clever observation seems necessary, but
especially by well-designed controlled processes of experimentation on how
meaning evolves in plain language. Possibly such types of problems require a new
experimental methodology for studying language, supported by what computer
technology can facilitate today for reaching it.

The importance words’ migration can have was mentioned before, therefore let’s
add something in this respect; at the end, everything that has been reported in a
symbolic form has at its back Ludwig Wittgenstein’s ideas on meaning as use,
family resemblances, and language games, presented in his (posthumous) second
book, Philosophical Investigations.

In this respect, an example could be in order: the word “big” applied to numbers
can be seen as a migration of “tall” applied to people after the centimeter to state
numerical height is introduced. Indeed, if John’s height is 190 cm, because 190 is a
big number between those in [0, 200], interpreting “John is tall” as the linguistic
evaluation of John’s height as “big”, is seen the migration between people and
numbers of “tall” into “big”. In an analogous way, “small” can be imagined as a
migration of “short” from people to numbers, and further said that these pairs of
words show a kind of linguistic family resemblance going from linguistically
playing with people to playing with numbers. Perhaps this comment could help to
find a (mathematical) way to analyze a linguistic phenomenon deeply under which
people often learn how to understand and manage words, how to play with them in
plain language.

Some naïve comments on syntax and semantics aspects are still in order, and
once clearly said that if both aspects are basic for managing a plain language well,
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the meaning of statements not syntactically well constructed is often well under-
stood, as happens, for instance, with children’s speech. But, without capturing the
meaning of statements, its semantics, there is no way of understanding them; for
instance, sometimes children signalize something of what they refer to and thus
what they are trying to say is recognized. For comprehending a language, semantics
is essential, but syntax is often, although important, an accessory; for instance, in a
talk on pigeons it does not matter very much if someone ignores how “pigeon” is
written, but what is essential is not confusing a pigeon with an eagle, or a raven, or
a vulture, and so on, and less again with something not being a flying bird, that is,
recognizing the meaning of “pigeon” in the universe of “flying birds”.

In logic, complex statements are supposed to be constituted of elemental
statements “x is P”, “y is Q”, and the like, joined by connectives such as “and”,
“or”, “not”, and, sometimes in the conditional form “if/then”, or affected by the
only quantifiers “exists” and “all”. But in the case of plain language, and in
addition, those statements are often affected by linguistic modifiers such as “they
are ‘very’” and “more or less”, and linguistic quantifiers, such as “many”, or
“several”, or “few”, as it is done with fuzzy sets. Then, and both in classical logic
and in fuzzy logic, the meaning of a complex statement is supposed to be captured
from the meaning of its components, after knowing which are the meanings of
conjunction, disjunction, negation, conditionals, and so on, and presuming they are
previously and contextually specified by either characteristic or membership
functions. Nevertheless, in ordinary situations it is often the case of first capturing
the meaning of a full complex statement, and second those of its components thanks
to the contextual meaning the full statement facilitates for them.

Anyway, and for a theoretical study, the, let’s say classical, way of construc-
tively studying the meaning of complex statements through its parts cannot be
avoided, hence, instead of a (currently unknown) synthetic and systematic proce-
dure for directly analyzing the meaning of complex statements, it seems suitable,
for a first symbolic study, to attempt one of analytic type in which the meaning of
the components already takes into account the context in which they are inscribed.
The next chapters are devoted to such a task, and, as always in this book, without
presupposing laws that can reduce the analysis to be enclosed in a restricted, and up
to some extent artificial, mathematical framework.

2.5. Finally, it should be pointed out why here it is preferable to say “ordinary, or
plain language”, instead of the usual expression “natural language”, a preference
just coming from the adjective “natural” used to show its opposite character to the
axiomatic and “artificial languages” typical of formal logic and basically used to
expose proofs clearly being sure that they contain no jumps. Because natural/plain
language, during the process of representing, has to adapt itself to the pressures of
its own capabilities and the corresponding representing goals, it never finishes
being as “natural” as it had, presumably, begun; and this is because at the beginning
it was still not committed to a specific work. There is no way of faithfully repre-
senting language and reasoning except with plain language; there can be thinking
without language, but not human reasoning without language.
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In addition, each plain language is permeated by traits coming from the cultural
environment of their speakers; even English, today the almost universally common
language in science, at least, is currently being influenced by the ways of speaking
and writing it by people whose native language is not English, or whose native
country is not an English-speaking one. In sum, plain language is not properly
“natural” in the same sense that the brain or the Amazon forest is natural, but a
result of many cultural, historical, geographical, and intellectual influences.
Ordinary people not having attended school and not writing or reading their own
plain language well, still speak it well enough and communicate easily with people
educated in universities; the first perhaps don’t manage it perfectly from the point of
view of syntax, but well enough from that of semantics for conducting the second to
capture the meaning of what they express.

It should be remarked that the same ownership title of Spanish belongs to a
farmer in Mexico, or a Chilean living in Paris, the President of Argentina, the King
of Spain, or a writer who won the Nobel Prize by his work originally written and
published in Spanish. Plain languages are a shared common property of, at least, all
its native speakers, and are among the most complex dynamical systems today
science is faced with; new perspectives are needed for its scientific domestication.

In the end, mechanizing a plain language towards undoing the Gordian knot of
artificial intelligence cannot be done without knowing its use, and once represented
in a form preserving its flexibility. A form not previously constrained by logical laws
not necessarily holding in plain language, as is the case with the commutative law of
conjunction (p& q = q& p), almost always accepted in logic, but that, because time
often intervenes in plain language, is a law that cannot be universally supposed, and
as shown, for instance, by “She enters the room and starts crying”, and ‘She starts
crying and enters the room”, two statements depicting different situations, and whose
identification can consequently lead, later on, to committing some mistakes.

In the same vein is the identification of conditional statements “If p, then q”
(p ! q), with the affirmative statements “not p, or q” (p′ + q), regardless of, for
instance, whether the antecedent’s negation (not p) can be suitably described and
rightly represented after capturing its meaning in the corresponding setting, or if the
underlying formal framework allows us to follow q from p and p ! q (modus
ponens, MP), as happens in the frame of Boolean algebras, but neither with p
q = p′ + q, in those of De Morgan algebras and ortholattices, nor generally in
those of the standard algebras of fuzzy sets, where the inequality p 	 (p′ + q) � q,
formally representing the rule of modus ponens, does not hold for all the pairs p, q,
and all representations of “and” (	), ‘or’ (+), “not” (′), and “it follows” (� ).

For instance, if such inequality is considered in a setting endowed with a De
Morgan algebra framework, by taking any element p, and q = 0, it follows that p 	
(p′ + 0) � 0 , p 	 p′ = 0; that is, p is one of the Boolean elements in the De
Morgan algebra and, hence, the inequality does not hold for any pair p, q. Of
course, in a setting endowed with a Boolean algebra’s structure, and because both
the distributive and the noncontradiction laws hold in it, it follows that p 	 p′ + p 	
q = 0 + p 	 q = p 	 q � q, and the MP-inequality p 	 (p′ +q) = p 	 q � q, holds for
all pairs p, q.
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In the case where the setting is of fuzzy sets l, r, and so on, endowed with the
framework given by a standard algebra, the MP-inequality should be expressed by
the functional inequality

l 	 l0 þ rð Þ� r; or T o ðS o N o l � rð Þ� r;

with T a continuous t-norm representing the linguistic “and”, S a continuous t-
conorm representing the linguistic “or”, and N a strong negation function for the
linguistic “not”, whose study can be reduced to solving the (numerical) functional
inequality

T a; S N að Þ; bð Þð Þ� b; for all a; b in 0; 1½ �;

in which b = 0 (N (0) = 1) implies T (a, N(a)) = 0, showing the MP-inequality
cannot hold for all pairs of numbers a, b, except for some triplets (T, S, N) such as
the one constituted by Lukasiewicz’s t-norm,W (a, b) = max (0, a + b − 1), its dual
t-conorm, W*(a, b) = min (1, a + b), and the strong negation function, N = 1 − id:

W ða; W� 1� a; bð Þ ¼ W a;min 1; 1� aþ bð Þð Þ
¼ max 0; a þmin 1; 1� aþ bð Þ�1ð Þ ¼ min a; bð Þ � b;

for all pairs of numbers a, b in [0, 1]. Notice that with T = min, S = max, and
N = 1 − id, the inequality min (a, max (1 − a, b)) � b does not hold for the pairs
a = 0. 5 and b = 0; and, analogously, with the triplet given by T = prod,
S = prod* = sum −prod, N = 1 − id, the inequality is prod (a, prod* (1 − a, b) =
a 	 (1 − a + b − (1 − a) 	 b) = a 	 (1 − a + a. b) � b, and it also does not hold for
a = 0.5 and b = 0.

2.6. To end this chapter, and even if later on the subject is reconsidered, let’s
advance something of a preliminary character on the use in ordinary language of the
words “uncertain”, and “probable”, that is, on describing and differentiating their
respective qualitative and quantitative meanings; it is a subject that, linked with
what has been presented on the meaning of words, is in touch with the debate
between the two main interpretations of the probability mathematical concept, the
objective and the subjective. The first comes from an observed convergence of the
outcomes’ frequencies in random experiments whose possible outcomes can be
well described, and the second from the experienced opinion of a “rational person”
assigning a priori probabilities to events, that, once transformed into a posteriori
probabilities by means of the Bayes formula, helps whoever, based on them, wants
to take the risk of betting some money on their appearance. In both cases, never-
theless, a common belief is shared on the actual possibility of perfectly classifying
the universe by a union of disjoint classes, something necessary for posing the
additive law of probability in which both interpretations coincide, and that, jointly
with assigning a probability equal to one to the sure event, allows us to obtain the
law for the probability of the negation of outcomes.
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Notwithstanding, the understanding of events as subsets, also underlying both
interpretations, corresponds to naming the events by precise words, something that
is not always the case in ordinary reasoning expressed in plain language, as it is not
always to assign numerical probabilities as can be exemplified by typical utterances
such as, “It is highly probable than John is rich,” or “It is improbable that Laura will
join us,” and so on. The meaning of “probable”, the mother-predicate of the
probability’s concept, is still to be clarified in plain language.

Because the meaning of “uncertain”, mother-predicate of the uncertainty’s
concept, is also not clarified, and because uncertainty, as with imprecision in lan-
guage, permeates almost all branches of science, there is confusion between
probability and uncertainty deserving to be clarified. All these questions are con-
sidered further.
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