
Chapter 14
Questions on Uncertain, Possible,
and Probable

In plain language, the predicative words “possible” and “probable” are often used
synonymously, but without argument for it, and what seems more suitable is to say
of something probable that it is possible, but not reciprocally. In language,
“possible” seems to be more largely applicable than “probable”. For instance, if
when throwing a single die it is probable to get five points, it is clear that it can be
expected because this output is among “those that are possible”; obtaining eleven
points is not possible, and consequently there is no sense in attributing to it the
property of being probable. In addition, there are also life’s ordinary situations
linguistically qualified as “possible but not probable”, even if they can actually have
a very small probability. For instance, it is possible that in a few minutes my old
friend John, 10 years older than I am, and from whom I have heard nothing in the
last 10 years, can call me by phone, but it deserves to be qualified as something
improbable or, at most and if John is still alive, with a very small probability
provided it could be effectively computed.

The theoretical distinction between possible and probable can be seen, in
principle, in the different axioms with which the mathematical theories on the
measures of probability by Kolmogorov in 1933, and on the measures of possibility
by Zadeh in 1978, formalized the measuring of probability and possibility,
respectively. Notwithstanding, these theories suppose that the elements to which the
predicative words probable and possible are applied, belong to actually strong types
of lattices with a negation, something that, in plain language and as was said, is odd,
risky, and even dangerous to always suppose it. Let’s begin with an overview of
these theories that, nevertheless, refer to the concept of probability and possibility
but not, directly, to the use of the words “probable” and “possible” in plain lan-
guage but, at most, in some particular and specialized part of it.
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14.1. Kolmogorov established his theory of probability on the following
hypotheses:

1. A measure of probability, prob, assigns a number between 0 and 1, to “events”
represented by subsets in a Boolean algebra on a set Ω included in the power-set
2X of some universe X, prob: Ω ! [0, 1], and such that

2. probðXÞ ¼ 1:

This presumes that all the laws valid in the Boolean algebra Ω are applicable to
the “events”, something supposed as actually happening; in particular, it is sup-
posed the existence of perfect classifications, or partitions, of the nonempty subsets
in Ω containing several elements.

3. The essential axiom for the mapping prob is its additive law,

prob AUBð Þ ¼ prob Að Þþ prob Bð Þ;

provided the intersection of the “events” A and B were empty, A \ B = Ø; that
is, {A, B} is a perfect classification or partition of A U B.

From this follows prob(A′) = 1 − prob(A), and prob(Ø) = 0. With it, is proven
that prob is a measure for the graph (Ω, �) with the minimum Ø, and the maximum
Ω, and thanks to the existence of relative complements in the Boolean algebras.
That is, and as formerly proven, A � B => prob(A) � prob(B).

Thus, probabilities can be seen in Boolean algebras as (additive) measures of the
predicative word “probable” applied to the events, and by supposing that Ø is the
less probable subset, Ω the most probable of them, and that “A is less probable than
B” is just done by A � B, identifying <probable with �; that (with finite subsets) “less
elements” is equivalent to “less probable”, with Ø minimal, and Ω maximal.

All that comes from the fact that, genetically, probabilities come from problems
in which the “represented events” can not only be precisely named and counted, but
also perfectly classified into crisp parts. In addition, in Kolmogorov’s interpretation
of probability, it should be taken into account that events are not only considered
random ones, in the sense of being obtainable by indefinitely repeating an exper-
iment under exactly the same conditions at each repetition, but that frequencies of
its appearances can be somehow computed.

Kolmogorov’s theory arises from a crisp objectivistic interpretation of proba-
bility through random experiments; in itself, it is but an abstract mathematical
theory of (normalized) additive measures, and, today is not only the most widely
known interpretation of probability, but is also responsible for most of the
applicative successes of mathematical statistics. The interpretation by Kolmogorov
reflects the famous and wise statement, “Nothing is more practical than a good
theory.”

Notwithstanding, not all the successful measures in the applications are additive;
for instance, the big family of Sugeno’s k-measures, m, verifying:
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m AUBð Þ ¼ m Að Þþm Bð Þþ k:m Að Þ:m Bð Þ; with � 1\ k; if A \ B ¼ Ø;

contains additive measures if it is k = 0, but with k < 0 has super additive and with
k > 0 has subadditive measures.

In “reality” there are relevant situations in which information, or evidence, is not
so precise for allowing its splitting in separate pieces, and it should be remarked
that, in language, the term “probable” is not only applied to precise, but also to
imprecise, statements that cannot be represented by sets, a case in which the
immediate applicability of the Kolmogorov theory is at least dubious; the existence
of crisp partitions is so in some nebulous situations where what appears is not a
clearly separable mixing of information. Sometimes the measure of a “totality” is
greater than the sum of the measures of its parts, and sometimes it is less. There are
also “events” whose repetition under the same exact conditions is not possible; even
in some situations, former instances mean nothing for the next one.

14.2. Zadeh established his theory on the measures of possibility with fuzzy sets in
the unique basic fuzzy algebra (BAF) that is a lattice, the De Morgan algebra,
([0, 1]X; min, max, 1 − id); but, namely and for what concerns its basic hypotheses,
it can be considered in an abstract De Morgan algebra (M; � ; 0, 1; �, +;′), where
the order � is that of the lattice, and supposing that all its elements can be
qualified as “possible”. These hypotheses are just the following.

A measure of possibility is a mapping p: M ! [0, 1], such that:

– pð0Þ ¼ 0;
– pð1Þ ¼ 1; and
– pðaþ bÞ ¼ max pðaÞ; pðbÞð Þ, for any pair a, b in M, regardless of being a �

b = 0, or not.

Because a � b is equivalent to a + b = b, it follows that p(b) = p(a + b) =
max(p(a), p(b)) � p(a); thus, p can be seen as a measure of the predicative word
“possible” when applied to the elements in a De Morgan algebra, and with quali-
tative meaning (M, � ), once the relation � possible is identified with the lattice’s
order � of the De Morgan algebra.

Note thatp is not additive but subadditive, because it verifiesp(a + b) = max(p(a),
p(b)) � p(a) + p(b); totalities measure less than their parts. Regarding p(a′), it not
always holds its equality with 1 − p(a), that cannot be a law, because for any Boolean
element a inM (i.e., verifying a + a′ = 1), it follows that p(a + a′) = p(1) = 1 = max
(p(a), p(a′)) � p(a) + p(a′), and thus, 1 − p(a) � p(a′).

An advantage of Zadeh’s theory is that it models the applicability of “possible”
to elements that do not need to be in a Boolean algebra, as is the case with
membership functions of fuzzy sets, and for which in principle no crisp partition
exists; neither the existence of crisp partitions, nor that the negation is a Boolean
complement, is previously supposed. A serious disadvantage is, nevertheless and
for plain language, that De Morgan algebras are still too strong algebraic structures
with a lattice basis, in which some of their properties, such as they are the
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conjunction’s commutative law and the distributive laws, cannot always be pre-
sumed in language.

In both Boolean and De Morgan algebras, the weight of laws of a syntactic
origin is actually too strong for language; this occurs, for example, in Boolean
algebras with the law of “perfect repartition”, a = a � b + a � b′. It is a law that
neither holds in all ortholattices, nor in De Morgan algebras and that, as shown in
the BAFs, forces that conjunction and disjunction are not dually linked. In addition,
double negation, (a′)′ = a, and duality (a + b)′ = a′ � b′, are laws not always ver-
ifiable in plain language. In De Morgan algebras, distributive laws are among those
that cannot always be supposed in plain language.

Hence, both theories of Kolmogorov and Zadeh are only applicable to those
parts of language in which their presumed laws can be accepted. Both presume that
the relations <probable and <possible coincide with the partial order of the corre-
sponding lattice.

Anyway, Zadeh’s theory is not fully objectivistic as is Kolmogorov’s theory; it
neither supposes nor excludes that the statements whose possibility is to be mea-
sured should represent events obtainable in experiments repeatable under the same
conditions; it admits events for which just some precise or imprecise information is
known and can be represented by statements generating linguistic collectives or
fuzzy sets. It does not force that statements should be endowed with an ortholattice
algebraic structure, even if supposing it is a De Morgan one where some strong
laws hold, such as the distributive ones. It proceeds through a different weakening
of Boolean algebras than the quantum calculus does.

In addition, and as is well known, a membership function taking the value 1 at
some point can be interpreted as a distribution of possibility conditioned by the
previously available information on the use of its linguistic label but not, in general,
as a probability distribution.

Were each fuzzy set’s membership function l equal to a probability pl (in a
universe X being a Boolean algebra, or in an orthomodular lattice), because

l� k , l xð Þ� k xð Þ, for all x in X, it is also
l x0ð Þ � k x0ð Þ , 1� pl xð Þ� 1� pk xð Þ , pk xð Þ� pl xð Þ, or k xð Þ� l xð Þ , k� l,

it would follow that l = k; that is, the pointwise ordering between these fuzzy
sets collapses in the identity. It follows a rare ordering of membership functions,
under which two of them only can be coincidental or not comparable. With it, many
useful applications of fuzzy sets would be lost. The pointwise ordering is not a
natural form for ordering probability measures. Interpreting fuzzy sets in a Boolean
algebra, or in an orthomodular lattice, as a measure of probability just leads to a
very odd “theory” for both fuzzy sets and probabilities.

Notwithstanding, this does not mean that each particular numerical value of a
fuzzy set cannot be obtained as the value of a probability. For some concretion,
given the finite fuzzy set in X = {1, 2, 3, 4},
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l ¼ 0:5=1þ 0:7=2þ 1=3þ 0=4;

there are many quadruplets (p1, p2, p3, p4) of probabilities, each able to give the
corresponding value of l; for instance:

lð1Þ ¼ 0:5 ¼ p1ð1Þ; p2ð2Þ ¼ 0:3; p1ð3Þ ¼ 0:2; p1ð4Þ ¼ 0;

p2ð1Þ ¼ 0:2;lð2Þ ¼ p2ð2Þ ¼ 0:7; p2ð3Þ ¼ 0; p2ð4Þ ¼ 0:1;

p3ð1Þ ¼ 0; p3ð2Þ ¼ 0; lð3Þ ¼ p3ð3Þ ¼ 1; p3ð4Þ ¼ 0;

p4ð1Þ ¼ 0:5; p4ð2Þ ¼ 0:2; p4ð3Þ ¼ 0:3; lð4Þ ¼ p4ð4Þ ¼ 0:

This simple example shows that there is nothing against those cases in which
each numerical value of the membership function comes from a specific random
variable, that for some fuzzy sets it seems possible to design a series of random
experiments from whose respective probabilities the values of its membership
function can be obtained; something that, in general, is impossible by means of a
single probability and corresponds to a statistical view based on managing random
variables. Anyway, what is not clear enough is on which characteristics of the fuzzy
set’s context, such random experiments, or random variables, could be linked; it
seems dependent on how the contextual information could be acquired.

In short, what cannot be excluded at all is the possibility of obtaining the values
of a fuzzy set’s membership function through a statistical methodology. But, in any
case, there cannot be coincidence between a fuzzy set and a probability defined on
the same ground. The theories of fuzzy sets and probabilities have different goals,
although fuzzy sets and possibility measures have closer goals.

14.3. As has been shown, Kolmogorov’s theory can be imported (with some
modifications) into algebraic structures weaker than Boolean algebras, as it is into
orthomodular lattices in the so-called “quantum probability calculus,” corre-
sponding to a particular form of language in which statements are precise even if
not all the information on them is known, and where, instead of crisp partitions
p = q + r with q � r = 0, it is supposed with q � r′ that, only provided q and
r were Boolean elements, would coincide with q � r = 0; in orthomodular lattices,
contradiction (q � r′) implies incompatibility (q � r = 0), but not reciprocally.
These are two concepts only coincidental in Boolean algebras and thanks to its
basic perfect repartition law, but that in language (and even in most algebras of
fuzzy sets) are actually independent of each other. It should be pointed out that the
perfect repartition law comes directly from distributivity:

1 ¼ pþ p0 ¼ [ q ¼ q � ðpþ p
0 Þ ¼ q � pþ q � p0

and that distributivity is not valid in orthomodular lattices; perfect repartition is also
not always valid in De Morgan algebras because in them pþ p0 ¼ 1 is not a law.

The quantum case shows how the information available on what is stated affects
the laws that can be supposed, but it should be noted that, in plain language, they
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cannot be supposed to hold and that, when dealing with one of its parts, some
previous checking of them is necessary. It can be said that fuzzy logic is the first
approach breaking, in language, the usually supposed lattice structure of statements;
something reflected, for instance, in the many applications where the conjunction is
represented by the product instead of the minimum, and for which the usually
presumed syntactic property p � p ¼ p is lost.

In addition, it is also worth noting that in the so-called intuitionistic lattices (in
which negation is not strong) a kind of relational, or conditional, probability can be
defined, but that (as was proven) such lattices are included through a previous
equivalence in a Boolean algebra of classes.

14.4. Once a short review of the mathematical theories of probability and possi-
bility is done, let’s overview the uses of possible, probable, and uncertain, in plain
language.

As has been repeatedly said, in general, plain language is not submitted to all the
laws of algebraic structures such as the algebras of Boole, De Morgan, and the like.
Introducing an algebraic structure and formalizing it means constraining plain
language to an artificial one. Plain language is almost all we count with to express
what we experience with the senses, and what we elaborate intellectually; it has
great and essential flexibility, and for “structuring language” it is necessary to
consider only some of its specific parts, submit them to a regimentation, forget
some particularities, and finally adopt a mathematical model that, like all models, at
the end is but a more or less valid simplification of reality. In the particular case of a
lattice’s model, it is extremely rigid; for instance, it supposes the conjunction to be
the greatest statement among all those from which the two statements submitted to
conjunction follow forward. It also supposes some laws that are not always valid for
statements such as the associative laws of conjunction and disjunction, or the
existence of two statements considered as “neutral” and “absorbent” for the con-
junction, and presuming that a clear and general concept of truth and falsehood is
known in the corresponding piece of language. Syntax is important, but what really
matters in language is semantics; a badly syntactically constructed linguistic
statement is often comprehended well enough, but confusion of meaning is what
actually produces a serious lack of comprehension.

What follows tries to shed some light on the words uncertain, possible, and
probable, but without imposing too many laws and towards a not still existing total
scientific domestication of the uses of these words in plain language, something for
which there is yet a lack of practical knowledge.

14.5. What does it mean that something can be qualified as uncertain in plain
language? Uncertain, as the opposite word of certain, implies (without a necessary
equivalence) not-certain; hence, uncertain refers to some lack of certainty with
respect to aspects surrounding what is stated but, instead, not-certain means a total
lack of certainty. For instance, the statement, “It is uncertain that candidate C will
win the election,” just means that the statement “Candidate C will win the election”
is, for what is contextually and currently known as certain, not necessary and
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unsafe; that, if betting on it, any of those knowing what surrounds the election will
risk a very low wager by believing that the bet can be easily lost. It is not a properly
objectivistic view, but a subjective one, based on the experience of the player.

Anyway, for capturing a full-meaning of the predicative word U = uncertain in a
universe X of statements p; q; r and so on, a quantity X;\U;mUð Þ should be
specified, and even an analysis of what certain means seems to be previously
necessary for linking its qualitative meaning with the opposite word uncertain in the
form \uncertain ¼ \U ¼ \�1

certain.
Note that the coincidence of the relation \U (less uncertain than) with the order

of a lattice (be it a Boolean, a De Morgan algebra, or whatever ordered structure) is
but a supposition involving the hypothesis that X can be endowed with such an
algebraic structure, something on which one must be, for what has been com-
mented, extremely cautious and check, previously, if each of the laws defining such
a structure can actually be supposed. To specify a quantity reflecting a full-meaning
of U, and as happens with all words, some “experience” of the use of uncertain in
plain language is necessary for establishing, at least, the empirical relation “less
uncertain than”, knowing which statements are maximal, which are minimal, and
specifying a measure.

It can be supposed that in language the word uncertain inherits a “history relative
to its use,” coming from some experiences linked with contexts in which uncertain
has been formerly used, and acquired either directly or by means of some “con-
tagious” contact, oral or written, with others using it.

The relation\U will always depend on the context surrounding the use of U and,
for instance, supposing it coincides with the order of a lattice
ðalways verifying p� q , pþ q ¼ q , p � q ¼ pÞ could be very risky because, for
instance, in language and due to time intervention, it can be
p � q 6¼ q � p. Additionally, in language the exclusive disjunction is often managed
p Δ q = (p + q) � (p � q)′, instead of the inclusive disjunction p + q, but
p + q = q implies p Δq = q � (p � q)′ that, in a Boolean algebra means p D q = q � p′,
and that because q � p′ � p′ is p D q contradictory with p and only coincides with
q if it is q � p′, that is, if p and q are contradictory.

Inasmuch as no specific and satisfactory general theory of uncertainty com-
prising its measuring is currently well known, there is room for interpreting the
word uncertain in the form each can be contextually able to do. For instance, those
mastering probability theory or possibility theory tend to identify uncertain with
probable or, respectively, with possible, even if obviously uncertain is more general
than probable and possible; something probable or possible is uncertain, but the
reverses are not clear enough. For instance, under which random experiment can a
probability be computed for “Candidate C will win the election”? Of course, there is
neither a way of designing experiments such as that of throwing a die, nor of
considering a Boolean or a De Morgan algebra containing the presumed results of
such an experiment, and less again ways of repeating it exactly under the same
conditions at each repetition; for instance, a former election even with the same
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candidates will not present the same surroundings of the next and, at least, some
ideal similarities should be chosen.

It is debatable if Kolmogorov theory is directly applicable to this kind of
“events”, and, for instance, Zadeh introduced a calculus of probabilities for
imprecise events represented by fuzzy sets but showing difficulties for defining
conditional probability, such as also happens with quantum probability. In addition,
and in the case of precise words, the identification of < U with the inclusion relation
among subsets � leads to identifying “less uncertain than” with “less elements
than”, perhaps a too risky identification. Possibility theory that involves subjective
views could be more suitable even if its results can be subjected to a large lack of
certainty.

14.6. Regarding the use of P = “probable” in language, for capturing its
full-meaning the relation <P = <probable should be captured specifying a measure
mP. What is obvious is that when the considered statements are imprecise, they
cannot constitute a Boolean algebra, nor an orthomodular lattice, but that what is
open is, in some cases, a De Morgan algebra, and even a different BAF. When the
statements are precise, a Boolean algebra of sets representing them exists and hence
what should be debated is if relation <P is, or is not, the inclusion of sets (�), and if
there exists an additive measure mP. What can be easily accepted is that � is
contained in <P, but the reciprocal is in general dubious; thus, because
A � B implies A <P B, it follows that mP(A) � mP(B), provided m were a measure
for <P; <P—measures are �—measures, but it could not be guaranteed that a �—
measure is always a < P—measure. Hence, it is not for sure than a probability could
always, and in plain language, be a good enough measure of the word “probable”,
and less again that such measures should be additive.

For instance, to identify what “It is probable that candidate C will win the
election” (shortened to “C is P”) means it is first necessary to know the relation-
ships “C is P is less probable than D is P”, for all the candidates D in the election
process; and once the graph (Candidates, <P) and its maximal and minimal elements
are known, more information is required on the context surrounding the election for
specifying a measure. This does not mean, of course, that such a measure cannot be
estimated by a statistical methodology.

There is a basic difference between <P and the relation of “comparative proba-
bility”, introduced by T. Fine; such a difference lies in that comparative probability
is a total or linear order, but <P cannot be always supposed to be so. Perhaps Fine’s
relation could be viewed as an extension of <P; it deserves further study, but seems
related to the linear relation of working meaning <m previously introduced for
measures, and enlarging <P.

14.7. Of course, similar comments can be made concerning the word
Q

= pos-
sible, as modeled in Zadeh’s theory of possibility, and the use of the word

Q
in

language by a full-meaning specified by a quantity (X, <Q, mQ) in which neither
<Q should necessarily coincide with the order of a De Morgan algebra, nor mQ
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necessarily verifies the axioms of a possibility measure. Namely, that it does not
always grow under the max operation.

Even accepting that “if probable, then possible, but not reciprocally”, it does not
imply that given a measure of probability prob and one of possibility poss, it should
always be prob(x) � poss(x), for all x in a universe where both measures prob and
poss are defined; it can be easily checked in a finite universe. For this reason, Zadeh
introduced the concept of consistent pairs (poss, prob): such a pair of measures is
consistent if it is prob � poss.

Such a concept is in agreement with the chain of inclusions, <P � <Q � <U,
concerning the qualitative meanings of the three words, and also with the typical
expression “if it is probable, then it is possible”, and in any case, “it is uncertain”. In
a finite Boolean algebra it is easy to prove there are probabilities that coincide with
possibilities, but it is limited to degenerate measures, that is, those only taking the
values 0 and 1; essentially, probabilities and possibilities are different measures. To
specify a probability more information is needed than for specifying a possibility.
mP � mQ � mU seems that it could be a coherence relation among the respective
measures.

14.8. The ordinary use in language of the words uncertain, possible, and probable,
is not yet well known as is that of the word big in a closed interval of the real line; it
requires a kind of experimental work that, for instance, could help to shed some
light into the debate on the different views of probability between the
Kolmogorovians, frequentialists, or objectivists, and the Bayesians or subjectivists.
If the first base their view in the previous application of probability to precise words
denoting random events represented in Boolean algebras of crisp sets, the second
even try to apply probability to imprecise words neither denoting random events nor
representable in those algebras, nor in more general ortholattices; Bayesians seem
to be closer to the use of “probable” in plain language and ordinary reasoning than
are Kolmogorovians.

The essential point for objectivistic interpretation lies in decomposing events
into disjoint events to allow accepting the additive law of probability. But, with
imprecise events represented by membership functions of fuzzy sets, the situation is
different because having a decomposition l = a + b with a � b = l0 (the function
constantly equal to zero, representing the empty set) implies working in a BAF that,
if functionally expressible, requires solving the functional system of equations
a = G(b, c) and F(b, c) = 0.

For instance, in a standard algebra ([0, 1]X, F, G, N), where G is a continuous t-
conorm, F a continuous t-norm, and N a strong negation function, F should be a t-
norm in the family of Lukasiewicz, F = WΔ (with Δ: [0, 1] ! [0, 1] an order
automorphism), because these continuous t-norms are the only ones with
zero-divisors, and then Δ−1(max (0, Δ(x) + Δ(y) − 1)) = 0 means Δ(y) � 1 − Δ
(x), or y � NΔ(x), implying that the fuzzy sets a and b should be contradictory
(b � a′) in respect to the negation NΔ.

That is, for counting with such kinds of “partitions”, a very particular algebraic
structure seems to be necessary; note that t-normsWΔ are the only t-norms verifying
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the principle of noncontradiction by conjunction (a � a′ = l0) among the standard
BAFs. These algebras are not lattices except if F = min and G = max, in which
case they are De Morgan algebras. With these structures, one of the problems in
plain language is the identification, inside a current problem, of a statement playing
the role of “absorbent” for the conjunction, that is, being represented by the fuzzy
set with membership function l0.

All the above needs to be searched in language through designing controlled
processes of experimentation, and checking what is observed against some of the
known mathematical models, as well as for getting hints towards establishing new
models. For it, a search of the Web, as done in a recent paper by Sergio
Guadarrama, Eloy Renedo, and myself, for studying how the linguistic conjunction
“and” is actually used in language, could be a useful starting methodology. Without
systematic observation in language, controlled experimentation, and adapting
mathematical models to it, everything is but a kind of play with abstract ideas,
perhaps of wishful thinking. It is difficult to imagine how a purely abstract formal
kind of reasoning could arrive at, for instance, thermodynamics, and without not
blind observation and controlled experiments. Our subject is empirical, and for-
malism is for helping its comprehension and for allowing computations.

Perfect partitioning is anchored in liking absolutes; a crisp set’s partition suffices
to name its parts by precise words specifying them. Perfect classification is an
epitome for a “principle” of separation or isolation; that is, the belief that everything
that is supposed to be composed can actually be separated in isolated parts whose
union constitutes the composed totality, and that things grow by a clear superpo-
sition of pieces. It is an ideal that goes well with a lattice-type conception of
language: a rigid conception that is artificial because, for instance, in language (and
in life) time intervenes and situations are not always static; language is essentially
dynamic. For instance, language also contains the opposites of words that, being
several, sometimes are not comparable among them, and not coincidental with their
negation; sometimes there is interplay with the given word, and not allowing perfect
classifications. Zadeh’s linguistic variables are a good example of it.

In language and reality there are many cloudy, gaseous like appearances, for
which a principle of crisp separation is difficult to conceive, unless some crisp
fixation, or representation of them, is accepted and that, in fact, does not appear in
such a reality. Reality should be seen as it is, and represented in forms as close as
possible to what it actually is; confusing name and thing is, jointly with believing
that a name defines a real thing, just a dangerous “philosophical nominalism” based
on believing that the universe of discourse can be perfectly classified in those x such
that “x is P”, and those such that “x is not P”, whose intersection is empty, in which
each set is isolated from the others. Paraphrasing Luigi Pirandello, a scientist should
escape from words in search of where they can be applied; this could be meta-
physics, but it is not science.

As commented before, what cannot be excluded is to modify measures by
assigning, to what is to be measured, not a number in the real line but a mathe-
matical object in a not linearly structured set. One reason for such a possible
modification comes from the mentioned fact that often <P is not linear, but <m is
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always so. For instance, and on one hand, it could be thought of as assigning to the
measures values being complex numbers, or intervals in the real line, with which
<m ceases to be linear and more possibilities for its coincidence with <P are open,
although no safety on it can be stated. However, it often also happens that the
available additional information on the behavior of P only allows us to recognize at
each x in X an upper limit (bx) and a lower limit (ax) of the values m can take at
point x, and then, defining m(x) = [ax, bx], or m(x) = ax + ibx, cannot seem bizarre.

This comment opens the door to consider (when it can be suitable) what, in
fuzzy set theory, are called type-two fuzzy sets, consisting in assigning fuzzy
numbers in [0, 1] instead of crisp numbers in the unit interval; of course, crisp
numbers and intervals are particular cases of fuzzy numbers and, in addition,
type-two fuzzy sets are not only more general, but can immediately represent usual
linguistic statements such as “the measure is high”, by representing the linguistic
label “high” as a fuzzy number in [0, 1], that is, by a membership function lhigh of
the linguistic label “high” in such an interval, and as they are, for instance,

lhigh xð Þ ¼ x;

or

lhigh xð Þ ¼ 0 if 0� x\0:8;

and

lhigh xð Þ ¼ 1 if 0:8� x\1;

with the second equivalent to the interval [0.8, 1].
With this, several forms of interpreting and representing “high” are possible, and

open a window not only for representing and measuring more statements in natural
language, but also perhaps for enlarging the application of probabilities when both
its arguments and values are themselves imprecise or uncertain. This is, for
instance, the case of the typical linguistic statement, “It is with high probability that
John is rich,” that could be translated into fuzzy terms by

prob lrich Johnð Þð Þ ¼ lhigh;

once a theory of probability for imprecise events and whose values are fuzzy
numbers can be established. Nevertheless, the laws under which such “prob” should
be defined are not actually known. This is a very important topic towards com-
puting with words.

14.9. This chapter is not, by its own nature and like the others in this book’s Part II,
a conclusive one. It only offers a reflection for exciting its potential readers’ interest
through some patterns relative to a new view of the meaning of words in plain
language, and without conceiving this concept as one crisply definable by necessary
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and sufficient conditions, but by quantities each specifiable through the contextual
available information on the action of the word in the universe of discourse and,
also, by adding reasonable hypotheses on it when necessary for its design.

In this view, meaning is not seen as a universal concept, isolated from both the
context in which the word is used and the purpose of such use. The meaning of a
word in a universe of discourse is not unique, but there are many possible meanings
in each universe and, consequently, what cannot be thought is a single and universal
meaning of the words uncertain, possible, and probable, like there is not a single
probability for the events appearing in throwing a die, but several depending on the
information available and acquired on the die by, for instance, through a nonde-
structive analysis of it.

There is uncertainty even in specifying a measure, be it uncertain, or possible, or
probable. Almost everything in plain language is endowed with uncertainty, and a
point on which there is a coincidence between what is presented in this chapter and
the Bayesian theory of probability is that everything depends, at least, on the
previously available information on the subject currently under study. Measures
depend on some a priori information on what surrounds the use of the corre-
sponding word; indeed, each measure can be viewed as “conditioned” by such
information, and, when it changes, an updating of what has been previously pre-
sumed is necessary. A relevant difference between the Bayesian approach to
probability, and the meaning concept in plain language, as it is approached here, is
that the first mainly refers to events admitted as something that could actually
happen, but meaning refers to the use of words in language that, often enough, not
only refer to “physical” situations, but to virtual or informative ones, and that can
count with a history of social uses. If defining a probability requires a strong
algebraic structure, in plain language it does not seem to exist in a universal way; in
each case, and as fuzzy logic shows, a particular algebraic structure should be
searched for.

What is not done here is the more than debatable identification of uncertainty
and risk; the risk taken when acting with uncertain knowledge is not considered as
it properly belongs to the field of decision theory.

In sum, language is extremely complex; in the era of information it is, perhaps,
the most complex system computer science is faced with, and that for compre-
hending well what information is, needs to be scientifically domesticated inasmuch
as information is basically conveyed by a language, be it plain or artificial, and
employed for reasoning.

14.10. A comment trying to approach the quantity’s model of meaning to the
Bayesian interpretation of probability is still in order, even if it remains just as a
naïve trial.

In such an interpretation, and once a priori nonnull probabilities p(a) and p(b) are
established, the probability of a can be updated after knowing that of b, by means of
the well-known Bayes’ formula, p(a/b) = p(a � b)/p(b), in which the hidden con-
ditional “If b, then a”, is conjunctively represented by a � b, and not by b′ + a, as is
always done in Boolean algebras but that does not allow p(./b) to be a probability. It
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shows that the interpretation of the formula does not properly concern the formal
Boolean language of the model, but to something external to the model, that is, in
the corresponding plain language. Note that it is p(a/b) � p(a) , p(a � b) � p
(a). p(b) and p(a) < p(a/b) , p (a � b) > p(a). p(b). In any case, it seems that
Bayesians could keep some linking with the presented conception of meaning and
hence it deserves to be explored a little bit further.

Suppose a word P in X, with meaning given by a quantity (X, <P, mP). Suppose
that there is a word Q, with meaning (X, <Q, mQ), such that it can be asserted “If x is
Q, then x is P”, for all x in X. Once this is known, is the a priori meaning of
P affected? Provided the answer were affirmative, how would it be affected? Is there
a new quantity (X, <P

*, mP
*), giving an a posteriori meaning, conditioned by the

information the conditional can furnish? How is such a new meaning defined?
Even without fully answering this question, let’s turn around the conditionals by

denoting p and q, respectively, the statements “x is P”, and “x is Q”. Thus, the first
question is how to represent the conditional, or inference, q < p, that is, how to link
all that with inference. What can be said about the character of an inference once
q < p is understood as a statement? Which property, or properties, should a degree
of truth t enjoy for saying something, given the truth degree t(q) of the antecedent,
on the truth value t(p) of the consequent p?

By presuming that t is such that q < p => t(q) � t(p), the degree of true of the
conclusion is greater than or equal to that of the antecedent; deduction propagates
the truth by nondecreasing it. Note how counterintuitive it would be to suppose
q < p => t(p) � t(q), propagating the degree of true by retroceding instead of
advancing it, something actually odd. What it yet lacks is studying the possibility of
having formulae for the degrees t(q < p), depending on t(q) and t(p), as they exist in
the classical case in probabilized Boolean algebras by means of the Bayes’ formula.

It is interesting, for instance, to bound the truth value of q starting from the
modus ponens (MP) “inequality”, q � (q < p) < p, implying t(q � (q < p)) � t(p).
Provided it were functions f and g such that,

t q � pð Þ ¼ f t qð Þ; t pð Þð Þ; and t q\pð Þ ¼ g t qð Þ; t pð Þð Þ;

the inequality f(t(q), g(t(q), t(p)) � t(p) would follow, and perhaps a bounding for t
(p) only depending on t(q) could be obtained. For instance, if as in the classical
case, it were f(a, b) = min(a, b), and g(a, b) = max(1 − a, b), from

min t qð Þ;maxð 1� t qð Þ; t pð Þð Þ� t pð Þ , max min t qð Þ; 1� t qð Þð Þ;min t qð Þ; t pð Þð Þð Þ� t pð Þ;

the low bounding of t(p): min(t(q), 1 − t(q)) � t(p) would follow.
Those expressions depend on the meaning, in the corresponding language’s

context, of the linguistic connectives and, or, not, whose specification is actually a
contextual and partially open problem as formerly said.

In the limit situation in which all the statements are precise, and t can be taken as
a Kolmogorov probability, t = prob: Ω à [0, 1], in a Boolean algebra Ω of subsets
in the universe X, it appears an interesting case concerning the meaning of the
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conditional. Provided it were prob(q) > 0, the Bayes’ formula prob(p/q) = prob
(q � p)/prob(q) would represent the probability of q < p, of “p if q”, a situation in
which such a corresponding linguistic conditional cannot be interpreted in Ω as the
material form q′ + p, because it does not give a probability in Ω, as prob(p/q) does.

The conditional, once interpreted by “p � q” actually facilitates a probability
provided, as in a Boolean algebra, that the conjunction (�) were commutative. If
prob were a probability in Ω, then prob(./q) would also be a probability in the set of
the traces (p � q) all its elements p show in q; that is, prob(./q) would also be a
probability but in the restricted Boolean algebra constituted by the elements in
Ω* = {p* = p � q; p in Ω}. In some sense, q represents a kind of diaphragm only
allowing us to consider what “is inside q”; the antecedent constitutes the new
universe, hiding what is out of it, and where, for instance, the negation of p is not p′,
but p^ = p′ � q. Thus, it is

q^ þ p� ¼ q0 � qþ p � q ¼ 0þ p � q ¼ p � q;

in Ω*, inside the new and restricted universe q, but not outside; the Boolean and the
conjunctive conditionals do coincide.

All this can suggest a view of measuring conditionals in forms similar to t
(q < p) = t(q � p)/t(q), without t being a probability but just a particular measure of
“true”. Note, for instance, that in the Bayes’ formula the conjunction (p � q) is
supposed commutative because the statements/events are precise/classical sets, but
that, when the statements are imprecise/fuzzy sets, such commutative property
cannot be generally presumed. The values t(q) and t(q � p) can be called the a priori
measures, and t(q < p) =: t(p/q), will be the a posteriori ones.

Provided the conjunction were commutative, it would be easy to find the truth
value t(p < q) in function of t(q < p), because t(q < p). t(p) = t(q � p) = t(p � q) = t
(p < q). t(q), or

t p\qð Þ ¼ t pð Þ=t qð Þ½ �: t q\pð Þ;

a formula expressing the truth degree of the inverted conditional, and showing that t
(p < q) coincides with t(q < p) if and only if t(q) = t(p). Of course, it also shows
that t(p < q) � t(q < p) , t(p) � t(q). The case in which the conjunction is not
commutative is an open one.

In some cases, the function t(p/q) =: t(q � p)/t(q) is also a measure in the
restricted universe q, inside q, and not only a simple degree of truth of q < p. In
fact, it is:

1. p1\p2 ¼ [ q � p1\q � p2 ¼ [ t q � p1ð Þ� t q � p2ð Þ ¼ [ t p1=qð Þ� t p2=qð Þ;
2. If p is an a priori working antiprototype, that is, t(p) = 0, it is also an a posteriori

working prototype, because q � p < p => t(q � p) � t(p) = 0 implies t(q �
p) = 0, and t(p/q) = 0. Nevertheless, a different problem arises when p is an a
priori prototype, because from t(p) = 1 it is not immediate to arrive at, or to
define, t(p/q) = 1, and adding some conditions seems to be necessary for
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proving it. For instance, a sufficient condition is the validity, for the pair (q, p),
of the law t(p � q) + t(p + q) = t(p) + t(q), because then from t(p) = 1 and
“p < p + q => t(p + q) = 1”, it follows that t(p � q) = t(q), and finally t(p/q) = t
(q)/t(q) = 1. Note that the additive law follows in the particular case with p �
q = 0; hence such law implies the additive one is more general.

It should be remarked that a priori values are not always attainable from past
historical data records; this is the case in some linguistic cases, such as the
afore-mentioned “Candidate X will win the election” when, for instance, such a
candidate participates in an election for the first time. In such cases, a priori values
could be approximate through the experience, or subjective evidence, the observer
can (directly or indirectly) have on the corresponding situation; furthermore the
contextual knowledge (or evidence) can lead to attributing a value to the a priori
ones. Only if there is “contextual ignorance”, t(q) = t(q′), can it be accepted to take
the value t(q) = 0.5, because such equality, and provided it were t(q′) = 1 − t(q),
would imply t(q) = 1/2.

If the previous evidence is represented by e, the prior formula can be written in
the form

t p=q � eð Þ ¼: te q\pð Þ ¼ t p � q � eð Þð Þ=t q � eð Þ;

and only in the ignorance case is it acceptable to take t(q � e) = 0.5 that, because
from p � (q � e) < q � e it follows that t(p � q � e) � t(q � e) = 0.5, and the con-
clusion that follows, te(q < p) � 1, gives no actual information inasmuch as te is
always less than or equal to one.

For instance, using additional information to specify either a measure m for a
predicate P, or a degree t for the validity of a linguistic expression, is nothing more
than a priori information (perhaps supplied by an expert, and not always coming
from numerical data records; hence, and in a Bayes-style line of thought, it seems
necessary for upgrading a priori measures. The use of additional a priori infor-
mation, or evidence, seems to be a proper and unavoidable resource for the
mathematical modeling of commonsense reasoning.

Nevertheless, the measuring of the extent to which a conditional can be a valid
one in plain language is indeed an open problem and, when no numerical records
are known, it should rely on some subjective information. Note that holding q �
p < p, and hence t(q < p) � t(p), from the former expression follows the upper
bound

t q\pð Þ�min 1; t pð Þ=t qð Þð Þ

for the measure of the conditional.

14.11. For ending this chapter, let’s add a comment on conditional statements
p < q, not from the point of view of deducing, but from that of guessing, and further
than was advanced in the former Sects. 5.4 and 11.1. That is, by avoiding deducing
from either modus ponens (p � (p < q)) < q, or modus tollens (MT)
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(q′ � (p < q)) < p′, and analyzing what can be conjectured or refuted from the sets
of premises {p, p < q}, or {q′, p < q}.

A conjecture and a refutation of the first set of premises (MP) are, respectively,
elements c and r, such that p � (p < q) � / c′, and p � (p < q) < r′; concerning the
second set of premises (MT), a conjecture is an element d such that q′ � (p < q)
� /d′, and a refutation is an s such that q′ � (p < q) < s′. The problem consists in
finding these kinds of four elements.

In principle, it seems easier to confront the refutations, and, concerning the
conjectures, those in which it is, respectively, c′ < p � (p < q), and d′ < q′ � (p < q).
To “solve” these inequalities, it is necessary to count with a calculus in an algebraic
framework, in which both the symbol < and an expression with connectives
equivalent to p < q could be identified.

For instance, in the framework of a Boolean algebra, from q′ � (p′ + q) � r′,
equivalent to q′ � p′ � r′, or to r � q + p, it follows that what refutes a condi-
tional are those r that are below the union of the antecedent and the consequent.
Analogously, from d′ � q′ � (p′ + q) , d′ � q′ � p′ , p + q � d follows that
the elements that are greater than the union of antecedent and consequent are
conjectures.

14.12. What about the counterfactual conditionals? This is a strongly semantic and
scarcely syntactic subject in which background knowledge is, in addition to context
and purpose, essential. Without imagining a nonexisting actual situation where the
antecedent could be true, the conditional could lose sense.

For instance, and returning to the former example,

– t(p < q) = max (1 − t(p), t(q)), provided t(p) = 1, it would follow that
t(p < q) = t(q): If the antecedent is true, the truth value of the conditional
coincides with that of the consequent; both should be simultaneously true or
false. But, were the antecedent false, t(p) = 0, it would follow that t(p < q) = 1:
a false antecedent produces a true conditional.

– With the conjunctive representation the situation changes for what refers to false
antecedents, because t(p < q) = t(p � q) = min(t(p), t(q)), and t(p) = 1 implies t
(p < q) = t(q), as in the former case, but t(p) = 0 implies t(p < q) = 0: the
conditional only can be true provided its antecedent and consequent were true.

Anyway, with counterfactuals p < q the sources for the truth or falsity of p and
q are actually different: p comes from an imaginary source, but q from a real one. It
seems that for the analysis of counterfactuals, the usual Boolean model is insuffi-
cient, even if the conjunctive one can seem to facilitate a more realistic represen-
tation. Of course, there are many more ways of interpreting p < q in Boolean
algebras, even without a single expression; for instance, identifying p < q with

– p′ + q, if p is contradictory with q, and
– p � q, if they are not contradictory,
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an interpretation satisfying the modus ponens inequality. Namely, in Boolean
algebras, the equivalence p � (p ! q) � q , p ! q � p′ + q, allows us to
construct expressions such as the former easily; for instance,

– q, if p = 0, and
– p � q, otherwise.

In Boolean algebras there are many possible representations of the conditionals,
and finding some of them appropriate to represent a counterfactual conditional is an
open topic. For instance, checking if the last form for the conditional, or other
similar, can represent some type of counterfactual, could be a way to start such a
study, as it also can be by understanding the antecedent as a hypothesis for the
consequent.

14.13. Another question with conditionals refers to when a conditional refutes
“p and q”; that is, in Boolean algebras, p � q � (p ! q)′ , p ! q � p′ + q′. In
addition, p < q is a type-one speculation of p � q, provided p � q were not com-
parable with p ! q, but (p � q)′ � p ! q , p′ + q′ � p ! q. Still, a condi-
tional is a hypothesis for p � q , p ! q � p � q. Obviously, for the wild
type-two speculations there is no equational way for directly posing and trying to
answer the question.

A more realistic and deep study of the conditional’s representation problem
could come from designing suitable experiments in language, establishing mathe-
matical models and testing them against “reality” and concerning all types of
conjectures, doing it, of course, in a not blind but systematic form, within back-
ground knowledge, and inside the context-dependent and purpose-driven praxis in
plain language and ordinary reasoning.

Nevertheless, a complete study of the symbolic representation and measuring of
conditionals still is, in almost all its aspects and for plain language, an open problem
affecting, for example, the symbolic representation of children’s stories in view of
their automatic computer mechanizing, and it is manifested by the more than 40
operators that, in fuzzy logic, have been used to represent conditionals.
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