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Foreword

-In the beginning was the Logos (John’s Gospel)-

Just looking at the title and observing that formulae constellate the pages without
the overwhelming presence that has become customary in scientific writing, pro-
vides a refreshing sensation of going back to the Greek serenity hinted at by the
title.

The title is, usually, an indication of what the author had in mind when he began to
conceive of the book. So, let us start from it:On the Logos. Oh it is truly demanding! In
the Prelude Enric explains that he refers to the “capabilities of reasoning and
expressing in some plain language” that are “shared by all mentally sane people.”We
(and the reader should) go back to it after finishing reading the book.

Now we start from the subtitle and the concepts he presents in the first pages.
Well, these concepts look more attainable. Ordinary reasoning is a very difficult and
challenging theme and I know that it is a comprehensive argument for attainment
for which Enric in the last years has used all the technical, formal, and conceptual
instruments of his toolbox. It is what he has already done not only in many
scholarly papers but also in two recent books, one in Catalan, the other in Spanish.
But the present one is something different: it is neither a translation nor a reshuffling
of them. It is really a new “synthesis”. Synthesis of what? Of all his research, a
summary of the path Enric has followed over the years, but also of the questions,
the crucial questions that have accompanied the scientific revolutions of the
twentieth century—in physics, in mathematics, in logic—and, among them, also in
the newcomer to the club of scientific disciplines that can generically identify with
“information sciences” but still lacks a stable name after having changed many over
the years (from cybernetics to AI, cognitive sciences, etc.).

These were paths that Enric naturally crossed during his studies and his career.
However, he did more: he searched and looked for unusual aspects, pushed by his
intellectual curiosity and open-minded approach to these problems. The book spans
many chapters dealing with or touching upon such different topics as “meaning”,
“thinking”, “analogy”, “(ordinary) reasoning”, or “reasoning in quantum physics”.
Different topics but united and unified by the common aim of contributing to
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understanding them by using a scientific approach to natural (better, ordinary, or
plain) language and reasoning, which is the pervasive thread of the book.

“Scientific” for Enric means—among many other things—“measurable”. Also
meaning should be measured. This measure, however, needs to come out of a
correct adequate modeling of what we are studying, not out of a mechanical routine
application of already available results, not the routine work of “applied mathe-
matics” that superimposes known techniques and results, in a sort of Procrustean
bed.

We must be aware, as Enric writes, that “plain languages are not the creation of a
single person, but are slowly generated by linguistic interactions between groups of
people; plain languages are socially constructed over the course of time, and words
acquire meaning along such interactions.” Clear! Is it also simple doing a model of
this? Rhetorical question.

I am inclined to think that Enric does not believe in “applied” mathematics as a
separate category, but in a “new math” for “new problems” (a new math adequate
to the complexity and novelty of the problems). In a sense this is not customary
today (many people use not only the expression “applied mathematics” but also the
one of “applied mathematician”); it is natural, anyway, and above all, is not new at
all. (Isn’t that what Newton did when he invented the calculus for describing
Nature?) Newton was not an applied mathematician.

The division of the book into two parts, one dedicated to “sowing” ideas, the
other to “gathering” questions can also be seen as typical of Enric’s style (human
before the scientific, and—for this same reason—strongly scientific). We must
propose and defend new ideas trying to convince everyone that these can be good
points of departure for further investigations (fallible, of course, as is everything in
science) but, at the same time, we must ask new questions, trying to discuss them
openly involving in the project as many people and attitudes as possible in order to
reach a shared common point from which to start (and later divide). Let me write
that I saw with great interest that the problem of “(non) monotony in reasoning” has
been put in this second part. We really should share a few common conceptual
points before trying to confront the question of constructing quantitative models of
this feature of reasoning, simple and clear models, not cumbersome machineries of
which the scientific literature is full and which remind us of Ptolemy’s epicycles.

So, after all, Enric was right in calling his book On the Logos inasmuch as not
only, “In the beginning was the logos,” but, as John goes on to write, “All things
were made through the same, and without the same nothing was made that was
made.” The “same”, as I read it, is the Logos. In addition to the Greek use of the
term, we perhaps should also take into account the use by John in his Gospel. Are
we dwelling outside our proper territory? I do not think so. Let me be clear at this
point. Enric took the term seriously and the reader should take it seriously too.
Maybe Enric has in mind only, or mainly, the Greek interpretation and would
consider the present extension improper. I think, however, that every reader should
take into account all the possible interpretations of this as well as all informal
notions we encounter reading the book (the book is doing exactly this regarding
ordinary reasoning).
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What John did was to try to connect Greek concepts and philosophy with the
“needs” of the new, innovative, religion. Today science and scientific knowledge
and tradition play a crucial role in our society. We should be able to do similar
difficult and profound conceptual operations when trying to scientifically under-
stand and address difficult questions. The problem of the way in which the human
being reasons, in general, not when he is concerned with specific and limited
chapters of his action, is one such big question.

This is what Frege attempted to do, and Boole before him, the latter successfully
but, seen from today’s perspective, in a very limited range, and the former con-
structing a wonderful cathedral that, unfortunately, was based on very unstable
ground. His project, his program, however, was so grandiose and magnificent that a
lot of today’s philosophy of language is still full of his ideas.

In this perspective, in our reading, the Logos is at the same time both the
“Informal,” the “Tao,” the “Chaos,” and what helps in putting order in it, the
“Reason,” the “Measure.” In this second role we have here something very similar
to what is alluded to in the title (and the ideas) of a book by Nelson Goodman,Ways
of Worldmaking. In fact, trying to understand (pieces) of Nature, we are con-
structing “worlds,” or, as scientists and mathematicians say more modestly,
“models.”

As Enric writes, “A model should come from some knowledge of the subject,
and a good model allows finding novelties. In the case of ordinary reasoning,
models should come from the current scarce knowledge of it” (my Italics).

A model of such a general thing not only is, obviously, very difficult to obtain,
address, and study but presents additional problems (apparently unsurmountable)
also of methodological and epistemological type, because we are anyway obliged to
delimit what we want to study without losing essential features of what we want to
understand. This theme periodically comes up in the book.

We cannot but congratulate Enric for this book that presents the first and basic
bricks of what appears to be a very interesting and ambitious research project whose
aim is one of attaining and solving one of the most challenging and difficult open
problems, a project based on a few already assessed basic results and which starts
from and encapsulates many findings of the research done by himself. An open
project, however, that is open to the finding of nearby disciplines, mainly neuro-
sciences, and usefully open to suggest crucial questions also to these cognate
disciplines.

Without doubt many characters will appear on the stage and many of those
already present will change their roles as soon as neurosciences provide us new
relevant information. However, we dare to say that the overall structure of the book
is general and robust enough to sustain and support many changes.

As it stands, the book seems to conclude the parable of the scientific quest done
by Enric, not in the sense that he will not provide, in the future, other challenging
contributions, but in the sense that in this book both the philosophical questions
(which have always been at the core of his intellectual interests and curiosity) and
his mathematical findings (that can give support, flesh, and substance to the
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disembodied ideas which are the most fantastic products of human creativity and
imagination) are here fused together in an admirable way.

However, I am sure that the present synthesis on the Logos, on his thoughts on
“Thought”, are not his final word (his final logos). And we, while appreciating the
way in which he has addressed—now—these difficult questions, remain waiting for
the unexpected suggestions and comments that Enric will provide as soon as new
findings ask for new paths to be followed.

Settimo Termini
University of Palermo (Italy)
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Prelude: Guessing, Telling, and Computing

A new frontier seems to be opened for natural science thanks to the advances in
neuroscience’s knowledge concerning the human brain’s functioning and, in par-
ticular, its derived natural phenomenon called thinking. Before such borders will be
actually crossed, it cannot be foreseen how the essentially person-driven manifes-
tation of thinking called ordinary, everyday, or commonsense reasoning, will be
scientifically understood.

Thinking comprises much more than reasoning, and it is beyond doubt that
ordinary reasoning, the spring of rationality, is mainly expressed in natural lan-
guage’s words and statements which, by consequence, can be seen as carriers of
information; reasoning and language are in a deep semantic interlinking.
Consequently, it seems reasonable to study ordinary reasoning pragmatically by not
keeping it too far from its usual expression in natural language; natural language is
acquired and fueled by ordinary reasoning, and reciprocally.

It should be pointed out that the expression “natural language” only has sense for
distinguishing the plain everyday languages from the artificial ones built up in the
formal sciences, but that, actually, a plain language is not properly something
naturally fixed, but continuously evolving, influenced, and “loaded” by, for
instance, the culture surrounding its speakers.

At the end, the capabilities of reasoning and of expressing themselves in some
plain language, the old Greek’s Logos, are two essential and intermingled char-
acteristics of rationality shared by all mentally sane people on the Earth; at least, it
is thanks to plain language that a person can know the reasoning made by other
people. Logos was translated into Latin by ratio, not referring to a ratio of numbers
but to a balance between what is pro and what is con in respect to some statements
submitted to scrutiny. For this reason, it cannot seem too odd to try to accomplish a
symbolic study of ordinary reasoning as it is done by people, through plain words
and statements, just excluding contradictions but neither with the strong constraints
imposed by “logical laws” (not always presumable in language), nor abusing any
artificial language, but keeping the study as close as possible to the ways in which
ordinary people seem to reason. That is, done in a mathematically naïve style.
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For instance, the classical representation of the linguistic “and” by a lattice
conjunction is abusive with respect to, at least, the presumptions of its commutative
property, of being the greatest element below the statements the “and” joins, and
always identifying “p and p” with “p”. Formal representations such as a lattice’s,
impose on plain language and ordinary reasoning “laws” that often cannot be
presumed and which, in any case, should be carefully tested before introducing
them.

Because understanding what words actually denote is essential for reasoning, the
study of ordinary reasoning requires scientifically domesticating the (dark) philo-
sophical concept of meaning. As shown here, such domestication can be done in a
form similar to how probability was domesticated, even if it were in the limited
conceptual and strongly structured frames of Boolean algebras and orthomodular
lattices. Inasmuch as meaning is attributed to words in any setting, such domesti-
cation should be done in the general and, in principle, mathematically unstructured
frame of plain language, by giving extension to meaning, that is, measuring it;
measuring is but a necessity and a characteristic of science. After doing this, it
should be analyzed as to what ordinary reasoning consists in, the role analogy plays
as a first engine of it, and the difference between deduction and induction clarified,
that is, between the extremes of deductively deploying what is just hidden in the
departure’s information, or evidence, and reaching something new, or creative
reasoning. Deduction and creation are the pearls of reasoning, gracing both the
refuting of arguments and the abducing of hypotheses, as well as facilitating the
proof of “theorems” in the deductive own formalism of mathematics. Because
deducing in ordinary reasoning often leads to contradiction, it should be differen-
tiated from deducing in a formal frame where reaching contradictions is never
accepted.

In this respect there is a recent development remembering, up to some point,
how the old scholastic logic did confront reasoning, but was concerned with a
symbolic form of representing ordinary reasoning. A development that, based on
language and very few and soft formal constraints, came directly from the con-
ceptual skeleton of some fuzzy logic views, indirectly from the neopositivistic
philosophical reflections made by the Vienna Circle’s members, and also from
some mathematical studies.

It is on these antecedents that what follows is based by following, in its argu-
mentation, William of Occam’s razor methodological rule, advising us not to
introduce more entities than those strictly necessary, but also taking into account
Karl Menger’s balancing addenda of not introducing fewer entities than those
allowing us to capture something new, previously unseen or unknown. It should be
remarked that such rules refer here to the considered linguistic, or reasoning’s
operations, and the “laws” to which they are supposedly submitted for obtaining
both a symbolic representation and a calculus able, at the end, to translate them into
a formal framework.

At least and perhaps, such developments can be suggestive for those aiming at
the Menger’s “exact thinking,” and wishing to reflect on the flexible, neither formal,
nor always deductive, ordinary reasoning. It is done in what can be possible,

xii Prelude: Guessing, Telling, and Computing



by pragmatically proceeding in ways simpler than those currently covered under the
label of “mathematical logic” that, usually, go on under an artificial language, rigid
and strictly fixed by some finite number of axioms. A novelty in the developments
is the classification of conjectures in consequences, hypotheses, and speculations.
Once introduced, for the first time, this last particular and deductively wild third
class of conjectures, formerly not previously differentiated in the literature, seems to
produce, in association with analogy, the creative reasoning that, without previous
knowledge, analogy, and speculation, seems to be impossible. A good enough
example is the story of how the German chemist August Kekulé discovered the
structure of the benzene molecule after an 1861 fantasy dream of a snake eating its
own tail (the old ouroboros of alchemy), a discovery that later on, and thanks to the
forthcoming theory of the chemical molecular structure, showed its great fertility by
leading to the success of the German industry of colorants, a discovery that seems
to be impossible without the previous knowledge Kekulé held on benzene’s
properties.

It is very difficult to arrive at something new without seeing a neighborhood of
previous knowledge of the subject, and constituted by hypotheses, refutations,
consequences, speculations, and analogies. Continuing Karl Popper’s ideas, if
scientific reasoning always consists in conjectures and refutations, it is also
important to know how they are reached or abandoned; at the end, and at least in the
scientific context of searching, analogy with former knowledge is basic.

This book just pretends to deal with a pragmatic view of common sense rea-
soning shared by both specialized and ordinary people, and in such a form that, at
the end, can admit to being particularized (by adding more suppositions) into
specialized modes of reasoning, such as they are classical and already known,
models for several types of formal reasoning, namely the models for precise
Boolean, quantum orthomodular, and the imprecise De Morgan or Zadeh, each one
living in different rooms of the common house of ordinary reasoning.

At the end of each section and as recommended reading, a list of references
appears. All of them influenced what is in the book, and are only suggestions to the
reader that can help her or him to go deeper concerning the corresponding subjects.
After the final section, a complementary list of books is added; without reading at
least some of them, no good enough perspective on the ground subject of this book
may be grasped.

Ordinary reasoning is neither, in the large, of a formal deductive character, nor is
always done in a previously formalized setting. For its part, natural language is not
deeply studied here in itself but taken, ideally, as it appears to be; apart from the
essential domestication of the meaning of words and statements, only some basic
topics of language leading to building statements with words, such as condition-
ality, connectives, and modifiers, are analyzed and, as much as possible, try to be
mathematically modeled. In the same vein, the new model of the meaning of words
allows us to clarify what a fuzzy set and its membership functions are and can,
eventually, help to shed some light on the debate among the two basic interpre-
tations of probability, the objective and the subjective, and for what concerns, at
least, plain language’s use of “probable”, “possible”, and “uncertain”.
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Even if, further on, the progress neuroscientists are making regarding the
knowledge of thinking can force us to modify the views sustained here, the pre-
sented mathematical model (enclosing them) can be of some help towards a future
and, possibly just partial, undoing what is known as the Gordian knot of artificial
intelligence, that is, the symbolic mastering of commonsense reasoning in view of
its mechanizing through computer algorithms and heuristic methods.

What follows is presented with the aim of trying to describe symbolically,
without presuming too strong algebraic structures, what seems to surround the
naïve expression, “Questioning, Guessing, Telling, and Computing,” a scant but not
totally wrong résumé for the concept of rationality, the old Logos.

This book could even be considered a trial towards a theoretical, but naïve,
approach to rationality that, provided someday were transformed in a new exper-
imental science, a physics of language and reasoning intermingling controlled
experimentation and theory, with each reinforcing the other, could mean a para-
mount success towards a deepest knowledge of Logos.

It should still be added that this is not a book on certainties, but on questions and
doubts. It is not full of technicalities and theorems, but consists in some reflections
that, often supported by mathematical developments can, eventually, lead to new
views of how to study ordinary reasoning and also fuzzy logic. In general, to know
“why” something is what it is, it is better benefiting from previous analysis
on “how” it can be managed; our “something” is ordinary reasoning, and our
“analysis” concerns how it can be represented in a naïve symbolic form able to
reveal some of its characteristics.

No final doctrine is tried to be imparted, and the core of what follows can be seen
rooted in the conceptual troubles that can come from always presuming a strict
mathematical framework, as is remarked in what follows. The agendas of this book
and of mathematical logic, either crisp or fuzzy, are different; actually, at most they
facilitate only a “view from the ground” of ordinary reasoning, and of classical and
fuzzy logics. What is mainly offered is questioning of ordinary reasoning.

Concerning fuzzy logic, more than 50 years after Lotfi A. Zadeh introduced
fuzzy sets, and also more than 20 after he introduced his first and brilliant ideas on
Computing with Words, the moment seems to have arrived of theoretically
rethinking fuzzy sets from their very grounds, plain language and ordinary rea-
soning, in short, looking at it from down to top, but not from top to down; that is,
with a true scientific seriousness, and not only as either a kind of abstract playing,
or as a complex of recipes just devoted to immediate applications, even if both
existing approaches should not be disdained in the measure that they could help to
see, down to top, fuzzy logic and computing with words.
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Part I
Sowing Ideas



Chapter 1
Introduction

It can be said that reasoning introduces some kind of organization in thinking for
directing it to a goal. What is required for a theoretical study of ordinary reasoning
is to establish as simple and natural a framework as possible, in which symbols
represent what corresponds to the setting into which the subject under study is
inscribed. Without “representation” nothing of a scientific type seems to be pos-
sible. Science deserves representation and measuring, and from the very beginning
of the scientific revolution (and even before), symbolic representation seemed to be
a good instrument for acquiring scientific knowledge through measuring.

But symbolic representation and measuring need a mathematical framework, and
not all mathematical structure is adequate to a given subject; nobody will try to
study thermodynamics in, for instance, only the formal framework of a finite
geometry, without mathematical analysis or experimentation.

1.1. Hence finding a suitable, or natural, framework for a subject is of paramount
importance for, at least, not adding laws that cannot be immediately presumed for it.
The relatively natural character of a particular mathematical framework depends on
the kind of problems that are posed, and whose solutions are not only analyzed but
processed. For instance, the framework of a Boolean algebra is a natural one for the
reasoning dealing with precise statements, in which it is supposed that all the
needed information on them is, in principle, available, and all the laws of such
algebras are valid because each precise predicative word specifies a subset (is
represented by it) in the corresponding universe of discourse. Inasmuch as its
complement represents the negation of the word, each precise predicative word
produces a perfect classification of the universe of discourse, and composed precise
statements also produce partitions of such a universe. Boolean algebra is the
undisputed natural framework of representation for computing with precise words;
it facilitates a suitable calculus for mimicking reasoning with them.

Notwithstanding, and because neither the distributive laws, nor the law of perfect
repartition, nor the equivalence between contradiction and incompatibility, are valid
for reasoning on quantum physics phenomena, their statements cannot be

© Springer International Publishing AG 2017
E. Trillas, On the Logos: A Naïve View on Ordinary Reasoning and Fuzzy Logic,
Studies in Fuzziness and Soft Computing 354, DOI 10.1007/978-3-319-56053-3_1

3



represented by sets but by functions in a Hilbert space whose structure is weaker
than that of sets. Hence Boolean algebra ceases to be the natural framework for
such a kind of reasoning, and weaker algebraic structures, such as orthomodular
lattices, were taken for it instead of Boolean algebras. Analogously, Boolean
algebras are not a natural framework for the analysis of the reasoning involving
both precise and imprecise statements, in which the last cannot be specified by sets
but by the membership functions of fuzzy sets. With them, for instance, the
negation is not a “Boolean complement”, and neither the principle of contradiction,
nor that of the excluded-middle, can always be supposed to hold as they do with
sets. No Boolean algebra and no orthomodular lattice can be taken as a natural
framework for it even if, in some special cases, the weaker framework of a De
Morgan algebra can be suitable.

Hence, for the analysis of ordinary reasoning that comprises all particular types
of reasoning, a natural mathematical framework necessarily should be extremely
weak and, in particular, weaker than Boolean and De Morgan algebras, than
orthomodular lattices, and than the weakest standard algebras of fuzzy sets.

It should be pointed out that in the methods for “logically proving”, such as the
first one established in 1934 by Gerhard Gentzen, and called Gentzen’s natural
system, Boolean laws are not explicitly formulated, but implicitly used; these
systems are for ruled deduction, that is, for formal deduction without jumps and
whose conclusions are but “logical consequences”. That is, its set (following from
that of the given premises) satisfies the properties of a compact Tarski operator of
consequences characterizing formal deduction. In ordinary reasoning it cannot be
presumed that statements perfectly classify the universe of discourse; things are
more complex, imprecision is pervasive, and degrees should be considered.
Nevertheless, and for all this, arriving at a “computing” with both precise and
imprecise words requires a calculus rooted in a very general and weak mathematical
framework, able to be compacted in a stronger mathematical structure in some
particular cases, for instance, to a Boolean algebra when the subject is computing
with precise words, or to a De Morgan algebra in some particular cases with
imprecise words.

The mentioned Boolean algebra, De Morgan algebra, orthomodular lattice, and
standard fuzzy algebra frameworks are but models for the corresponding types of
reasoning, and, as such, are just simplifications of the actual reasoning by trying to
take into account those of its characteristics considered to be the basic ones. Of the
four models, only the first can be considered definitive, because it reflects formal
reasoning with precise words well; this formal reasoning is exactly what is done
when doing such kinds of proving reasoning. For a reasoning that can be conducted
with pencil and paper, to speak metaphorically, there is nothing else; the model is
the reasoning and hence the frame is a fully natural one. Nevertheless, in the cases
of De Morgan, orthomodular, and standard fuzzy algebras, the model is still pro-
visory in the sense that there is no general agreement on its full suitability for the
corresponding subjects and, for instance, some logicians prefer to use weaker
structures than orthomodular lattices for the analysis of reasoning on quantum
physics. Note that one thing proves that “this” follows from “that” (the so-called
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context of proof), but that a very different one is to find an unknown “that” to be
proven after knowing the “this” (context of search). In any case, the “that” and the
“this” are, respectively, the reasoning’s conclusion and premise.

A model can be seen as the mockup an architect makes to visualize in three
dimensions how the true building finally will be, or as a map that does not contain
all that is in the mapped land, yet allows finding its places. But, neither the mockup
nor the map is exactly the building or the land; they are just simplified represen-
tations of them. A basic theoretical task consists in finding a model allowing us to,
at least, present the essential characteristics of what is being modeled, and allowing
us to foresee more things; a model should arise from some knowledge of the
corresponding subject, and a good one also allows finding novelties.

In the case of ordinary reasoning, models should arise from the currently scarce
knowledge of it. Which is such knowledge, and how can it be improved and
extended? This question could be seen similarly to how visual knowledge of the
heavens in Copernicus’ time passed to that after the telescope and Galileo, to
Newton–Leibniz’s invention of differential calculus and Newton’s mathematical
theory of gravitation, and, perhaps finally, to Einstein’s mathematical model of
general relativity, which today nobody can predict whether it actually models the
full macrophysical reality, even if experimentation seems continuously to confirm
its validity.

Each time, frontiers for new theories and for new experiments (usually also
helped by new technology) either confirming or falsifying the former knowledge
with their measurements were open. This is the form in which science typically
advances through a continuous interlinking of mathematical models, technology,
and experimentation, but without stating that things can be, definitively and exactly,
identified with the model. Models are engines driving the only safe type of
knowledge of the reality, the always uncertain scientific one; the rest is but meta-
physics just based on pure abstract thinking in which the meaning of the employed
words is taken as something universal and without considering their possible
measurability. It is a kind of elemental reasoning coming from the old times where
primitive metaphors were taken as reality, but not as ways for just reflecting on
them, and that should be embodied and clarified in a theory of ordinary reasoning; it
is a type of reasoning by analogy that, fueled by ordinary deduction, is able to
create the brain’s images and is very useful for producing emotion, exciting sen-
timents, and provoking ordered speculations. If it does not properly serve to
describe reality deeply, it has, nevertheless, the power of directing the intellect
towards creativity, the “last mystery” in the words of the writer, Stephan Zweig.
Many of our current concepts have their roots in metaphor, and the metaphysic
mode of reasoning is not at all contemptible.

1.2. To construct a theory on the meaning words show in plain language, let’s say
their linguistic meaning, it should be taken into account that meaning is not uni-
versally associated with a word in itself, but that words are usually
context-dependent and purpose-driven. For instance, in the context of the positive
integer numbers, “prime” has a precise meaning given by an “if and only if”
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definition, with a purpose restricted to the field of arithmetic, and related to
expressing all natural numbers by the product of their prime divisors; but in a context
of people the meaning of “odd” cannot be defined in such a precise form, it can only
be described as a synonym of rare-person and perhaps used with some denigrating,
or hilarious, purpose. It is not with the same meaning that it is said, “Seven is odd”,
that “He is odd”. Nevertheless, in the setting of the positive integer numbers, “odd”
has a precise meaning given by an if and only if definition, and, without a previous
definition of what a “very odd number” can consist in, it is not possible to state and
understand, “This number is very odd”, although it is not necessary to add anything
to the use of odd with either people or houses, and so on, to recognize immediately
what the statement, “Such person/house/… is a very odd one”, describes in a given
context.

A look at a dictionary shows that it contains words mainly belonging to three
categories: those whose use is imprecise in a given context and precise in another,
those whose use is always precise, and those whose use is always imprecise, the
second category of which contains a relatively small number of words. The
meaning of words is always contextual or situational; precise words abruptly
change their meaning when the modifier “very” affects them, and the imprecise
ones are those that, once their meaning is captured and, if affected by “very”, the
meaning of the new expression is immediately captured. Without taking into
account the purpose for its use, precise words have a rigid meaning, but that of the
imprecise is flexible and how they are recognized after being affected by the lin-
guistic modifier “very” seems to indicate that, at least for imprecise words, there are
some qualitative variations of their use, and going from less to more, that the
meaning of imprecise words is not static but flows in the universe of discourse.

As Ludwig Wittgenstein wrote, “The meaning of a word is its use in language”,
and, for instance, “odd” is used in the language of arithmetic by using it according
to the rule, “n is odd” , “the rest of dividing n by 2 is 1”, but “big” is used in the
interval [0, 10] according to the rules, (1) x is “less big than” y , x � y; (2) 10 is
maximal for the relation “less big than”; and (3) 0 is minimal for such a relation.
These rules allow several interpretations, such as the rigid one “x is big”
y , 7 � x, and its flexibility is additionally shown by the fact that if x can be
qualified as big, there is e > 0 such that all numbers between x and x + e can also be
qualified as big; if “7 is big”, then also “7 + 0.0001 is big”; with it, any rigid use of
“big” should be avoided. Often, the use of words can be described by instances of
their application, or by rules (not always precise ones) describing how they can be
used. Note that 5 is an odd number, but that adding unity to it (the smaller positive
integer) what is obtained, 5 + 1 = 6, is not an odd number; odd is not flexible
among the positive integers.

Without capturing the linguistic relationship “less than”, or its inverse “more
than”, it is unknown how the word’s application flows along the universe of dis-
course, how its application to the elements in the universe varies, or how it is
imprecisely used. Without knowing the prototypes (or maximal elements) the
universe contains, and the antiprototypes (or minimal elements), provided they were
to exist, it seems difficult to have instances of the total verification, or total
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nonverification, of the property to the elements the word names, and there is a lack
of information on the word’s use. Maximal refers to the nonexistence of elements
showing more what the word carries, and minimal to the nonexistence of elements
showing it less; without capturing the variations from less to more, prototypes, and
antiprototypes, the meaning of a word is not well captured. For instance, under-
standing the use of “big” in [0, 10] as given by the set [7, 10], those elements in
[0, 7) are antiprototypes of big, and those in [7, 10] are prototypes; the word’s use is
precise, and there are no more than prototypes and antiprototypes of it.
Nevertheless, as shown, the word big has many imprecise uses in [0, 10].

Meaning is always related to a given universe of discourse X; hence to study the
linguistic meaning of a word P, it is necessary to consider both the pair (X, P), and
that P names a “property” that is recognizable, at least empirically, for the elements
x of X; P is a predicative word in X. The word P says something about the elements
in X that is translated by the elemental statements “x is P”, resuming the information
carried by P on X, with which the meaning of P flows along X, and eventually
showing some vortices of concentration (the prototypes) and some of dissolution
(the antiprototypes).

Once this can be formally established, the pair constituted by X and the rela-
tionship “less P than”, allows us to define what a measure for the meaning is, as
shown in what follows. When the use of P in X is precise, or rigid, there are only
prototypes and antiprototypes, and the relationship “less P than” collapses with that
“equally P than”.
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Chapter 2
Meaning as a Quantity

Considering the meaning of words is necessary for understanding both our own
reasoning and that of others; with meaningless words people’s plain language and
ordinary reasoning would be for nothing, and communication impossible. Hence, a
previous symbolic analysis of the meaning of words is important for better com-
prehending what ordinary reasoning is. In addition, meaning is a twofold concept: it
has two sides, the qualitative and the quantitative, reflecting the situational use of
words, namely that its use is context dependent and purpose driven. Often, and from
a scientific point of view, only considering meaning from its qualitative side is
insufficient; it is the quantitative that facilitates the degrees up to which words
actually mean something in a given context. Meaning should be somehow
measured.

2.1. Given a universe X in which a predicative word P is acting through the
elemental statements “x is P”, let’s symbolically denote by <P the previously
captured relationship “less P than”,

x\P y , x is lessP than y;

translating the either empirically, or theoretically, recognized fact that x verifies less
than y the property p named P. Then, the graph (X, <P) represents how
P semantically organizes the universe of discourse X, and denotes a primary
qualitative meaning of P in X. The inverse relationship “more P than” x is more
P than y, coincides with y <P x, and when it simultaneously holds x <P y and y <P x,
is that x is “equally P than” y, symbolically written x =P y.

Note that, at the end, people’s (intelligent) talking and telling tries to introduce
some organization, or ordering, between the concepts/words under consideration,
and for trying to answer the questions leading to telling something; in this respect, it
seems natural to consider that the symbolic relation <P producing the qualitative
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meaning is the way in which P semantically acts on X, introducing in it some
organization. Usually, words are but names of concepts mastered though the
meaning of the words.

It should be pointed out that as the relation <P is, when P is a word managed in
plain language, empirically recognized, it implies some subjectivism that is, nev-
ertheless, shared with others; <P is here presented as just a kind of primitive idea, as
if it were “point” and “line” in the old Euclidean Elements.

It should be pointed out that the relation <P is not, in general, a linear or
total relation; that is, there can exist pairs of elements x and y such that it is neither
x <P y, nor y <P x; in this case, x and y are not meaning-comparable and are denoted
by x NCP y. For instance, in the toy example of the word P = big in X = [0, 10], it
is x <big y if and only if x � y, in the linear order � of the real line; that
is, <P = � is a total relation under which all the elements of the universe [0, 10]
are big-comparable; hence x is “more” big than y whenever is y � x, and x is
“equally big than” y whenever both numbers coincide, x = y. The qualitative
meaning of “big” in [0, 10] is given by the graph ([0, 10], � ), in which there is the
unique maximal 10 and the unique minimal 0; obviously, in the real interval [0, 10],
10 is always a prototype of big, and 0 is always an antiprototype. In the same
interval, calling “medium” the property of being around 5, the situation is different
provided, for instance, the prototypes were those x in [4.9, 5.1], the antiprototypes
were those x in [0, 3] U [7, 10], and

x\medium y , x� y� 4:9; or 5:1� y� x;

in which case there are elements, such as 4 and 6, that would not be comparable, but
isolated. Note that provided the prototypes were the elements in the open interval
(3, 7), and the antiprototypes those in [0, 3] U [7, 10]; then the use of “medium”
would be precise, and given by the necessary and sufficient condition (definition),

‘x is medium’ if and only if 3\x\7:

Of the symbolic relation <P, it can be easily accepted that it is always reflexive,
such that x <P x for all x in X, but not, for instance, that it is a partial order;
symmetry, antisymmetry, transitivity, and so on cannot always be supposed as
properties <P holds.

Once a graph (X, <P) is recognized as a qualitative meaning of P in X, the
mappings mP: X ! [0, 1], verifying the axioms:

(1) x\P y ) mP xð Þ�mP yð Þ
(2) x is maximal in the graph ) mP xð Þ ¼ 1
(3) y is minimal in the graph ) mP yð Þ ¼ 0
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can be defined, and called measures of the meaning of P. Note that the interval of
values [0, 1] can be changed by any closed interval of the real line, and taking its
extremes instead of, respectively, 0 and 1. As in the case of probabilities, these three
axioms do not allow us to specify a unique measure, but more information on the
measure’s contextual characteristics is necessary for it.

For instance, in the former case of “big” with qualitative meaning given by
([0, 10], � ), provided it were known that the measure should be linear, mbig (x) =
ax + b, from (2) and (3), it follows the single measure mbig (x) = x/10, also verifying
(1) because it is a nondecreasing function; but provided it were contextually known
that the measure should be quadratic, mbig (x) = ax2 + bx + c, because then it should
be c = 0, 100a + 10b = 1, and 2ax + b � 0 for all x in [0, 10], many quadratic
measures would be possible, for instance, x2/100, x2 + 0.99x, − 2x2 + 20.1x, and the
like.

In any case, a full use of P in X associated with the relationship “less P than,” is
given by the quantities (X, <P, mP); each time one of these quantities is specified, a
full meaning is scientifically designated a quantity, or specified, for P in X. It should
be noted that all measures preserve the relationship “equally P than”:

x¼P y , x\P y and y\P x ) mP xð Þ�mP yð Þ andmP yð Þ�mP xð Þ; ormP xð Þ
¼ mP yð Þ:

In this form, each meaning P can have in X can be seen as a quantity.
What about precise words? Because a precise word P specifies, by definition,

a subset P in the universe of discourse, all elements in P are prototypes and it is
x =P y, for each pair x, y of them, and those in Pc are antiprototypes with each
pair also being equally not P; hence, the first are maximal and the second minimal.
The universe is partitioned in the maximal and the minimal, each class having
equal measure for all its elements. Consequently, there is just a single measure
specified by

mP xð Þ ¼ 1 if x is inP; andmP xð Þ ¼ 0 if x is inPc;

which is just the characteristic function of P. The reciprocal is obvious, and then
mP
−1 (1) = P; thus, precise words P are specified by the single graph (X, =P, mP),

with the measure only taking its values in the subset {0, 1} of the interval [0, 1].
Note that it can be cases of words without prototypes or antiprototypes, also

partitioning the universe in several subsets of equally P elements, but with measures
that, constant in each of these parts, have values not 0 or 1, but only values in the
open interval (0, 1); of these words it could be said that their use, or meaning, is
pseudo-precise in X. Changing the measure m by m/Sup m, provided Sup m = Max
m < 1, at least an element with measure one would appear.
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2.2. Once a measure mP is specified, it defines in X a new, and linear, relation � m,

x� my , mP xð Þ�mP yð Þ;

that is larger than the relation <P, because

x\P y ) mP xð Þ�mP yð Þ , x� my:

That is, <P � � m, and, for coinciding, <P should be linear; nevertheless, in
general, both relations are not coincidental, and the second being larger than the
first gives a “larger and linear new meaning” (X, � m, mP) that, reached after mP is
known, can be called a working meaning of P in X; noncomparable elements
under <P are always comparable under � m.

It can be said that measuring enlarges meaning by linearizing the qualitative
meaning <P up to � m Once a working meaning substitutes the qualitative mean-
ing, new working prototypes can appear, and working antiprototypes, those x in X,
respectively verifying mP (x) = 1 and mP (x) = 0, that can be more than the original
prototypes and antiprototypes. This deserves some comments.

The first comment refers to how a fuzzy set and its several membership functions
can be understood. Up to now it is not well known what a fuzzy set in X with
linguistic label P actually is, and it is usually confused with just one of their
membership functions; but because, unless the linguistic label’s use is precise in the
universe, there is not a single membership function characterizing the fuzzy set,
such identification is actually a one-to-many correspondence. It is usual to consider
that fuzzy sets are represented by the functions in [0, 1]X, something only useful for
purely mathematical purposes and once a membership function is specified or,
better, designed. It is not the same with sets that can be quietly identified with the
functions in {0, 1}X thanks to the unicity of their measure, or characteristic func-
tion. The concept of a fuzzy set is not only a matter of degree, as its originator
Lotfi A. Zadeh likes to say, but its membership functions are a matter of careful
design. To capture what is actually a fuzzy set is a question that should be initially
posed in the setting of plain language.

In the first place, such a question refers to the empirical fact that predicative
words “collectivize” in the universe of discourse, that they generate “linguistic
collectives” well anchored in plain language. For instance, in the universe of
London’s inhabitants, the word “young” generates the linguistic collective of
“young Londoners”; in the universe of the real numbers the word “big” creates the
linguistic collective of “big numbers”; in a universe of buildings the word “high”
creates the linguistic collective of “high buildings”, and so on. Obviously, linguistic
collectives are well understood by the speakers, but are kinds of gaseous or cloudy
entities for which no criteria of individuation are known, and, inasmuch as, fol-
lowing W.V.O. Quine, “There is no entity without identity”, linguistic collectives
should be approached through ways of which, right now, the one only at hand
comes from the quantities specifying the meaning of the word at each universe of
discourse.
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It could be said that the linguistic collective P generates in X is in the qualitative
state (X, <P), and that to each qualitative state it corresponds to being in several
quantitative states each given by a measure mP. Each full meaning given by a
quantity (X, <P, mP) shows both a qualitative and a quantitative state of the lin-
guistic collective; it is a state of the collective. States reflect the available infor-
mation on the qualitative and the quantitative use of P in X.

It is a view reflecting the several situations in which the collective can be seen,
and under it, a fuzzy set in X is nothing else than the linguistic collective generated
by its linguistic label. It just consists in renaming the collective of P in X as the
fuzzy set labeled P. In the case where the linguistic label P is precise in X, the
collective “vitrifies” in the set specified by P in X; the collective has just the
qualitative state (X, =P), and just the quantitative state given by its characteristic
function mP giving the vitrified, or crisp, quantitative state mP

−1(1). Precisely used
linguistic labels are in a single state.

When the linguistic label is imprecisely used in X, the collective or fuzzy set will
have as many qualitative states as qualitative meanings (X, <P) can be recognized,
and each measure for them is nothing else than a membership function for the fuzzy
set labeled P. Note, for instance, that there is no difference between the former
measures mbig and the membership functions that can be attributed to the fuzzy set
in [0, 10] labeled “big”.

Conceptualizing a fuzzy set as just an abstract entity, or concept, existing in
language, helps to refine Zadeh’s intuitive view that each membership function is
an extensional meaning of the corresponding linguistic label.

In the imprecise case, the designer of a membership function of a fuzzy set in
X with linguistic label P should proceed by taking into account all the information
available to her or him on the use of P in X that is, usually, incomplete, sometimes
not containing all the relations <P, and to which often the designer still adds some
reasonable hypotheses on the shape of the membership function that can be suitable
for the current problem. For instance, and in the toy example of the fuzzy set in
[0, 10] with linguistic label “big”, the designer could consider that, with her or his
current scarce information, the best that can be done is to take the simple and
above-mentioned linear measure x/10, or if the designer can suppose it should be
quadratic, just take its square (x/10)2 = x2/100. In short, the designer is often limited
to consider some (possibly scarce) information of how P behaves in X, and some
characteristics of the current problem for which the design is done. For instance, by
estimating if the measure of “5 is big” should be 0.5, clearly less than 0.5, or clearly
bigger than 0.5, and so on.

Hence in the praxis of fuzzy logic it cannot always be supposed that a mem-
bership function is actually a measure but, in the best case, that the membership
function is a universal approximation of some measure; that is, a designed mem-
bership function lP could be seen as a good enough one provided some measure mP

exists such that, for instance, it would verify
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mP xð Þ � lP xð Þj j � e; for all e[ 0; and all x;

or, if it is possible, that minimizes the function

Sup jmP xð Þ � lP xð Þj:

Anyway, and in each case, this requires previously counting with a measure mP

that makes the membership function lP unnecessary. Provided it were proven that
such a criterion of approximation actually exists, perhaps a nice existential theorem
for characterizing good membership functions could be obtained and become useful
for the processes of designing them.

In short, and in general, the designed membership functions only can be seen as
potential approximations to measures, with which only a working meaning � l is
often available and, being a linear relation (a partial order indeed), cannot always
coincide with the qualitative meaning. In praxis, the modeling by fuzzy sets is just
an uncertain approximation to the meaning of their linguistic labels, and true
measures are but “ideal” membership functions such as the uniform probability 1/6
reflects an “ideal die” in probability theory; for this reason, membership functions
should be carefully designed on the basis of the best information available on the
behavior of P in X, and with the best possible reasonable hypotheses on their shape
coherently with the requisites of the current problem.

It should be pointed out that, in plain language and ordinary reasoning, it is
sometimes difficult and even unnecessary, to attribute numbers for measuring the
meaning; for instance, there are no rare expressions such as “It is highly possible
that John is rich,” “The degree up to which Jane is wise is up to the middle,” or
“Susan is extremely intelligent.” Hence, in praxis it could be suitable to substitute
the interval [0, 1] in which the measure’s values range by sets such as the subin-
tervals in [0, 1] or the fuzzy numbers in [0, 1] or even a set of linguistic labels. With
them, the meaning of the former examples can be measured by, respectively, a
fuzzy number lhigh, the interval (0.7, 1], and the word “extremely”. Because fuzzy
numbers and intervals are not totally ordered, these kinds of values can still present
the advantage, when <P is not linear, of having more possibilities for the coinci-
dence between the qualitative and the working meanings. Anyway, the set of such
values should be endowed with some algebraic ordering, necessary for defining a
measure, and contextually coming from their uses.

In science complex numbers are sometimes taken to measure some variables
and, in the same vein, instead of the unit real interval [0, 1], the complex unit
interval {a + ib; a, b in [0, 1]} can be taken by submitting the measure to verify the
three former axioms but with its values in the complex unit interval, endowed with
the natural (partial) order of complex numbers:

aþ bi � � cþ di , a� c& b� d;

with maximum and minimum, respectively, 1 + i, and 0 + 0i = 0, giving a non-
linear working relation � m = � � for all measures m; now the working meaning is

14 2 Meaning as a Quantity



not a total or linear relation, but a partial ordering. Because the complex unit
interval can be seen as isomorphic with the set of closed subintervals of [0, 1],
taking one or another as the range for the measures does not matter. Once accepted
as a natural way of ordering such complex numbers, intervals, fuzzy numbers,
words, and the like, as well as which are their respective maximum and minimum, it
is necessary to take the suitability for the considered problem of the calculus with
them into account, something that should be done at each concrete problem for
having, provided it were the case, a computation with the corresponding words, or
statements.

2.3. Let’s apply what has been said to the (debatable) concept of truth, deriving
from the word “true” applied to statements; it is usual to identify expressions such
as “What you say is true” and “You are saying the truth,” but here “true” is
understood as a predicative word, and not as naming the concept “truth” which can
be seen as its mother-predicate. Concepts are but abstractions generated after using
a word as its mother-predicate to either physical or virtual objects, and usually once
such a word migrated between several universes and suffered some more or less
slight modifications in its respective meanings. It is not “tall” that comes from the
concept of “tallness”, but this (abstract) concept was generated after applying “tall”
to several collections of objects including trees, mountains, people, and so on, and
passing from one to another by analogy; each time, “tall” refers to some particular
objects, but “tallness” refers to all of them. In the same vein, “true” refers to each
statement, but “truth” refers to all of them.

Truth is a concept that, understood as an absolute and universal one, has been
conducive to aberrations and, indeed in both its past and present human history,
carries terrifying consequences coming from such an understanding of “Truth” with
a capital letter.

It should be pointed out that the qualitative meaning of a word applied to the
limiting case of a universe of discourse just consisting in a singleton {x}, is reduced
by the reflexive property to the minimum relation <P = {(x, x)}, of which nothing
can follow, and, first of all, it suggests some comments referring to when it can be
said that the meaning of a word is “metaphysical”, that a word is meaningless in
some universe of discourse and hence cannot generate a concept; that, out of the
singleton, it does not collectivize.

Once a qualitative meaning (X, <P) is captured, it can be said that P is
pseudo-measurable in X, because it is what allows defining measures for P and
there exists at least the one defined by assigning 1 to the prototypes, 0 to the
antiprototypes (provided both exist), and a fixed and common value to the other
elements in X, for instance, 0.5, even if these measures could have nothing to do
with the context in which the word is used and consequently do not reflect anything
but a lot of ignorance on P in X. When at least a measure related to the context can
be specified, it can be said that P is measurable in X, or, perhaps better, is effectively
measurable; for instance, “big” is effectively measurable in [0, 10]. When no
relation <P can be captured, it can be said that the word is meaningless in X, that its
use is currently metaphysical because it is not even pseudo-measurable, and
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measurability is a main characteristic science requires for the predicates it manages.
It is worth to remember Lord Kelvin’s shortened statement, “If you cannot measure
it, it is not Science”.

That P is meaningless in X does not imply that it should also be meaningless in
all possible universes of discourse; for instance, “big” is measurable with real
numbers, but meaningless if applied to dreams, because it seems actually impos-
sible to recognize previously when a dream is “less big than” another one.
Nevertheless, what cannot be inferred is that a nonmeasurable “big” can never be
useful for reaching some new idea; stating “a dream is big” could serve as a useful
metaphor, or analogy, able to induce the study of something related to dreams; P is
meaningless in X does not imply that P cannot excite someone towards a further
searching, but psychological matters are beyond what we are trying to analyze here,
even if it is manifest that metaphorical thinking is important for conducting creative
reasoning; provided, of course, it were to be produced jointly with having some
knowledge of the corresponding subject as pointed out before with the Kekulé
example. It should be noted that, although for scientific purposes measurability is
essential, neither all that is relevant for ordinary reasoning is measurable, nor what
is measurable always important for ordinary reasoning.

What about the meaning of the word T = true in a set X [P] whose elements are
the elemental statements x is P, for x in X, and after knowing that P is measurable in
the universe X? The first to be captured is the relationship “less true than”:

x isP is less true than y isP , x isP\T y isP;

and the second is recognizing which are the maximal and minimal statements in the
graph (X [P], <T), provided they were to exist, that is, specifying a qualitative
primary meaning of T in X [P]. Note that, instead of X and P, it could be considered,
for instance, the union universe X U Y, and the two words {P, Q}, to capture

x isP is less true than y isQ;

for x in X and y in Y, with P acting in X and Q in Y with respective qualitative
meanings (X, <P), and (Y, <Q); but, for simplicity, and even if several words could
be taken into account, only one universe and a single word are considered right
now.

True = T names a property of the elements in X [P] referring to the actual
verification of the property named P for the elements in X, the reality of the
statement “x is P”. That is, the character of “true”, a statement “x is P” can show, is
directly related to the verification by x of the property named by P (as more P is x,
more true is x is P), and that, hence, some relation between the qualitative
meanings <P � X � X, and <T � X [P] � X [P], should exist. It is supposed for it
that “If x <P y, then x is P <T y is P”. It seems, consequently, that for specifying a
measure of T it should be linked with one of P, and the question is how it can be
done.
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Inasmuch as it is mP: X ! [0, 1] and mT: X [P] ! [0, 1], let it be t: [0, 1] !
[0, 1] a nondecreasing mapping such that t (0) = 0, and t (1) = 1, namely an order
morphism of the ordered unit interval ([0, 1], � ), under which conditions can it be
mT (x is P) = (t o mP) (x) a measure of T?

Because x <P y implies x is P <T y is P, it is

mP xð Þ�mP yð Þ; and t mP xð Þð Þ� t mP yð Þð Þ; ormT x isPð Þ�mT y isPð Þ;

that is, the first axiom of a measure for T is verified. For what concerns the other
two axioms relative to maximal and minimal elements, it is immediate that if x
is maximal (resp., minimal) for <P it follows mT (x is P) = t (1) = 1 (resp., mT

(y is P) = t (0) = 0), but the question seems to be opened when “x is P” is maximal,
or “y is P” is minimal for <T without necessarily implying that x or y are,
respectively, maximal and minimal for <P. Nevertheless, by supposing that T is
“coherent” with P, that is,

x is maximal (resp., minimal) for <P if and only if x is P is maximal (minimal)
for <T, the problem is solved. Because coherence is not a bizarre condition, under it,
t o mP is a measure of T.

It is classically and usually said that mT (x is P) is a “degree of truth” of x is P,
thus when it is mT = t o mP, the degrees of truth are obtained through a
“truth-function” t. Then it should be noticed that it is mT (x is P) = mP (x) for all x in
X, provided t = id[0, 1], a case in which the degree of truth of “x is P” just coincides
with that in which x is P, as it is classically understood. Were, for instance,
t (x) = x2, it would be mT (x is P) = mP (x)

2, and then, if x is P with degree 0.7, “x is
P is true” is with degree 0.49; if it were t (x) = x1/2, then x is P would be true with
degree √0.7 = 0. 836. Of course, the truth-function t should be chosen in each case
according to the information available on the characteristics of the current situation,
and by searching if, under them, the degrees of T should be lower or bigger than
those of P, if t is, respectively, contractive (t (x) � x), or expansive (x � t (x)) for
the x in X.

Summing up, provided T were coherent with P, truth-functions t would allow us
to obtain measures of T from those of P, and whenever t is one to one and onto
(bijective, an order automorphism of the unit interval) there are no more statements
with measure one or zero for T than, respectively, the prototypes and the antipro-
totypes of P; nevertheless, a nonbijective truth-function, such as

t xð Þ ¼ 0 for x in 0; 0:4½ �;
t xð Þ ¼ 1 for x in 0; 6; 1½ �; and
t xð Þ ¼ 5x� 2 for x in 0:4; 0:6½ �;

shows more statements with one or zero degrees of true than the prototypes and the
antiprototypes of P.
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2.4. Plain languages are not the creation of a single person, but are slowly gen-
erated by linguistic interactions between groups of people; plain languages are
socially constructed over the course of time, and words acquire meaning along such
interactions. Without sharing common meanings, people cannot actually understand
each other, and communicating is very difficult if not impossible; linguistic
meaning is a social construction that, to some extent, deserves a symbolical analysis
to see how people can arrive at sharing a common meaning for words.

For such a goal, suppose that a person p1 manages a word P in X under the
qualitative meaning given by the graph (X, <P

1), and that this person utters to
another p2 elemental statements “x is P”. Person p2 will understand what p1 is
saying just provided she either captures the relation <P

1, or, at least a nonempty part
of it. That is, she manages P with a qualitative meaning (X, <P

2) such that the
intersection of the respective relations <P

1 and <P
2 is not empty; on the contrary, if

such an intersection is empty, p2 cannot understand what p1 tells her. To understand
what p1 says, p2 can accept as the meaning of P, either all <P

1, or a part of it, that
will be denoted by <P

2 and become a common meaning of P for both p1 and p2.
Provided a third person p3 enters later on in the conversation, the situation would be
repeated, and a common meaning by the three people is reached by either the
intersection of the three corresponding meanings, or by accepting a part of that
meaning previously accepted by the first two, and so on.

Of course, when time passes, P can migrate from X to another universe Y, and so
on; with it, and at the end, one or several meanings can result associated with the
word P. Of course, it can happen that p2 has no meaning for P, or that P is an
unknown word to her, and, then, either the communication between p1 and p2 is
impossible, or p1 explains to p2 the meaning of P by, for instance, practical
exemplification, such as when exemplifying “the door is closed”, by opening the
door and saying “open”, and closing the door and saying “closed” through a
practical, or visual, description of the meaning of P.

Concerning how a quantity reflecting a full meaning of P in X can finally appear,
a way for it could consist in aggregating the several measures assigned by each
successive person in such a way that the aggregation preserves the verification of
the three axioms a measure should satisfy. For instance, given the measures each of
n people (mP

k, 1 � k � n) assigns to its respective qualitative meaning (<P
k), the

function

mP xð Þ ¼ min mP
1 xð Þ; . . .;mP

n xð Þ� �
;
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is a measure for the not empty intersection <P of all relations <P
k because:

(1) x\Py , x\1Py &… & x\P
ny ) mP

1 xð Þ�mP
1 yð Þ &… & mP

n xð Þ�mP
n yð Þ

)minðmP
1 xð Þ; . . .;mP

n xð ÞÞ�min mP
1 yð Þ; . . .;mP

n yð Þð Þ, mP xð Þ�mP yð Þ:
(2) If x is a maximal for <P, then it should be a maximal for all the <P

k. Hence,
mP (x) = min (1, …, 1) = 1.

(3) If x is minimal for <P, then it should be minimal for at least one <P
k, and

because between the brackets of the min at least one zero will appear, it is mP

(x) = 0.

Of course, min is not the only possible function allowing that proof; any n-place
function being nondecreasing at each place, taking the value one for the argument
(1, …, 1), and the value zero for those arguments containing at least one zero,
permits repeating the proof. In sum, there are many ways for reaching a common
full meaning, and some of them can be symbolically represented and linguistically
interpreted.

It should be pointed out that what has been developed does not pretend to be the
only way in which all common meaning is reached; it simply tries to show that
there are ways for it that are describable through a symbolic formalism. Anyway,
the full theoretical problem still remains an open one in which the role analogy
plays in it should be considered, and for whose solution the concourse of some
evidence not only obtainable by means of clever observation seems necessary, but
especially by well-designed controlled processes of experimentation on how
meaning evolves in plain language. Possibly such types of problems require a new
experimental methodology for studying language, supported by what computer
technology can facilitate today for reaching it.

The importance words’ migration can have was mentioned before, therefore let’s
add something in this respect; at the end, everything that has been reported in a
symbolic form has at its back Ludwig Wittgenstein’s ideas on meaning as use,
family resemblances, and language games, presented in his (posthumous) second
book, Philosophical Investigations.

In this respect, an example could be in order: the word “big” applied to numbers
can be seen as a migration of “tall” applied to people after the centimeter to state
numerical height is introduced. Indeed, if John’s height is 190 cm, because 190 is a
big number between those in [0, 200], interpreting “John is tall” as the linguistic
evaluation of John’s height as “big”, is seen the migration between people and
numbers of “tall” into “big”. In an analogous way, “small” can be imagined as a
migration of “short” from people to numbers, and further said that these pairs of
words show a kind of linguistic family resemblance going from linguistically
playing with people to playing with numbers. Perhaps this comment could help to
find a (mathematical) way to analyze a linguistic phenomenon deeply under which
people often learn how to understand and manage words, how to play with them in
plain language.

Some naïve comments on syntax and semantics aspects are still in order, and
once clearly said that if both aspects are basic for managing a plain language well,
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the meaning of statements not syntactically well constructed is often well under-
stood, as happens, for instance, with children’s speech. But, without capturing the
meaning of statements, its semantics, there is no way of understanding them; for
instance, sometimes children signalize something of what they refer to and thus
what they are trying to say is recognized. For comprehending a language, semantics
is essential, but syntax is often, although important, an accessory; for instance, in a
talk on pigeons it does not matter very much if someone ignores how “pigeon” is
written, but what is essential is not confusing a pigeon with an eagle, or a raven, or
a vulture, and so on, and less again with something not being a flying bird, that is,
recognizing the meaning of “pigeon” in the universe of “flying birds”.

In logic, complex statements are supposed to be constituted of elemental
statements “x is P”, “y is Q”, and the like, joined by connectives such as “and”,
“or”, “not”, and, sometimes in the conditional form “if/then”, or affected by the
only quantifiers “exists” and “all”. But in the case of plain language, and in
addition, those statements are often affected by linguistic modifiers such as “they
are ‘very’” and “more or less”, and linguistic quantifiers, such as “many”, or
“several”, or “few”, as it is done with fuzzy sets. Then, and both in classical logic
and in fuzzy logic, the meaning of a complex statement is supposed to be captured
from the meaning of its components, after knowing which are the meanings of
conjunction, disjunction, negation, conditionals, and so on, and presuming they are
previously and contextually specified by either characteristic or membership
functions. Nevertheless, in ordinary situations it is often the case of first capturing
the meaning of a full complex statement, and second those of its components thanks
to the contextual meaning the full statement facilitates for them.

Anyway, and for a theoretical study, the, let’s say classical, way of construc-
tively studying the meaning of complex statements through its parts cannot be
avoided, hence, instead of a (currently unknown) synthetic and systematic proce-
dure for directly analyzing the meaning of complex statements, it seems suitable,
for a first symbolic study, to attempt one of analytic type in which the meaning of
the components already takes into account the context in which they are inscribed.
The next chapters are devoted to such a task, and, as always in this book, without
presupposing laws that can reduce the analysis to be enclosed in a restricted, and up
to some extent artificial, mathematical framework.

2.5. Finally, it should be pointed out why here it is preferable to say “ordinary, or
plain language”, instead of the usual expression “natural language”, a preference
just coming from the adjective “natural” used to show its opposite character to the
axiomatic and “artificial languages” typical of formal logic and basically used to
expose proofs clearly being sure that they contain no jumps. Because natural/plain
language, during the process of representing, has to adapt itself to the pressures of
its own capabilities and the corresponding representing goals, it never finishes
being as “natural” as it had, presumably, begun; and this is because at the beginning
it was still not committed to a specific work. There is no way of faithfully repre-
senting language and reasoning except with plain language; there can be thinking
without language, but not human reasoning without language.
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In addition, each plain language is permeated by traits coming from the cultural
environment of their speakers; even English, today the almost universally common
language in science, at least, is currently being influenced by the ways of speaking
and writing it by people whose native language is not English, or whose native
country is not an English-speaking one. In sum, plain language is not properly
“natural” in the same sense that the brain or the Amazon forest is natural, but a
result of many cultural, historical, geographical, and intellectual influences.
Ordinary people not having attended school and not writing or reading their own
plain language well, still speak it well enough and communicate easily with people
educated in universities; the first perhaps don’t manage it perfectly from the point of
view of syntax, but well enough from that of semantics for conducting the second to
capture the meaning of what they express.

It should be remarked that the same ownership title of Spanish belongs to a
farmer in Mexico, or a Chilean living in Paris, the President of Argentina, the King
of Spain, or a writer who won the Nobel Prize by his work originally written and
published in Spanish. Plain languages are a shared common property of, at least, all
its native speakers, and are among the most complex dynamical systems today
science is faced with; new perspectives are needed for its scientific domestication.

In the end, mechanizing a plain language towards undoing the Gordian knot of
artificial intelligence cannot be done without knowing its use, and once represented
in a form preserving its flexibility. A form not previously constrained by logical laws
not necessarily holding in plain language, as is the case with the commutative law of
conjunction (p& q = q& p), almost always accepted in logic, but that, because time
often intervenes in plain language, is a law that cannot be universally supposed, and
as shown, for instance, by “She enters the room and starts crying”, and ‘She starts
crying and enters the room”, two statements depicting different situations, and whose
identification can consequently lead, later on, to committing some mistakes.

In the same vein is the identification of conditional statements “If p, then q”
(p ! q), with the affirmative statements “not p, or q” (p′ + q), regardless of, for
instance, whether the antecedent’s negation (not p) can be suitably described and
rightly represented after capturing its meaning in the corresponding setting, or if the
underlying formal framework allows us to follow q from p and p ! q (modus
ponens, MP), as happens in the frame of Boolean algebras, but neither with p
q = p′ + q, in those of De Morgan algebras and ortholattices, nor generally in
those of the standard algebras of fuzzy sets, where the inequality p 	 (p′ + q) � q,
formally representing the rule of modus ponens, does not hold for all the pairs p, q,
and all representations of “and” (	), ‘or’ (+), “not” (′), and “it follows” (� ).

For instance, if such inequality is considered in a setting endowed with a De
Morgan algebra framework, by taking any element p, and q = 0, it follows that p 	
(p′ + 0) � 0 , p 	 p′ = 0; that is, p is one of the Boolean elements in the De
Morgan algebra and, hence, the inequality does not hold for any pair p, q. Of
course, in a setting endowed with a Boolean algebra’s structure, and because both
the distributive and the noncontradiction laws hold in it, it follows that p 	 p′ + p 	
q = 0 + p 	 q = p 	 q � q, and the MP-inequality p 	 (p′ +q) = p 	 q � q, holds for
all pairs p, q.
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In the case where the setting is of fuzzy sets l, r, and so on, endowed with the
framework given by a standard algebra, the MP-inequality should be expressed by
the functional inequality

l 	 l0 þ rð Þ� r; or T o ðS o N o l � rð Þ� r;

with T a continuous t-norm representing the linguistic “and”, S a continuous t-
conorm representing the linguistic “or”, and N a strong negation function for the
linguistic “not”, whose study can be reduced to solving the (numerical) functional
inequality

T a; S N að Þ; bð Þð Þ� b; for all a; b in 0; 1½ �;

in which b = 0 (N (0) = 1) implies T (a, N(a)) = 0, showing the MP-inequality
cannot hold for all pairs of numbers a, b, except for some triplets (T, S, N) such as
the one constituted by Lukasiewicz’s t-norm,W (a, b) = max (0, a + b − 1), its dual
t-conorm, W*(a, b) = min (1, a + b), and the strong negation function, N = 1 − id:

W ða; W� 1� a; bð Þ ¼ W a;min 1; 1� aþ bð Þð Þ
¼ max 0; a þmin 1; 1� aþ bð Þ�1ð Þ ¼ min a; bð Þ � b;

for all pairs of numbers a, b in [0, 1]. Notice that with T = min, S = max, and
N = 1 − id, the inequality min (a, max (1 − a, b)) � b does not hold for the pairs
a = 0. 5 and b = 0; and, analogously, with the triplet given by T = prod,
S = prod* = sum −prod, N = 1 − id, the inequality is prod (a, prod* (1 − a, b) =
a 	 (1 − a + b − (1 − a) 	 b) = a 	 (1 − a + a. b) � b, and it also does not hold for
a = 0.5 and b = 0.

2.6. To end this chapter, and even if later on the subject is reconsidered, let’s
advance something of a preliminary character on the use in ordinary language of the
words “uncertain”, and “probable”, that is, on describing and differentiating their
respective qualitative and quantitative meanings; it is a subject that, linked with
what has been presented on the meaning of words, is in touch with the debate
between the two main interpretations of the probability mathematical concept, the
objective and the subjective. The first comes from an observed convergence of the
outcomes’ frequencies in random experiments whose possible outcomes can be
well described, and the second from the experienced opinion of a “rational person”
assigning a priori probabilities to events, that, once transformed into a posteriori
probabilities by means of the Bayes formula, helps whoever, based on them, wants
to take the risk of betting some money on their appearance. In both cases, never-
theless, a common belief is shared on the actual possibility of perfectly classifying
the universe by a union of disjoint classes, something necessary for posing the
additive law of probability in which both interpretations coincide, and that, jointly
with assigning a probability equal to one to the sure event, allows us to obtain the
law for the probability of the negation of outcomes.
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Notwithstanding, the understanding of events as subsets, also underlying both
interpretations, corresponds to naming the events by precise words, something that
is not always the case in ordinary reasoning expressed in plain language, as it is not
always to assign numerical probabilities as can be exemplified by typical utterances
such as, “It is highly probable than John is rich,” or “It is improbable that Laura will
join us,” and so on. The meaning of “probable”, the mother-predicate of the
probability’s concept, is still to be clarified in plain language.

Because the meaning of “uncertain”, mother-predicate of the uncertainty’s
concept, is also not clarified, and because uncertainty, as with imprecision in lan-
guage, permeates almost all branches of science, there is confusion between
probability and uncertainty deserving to be clarified. All these questions are con-
sidered further.
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Chapter 3
Antonyms. Negation, and the Fuzzy Case

Can an adult person recognize with the naked eye that John is tall, but not,
simultaneously, that Peter is short? It depends, obviously, on the (ostensible) height
of both John and Peter, and from what it contextually can mean to be, respectively,
a tall and a short person, that is, of perceptively capturing the meanings of these two
words when applied to people in some particular context. It also seems, indeed, that
people learn the meaning of a word by, simultaneously and by polarity, learning the
meaning of one of its opposite words, or antonyms. Antonyms are used in plain
language, and usually they are clearly distinguished from negation; it is the case, for
instance, of “empty” and “not full”, “short” and “not tall”, and so on.

The linguistic phenomenon of antonymy is an important one in plain language,
and it is (almost) excluded in the artificial ones. It should be pointed out, for
instance, that both words “tall” and “short” are in the dictionary, but that their
negations, not-tall and not-short, are not in it; hence, if, in this sense, tall and short
could be called “linguistic terms”, not-tall and not-short are not so, and just mean
the exclusion of what can be covered by the initial words tall and short; all that, in
the corresponding universe of discourse, is not fully covered by tall, or by short. If
negation tries totally to exclude, antonymy only excludes partially. Given a lin-
guistic term P, its antonyms, if existing, are also linguistic terms but its negation is
not clearly so. Note that the same word can have different antonyms in different
contexts. A first question concerns what the antonyms of P mean, and its negation,
once the meaning of P is known.

3.1. Denote by Pa an antonym of P, and by P′ its negation not-P; notice that if
P can have several antonyms, the negation is unique although it can have different
properties in each context. It can be said that antonyms concern plain language, and
the negation is more a logical concept expressing, in a given context, what is
excluded by P. For their part, antonyms Pa keep some interaction with P. Negation
and antonym should not be identified, and for showing how antonym and negation
are linked, the following and typical example is illustrative.
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If P = full, it is P′ = not full, and Pa = empty, and, with it, the statement, “If the
bottle is empty, then it is not-full”, shows the rule:

If x isPa; then x isP0; that can be explicated by “ If Pa; thenP0”;

but not reciprocally, because it is not always the case that “If the bottle is not-full,
then it is empty”.

OnlywhenPhasno antonyms in language is it sometimes takenP′ insteadofPa.P is
said to be a “regular”word if Pa is not coincidental with P′; otherwise, P is irregular.

3.2. Which are the, in principle different, meanings of P′ and Pa, given that of P?
Supposing that the quantity (X, <P, mP) reflects a meaning of P in a universe X, the
problem consists in finding quantities (X, \P

a, mP
a) and (X, <P′, mP′) for,

respectively, Pa and P′ in X.
Because “oppositeness” implies that if “x is less Pa than y”, then “x is more

P than y”, and reciprocally, it should be

x\P
a y , y\P x , x\�1

P y;

and \P
a ¼ \�1

P follows. That is, P and Pa have inverse qualitative meanings in
X, and to obtain a measure mP

a from mP, functions s: X ! X reversing the
relation <P seems to be suitable.

Defining mP
a = mP o s, it follows that

(1) x\P
a y , y\P x ) s xð Þ\P s yð Þ ) mP s xð Þð Þ�mP s yð Þð Þ , mP

a xð Þ�mP
a yð Þ:

(2) If x is maximal for \P
a, it is also maximal for \�1

P, and minimal for <P.
Hence s (x) is maximal for <P. Then mP

a (x) = mP (s (x)) = 1.
(3) x minimal for \P

a ) x minimal for \�1
P ) x maximal for <p ) s (x)

minimal for <P. Then mP
aðxÞ ¼ 0.

Thus mP
a = mP o s gives the quantity (X, \�1

P, mP o s) reflecting a full
meaning of the antonym Pa of P in X. Of course, because each mapping s will give
a different measure, it is clear that the antonym depends on the particular form of
reversing the graph (X, <P).

Note that s is actually associated with P; that is, it is more properly denoted by
sP, even if for simplicity it is just written s. For instance, an opposite of P = big in
[0, 10] is Pa = small, and, because <big = � , it is < small = � −1 = � . With the
mapping s (x) = 10 − x, reversing the relation <big = � , then msmall (x) = mbig

(10 − x) = 1 − x/10 would be obtained, provided the linear measure mbig (x) = x/10
for big were taken. Were it taken mbig (x) = x2/100, it would result in msmall (x) =
x2/100 − x/5 + 1.

It should be pointed out that it is not proven that the only way of obtaining
antonyms is through symmetries even if, actually, they seem suitable for reflecting
the oppositeness of meaning. Symmetry is generally viewed as a relevant concept in
science, and it is always interesting to study if the symmetry shows invariants,
analyzing if the symmetry’s fixpoints actually correspond with something actually
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existing in the ground reality. To some extent, symmetries open a door towards a
possible geometrical study of antonymy.

A nice application of what has been said lies in the possibility of finding
antonyms for words with no antonym in language, through specifying their
meaning and naming it. A toy example can be obtained, for instance, with a word
P naming the property of being “greater than 6” in [0, 10], as it could be, for
instance, the invented word P = “gresix”; it is without an antonym in language. In
this case, P is precise and specified by the set (6, 10]; P′ is also precise and is
specified by [0, 6], with P′ naming “between 0 and 6”. But, what about Pa? With
the same symmetry s (x) = 10 − x, it follows that mP

a (x) = mP (10 − x) = 1, if
6 < 10 − x � 10, and zero otherwise. Hence it is mP

a (x) = 1 for x in [0, 4), and
equal to 0 in [4, 10], that shows a possible solution of Pa by attributing a name to
the property of being “strictly smaller than 4”.

This example opens a window for extending the idea to words in plain language,
passing from this (toy) example in mathematics to true ones in language.

Note that mathematicians don’t need to attribute specificwords to concepts such as
“gresix” is to “greater than 6”, inasmuch as these concepts are precise formal ones just
expressible by the “primitive” concepts with which they are defined and in this way a
saving of words is done; the language of mathematics doesn’t always require new
words for what appears, because all that is needed comes by if and only if definitions
from the axioms. In this way, the language of mathematics economizes unnecessary
newwords. As Alfred NorthWhitehead and Bertrand Russell remark in the preface to
volume one of their famous book Principia Mathematica, if mathematics can be
constructed with the help of a few words, plain language needs all of them.

To end with opposites, it is worth remarking that the passing from P to Pa can
almost always be seen as an involution; for instance, if small = biga, it is clear that
(biga)a = (small)a = big. Because it is \ðPa Þ

a ¼ \�1
P
a ¼ \P, it does not seem

bizarre to accept, for opposites, the law of involution, (Pa)a = P. Hence, it should be
mðPa Þ

a ¼ mp, implying mP
a o sPa = (mP o sP) o sPa = mP o (sP o sPa) = mP thus,

and under good conditions, sP o sPa = idX can follow; provided these mappings
s were bijective, it would imply sPa ¼ sP�1, and if sP were involutive then it would
be but a full symmetry in X, as it is s(x) = 10 − x in [0, 10], verifying s2 (x) = s (10
− x) = x, with s = s−1, and s (0) = 10, s (10) = 0.

Thus, opposition can be seen as a symmetry in language, and P is a linguistic
fixpoint for such opposition, or a self-opposite word, if its measure satisfies the
equation mP = mP

a , mP = mP o s, for some symmetry s 6¼ idX, and that,
provided mP were invertible, would not exist because, in such case, it would be
s = mP

�1 o mP = idX.
For instance, the former “big” is not self-opposite in [0, 10], because

x/10 = s (x)/10 implies s (x) = x. Anyway, if actually existing, self-opposites are a
very rare linguistic phenomenon that only can be thought for words with nonin-
vertible measures, for instance, the word “five” in [0, 10], specified by the singleton
{5} and for which, with sfive (x) = 10 − x, is
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sfive 5ð Þ ¼ 5; and ma
five xð Þ ¼ mfive 10�xð Þ ¼ 1; if x ¼ 5; equal to 0; if x 6¼ 5;

that is, mfive
a coincides with mfive, allowing us to see “five” as an opposite of “five”.

Anyway, to avoid the character of self-opposite of “five”, it suffices to consider a
symmetry s such that s (x) = 5, for some x 6¼ 5, because it is mfive

a (x) = mfive (s
(x)) = 1 , s (x) = 5, and then the set s−1(5) would specify, and name, the term
fivea; if, for instance, it were s−1(5) = {7}, it would be fivea = seven, with “five”
losing the former self-opposite’s character.

All this shows that if self-opposites are certainly rare, and if even self-opposition
can seem apathology of language, perhaps useful in jokes or poetry, nevertheless, they
can exist in, at least, some very particular parts of language; in the end, for instance, the
words denoting numbers have a very precise meaning and are often used in language.

3.3. The analysis of the negation P′ of P is more complex than that of the opposites
Pa, because the only thing that can be taken for sure is that <P is contained in \P0 �1,
that, if “x is less P than y”, then “y is less P′ than x”, but without the reciprocal always
being sure. That is, in general it can only be presumed

\P �\P0 �1; that is equivalent to\P0 �\P0�1

In general, the qualitative meaning of the negation is just a part of the qualitative
meaning of the antonyms, even if denying its coincidence cannot be done in all
cases. Each antonym Pa of P has a larger or equal inverse qualitative meaning than
its negation P′; thus, provided P were measurable, it could not be guaranteed that P′
is also measurable.

Nevertheless, in the case of coincidence between <P′ and \P
�1 (in which P′ is

certainly measurable), it is easy to see that the qualitative meaning of the double
negation, (P′)′ = P″, coincides with that of P:

\P00 ¼ \P0�1 ¼ \P:

Hence a sufficient condition for having P and P″ the same qualitative meaning, is
the coincidence of the meaning of P′ with the inverse of P. On the contrary, the
qualitative meaning of P′ is just contained in that of the antonym.

If mP and mP′ are, respectively, measures for the meanings of P and P′, from <P′
� \�1

P it follows that if x <P′ y then mP′ (x) � mP′ (y), and because it is y <P x,
then it is alsomP (y) � mP (x); both numerical inequalities coexist when it is x <P′ y.

Thus, if N: [0, 1] ! [0, 1] is an order-reversing mapping such that N (0) = 1 and
N (1) = 0, the function N o mP verifies:

(1) If x <P y, from mP (y) � mP (x) follows N (mP (x)) � N (mP (y)).
(2) If x is maximal for <P′, it should be minimal for <P, mP (x) = 0, and N (mP

(x)) = N (0) = 1.
(3) If x is minimal for <P′, it is maximal for <P, mP (x) = 1, and N (mP

(x)) = N (1) = 0.
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Hence mP′ = N o mP is a measure for <P′, that, if it is P″ = P, and taking into
account that N actually depends on P, it is better to denote it by NP because it
should be mP″ = mP; it is NP′ o mP′ = mP, and NP′ o (NP o mP) = (NP′ o NP) o
mP = mP, implying, under good conditions, NP′ o NP = id[0, 1]. Then, provided
either NP′ or NP were bijective, it would follow that NP′ = NP

�1, and provided it
were involutive, it could be seen as a symmetry in [0, 1] whose fixpoints can come
from solving mP′ = mP , NP o mP = mP that, newly under good conditions, leads
to the nonorder reversing function NP = id[0, 1], that is not a negation.

The problem of self-negation is similar to that of self-opposition; if it seems that
linguistic terms coincidental with their negation cannot exist, nevertheless and
because functions N often have fixpoints x different from 0 and 1, x = N (x), a
window is open to the existence of self-negating words.

For instance, N (x) = 1 − x has the fixpoint x = 0.5, and N (x) = 1 − x2 has the
fixpoint coming from the equation x2 + x − 1 = 0, or x = (√5 − 1)/2, both being
order-reversing functions and changing 0 in 1, and 1 in 0. In this way, the words
“one half”, and the statement “a half of the square root of five minus one”, can be
seen as self-negating. Notice that both negations are continuous, but the first is
involutive, N (N (x)) = 1 − N (x) = 1 − (1 − x) = x, and the second is not, N (N
(x)) = 1 − (1 − x2)2 = x2(1 − x2) 6¼ x.

In the case P = P″, an involutive function N seems suitable for obtaining a
measure for P, and then such N: [0, 1] ! [0, 1], should satisfy the properties:

(1) x� y ) N yð Þ�N yð Þ
(2) N N xð Þð Þ ¼ x for all x in 0; 1½ �
(3) N 0ð Þ ¼ 1

from which follows N (1) = N (N (0)) = 0, N−1 = N, and also that N is continuous,
hence strictly nondecreasing. There are continuous functions N, such as the former
N (x) = 1 − x2, verifying 1, 3, and N (1) = 0, but not (2); with them, N o (N o mP)
cannot coincide with mP and, hence, are not able to represent those P such that
P″ = P. For instance, 1 − (1 − (x/10)2) = x2/100 6¼ x/10, and under this negation
not (not big) cannot coincide with big, but simply not (not big) implies big.

Those negation functions verifying 1, 2, and 3, are called strong negations, and
are characterized by the theorem:

– N is a strong negation if and only if there exists an order automorphism Δ of the
unit interval, such that N (x) = Δ−1 (1 − Δ (x)), for all x in [0, 1].

Note that just taking N (x) = 1 − Δ (x), a negation function is also obtained but
fails to verify (2) to be involutive. For instance, with Δ (x) = xn, the family of strong
negations (1 − xn)1/n is obtained, as well as the nonstrong negations 1 − xn; with
more complex functions D, depending on a real parameter k > −1, the Sugeno
family of strong negations (1 − x)/(1 + kx) is obtained.

That theorem can be easily extended to any closed interval [a, b] of real numbers
by just considering that Δ is an order morphism of [a, b]; then s (x) = (a + b) −
Δ (x) can serve as a generator of opposites acting in [a, b], and if an involution is
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preferred, it suffices to take s(x) = Δ−1 ((a + b) − Δ (x)). Notice that because it
should be Δ (a) = a, and Δ (b) = b, in both cases it should be s (a) = b and
s (b) = a. A very simple example in the interval [0, 10], with Δ = id[0, 10], gives the
former symmetry s (x) = 10 − x.

3.4. How to proceed when P is not directly known by a quantity reflecting its
meaning in X, but indirectly through a membership function l representing the
collective/fuzzy set P generates in X?

Suppose that the opposites Pa of P are represented by membership functions la,
and the negation P′ by l′. Then, can it be supposed that, for each x in X, there are
symmetries sx: X ! X, and negation functions Nx: [0, 1] ! [0, 1], such that la

(x) = l (sx (x)), and l′ (x) = Nx (l (x))? But, are these formulae actually facilitating
an opposite and a negation, respectively? The answer is affirmative for the negation,
because

(a) Provided l � r, that is, l (x) � r (x), for all x in X, it would be Nx (r
(x)) � Nx (l (x)) , r′ (x) � l′ (x) , r′ � l′.

(b) l0′(x) = Nx (l0 (x)) = Nx (0) = 1, for all x in X, or l0′ = l1, with l0 and l1 the
functions constantly equal to 0 and 1, respectively, that represent the empty
subset Ø, and the total subset X.

(c) In the same vein as in (b), it is l1′ (x) = Nx (l1 (x)) = Nx (1) = 0, and thus
l1′ = l0.

(d) Provided all functions Nx were strong negations, then l″ (x) = ((l′)′) (x) = Nx

(Nx (l (x))) = (Nx o Nx) (l (x)) = l (x), for all x in X, or l″ = l.

Note that this not only holds with a different function Nx for each x in X, but also
provided they were the same function for all x in each subset of a partition of X. For
instance, a negation of “big” in [0, 10] can be obtained from the partition [0,
10] = [0, 7] U (7, 10], by taking the negations N1 (x) = 1 − x in [0, 7], and N2

(x) = (1 − x)/(1 + x) in (7, 10], and giving:

l0 xð Þ ¼ 1� x=10 if 0� x� 7;

and

l0 xð Þ ¼ 1�x=10ð Þ= 1þ x=10ð Þ ¼ 10�x =10þ x; if 7\x� 10:

Each Nx is a strong negation, therefore it has a fixpoint n(x), and the family {Nx;
x in X} has the curve of fixpoints defined by the function y = n (x); it has a fix curve
constituted by the fixpoints of the negations Nx.

For instance, in the last example, because the fixpoint of the first negation
function is n(x) = 0.5, and that of the second is the positive solution of the equa-
tion 1 − x/1 + x = x , n (x) = √2 − 1, the corresponding fix curve is
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n xð Þ ¼ 0:5; if x is in 0; 7½ �; and
n xð Þ ¼

ffiffiffi

2
p

�1; if x is in 7; 10ð �:

Were the negations Nx (x) = 1 − x/1 + k(x).x, with the parameter k (x) such that
–1 < k(x), the fix curve is given by 1 − x/1 + k(x)x = x, or k(x).x2 + 2� − 1 = 0,
whose positive solution for k (x) 6¼ 0 (because for k (x) = 0 is x = 0.5, corre-
sponding to the negation 1 − x) is

n xð Þ ¼ ð1=k xð ÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ k xð Þ�1Þ
p

� �

that, with k(x) = 1, for all x, is n(x) = √2 − 1, as said above. With k (x) = x for all x
in [0, 1], the fix curve is

n xð Þ ¼ 1=xð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xð Þ � 1
p

� �

; if x in 0; 1ð �; and n 0ð Þ ¼ 0:5:

The fix curve of a family of strong negations is a membership function of a
self-negating linguistic label. Looking at the fixpoint n(x) of a single negation as the
singleton {n(x)}, its crisp membership function has a linguistic label whose nega-
tion is itself. Self-negation is rare and it can even be seen as a pathological linguistic
phenomenon, but it can exist.

A perhaps interesting application of self-negating statements appears in the
so-called liar’s paradox, in which a (measurable) statement “x is P” is simultane-
ously viewed as true (T), and false (F); it implies mT (lP (x)) = mF (lP (x)) = mT (sT
(lP (x))). This equality holds if lP (x) = sT (lP (x)), that is, if the degree up to which
“x is P” is a fixpoint of the symmetry sT allowing us to define the measure of false
from that of true. In the case of interpreting the paradox as that coming from a
statement that is true and not true, the equation is mT (lP (x)) = mT′ (lP (x)) = NT

(mT (lP (x))), holding if mT (lP (x)) is a fixpoint of the negation NT.
Note that this is not possible with a precise statement “x is P” whose degree of

true is known, because in this case mT (lP (x)) only can be equal to 0 or 1, and these
values are not fixpoints of NT because it is always NT (0) = 1, and NT (1) = 0. From
such impossibility comes the paradoxical character of presuming the existence of
precise statements simultaneously true and false.

Thus, for actually saying something meaningful, the modalities of the liar’s
paradox should be stated with an imprecise statement “x is P”, or, at least, with one
immersed in a context neither allowing us to know its measure of true, nor that of
false. It was a statement of this type, found by Bertrand Russell, which collapsed
Gottlieb Frege’s ideas on the fundamentals of mathematics, and later on led Kurt
Gödel and also Alan Turing to their famous theorems that were, and are, among the
glorious moments of mathematics in the first third of the twentieth century, and that
dismantled David Hilbert’s call for a total deductive algorithmization of mathe-
matics. Not even mathematics seems to be possible without guessing.
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Concerning the antonyms, given a family of symmetries {sx; in X}, the function
la (x) = l (sx (x)), for all x in X, can be seen as the membership function of a word
with opposite meaning to that labeling l. As with negation, the mappings sx can be
shared by the x in the several parts of a partition of X, or can be a single one for all
x in X.

For instance, if “small” is managed in [0, 10] with the membership function
l (x) = 1 − x/10, and the linear symmetry s (x) = 10 − x is taken, then
la (x) = l (10 − x) = 1 − (10 − x)/10 = x/10, that is a membership function of
“big”, and shows a regular antonym of “small”, coinciding with its negation if it is
given by N = 1 − Id. Anyway, provided it were considered the partition given by
the subintervals [0, 6] and (6, 10] and the two symmetries s (x) = 6 − x, and
s (x) = 16 − x taken at, respectively, each of them, it would be la (x) = l (6 − x) in
the first, and l (16 − i) in the second; thus, for the antonym “big” it follows that

�la xð Þ ¼ 1� 6�xð Þ=10 ¼ 0:4þ x=10; for x in 0; 6½ �; and
�la xð Þ ¼ 1� 16�xð Þ=10 ¼ x=10þ 3=5; for x in 6; 10ð �:

Provided the linguistic label P of l were known, but not any of its antonyms Pa,
then a suitable linguistic label should be assigned to la through analyzing,
accordingly with P, the characteristics of such membership function in X; for
instance, if it resulted in the function la defined by la (x) = 0, for x in [0, 2], and
la (x) = (x − 1)/8, for x in (2, 10], some word designing “big after 2” in [0, 10] can
be well assigned to Pa.

A way to proceed is not theoretically known for assigning linguistic labels to all
the functions X ! [0, 1]; there are too many functions. Anyway, in praxis and in
each problem it is often contextually possible when several linguistic labels are
considered, by comparing the unlabeled membership function with those whose
linguistic labels are known. It is the unsolved problem of how to approach lin-
guistically the labeling of a fuzzy set given by a membership function, the problem
of “linguistic approximation”, in short.

It should be pointed out that the membership functions of negation and anto-
nyms are not independent, but linked by the inequality la � l′, translating that if
x is Pa, then x is P′, but usually without holding the reverse inequality. Hence,
provided the antonym’s membership function were constructed thanks to a sym-
metry s, and that of the negation by a negation function N, it should be checked that
l (s (x)) � N (l (x)) holds for all x in X. This inequality is, in each case, a
“condition of coherence” between s and N that, provided it is not verified, would
imply that either s or N is not suitable for the problem submitted to a design in fuzzy
terms.

For instance, supposing that “big” is managed by its membership function x/10 in
[0, 10], and that “small” is with 1 − x/10 (by using the symmetry s (x) = 10 − x), to
design a membership function of “not big”; those negation functions N only can be
used verifying the coherence inequality 1 − x/10 � N (x/10), for all x in [0, 10], that
is, those such that 1 − y � N (y), for all y in [0, 1]. Of course, N (y) = 1 − y (with
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which “small” coincides with “not big”), N (y) = 1 − y2, and N (x) = (1 − y2)1/2 are
suitable, but it is not N (x) = (1 − y)/(1 + y). Note that, as is easy to check, the only
strong negations in the family (1 − y)/(1 + ky), with –1 < k, that are coherent with
the symmetry s (x) = 10 − x, are those for which it is –1 < k � 0, as is, for instance,
N (y) = (1 − y)/(1 − 0.4y).

Analogously, if what is known is the negation function N (x) = 1 − x2, the
symmetry s should verify s (x)/10 � 1 − x2/100 , s (x) � 10 − x2/10, with
which it is clear that the symmetry 10 − x is coherent with the (not strong) negation
1 − x2, and it is easy to prove that it is also consistent with all the strong negations
(10 − x)/(10 + kx), –1 < k.

3.5. All that has been shown in this chapter illustrates why the design of fuzzy
systems should be carefully done according to the theoretic mathematical arma-
mentarium of fuzzy sets. For instance, if both the negation and an antonym of a
linguistic label P intervene in the problem, the designer should be very careful, first
in designing the membership function lP according to as much information as
possible that is available to him on the qualitative meaning (X, <P), with plausible
hypotheses on the shape of lP for the problem in course, and, after designing lP,
deciding which coherent symmetry and negation function will be taken for building
up the membership functions lP′ and lP

a. In addition, and concerning the negation
function, the designer should previously capture whether it allows identifying P″ and
P, and, on the other hand if P follows from P″, or P″ follows from P, or P and P″
were not comparable; provided it were not P″ = P, the designer cannot chose a
strong negation, but one respecting the existing relation between P and P”. For
instance, because with the negation N (x) = 1 − x2 is N (N (x)) = N (1 − x2) =
1 − (1 − x2)2 � x, it can only be used in those cases in which it can be presumed that
lP″ � lP, that P follows from P″.

All that implies that the designer of fuzzy systems, as well as the practitioner of
fuzzy logic, neither designs a system in a blind form, nor tries to do it without some
prior and theoretical knowledge of the theory of fuzzy sets; usually, confidence in
the presumed guide done by a practical manual can mean both blindness for a
correct design, and ignorance of a very elemental knowledge of what fuzzy sets and
their algebra are. Let’s repeat that because of its linking with plain language,
everything in fuzzy logic is not only a matter of degree but, because everything in it
is context-dependent and purpose-driven, is also a matter of design. As said before,
a fuzzy set is a kind of cloudy entity that only can be well considered through its
contextual crisp states, the membership functions.

3.6. A comment, based on some examples, on the negation of an antonym and the
antonym of a negation is still in order. If P = tall, and Pa = short, we have P′ = not
tall; hence, (Pa)′ = not short, but (P′)a = (not tall)a needs to be defined because “not
tall” is not a linguistic term; it can be easily accepted, in this case, that it is (not
tall)a = not short, that is, accepting the rule/definition (P′)a = (Pa)′, showing a
commuting between antonym and negation. Notwithstanding, with P = employed,
we have P′ = not employed, and Pa = unemployed, and then (not employed)a does
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not seem to be clearly identifiable with not unemployed. Hence the commuting
between “not” and “antonym” does not seem to be always clear enough in lan-
guage; it seems to be not formally decidable as a general rule. Let’s see what can
show the corresponding membership functions in such a respect.

The membership function of (Pa)′ is lðPaÞ0ðxÞ ¼ NP
aðlPðSPðxÞÞÞ and that of (P′)a

is lðP0ÞaðxÞ ¼ lP0 ðSP0 ðxÞÞ ¼ NPðlðSP0 ðxÞÞÞ; hence, without the equalities NP
a and

sP = sP′ the coincidence between both membership functions is not possible in
general. It depends on the particular forms in which both the negation and the
antonym should be contextually understood. The commutation between negation
and antonym depends on which functions s and N is the available contextual
information on P′ and Pa with which the designer is allowed to count.
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Chapter 4
“And” and “Or” in Language: The Case
with Fuzzy Sets

Perhaps the simplest form of constructing a statement with two constituent parts is
joining them by using the linguistic connectives and and or, as done, for instance,
with the elemental parts “x is P”, and “y is Q”, for obtaining either “x is P and y is
Q”, and “x is P or y is Q”, with P and Q acting, respectively, in universes X and Y. It
shows that, initially, the particle-words and, and or, operate in the universe
X [P] � Y [Q], and, hence, their behavior/action should be searched for in it.

In plain language, and contrary to the artificial ones, these particles are not
“logical constants”, but are endowed with a meaning that should be specified in
each context; the meanings of “P and Q” and “P or Q”, not only depend on the
meanings of P and Q, but also on those of and and or. A first question is, thus, how
to capture the meanings of “P and Q” and “P or Q”.

4.1. How can the action of and be captured? In the classical setting, in which the
parts joined by and are precise and hence specified by subsets P and Q in the
respective universes of discourse X and Y, the “new” predicative word “P and
Q”: = P & Q = P � Q, in X � Y, is understood as “x is P and y is Q”, (x, y) is P &
Q, and is specified in X U Y by the intersection of its subsets P and Q.

In general, once the qualitative meanings of P in X and Q in Y are known, it
should be If x1 is less P than x2 and y1 is less Q than y2, then (x1, x2) is less P &
Q than (y1, y2), shortened by

\P �\Q �\P&Q;

And showing that <P&Q is not empty provided the Cartesian product <P � <Q,
were not so, that P & Q would be measurable. If it can be accepted that “(x, y) is
P & Q” implies “x is P” and also “y is Q”, then both would be equivalent, that
is, <P&Q = <P � <Q, as happens in the precise case.
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Concerning the specification of measures mP&Q obtained once measures mP and
mQ are specified, it should be noticed that a priori nothing guarantees the existence
of a two-variable function A: [0, 1] � [0, 1] ! [0, 1] (and-function), such that
mP&Q = A o (mP � mQ), that is, that the measure of P & Q should be decom-
posable, or functionally expressible, by means of the measures of P and
Q. Nevertheless, in the case of nondecomposability, the only thing that can be done
is directly checking that mP&Q verifies, in the graph (X � Y, <P&Q), the three
axioms for a measure, something not often easy to do. In addition, proving that a
given measure mP&Q is nondecomposable only can be done directly by finding, at
least, one pair (x, y) with two different values under it. It is for reasons of this kind
that decomposable measures are usually preferred in praxis; they save the designer
from such checking, even if she or he cannot forget to consciously assume that
decomposability is but a hypothesis.

Hence finding those functions A is relevant for the praxis and, in principle,
provided it were <P x <Q = <P&Q, the designer should necessarily verify the fol-
lowing properties.

(1) Because (x1, x2) <P&Q (y1, y2), is equivalent to x1 <P x2, and y1 <Q y2, then it is
mP (x1) � mP (x2), and mQ (y1) � mQ (y2). Hence it suffices a nondecreasing
function A in its two variables to have

A mP x1ð Þ; mQ y1ð Þð Þ�A mP x2ð Þ;mQ y2ð Þð Þ , mP&Q x1; x2ð Þ�mP&Q y1; y2ð Þ;

that is, under this presumption, mP&Q verifies the first axiom of a measure.
(2) Provided (x, y) is maximal for <P&Q implies that x is maximal for <P, or

y for <Q, and that A (1, x) = A (x, 1) = 1, then mP&Q (x, y) = A (1, x) (or A (x,
1)) = 1. Notice that if there is coincidence between both maximal characters, it
suffices the property A (1, 1) = 1.

(3) Provided (x, y) is minimal for <P&Q implies x is minimal for <P, or y for <Q,
and that A (0, x) = A (x, 0) = 0, then mP&Q (x, y) = 0. With coincidence
between the minimal characters, it suffices the property A (0, 0) = 0.

Consequently, under good enough conditions, a function A suffices, nonde-
creasing in each variable, taking the value 1 at (1, 1), and 0 at (0, 0), to count with
the measure mP&Q = A o (mP � mQ) for the meaning of P & Q.

An analogous reasoning can be made for representing a more complex statement
such as, ‘(x is P and y is Q) and z is R), with m(P&Q)&R = A2 (A1 (mP � mQ), mR),
for A1 corresponding to P & Q, and A2 to R & (P & Q) that, in praxis, are always
considered to be coincidental. This cannot always be presumed; for instance, in a
large statement with several appearances of and, it should be previously checked if
all of them can be represented, or not, by the same function A.

Note that one of such functions is A (x, y) = min (x, y), a commutative and
associative operation easily translated into n-variables one by one, for instance,
A (x, y, z) = min (x, y, z), without taking care of the way in which x, y, z, are
ordered. It is not always possible with a nonassociative two-variable function A, for
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instance, with the arithmetical mean (x + y)/2 that, nevertheless, is commutative,
but is not the pondered mean (3x + 2y)/5.

A remark is still in order for the case P = Q, (x, y) is P & P, in which, and in
principle, if “x is P and y is P”, then “x is P”, and also “y is P”, but without knowing
if P & P coincides with P or not; in the first case, function A should verify
A (x, x) = x, for all x in [0, 1] and not only for x = 0 and x = 1, but in the second
functions A such that, generally, A (x, x) 6¼ x is required. Notice that presuming
A (x, x) = x, implies to presume the meaning of P & P coincides with that of P,
something that, clear in the precise meanings of mathematical terms, is not so clear
with the imprecise terms of plain language. For instance, if we can accept that “7 is
prime and 7 is prime”, shortened as “7 is prime and prime”, means nothing else
than “7 is prime”, it is not so with “Richard is crazy and crazy”, because in this kind
of plain language’s statements the and seems to be used for reinforcing the
adjective to, perhaps, the meaning of “very crazy”.

Thus, functions A should be selected according to the properties that can be
assumed for the actually used linguistic and. For instance, selecting a commutative
A means to accept that P & Q = Q & P, and accepting an associative A corresponds
to accepting (P & Q) & R = P & (Q & R), like accepting an involutive one is to
accept P & P = P; that is, the selection of A cannot be blindly done without
checking, in each case, if its algebraic properties are effectively verified in what is
both linguistically expressed and tried to be represented by A. On the contrary, such
properties will be imposed on language, and it can be an artificial supposition
affecting the solution of the problem under consideration. Selecting A is a matter of
design needing to take into account the language’s reality in the considered piece
of it. The same properties cannot be presumed and assigned to the language of
mathematics as to the language describing something in the world. For instance, if
what describes the statement, “7 is prime and less than 11” clearly leads it to
commute, what the statement, “He started crying, and entered the room” describes,
does not lead immediately to application of the commutative law to its possible
symbolic representations; doing it implies a risk the designer should be, at least,
able to evaluate. For instance, in the statements, “He is Italian and tall, and he
started crying and entered the room”, and “He is Italian and tall, and he entered the
room and started crying”, in principle the several “and” particles cannot be sup-
posed to keep the same properties; different and-functions should be selected for
representing them.

4.2. What about the linguistic or? That is, how can the action of “P or Q” (in
symbols, P + Q) through the elemental statements “x is P or y is Q”, shortened by
“(x, y) is (P + Q)”, the meaning of P + Q, be captured and symbolically
represented?

In this case what can be presumed is just (<P U <Q) � <P+Q, which can be
viewed as coming from “if x is P, then x is P or Q” whatever it can be Q, and allows
us to state that P + Q has a qualitative meaning provided at least P or Q were to
have a qualitative meaning. That is, one of <P, or <Q, is not empty; P + Q is
measurable provided P or Q were to be measurable.
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It cannot always be presumed that P + P coincides with P, as in the classical
case with precise words represented by sets, and because it is P U P = P. For
instance, if the “or” is exclusive, that is, if by P + Q it is understood as “either P, or
Q”, that can be interpreted by “P or Q, but not both”, then it can mean nothing. It
happens, for instance, in the classical crisp case, where (P U P) \ (P \ P)c = P \
Ø = Ø. Of course, (P + P) � (P � P)′, should be interpreted in each case, and it can
be measurable or meaningless because, even provided P were measurable and
P + P is not meaningless, (P � P)′ could be so. As has been said, the designer of a
representation of P + Q or P � Q should be able to check how, in the used piece of
language and for the current problem, and and or are used.

As in the case of P � Q, to find a measure mP + Q, decomposable with respect to
mP and mQ, and once supposed that (<P U <Q) coincides with <P + Q, an
or-function, O: [0, 1] � [0, 1] ! [0, 1], such that mP + Q = O o (mP � mQ), should
be found. For it,

(1) Because “x1 is less P than x2” or “y1 is less Q than y2” is equivalent to “(x1, x2)
is less P + Q” than (y1, y2)′, then

mP x1ð Þ�mP x2ð Þ or mQ y1ð Þ�mQ y2ð Þ implies mP þ Q x1; x2ð Þ�mPþQ y1; y2ð Þ:

Provided O is nondecreasing in both variables, it would follow that mP +

Q (x, y) = O (mP (x), mQ (y)) verifies the first axiom of a measure for the
meaning of P + Q.

(2) Provided the maximal character of (x, y) for <P + Q were to coincide with x is
maximal for <P, and y maximal for <Q, then mP + Q (x, y) = O (1, 1), and,
hence, provided the function O verified O (1, 1) = 1, it would follow that
mP + Q (x, y) = 1. Provided only one of x or y were maximal for its respective
qualitative meaning, then it should be O (1, y) = 1, or O (x, 1) = 1, that is, 1
absorbent for function O.

(3) Analogously, with the preserving character of minimality for (x, y), it follows
that mP + Q (x, y) = O (0, 0), and, hence, provided O (0, 0) = 0, it would
follow that mP + Q (x, y) = 0. Provided only one of x or y were minimal for its
respective qualitative meaning, then it should be O (0, y) = 0, or O (x, 0) = 0.

Consequently, supposing that O is nondecreasing in both variables verifies
O (0, 0) = 0, O (1, 1) = 1, and under good conditions for maximals and minimals,
mP + Q = O o (mP � mQ) is a measure for P + Q.

Note that or-functions O show, under the above conditions, the same axioms as
and-functions A, and hence in praxis they should be distinguished by some additional
property inasmuch as they could instead imply the identity P + Q = P � Q that, at
least if P 6¼ Q, sounds very rare. In the classical crisp case, it corresponds with the
identity PUQ = P \ Q equivalent to P = Q, because it is P� PUQ = P \ Q� P,
andQ� PUQ = P \ Q�Q, an equivalence that, nevertheless and when P orQ are
not precise, is not so clear in general.

38 4 “And” and “Or” in Language: The Case with Fuzzy Sets



To obtain such a distinction between A and O, let’s assume that the words P and
Q verify

P � Q implies PþQ;

leading to mP � Q � mP + Q, and hence to the coherence’s condition:

A�O; that is A ðx; yÞ�O ðx; yÞ; for all x; y in ½0; 1�;

with the equality only acceptable in a pathological case. This shows that if A = min,
it should be min < O, for instance, O = max; and that if O = max, then it is
A < max, such as A = product. In principle, there is an enormous amount of
and-functions and or-functions able, respectively, to represent the measures of the
used linguistic conjunction and disjunction, that is, they can show very different full
meanings.

4.3. Let’s now consider the case in which P and Q are known by means of their
corresponding designed membership functions lP and lQ, and what is tried to be
obtained directly are the membership functions lP � Q and lP + Q for, respectively,
the linguistic labels “P and Q”, and “P or Q”. Suppose an and-function A exists, and
an or-function O (A < O), with which it is lP � Q (x, y) = A (lP (x), lQ (y)) and lP +

Q (x, y) = O (lP (x), lQ (y)), for all x, y in X. Then,

– The commutative character of the conjunction and the disjunction, P � Q = Q � P,
P + Q = Q + P, requires A (x, y) = A (y, x), and O (x, y) = O (y, x), for all x, y in
[0, 1]; that is, A and O should be commutative operations.

– The involutive characters, P � P = P, P + P = P, require A (x, x) = x, and O (x,
x) = x, for all x in X; that is, A and O should be involutive operations.

– The associative characters, P � (Q � R) = (P �Q) � R, P + (Q + R) = (P + Q) + R,
require that A and O are associative operations, that is, verify A (x, A
(y, z)) = A (A(x, y), z), O (x, O (y, z)) = O (O(x, y), z), for all x, y, z in [0, 1].

– The distributive characters, P � (Q + R) = (P � Q) + (P � R), P + (Q � R) =
(P + Q) � (P + R), require, respectively, the properties A (x, O(y, z)) = O
(A (x, y), A (x, z)), and O (x, A (y, z)) = A(O (x, y), O (x, z)), for all x, y, z in
[0, 1]; that is, A is a distributive operation for O, and O is such for A. It is the
case, for instance, if it is A = min, and O = max, but not if it is A = prod and
O = max.

And so on; for instance, if it is P + P′ such that its measure is one, mP + P′

(x, y) = O (mP (x), mP′ (y)) = 1, provided the measure of P′ were expressible by a
negation function N, it would be O (mP (x), N (mP (x))) = 1, giving the possibility of
finding O and N by solving the numerical functional equation

O a; N ðaÞð Þ ¼ 1; for all a in ½0; 1�;
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and provided it were possible by benefiting from the properties O and N can have.
Analogously, if P � P′ has measure zero, mP � P′ (x, y) = A (mP (x), N (mP (x))) = 0
[*], then A and N can be eventually found through solving the numerical functional
equation

A a; N ðaÞð Þ ¼ 0 for all a in ½0; 1�:

That is, in the praxis, and-functions, or-functions, and negation functions, they
can be eventually found through solving some functional equations; for such a goal,
the continuity of such functions is a good help as illustrated further on, and apart
from the usual necessity that the resulting functions should be continuous as a
counterpart for the predicates’ flexibility. In addition and for instance, from solving
the last equation solutions also follow for the case in which P � Pa has measure zero,
inasmuch as mP

a (x) � mP′ (x), from [*] it follows that A (mP (x), mP (s (x)) = 0.
All this shows, in a new light, the relevance of carefully designing, in accordance

with how things actually are, the measures intervening in linguistic descriptions; in
the end, measures are but membership functions even if, as said before, such
functions are not always measures, but just approximations to them, whose conti-
nuity is important for solving the corresponding functional equations, and can come
from the flexibility of the considered imprecise words.

4.4. What has been presented in both Chap. 3, and the last Sects. 4.1–4.3, opens a
window to consider what can be understood by a (primitive) algebra of fuzzy sets,
namely to establish a general enough algebra of fuzzy sets allowing its particu-
larization in each concrete problem. That is, defining among fuzzy sets an algebraic
structure just endowed with a minimal number of axioms, not only necessary for
counting with an operative general view of fuzzy sets in relation to its linguistic
labels, in short with language, but for having the possibility of designing and
effectively computing with fuzzy sets. In fact, for constructing a theory of “com-
puting with words”, a calculus is needed in each context. For such a goal it is
required not to consider the linguistic collectives/fuzzy sets in themselves, but all
their potential states/membership functions, that is, the functions in the set [0, 1]X of
all functions X ! [0, 1], by counting with the important difference that each
bivalued function f: X ! {0, 1} actually and univocally represents the single crisp
subset f−1(1) of X, something without a parallel with fuzzy sets and the functions in
[0, 1]X (except for those in its subset {0, 1}X).

Such an algebraic structure should be established, after defining a suitable
ordering in [0, 1]X, with two binary operations, (�) and (+) and a unary one (′)
representing, respectively, the “and”, “or”, and “not” of language where, as said
before, the validity of the laws imposed to such operations should be checked in
each case. For this reason a structure with very few laws is important; without some
laws there is no mathematical structure able to allow a calculus; they are necessary
for developing the consequences from its acceptance, and to count with a solid base
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for computation, reducible to the classical case when the represented words are
precise. What has been said offers a way to establish such a general structure.

Hence, for instance, the ordering defined among the functions in [0, 1]X should
reduce to the ordering among subsets or, equivalently, to the ordering among its
characteristic functions, namely P�Q , lPðxÞ� lQðxÞ, for all x in X. Thus, the
order chosen for membership functions in [0, 1]X can be the pointwise one:

l� r , l (x)� r ðxÞ; for all x in X;

under which the minimum is the function l0 (x) = 0 for all x in X, the maximum is
l1 (x) = 1 for all x in X, and it is l0 � r � l1 for all r in [0, 1]X; functions r
appear under such ordering in the interval of functions [l0, l1] between, respec-
tively, the empty Ø and the total set X. The functions lr (x) = r, r in [0, 1], for all
x in X, are the constant functions reduced in the classical case to only those with
r = 0 and r = 1. Additionally, it is l ¼ r , l� r and r � l. With this:

– A basic algebra of fuzzy sets (BAF) is a quintet ([0, 1]X, � ; �, +; ′) satisfying the
laws, or axioms:

(1) For negation: l � r ) r′ � l′; (l1)′ = l0; (l0)′ = l1.
(2) For conjunction: l � r ) l � a � r � a, and a � l � a � r, for all a in

[0, 1]X; l � l1 = l1 � l = l, for all l in [0, 1]X.
(3) For disjunction: l � r ) l + a � r + a, and a + l � a + r, for all a

in [0, 1]X; l + l0 = l0 + l = l, for all l in [0, 1]X.
(4) Of coherence: Provided l and r belong to {0, 1}X, then it would be l �

r = min (l, r), l + r = max (l, r), l′ = 1 − l (r′ = 1 − r), all of them
belonging to {0, 1}X.

Note that such algebras are neither presumed to verify all the laws classically
supposed between sets, nor even those that are usually supposed between fuzzy
sets. A BAF is but a “formal skeleton” to which other laws could be added when
suitable, such as when searching for operations allowing the satisfaction of
Aristotle’s principles of noncontradiction, l � l′ = l0, of excluded-middle,
l + l′ = l1, or the commutative law l � r = r � l, among others.

Anyway, a few consequences follow from the small number of laws a BAF
verifies.

(a) Axiom 4 is independent of axioms 1, 2, and 3.
In fact, defining l* (x) = 1 − l (1 − x), for l in [0, 1][0, 1], and all x in [0, 1], it
is easy to check that l* verifies 1, but if l is the membership function of
[0, 0.4], then l* is the membership function of [0.6, 1], not coincidental with
the complement (0.4, 1] of [0, 0.4]. Hence l* cannot be taken as a (coherent)
negation of l.

(b) l � r � min (l, r) � max (l, r) � l + r.
In fact, from l � l1, it follows that l � r � l1� r = r, and from r � l1, it
analogously follows that l � r � l; hence, l � r � min (l, r) � max (l, r).
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From l0 � l follows that r = l0 + r � l + r, and from l0 � r it follows
that l � l + r; that is, max (l, r) � l + r.

(c) l � l0 = l0 � l = l0, and l + l1 = l1 + l = l1.
In fact, the first follows from l0 � l � l0 � l0, and the second from
l1 � l + l1 � l1.

(d) It is obvious that the only case in which ([0, 1]X, � ; �, +; ′) can be a lattice
with negation, is with � = min, and + = max.
In this case, if (′) is a strong negation, that is, verifies (l′)′ = l, for all functions
l, it is easy to prove that (l + r)′ = l′� r′, and (l � r)′ = l′ + r′ hold, the laws
of duality. Hence, in this case, disjunction and conjunction are not indepen-
dent, but (through the negation) one depends on the other, and the BFA is a De
Morgan algebra.

(e) With an “abstract” partially ordered set Ω with a maximum 1 and a minimum
0, instead of [0, 1]X, and keeping within its elements the former axioms 1, 2,
and 3 of a BAF, both ortholattices and De Morgan algebras are instances of
such new and abstract algebraic structures, and Boolean algebras in particular;
in them, the role of {0, 1}X in Axiom (4) is played by the subset {0, 1}.
Nevertheless, no BAF on [0, 1]X can have all the properties of a Boolean
algebra; indeed, because such a case is that of a lattice, it should
be � = min, + = max, and for no negation (′) it is possible to have lr � lr′ = l0,
for all r in [0, 1], because min (lr (x), lr

′ (x)) = 0 for all x in X implies r = 0.
There is no way, under the BAF’s axioms, of endowing all the membership
functions of fuzzy sets with either the Boolean structure of the characteristic
functions of sets, nor with the weaker of an ortholattice. On the contrary,
provided [0, 1]X were endowed with a Boolean structure, it would follow,
through Stone’s characterization theorem of Boolean algebras as algebras of
sets, the very surprising fact of an isomorphism existing between membership
functions and characteristic functions, with which fuzzy sets were not, actu-
ally, substantially different from sets.
In sum, the BAF’s structure seems to be general enough for representing the
states of fuzzy sets and another, eventually different, primitive axiomatic for
[0, 1]X, should be able to deduce such a result.

(f) Concerning the validity of the laws of duality, holding, as said, within the
lattice structure, they don’t hold in all BAF, even if they can hold in some
particular cases.
For instance, were the connectives decomposable by a triplet (T, S, N), where
S is the N-dual of T, and N is strong, that is, S (x, y) = N (T (N(x), N(y)), and
N2 = N, then it would obviously hold that (l + r)′ = l′ � r′, and because it is
also S (N (x), N (y)) = N (T (x, y)), it would also hold that (l � r)′ = l′ + r′.
Notwithstanding, with T = product, S = max, and N = 1 − id, it is
1� x � y 6¼ max ð1� x; 1� yÞ ¼ 1�min ðx; yÞ , x � y 6¼ min ðx; yÞ, and
hence the laws of duality are not valid. The laws of duality do not generally
hold in a BAF, and their validity depends on the particular expression of the
connectives.
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Anyway, in a BAF with + = max, and regardless of the conjunction, the law
of semi-duality l′ + r′ � (l � r)′ holds, and with � = min and regardless of
the disjunction, the other semi-duality law (l + r)′ � l′ � r′ holds. For
instance, if + = max, and because it is l � l + r, and r � l + r, it follows
that (l + r)′ � l′ and (l + r)′ � r′, from which it follows that (l + r)′ =
(l + r)′ + (l + r)′ � l′ � r′. With � = min, it can proceed analogously.
Of course, if + = max, and � = min, both inequalities jointly hold but are
reduced to equalities. In general, conjunction and disjunction are, nevertheless,
independent operations.

(g) The conjunction (�) is involutive, l � l = l, if and only if � = min, and the
disjunction (+) is involutive, l + l = l, if and only if + = max.
That these two operations are involutive is well known, but the reciprocal also
holds. Let’s suppose that (�) is involutive; that is, l � l = l holds, for all
functions l. Because it is min (l, r) � min (l, r) = min (l, r), and min
(l, r) � l, min (l, r) � r, it follows that min (l, r) � min (l, r) � l � r,
and min (l, r) � l � r; that is, min (l, r) = l � r. A similar proof applied to
max and + shows max = + .

(h) All BFA verify Kleene’s law l � l′ � r + r′, for all l and r in [0, 1]X, that
reduces to l0 � l1, if l and r are in {0, 1}X, or the BAF verifies the
Aristotelian principles l � l′ = l0, or l + l′ = l1.
Because at each x it is either l (x) � r (x), or r (x) � l (x), in the first case,
it is (l � l′) (x) � min (l (x), l′ (x)) � l (x) � r (x) � max (r (x), r′
(x)) � (r + r′) (x). In the second it analogously follows the same result, and
hence Kleene’s law is proven for all BAF.

(i) Concerning the absorption laws, l � (l + r) = l, and l + (l �r) = l, for all l
and r in [0, 1]X, the first holds if and only if � = min, and the second if and
only if + = max.
That these two formulae hold with, respectively, min and max, is evident. To
prove the reciprocal, by supposing that the first holds, just taking r = l0, it
follows that l � l = l, for all l, implies � = min. Analogously, and by taking
in the second r = l1, it follows that l + l = l, for all l, which leads
to + = max.

(j) Provided the operations of a BAF were decomposable by numerical functions
F, G: [0, 1] � [0, 1] ! [0, 1], for conjunction and disjunction, respectively,
and N: [0, 1] ! [0, 1], for negation, which properties enjoy these three
functions? Obviously, such properties are the following.

(a) Properties of N: x � y ) N (y) � N (x); N (0) = 1; N (1) = 0.
(b) Properties of F: x � y ) F (x, z) � F (y, z), F (z, x) � F (z, y), for all

z in [0, 1]; and F(1, x) = F(x, 1) = x.
(c) Properties of G: x � y ) G (x, z) � G (y, z), G (z, x) � G (z, y), for all

z in [0, 1]; and G (0, x) = G (x, 0) = x.
(d) Coherence: If x, y belong to {0, 1}, then F (x, y) = min (x, y),G (x, y) = max

(x, y), and N (x) = 1 − x.
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Hence ([0, 1], � ; F, G; N) inherits the corresponding BAF structure with
the set {0, 1} playing the role of {0, 1}X; for instance, functions F and
G verify F � min � max � G and, jointly with N, also verify Kleene’s
law, F (x, N (x)) � G (y, N (y)), for all x, y in [0, 1]. Reciprocally,
provided F, G, and N were to satisfy the former conditions, the func-
tionally expressed operations defined by l � r = F o (l x r), l + r = G o
(l x r), and l′ = N o l, would endow [0, 1]X with a BAF structure.
Thus, the former properties are necessary and sufficient for counting with
a decomposable BAF, and, because there is a big multiplicity of triplets
(F, G, N) verifying such properties, the number of BAFs that can be
defined on [0, 1]X is just enormous and, at each practical problem
requiring decomposable “and”, “or”, and “not”, additional properties
should be added to functions F, G, and N, for the goal of counting with a
calculus. If such additional properties should be imposed according to
what can be checked in language, for not supposing properties nonexistent
among its words and statements, it is worth noticing that in some practical
cases it could be unnecessary to take the three operations decomposable,
but just some of them. Let’s repeat anew that such decisions are but a
matter of design in each particular problem or subject.

(k) Concerning the distributive laws, l � (a + b) = l � a + l � b, and l + (a �
b) = (l + a) � (l + b), it is obvious that they hold simultaneously when � =
min and + = max. Nevertheless, the first holds for all l, a, and b; taking
a = b = l1, it implies l + l = l, for all l, and hence + = max, regardless of
concerning the second, a = b = l0 implies l � l = l, for all l, thus � = min
regardless of +.
Hence, with + = max, the distributive law of � to + holds, and with � = min
that of + to �; of course, both only hold simultaneously with min and max. If
both laws simultaneously hold in arithmetic, in plain language its joint validity
cannot always be supposed.

4.5. To end this chapter, let’s do a last reflection on what corresponds to assigning
an algebraic structure to the membership functions. For such a goal, it can be
illustrative enough to look at the case with the triplet (min, max, 1 − id), the most
frequently used in the applications of fuzzy sets, and in which most of the Boolean
laws are preserved, as they are, for instance the two distributive laws, but not those
of noncontradiction l � l′ = l0, and excluded-middle l + l′ = l1, the only Boolean
laws that do not hold with the connectives min and max. The distributive laws were
already rejected in the reasoning physicists conduct on quantum mechanics with
their specialized theoretical language, based on the algebra of a Hilbert space and,
although holding with precise words, a general reason is not even known for its
validity when imprecise words are used in language; hence its supposition can
violate what is behind a description of something in plain language. By just
incorrectly supposing one of them, there is added to language a law that can lead to
conclude something not real, and which can introduce a lack of confidence on the
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corresponding conclusions. That distributive laws don’t hold in the language of
quantum physics suffices to show that these laws cannot always be taken for
granted.

Analogous comments can be made for any law not appearing in the list of
axioms defining a BAF, therefore each time one such addition seems to be nec-
essary for computing, it should be carefully checked in each case that can imply its
addition. Note that, in fact, the laws presumed in a BAF are almost coincidental
with those that were needed to reach some properties of meaning.

All this shows the importance of paying careful attention to the design of the
membership functions and the connectives that could appear in such design, by
previously acquiring the best available information on the contextual behavior of
their linguistic labels; that is, to a good comprehension of what they actually
express. There is no universal algebra with imprecise words.
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Chapter 5
A First Look at Conditional Statements

Most, if not all knowledge is constrained by some former knowledge, for instance,
as with common expressions such as “John dresses a nice jacket,” whose under-
standing is constrained by previously capturing what “dress”, “jacket”, and “nice”
mean in plain language and in the context of such an utterance, or “All prime
numbers are odd,” the understanding of which needs to know previously what is
understood by “numbers”, “prime”, and “odd” in the language of arithmetic.

Most of these statements can be expressed in the form “If this, then that”; for
instance, “If (divisors of a prime number are only itself and one, and an odd number
is one whose division by two gives a remainder of one), then (all prime numbers are
odd).” They are not simply assertive statements, but conditional, or,
if/then-statements, and their good comprehension shows some evidence of matu-
rity; in childhood, for instance, it often takes some time to understand fully if/then,
hypothetical, statements. Analogously, most questions are of a conditional type,
such as “Because today is very cloudy and wet, will there be a flood?” or “If the
connectives are prod and W, do the distributive laws hold?”

Hence the analysis of conditional statements’ meaning is paramount for studying
reasoning under a symbolical representation. Knowledge always implies some
former knowledge, even for establishing the Peano axioms defining the positive
integers, or those defining an ortholattice. Obviously, sometimes the previous
knowledge can be of a very different nature of the sequent one; in physical subjects,
for instance, the former knowledge can be of an experiential type and the sequent
one of a purely formal one, and in mathematical subjects the previous knowledge
can be of a formal type.

Actually, and at least partially, new knowledge comes from some older
knowledge even if, in ordinary reasoning, it is not always possible to reduce it to a
few axioms such as in the case of arithmetic with those of Peano, in which all
possible new knowledge is already compacted and deductively extracted from it,
although sometimes with the help of a sophisticated mathematical methodology. It
should be noticed that the “artificial” language of arithmetic is not only translatable
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into plain language, but also basically thought in it. Plain language is indeed the
way we have for doing almost everything.

5.1. Let (X, <P, mP) and (Y, <Q, mQ) be the respective meanings of P in X and Q in
Y, and suppose that the relation

RðP;QÞ�X½P� � Y ½Q�

represents a linguistically expressed relationship between the statements “x is P”
and “y is Q”; for instance, “No prime number different from 2, is even,” or “With
too much sugar, beverages are not healthy.” Then, we can consider the “con-
strained”, or “relational”, predicate Q/P (Q if P, or Q provided P) naming the
relation R(P, Q), by defining

ðx; yÞ is Q=P , ðx is P; y is QÞ 2 RðP;QÞ:

Relational predicates Q/P are essential for almost everything and, sometimes,
they receive a specific name. In the logical calculus, for instance, Q/P is understood
as “If P, then Q” and in the Boolean case it is usually identified with “not P or Q”,
that is, Q/P = P′ + Q. In plain language there are cases in which Q/P is understood
as “P and Q”; that is, Q/P is identified with P � Q, and so on.

There are also cases in which Q/P is simply indicative of a possible action and
sometimes understood as a command; for instance, “There is an ashtray close to the
hand [in which] you hold the cigarette.” Anyway, and usually, it is not Q/P
coincidental with P/Q.

In general, the qualitative meaning of Q/P in X � Y, <Q/P, should be linked with
the respective meanings <P, and <Q, in forms such as it verifies

\Q=P �\Px\Q;

an inclusion not guaranteeing the measurability of Q/P because this inclusion
cannot avoid the possibility <Q/P = Ø. Anyway, provided <Q/P were not empty,
there would be some possible definitions, including

\Q=P ¼ \P �\Q; or \P
�1 �\Q; or \P �\Q

�1; or
\Q=P ¼ \P

�1 �\Q
�1;

and the like, each facilitating obtaining possible measures mQ/P in the function of
the corresponding measures mP and mQ. For instance, in the first case, and provided
the measure were decomposable (i.e., there would be a numerical function J: [0, 1]
� [0, 1] ! [0, 1], such that mQ/P = J o (mP � mQ)), it suffices a nondecreasing J in
its two variables to have:
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x1; y1ð Þ\Q=P x2; y2ð Þ , x1\Px2 & y1\Qy2 ) mP x1ð Þ�mP x2ð Þ & mQ y1ð Þ�mQ y2ð Þ
) J mP x1ð Þ;mQ y1ð Þð Þ� J mP x2ð Þ;mQ y2ð Þð Þ , mQ=P x1; y1ð Þ�mQ=P x2; y2ð Þ:

An analogous result can be obtained in the second case, with a function J being
decreasing in its first variable, and nondecreasing in the second. Of course, to state
that the functions obtained in this way are actually measures of Q/P, the relationship
between maximal and minimal elements is lacking and thus unknown. For instance,
and in the second case, provided that a maximal (x, y) for <Q/P were to imply
that x is a minimal for <P, and y a maximal for <Q, then it would suffice taking a
function J decreasing in its first variable, nondecreasing in the second, and verifying
J(0, 1) = 1, because then mQ/P(x, y) = J(0, 1) = 1, and so on are with it.

As always, it is clear that the measures of the constrained predicates should be
obtained by a careful analysis of the behavior of their qualitative meaning, and its
relation to those of P and Q; no general recipe exists for it, and their decompos-
ability is but a hypothesis to be checked, in each case, within the underlying
context.

5.2. Several linguistic interpretations can be done to Q/P as it is, for instance, the
before-mentioned “not P or Q = P′ + Q′” that, even not being the unique existing
interpretation, deserves a stop because it is usually considered as such in the cal-
culus with precise words. In the quantum calculus Q/P is interpreted by “not P or
(P and Q)” = P′ + P � Q that, in the classical case in which distributive laws hold, is
just reduced to (P′ + P) � (P′ + Q) = P′ + Q, because the classical excluded-middle
principle implies (P + P′) � S = S for all S. This leads to the observation that, as
with the linguistic connectives “and”, “or”, and “not”, there is no universal form of
expressing if/then statements in plain language; for instance, and as said before,
there are contexts in which they are understood by “P and Q”. Note that were the
conjunction “and” commutative, it would follow the oddity Q/P = P/Q.

The undisputed algebraic structure allowing us to model what is relevant for
computing with precise words, is that of the calculus in Boolean algebras. In them,
many formulae deduced from their axioms represent the patterns of the exact
reasoning with such words, and it deserves some comments concerning the rep-
resentation of conditional statements.

Once a constrained predicate Q/P is represented in a Boolean algebra by the
operation p ! q = p′ + q (p representing “x is P”, and q representing “y is Q”), and
the affirmation of “(x, y) is Q/P”, is understood as p′ + q = 1 (if p, then q, is a
tautology), it is easy to deduce that this is equivalent to p � q, the natural order
relation of the algebra, coming from its lattice’s part, and defined by p � q = p or,
equivalently, by p + q = q. In fact, if p′ + q = 1, it follows that p � (p′ + q) = p�
q = p; and if p � q, it follows that q′ � p′, and then q′ + q = 1 � p′ + q; that is,
p′ + q = 1. With this sequence of steps, the relation R(P, Q) is simply reduced to be
represented by the relation of partial order � , independently of which the words
P and Q can be. With it, the theoretical desiderata, typical of mathematics, to count
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with a universal and not semantically dependent symbolism, is reached at the cost
of only attending to syntax.

Anyway, and for what corresponds to proving mathematical theorems, the model
seems to be pretty good even if some mathematicians did claim against some of its
suppositions, the so-called “intuitionists,” who, not accepting the strong character
of negation, place themselves in a setting weaker than a Boolean algebra, and,
consequently, refuse the abundant proofs obtained by reduction to absurdity, and
only accept those that, at least potentially, can show how a solution could be
effectively constructed step by step. Nevertheless, almost all working mathemati-
cians don’t adhere to intuitionism’s claims, and remain anchored in classical
Boolean methodology.

The situation is actually different concerning the search prior to a proof, in which
case mathematicians proceed through the (apparently) disorganized common sense
reasoning as do ordinary people. On the other hand, if computing machines prove
their capability of algorithmically proving theorems, the machines still show a
serious lack of imagining or guessing possible solutions for a given problem.
Guessing is still a challenge for computers, and without overcoming it, computers
will not be able to reason like people do and the Gordian knot of artificial intel-
ligence will remain unopened.

Concerning the so-called logic of quantum physics represented in orthomodular
lattices, lacking the Boolean distributive laws, constrained statements are often
represented by the operation p′ + p � q, the Sasaki hook, that once made equal to 1
(the lattice maximum) also becomes equivalent to p � q, and a desiderata such as
the former is reached. Another form used for representing a conditional is the
Dishkant hook q + (p′ � q′), also leading to the order of the lattice.

Nevertheless, in the case of De Morgan algebras, neither p′ + q, nor p′ + p �
q are useful for representing constrained statements Q/P by such operations p ! q,
due to not permitting the modus ponens scheme to hold, and usually translated into
the inequality p � (p ! q) � q, allowing us to state that p = 1, and p ! q = 1,
gives q = 1 (the assertions of P and Q/P assure that of Q). In fact, provided it were
p � (p′ + q) � q for all p and q in the De Morgan algebra, by just taking q = 0 it
would follow that p � p′ = 0 for all p, implying the absurdity that the De Morgan
algebra is just a Boolean one, and it analogously happens with p′ + p � q, because
q = 0 also implies p � p′ = 0. It is for this reason that different expressions should be
used in De Morgan algebras for representing conditionals.

One such representation comes from the fact that, in complete Boolean algebras,
it is p′ + q = Sup {z; p � z � q}, as proven by the following steps.

(a) p � (p′ + q) = p � q � q, proving that p′ + q is among the z.
(b) Provided a bigger z were to exist, that is, such that p′ + q � z, and p � z � q,

it would follow that p′ + p � z = p′ + z � p′ + q, and, because it is z � p′ + z,
it follows that z � p′ + q, and hence it is proven that z = p′ + q.

Then, a possibility consists in taking, in complete De Morgan algebras,
p ! q = Sup {z; p � z � q}, after checking that it verifies the MP inequality.
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Notice that it is obvious provided p ! q were attainable, that is, if the supremum
were just the maximum of the set {z; p � z � q}.

5.3. What does Q/P represent when P and Q are, respectively, just known by their
membership functions, but no universal representation of the conditional can be
supposed? The usual way consists in a first step accepting the hypothesis that the
membership function of Q/P, lQ/P, is decomposable, after doing some checking of
that aspect. The second step consists in finding a suitable numerical function J of
two arguments, giving

lQ=Pðx; yÞ ¼ J lPðxÞ; lQðyÞ
� �

; for all x in X; and y in Y ;

“suitable” refers here to being in accordance with the contextual linguistic inter-
pretation of Q/P. Finally, the third step consists in checking that the constructed
function verifies the inequality of modus ponens for some numerical function F:

FðlPðxÞ; J lPðxÞ; lQðyÞ
� �� lQðyÞ; for all x in X; and y in Y ;

for it suffices to study if the numerical inequality

F a; Jða; bÞð Þ� b holds for all a; b in ½0; 1�;

by searching for the functions F allowing its validity.
For instance, provided Q/P could be interpreted as “Not P or Q”, the function

J should be of the type J(a, b) = G(N(a), b), with selected suitable functions G,
representing “or”, and N, representing “not”, and, once both are chosen, a modus
ponens function F for the verification of F(a, G(N(a), b)) � b, should also be
found. Provided the representation of Q/P were to correspond to “Not P, or P and
Q”, it should be J(a, b) = G(N(a), F(a, b)), and a suitable modus ponens function
F* verifying F*(a, G(N(a), F(a, b)) � b, for all a, b in [0, 1] should be also found.

Provided none of these models, or proto-forms, were adequate, there would still
be the possibility of reverting to a function JF(a, b) = Sup {z in [0, 1]; F(a, z)
b}; such a case happens when, for instance, it is very difficult to describe lin-
guistically not P = P′, making the design of a membership function with such a
linguistic label extremely difficult.

5.4. The representation of if/then statements is certainly relevant in the applications
of fuzzy sets to control systems inasmuch as there are many dynamical systems that
can be linguistically described by means of imprecise rules that, once established by
an expert and translated into fuzzy terms, serve for computer simulation and also for
the practical reproduction of the actual system’s behavior, the basis of industrially
successful fuzzy control.

It is with such linguistic rules, “If antecedent, then consequent,” very often
expressed in plain language with imprecise words, that the design of the negation of
their antecedents is sometimes very difficult, if not impossible, by referring to
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several possible and different situations. Hence, they should be either represented
by a JF function, or by another function J also not containing the antecedent’s
negation.

The most used such functions in fuzzy control are J(a, b) = min (a, b), and
J(a, b) = a. b, that, coming from interpreting “If P, then Q” as “P and Q”, generate
the methods called, respectively, Mamdani and Larsen. They are, notwithstanding,
commutative operations, and consequently, force the equivalence between Q/P and
P/Q, contrary to the meaning of rules that are not usually reversible.

These functions verify the MP inequality with F = min (e.g., it is min (a, a.
b) � min (a, b) � b) and there is an easy form for transforming these operations
into another, but not commutative, J:

Jða; bÞ ¼ minðak; bÞ; and Jða; bÞ ¼ ak:b; with k[ 0:

Both satisfy the MP inequality with F = min: for instance, min(a, min (ak,
b)) � min (ak, b) � b. It corresponds to interpreting Q/P in a “conjunctive” form,
Q/P = P and Q, with a noncommutative “and”, as is typical of plain language; that
is, it corresponds to a linguistic interpretation of if/then statements proper to plain
language and reached by modifying the antecedent of the rules by taking lP(x)

k

instead of lP(x) at each point x.
A general and formal interpretation of Q/P is done by the general operation with

connectives p ! q = p′ � q + p′ � q′ + p � q, a proto-form that, in a Boolean algebra
is reduced as follows.

p ! q ¼ p0 � qþ q0ð Þ þ p � q ¼ p0 þ p � q ¼ p0 þ pð Þ � p0 þ qð Þ ¼ p0 þ q:

Note that the linguistic expression of the former first equation is

``It is not p and it is ðq or not qÞ; or it is ðp and qÞ'';

covering all the possibilities for stating Q/P with connectives. For instance, the
conditional statement “If it is raining, I take my umbrella,” means, “It is not raining
and (either I take my umbrella or not), or (it is raining and I take my umbrella)” and
so on.

A still more general operation is

p ! q ¼ a � p0 � qþ b � p0 � q0 þ c � p � q;

with a, b, and c in the Boolean algebra, and of which the former proto-forms are but
particular cases: for instance, with a = b = c = 1, p′ + q is obtained, and with
a = b = 0, c = 1, p � q is obtained. Note that this (conjunctive) proto-form p �
q comes from avoiding the term p′ � q + p′ � q′ = p′.
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5.5. When F is a continuous t-norm, it is JFða; bÞ ¼ 1 , a� b, but it is neither that
the J of Mamdani, nor that of Larsen, verifies such equivalence. In fact, min
(a, b) = 1 is just equivalent to a = b = 1, and the same happens with prod
(a, b) = 1. It can be said that functions JT order [0, 1], but that neither min nor prod
order it. It analogously happens with the functions of the types G(N(a), b), and
G(N(a), F(a, b)); for example, maxð1� a; bÞ ¼ 1 , a ¼ 0 or b ¼ 1, and
max 1� a;minða; bÞð Þ ¼ 1 , a ¼ 0 or a ¼ b ¼ 1.

Of course, these notions can be translated into [0, 1]X, and in this sense, it is
JF(l(x), r(x)) = 1 for all x in X , lðxÞ� rðxÞ for all x in X , l� r. Of course,
from a mathematical point of view functions J ordering [0, 1]X can be more exciting
than those not ordering it, but things are what they are, and what should be modeled
by means of mathematics is the very complex plain language that cannot be flat-
tened by imposing external properties on it, unless they can be internally checked
and are actually found to hold. The risk lies in obtaining mathematical models not
modeling what is tried to be modeled.

5.6. Let’s make a last and short comment on the philosophically troublesome
subject of counterfactual conditionals, that is, those whose antecedent is but
imaginary. They are typical when joking; for instance, “If this year is 2060, now it
is raining,” “If the moon is made of cheese, then I am reading a book,” “If this book
is on the history of Rome, I will learn how Neanderthals disappeared,” and so on.
Such statements are, actually, meaningless even if some of them can be true under
some interpretation, as is the second one because (The moon is made of
cheese) + (I am reading a book) = The moon is not made of cheese, or I am writing
a book, is currently true. The first, notwithstanding, cannot be currently stated as
true, because its antecedent is false and its consequent’s truth cannot be fixed
inasmuch as it depends on the moment. The third cannot be stated as true because
no actual relationship can be presumed between the Romans and the Neanderthals
that disappeared before the beginning of Rome’s history. Note that interpreting the
second conditional in conjunctive form, “The moon is made of cheese and I am
reading a book” has no chance of being true.

Notwithstanding, some special counterfactual conditionals could facilitate
nondeductive creative reasoning, something that, although it is further considered
later, for right now an illustrative example suffices. These counterfactuals appear
when no more hypotheses are known to explain something well. The hypothesis is
the conditional’s antecedent, and its consequent is what is tried to be checked and
that, if it actually occurs, will produce more confidence in the hypothesis. It hap-
pened, in the old geocentric conception of the heavens, by presuming (the
hypothesis) that the planets were doing epicycles from which their positions were
calculated and observed by the naked eye. Because such observations by the naked
eye confirmed the computed positions very well, it was believed that the conditional
“If epicycles, then positions” was correct with its consequent either correct or not
correct. Hence, the conditional was interpreted as “Not epicycles, or positions”
(e ! p = e′ + p), and taking the truth values t(e ! p) = 1, and t(p) = 1, from
t(e ! p) = max(1 − t(e), t(p)), it follows that 1 = max(1 − t(e), 1), holding for any
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value of t(e); that is, no conclusion on the truth or falsity of the hypothesis can be
concluded by presuming the conditional is true. By presuming it is false, the
resulting equation 0 = max(1 −t(e), 1) shows, nevertheless, the absurdity 0 = 1 that
leads to perplexity.

Notice that presuming e ! p = e � p, then t(e ! p) = min(t(e), t(p)) implies
1 = min(t(e), 1) = t(e), that the antecedent is true; it seems that, at least, the “belief”
in the truth of the antecedent after presuming that of the conditional and once that of
the consequent is checked, is better taken into account by the conjunctive inter-
pretation of the conditional.

This is the kind of troublesome worry counterfactuals produced historically by
playing with them in deductive reasoning.

In sum, counterfactuals cannot always be taken into account for safe deduction;
they can be, perhaps, considered as a kind of help for guessing. For instance, in old
times, it was common to say, “This happens as if it were such and such,” equivalent
to asserting the conditional, “If such and such, then this,” but without asserting the
reality of the antecedent “such and such”, and only taking it as a working
hypothesis allowing computations. This was how Galileo (supposedly) tried to
defend himself from theologians, by thinking the famous, “Eppur si muove”
(Italian: “And yet it moves”).
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Chapter 6
Linguistic Qualification, Modification,
and Synonymy

Affirmative relational statements are often uttered in plain language, such as “The
dark tower is spacious,” that, within a universe of towers, and with the words
P = dark, and s = spacious, can be represented by “The tower is P, and it is s,” or,
shortened by “The tower is P is s.” In such statements, the information P facilitates
the elements in the universe X, and is constrained by qualifying by s. Representing
such statements by “x is (P is s)”, it is said that s linguistically qualifies, or
constrains, P in X, and it can be considered that (P is s) is a new qualified or
constrained predicative pair acting on the universe X, and perhaps renamed in it in
some shortened but expressive form such as “This tower is dark and spacious.”

Qualification is frequent in plain language: “The green sofa is large,” “This
intelligent person is marvelous,” and the like. In all these instances, s constrains the
information P alone facilitates, and it is applied to X [P] in an imprecise, or
sometimes precise, form, for instance, “John is tall: he has a height of 190 cm.”
Hence its abundance in plain language makes the analysis of the simplified state-
ments “x is (P is s)”, for x in X, of some relevance, either if s is an imprecise, or a
precise word, or a complex of words. Qualification is a trick plain language
employs for constraining the meaning of imprecise words and facilitating more
information. The first question is finding the meaning of “P is s” in X.

6.1. Let’s suppose that P and (P is s), both applied to X, show the respective
meanings (X, <P, mP) and (X, <P is s, mP is s), of which only the first is known. What
about the meaning of s?

It can be supposed that s is applied to the range of values of mP simply for the
goal of composing its measure with that of P; that is, such meaning is supposed to
be ([0, 1], <s, ms), and then on which conditions it can be mP is s = ms o mP is
studied. Note that this is a hypothesis corresponding to suppose that s, in principle
applied to X [P] has, as a proper numerical counterpart, a word s* that applied to
[0, 1], and once specified, is identified with s. What follows is under this
presumption.
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In the first place, it seems obvious that if it is “x is (P is s)”, it should also be “x isP”,
with which it is reasonable to suppose only that <P is s � <P, an inclusion not assuring
the nonemptiness of the first relation, but that provided it were not empty means

x\P is sy ) x\py ) mp xð Þ�mp yð Þ:

It (newly!) suffices the hypothesis that ms: [0, 1] ! [0, 1] is nondecreasing for
arriving atms(mP(x)) � ms(mP(y)), and it only lacks knowing what happens with the
maximal and minimal elements with respect to <P is s. But it does not seem bizarre to
suppose that all its maximal and minimal elements should also be maximal and
minimal, respectively, for <P. Consequently, it suffices to presume ms(1) = 1 and
ms(0) = 0, and then, if x is maximal, mP is s(x) = ms(1) = 1, and if y is minimal, mP is

s(y) = ms(0) = 0 and under all these conditions ms o mP is a measure for (P is s).
How, in the toy example given by P = small in [0, 10] and s = large in [0, 1],

can (small is large) be named? Supposing msmall(x) = 1 − x/10 and large identified
with the linguistic label of the subinterval (5, 10] in [0, 10], it follows that mP is

s(x) = ms(1 − x/10), and because ms(x) = 0, if x 2 [0, 5], and 1 in (5, 10], is mP is

s(x) = 1, if x 2 [0, 5) and 0 otherwise. Thus, under such specification of s, “x
is small is large”, “x is less than five” and “small is large” can be called “less than
five”. Of course, and provided s were specified by the identity ms(x) = x, the
meaning of “small is large” would just coincide with that of “small”; under this
specification of s, the qualification does not add a single bit of information to P and
s results in a redundant word.

Note that each time s is precise, or crisp, (P is s) also has a precise meaning. To
capture the full meaning of (P is s) well, it is necessary that those of P and s have
previously been captured; provided the meaning of s in X [P] were not identifiable
with that of some s* in [0, 1], then the meaning of (P is s) in X should be directly
studied, but without the possibility of taking ms o mP as its measure.

6.2. Let m be an adverb immediately applicable to words P, giving a new and
complex word mP; for instance, if P = tall and m = very, it is mP = very-tall, or if
m = more or less, it is mP = more or less tall. It is another way of qualifying P by
constraining its meaning and serving more information. It is also frequent in plain
language, and it is said that m is a linguistic modifier, or a semantic hedge. Provided
the meaning of P in X were known, which meaning can be attributed to mP in X?

As in Sect. 6.1 it is supposed that m acts in [0, 1]; that it is � � <m, and
<mP � <P-. With it, follows

x\mPy ) x\Py ) mP xð Þ�mP yð Þ;

and by supposing anew that mm is a nondecreasing function [0, 1] ! [0, 1], is

mm mP xð Þð Þ�mm mP yð Þð Þ:

58 6 Linguistic Qualification, Modification, and Synonymy



Thus, provided it could be stated that the maximal and minimal elements for <mP
are maximal and minimal, respectively, for <P, it would be concluded that
mm(mP(x)) = mn(1) = 1, if x is a maximal for <mP, and mm(mP(x)) = mm(0) = 0, if
x is a minimal, and provided it were mm(1) = 1, mm(0) = 0. Hence it suffices to take
a nondecreasing function mm with these border conditions, for having that
mmP = mm o mP is a measure for the qualitative meaning of mP in X.

Inasmuch as functions in [0, 1] only can be below, above, or crossing the
identity function Id(x) = x, the two cases of modifiers such that either id � mm, or
mm � id, respectively called “extensive” and “contractive” modifiers, are of
interest. Among the contractive are those with mm(x) = x2, and among the extensive
those with mm(x) = + √x, that were considered by Lotfi A. Zadeh when he, for the
first time, introduced the possible membership functions of “very P” and “more or
less P”, respectively. Note that, for instance, id � mm implies mP � mm o
mP = mmP, and mm � id implies mmP � mP, inequalities justifying the names
given to the corresponding modifiers.

Of course, instead of these two functions, other functions being either contrac-
tive or expansive can be obviously taken to modify P accordingly with the con-
textual use of the corresponding words, for instance, instead of x2, the function
equal to 0 up to 1/3, followed by a straight line segment from (1/3, 0) to (2/3, 1),
and continuing with value 1 up to the border 1 of the unit interval.

Let’s show, for instance, a toy example with m = very and P = short in [0, 10].
It can be taken mvery(x) = x2, because “very” seems to be a contractive modifier,
and thus mvery short(x) = (1 − x/10)2 = x2/100 − 2x/10 + 1. Because “more or less”
seems to be an expansive modifier, it can be taken mmore or less(x) = + √x, and then it
is mmore or less small(x) = + √(1 − x/10) and so on.

6.3. Synonymy is a semantic, contextual, and important linguistic phenomenon in
plain language that, almost nonexistent in the artificial languages, refers to close-
ness of meaning. Two words P and Q are said to be synonyms if their meanings are
almost coincidental; obviously, for a deep study of synonymy what “almost coin-
cidental” could mean should be tried to be clarified, and how it can be represented
in mathematical terms.

It should be pointed out that, as can be easily seen by looking at a dictionary of
synonyms, the chains of synonyms break in a short number of steps; if word P is
synonymous with Q, andQwith R, and so on, it always arrives at a word Z that is not
a synonym of P. That is, the semantic relation of synonymy is not transitive and, in
some cases, it is not even symmetrical because the context could be such that P can
be taken as a synonym of Q, but Q cannot be taken as a synonym of P. Meaning is,
along a chain of synonyms, sequentially flattened in such a way that ends by losing
any meaning’s similarity with the first word. This seems to note that the semantic
phenomenon of synonymy is essentially linked with imprecision, and that with
precise words the only existing synonymy is due to a large intersection of the sets
representing the words, that is, an almost coincidence of meaning and also some-
thing of an imprecise character unless there is coincidence of both sets.
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Synonymy is reconsidered later on and from a different point of view. But,
because synonymy is actually related to meaning, it is of some interest to advance a
few previous remarks on it. When a pair of words P and Q can be seen as syn-
onyms, it is also said (perhaps abusively) that “P means Q”, or that “Q means P”.
Let’s recall that, in principle, synonymy is not always a symmetrical relation.

Let P be with (X, <P, mP), and Q with (Y, <Q, mQ). It is said that Q is an
f-synonym of P if a function f: X ! Y exists and verifies:

x1\Px2 , f x1ð Þ\Qf x2ð Þ:

With it and provided f were bijective (one to one and onto), because then it
would be, equivalently, y1 <Q y2 , f−1(y1) <P f−1(y2), the respective qualitative
meanings would be equivalent. It is

\Q ¼ \P o f�1 � f�1
� �

;

and their respective measures can be linked by

mQ ¼ mP o f�1; that is; mQ yð Þ ¼ mPðf�1ðyÞÞ; for all y in Y ;

or mP xð Þ ¼ mQðf ðxÞÞ; for all x in X:

Note that if f is not bijective but just one to one, only this last equality can be
considered. When X = Y, and f = idX, a pair of id-synonyms is of exact synonyms;
two different words endowed with the same meaning.

For instance, the toy example given by P = small in [0, 1], and Q = short in [0,
10], shows that mshort(y) = msmall(x/10) = 1 − x/10 is with f(x) = 10x; hence, small
and short can be considered f-synonyms with f = 10 � Id.

The f-synonymy between P and Q could be symbolically written (Y, <Q, mQ) = f
(X, <P, mP), or, if f is bijective, (X, <P, mP) = f−1(Y, <Q, mQ), to mark the functional
relation between the respective meanings of P and Q, and with the equal sign
holding if X = Y, and f = idX to reflect the case of exact synonymy.

It should be pointed out that not all pairs of synonyms in plain language are just
f-synonyms; the linguistic phenomenon, involving approximate meaning, is more
complicated and requires gradation, but for what refers, at least, to the preservation
of meaning between two different universes of discourse, as a type of family
resemblance between words, f-synonymy is illustrative.
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Chapter 7
Thinking, Analogy, and Reasoning

Thinking is a natural phenomenon generated in the human brain thanks to its neural
networks, and whose experimental and theoretic study corresponds to the neuro-
sciences. Speaking and reasoning are but external manifestations of thinking in
which both the configuration of the throat and the brain’s functioning play decisive
roles; if thinking is not always directed by the person, speaking and reasoning are
often so. Thinking could be unconscious, but reasoning is almost always conscious
and directed to a goal, and for many years attempts have been made to study and
mathematically model it; the history of logic contains such an evolution from old
philosophy to modern mathematical logic. Reasoning is deeply related to
rationality, and at the end, the old Greek term Logos referred to both word and
reason; we refer to conscious reasoning.

Usually, the natural interlinking of speaking and reasoning is seen as the ground
on which rationality is anchored; and it was in the field of psychology where the
disturbances, and illnesses, of speaking and reasoning began to be studied. The term
“Logos” referred to both people’s capability of conducting articulate reasoning, and
the use of “the word” to speak for communicating the reasoning and its conclusions.
Now, once a new theoretic presentation on how to build up complex statements by
capturing their meanings is done, a moment for advancing a view on reasoning
seems to have arrived.

7.1. It should be first pointed out that by “reasoning” it is here understood the kind
of reasoning laypeople consciously conduct, a reasoning that scarcely shows all the
characteristics of the formal and deductive reasoning mathematicians manage for
proving their conclusions, the theorems constituting the corpus of mathematics.
Ordinary, plain, everyday, or commonsense reasoning (for short, sometimes and
afterwards, reasoning), is often not formally deductive, even if it can sometimes
present some features approaching formal deduction. Nevertheless, a first charac-
teristic of ordinary reasoning is the “unsafe” character of its conclusions, because
(contrary to formal deduction among whose conclusions, or consequences, con-
tradictory pairs of them can never be found) this is not at all rare in the ordinary
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reasoning done by people. Formal deduction is reasoning with a safety net, but
commonsense reasoning is without; it is always like walking in a loose robe.

In part, it was the importance Euclid’s Elements acquired during the Middle
Ages as a model for performing correct reasoning that identified correct reasoning
with the safe, and beautiful, deductive reasoning of geometry. Nevertheless, what
should essentially be preserved from such a view is just the impossibility of con-
ducting any reasoning without previously accounting for some actual information
on the corresponding subject; without such information, for instance, the axioms in
geometry, no geometrically interesting conclusions of reasoning are possible.
Reasoning cannot be based on an empty set of informative items; to start from some
premises reflecting the information, or evidence, is strictly necessary for concluding
something actually significant.

The specification of the premises can come from some previous, and perhaps
disorganized, thinking on a related question that can involve images, not only
words; nevertheless, and in the end, the premises should be specified by words.
Without specifying them by words it is difficult, if not impossible, to know if there
are, or are not, contradictions among them, that is, if the starting information is
liable. Reasoning is done in an environment of knowledge and inside thinking.

The set of premises is just constrained to not contain contradictions, that is,
neither pairs of contradictory premises, nor self-contradictory ones, something
accepted as a minimal caution for conducting any reasoning. Nobody admits that
contradictions among the evidence can be accepted; before starting to reason, it
should have been secured that no contradiction exists among its premises. Were a
pair of contradictory premises found, at least one of them should be excluded; a
previous analysis of the premises’ lack of contradictions is compulsory.

The category of liable information is never assigned to a set of contradictory
premises on a given subject, and in general to contradictory statements whatsoever.
For instance, in a conversation on the state of today’s weather, which information
could actually be furnished by two statements such as “Right now there are very
dense clouds,” and “Right now it is totally sunny”? Who will accept these state-
ments as an actual piece of information on the current weather’s state?
Contradiction is the worst sin of reasoning; it should be prohibited in, at least, the
premises, and, provided two contradictory conclusions were obtained at the end of
the reasoning, at least one of them should finally be rejected, and the reasoning
reviewed.

Two statements p and q are said to be contradictory if the conditional statement
holds, “If p, then not q”, and q and p are contradictory provided “If q, then not p”
holds; p is self-contradictory provided “If p, then not p” holds. Contradiction is not
always a symmetric relation even if it can happen under some conditions such as
those in Boolean calculus, in which p � q′ ) (q′)′ � p′ , q � p′ holds, and
reciprocally; nevertheless, it should be pointed out that this proof is made by
presuming that stating “If p, then q” is represented by the lattice’s order � of the
Boolean algebra in the form p � q, and that negation is strong, (p′)′ = p, for all
p. Note that it will also hold provided the negation were to be weak, that is, it
verifies q � (q′)′, for all q. In a path towards analyzing ordinary reasoning, it
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seems essential to have a previous reflection on how people can obtain relationships
among the meanings of the intervening words for arriving at conceptualizing them
and for managing such meanings to reason. In principle, it can be said that rea-
soning needs a linkage of meanings with something in common, allowing a view of
a real or virtual situation; when the “overlapping of meanings” is large enough, the
idea of synonymy appears and shows that a reasoning by synonymy will stop. In
some way, all reasoning is but a kind of chain of statements whose meanings are
related in some form. Only in the deductive/proving reasoning of mathematics are
the steps of such chains perfectly linked each one with the following in such a form
that not a single hole can exist between them. In common reasoning, the existence
of holes, or jumps, is not at all rare, and hence the relationship between its con-
clusions and its premises is not always clear; only in the case of formal deduction,
can the reasoning be perfectly repeated step by step by another person.

If common reasoning could be compared with a house that is badly constructed
without the help of an architect, and without taking too much care of its sustaining
structure, formal deduction is comparable to a house perfectly well constructed by a
competent architect. In the first, removing a single brick can cause the failing of the
house, but in the second and for its failing, removing much more than a brick is
necessary. Formal deduction requires a perfect enslaving of statements, but in the
ordinary forms of reasoning such a kind of chain is often far from being perfect.

People’s reasoning is, very rarely, of a totally deductive type, even if people try,
in what it is possible, to approach formal deduction; at the end, formal deduction is
but a way to control the effectiveness of a reasoning. The uncontestable fact is that
formal deduction is the safest type of reasoning, but it requires symbols working in
an as “natural” as possible mathematical framework. Hence to attempt a symbolic
study of ordinary reasoning allowing its classification in its diverse types and, at the
end, clarifying what reasoning actually consists in, it is necessary to know previ-
ously how reasoning is initially fueled, and which are its main natural engines.

7.2. Analogy seems to be the first natural engine facilitating reasoning. Analogy is
based on the brain’s human capability for capturing partially overlapping resem-
blances among the real, or virtual, objects that are taken into account; it is the
linkage of such overlapping meanings that permits reasoning.

Note that thinking is larger than reasoning, because it generates and comprises,
for instance, wishing, imagining, memory or storage of information, emotions,
dreaming, mixing of old images, and so on, all of them useful for doing reasoning.
If thinking is possible without articulate language, conscious reasoning is not, and
analogy moves between thinking and ordinary language, inasmuch as without
previous conceptualization and naming concepts, it seems very difficult for analogy
to support reasoning extensively.

Speaking a language of which reasoning is the most important feature is shared
by all people on Earth. From childhood, people simultaneously learn to speak well
one, two, or even more languages, to appreciate metaphors, to establish analogies
and express them with words, to manage conditionals, and so on. With all this,
people learn how to reason, and learn to feel perplexed by an absurd conclusion;
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they informally learn how dangerous a contradiction is, and that one should flee
from it. The simultaneous learning of both language and reasoning is, in good part,
a social phenomenon whose physical possibility lies in that of thinking which all
sane children naturally have. All that becomes as it actually appears, due to the
brain’s physical configuration and functioning that controls the body, allows
speaking and thinking, as well as their manifestations such as singing and rea-
soning, and even enjoying or hating something.

It should be pointed out that one of the main goals of reasoning is satisfactory
support for the taking of decisions, and particularly to decide “intelligent” actions;
reasoning is basically an important and natural tool with which people are endowed
for their survival, not only of each person but, and essentially, of the species Homo.
This is the reason for considering that the essential characteristic of Homo, dif-
ferentiating its members from those in other animal species, is rationality, the Logos
externally expressed by telling stories, posing questions, guessing answers, and by
computing. Our only way of knowing how to do things, how things are, and how
situations will evolve, is reasoning; its possibility is of the greatest help for satis-
fying human curiosity towards knowing and understanding what is still unknown,
or not yet understood, for foreseeing and for answering the questions people pose
continuously. Paraphrasing Albert Einstein, not to stop questioning is the human
characteristic on which all progress is based. Note that in this book, “intelligence”
only appears sometimes as the adjective “intelligent,” and just for signaling deci-
sions leading to actions beneficial for both the person and society. Intelligence is a
concept referring to apply rationality in the best form possible and, for instance, if
the capability for computing were considered an important attribute of intelligence,
today it is by and large surpassed by computing machines. The great technological
problem is how to endow computers with rationality, with Logos.

7.3. Referring to human rationality requires jointly considering conceptualization,
or categorization, and analogy, because both permeate language and reasoning. If
concepts are abstract products of thought, analogy is what allows their linking, the
establishment of relations between them that is the essence of reasoning. But neither
is reasoning just analogy, even if analogy seems to play in it the character of an
unavoidable natural mechanism, nor can reasoning be identified with “thinking”
that comprises aspects only indirectly related to reasoning, for instance, imagining
and remembering, to say nothing of the sometimes relevant influence emotions and
previous beliefs have on reasoning. In any case, memory or storage is basic for both
conceptualization and analogy, that is, for organizing in the form of concepts or
categories what is being known, and for establishing some relationships with what
was known earlier and with the external reality.

Without some relationship to reality, knowledge risks being insufficient for both
acting and taking decisions; additionally, it is important to be conscious that any
current knowledge, at least of the world, is not forever, but that it has a caducity
date that is not previously known as it is with medicines. Knowledge is not pre-
served like medicines in a closed container; knowledge is not fixed and isolated; it
is always in flux; it varies with time.
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The often-repeated linguistic expressions “of the same kind of”, or “like that”,
already announce in language the relevance of analogy in creating “categories” or
“collectives”, naming concepts, the basis of, at least, not spontaneous reasoning. It
seems that comprehending something new lies in the possibility of comparing it
with what is already comprehended, or believed to be so; namely, in making
analogies with past experience or with already acquired knowledge. Denoting or
labeling concepts, or categories, by words, that is, by “naming” them, is essential
for remembering, managing, and relating concepts; naming nonempty categories is
an efficient way to help people’s reasoning.

For comprehending a new concept, or to find a new one, or to pose a question, or
to capture some unobvious relationship, the analogy with something previously
known or firmly believed seems to be a step forwards either good enough, or maybe
necessary; it is, perhaps, for this reason that analogy plays so an important role in
questioning. Posing questions, and guessing their answers through analogous for-
mer situations, are typical expressions of rationality. At the end, in a rough sum-
mary, science consists in a specialized and ordered guessing in particular domains,
aiming at solving previously identified problems whose solution could be stated in
the conditional form “provided this, then that”. Foreseeing, essential for surviving,
is almost always done in conditional terms; for instance, weather forecasting is
always done under the antecedent of what is currently known about the atmospheric
situation, and it is due to the antecedent’s variation that weather forecast failures lie.

Thinking is a wide natural phenomenon whose functioning, produced by neural
connections in the brain, still remains partially unknown, and neuroscientists are
today searching for the role language plays in reasoning. Actually, and from what
has recently been discovered, it seems that relational thinking is what supports
natural reasoning jointly with how emotions, intentions, and desires can direct it,
and even if forms of spontaneous thought are being explored. For many years,
thinking has been recognized thanks to some of its signs such as, in a first instance,
the capability of organizing knowledge in categories, of comprehending and
managing conditional statements well, and the linking of categories to reach con-
clusions, reasoning, in sum.

Hence analogy is an important subject to reflect on how concepts are generated,
on how they can be scientifically domesticated, and on how analogy initially helps
thinking with the kind of organization in which reasoning consists. In this respect
the following imaginary example can be in order.

7.4. In the beginning, when primitive people started to manage stones for building
walls preserving them from predators, they, at least in some way after several trials,
empirically realized that stones were of different forms, sizes, and weights (even
without having these concepts/words), and that it was better to place those that were
bigger in size and height in the wall’s first level for grounding the wall properly in
the land. In this experiential way, and after trial and error, the concept of “big” was
born, and it soon was applied to materials other than stones, such as pieces of wood
obtained from trees, as well as to the same trees, walls, animals, and the like. The
category big, referring to stones, walls, trees, animals, and the like, could then be
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managed to facilitate communication. That is, the meaning of “big” appeared for
the first time allowing the people to say, for instance, that some lake was big by
comparing it with others that were able to be skirted around in fewer days; possibly,
this also led to taking into account the concept of the “size” of lakes, trees, animals,
hills, and so on, and the new and bigger category size was born. Possibly, also the
qualitative concept of the “weight” of stones, animals, pieces of wood, and so on,
jointly appeared; it only turned to be quantitative when, fueled by trade, the first
mold for grains, or the first balance, appeared.

It seems that concepts don’t appear isolated from each other, but linked in the
form of chains of concepts keeping between them some empirically perceived
relationships. Maybe some concepts, appearing from the direct management of
physical objects, are either followed, or intermingled, with other concepts coming
from the management of the former ones; this can be, for instance, the cases with
length and weight if derived from the pair big and small, and allow the introduction
of “large” and “middle” size, for instance. In ways like those, the use of the concept
big spread all over language thanks to the analogies established by comparing
between them several different families of objects, and, perhaps, also originating
other concepts such as size. Furthermore, and perhaps by comparing with the naked
eye the height of trees, hills, and mountains, the concepts of high and top appeared,
in short, playing some Wittgensteinian sort of language game with words.

It seems difficult to believe that a concept could appear isolated from others, and
it is more credible that concepts are generated inside a more or less organized
conglomerate of old and new concepts that migrate between several universes of
discourse. If it is very difficult, if not impossible, to establish the genealogy of a
given particular concept, what seems without doubt is that its genesis is grounded
on experience and analogy; once experience is presupposed, rationality is not even
imaginable without the capability of making analogies, of appreciating some family
resemblances. It is like in the movie 2001: A Space Odyssey, in the beginning of
which the monkeys imagine that some bones can be used for fighting against their
enemies by beating their heads the way they beat a stone, and showing how the first
weapon appeared.

Very often, something is considered to be understood when both the similarities
and dissimilarities it shows with something else previously known are captured; the
roots of understanding and creativity are immersed in analogy. The perhaps false
story of Newton’s apple, and also that of the Einstein lift, are but examples of it.

Those simple and imagined cases with primitive people just try to illustrate how
categorizing could empirically have been started and, once connected by analogy,
fuel reasoning. That is, helping the acquisition of reasons/arguments enough for
acting or deciding to do or not to do something, such as to place a settlement at the
border of a big lake and at the top of a hill, for counting with both water and fish,
and the possibility of observing, with enough time to react, if dangerous animals,
potential enemies, or just unknown people, approach the settlement, as well as for
doing the necessary constructive actions for building such a settlement, in sum,
constituted conjecturing or refuting the adequacy of placing the settlement there.
Note that, in the first place, it implies managing conditional statements well such as,
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“If the settlement is placed here, then it is possible to foresee the danger that could
come from an unexpected approach,” not implying, of course, the impossibility of
placing the settlement elsewhere. Indeed, conditional statements play a central role
in reasoning.

For mentally establishing a commonly shared concept, a previous group’s
experience with elements of some first family of objects in a universe of discourse
interesting for the group is required; later on, the newly acquired concept migrates
to be applied in other universes by analogy. Hence, it is important trying, more or
less formally, to consider as an initial point what concerns the meaning’s repre-
sentation of imprecise concepts (such as they are “big”, “high”, etc.); they actually
permeate plain language and ordinary reasoning. The goal of its scientific domes-
tication as done before, is actually relevant. Note that concepts are singularized,
even isolated among them, and also remembered, thanks to their names; they are
commonly recognized, jointly with their opposites and negations, thanks to the
names, or linguistic labels, or predicates, that once stated, help to avoid the con-
fusion their mixing could produce. Predicates P, through the elemental statements
“x is P”, allow capturing the meaning of concepts; it is in this sense that each
predicate can be seen as the “mother” of a corresponding concept, and that over-
lapping of meaning and synonymy are seen as important linguistic phenomena.

7.5. Either a kind of Platonic precedence of concepts over previous experience with
physical or virtual samples for their application, or the possibility of a strictly
private reasoning on them, before their naming or their inclusion in language, is
something illusory and always dangerous. Concepts can only be communicated
after counting with an initial meaning. The before-mentioned elemental statements
“x is P”, once intercommunicated among a group of people, are what allow the
common comprehension of the concept, and its use in complex statements, after the
group’s members share some common meaning of them. Only after some concepts
can be managed by recognizing “this is that” can abstract reasoning start. There
cannot be human rationality without meaning; semantics and rationality are strongly
intermingled. Semantics, the essence of understanding, comes from observing and
analyzing what is external to people; from, for instance, distinguishing between a
lake and a river by describing, after being acquainted with them, what is a lake and
what is a river, which characteristics distinguish one from the other, passing, for
instance, from “these lakes” to “lake”.

Human beings need intercommunication, sharing concepts and reasoning,
accepting or denying them; they are social beings who are not only directed by
genetics but, also, by a common culture of which language is a manifestation
helping communication by designating concepts by words that allow us to share,
modify, and improve them. Each concept charges with a cultural back for the
members of a more or less culturally homogeneous group of people, and it is often
modified through the typically social experience provided by talking; for instance,
as neuroscientists observed, it is easier to reason with familiar than with unfamiliar
concepts. In the case of an unfamiliar concept, analogy permits a first approach to
what it means.
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It should be pointed out that almost all those concepts, if not all of them, are of
an imprecise character; that is, they cannot be expressed/captured by if and only if
definitions, as they are the precise concepts of mathematics, for example, “prime
number”, “continuous function”, and so on.

Nevertheless, concepts such as the mathematical ones only can appear once the
capability of abstracting is acquired from experience, and from something stored in
the memory with the aim, for instance, of clarifying a subject through its repre-
sentation in a formal setting, and perhaps for being able to compute some of its
aspects with the help of an artificial language based on some new but related and
stringently defined precise concepts. This is possibly how the surveyors at the Nile
in ancient Egypt went from the cord with 3, 4, and 5 knots to mark rectangular
triangles in the land to Pythagoras’ famous theorem. Note that theorems are,
essentially, conditional statements the validity of whose consequent depends on that
of its antecedent; for instance, Pythagoras’ theorem holds on a Euclidean plane but
not on a spherical surface. Indeed, in some way it “defines” the Euclidean plane.

In any case, the way leading from ordinary to abstract-formal reasoning is a long
one, even if it were noticed that the abstraction capability is manifested from the very
beginning, because without it neither imagining nor understanding a conditional
statement nor that of making any analogy is actually possible. Abstraction and
imagining seem to be the brain’s capabilities developed, for instance, through mental
processes such as that of passing from “this stone” to (the category) stone, and that in
no way is limited to formal abstraction. For instance, just arriving at the category
bird, and stating, “Almost all birds fly,” already requires some abstraction; without a
minimum capability of abstraction, reasoning does not seem actually possible.

7.6. All that jointly proceeds with the human capability for questioning; posing and
trying to answer questions seems to be the reasoning task. In this sense, reasoning
can even be seen as a “mechanism” directed to answer questions. It is for this that
Homo Sapiens could be better known as Homo Quaerens (the seeker and the
sought), the current Homo species able to pose questions expressed by words. There
are other animals that also “know”, but they seem unable to pose questions to
themselves, and especially complex questions articulating chains of simpler ques-
tions; questions coming from a deep curiosity seem to be a strong intellectual
engine of reasoning. Without categorization, analogy, abstraction, and good man-
agement of conditional statements, complex questioning coming from dynamical
situations does not seem actually possible, at least in forms intellectually fruitful,
whose answers can allow foreseeing and surviving in a partially unknown envi-
ronment, or concerning difficult problems for whose solutions good guessing, and
some suitable kind of proving conclusions, is necessary.

Language, abstraction, and questioning are what facilitated our ancestors in
arriving at fiction and especially at “telling fictions”, and at “talking on fictions”, or
at “writing fiction”, through imagining virtual, not always properly physical, enti-
ties and situations. These imaginations, sometimes transformed in myths, are what
allowed Homo Quaerens, over the last 70,000 years, to cooperate effectively by
associating a number of them surpassing the small number of those that can be
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directly acquainted with some concepts, questions, guessing, and answers. That
does not seem to be much greater than around 100 people, a more or less big herd.
In such a way, commerce, religion, law, social and political organizations, science,
and especially the capabilities of transmitting information and foreseeing, were
born. This seems to be the cultural evolution giving to Homo Quaerens its singular
and marvelous capability for questioning and answering with fruitful conjectures
and, in consequence, innovating and even showing creativity. Without such capa-
bility, the species surely would either disappear, or remain bound into regions
where predators were kept under sufficient control, with food and water enough to
survive, more or less what currently happens with other mammals, gorillas and
chimpanzees that, for instance, neither spread around the planet, nor show but a
minimum innovative capability, nor are able to write; they seem to lack the word,
although they can learn some words once a person teaches them.

Along the intellectual processes leading to know deeply and to innovate, it
cannot be forgotten that recognizing contradictions also plays an important role; if it
can be said that a person grows intellectually through successive infections of
contradiction, it is clear which benefits recognizing contradiction facilitate man-
kind, and which advantages of escaping from contradiction add to Homo Quaerens’
life; there is no doubt that the appearance of a contradiction makes mentally sane
Homo Quaerens stop any reasoning and that it seems to be a central part of an
abstract formal study of reasoning. When the Pythagorean philosophers believed
that the length of the diagonal of the square contradicted their belief that it should
be a fraction of its side’s length and that, consequently, such length cannot be a
number, they just hid the result, and it took many centuries to recognize that
“irrational” entities such as √2 are but numbers.

The history of mathematics, and also that of science, contains many cases in
which the final task was to surpass (apparent) contradictions by constructively
creating new formal entities, new symbols endowed with a new meaning, permit-
ting the guessing of new questions, and opening new frontiers to research. Because
without real and complex numbers, differential and integral calculus would not
exist, current science is indebted to the passing over of rational numbers done by
introducing the irrational ones. It can be said that if the positive integers are “found”
in the world and were abstracted by the necessity of counting, the other numbers are
a human creation that needed former knowledge and abstraction, some previous
mathematical operations, and representation frameworks for it, for instance, quo-
tients for the rational and square roots for the first irrational numbers, to say nothing
of transcendent numbers such as p and e. Without formal abstraction numbers
would not be known. It is nevertheless obvious that people don’t like to continue
when actual, or believed, contradictions appear; everyone considers that contra-
diction is not acceptable.

What marks the basic jump in the way to arrive at formal abstraction is the
representation, in a suitable framework, of concepts by symbols endowed with
meaning. Representation is a concept older and wider than in a mathematical setting
alone, as shown, for instance, by the old representations of animals and people in
the pictures on the walls of caves or, in a conversation, drawing in sand a shape by
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helping to graphically show some aspects of something. But a representation’s
frame, be it a wall or the sand, is always necessary.

Representation is inherent to reasoning, and the formal case itself requires
several previous analogies, abstractions, managing of conditionals, and formal
constructions; for instance, when representing a sinusoidal curve in a Euclidean
plane, even if it is a smudged one, the mathematical plane should have been
previously constructed by abstraction of an analogy with a flat surface, and the
name of the function by an abstraction by analogy with a physical figure, and so on.
It does not seem that a so-relevant concept for “reasoning on reasoning” as is that of
representation, could be deeply analyzed without, at least, taking into account
meaning, conditionality, and analogy. The possibility of “representing” is crucial
for articulating ordered reasoning, and representing something by symbols
abstracting some features of the real things is still more important.

Additionally, it should be pointed out that even based on analogy, reasoning is
not a uniform mechanism but one that specializes itself by attending each wished
goal. For instance, the deductive reasoning of the mathematical proof is a spe-
cialization, done in a previously constructed formal framework and with an
invented artificial language, directed to check that either a conjecture, or a refuta-
tion, can be actually accepted in the corpus of mathematics, and defining the
inferential relation through a special interpretation of the meaning of conditional
statements. Reasoning continuously refines itself by more reasoning, leading to the
adoption in each case and through several abstractions of some special organization
that allows the advance of knowledge on the territory to which it is applied, such as
with reasoning on reasoning.

This view is a good reason for, directly or indirectly, trying to learn from a
first-class mentor when, for instance, either one decides to prepare a PhD disser-
tation, or to become a sculptor, a painter, a writer, a musician, a singer, and so on.
In all of these cases, and apart from learning the necessary technicalities, there is the
strictly important aspect of learning how to recognize “good” questions, the form of
actually facing them, looking for antecedents further than technicalities but in the
context in which questions are posed, seeing interesting analogies, figuring out their
answers, capturing when an answer could be seen as possibly fertile, and the like, in
sum, by acquiring what is to count with a clinical eye on the corresponding topic.

All that requires big doses of analogy, which is only possible to learn in close
contact with the best real praxis possible. A “good office” is always acquired by
intensively working as an apprentice in the workshop’s team of a great master
artisan, seeing many times the difficulties appearing in both the design and along
the process for arriving at the end, and, especially, keeping permanently excited,
worried, and critical for all them. After graduation, specialized forms of reasoning
require an apprenticeship period; good researchers fight with, and against, the work
of the greatest scientists. Parodying the words of the great geometer Luis A.
Santaló, a scientist only can be considered so if, from time to time, he or she
publishes original, new, and interesting results; at least those that are neither
original, nor new, are useless; they don’t contribute to advance knowledge or
practice.
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7.7. With all that has been said, there lacks the addition of a short comment on
formal deduction, that is, on the deduction done in a formal framework, the rea-
soning whose conclusions, or consequences, are attainable by means of algorithms
reproducing, step by step and without any jump, the passing from a statement to the
next one by using the rule of modus ponens.

As said above, this type of reasoning is the safest one, but it does not mean that
everything that can be posed in a formal framework can be attained by an algo-
rithm, as shown by those mathematical problems having been formally proven to be
undecidable, that is, impossible to neither prove them nor their negation. In those
problems and in each case, some solution can be envisaged by guessing at it, but it
cannot be reached deductively. Not all that is thinkable has, notwithstanding, the
possibility of being deductively found and hence for the advancement of knowl-
edge, guessing is necessary; without conjecturing and refuting, without guessing,
no knowledge seems to be possible. The human mind’s capability of reaching
solutions by deduction is, sometimes, blocked; something that forces us to be
humble, and paraphrasing Albert Einstein, accepting that what is actually marvelous
is not only formally to deduce some conclusions, but also formally to prove
deductively that there are cases in which this is not possible.

For all that, some kind of black over white symbolic representation can be
necessary, but it should be taken into account that, as with visual monochromatism,
intellectual monochromatism is dangerous for interpreting realities inasmuch as
things are seen in color and, at least, greys are important. Not only is gradation
basic, but considering the particular situation in which something is going on is
essential when attempting to construct a model for it.

The kind of intellectual achromatopsis consisting in reducing situations to only a
model in black over white, can lead to simplifications that do not allow us to
appreciate deeply all that is actually there, and can limit the model’s usefulness; this
is what Lotfi A. Zadeh tried to avoid in 1965 with the introduction of fuzzy sets.

Nevertheless, starting from a simplistic black over white description can
sometimes help to pose some problems with an initial and sufficient clarity for a
subsequent advance of thought.
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Chapter 8
A (Naïve) Symbolic Model of Ordinary
Reasoning

For dealing with what can be of interest to someone, and usually directed to action,
or to reaching some goal, or to understanding, or to foreseeing, and so on, the
natural instrument of thinking facilitates the linkage of concepts. Concepts originate
either for clarifying something, justifying some previous action, or foreseeing how
to reach some wished goal, and the like. Hence, at the bottom of reasoning, and in
whatever form it can be shown, abstraction, categorization, analogy, and meaning
play pivotal roles.

Ordinary reasoning, lying in the natural phenomenon of thinking and consisting
in several modalities, is in itself difficult to be formally defined and analyzed,
however, by researching what it does instead of what it is, the parts ordinary
reasoning consists in can be distinguished, and even some hints on creative rea-
soning become possible. At the least, this operational strategy allows the con-
struction of an initial symbolic model of reasoning that, perhaps, could be useful for
helping us look at how to reach higher degrees of “machine rationality” by applying
it to some particular contexts. What will remain debatable and actually open, is
whether the logos a computer could be endowed with can become like a “total”
human Logos.

It should be noticed that, essentially and as has been said before, reasoning is
impossible without counting on some previous information of its particular subject.

Without perception, recognition, distinction, and abstraction, neither conceptu-
alization, nor analogy, nor the linking of concepts, seems to be possible. A person is
a very complex physical entity endowed with many sensors, and the interpreting,
representing, controlling, and reasoning “machine,” the brain, is actually also of
enormous complexity and facilitates her or his view of the world. All this is but a
small part of the important challenge of knowing how the brain’s complex and
organic machine actually works, and currently almost the only ones of which that
can attempt to submit to some level of mathematical modeling are plain language
and formal reasoning. It will probably be many years before autonomous computers
can come to “see” the world and, consequently, represent it.
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Reasoning allows either rejecting that which contradicts some initial information
on something, or considering what is not in contradiction with it. It is not possible
to reason on nothing; from nothing only nothing can be reached; a brain (either
human or hardware), empty of recognized concepts and relationships, can do
nothing concrete, and reasoning basically consists in conjecturing and refuting from
some previous information, evidence, or knowledge. Any reasoning departs from
something that is physically seen or mentally believed, known, or just accepted;
some categories, collectives, concepts, and relationships among them are at the
beginning of all reasoning whose prosecution is done through a linkage of the items
of such starting information, and limited by what can be presumed on it. Meaning,
as well as the chaining of shared meanings, is at the roots of reasoning.

8.1. Consequently, towards a formal analysis of reasoning, it should first be stated
what “that follows from this” means, and “this is in contradiction with that”, and by
also including when something can be contradictory with itself, self-contradiction.
For instance, in ortholattices, self-contradiction is just limited to its minimum 0, but
not in De Morgan algebras and algebras of fuzzy sets; self-contradictions also
appear in plain language.

After the basic linking of concepts, the idea of contradiction is crucial for
concluding something that, more often than not, will be of a “provisory” and unsafe
character. In addition, it should be pointed out that, as has been said, the conclu-
sions reached in ordinary reasoning have unknown data of caducity, not always due
to the disappearance of some initial information, but to the appearance of a new
one. Information is not fixed; usually, it flows continuously.

Let’s suppose the existence of a (primitive) symbolic relation � between words,
collectives, or concepts, being but a naïve mathematical representation of the
“intellectual” relationship of “inference” between them. With it, denote

– p � q shortens “q is forward-linked with p”, or, written q � p, “q is back-
wards linked with p”, and regardless of how the link is actually established

– pa shortens “antonym of p”, and p′ shortens not-p
– p � / q shortens “q is not forward-linked with p”, and does not always imply

q � / p

with p, q, and so on, representing words, collectives, concepts, composed concepts,
or relationships among them and that, with the aim of simplifying and regardless of
which role language effectively plays in reasoning, they are denoted by the cor-
responding words naming them “predicates”, “linguistic labels”, or “statements” for
short.

The relation � is taken as a “primitive” one between words; the graph con-
stituted by the statements into consideration and the relation � , is the basic ground
on which reasoning is represented. With p � q it is simply stated that an intel-
lectual “movement” from p to q is recognized, and with p � / q that such a
movement is not recognized.

In principle, there are not supposed more specific properties for the relation �
further than it is not empty, that there are actually pairs (p, q) linked by it, or
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verifying p � q, that pairs of concepts effectively linked exist. A possible name for
� is “relation of natural inference” allowing to change p � q as q is naturally
inferred from p, and provided it were p � q and q � p simultaneously, it would be
said that p and q are inferentially equivalent, and shortened by p � q.

Note that there can exist pairs of statements p and q such that it is neither p � q,
nor q � p such as “John is now in the swimming pool,” and “John is now flying in
a plane”; these pairs are inferentially not-comparable, or inferentially isolated pairs,
and it is written p NC q, shortening “inferentially not-comparable” by NC. The
relation � is not always linear.

Hence, given two statements p and q, it just can be either p � q, or p � q, or
both and then p � q, or p NC q. It is always supposed that it is p � p, that each p is
linked with itself; it cannot seem a rare presumption, and excludes the possibility
that � can be empty.

The relation � , here taken as a naïve and primitive concept, tries to represent
the linkage, or intellectual movement, people establish between words, concepts, or
collectives by usually connecting their meanings, and with which reasoning seems
to be possible. Additionally, it is supposed that such a relation � is a common one
for all mentally sane people. For instance, in formal classical logic on Boolean
algebras, p � q comes from the understanding that it asserts the conditional
statement “if p, then q” that, once it is made equivalent to the affirmative statement
“not p, or q”, and supposing it is “a tautology” (equal to the greatest element of the
corresponding Boolean algebra), gives the natural (partial) order p� q , p � q ¼
p , pþ q ¼ q , p0 þ q ¼ 1, of the Boolean algebra. To formalize reasoning
mathematically, the previously “undefined” relation � should be suitably selected,
as is done in the former Boolean case.

Nevertheless and right now, very few properties of the inference relation � are
presumed with the goal of keeping a very general framework for describing rea-
soning under a minimal number of constraints but, when necessary for either
adapting it to a particular setting or for obtaining additional results, some additional
properties are added. This is done in the line of not considering more than what is
strictly necessary for posing some relevant questions (the old Occam’s razor
methodological rule of the fourteenth century), but not less than what can allow
reaching something of interest (the twentieth century’s Menger addenda to the
razor).

By p � q is simply indicated that q is inferred from p, but neither how it is done,
how q is effectively reached, nor if there are intermediate steps for it; later on, it is
made explicit for some particular, specialized, and formalized kinds of reasoning. In
some sense, we take care of nothing less than the existence of a general “intellectual
link” between p and q expressed by p � q, whatever it can be, or how it can be
understood and represented. No methodology for reaching q from p is attended
right now, and it is just supposed that q is inferentially linked with p in a naïve
form; that a movement from p to q exists.

It is just presumed that jointly with p � p, it always holds, as has been formerly
said,
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pa � p0;

coming from many examples, but whose reverse does not always hold, and showing
that the negation is an inferential upper limit, often inaccessible, of the opposites;
that is, that pa is not inferentially equivalent to p′ except in those irregular linguistic
cases in which there is no opposite pa of p in language, and p′ is taken instead of pa.

Because no one will recognize validity and usefulness to self-contradictory
statements such as “The white carpet is black,” the worst foil a statement p can
show is to be self-contradictory, that is, to verify p � pa, or p � p′. Note that,
provided the triplet (p, pa, p′) were � -transitive, that is, from p � pa, and pa � p′,
it would follow that p � p′; the first relation implies the second but not recipro-
cally. Anyway, as shown, the triplet’s transitivity cannot be generally supposed, and
its necessity or sufficiency should be checked and eventually stated in each case.
Analogously, the worst foil a pair of statements p and q can show is to be con-
tradictory to each other; that is, p � q′, or q � p′.

8.2. The (available) previous information is usually presented by a set of linguistic
statements P = {p1, p2, …, pn}, called the set of premises, that can be compacted in
a single statement (p) by a sequential conjunction of the premises once they are
numbered according to some previously accepted criteria related to the subject
under consideration. Note that, actually, it does not seem possible to fix a universal
rule for always ordering the premises, but that it is privative of the context in which
each set P is inscribed. This conjunction p tries to sum up the information conveyed
by P, and is called the résumé of the premises; for instance, with n = 5, it will be

p ¼ p1 � p2ð Þ � p3ð Þ � p4ð Þ � p5;

obtained through the ordered sequence of the four successive conjunctions

p1 � p2 :¼ p12; p12 � p3 :¼ p123; p123 � p4 :¼ p1234; p1234 � p5 ¼ p;

each giving a (new) statement.
Of course, provided it could be supposed that the conjunction (�) is associative

and commutative, p could be simply written

p ¼ pk1 � pk2 � pk3 � pk4 � pk5; for any permutation k1; . . .; k5ð Þ of 1; . . .; 5ð Þ:

Nevertheless, in language the conjunction’s commutative and associative
properties cannot always be presumed, because usually time intervenes and makes
it unreal; for instance, “She entered the room and start crying” and “She start crying
and entered the room” or, in a joking fashion, “He was judged and hanged” and “He
was hanged and judged.” With respect to the associative property, it should be just
observed that it cannot always be taken for granted because, for instance, people
often distinguish p � (q � r) from (p � q) � r as soon as time can be seen coincidental
for q and r, but not for p and q; the associative law is a syntactically originated rule

78 8 A (Naïve) Symbolic Model of Ordinary Reasoning



in mathematics and that facilitates the calculus, but in ordinary language commas
are very important for a good understanding of texts and either “avoiding paren-
thesis or commas”, or “moving commas”, is not always acceptable in all writing. It
can lead to changing the meaning of the corresponding statement.

Hence translating into reasoning and language the typical properties of mathe-
matical structures, such as those holding in a lattice, cannot always be done. For
instance, the usual supposition that the lattice’s conjunction translates the linguistic
conjunction is very risky by implying that the linguistic “and” is commutative and
associative, and coincides with an, perhaps not actually existing, upper limit of all
the statements from which the two members of the conjunction can be forward
inferred. In this respect, it should be recalled that in the basic algebras of fuzzy sets,
the greatest conjunction is that given by the lattice operation min between fuzzy
sets, the only case in which, were the disjunction additionally taken as the lattice
operation max, the algebra is a lattice; it is but a limit case.

It should be pointed out that provided the operation of the conjunction (�) were to
verify the usually accepted two properties expressed by

p � q� q; and p � q� p;

the résumé of P would verify p � pi, for all i between 1 and n. For instance, with
n = 3, it is both p = (p1 � p2) � p3 � p3, and p � p1 � p2, and hence p � p1 and
p � p3, provided the triplets (p, p1 � p2, p1) and (p, p1 � p2) were transitive. That is,
under transitivity suppositions, all premises are inferred from its résumé; in such
conditions, the résumé compacts and “explains” the premises (they are obtained by
a forward link from the résumé). It should be pointed out that to state that each pk
follows from p, transitivity has been accepted to hold, is something that cannot
always be presumed.

In what follows, presuming P is without contradictions, and because if p is
self-contradictory P cannot be safely taken, it is cautiously supposed that neither the
résumé p of P, nor its negation p′, are self-contradictory; that it is p � / p′, and p′
� / p, for which it obviously suffices to have p � / pa and p′ � / p. Neither is there a
way for forward inferring pa from p, nor p from p′. It should be pointed out that in
the limit case of Boolean algebras, p � p′ and p′ � p are, respectively, equivalent
to p = 0 and p = 1.

8.3. Once this reasonable condition on p is accepted, it is said that q refutes P, or
that q is a refutation of P, if and only if

q� pa; or q� p0;

that is, either the opposite or the negation of p can be inferred from q. Note that
inasmuch as pa � p′ is always supposed, provided the triplet (q, pa, p′) were
transitive, q � p′ would follow from q � pa.

Those q that are not a refutation are a conjecture from P: q � / p′, where it
sometimes suffices to have q � / pa. For instance, on the conditions of a currently
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extremely dense cloudy atmospheric situation, it can be conjectured that it will rain
soon, but refuted that it will be sunny in one minute.

Note that, once P and p are given, there are no involved statements other than
refutations and conjectures; and also that once p � / q′ is known, it can only be
either p � q, or q � p, or p NC q. Hence conjectures can be classified in those
verifying, respectively, p � q, q � p, and p NC q, respectively called (ordinary)
consequences of P, hypotheses for P, and speculations from P.

Note also that ordinary consequences (nothing else indeed than the conclusions
by the primitive notion of forward inference) can be considered both the basic treat
of reasoning, and the form for developing what is hidden in the résumé; without
natural deduction, the search for ordinary consequences by forward linkage, rea-
soning could not exist. Natural deduction appears as the basic brick of reasoning;
the formal methods of deduction, considered later, are but specialized forms of
deduction done in a formal framework.

It should be pointed out that “this” natural deduction should not be confused
with the methods of formal deduction in classical logic, and as it is in, for instance,
that of Gentzen, implicitly supposing all the laws of a Boolean algebra are also
called <natural deduction> but are actually for deploying, step by step, formal
deduction. Ordinary deduction is weaker than formal deduction; the formal forms of
deducing are but restricted specializations of the ordinary one submitted to ruled
processes for arriving at a conclusion.

Under a few minimal hypotheses on the negation and the inference relation � ,
those q such that p � q, the ordinary consequences of P, can be proven to be
conjectures; that is, such that p � / q′. Such hypotheses on the negation are the
following two,

– p � q ) q′ � p′ (the negation reverses linkages)
– q � (q′)′, for all q (the negation is “weak”)

and for the inference relation � is supposed to hold the transitive property for the
triplets (p, q, r) under consideration; that is,

p� q & q� r ) p� r:

With these three properties, of which only the first is always acceptable as a fix
property of negation,

– If it were p � q′, it would be (q′)′ � p′ and, from q � (q′)′, q � p′ would
result and, hence, p � p′ from the hypotheses that q is a consequence, p � q,
and that the triplet (p, q, p′) is transitive. An absurdity is reached, because it is
supposed p � / p′; thus, it is p � / q′.

Thus, under the above three suppositions, the consequences q inferred from p are
conjectures and q can be characterized by p � q without adding p � / q′. In this
form (ordinary) consequences appear as particular cases of conjectures, as some
British thinkers of the twentieth century believed it should be, and ordinary
deduction appears as a modality of conjecturing. Nevertheless, it should be pointed
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out afresh that neither the weak nor the strong character of negation, nor transitivity,
are always presumable; for instance, p and (p′)′ are often isolated. The analysis of
ordinary reasoning without transitivity, and, further that reversing � , an additional
property for negation, is an open subject.

Additionally, no two consequences of P can be contradictory, because if it were
consequences q and r such that q � r′, from p � q, and supposing the transitivity
of the triplet (p, q, r′), it would follow p � r′, that, being p � r, and hence r′ � p′,
the supposed transitive triplet (p, r′, p′), implies p � p′, which is absurd; of course,
and by the same argument, no consequence can be self-contradictory. This is in
agreement with what is, at least, expected on deduction, and notice that were the
negation strong ðq � ðq0Þ0Þ, as sometimes it is in language, a fortiori this result
would also hold. Nevertheless, because in ordinary reasoning it is often the case of
reaching contradictory consequences, it means that either such a particular rea-
soning is not deductive, or that transitivity fails in it.

On the above hypotheses, conjecturing is more general than natural inference;
the processes for obtaining consequences are those of deduction. Nevertheless, it
should be pointed out that these conclusions hold under the above hypotheses, and
that their lack can cause their failing; in any case, what has been established cannot
be taken for granted by any reasoning. Even a soft formalization such as the one
here is but a model only applicable under what is presumed for building it. Note, in
this respect, that of the above three hypotheses, only the first (negation reverses � )
always holds, but that negation is weak or strong depending on the particular form
of negating, and that some transitivity does hold cannot always be taken for
granted. Anyway, because through ordinary inference contradictory conclusions are
often reached, it at least reveals that neither the weakness of the form of negation
nor the transitivity of the linkage can always be presumed to hold. Correct forward
inferencing, ordinary deduction, seems to need the above hypotheses.

Another type of conjecture is those q (p � / q′) that, being not self-contradictory
(q � / q′), are such that it is q � p, and they are called hypotheses, or explanations,
for P; they are reached backwards from the résumé of P. Because p is forward
inferred from q, p is an ordinary consequence of q, and provided it held the property
p � pi (I = 1, 2, …, n), with which from q � p, and also transitivity, it would
follow q � pi, all the premises would also be inferred from q. This is the sense
under which a hypothesis explains all the premises; something that can fail if
transitivity fails.

What cannot be proven is the inexistence of pairs of different and contradictory
hypotheses, something in agreement with the praxis; it is not rare to have two different
and contradictory hypotheses for explaining something. Note that if the résumé p is, in
turn, a consequence of the hypothesis q, the only hypotheses that can be consequences
of p are those inferentially equivalent to p, inasmuch as they should verify p � q and
q � p. Hence the statements inferentially equivalent to p can be avoided because,
inferentially, they are nothing else than p, and taking p as a hypothesis for P is to say
that p explains itself; p is never taken as a hypothesis for P. The processes for
obtaining hypotheses are those of abduction. In principle, q � pwithout p � q seems
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to show q is “simpler” than p, that the explanation is done by avoiding something that
is included in the résumé p.

The remaining class of conjectures, those q that are neither a consequence, nor a
hypothesis, should be conjectures isolated from p, that is, verifying p NC q. They
are characterized by verifying p NC q, jointly with either q′ � p or p NC q′,
because q cannot be a refutation (p � q′), and p � / q′ is equivalent to q′ � p or to
q′ NC p. Hence there are two types of these conjectures,

– Those characterized by p NC q and q′ � p
– Those characterized by p NC q and p NC q′

known as speculations from P and called, respectively, of type-one and type-two.
Because q′ � p implies p′ � (q′)′, the double negation of a type-one speculation

can be forward inferred from the résumé’s negation even if q is isolated from p, but
provided the linkage q � (q′)′ were to hold, or that also (q′)′ � q hold (that q and
(q′)′ are inferentially equivalent, and the negation is “strong”), then q would be
inferable from p′. Under these types of negation, all type-one speculations are
inferable from the résumé’s negation; to some extent, type-one speculations are
deductively reachable. For instance, if the negation is weak, then q could be
backward reached from (q′)′, and provided it were intuitionistic, (q′)′ � q, q could
be forward reached from (q′)′. A type-one speculation q is not deductively reachable
from the résumé p, when it is q NC (q′)′, when q and (q′)′ are inferentially isolated.

Nevertheless, all type-two speculations are inferentially wild conjectures,
because they and their negations are inferentially isolated from the résumé p;
type-two speculations cannot be inferentially reached from the résumé or from its
negation, and obtaining them corresponds with a creative reasoning, opening the
idea of what is not directly inferable from p, or from p′, and could mean something
new. It can be said that the search for this type of speculation is, properly, an
inductive reasoning, or an induction, also, those type-one speculations q such that
q NC (q′)′ only can be obtained by inductive reasoning.

In addition, and being p NC q, it is clear that no speculation q can be either a
consequence (p � q), or a hypothesis (q � p) of p; hence conjectures are
essentially of only four classes: consequences, hypotheses, type-one speculations,
and type-two speculations. Of them, speculations are the only conjectures that were
recently considered for the first time.

The following example can serve as an illustration of what is said. Suppose the
information on the current atmospheric situation is:

It is midday; it is not sunny; and it is not an eclipse:

Denote by m = midday, e = eclipse, and s = sunny; then the premises are
p1 = m, p2 = s′, p3 = e′, whose résumé is p = (m � s′) � e′. Because p � m � s′ � m,
and also p � m � s′ � s′, and p � e′, under transitivity it follows that m, s′, and e′,
are obvious consequences, and s, e, and m′ obvious refutations. Because it is not
(m � s′)′ � p � m � s′, (m � s′)′ is not a hypothesis, and it should be a speculation.
Because, for all x, it is always p � p + x, (m � s′) � e′ + x is always a consequence, as
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are also m + x, s′ + x, and e′ + x, such as “It is midday or Monday,” “It is not sunny
or raining,” and so on.

That a type-two speculation q is not directly linked with p and with p′, does not
mean to exclude the possibility of supposing some r � q exists and is such that p �
r, but keeping the incomparability (inferential isolation) of q with both p and p′. In a
case like this, once it can be presumed that r is a hypothesis for q, and some q* such
that r � q* can be heuristically reached deductively from p and can substitute q in a
“provisory form” could be, in some cases, a suitable approach to solving the
problem.

It should be pointed out that, usually, deducing is not always an easy task; it
suffices to think of some sophisticated mathematical proofs such as that of Fermat’s
last theorem done by Andrew Wiles. Deduction has in its favor the existence of
deductive rules such as they are, for instance, those of the two basic modus ponens
and modus tollens, able to secure the validity of deductive conclusions. In its turn,
the processes of abduction can be conducted by backward deduction. Instead,
speculating, and particularly in its type-two, is often based on rules of thumb, or on
criteria not fully allowing the validity of the conclusions.

In deduction, the validity of the premises assures that of the consequences, but
neither in abduction, nor in speculation, is the premises’ validity sufficient for that
of the conclusions. In this sense, and if correctly done, forward and backward
deduction mean a kind of safe reasoning; the others are always unsafe. Note that
hypotheses for p can be obtained by backward deduction, but that to select the
better of them is a different problem.

8.4. Let’s look at the property known as monotony, concerning the preservation of
the conjecture’s or refutation’s character when the number of premises varies, and
that is classically considered inferentially important to preserve, or not, the
first-reached conclusions when the number of information items increases or
decreases. As has been said, and usually, information flows more or less
continuously.

For instance, if the number of three premises in P = {p1, p2, p3} increases up to
four, P* = {p1, p2, p3, p4}, with respective résumés p and p*, and q is a conse-
quence of P, the question is if q is also a consequence of P*. Provided the
above-mentioned properties of the inference relation � were to hold, and under
good conditions, from p* = ((p1 � p2) � p3) � p4 � (p1 � p2) � p3 = p, and p � q, it
would follow that p* � q. Because this argument can be repeated, step by step,
with more than three elements, it is concluded that the consequences of P are also
consequences of P*. Hence, consequences are monotonic; when information
increases, the number of conclusions cannot decrease, and the former consequences
are preserved; no one should be cancelled.

Also refutations are monotonic, because p � q′ and p* � p imply p* � q′,
under transitivity. Also the former refutations are preserved; no one should be
cancelled.

Nevertheless, conjectures are antimonotonic: that is, if q is a conjecture of P*, then
it is also a conjecture of P: provided it were p* � p, that would imply p′ � (p*)′, and
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also q � / (p*)′, because if it were q � p′ it would be q � (p*)′, which is absurd. It is
possible that some former conjecture should be cancelled; it is not sure that all of them
will be preserved.

Hence, conjectures being antimonotonic and consequences monotonic, the rest
of the conjectures cannot in principle jointly enjoy the monotonic property, and,
indeed, hypotheses and type-one speculations are antimonotonic.

For instance, if q is a hypothesis for P* (q � p*), from p* � p, under
transitivity it follows that q � p, and hypotheses are antimonotonic. If q is a
type-one speculation from P*, q′ � p* implies (with p* � p) q′ � p, and being
p NC q it should also be p* NC q, because if it were q � p* then q would be a
hypothesis for P*, and if it were p* � q then q would be a consequence of P*.
There can be either former hypotheses, or former type-one speculations, that should
be cancelled when the number of premises grows.

More premises imply no fewer refutations and no fewer consequences, but no
more conjectures, no more hypotheses, and no more type-one speculations. More
information leads to more possibilities for refuting and deducing, but to fewer
possibilities when conjecturing for searching type-one speculations, and for
abducing, all this, of course, under the above-presumed properties.

With respect to type-two speculations, examples with sets can show that, even in
the setting of Boolean algebras, they are neither monotonic nor antimonotonic, and
that hence they are properly nonmonotonic, are out of monotony and antimonotony;
no law for their growing exists. This simply reinforces their wild inferential char-
acter as conjectures inferentially isolated from both p and p′, and varying in a wild,
neither monotonic nor antimonotonic, form. Very simple examples with precise
statements (those represented by sets), even done with Venn diagrams, prove the
nonmonotony of type-two speculations: it suffices to take, in a given universe, sets
P � P*, and finding sets Q1 such that being type-two speculations for
PðQc

1 �P , Qc
1 \ Pc ¼ ;Þ, are not so for P*, and sets Q2 that being type-two

speculations for P* are not so for P. Hence, the inductive reasoning for reaching
type-two speculations certainly appears somehow separated from the rest of
reasoning.

If consequences deploy what is already hidden in P, and hypotheses explain P, it
rests for later on to clarify the “creative” role of speculations in reasoning; it is
worthwhile remarking that there is a kind of reasoning leading to something new, or
“creative reasoning,” what laypeople often refer to as lucubrating or guessing, is
inducing.

8.5. It is interesting to know when the presented model, even obviously naïve, is
grounded on a solid basis, when Aristotle’s principles of noncontradiction (NC),
and excluded-middle (EM) can be proven to hold in it. In fact, and under a new
interpretation of the Aristotelian word “impossible” as “self-contradictory,” both
principles can be submitted to proof. This is contrary to the usual idea, also coming
from Aristotle, that they cannot be submitted to proof; they are just “principles”
evident by themselves that cannot be reduced to simpler reasons.
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Such an interpretation is:

p is impossible , p is self-contradictory , p� p0:

Hence for proving NC it should be proven that p � p′ is always impossible,
self-contradictory, that it is p � p′ � (p � p′)′, and, of course, taking care under
which suppositions the proof can hold. Nevertheless, because Aristotle did not state
EM so clearly, it is also proven after considering some definition for it.

Concerning NC, the proof is:

(a) p � p0 � p
(b) p0 � p � p0ð Þ0
(c) p � p0 � p0

(d) p � p0 � p � p0ð Þ0; QED
by only adding the supposition that the triplet p � p0; p0; p � p0ð Þ0� �

is � -transitive.
Hence, and certainly, the “principle” can fail whenever a lack of transitivity can
keep (p � p′)′ from p � p′ inferentially isolated, or negation does not reverse the
relation � , or the laws p � q � p and p � q � q fail.

Regarding EM, it seems that the closer form to what Aristotle stated of EM, is
“p + p′ always holds”, which can be understood as “not-(p + p′) is impossible”, or
“(p + p′)′ is self-contradictory”. That is, what should be proven is
ðpþ p0Þ0 � ððpþ p0Þ0Þ0, and the proof is:

(a) p� pþ p0

(b) p0 � pþ p0

(c) pþ p0ð Þ0 � p0

(d) pþ p0ð Þ0 � pþ p0, provided the triplet pþ p0ð Þ0; p0; pþ p0
� �

were � -transitive
(e) pþ p0ð Þ0 � ððpþ p0Þ0Þ0;QED
with the same former cautions on transitivity, the reversing character of negation, as
well as the laws p � p + q and q � p + q.

It should be pointed out that both NC and EM just correspond to ordinary
deductive reasoning, and that, in particular, both principles should be preserved in
formal deduction. They can fail by, for instance, the absence of transitivity.

Note that in a Boolean algebra the principles by self-contradiction collapse in a
single “principle”:

p � p0 � p � p0ð Þ0, p � p0 ¼ 0 , pþ p0 ¼ 1 , 0 ¼ pþ p0ð Þ0 � 1 ¼ ððpþ p0Þ0Þ0;

thanks to holding the duality law p � qð Þ0¼ p0 þ q0; equivalent to pþ qð Þ0¼ p0 � q0,
and the Boolean indistinguishability of contradiction, p � q′ with incompatibility
p � q = 0.

Obviously, in the general framework of ortholattices containing Boolean alge-
bras, it also holds that p � p′ � (p � p′)′ is equivalent to p � p′ = 0. Hence what holds
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there is: p � p0 � p � p0ð Þ0, p � p0 ¼ 0 , pþ p0 ¼ 1, and both principles are
equivalent.

Nevertheless, in the framework of De Morgan algebras, also containing Boolean
algebras, this chain of implications is not valid, and the principles only hold once
stated by self-contradiction although, holding the duality laws, they can be seen as a
single principle. In consequence, and in the general setting of ordinary reasoning,
the two principles cannot be presumed as a single one.

Let’s end this section with an example in the unit interval [0, 1] of the real line.
With the conjunction (�) given by the operation min, and the negation (′) by the
function 1 − Id, it is obviously p � p′ = min (p, 1 − p) � p, but were the con-
junction given by the pondered mean, p � q = (p + 2q)/3, it would be p � p′ = (p + 2
(1 − p))/3 = (2 − p)/3, not always less than or equal to p, because
2� pð Þ=3� p , 2� p� 3p , 1=2� p. Hence, in this case the NC principle fails.
Thus, the Aristotelian principles NC and EM strictly depend on which con-

junction and disjunction should be respectively considered, and not only on tran-
sitivity that, in this example, is obviously valid.

8.6. The deductive chain, p � q′ ) p � q � q′ � q = 0, valid in all ortholattices,
shows that in this algebraic structure “contradiction” is “stronger” than incompat-
ibility from, at least, the point of view of the inference relation � ; there can be
pairs of incompatible statements not being contradictory. In the setting of ortho-
lattices, the equivalence between contradiction and incompatibility is bound to the
particular and limit case of Boolean algebras that are almost characterized by the
law of perfect repartition p = p � q + p � q′, for all pairs p, q. Notwithstanding, in the,
even distributive, weaker structure of a De Morgan algebra, the former chain does
not allow concluding p � q = 0, because in them the law q′ � q = 0 does not hold; in
this algebraic structure contradiction neither always implies incompatibility, nor
reciprocality. For instance, the De Morgan algebra in [0, 1] given by the triplet
(min, max, 1 − Id) is:

– p� q0 , p� 1� q , pþ q� 1;
– p � q ¼ 0 , min p; qð Þ ¼ 0 , p ¼ 0; or q ¼ 0;

and it is incompatibility that implies contradiction, but not reciprocality; 0.3 and 0.6
are contradictory but not incompatible.

In general, both are independent concepts and, because with fuzzy sets their
equivalence sometimes holds, sometimes their independence, it should be presumed
that in plain language both concepts are, in general, independent, but without
excluding that some implication between them can hold in a particular situation.

With the general relation � of natural inference, usually not defined by p� q ,
p � q ¼ p as it is in lattices, contradiction seems to be more natural than incom-
patibility; for instance, contradiction does not require counting with a (unique) null
and minimum element that, in plain language, is not known how it should be
defined, and that provided it were needed in some form should be artificially added
to language; neither all parts of language, nor of mathematics, are ordered structures
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with minimum elements. In addition, it comes from experience that people not only
can recognize contradiction, but hate it, usually try to escape from it, and stop
reasoning when detecting contradictions. In this respect, it can suffice to remember
the worries caused in “mathematical thinking” by the liar’s paradox, the sorites
paradox, and the like.

The definition p � q = 0 comes directly from the classical set interpretation
P \ Q = Ø, from interpreting that statements p and q are incompatible if and only
if the sets they respectively specify have an empty intersection and have nothing in
common. It should be additionally remarked that provided P \ Q were reduced to
a singleton, to contain a single common element, it would suffice to assert the
“compatibility” of p and q; it seems not to exclude looking at incompatibility as a
matter of degree. In plain language it is even sometimes presumed that p is com-
patible with q, provided p* analogous to p, and q* analogous to q, are known to be
compatible.

In themselves, plain language and ordinary reasoning cannot be studied as
purely algebraic structures; only some of parts of them admit to being represented
by a strong mathematical model, and once the laws, or axioms, are checked,
defining the model is fulfilled in the part of language under study.
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Chapter 9
A Glance at Analogy

In beginning a study of analogy there are three immediate and basic questions:

(1) Which is the meaning of the word A = analogous (the binary mother-predicate
of the analogy’s concept), and how does it appear in reasoning?

(2) To what extent does analogy hold?
and

(3) In plain language, does analogy introduce a new type of conclusions?

Even without the possibility of presenting complete answers to such questions,
they at least deserve to be posed.

9.1. For looking at a possible answer to the first part of the first question, we should
recognize a relation � A, “p is less analogous to q, than r is less analogous to s”,
linking pairs of linguistic labels (p, q) and (r, s) by taking into account the four
relations � p, � q, � r, and � s, established in the respective universes of dis-
course: X for p and q, and Y for r and s. No such expression for � A is currently
known, but provided it were described, and if mappings a from X � Y into [0, 1]
can be found such that the number a(p, q) represents the extent to which p is
analogous to q, and perhaps depending on a parameter reflecting that in which r is
to s, then mappings a could be seen, although not necessarily as measures of
“analogous,” at least as indexes of analogy between p and q, provided p were to act
in X, and q in Y. Examples of such indexes are the T-indistinguishability operators
that are further considered for studying the breaking of synonymy chains.

It should be noted that in this view, and in principle, “analogous” does not admit
saying “p is less analogous than q”, because there are, at least, required intermediate
terms r and s indicating to what p and q, respectively, are analogous.

As formerly said, for actually saying something interesting about a particular
case of analogy, those indexes should be related to as many as possible charac-
teristics that can be recognized in both p and q. For instance, concerning oranges
and apples, by just taking into account the characteristic, or attribute, “spherical
shape”, it will be a (orange, apple) = 0.9, but if considering more attributes such as
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color, taste, juice, and so on, then the number a (orange, apple) will be considerably
lower than 0.9. Provided such requirement were satisfied, a suitable index’s values
could be of some help for controlling and avoiding the danger a superficial analogy
can produce in reasoning such as that of confusing oranges and apples. By its own
uncertain nature, analogy always should be controlled, and, when it is possible, a
numerical control by means of some function a offers a possibility for appreciating
its strength through its degrees.

Because neither the relation � A nor the specification of mappings a are easily
found, this is a subject deserving of and waiting for deep analysis. Were it done, a
scientific-like study of the, important by itself, subject of analogy could be ready to
start; it is later reconsidered further. Nevertheless, it is an open problem, and
especially, concerning the question of whether a can be a measure of the qualitative
meaning � A of the word “analogous”, for it and obviously � A should be previ-
ously expressed by means of the qualitative meanings of p, q, r, and s. For a deep
study of the analogy’s concept, it is essential to previously study the meanings its
mother-predicate “analogous” shows in language.

9.2. Concerning the second part of the first question, and in a multitude of cases, it
is considered that a linkage, or inference p � q, is analogous to another r � s,
whenever it can be recognized that

`p is to q; as r is to s'; shortened by p : q :: r : s �½ �:

where the crucial meanings of is to and as should be specified in each case.
A possible way for dealing with such kinds of “qualitative proportionality”, is to
select a suitable mapping f with which f (p) = r and f (q) = s represent the analogy,
that is, preserve the inference relation � in the conditional form:

If p� q; then f pð Þ� f qð Þ;

establishing the analogy between inferring f (q) from f (p) after inferring q from p, a
typical inferential reasoning by analogy. For it, f must translate how the two is to,
and the unique as, in [*], are understood, that is, which properties should be
assigned to f for it. Were � and f somehow specified, the linguistic equation in x:

p : q :: f ðpÞ : x; ��½ �;

perhaps could be solved through some calculus.
Of course, there are many different ways of understanding both the “is to” and

the “as” in [*]. For instance, in ordinary life,

– Clouds are to rain, as gasoline is to fire.
– Book is to study, as blood is to injure.

are less precise than, in mathematics, are

– Three workers are to four hours, as five workers are to x hours.
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– Segment A is to segment B, as segment C is to segment X.

of which those in the second case can be posed thanks to respectively knowing that
there exist the direct arithmetic proportionalities,

– 3/4 = 5/x ⟺ 3. x = 5.4 ⟺ x = 20/3.
– Length A/length B ⟺ length C/length X ⟺ length A. length X = length B.

length C ⟺ length X = (length B. length C)/length A.

Were f given, it would follow that

f 3:xð Þ ¼ f 20ð Þ;

and then, if f is bijective, the typical arithmetic solution x = 20/3 h would be
obtained, and so on.

9.3. Provided, in relation to the second question, it were possible to associate
numbers t(p), t(q), t(f(p)), and t(x) to the terms in [**], and also translate the sign (:)
by an operation (*) with numbers, a numerical equation would follow,

t pð Þ � t qð Þ ¼ f t pð Þ � t xð Þð Þ;

from which, and if the properties of the operation * allow it, t (x) could be isolated
in a form such as

t xð Þ ¼ Fðt pð Þ � t qð Þ; t f pð Þð Þ;

with a two-argument function F. Note that t could be a measure of the statement’s
truth.

9.4. Concerning the third question, and whatever kind of function f can be for each
p, it necessarily belongs to just one of the following three classes.

(1) It is f(p) � p; p can be forward inferred from its image f(p), and it can be said
that f is contractive when it happens for all p, or f � Id. If f(p) is not
self-contradictory, then f(p) is a hypothesis for p.

(2) It is p � f(p); images f(p) can be always be forward inferred from p, and it
can be said that f is expansive when it happens for all p, or Id � f. If f(p) is
not self-contradictory, then f(p) is a consequence of p.

(3) f is neither contractive, nor expansive at p, and in this case, f(p) is isolated
from p. Thus, and depending if it is additionally either p � f(p)′ or p � /f(p)′,
what are obtained are either refutations of p or conjectures of p that, in turn
and provided it were also f(p)′ � p, would be a type-one speculation, and if it
is also f(p)′ isolated from p, would be a type-two speculation.

Note that f contractive will lead to hypotheses, f extensive to consequences, and
that to reach speculations it is needed that, in similitude with the graphics of
numerical functions, “f crosses the identity Id”. With respect to refutations, it is
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enough that f makes f(p) � p′, that is, and in similitude with numerical functions,
taking f below the function Id′ (e.g., below 1 − id in a numerical case in the interval
[0, 1].

Hence, and through any analogy mapping f, the only statements f(p) that can be
reached from each p are consequences, hypotheses, speculations, or refutations.
Independent of the additional properties f can enjoy, nothing different from refuting
and conjecturing can be done by analogy under f, and, in this way, f-analogy
appears as a “natural” way for just reaching refutations and conjectures.

Notwithstanding, the complete physical mechanism of reasoning, as a mani-
festation of the natural phenomenon “thinking”, only will be fully explained and
well comprehended after neurosciences can fully explain how thinking really
works, what physical thought actually is. Only then will it be possible to know if
analogy functions f really exist, and how they act if existing. Currently and for all
this, there is still too great a lack of knowledge.
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Chapter 10
A Glance at Creative Reasoning

Once it has been shown that at least type-two speculations are born of the natural
inference relation from the résumé and its negation, let’s try to see how speculations
are useful for “creating” what leads to either an explanation, or to find a conse-
quence “hidden” in the résumé’s premises. Guessing speculations often leads to
introducing something new that, depending on its relevance, is or is not qualified as
true creativity.

10.1. From examples such as

“He crashed against the wall and cried � He cried”,
and also
“He crashed against the wall and cried � He crashed against the wall”,

it can be agreed, as before, that the linguistic conjunction (�), enjoys the properties
p � q � p, p � q � q. Hence, if p is the résumé of P, for any conjecture or
refutation q, these two formulae hold.

Denoting a speculation by s, from p � s � p, it is clear that p � s is, provided it
were neither self-contradictory, nor inferentially equivalent to p, a hypothesis. Thus,
“p and s” shows a way of obtaining hypotheses by conjunction between the résumé
and a speculation from the set of premises {p, s} and, provided the speculation were
an inductive of type-one or type-two, reflects how hypotheses can be reached in an
inductive or creative form.

Of course, that does not mean that all hypotheses are decomposable in the form
of a conjunction of the résumé and a speculation (as happens in Boolean algebras),
but just that some hypotheses are so; what is shown is that the set {p � s}, for all
speculations s, is just a subset of hypotheses for p.

Analogously, and from examples such as

“She bought book B” � “She bought book B or book C”,
and also
“She bought book C” � “She bought book B or book C”,
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it can be agreed that the linguistic disjunction (+) enjoys the properties (also before
supposed) p � p + q, and q � p + q, holding if p is the résumé of P, and q a
speculation (s) from P. Thus, from p � p + s it follows that p + s (“p or s”) is a
consequence of P, showing a way to obtain consequences by disjunction between
the résumé and a speculation, that is, from the set of premises {p, s}. Provided the
speculation were of the inductive type-one or of type-two, it would reflect how
consequences can be reached in a creative form.

Also this does not mean that all consequences are decomposable in such a
disjunction, but only that some consequences are such; and in addition, the two
results coincide with the experience researchers have about how some conse-
quences, and hypotheses, are indirectly found.

Of course, the same two results hold when s is not a speculation from P but any
non-self-contradictory statement. But it is nevertheless obvious that, even not
deductively attainable from the résumé of P, any speculation s = s(p) is related to
P and, in this sense, both p + s(p) and p � s (p) are not out of context involving the
problem, but more linked with it than if, instead of s(p), it were taken as a
non-self-contradictory statement whatsoever.

These former (formal) results show that “speculating”, is not just to confuse
things; given the information supplied by the résumé, speculating from P can serve
to explain P, and also to develop from it something hidden in the premises but not
seen before speculating, in short, to obtain something that, in the relation of
inference, is forward or backward p. Depending on the kind of speculation s(p) is,
the process of going from p to either p � s(p) (a hypothesis), or to p + s(p)
(a consequence), can be seen as less creative if s(p) is of type-one, and more
creative if s(p) is of type-two. It recalls, in any case, the famous Archimedes of
Syracuse shout, “Eureka!” “I got it!” usually considered a token of creativity.
Conjecturing speculations, and mainly those of type-two, is the creative form of
reasoning; it is the true “creative reasoning”.

The actually undefined processes one can suppose existing, and by which a
conjecture whatsoever is obtained, can be called “natural conjecturing processes”,
or guessing, and those for obtaining refutations, “natural refutation processes”, or
refuting. In particular, those for obtaining speculations can be called “natural
speculation processes”, those for obtaining ordinary consequences, “natural
deduction processes”, and those for obtaining hypotheses, “natural abduction
processes”.

Those unruled processes for reaching nondeductively reachable speculations are
properly “inductive processes”. Their formalization by, for instance, understanding
what a “heuristics” really is, is still a pending subject that seems to be related to
knowing something on an inductively searched conclusion. As said formerly and if,
for instance, q is a type-two speculation of p and there is r such that r � q and
p � r, then supposing the triplet (p, r, q) is transitive, it would follow that p � q,
and “speculating q from p”, is transformed into “deducing q from p” through r; in
this case, q can be reached algorithmically from p by two separate forward infer-
ences. Of course, these processes require some additional and previous knowledge
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involving the goal q, such as that q “contains a part”, r, allowing its backward
linking with p. These are processes directed to a partially known goal.

The analysis of these processes in some suitable formal settings remains for a
forthcoming study under the constraint of a mathematical structure, transitive and
stronger than the very soft one currently presumed. For instance, it still cannot be
seen how everything presented here can be reduced, in two limiting cases, to the
soft structure of a basic fuzzy algebra, and to the strongest structure of a Boolean
algebra, that is, the particular ortholattice structure on which classical logic is both
posed and developed, as well as to intermediate structures such as De Morgan
algebras and orthomodular lattices.

10.2. Notwithstanding, and in addition to its simplicity, the presented natural
deduction-based model for laypeople’s reasoning even allows the posing of some
aspects of specialized reasoning such as the following on “falsifying” hypotheses.

It can sometimes be presumed that h is a hypothesis for P by, perhaps, some
analogy with a similar known case, but without being able to “prove” if it is actually
h � p (p is forward inferable from h), or not. In these cases, there is a possible and
slight turn known as the deductive falsification of h as a hypothesis for P. It comes
from what follows, and only under the supposition that it is neither h � h′, nor is
h′ � h; that the singleton {h} actually contains a premise.

– If q is a consequence of P, p � q, and it were h � p, under transitivity it
would follow that h � q; that is, the consequences of P are also consequences
of {h}. Hence, to falsify h deductively as a hypothesis for P it suffices to find a
consequence of P that is not a consequence of h. This is the deductive way
typically followed in mathematics to falsify a hypothesis.

– Provided the consequences of {h} were conjectures of {h}, and because those of
P are consequences of the presumed hypothesis h, for falsifying h it also suffices
to find some consequence of P not being a conjecture of {h}. This is a not fully
deductive way, typically followed in the experimental sciences to falsify a
hypothesis inasmuch as, in these sciences, what is usually studied are conjec-
tures of a presumed hypothesis.

Note that because all premises are also consequences, in both cases it suffices to
find a single premise not being either a consequence or a conjecture of h to falsify
the hypothesis h.

10.3. What has been presented is just a very simple mathematical model of the
reasoning laypeople do, but without placing it in a strong formal framework as
done, for instance, with the modeling of those kinds of specialized reasoning whose
frameworks are those of Boolean algebras (classical reasoning), orthomodular lat-
tices (quantum reasoning), or fuzzy algebras (imprecise reasoning) or, in a very
particular case of it, De Morgan algebras (as in some approximate, or fuzzy rea-
soning). We just refer to the commonsense reasoning laypeople do in a plain
language for dealing with daily life’s usual decisions and for doing the corre-
sponding actions. For instance, when a high school’s last-year student chooses a
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university for after graduation, his or her decision is taken in an environment of
imprecision and uncertainty that, without a formal setting’s representation, is often
done by analogy with some known examples; it analogously happens when a
couple decides to be married, and so on. What is not taken into account is the
“logically safe” character the reasoning’s conclusions can show; it is considered
further in a closer, although different, form as to what is commonly understood by
logic, either deductive or inductive.

The material presented here is neither of a typically philosophical character, nor
of a logical one; it can be perhaps said it is of a naturalistic, soft, and protologic
character, inasmuch as it remains open to introducing constraints suitable enough
for arriving at the strong models of mathematical logic devoted to several branches
of specialized reasoning. It can be seen as a naïve although, perhaps, not properly a
“kitchen” approach to natural laypeople’s reasoning, in which analogy plays the
fundamental roles of allowing the formation of concepts and facilitating first steps
for speculating. Up to now, we have only tried to describe the possibility of
establishing a kind of “naturalistic” mathematical representation of laypeople’s
ordinary reasoning independent of the validity of the conclusions that could be
reached, of its logical safety.

It should be recalled that, contrary to the reasoning of the mathematical proof,
ordinary reasoning often has unknown “jumps”; that is, in the reasoning’s chains
there can be consecutive pairs of statements that are supposed to be inferable from
each other, but without knowing how it can actually be done, and as if it were the
supposition that h is not a hypothesis for P without counting a falsification of h.

Of course, the concept of what is a heuristics way to reach a conclusion spec-
ulatively is not fully reported here, but will be, one hopes, studied at a forthcoming
time. It should be noticed that the word “heuristics” refers, not necessarily, to what
is done in, for instance, computer programs for playing chess where actually
“heuristics” are but deductive chains followed after pruning the big tree of possible
plays. In any case, those computational speculative heuristics ways consist in a
deductive part for algorithmically reaching the conclusion. Algorithms are deduc-
tive, and necessary for the calculus computers can do.

A way for constraining the model is by representing the collectives, or usually
imprecise concepts, by their shadows under the light of a concrete and contextual
situation, sometimes purpose-driven, that is, by membership functions, states of
fuzzy sets, or measures of the meaning of the predicates intervening in the state-
ments once they are organized in elemental parts joined by connectives; as it is, in
fact, the main idea behind Zadeh’s new “computing with words.” This is also
considered at a forthcoming time within the very soft mathematical structure of
basic fuzzy algebra (BAF) that allows considering imprecise predicates and does
not impose strong properties (as in classical and quantum logics) neither to the
representation of the linguistic connectives and, or, and not, as if they were the
associative, the commutative, the distributive, the negation’s strong character, and
the duality laws; nor to those of the inference relation such as coming from a
particular and pretended universal mode of representing conditional statements.
These algebras allow representing plain language and ordinary reasoning in a more

96 10 A Glance at Creative Reasoning



flexible form than Boolean algebras, orthomodular lattices, or De Morgan algebras
can do by just identifying its structural ordering with the inference relation, and
that, by the way, are particular cases of the symbolic basic abstract algebras that are
introduced here later on.

Anyway, to reach a study of reasoning in a different way from that traditionally
done in logic, it still lacks a way to capture directly the meaning of large statements
without previously decomposing them in components joined by the connectives
and, or, not, and so on, and capturing the respective meanings. As often happens,
the situation is actually many times the reverse; first the full meaning of the phrase
is captured, even in a gross form, and then the meanings of its components are
captured. Possibly and in AI, it will be simultaneous with acquiring the capability of
analyzing the meaning of large statements by computers, because they embody
syntactic correctors, but currently lack semantic ones. It is a pending subject;
without the capability of pragmatically understanding language’s semantics, com-
puters are unable to maintain large intelligent conversations. This is a goal for
which fuzzy logic can help inasmuch as language is full of imprecise words.

10.4. Some comments are in order. Be it what it can be, what can follow from the
mathematical constraints to which the presented naïve model could be submitted
cannot be fully accepted before checking within language and reasoning. In any
case, can it be expected to specify the suitable constraints by just purely mathe-
matical thinking? Is it possible to conduct a mathematical analysis of reasoning
without previously considering the nuances, flexibility, dynamism, and variability
of the natural matter for such a study?

Plain language and ordinary reasoning are the necessary natural matters for it,
thus what is actually needed is a new scientific methodology suitable to approach
them, a natural science of language and reasoning; a kind of “physics” of reasoning
that, instead of being grounded on matter and energy, is grounded on reasoning,
with the use of language for it, and, doing it through the scientific processes
typically consisting in systematic observation, controlled experimentation, and
mathematical modeling. It should have something close to physics’ mixing of
experimental methodology and formal reasoning, where everything should be tested
against the observed reality, and with the help of computer science, paraphrasing
Eugene Wigner’s words, allowing mathematics to show its “unreasonable effec-
tiveness in the natural sciences.” It should be pointed out that even a working
mathematician trying to prove a conjecture formally, previously reasons the way
people do by speculating on how he can proceed, based on his previous knowledge
and, perhaps, by analogy with a former proof. For instance, Kurt Gödel proved his
incompleteness first theorem, a recognized piece of mathematical creativity, by
using the “diagonal method,” before it was introduced for proving that the set of
real numbers is not denumerable.

Such an open scientific-like modeling of reasoning and language, jointly with
how the brain actually works, is one of the great challenges for science and tech-
nology in the twenty-first century. It could be a starting point for both the con-
tinuation of the Leibniz’s hope expressed by his famous “Calculemus!” and the real
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possibility of building up machines’ thinking like people do, something that,
without a true knowledge of how plain language and ordinary reasoning actually
work does not seem to be actually possible.

Along with such a new view for studying ordinary reasoning and natural language,
their components of meaning, imprecision, the diverse types of uncertainty, and
ambiguity, four linguistic phenomena that jointly with analogy permeate natural lan-
guage and ordinary reasoning, seem to be important in the way towards undoing the
so-called Gordian knot of artificial intelligence. Hence, the consideration of fuzzy sets
(that meant, in 1965, the introduction of mathematical analysis for considering
imprecision as did advocate John von Neumann) from the meaning’s mathematical
representation and measuring point of view deserves, in the immediate future,
increasing attention to the modeling of natural language and ordinary reasoning. At
least from thispoint ofview, theunderstandingoffuzzy sets as (effectivelymeasurable)
quantities representing “meaning”, can be seen as something relevant.

In any case, reasoning and meaning are strongly intermingled; both constitute a
good part of rationality, although there are animals that think without having a
language as people have; it seems clear enough that they cannot fully reason as
humans do. The lack of linguistic labels for naming concepts is but a serious matter
for reasoning; understanding the meaning of linguistic labels as a quantity can offer,
indeed, abstract good aid in studying reasoning. Symbolic representation is
essential for a scientific study of human reasoning.

Once seen that the predicates admitting a representation by membership func-
tions are those whose primary meaning can be described by a graph, and that those
P whose relation � P is empty are meaningless, those for which � P is not even
imaginable could be called currently metaphysical. Historically, there have been
many cases in which a metaphysical concept did acquire, later on, a meaning by
sometimes either a change in the point of view from which they were considered, or
from an advance produced by instruments for measuring, let’s say, its intensity. It
was, for instance, the case of passing to consider “irrational entities” such as the
square root of two, to see them as “numbers” and to “create” the set of real
numbers; it was a true manifestation of creativity allowing modern differential and
integral calculus.

In some form, this classification of predicates concerns the struggle the members
of the Vienna Circle underwent, in the first quarter of the twentieth century, against
metaphysical concepts in philosophy, that is, from the grounds of the so-called
analytic philosophy. Anyway, it should not be forgotten that there are metaphysical
concepts that, carrying something else on their back, can be able to suggest
analogies leading to new and useful measurable concepts. Nevertheless, it should be
distinguished between suggesting ideas, and what can be safely established: if the
first doesn’t need to be measurable, the second requires it. To some extent, mea-
surable predicates are empirically linked with the experience allowing them to
describe something either physical or virtual.
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10.5. Concerning nondeductive, inductive, or creative reasoning, their great
importance in science, art, and philosophy, among others should be remarked,
where new and fertile concepts are what actually guarantee their progress. In the
words of Pablo Picasso, “What is creative is not transforming the sun in a yellow
spot, but a yellow spot in the sun.”

Creative speculation is not a type of reasoning properly considered in logic
(almost always limited to analyze formally the rigid formal processes of deductive
reasoning), once translated into an artificial language. Notwithstanding and before
such specialization, it should be pointed out that “natural deduction”, interpreted
through the natural binary relation � between statements, is the departing point for
nonspecialized reasoning, once it is jointly taken with the concept of contradiction.
In a, perhaps metaphorical, way it can be said that natural deduction is the mother of
ordinary reasoning and that, to face specialized modes of reasoning, it should not be
restricted to only formal deduction. Deduction alone is not sufficient for the pro-
gress of knowledge and, particularly, of scientific knowledge; it requires guessing
or conjecturing; it requires creativity.

In this respect it is worthwhile quoting the words of the Nobel Laureate Sir
Peter B. Medawar, “No process of logical reasoning can enlarge the informational
content of the axioms and premises or observation statements from which it pro-
ceeds,” implying that for extending the initial information to arrive at something
new, logical deductive reasoning is insufficient. This is the right place for specu-
lations and mainly those of type-two, the truly creative ones. Without induction,
reasoning never would reach the successes which the history of science and tech-
nology are full of, but without its companion “formal deduction”, both disciplines
were not developed as they were after Galileo, or Newton, or Babbage, or Boole, or
Einstein, or Gödel, or Turing, and so on. Deduction is basic for making knowledge
solid; creation is essential for capturing what is still blowing in the wind.

10.6. With all that has been formerly said on the meaning of the word T = true, a
window is open to study the predicate T when, being measurable, a group of people
understands it in several forms, the importation of T to another universe of dis-
course when it is done by analogy, as well as that the collective T generates in X
[P] that, if P and T are both precise predicates, would reduce to the classical set of
true statements. The true character of elemental statements can be translated into
that of composed statements whenever the connectives, hedges, quantifiers, and so
on, appearing in them are specified, and it is established how they behave with
T. What is neither known, nor easy to see is, conversely, how a composed statement
can be systematically obtained from the true character of its elemental parts.

Let’s take into account the relationship between truth and inference, provided
there were a measure t of “true” that can be applied to all statements under con-
sideration. Suppose that t is nondecreasing for the inference relation � , and let
t(p) 2 [0, 1] be the measure of the résumé p of the premises. If q is a consequence,
from p � q follows t (p) � t(q); that is, the degree of truth of a consequence is, at
least, that of the résumé. If h is a hypothesis, from h < p follows t(h) � t(p); that
is, the truth of the hypothesis is, at most, that of the résumé. If r is a refutation, from
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p � r′ follows t(p) � t(r′); that is, the truth of the negation of a refutation is, at
least, that of the résumé. Note that if it were t(r′) = N(t(r)) = f−1(1 − f(t(r))), with
N a strong negation, then f(t(p)) � 1 − f(t(r)) , t(r) � N(t(p)) = t(p′) would
follow; that is, the truth of a refutation is, at most, that of the negation of the résumé.

Finally, if s were a speculation its inferential isolation from p would not allow
comparison of the true values t(p) and t(s). But, if s were of type-one, because it is
p′ � s, it would follow that t(p′) � t(s), and its truth would be, at least, that of the
résumé’s negation. Provided it were t(p′) = N(t(p)), it would follow that N(t(s)) � t
(p). Nevertheless, if s were a creative speculation, its isolation from p′ would not
allow comparison of the truths of s, or s′, with that of the résumé p.

Hence the truth of the negation of the résumé is an upper bound for the truth of
refutations and a lower bound for type-one speculations, but nothing can be said for
type-two speculations; they are also wild with respect to truth.

10.7. Moving towards a new experimental science of language and reasoning, it is
relevant to count with the help of accurate measurements; there is no experimental
science without controlled experimentation, and this often requires counting with
mathematical models representing the basic system’s variables with which some
numerical, either real or complex, parameters can be computed to discriminate which
one among the posed possible solutions is the best adapted to the known data.

What is being presented cannot be seen as a doctrine for modeling all that is in
language. On the contrary, there are many aspects of both linguistic and logical
character that up to now have not been modeled, and perhaps cannot be modeled by
what has been shown. What is, notwithstanding, beyond doubt is that what has been
presented actually enlarges the possibilities of representing plain language further
than it does classical methods, but if it can be said that “language is all,” it is very
difficult to believe that a single mathematical model of “all language” can exist. For
instance, language is full of ambiguity and no mathematical model of ambiguity is
yet known, even if it can be imagined that, for predicates showing several meanings
in the same context, their ambiguity could somehow be represented by modifying
what has been presented for the meaning of imprecise predicates as a quantity. But
if much of it is still waiting to be done, it seems clear enough that creative reasoning
goes through analogy and speculation, through good guessing, and the breaking of
transitivity.

10.8. As has been shown, most properties of the natural relation of inference (� )
hold thanks to its presumed transitive law, without which there are serious doubts
relative to the possibility of always keeping them. In the formalized forms of
reasoning, the transitive law is often either taken for granted, or a direct conse-
quence of its basic laws as they are, respectively, the cases in which the mathe-
matical framework allowing translating the reasoning into a calculus is an
ortholattice or a BAF. In them, transitivity cannot fail.

Nevertheless, transitivity cannot always be presumed when creative reasoning is
done; it seems sometimes that there are triplets of statements (p, q, r), such that
p � q, q � r, but p � /r, cases in which a breaking of the inference chain does
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not allow us to reach r from p. Some aspects of creative reasoning seem to be
closely related to the existence of “linguistic continua” in language, similar to the
physical continuum with which Henri Poincaré identified the physical world in
contraposition to the mathematical models describing it, and in which transitivity is
always accepted. In this respect, two examples, first of a physical continuum, and
second of a linguistic one, would be interesting.

Puncture point A in the hand’s palm with a needle, and call a the corresponding
sensation; repeat the puncture in a point B (with sensation b) at which b is not
distinguished from a, and make a new puncture in a point C such that sensation c is
not distinguished from b. As often recognized, c is clearly distinguished from a. It
can be symbolically written, a = b, b = c, but a 6¼ c, revealing that skin’s sensa-
tions do not constitute a transitive system, but Poincaré’s physical continuum.

A typical linguistic continuum is constituted by a chain of words p, q, r, and so
on, such that, in a dictionary of synonyms, it is recognized that q is a synonym of p,
r is a synonym of q, s is of r, and so on. In this case it is always a word—let it be z
for instance—such that it is not a synonym of p. Symbolically, indicating by �
that the dictionary allows us to infer the consequent as a synonym of the antecedent
it is, p � q, q � r, r � z, but p � /z. Semantic synonymy does not constitute a
transitive system; it is, inside language, a linguistic continuum.

Because something can never be inferred from nothing, when it is not p � q,
guessing q from p is a creative reasoning that requires having some knowledge of p,
that is, some intellectual experience of what p means, its consequences and
hypotheses, as well as how to refute it. Provided this collection of what is related to
p were a linguistic continuum, q could only be obtained by a; on the contrary
speculation, q can be obtained as either a consequence, or a hypothesis, or a
refutation of p. Creative reasoning is related to the “discontinuities” between
inferentially isolated concepts.

This is but an intuitive idea of what creative reasoning is, but it should still be
added that there is a big difference between reasoning after knowing a persecuted
and precise goal (for instance, when in mathematics the statement to be proven, the
theorem, is read and its proof follows below it), and when the goal is unknown, or
imprecise, and/or included in an environment of uncertainty, ambiguity, and the
like as happens in a truly creative process of reasoning. In the first case, one is
simply faced with capturing all the steps of a proof others made to answer the
question of the theorem before it; something that is, nevertheless, of great impor-
tance for acquiring mathematical knowledge. In the second, one is faced with the
intellectually exciting problem of stating a question only supported by the formerly
reached conclusions, or previous information on the subject, often requiring being
surrounded by doubts and experience with analogous situations. If questioning is
always essential for creation, advancing knowledge needs to pose good questions
and reach fertile answers.

For nonroutine research towards creating something new, one should be excited
by doubts and questions. Creation requires it.
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Chapter 11
Formal Reasoning with Precise Words

Formal reasoning is a representation of either ordinary or specialized reasoning on
some specific subject, provided the actual reasoning could be translated into a
framework allowing a calculus for copying with it.

To do a formal reasoning is required, first of all and necessarily, counting with
some mathematical framework where the reasoning could be translated into the
calculus, and according to the reality existing behind it. The framework corresponds
to the kind of reasoning to be translated into it, and allowing, as much as possible,
its reproduction with the calculus; that is, from the characteristics the corresponding
situation can show, and by fixing the basic properties or laws, the involved terms
should verify when symbolically translated into the framework, that is, under the
supposition that the chosen symbols and laws between them faithfully translate
their meanings in the actual reasoning. In such a sense the framework should be as
“natural”, or suitable, as possible for each specific kind of reasoning.

Formal reasoning is, in the end, only a mathematical model of some particular
specialized type of reasoning on something; hence, there is not exactly a single type
of formal reasoning, but several mathematical models of it. At each specialized
form of reasoning, it is supposed that the semantics of what is modeled is well
translated into the corresponding mathematical model; for it, the internal laws of the
representation’s framework should be established according to what is recognized
in the actual and external reasoning and its context. Sciences compact in artificial
languages what, thought in plain language with scientific concepts, is considered
basic for the corresponding subject and for formally developing the reasoning on it.

In what follows, the models for reasoning with precise words, and with both
precise and imprecise words (and later in Part II, with the specialized reasoning
physicists conduct on the quantum microworld), are considered. Basically, formal
reasoning refers to mathematically formalized deductive reasoning, even if in the
first two cases some hints regarding ordinary reasoning are presented. In addition, it
should be noted that in these three cases, the corresponding inference relation is
represented by a partial order verifying the transitive law; hence the former results
requiring transitive triplets always hold. In addition, in these cases, the negation is
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usually presumed to be strong, that is, verifying (p′)′ � p; thus also those results
requiring one of the laws p � (p′)′ or (p′)′ � p also hold.

11.1. The mathematical framework credited as the undisputed one for classical
reasoning with precise words is the theory of sets, that is, the structure of a Boolean
algebra, as stated by Marshall Stone’s characterization theorem of Boolean algebras
in 1936. Such a framework comes from the “specification axiom” under which a
precise word P acting in a universe of discourse X specifies a subset of X consisting
in those x for which “x is P” holds, with its complement subset containing those
x such that “x is P” fails; statements can only be either true or false.

In this case, the operations translating the linguistic conjunction (�), the dis-
junction (+), and the negation (′), are supposed to verify all the laws of a Boolean
algebra, that is, of a distributive lattice with a single strong negation. These laws
affect all the statements composed by means of such connectives; the model pre-
supposes that in the corresponding language all Boolean laws hold. In particular, it
holds the law of perfect repartition p = p � q + p � q′, a law that jointly with the
negation, the commutative, and associative laws of +, and the conjunction defined
by duality, p � q = (p′ + q′)′, characterizes Boolean algebras as Edward V.
Huntington proved in 1933. Of course, the laws derived from those that characterize
Boolean algebras also hold; for instance, the represented statements are presumed to
verify (p � p) + (q � p) = p + q � p = p, because q � p � p; (p � q′) � (p′ � q) =
(p � p′) � (q′ � q) = 0 � 0 = 0; p + p = p, and so on.

In this case, if/then statements, the conditional ones, are supposed to coincide
with “negation of antecedent, or consequent”; that is, “if p, then q” (p ! q) is
presumed to coincide with p′ + q, that, provided the algebra were complete, in its
turn coincides with Sup {z; p � z � q} as has been formerly shown. Hence, the
truth values, t(p ! q), are equal to t(p′ + q) = max (1 − t(p), t(q)), that equals 1 if
and only if it is t(p) = 0, or t(q) = 1; the conditional only holds provided the
consequent were to hold or the antecedent fails.

It is said that a linguistic statement p is a tautology when it is p = 1 (the
maximum of the lattice); nevertheless, it can be statements q that, not being a
tautology, have truth value equal to one, t(q) = 1. An if/then statement
p ! q represents a tautology if p′ + q = 1 that, as was shown, is equivalent to
p � q, the partial order of the Boolean lattice’s part, defined by p � q = p, or
equivalently by p + q = q. For instance, p + p′ = (p � p′)′ is a tautology, as well as
are all linguistic statements whose translation into the algebra is represented by
p′ + p � q + p � q′ = p′ + p � (q + q′) = p′ + p = 1, but are not a tautology those
whose representation is p + p � q + p � q′ that are equal to p + p = p.

It should be pointed out that the idempotent laws of conjunction and disjunction,
respectively, p � p = p, and p + p = p, imply t(p � p) = F(t(p), t(p)) = t(p), and
t(p + p) = G(t(p), t(p)) = t(p), showing that F = min, and G = max, are, at least,
suitable commutative and associative solutions of these equations, under which
t(p � q) = 1 , t(p) = t(q) = 1 and t(p + q) = 1 , t(p) = 1 or t(q) = 1.

Notwithstanding, in the case of lattices, and Boolean algebras in particular, it can
be proven that with t ranging in [0, 1], the only admissible pair (F, G) is (min, max);
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where, for instance, with F = prod, and p � p = p, from t(p) = t(p) � t(p) either t
(p) = 0, or t(p) = 1 follows, and true or false statements will only exist, but not a
single q with 0 < t(q) < 1.

What about the basic point, in inference, with p ! q = p′ + q? That is, what can
be said when the set of premises isP(!) = {p, p ! q}whose résumé is p � (p ! q)?
This, of course, supposes that p � (p ! q) is not self-contradictory, which now
simply means p � (p ! q) 6¼ 0, because in Boolean algebras it is r � s′ , r �
s = 0; thus, from p � (p ! q) = p � (p′ + q) = p � q, equivalent to p � q 6¼ 0, it is not
p � q′.

An element c is a consequence of P(!) provided it were p � (p ! q) � c, and
h is a hypothesis for P(!), provided h � p � (p ! q). Hence c deductively fol-
lows from P(!) provided p � (p ! q) � c. The modus ponens inequality is
obtained with c = q, that, as proven, is equivalent to p ! q � p′ + q, showing
that p′ + q is the greatest possible expression of the conditional, and that because it
follows p � (p ! q) � p � q, p � q is also a consequence of P(!). Additionally,
with the greatest conditional p′ + q, c is a consequence of P(!) if and only if
p � q � c.

Concerning a hypothesis h 6¼ 0, that is, h is not self-contradictory, the inequality
h � p � (p ! q) = p � q shows that h should be a hypothesis for both p and q, and
reciprocally because h � p and h � q, imply h = h � h � p � q. In the case
where p ! q were not p′ + q, the hypotheses for P(!) are just those h 6¼ 0 that are
hypotheses of both p and p ! q.

What about refutations and speculations of P(p′ + q)? Refutations r are char-
acterized by p � q � r′ , r � p′ + q′. Type-two speculations s cannot be char-
acterized by any inequality, but only by s NC p � q, and s NC(p � q)′, or
s NC(p′ + q′). Those of type-one should verify s NC p � q, and s′ � p � q, or
(p � q)′ = p′ + q′ � s; they should be, on the order of the algebra, isolated from
p � q but greater than (p � q)′, and, in particular, simultaneously greater than p′ and
greater than q′, because it is p′ � p′ + q′, and q′ � p′ + q′.

Of course, if there are always consequences and refutations it can happen that
neither the hypotheses nor the speculations exist. In this respect, let’s consider a
simple example of some interest concerning the reasoning that, for making a bet, is
done on the events that can appear in throwing a die.

The elemental directly observable events in the experiment are “appears one”,
“appears two”, …, “appears six” points; hence, the universe of discourse can be
taken to be X = {1, 2, 3, 4, 5, 6}, and all the possible events are its subsets, with the
empty set Ø corresponding, for instance, to a failure in throwing the die. For
instance, the event “appears odd points”, corresponds to the subset {1, 3, 5}, the
event “appears more than 3” corresponds to {4, 5, 6}, and so on. Note that the full
set X corresponds to the “sure event”, consisting in “obtaining any possible number
of points”, the only one at which no bet is allowed; X is the only premise for the
reasoning.

Hence, because all subsets S of X verify S � X, and subset inclusion is the
counterpart of � in the power algebra 2X of subsets, the events are but hypotheses;
the bets are on hypotheses. The only consequence, X � S, is obviously X and the
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only refutation is the empty set because it is X � S′ , S � X′ = Ø , S = Ø, the
one at which nobody will bet.

In this example, there are no speculations, a single consequence, a single refu-
tation, and many hypotheses. The theory of probability mainly concerns the mea-
suring of the chances hypotheses can have, the hypotheses that can be made on the
possible results of a random experiment expressible by means of precise words. The
case with either nonrandom experiments, or with “imprecise events”, is considered
later on.

Summing up,

– The uniqueness of the three operations translating the linguistic and, or, and not,
as well as the great number of laws a Boolean algebra (or a power set) enjoys,
makes the model a very simple one in which, for instance, refutations r(p � r′)
coincide with those r such that p � r = 0, that is, those subsets with empty
intersection with the résumé’s subset.

– Analogously, conjectures p � / q′ coincide with those q such that p � q 6¼ 0, that
is, those subsets with nonempty intersection with the résumé, and first-type
speculations with those subsets s not comparable with the résumé but whose
negation is included in it, s′ � p, equivalent in this case to p′ � s, and also to
p + s = 1, because: p′ � s => 1 = p + s, and 1 = p + s implies p′ = p′ � s � s.

Hence, the Boolean model is uniform for all reasoning in which words are
precise, all information on them is at least potentially available, and no degrees of
truth beyond 1 and 0 are required. This kind of reasoning is typical of linguistic
environments on which a perfect cut can be made between what is and what is not,
where “ideal” perfect classifications can actually be obtained, something that is not
always possible when the descriptions of situations or phenomena, either physical
or virtual, are made with imprecise words, with uncertainty or with ambiguity, as is
usual in ordinary reasoning and when, for instance, the behavior of a dynamical
physical system is described in a plain language.

Nevertheless, there are descriptions of some situations that are done with precise
words, as if they were some interesting random experiments such as that of
throwing a die, and that are full of uncertainty; the events are describable in precise
linguistic words, but are uncertain. In these experiments, the linguistic description
of the events that can be obtained is well translated into a Boolean algebra of crisp
sets, and, for computing the uncertainty of events, the idea of probability was first
introduced, and later subjected to a very short, simple, and beautiful axiomatic,
introduced by Anatoly N. Kolmogorov in 1933. This probability is, actually, a
measure of the event’s uncertainty when it is precisely describable, but is not the
only interpretation of the probability’s concept. The analysis of the meaning in
language of the word “probable” is still open, the mother-predicate of the (abstract)
concept of probability, which “measures of probability” are supposed to measure.
In this interpretation, is probability a measure? And, what does it measure?
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The answer is hidden in the same Kolmogorov definition, namely in the axiom
of additivity:

If p � q = 0 (,p � q′, p and q are contradictory), then prob(p + q) = prob(p) +
prob(q),

because in Boolean algebras it holds p � q , q = p + q = p + p′ � q, and it is
p � (p′ � q) = (p � p′) � q = 0 � q = 0, then prob(q) = prob(p) + prob(p′ � q) �
prob(p). Thus, taking the lattice’s order of the Boolean algebra as the qualitative
meaning of “probable”, the mapping prob, assigning numbers in [0, 1] to the events,
is a measure of the word “probable”. Kolmogorov’s probability completes the
graph (2X, �), identified with the qualitative meaning of probable in 2X, to the
triplets (2X, �, prob) that, in this form, each can specify a full meaning of the word
“probable”. That is, Kolmogorov’s probability is actually a measure of the lin-
guistic qualitative meaning of probable, � probable, under its identification with the
relation � of set’s inclusion.

This is something that, perhaps acceptable with precise words, is not clearly so
with the imprecise ones, whose meanings cannot be represented by crisp sets. Note
that the supposition � probable = �, comes from accepting that “less elements” can
be identified with “less probable”.

In conclusion, although the evident successes of the formal Kolmogorov theory
of probability that, based on Boolean algebras, can lead to assigning great confi-
dence in the former interpretation of the meaning of probable when used with
precise words, it is still open to study when “probable” is used with imprecise
words. Note that in plain language expressions such as, “It is with high probability
that John is rich,” in which neither “high” nor “rich” can always be constrained to
be represented by crisp sets, are often uttered; examples like this cause us to look
again at the meaning of the word “probable” in plain language.

11.2. In the classical case, with the inference relation identified with the lattice’s
order of the Boolean algebra, and because it is transitive, there is no room for
inferential jumps in a deductive process, except an operative mistake or the igno-
rance of something that can produce an erroneous proof. In a correct proof there
cannot be jumps; correct proofs are conducted in algorithmic form, that is, by
enchaining statements in such a way that all steps in the chain hold thanks to its first
step which is initially supposed to hold; each step is fired thanks to its former step,
and by following the rule p:p � q::q, of modus ponens.

A proof of q from p consists in a sequence {p, p1, p2, …, pn−1, q}, such that
p � p1, p1 � p2, …, pn−2 � pn−1, and pn−1 � q. Because � is transitive, it
follows that p � q; that is, q is deduced from p thanks to the inferential steps pk
regardless of its number. The chain p � p1 � … � pn−1 � q, is but an algo-
rithm that allows reaching q from p; of course, it does not mean such an algorithm is
unique, but usually several different proofs of q from p are available, and mathe-
maticians prefer those with a minimum number of steps (often considered among
the most beautiful proofs). As soon as the transitive law of � is lost, algorithms

11 Formal Reasoning with Precise Words 107



can break at some intermediate step without allowing finally and safely concluding
p � q, a proof of q from p.

Algorithms are essential for mechanizing formal deductive reasoning; from very
early in the history of artificial intelligence, there have been computer programs or
algorithms that proved some previously known mathematical theorems with fewer
steps than proven by mathematicians. Let’s remember the old case of the Herbert
Simon program, Logical Theorist, that proved a theorem appearing in the book
Principia mathematica by A.N. Whitehead and B. Russell, where it was proven
with a larger proof than the one obtained by Logical Theorist. It was attained,
nevertheless, in the short and closed context of the few axioms constituting the
previous information needed for the proof.

11.3. As formerly observed, in the precise case, the NC and EM principles
expressed in the former self-contradictory form collapse, respectively, in the
equivalent Boolean axioms p � p′ = 0, and p + p′ = 1, because, as is well known, in
Boolean algebras: x � x′ , x = 0, and x′ � x , x = 1. Observe that because
the reciprocal also holds: p � p′ � (p � p′)′ , p � p′ = 0, and (p + p′)′ �
((p + p′)′)′ , p + p′ = 1.

Note that in non-Boolean ortholattices these equivalences also hold, but neither
in De Morgan algebras nor in basic fuzzy algebras (BAFs) where, nevertheless, the
principles only hold in their “self-contradictory form” provided the inference
relation were taken coincidental with their respective orderings. In all these cases,
the inference relation is transitive and there is no room for the failing of the
principles. But in ordinary reasoning it cannot always be presumed that the infer-
ential relation � is an algebraic order, and less again is it always transitive. In
ordinary reasoning, transitivity is a local property.

11.4. NC and EM can also be analyzed from the inferential point of view, and a
hint on it follows. Note that in its former interpretation (p � p′)′ can be seen as
simply being a refutation of p � p′, and ((p + p′)′)′ as being one of (p + p′)′. Hence,
they cannot be conjectures; but, what about p � p′ and p + p′?

Provided p were not self-contradictory, taking the singleton P = {p} as the set of
premises, and presuming transitivity, p � p′ cannot be a consequence of P, p �
p � p′, nor p a hypothesis for p � p′. Were it a consequence, and the triplet (p, p � p′,
p′) transitive, because it is p � p′ � p′, it would follow that p � p � p′, and because
of NC, the absurd p � p′ would also follow. In addition, the possibility that p � p′
is a speculation can be avoided inasmuch as p � p′ � p implies that it is not p NC
p � p′. Statement p � p′ is not a conjecture of {p} and, hence, should be a refutation
of {p}, and it is so because p � p′ � p′. But, on which conditions can it
be p � (p � p′)′? Because p � p′ � p′, it is (p′)′ � (p � p′)′, it suffices to count
with p � (p′)′, and the transitivity of the triplet (p, (p′)′, (p � p′)′) to have
p � (p � p′)′.

On the contrary, because it is always p � p + p′, p + p′ is a consequence of P,
and p a hypothesis for p + p′.
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Chapter 12
Formal Reasoning with Imprecise
(and Precise) Words

Without changing its meaning, imprecise words cannot be represented by crisp sets,
but by the measures or the membership functions of fuzzy sets whose linguistic
labels are those imprecise words. Representing the reasoning with imprecise words,
for reaching Zadeh’s computing with words, a calculus with fuzzy sets is necessary,
and for which BAFs (basic fuzzy algebras) only facilitate a too general skeleton. To
such a computing goal, BAFs need to be specialized to each particular problem, by
defining operative forms for conjunction, disjunction, and negation, as well as by
finding suitable expressions for conditional statements, modifiers, and quantifiers.
One method is to suppose that such operations are functionally expressible by
functions/operations endowed with laws that, without allowing the Boolean algebra
structure, could permit some computations once chosen, as accordingly as possible,
to that which the designer considers is in the corresponding setting. Among such
operations, the most widely used are continuous t-norms, continuous t-conorms,
and strong negations. Because negations were considered before, let’s briefly
consider the first two in which “t” comes from its former introduction by Karl
Menger, and refers to “triangular”, in as much as they were first used for estab-
lishing a triangular inequality in probabilistic metric spaces, where distances are not
numbers but probability distributions. With these functions, the standard algebras of
fuzzy sets can be defined and the study of their laws can begin.

12.1. A continuous t-norm T is a continuous, commutative, monotonic, and asso-
ciative binary operation in [0, 1] such that has 1 is neutral, 0 is absorbent, and is
nondecreasing in its two variables; t-conorms S are operations in [0, 1] obtained from
t-norms T in the form S(x, y) = 1 − T(1 − x, 1 − y). They are commutative, asso-
ciative, and nondecreasing in both variables, with 0 neutral and 1 absorbent; It is
obvious that T is continuous , S is continuous.

Note that y � 1 implies T(x, y) � T(x, 1) = x, and T(x, y) � T(1, y) = y, thus
T(x, y) � min(x, y); that is, the greatest t-norm is T = min, a continuous one.
Analogously, it is max � S for any t-conorm S; max is the smallest t-conorm and it
is continuous. Hence, for any pair whatsoever of a t-norm T, and a t-conorm S, it is
T � min � max � S; in particular, it is always T � S and T =/S. In addition to
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min, two typical instances of continuous t-norms are T(x, y) = prod(x, y) = x � y,
and T(x, y) = W(x, y) = max(0, x + y − 1).

Note that the definition of a t-conorm S shows its “duality” with a t-norm T with
respect to the strong negation 1 − Id, but that, analogously, t-conorms S can be
defined by duality with t-norms T by any strong negation N: S(x, y) = N(T(N(x),
N(y)), for all x, y in [0, 1].

Additionally, it should be pointed out that, contrary to the continuous upper
bound min for all t-norms, there is no continuous lower bound for them but that, as
is easy to prove, such a bound is given by the discontinuous t-norm

Z x; yð Þ ¼ minðx; yÞ; if x ¼ 1; or y ¼ 1; and Z x; yð Þ ¼ 0; otherwise;

and obviously verifying Z � T for any t-norm T; Z is the lower bound for all
t-norms, and not only for the continuous ones. In the same vein, although max is the
continuous lower bound of all t-conorms, the upper bound of all t-conorms is the
discontinuous t-conorm

Z� x; yð Þ ¼ 1� Z 1� x; 1� yð Þ ¼ maxðx; yÞ; if x ¼ 0; or y ¼ 0; and Z� x; yð Þ
¼ 1; otherwise;

the dual t-conorm of Z with respect to the negation 1 − Id.
Hence, all t-norms T verify Z � T � min, and all t-conorms S verify

max � S � Z*; all of them are contained, respectively, in the functional closed
intervals [Z, min] and [max, Z*]. Hence, for all pairs (T, S), not only continuous,
Z � T � min � max � S � Z*, although neither all the functions in [Z, min]
are t-norms nor are all those in [max, Z*] t-conorms. There exist an enormous amount
of t-norms and t-conorms, of which only the continuous are fully characterized.

Given a t-norm T, for each order automorphism f on the ordered unit interval, the
function Tf(x, y) = f−1(T(f(x), f(y)) is also a t-norm that is continuous if and only if
T is. Analogously, for a t-conorm S, the function Sf(x, y) = f−1(S (f(x), f(y)) is also a
t-conorm that is continuous if and only if S is. It is said that all the t-norms Tf
constitute the family of T, and all the t-conorms Sf the family of S, of course, taking
into account all the order-automorphisms f of the unit interval. For instance, the
family of min is reduced to min, because f−1(min(f(x), f(y)) = min(x, y); the family
of prod are the continuous t-norms prodf(x, y) = f−1(f(x) � f(y)); and the family of
W are the continuous t-norms Wf(x, y) = f−1(W(f(x), f(y)).

Note that an automorphism of the ordered unit interval ([0, 1], � ) is a mapping
f: [0, 1] ! [0, 1] that is strictly nondecreasing, and verifies f(0) = 0, f(1) = 1; thus,
all automorphisms are continuous functions.

Any t-norm verifies T(x, x) � x, for all x, but the only one verifying T(x, x) = x,
for all x in [0, 1] is T = min, even if it does not mean that, for some continuous
t-norm T, no point x different from 0 and 1 can verify T(x, x) = x(T is idempotent at
point x). This is not the case of those t-norms in the former two families: prod
f(x, x) = f−1(f(x) � f(x)) = x , x 2 {0, 1}, and Wf(x, x) = f−1(max(0, f(x) +
f(x) − 1)) = x , max(0, 2f(x) − 1) = f(x) , f(x) = 0, or f(x) = 1 , x 2 {0, 1}.
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Hence, continuous t-norms are min (with all x idempotent); those without idem-
potents other than 0 and 1, and those with some idempotent elements different from
0 and 1, of which the second are just those in the families of prod and W, and the
third are called “ordinal sums” of t-norms.

All that is analogous with continuous t-conorms: there are only max, the family
of 1 − prod(1 − x, 1 − y) = x + y − x. y, denoted either by Sum-prod, or prod*,
the family of 1 − W(1 − x, 1 − y) = min(1, x + y), denoted by W*, and called
“bounded sum”, and the ordinal sums of t-conorms.

12.2. The classification of continuous t-norms, and t-conorms, helps to compute
with them and also to obtain theorems concerning the verification of some laws
through solving the corresponding functional equations or inequalities, for instance,
to know if, and when, the typical Boolean law of perfect repartition can hold with
imprecise statements, that is, for studying the validity of the equation l = l �
+ l � r′ for all l and r in [0, 1]X. This can be known, under the hypotheses that
conjunction, disjunction, and negation are functionally expressible by, respectively,
a continuous t-norm T, a continuous t-conorm S, and a strong negation N, by
solving the functional equation.

a ¼ SðT a; bð Þ; T a;N bð Þð Þ; for all a; b in 0; 1½ �;

among whose solutions is the triplet T = prod, S = W*(=min(1, sum)), and
N = 1 − id:

W� x � y; x � ð1� yÞð Þ ¼ W� x � y; x� x � yð Þ ¼ min 1; x � yþ x� x � yð Þ
¼ min 1; xð Þ ¼ x;

showing that such law holds in algebras of fuzzy sets in which no duality holds,
something that has no place in the reasoning with precise words where the laws of
duality are accepted to hold universally. Hence, in the imprecise case the law of
perfect repartition can hold, and all the positive cases with continuous t-norms,
t-conorms, and strong negation can be found by solving the former functional
equation; these solutions are T = prodf, S = Wf

*, and N = Nf, and hence the law of
perfect repartition with imprecise words is not compatible with duality. This occurs,
at least, in the BAFs that are standard algebras, that is, functionally expressible by
continuous t-norms, continuous t-conorms, and strong negations; but it suffices for
asserting that in plain language such a law cannot universally hold. Note that in the
algebra expressed by the triplet (prod, W*, 1 − id), it holds the law of
excluded-middle, because W*(x, 1 − x) = min(1, x + 1 − x) = 1, but not the law of
contradiction, because prod(x, 1 − x) = x(1 − x) = 0 , x = 0, or x = 1, two laws
also undisputed with precise words.

More laws of the classical crisp logical calculus can hold in the imprecise case
and under diverse algebras, but always at the cost of losing some other Boolean
laws. As was reported at the beginning of the former section, there is no single
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calculus able to formalize the reasoning with imprecise words, and an open ques-
tion remains of finding the diverse possible ones that can be developed by means of
several algebras of fuzzy sets, something actually important for seriously facing
computing with words.

The limiting of the calculus with fuzzy sets to continuous operations occurs
because most membership functions of fuzzy sets with an imprecise linguistic label
are continuous as a manifestation of their flexible character and thus, provided the
operations were not continuous, some unwished discontinuities would be added, in
a perhaps artificial form, to the final computations. In addition, provided the
membership functions showed some discontinuity, the continuous operations surely
would not modify them. Usually, in the applications, membership functions are
continuous functions Rn ! [0, 1], with the discontinuous ones just referring to
crisp sets. It is worthwhile remembering why the membership functions of the
imprecise use of “small” in [0, 1] should be taken as continuous; if x were small, all
points in a short interval (x − e, x + e) would also be small.

12.3. What about representing the imprecise conditional statements “If l, then r”
with the membership functions l and r specifying imprecise words? In this case,
the rules of modus ponens (MP) and modus tollens (MT) cannot always be posed as
they are in the classical crisp case because most of the systems that are describable
by means of imprecise rules are not static, but dynamical.

When observing the reality of a rule “If l, then r”, what is actually observed is
not exactly l, but l* “close to l”, or r* “close to r”. Hence, such rules of inference
should be posed in the forms:

– ‘If l, then r; l*: r*’, with input l*, and output r*, for modus ponens,

and

– ‘If l, then r; not r*: not l*’, with input not r*, and output not l*, for modus
tollens,

representing such approximate modes of imprecise reasoning with the constraint
that l* = l should imply r* = r for preserving the classical case that, in addition,
could really appear.

The corresponding inequalities within a standard algebra, a functionally
expressible BAF by continuous t-norms, t-conorms, and strong negations, are:

T l � xð Þ; J l xð Þ; r yð Þð Þð Þ� r � yð Þ; for MP;

and

T N r � yð Þð Þ; J l xð Þ; r yð Þð Þð Þ�Nðl � xð ÞÞ; for MT;

for which verification the functions T, J, and N, should be designed in each context
once the membership functions are, and by taking care that with l* = l, r* = r
should hold. Both inequalities are obviously equivalent to, respectively,
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Supx2XT l � xð Þ; J l xð Þ; r yð Þð Þð Þ� r � yð Þ; for all y in Y ;

and

Supy2YT N r � yð Þð Þ; J l xð Þ; r yð Þð Þð Þ�N l � xð Þð Þ; for all x inX:

In this way, the variable affecting the input is eliminated at each of the left
members of these inequalities, and they allow computing the (theoretical) outputs
r*, and N ∘ l* by “defining” them as, respectively, the left members in the two
former inequalities. These rules for computing approximate imprecise outputs,
introduced by Zadeh, are known as the compositional rules of inference (CRI); at
least the first showed its usefulness in many applications of fuzzy control, where the
function J representing the conditional is just taken to be min or prod.

Let’s show examples with these two functions in X = Y = [0, 1], with l(x) = x,
r(x) = 1 − x/10, l*(x) = 1, if x 2 [0.7, 1], and 0 otherwise, and r*(x) = 1, if x
[0, 0.2], and 0 otherwise.

(a) With J(x, y) = min(x, y), it is:
Supx2[0,1] min(l*(x), min(x/10, 1 − y/10) = min(1/10, 1 − y/10), and it follows
that the theoretical output r* is r*(y) = min(1/10, 1 − y/10), the truncation of
the r’s graphic by 1/10. Because a linguistic label for r is “small”, one for r*
could be, for instance, “almost small” even if such name’s attribution is to be
checked with the given problem data.

(b) With J(x, y) = x. y, it is:
Supy2[0,1] min(1 − r*(y), x/10�(1 − x/10)) = min(1, x/10�(1 − x/10)) = x/10�
(1 − x/10), and the theoretical output l* is the function l*(x) = 1 − x/10�
(1 − x/10). Because a linguistic label for “not l” is “not big”, one for l* could
be “not (big and small)”, and whose suitability, as in the former case, should be
checked by the designer.

Observe how the final linguistic naming of the outputs depends on the chosen
algebra for computing; this shows the care that should be taken for choosing it in a
design process. Note also that provided it were possible to take T = min, and
because this function is the greatest t-norm, the theoretical outputs would then be
closer than possible (with continuous t-norms) to the theoretical outputs r* and
N ∘ l*.

Let’s repeat that in the case of imprecise reasoning a universal algebra for
computing with fuzzy representations does not exist; at each practical problem, or
application, the algebra should be contextually and carefully chosen according to
the data, and once that has all been submitted to scrutiny by the designer. This is
akin to constructing a house: it cannot be safely done without previously studying
the ground, the house’s form, its sustainable structure, the materials to be employed,
and so on.
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Let’s repeat that the MP inequalities for those functions J hold with the biggest
t-norm min because, for any previously chosen t-norm T, it is min(a, T(a, b)) � T
(a, b) � b. Because it is obvious that the former MP inequalities also hold for any
function F such that F � min, and, in particular for any continuous t-norm,
making it equal to min the “defined outputs” become the bigger ones and, pre-
sumably, closer to the “real outputs” than with any other t-norm; this is why
T = min is always taken in the CRI in fuzzy control.

Among the conjunctive representation of rules/conditionals “If l, then r”, in the
form l ! r = l � r, T = W is never taken but only T = min, or T = prod in
J(x, y) = T(x, y). Why? Because the t-norm W and all the t-norms in its family have
zero-divisors, that is, numbers x > 0, y > 0, such that W(x, y) = 0. Namely it is max
(0, x + y − 1) = 0 , x + y � 1 and, for instance, W(0.6, 0.4) = 0; hence, a rule
whose antecedent and consequent hold with a positive degree could be not fired for
having a joint zero degree. Of course, neither min nor prod has zero-divisors because
they are min(x, y) = x � y = 0 , x = 0, or y = 0. Additionally, only prod is strictly
nondecreasing in both variables, but min and W are not; for instance, it is 0.4 < 0.5
and 0.3 < 0.5, and 0.4. 0.3 = 0.12 < 0.25 = 0.5. 0.5; but W(0.4, 0.3) = W(0.5,
05) = 0, and, with 0.6 < 0.7, it follows that min(0.4, 0.6) = min(0.4, 0.7).

12.4. Representing systems described by several imprecise linguistic rules with
the same function J for all the rules deserves comment. The reasonability of
such election depends on a uniform meaning of the linguistic conditionals, or rules,
and on the suitability of a same proto-form for all the rules; were such the
case, there is nothing against it. Nevertheless, language comprises conditional
statements more complex than the rules of these systems are. For instance, “If
(If p, then q), then (If not p, then r)” in classical calculus is expressed by
(p′ + q) ! (p + r) =(p′ + q)′ + (p + r) = p � q′ + p + r = p + r = (p′)′ + r = p′! r;
that is, it is equivalent to “p or r”, or to “If not p, then r”. Anyway, provided the
intermediate conditionals were to be expressed in conjunctive form, the classical repre-
sentationwould be p � q ! p′ � r = p′ + q′ + p′ � r = p′ + q′, whosemeaning is that of
“not p or not q”; but, provided the three conditionals were conjunctive, then it would be
(p � q) � (p′ � r) = (p � p′) � q � r = 0, and the statement would be meaningless. The
meaning of p ! q depends on its interpretation.

Hence, in the case of a reasoning consisting in several conditionals with precise
words, the meaning of each conditional affects the meaning of the full statement; it
must carefully proceed in its representation, and even more with imprecise words.
For instance, in a fuzzy case with two rules l ! r, and a ! b, functionally
represented by J1(l(x), r(y)), and J2(a(x), b(y)), the forms J1 and J2 can show
should be previously studied before taking J1 = J2; that is, before supposing that the
meanings of the two conditionals made them coincide in the same proto-form. This
is something not usually done in fuzzy control where, not with standing, the usual
simplicity and understandability of the rules does not make taking different func-
tions J strictly necessary. But this is not the case in parts of language where the
conditionals can be neither simple nor easily understandable.
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In a novel by the Spanish writer Enrique Vila-Matas, the complex statement
appears, here translated from Spanish into English,

“I had always told myself that if life has no sense neither has reading, but suddenly it
seemed to me that the process of reading and searching for artists of the Not, did have a lot
of sense. Unexpectedly, I felt that the search for bartlebys gave sense to my life.”

This statement hides a reasoning involving three conditionals:
If (If life has no sense, neither has reading), then (If reading has sense, also has

life), and that can be symbolically represented by the formula (p ! q) ! (q′ ! p′).
In the classical mode of reasoning, and provided everything in it were precise, it is
(p ! q) ! (q′ ! p′) = (p′ + q)′ + (q + p′) = (p′ + q)′ + (p′ + q) = 1. But, were
the conditional expressed in conjunctive form, this formula would be a contradiction,
because (p � q) � (q′ � p′) = (p � p′) � (q � q′) = 0.

Nevertheless,

(a) Sense is taken in the text as an imprecise word, inasmuch as it is said in it that
reading has “a lot of sense.”

(b) The author does not identify contrasymmetrical conditionals, because he sep-
arates, “If life has no sense, neither has reading,” from, “If reading has sense,
also has life.”

(c) Contextual information on the author’s literary biography states that he is a
passionate reader writing in a dense and complex literary style.

Hence it does not seem that the truth of the statement could be considered out of
context with precise words and representing conditionals in a unique form con-
taining the property p ! q = q′ ! p′. Its contextual truth deserves to be analyzed
by representing in fuzzy terms all that is involved in the statement; that is, through a
semantic analysis of the statement.

Once this is done, the result is that the only admissible function J is Jprod, and the
truth value of the triple conditional is 1 between the values 1 − t and 1, with t the
degree of “reading has sense” supposedly very high for Vila-Matas (hence 1 − t is
very small), and between 0 and 1 − t is a nondecreasing curve. Hence, the triple
conditional is almost true, with the zone [0, 1 − t) in which it can be not totally true,
and that is less significant as t is greater. For instance, were t = 0.91 the “dan-
gerous” zone for truth would be reduced to [0, 0.09). Vila-Matas’ triple conditional
can be considered as being almost always contextually true except if t is not big,
something that the information on Vila-Matas seems to avoid.

Note that the former is but a semantic analysis, done “by hand” of an imprecise
statement. Is it possible to do it by computer? Provided it were someday possible,
the computer would count with an automatic “semantic analyzer” not only able to
perform analysis like the former, but to send the writer questions such as “Do you
believe ‘reading has sense’ is with a high degree?” and, in the supposition the
author answers “not”, or “not always”, “not necessarily”, or “I don’t know”, and so
on, continues asking him up to a final recommendation such as “Be careful. The
statement can mean nothing to the reader,” advising the author on the suitability of
reconsidering the paragraph, and to confirm or correct it, something considerably
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more difficult but not substantially different from what the syntactic corrector all
computers contain does. If computers had semantic analyzers, it could be good
support for writers.

Anyway, good algorithms counting with the possibility of automatically
designing what should be represented with the help of all the armamentarium of, at
least, the classical and the fuzzy calculus, are currently unknown; in praxis, such
meaning’s analyzer would be a mechanical designer being able, in particular, to
discriminate the intervening functions J. This is currently something really difficult
to construct; if existing, it would maintain with the writer a short but “intelligent”
conversation for which semantic understanding is necessary.

12.5. What can be done of a qualitative character without specifying numerical
functions representing connectives and conditionals? To such a goal, which of the
following statements,

p = “It is false that John is not very tall” and q = “It is false than John is not very
short”, is more true? The answer obviously depends on some data.

Let it be, for instance, H(John) = H(J) 2 (0, 2], the height in meters of John to
which tall and short refer. Design membership functions lt, and ls, as those whose
linguistic labels are, respectively, “tall” and “short” in (0, 2], and let’s reasonably
suppose lt is nondecreasing. Because short is an antonym of tall, define ls(x) =
t(2 − x). Modify these functions once affected by the linguistic modifier “very” by a
function v: [0, 1] ! [0, 1] that, like squaring them, is nondecreasing, and take a
decreasing function f, such as 1 − Id, to compute the degree of falseness, and a
strong negation N for negation.

With all this pure symbolism, it is:

– t(p) = f(N(v(lt(H(J))))),

and

– t(q) = f(N(v(ls(H(J))))) = f(N(v(lt(2 − H(J))))).

To compare these degrees it suffices to compare H(J) and 2 − H(J):

(a) H(J) � 2 − H(J) , H(J) � 1, implies lt(H(J)) � lt(2 − H(J)) ) t(p) �
t(q),

(b) H(J) > 2 − H(J) , 1 < H(J), implies ls(H(J)) � ls(2 − H(J)) ) t(q) � t
(p),

hence the conclusion is

When H Jð Þ� 1; q is truer than p; and when 1\HðJÞ; p is truer than q:

Note that to arrive at this qualitative conclusion, only reasonable hypotheses on
the involved membership functions and connectives should be supposed, and no
particular specification of them is necessary. Nevertheless, for effectively com-
puting the degrees t(p) and t(q), all these functions should be specified; for instance,
with f(x) = N(x) = 1 − x, v(x) = x2 and lt(x) = x/2 with which it is ls(x) =
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lt(2 − x) = 1 − x/2, it follows that t(p) = (H(J)/2)2, and t(q) = ((1 − H(J))/2)2, that
if, for instance, were H(J) = 1.8 > 1 would give t(p) = 0.36, and t(q) = 0.16.

This example shows that with a not yet functionally specified symbolic repre-
sentation, some qualitative conclusions can be reached, and that for computing
actual numerical values, selecting and designing specific functional representations
is necessary.

12.6. Because the pointwise ordering among membership functions in [0, 1]X,
l � r , l(x) � r(x) for all x in X is transitive, the NC and EM “principles”,
respectively expressed in the forms l � l′ � (l � l′)′ and (l + l′)′ �
((l + l′)′ = l + l′, whenever the negation is strong, hold and have no possibility
of failing. Consequently, it cannot be stated that fuzzy sets violate these principles.

Nevertheless, what in general is unknown is when they are, respectively,
equivalent with the forms l � l′ = l0 and l + l′ = l1, as happens in ortholattices;
for such study, the functional expressible case offers some possibilities.

For instance, for NC and with continuous t-norms, t-conorms, and strong
negations, the equivalence between the functional inequalities should be analyzed

T a;N að Þð Þ�NðT a;N að Þð Þ; and the equation T a;N að Þð Þ ¼ 0;

for all a in [0, 1], with which the inequality is obviously satisfied; but what about
the reciprocal? The equation’s solutions are known to be T = Wf and N � Nf,

satisfying the inequality; hence, these functions satisfy the equivalence.
Analogously, for EM the equivalence between

N S a;N að Þð Þð Þ� S a;N að Þð Þ; and S a;N að Þð Þ ¼ 1;

should be analyzed. Because it is clear that the second implies the first, and it is
known that the solutions of the equation are S = W*

f, and Nf � N, it is clear that
these solutions are those for which the equivalence holds. Hence, it is with the
triplets given by Wf, W

*
g, and N such that Ng � N � Nf that both equivalences

hold. In particular, they hold with f = g, in which case the possible negations are
reduced to Nf.

In conclusion, in the case of imprecise words represented by membership
functions of fuzzy sets, and due to the pointwise order transitivity, the new form of
expressing the Aristotelian principles NC and EM by self-contradiction hold
without exception. But this is not the case for the principles expressed in the old
conjunctive/disjunctive forms that are typical of the classical logical calculus. Only
with continuous t-norms, t-conorms, and strong negations is the problem’s solution
characterized and just proven equivalent to the first, but it remains open when the
connectives are not functionally expressible, or they are but by means of functions
in families other than continuous t-norms and t-conorms endowed with fewer laws
than they have and strong negations.
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Part II
Gathering Questions

(*) If the first part illustrated a sowing of ideas, this second part, perhaps to some
readers’ possible new discouragement, is just a harvest of questions neither posed,
nor answered, in a complete form.

The author apologizes for his inability to present anything other than a dark
jungle of more or less ambiguous ideas. Would some reader be interested in dis-
solving such darkness!



Chapter 13
A Few Questions on the Reasoning
on Quantum Physics

The subject of this chapter concerns an overview of the model for representing the
reasoning physicists conduct in their scrutiny of the microphysical world, that is, in
quantum physics. Mainly, it is done for remarking that the laws of a mathematical
representation’s framework should be adapted to the requirements of the corre-
sponding reality.

In that reasoning, the events are supposed to be precise, but uncertain, and
involving facts observed thanks to sophisticated experiments, and without counting,
in most cases, with all the information necessary for representing them well in a
Boolean algebra. Of many quantum phenomena only their probability can be
known.

Uncertainty is pervasive in most situations of quantum physics, and incompat-
ibility is not always coincidental with contradiction; contradiction implies incom-
patibility, but not reciprocally. Also the distributive laws are not always valid, and
the “quantum events” are not observable as they are, for instance, those corre-
sponding to the movement of a satellite turning around the Earth; there are mod-
ifications the observation produces into what is observed. Its natural framework
cannot be a Boolean algebra, even if some Boolean laws should be preserved.

13.1. The mathematical framework on which physicists reason, study, and repre-
sent the quantum phenomena, is an infinite-dimensional Hilbert vector space of
functions H, with a scalar product, and whose vector subspaces correspond to the
solutions of the significant equations and inequalities of quantum physics that are
established thanks to some chosen operators. Hence the actual working universe is
not H, but S(H), that of the vector subspaces of H; the statements of quantum
physics are specified by the subspaces in S(H).

In S(H), the intersection of vector subspaces of H, that is also a vector subspace
of H, contains the joint solutions of the equations and inequalities generating such
subspaces, but it neither happens with their union, nor with the complement, that
are not vector subspaces of H. Consequently, instead of the union and the
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complement, the minimum vector subspace containing both subspaces, and the
corresponding orthogonal subspace of the given one, respectively, should be taken.

That is, if A and B are two vector subspaces of H, their intersection A \ B, their
direct sum A � B, and the orthogonal complement, A⊥, B⊥, and so on, should be
taken for each of them for representing, respectively, the conjunction, disjunction,
and negation of statements. The direct vector sum A � B contains the sums of all
pairs of vectors in A and B, and the orthogonal complement A⊥ contains all vectors
f⊥ orthogonal to those f 2 A.

With that, the set S (H) of all the vector subspaces of H shows the structure of an
orthomodular lattice, that is, a nondistributive ortholattice in which for each pair A,
B 2 S(H), there exists a “relative complement of A with respect to B”, namely

B�A :¼ B\A?;with which it is A�B , B ¼ A� B�Að Þ

that, provided A and B were among the Boolean subspaces in S(H) (reduced to that
only containing the vector zero and H containing all vectors), would just coincide
with B = A [ B. Obviously {0} is the orthogonal complement of H, and
reciprocally.

The ordering of the algebraic structure generated by these operations is, obvi-
ously, the inclusion of vector subspaces, and because S(H) is not a distributive
lattice, it is not a Boolean algebra, and the law of perfect repartition
A = (A \ B) � (A \ B⊥) does not universally hold.

All this leads to taking an abstract orthomodular lattice as a formal model for
quantum reasoning; this is in the same vein as passing from sets to abstract Boolean
algebras for the precise reasoning in the macroworld.

13.2. Notwithstanding, if the reasoning on quantum physics seems to be pretty well
represented by the former model, introduced in 1936 by Garrett Birkhoff and John
von Neumann, not all scholars today agree on it, and some of them advocate for a
simpler one keeping fewer laws than orthomodular lattices; for instance, it is sus-
tained by some authors that the law of excluded-middle, p + p′ = 1, valid in
orthomodular lattices, does not actually hold within quantum phenomena.

The model is not fully undisputed and, for instance, there is no general agree-
ment on representing conditional statements, sometimes done by the so-called
Sasaki arrow (or hook), p ! S q = p′ + p � q. but also sometimes by the Dishkant
arrow, p ! D q = q + p′ � q′.

Each of these arrows is contrasymmetrical with the other:

q0 !D p0 ¼ p0 þ ðp0Þ0 � ðq0Þ0 ¼ p0 þ p � q ¼ p !S q; and; hence; q0 !S p
0 ¼ p !D q;

both verify the modus ponens (MP) inequality, and, as said formerly, reduce to
p′ + q with the Boolean elements of the orthomodular lattice. Contrary to the
Boolean case, a maximum representation of the conditionals p ! q satisfying the
MP inequality does not exist; the Sasaki and the Dishkant arrows are only maximal
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elements among such representations, but verify: p � q , p ! S q = p ! D

q = 1; that is, both “order” the lattice.
It should be pointed out how, by simply rejecting the distributive laws, the

resulting calculus is notably different from the Boolean one; it corresponds, indeed,
to a different reality.

13.3. In the case of orthomodular lattices, contradiction implies incompatibility,
but not always reciprocally. In fact, p � q′ => p � q = 0, but for proving the
reciprocal the verification of p = p � q + p � q′, the law of perfect repartition
between p and q from which p � q = 0 implies p = p � q′ , p � q′ is sufficient.
Thus, and different from the classical case, there can exist pairs of objects that,
being incompatible, are not contradictory; incompatibility affects different pairs
than contradiction does, and contradiction seems to appear only once incompati-
bility is constrained by perfect repartition, something that corresponds with some
observational facts in quantum physics.

Whatever mathematical model is chosen for representing quantum reasoning, it
should allow capturing the mentioned differences with classical reasoning.

Anyway, there is still another subject not currently well captured that corre-
sponds to the uncertainty pervading quantum phenomena and that is revealed by
experimentation. This is a subject that, in the classical case, is solved once pre-
suming that partitions are always possible by incompatibility of events, and by
adding the additive law of probabilities under the hypotheses that they are measures
of uncertainty, by identifying, at the end, and in the corresponding language, “p is
uncertain” with “p is probable”, by reducing their qualitative meanings to the partial
lattice’s order. But there are now incompatible events not being contradictory,
something making things more complicated and leading to a restricted definition of
the probability’s additive law, by:

Provided p� q0; then prob pþ qð Þ ¼ prob pð Þþ prob qð Þ;

that, jointly with the axiom prob(1) = 1 allows us to prove prob(0) = 0, because 0 is
contradictory with 1, 0′ = 1, and prob(0) = prob(0 + 0) = prob(0) + prob(0), and
also to prove prob(p′) = 1 − prob(p), because from the contradiction of p and p′,
p = (p′)′, it follows that prob (p + p′) = 1 = prob(p) + prob(p′). With this slight
change of the additive law, the mapping prob preserves the basic laws of
probability.

Although p � q � q � q + p′ = (p � q′)′, that is, p � q and p � q′ are contra-
dictory, it cannot be implied that prob(p) = prob(p � q) + prob(p � q′), because it is
not sure that p � q + p � q′ coincides with p; hence knowing the probabilities of
p � q and p � q′ does not allow us to know the probability of p. This makes ana-
lyzing the uncertainty of p from the uncertainty of its interaction with q difficult,
and shows a basic difficulty for proving that conditional probability is indeed a
probability in the universe restricted to the traces of q, as done in Kolmogorov
theory by defining prob (p/q) = prob(p � q)/prob(q) provided prob(q) > 0.
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Summing up, if “quantum” probability can be defined on an orthomodular lattice
by a slight modification of its additive law, conditional probability requires a dif-
ferent view, and it is at such a point that the theoretic modeling of quantum
reasoning still remains a subject without general agreement.

Notwithstanding, all that shows that for analyzing the reasoning of quantum
physics weaker structures than Boolean algebras are necessary, and it reinforces the
idea that each specific type of reasoning deserves to be represented in a suitable
mathematical framework in which the use of formal laws without a real counterpart
should be excluded.

No liable conclusions can be reached by presuming, for instance, the distributive
laws, once it is known that they cannot hold in a reasoning whose statements are
represented by the vector subspaces of a Hilbert space, and, in consequence, don’t
allow knowing what is in a subspace A by knowing what it shares with any B and its
orthogonal subspace. Of course, the same will happen with a reasoning whose
statements are represented by the vector subspaces of the n-dimensional vector
space Rn, inasmuch as the distributive laws also fail in it.

Before adopting a mathematical model for representing some reasoning in a
given universe, each law only can be accepted after testing it against the reality of
the considered statements on such a universe; it is analogous to accept the com-
mutative law of conjunction with statements whose conjunctions cannot actually
commute or, with some difference, to consider the exclusive disjunction
pDq = (p + q) � (p � q)′ instead of the inclusive one p + q, even if both commute.
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Chapter 14
Questions on Uncertain, Possible,
and Probable

In plain language, the predicative words “possible” and “probable” are often used
synonymously, but without argument for it, and what seems more suitable is to say
of something probable that it is possible, but not reciprocally. In language,
“possible” seems to be more largely applicable than “probable”. For instance, if
when throwing a single die it is probable to get five points, it is clear that it can be
expected because this output is among “those that are possible”; obtaining eleven
points is not possible, and consequently there is no sense in attributing to it the
property of being probable. In addition, there are also life’s ordinary situations
linguistically qualified as “possible but not probable”, even if they can actually have
a very small probability. For instance, it is possible that in a few minutes my old
friend John, 10 years older than I am, and from whom I have heard nothing in the
last 10 years, can call me by phone, but it deserves to be qualified as something
improbable or, at most and if John is still alive, with a very small probability
provided it could be effectively computed.

The theoretical distinction between possible and probable can be seen, in
principle, in the different axioms with which the mathematical theories on the
measures of probability by Kolmogorov in 1933, and on the measures of possibility
by Zadeh in 1978, formalized the measuring of probability and possibility,
respectively. Notwithstanding, these theories suppose that the elements to which the
predicative words probable and possible are applied, belong to actually strong types
of lattices with a negation, something that, in plain language and as was said, is odd,
risky, and even dangerous to always suppose it. Let’s begin with an overview of
these theories that, nevertheless, refer to the concept of probability and possibility
but not, directly, to the use of the words “probable” and “possible” in plain lan-
guage but, at most, in some particular and specialized part of it.
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14.1. Kolmogorov established his theory of probability on the following
hypotheses:

1. A measure of probability, prob, assigns a number between 0 and 1, to “events”
represented by subsets in a Boolean algebra on a set Ω included in the power-set
2X of some universe X, prob: Ω ! [0, 1], and such that

2. probðXÞ ¼ 1:

This presumes that all the laws valid in the Boolean algebra Ω are applicable to
the “events”, something supposed as actually happening; in particular, it is sup-
posed the existence of perfect classifications, or partitions, of the nonempty subsets
in Ω containing several elements.

3. The essential axiom for the mapping prob is its additive law,

prob AUBð Þ ¼ prob Að Þþ prob Bð Þ;

provided the intersection of the “events” A and B were empty, A \ B = Ø; that
is, {A, B} is a perfect classification or partition of A U B.

From this follows prob(A′) = 1 − prob(A), and prob(Ø) = 0. With it, is proven
that prob is a measure for the graph (Ω, �) with the minimum Ø, and the maximum
Ω, and thanks to the existence of relative complements in the Boolean algebras.
That is, and as formerly proven, A � B => prob(A) � prob(B).

Thus, probabilities can be seen in Boolean algebras as (additive) measures of the
predicative word “probable” applied to the events, and by supposing that Ø is the
less probable subset, Ω the most probable of them, and that “A is less probable than
B” is just done by A � B, identifying <probable with �; that (with finite subsets) “less
elements” is equivalent to “less probable”, with Ø minimal, and Ω maximal.

All that comes from the fact that, genetically, probabilities come from problems
in which the “represented events” can not only be precisely named and counted, but
also perfectly classified into crisp parts. In addition, in Kolmogorov’s interpretation
of probability, it should be taken into account that events are not only considered
random ones, in the sense of being obtainable by indefinitely repeating an exper-
iment under exactly the same conditions at each repetition, but that frequencies of
its appearances can be somehow computed.

Kolmogorov’s theory arises from a crisp objectivistic interpretation of proba-
bility through random experiments; in itself, it is but an abstract mathematical
theory of (normalized) additive measures, and, today is not only the most widely
known interpretation of probability, but is also responsible for most of the
applicative successes of mathematical statistics. The interpretation by Kolmogorov
reflects the famous and wise statement, “Nothing is more practical than a good
theory.”

Notwithstanding, not all the successful measures in the applications are additive;
for instance, the big family of Sugeno’s k-measures, m, verifying:

128 14 Questions on Uncertain, Possible, and Probable



m AUBð Þ ¼ m Að Þþm Bð Þþ k:m Að Þ:m Bð Þ; with � 1\ k; if A \ B ¼ Ø;

contains additive measures if it is k = 0, but with k < 0 has super additive and with
k > 0 has subadditive measures.

In “reality” there are relevant situations in which information, or evidence, is not
so precise for allowing its splitting in separate pieces, and it should be remarked
that, in language, the term “probable” is not only applied to precise, but also to
imprecise, statements that cannot be represented by sets, a case in which the
immediate applicability of the Kolmogorov theory is at least dubious; the existence
of crisp partitions is so in some nebulous situations where what appears is not a
clearly separable mixing of information. Sometimes the measure of a “totality” is
greater than the sum of the measures of its parts, and sometimes it is less. There are
also “events” whose repetition under the same exact conditions is not possible; even
in some situations, former instances mean nothing for the next one.

14.2. Zadeh established his theory on the measures of possibility with fuzzy sets in
the unique basic fuzzy algebra (BAF) that is a lattice, the De Morgan algebra,
([0, 1]X; min, max, 1 − id); but, namely and for what concerns its basic hypotheses,
it can be considered in an abstract De Morgan algebra (M; � ; 0, 1; �, +;′), where
the order � is that of the lattice, and supposing that all its elements can be
qualified as “possible”. These hypotheses are just the following.

A measure of possibility is a mapping p: M ! [0, 1], such that:

– pð0Þ ¼ 0;
– pð1Þ ¼ 1; and
– pðaþ bÞ ¼ max pðaÞ; pðbÞð Þ, for any pair a, b in M, regardless of being a �

b = 0, or not.

Because a � b is equivalent to a + b = b, it follows that p(b) = p(a + b) =
max(p(a), p(b)) � p(a); thus, p can be seen as a measure of the predicative word
“possible” when applied to the elements in a De Morgan algebra, and with quali-
tative meaning (M, � ), once the relation � possible is identified with the lattice’s
order � of the De Morgan algebra.

Note thatp is not additive but subadditive, because it verifiesp(a + b) = max(p(a),
p(b)) � p(a) + p(b); totalities measure less than their parts. Regarding p(a′), it not
always holds its equality with 1 − p(a), that cannot be a law, because for any Boolean
element a inM (i.e., verifying a + a′ = 1), it follows that p(a + a′) = p(1) = 1 = max
(p(a), p(a′)) � p(a) + p(a′), and thus, 1 − p(a) � p(a′).

An advantage of Zadeh’s theory is that it models the applicability of “possible”
to elements that do not need to be in a Boolean algebra, as is the case with
membership functions of fuzzy sets, and for which in principle no crisp partition
exists; neither the existence of crisp partitions, nor that the negation is a Boolean
complement, is previously supposed. A serious disadvantage is, nevertheless and
for plain language, that De Morgan algebras are still too strong algebraic structures
with a lattice basis, in which some of their properties, such as they are the
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conjunction’s commutative law and the distributive laws, cannot always be pre-
sumed in language.

In both Boolean and De Morgan algebras, the weight of laws of a syntactic
origin is actually too strong for language; this occurs, for example, in Boolean
algebras with the law of “perfect repartition”, a = a � b + a � b′. It is a law that
neither holds in all ortholattices, nor in De Morgan algebras and that, as shown in
the BAFs, forces that conjunction and disjunction are not dually linked. In addition,
double negation, (a′)′ = a, and duality (a + b)′ = a′ � b′, are laws not always ver-
ifiable in plain language. In De Morgan algebras, distributive laws are among those
that cannot always be supposed in plain language.

Hence, both theories of Kolmogorov and Zadeh are only applicable to those
parts of language in which their presumed laws can be accepted. Both presume that
the relations <probable and <possible coincide with the partial order of the corre-
sponding lattice.

Anyway, Zadeh’s theory is not fully objectivistic as is Kolmogorov’s theory; it
neither supposes nor excludes that the statements whose possibility is to be mea-
sured should represent events obtainable in experiments repeatable under the same
conditions; it admits events for which just some precise or imprecise information is
known and can be represented by statements generating linguistic collectives or
fuzzy sets. It does not force that statements should be endowed with an ortholattice
algebraic structure, even if supposing it is a De Morgan one where some strong
laws hold, such as the distributive ones. It proceeds through a different weakening
of Boolean algebras than the quantum calculus does.

In addition, and as is well known, a membership function taking the value 1 at
some point can be interpreted as a distribution of possibility conditioned by the
previously available information on the use of its linguistic label but not, in general,
as a probability distribution.

Were each fuzzy set’s membership function l equal to a probability pl (in a
universe X being a Boolean algebra, or in an orthomodular lattice), because

l� k , l xð Þ� k xð Þ, for all x in X, it is also
l x0ð Þ � k x0ð Þ , 1� pl xð Þ� 1� pk xð Þ , pk xð Þ� pl xð Þ, or k xð Þ� l xð Þ , k� l,

it would follow that l = k; that is, the pointwise ordering between these fuzzy
sets collapses in the identity. It follows a rare ordering of membership functions,
under which two of them only can be coincidental or not comparable. With it, many
useful applications of fuzzy sets would be lost. The pointwise ordering is not a
natural form for ordering probability measures. Interpreting fuzzy sets in a Boolean
algebra, or in an orthomodular lattice, as a measure of probability just leads to a
very odd “theory” for both fuzzy sets and probabilities.

Notwithstanding, this does not mean that each particular numerical value of a
fuzzy set cannot be obtained as the value of a probability. For some concretion,
given the finite fuzzy set in X = {1, 2, 3, 4},
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l ¼ 0:5=1þ 0:7=2þ 1=3þ 0=4;

there are many quadruplets (p1, p2, p3, p4) of probabilities, each able to give the
corresponding value of l; for instance:

lð1Þ ¼ 0:5 ¼ p1ð1Þ; p2ð2Þ ¼ 0:3; p1ð3Þ ¼ 0:2; p1ð4Þ ¼ 0;

p2ð1Þ ¼ 0:2;lð2Þ ¼ p2ð2Þ ¼ 0:7; p2ð3Þ ¼ 0; p2ð4Þ ¼ 0:1;

p3ð1Þ ¼ 0; p3ð2Þ ¼ 0; lð3Þ ¼ p3ð3Þ ¼ 1; p3ð4Þ ¼ 0;

p4ð1Þ ¼ 0:5; p4ð2Þ ¼ 0:2; p4ð3Þ ¼ 0:3; lð4Þ ¼ p4ð4Þ ¼ 0:

This simple example shows that there is nothing against those cases in which
each numerical value of the membership function comes from a specific random
variable, that for some fuzzy sets it seems possible to design a series of random
experiments from whose respective probabilities the values of its membership
function can be obtained; something that, in general, is impossible by means of a
single probability and corresponds to a statistical view based on managing random
variables. Anyway, what is not clear enough is on which characteristics of the fuzzy
set’s context, such random experiments, or random variables, could be linked; it
seems dependent on how the contextual information could be acquired.

In short, what cannot be excluded at all is the possibility of obtaining the values
of a fuzzy set’s membership function through a statistical methodology. But, in any
case, there cannot be coincidence between a fuzzy set and a probability defined on
the same ground. The theories of fuzzy sets and probabilities have different goals,
although fuzzy sets and possibility measures have closer goals.

14.3. As has been shown, Kolmogorov’s theory can be imported (with some
modifications) into algebraic structures weaker than Boolean algebras, as it is into
orthomodular lattices in the so-called “quantum probability calculus,” corre-
sponding to a particular form of language in which statements are precise even if
not all the information on them is known, and where, instead of crisp partitions
p = q + r with q � r = 0, it is supposed with q � r′ that, only provided q and
r were Boolean elements, would coincide with q � r = 0; in orthomodular lattices,
contradiction (q � r′) implies incompatibility (q � r = 0), but not reciprocally.
These are two concepts only coincidental in Boolean algebras and thanks to its
basic perfect repartition law, but that in language (and even in most algebras of
fuzzy sets) are actually independent of each other. It should be pointed out that the
perfect repartition law comes directly from distributivity:

1 ¼ pþ p0 ¼ [ q ¼ q � ðpþ p
0 Þ ¼ q � pþ q � p0

and that distributivity is not valid in orthomodular lattices; perfect repartition is also
not always valid in De Morgan algebras because in them pþ p0 ¼ 1 is not a law.

The quantum case shows how the information available on what is stated affects
the laws that can be supposed, but it should be noted that, in plain language, they
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cannot be supposed to hold and that, when dealing with one of its parts, some
previous checking of them is necessary. It can be said that fuzzy logic is the first
approach breaking, in language, the usually supposed lattice structure of statements;
something reflected, for instance, in the many applications where the conjunction is
represented by the product instead of the minimum, and for which the usually
presumed syntactic property p � p ¼ p is lost.

In addition, it is also worth noting that in the so-called intuitionistic lattices (in
which negation is not strong) a kind of relational, or conditional, probability can be
defined, but that (as was proven) such lattices are included through a previous
equivalence in a Boolean algebra of classes.

14.4. Once a short review of the mathematical theories of probability and possi-
bility is done, let’s overview the uses of possible, probable, and uncertain, in plain
language.

As has been repeatedly said, in general, plain language is not submitted to all the
laws of algebraic structures such as the algebras of Boole, De Morgan, and the like.
Introducing an algebraic structure and formalizing it means constraining plain
language to an artificial one. Plain language is almost all we count with to express
what we experience with the senses, and what we elaborate intellectually; it has
great and essential flexibility, and for “structuring language” it is necessary to
consider only some of its specific parts, submit them to a regimentation, forget
some particularities, and finally adopt a mathematical model that, like all models, at
the end is but a more or less valid simplification of reality. In the particular case of a
lattice’s model, it is extremely rigid; for instance, it supposes the conjunction to be
the greatest statement among all those from which the two statements submitted to
conjunction follow forward. It also supposes some laws that are not always valid for
statements such as the associative laws of conjunction and disjunction, or the
existence of two statements considered as “neutral” and “absorbent” for the con-
junction, and presuming that a clear and general concept of truth and falsehood is
known in the corresponding piece of language. Syntax is important, but what really
matters in language is semantics; a badly syntactically constructed linguistic
statement is often comprehended well enough, but confusion of meaning is what
actually produces a serious lack of comprehension.

What follows tries to shed some light on the words uncertain, possible, and
probable, but without imposing too many laws and towards a not still existing total
scientific domestication of the uses of these words in plain language, something for
which there is yet a lack of practical knowledge.

14.5. What does it mean that something can be qualified as uncertain in plain
language? Uncertain, as the opposite word of certain, implies (without a necessary
equivalence) not-certain; hence, uncertain refers to some lack of certainty with
respect to aspects surrounding what is stated but, instead, not-certain means a total
lack of certainty. For instance, the statement, “It is uncertain that candidate C will
win the election,” just means that the statement “Candidate C will win the election”
is, for what is contextually and currently known as certain, not necessary and
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unsafe; that, if betting on it, any of those knowing what surrounds the election will
risk a very low wager by believing that the bet can be easily lost. It is not a properly
objectivistic view, but a subjective one, based on the experience of the player.

Anyway, for capturing a full-meaning of the predicative word U = uncertain in a
universe X of statements p; q; r and so on, a quantity X;\U;mUð Þ should be
specified, and even an analysis of what certain means seems to be previously
necessary for linking its qualitative meaning with the opposite word uncertain in the
form \uncertain ¼ \U ¼ \�1

certain.
Note that the coincidence of the relation \U (less uncertain than) with the order

of a lattice (be it a Boolean, a De Morgan algebra, or whatever ordered structure) is
but a supposition involving the hypothesis that X can be endowed with such an
algebraic structure, something on which one must be, for what has been com-
mented, extremely cautious and check, previously, if each of the laws defining such
a structure can actually be supposed. To specify a quantity reflecting a full-meaning
of U, and as happens with all words, some “experience” of the use of uncertain in
plain language is necessary for establishing, at least, the empirical relation “less
uncertain than”, knowing which statements are maximal, which are minimal, and
specifying a measure.

It can be supposed that in language the word uncertain inherits a “history relative
to its use,” coming from some experiences linked with contexts in which uncertain
has been formerly used, and acquired either directly or by means of some “con-
tagious” contact, oral or written, with others using it.

The relation\U will always depend on the context surrounding the use of U and,
for instance, supposing it coincides with the order of a lattice
ðalways verifying p� q , pþ q ¼ q , p � q ¼ pÞ could be very risky because, for
instance, in language and due to time intervention, it can be
p � q 6¼ q � p. Additionally, in language the exclusive disjunction is often managed
p Δ q = (p + q) � (p � q)′, instead of the inclusive disjunction p + q, but
p + q = q implies p Δq = q � (p � q)′ that, in a Boolean algebra means p D q = q � p′,
and that because q � p′ � p′ is p D q contradictory with p and only coincides with
q if it is q � p′, that is, if p and q are contradictory.

Inasmuch as no specific and satisfactory general theory of uncertainty com-
prising its measuring is currently well known, there is room for interpreting the
word uncertain in the form each can be contextually able to do. For instance, those
mastering probability theory or possibility theory tend to identify uncertain with
probable or, respectively, with possible, even if obviously uncertain is more general
than probable and possible; something probable or possible is uncertain, but the
reverses are not clear enough. For instance, under which random experiment can a
probability be computed for “Candidate C will win the election”? Of course, there is
neither a way of designing experiments such as that of throwing a die, nor of
considering a Boolean or a De Morgan algebra containing the presumed results of
such an experiment, and less again ways of repeating it exactly under the same
conditions at each repetition; for instance, a former election even with the same
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candidates will not present the same surroundings of the next and, at least, some
ideal similarities should be chosen.

It is debatable if Kolmogorov theory is directly applicable to this kind of
“events”, and, for instance, Zadeh introduced a calculus of probabilities for
imprecise events represented by fuzzy sets but showing difficulties for defining
conditional probability, such as also happens with quantum probability. In addition,
and in the case of precise words, the identification of < U with the inclusion relation
among subsets � leads to identifying “less uncertain than” with “less elements
than”, perhaps a too risky identification. Possibility theory that involves subjective
views could be more suitable even if its results can be subjected to a large lack of
certainty.

14.6. Regarding the use of P = “probable” in language, for capturing its
full-meaning the relation <P = <probable should be captured specifying a measure
mP. What is obvious is that when the considered statements are imprecise, they
cannot constitute a Boolean algebra, nor an orthomodular lattice, but that what is
open is, in some cases, a De Morgan algebra, and even a different BAF. When the
statements are precise, a Boolean algebra of sets representing them exists and hence
what should be debated is if relation <P is, or is not, the inclusion of sets (�), and if
there exists an additive measure mP. What can be easily accepted is that � is
contained in <P, but the reciprocal is in general dubious; thus, because
A � B implies A <P B, it follows that mP(A) � mP(B), provided m were a measure
for <P; <P—measures are �—measures, but it could not be guaranteed that a �—
measure is always a < P—measure. Hence, it is not for sure than a probability could
always, and in plain language, be a good enough measure of the word “probable”,
and less again that such measures should be additive.

For instance, to identify what “It is probable that candidate C will win the
election” (shortened to “C is P”) means it is first necessary to know the relation-
ships “C is P is less probable than D is P”, for all the candidates D in the election
process; and once the graph (Candidates, <P) and its maximal and minimal elements
are known, more information is required on the context surrounding the election for
specifying a measure. This does not mean, of course, that such a measure cannot be
estimated by a statistical methodology.

There is a basic difference between <P and the relation of “comparative proba-
bility”, introduced by T. Fine; such a difference lies in that comparative probability
is a total or linear order, but <P cannot be always supposed to be so. Perhaps Fine’s
relation could be viewed as an extension of <P; it deserves further study, but seems
related to the linear relation of working meaning <m previously introduced for
measures, and enlarging <P.

14.7. Of course, similar comments can be made concerning the word
Q

= pos-
sible, as modeled in Zadeh’s theory of possibility, and the use of the word

Q
in

language by a full-meaning specified by a quantity (X, <Q, mQ) in which neither
<Q should necessarily coincide with the order of a De Morgan algebra, nor mQ
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necessarily verifies the axioms of a possibility measure. Namely, that it does not
always grow under the max operation.

Even accepting that “if probable, then possible, but not reciprocally”, it does not
imply that given a measure of probability prob and one of possibility poss, it should
always be prob(x) � poss(x), for all x in a universe where both measures prob and
poss are defined; it can be easily checked in a finite universe. For this reason, Zadeh
introduced the concept of consistent pairs (poss, prob): such a pair of measures is
consistent if it is prob � poss.

Such a concept is in agreement with the chain of inclusions, <P � <Q � <U,
concerning the qualitative meanings of the three words, and also with the typical
expression “if it is probable, then it is possible”, and in any case, “it is uncertain”. In
a finite Boolean algebra it is easy to prove there are probabilities that coincide with
possibilities, but it is limited to degenerate measures, that is, those only taking the
values 0 and 1; essentially, probabilities and possibilities are different measures. To
specify a probability more information is needed than for specifying a possibility.
mP � mQ � mU seems that it could be a coherence relation among the respective
measures.

14.8. The ordinary use in language of the words uncertain, possible, and probable,
is not yet well known as is that of the word big in a closed interval of the real line; it
requires a kind of experimental work that, for instance, could help to shed some
light into the debate on the different views of probability between the
Kolmogorovians, frequentialists, or objectivists, and the Bayesians or subjectivists.
If the first base their view in the previous application of probability to precise words
denoting random events represented in Boolean algebras of crisp sets, the second
even try to apply probability to imprecise words neither denoting random events nor
representable in those algebras, nor in more general ortholattices; Bayesians seem
to be closer to the use of “probable” in plain language and ordinary reasoning than
are Kolmogorovians.

The essential point for objectivistic interpretation lies in decomposing events
into disjoint events to allow accepting the additive law of probability. But, with
imprecise events represented by membership functions of fuzzy sets, the situation is
different because having a decomposition l = a + b with a � b = l0 (the function
constantly equal to zero, representing the empty set) implies working in a BAF that,
if functionally expressible, requires solving the functional system of equations
a = G(b, c) and F(b, c) = 0.

For instance, in a standard algebra ([0, 1]X, F, G, N), where G is a continuous t-
conorm, F a continuous t-norm, and N a strong negation function, F should be a t-
norm in the family of Lukasiewicz, F = WΔ (with Δ: [0, 1] ! [0, 1] an order
automorphism), because these continuous t-norms are the only ones with
zero-divisors, and then Δ−1(max (0, Δ(x) + Δ(y) − 1)) = 0 means Δ(y) � 1 − Δ
(x), or y � NΔ(x), implying that the fuzzy sets a and b should be contradictory
(b � a′) in respect to the negation NΔ.

That is, for counting with such kinds of “partitions”, a very particular algebraic
structure seems to be necessary; note that t-normsWΔ are the only t-norms verifying
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the principle of noncontradiction by conjunction (a � a′ = l0) among the standard
BAFs. These algebras are not lattices except if F = min and G = max, in which
case they are De Morgan algebras. With these structures, one of the problems in
plain language is the identification, inside a current problem, of a statement playing
the role of “absorbent” for the conjunction, that is, being represented by the fuzzy
set with membership function l0.

All the above needs to be searched in language through designing controlled
processes of experimentation, and checking what is observed against some of the
known mathematical models, as well as for getting hints towards establishing new
models. For it, a search of the Web, as done in a recent paper by Sergio
Guadarrama, Eloy Renedo, and myself, for studying how the linguistic conjunction
“and” is actually used in language, could be a useful starting methodology. Without
systematic observation in language, controlled experimentation, and adapting
mathematical models to it, everything is but a kind of play with abstract ideas,
perhaps of wishful thinking. It is difficult to imagine how a purely abstract formal
kind of reasoning could arrive at, for instance, thermodynamics, and without not
blind observation and controlled experiments. Our subject is empirical, and for-
malism is for helping its comprehension and for allowing computations.

Perfect partitioning is anchored in liking absolutes; a crisp set’s partition suffices
to name its parts by precise words specifying them. Perfect classification is an
epitome for a “principle” of separation or isolation; that is, the belief that everything
that is supposed to be composed can actually be separated in isolated parts whose
union constitutes the composed totality, and that things grow by a clear superpo-
sition of pieces. It is an ideal that goes well with a lattice-type conception of
language: a rigid conception that is artificial because, for instance, in language (and
in life) time intervenes and situations are not always static; language is essentially
dynamic. For instance, language also contains the opposites of words that, being
several, sometimes are not comparable among them, and not coincidental with their
negation; sometimes there is interplay with the given word, and not allowing perfect
classifications. Zadeh’s linguistic variables are a good example of it.

In language and reality there are many cloudy, gaseous like appearances, for
which a principle of crisp separation is difficult to conceive, unless some crisp
fixation, or representation of them, is accepted and that, in fact, does not appear in
such a reality. Reality should be seen as it is, and represented in forms as close as
possible to what it actually is; confusing name and thing is, jointly with believing
that a name defines a real thing, just a dangerous “philosophical nominalism” based
on believing that the universe of discourse can be perfectly classified in those x such
that “x is P”, and those such that “x is not P”, whose intersection is empty, in which
each set is isolated from the others. Paraphrasing Luigi Pirandello, a scientist should
escape from words in search of where they can be applied; this could be meta-
physics, but it is not science.

As commented before, what cannot be excluded is to modify measures by
assigning, to what is to be measured, not a number in the real line but a mathe-
matical object in a not linearly structured set. One reason for such a possible
modification comes from the mentioned fact that often <P is not linear, but <m is
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always so. For instance, and on one hand, it could be thought of as assigning to the
measures values being complex numbers, or intervals in the real line, with which
<m ceases to be linear and more possibilities for its coincidence with <P are open,
although no safety on it can be stated. However, it often also happens that the
available additional information on the behavior of P only allows us to recognize at
each x in X an upper limit (bx) and a lower limit (ax) of the values m can take at
point x, and then, defining m(x) = [ax, bx], or m(x) = ax + ibx, cannot seem bizarre.

This comment opens the door to consider (when it can be suitable) what, in
fuzzy set theory, are called type-two fuzzy sets, consisting in assigning fuzzy
numbers in [0, 1] instead of crisp numbers in the unit interval; of course, crisp
numbers and intervals are particular cases of fuzzy numbers and, in addition,
type-two fuzzy sets are not only more general, but can immediately represent usual
linguistic statements such as “the measure is high”, by representing the linguistic
label “high” as a fuzzy number in [0, 1], that is, by a membership function lhigh of
the linguistic label “high” in such an interval, and as they are, for instance,

lhigh xð Þ ¼ x;

or

lhigh xð Þ ¼ 0 if 0� x\0:8;

and

lhigh xð Þ ¼ 1 if 0:8� x\1;

with the second equivalent to the interval [0.8, 1].
With this, several forms of interpreting and representing “high” are possible, and

open a window not only for representing and measuring more statements in natural
language, but also perhaps for enlarging the application of probabilities when both
its arguments and values are themselves imprecise or uncertain. This is, for
instance, the case of the typical linguistic statement, “It is with high probability that
John is rich,” that could be translated into fuzzy terms by

prob lrich Johnð Þð Þ ¼ lhigh;

once a theory of probability for imprecise events and whose values are fuzzy
numbers can be established. Nevertheless, the laws under which such “prob” should
be defined are not actually known. This is a very important topic towards com-
puting with words.

14.9. This chapter is not, by its own nature and like the others in this book’s Part II,
a conclusive one. It only offers a reflection for exciting its potential readers’ interest
through some patterns relative to a new view of the meaning of words in plain
language, and without conceiving this concept as one crisply definable by necessary
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and sufficient conditions, but by quantities each specifiable through the contextual
available information on the action of the word in the universe of discourse and,
also, by adding reasonable hypotheses on it when necessary for its design.

In this view, meaning is not seen as a universal concept, isolated from both the
context in which the word is used and the purpose of such use. The meaning of a
word in a universe of discourse is not unique, but there are many possible meanings
in each universe and, consequently, what cannot be thought is a single and universal
meaning of the words uncertain, possible, and probable, like there is not a single
probability for the events appearing in throwing a die, but several depending on the
information available and acquired on the die by, for instance, through a nonde-
structive analysis of it.

There is uncertainty even in specifying a measure, be it uncertain, or possible, or
probable. Almost everything in plain language is endowed with uncertainty, and a
point on which there is a coincidence between what is presented in this chapter and
the Bayesian theory of probability is that everything depends, at least, on the
previously available information on the subject currently under study. Measures
depend on some a priori information on what surrounds the use of the corre-
sponding word; indeed, each measure can be viewed as “conditioned” by such
information, and, when it changes, an updating of what has been previously pre-
sumed is necessary. A relevant difference between the Bayesian approach to
probability, and the meaning concept in plain language, as it is approached here, is
that the first mainly refers to events admitted as something that could actually
happen, but meaning refers to the use of words in language that, often enough, not
only refer to “physical” situations, but to virtual or informative ones, and that can
count with a history of social uses. If defining a probability requires a strong
algebraic structure, in plain language it does not seem to exist in a universal way; in
each case, and as fuzzy logic shows, a particular algebraic structure should be
searched for.

What is not done here is the more than debatable identification of uncertainty
and risk; the risk taken when acting with uncertain knowledge is not considered as
it properly belongs to the field of decision theory.

In sum, language is extremely complex; in the era of information it is, perhaps,
the most complex system computer science is faced with, and that for compre-
hending well what information is, needs to be scientifically domesticated inasmuch
as information is basically conveyed by a language, be it plain or artificial, and
employed for reasoning.

14.10. A comment trying to approach the quantity’s model of meaning to the
Bayesian interpretation of probability is still in order, even if it remains just as a
naïve trial.

In such an interpretation, and once a priori nonnull probabilities p(a) and p(b) are
established, the probability of a can be updated after knowing that of b, by means of
the well-known Bayes’ formula, p(a/b) = p(a � b)/p(b), in which the hidden con-
ditional “If b, then a”, is conjunctively represented by a � b, and not by b′ + a, as is
always done in Boolean algebras but that does not allow p(./b) to be a probability. It
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shows that the interpretation of the formula does not properly concern the formal
Boolean language of the model, but to something external to the model, that is, in
the corresponding plain language. Note that it is p(a/b) � p(a) , p(a � b) � p
(a). p(b) and p(a) < p(a/b) , p (a � b) > p(a). p(b). In any case, it seems that
Bayesians could keep some linking with the presented conception of meaning and
hence it deserves to be explored a little bit further.

Suppose a word P in X, with meaning given by a quantity (X, <P, mP). Suppose
that there is a word Q, with meaning (X, <Q, mQ), such that it can be asserted “If x is
Q, then x is P”, for all x in X. Once this is known, is the a priori meaning of
P affected? Provided the answer were affirmative, how would it be affected? Is there
a new quantity (X, <P

*, mP
*), giving an a posteriori meaning, conditioned by the

information the conditional can furnish? How is such a new meaning defined?
Even without fully answering this question, let’s turn around the conditionals by

denoting p and q, respectively, the statements “x is P”, and “x is Q”. Thus, the first
question is how to represent the conditional, or inference, q < p, that is, how to link
all that with inference. What can be said about the character of an inference once
q < p is understood as a statement? Which property, or properties, should a degree
of truth t enjoy for saying something, given the truth degree t(q) of the antecedent,
on the truth value t(p) of the consequent p?

By presuming that t is such that q < p => t(q) � t(p), the degree of true of the
conclusion is greater than or equal to that of the antecedent; deduction propagates
the truth by nondecreasing it. Note how counterintuitive it would be to suppose
q < p => t(p) � t(q), propagating the degree of true by retroceding instead of
advancing it, something actually odd. What it yet lacks is studying the possibility of
having formulae for the degrees t(q < p), depending on t(q) and t(p), as they exist in
the classical case in probabilized Boolean algebras by means of the Bayes’ formula.

It is interesting, for instance, to bound the truth value of q starting from the
modus ponens (MP) “inequality”, q � (q < p) < p, implying t(q � (q < p)) � t(p).
Provided it were functions f and g such that,

t q � pð Þ ¼ f t qð Þ; t pð Þð Þ; and t q\pð Þ ¼ g t qð Þ; t pð Þð Þ;

the inequality f(t(q), g(t(q), t(p)) � t(p) would follow, and perhaps a bounding for t
(p) only depending on t(q) could be obtained. For instance, if as in the classical
case, it were f(a, b) = min(a, b), and g(a, b) = max(1 − a, b), from

min t qð Þ;maxð 1� t qð Þ; t pð Þð Þ� t pð Þ , max min t qð Þ; 1� t qð Þð Þ;min t qð Þ; t pð Þð Þð Þ� t pð Þ;

the low bounding of t(p): min(t(q), 1 − t(q)) � t(p) would follow.
Those expressions depend on the meaning, in the corresponding language’s

context, of the linguistic connectives and, or, not, whose specification is actually a
contextual and partially open problem as formerly said.

In the limit situation in which all the statements are precise, and t can be taken as
a Kolmogorov probability, t = prob: Ω à [0, 1], in a Boolean algebra Ω of subsets
in the universe X, it appears an interesting case concerning the meaning of the
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conditional. Provided it were prob(q) > 0, the Bayes’ formula prob(p/q) = prob
(q � p)/prob(q) would represent the probability of q < p, of “p if q”, a situation in
which such a corresponding linguistic conditional cannot be interpreted in Ω as the
material form q′ + p, because it does not give a probability in Ω, as prob(p/q) does.

The conditional, once interpreted by “p � q” actually facilitates a probability
provided, as in a Boolean algebra, that the conjunction (�) were commutative. If
prob were a probability in Ω, then prob(./q) would also be a probability in the set of
the traces (p � q) all its elements p show in q; that is, prob(./q) would also be a
probability but in the restricted Boolean algebra constituted by the elements in
Ω* = {p* = p � q; p in Ω}. In some sense, q represents a kind of diaphragm only
allowing us to consider what “is inside q”; the antecedent constitutes the new
universe, hiding what is out of it, and where, for instance, the negation of p is not p′,
but p^ = p′ � q. Thus, it is

q^ þ p� ¼ q0 � qþ p � q ¼ 0þ p � q ¼ p � q;

in Ω*, inside the new and restricted universe q, but not outside; the Boolean and the
conjunctive conditionals do coincide.

All this can suggest a view of measuring conditionals in forms similar to t
(q < p) = t(q � p)/t(q), without t being a probability but just a particular measure of
“true”. Note, for instance, that in the Bayes’ formula the conjunction (p � q) is
supposed commutative because the statements/events are precise/classical sets, but
that, when the statements are imprecise/fuzzy sets, such commutative property
cannot be generally presumed. The values t(q) and t(q � p) can be called the a priori
measures, and t(q < p) =: t(p/q), will be the a posteriori ones.

Provided the conjunction were commutative, it would be easy to find the truth
value t(p < q) in function of t(q < p), because t(q < p). t(p) = t(q � p) = t(p � q) = t
(p < q). t(q), or

t p\qð Þ ¼ t pð Þ=t qð Þ½ �: t q\pð Þ;

a formula expressing the truth degree of the inverted conditional, and showing that t
(p < q) coincides with t(q < p) if and only if t(q) = t(p). Of course, it also shows
that t(p < q) � t(q < p) , t(p) � t(q). The case in which the conjunction is not
commutative is an open one.

In some cases, the function t(p/q) =: t(q � p)/t(q) is also a measure in the
restricted universe q, inside q, and not only a simple degree of truth of q < p. In
fact, it is:

1. p1\p2 ¼ [ q � p1\q � p2 ¼ [ t q � p1ð Þ� t q � p2ð Þ ¼ [ t p1=qð Þ� t p2=qð Þ;
2. If p is an a priori working antiprototype, that is, t(p) = 0, it is also an a posteriori

working prototype, because q � p < p => t(q � p) � t(p) = 0 implies t(q �
p) = 0, and t(p/q) = 0. Nevertheless, a different problem arises when p is an a
priori prototype, because from t(p) = 1 it is not immediate to arrive at, or to
define, t(p/q) = 1, and adding some conditions seems to be necessary for
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proving it. For instance, a sufficient condition is the validity, for the pair (q, p),
of the law t(p � q) + t(p + q) = t(p) + t(q), because then from t(p) = 1 and
“p < p + q => t(p + q) = 1”, it follows that t(p � q) = t(q), and finally t(p/q) = t
(q)/t(q) = 1. Note that the additive law follows in the particular case with p �
q = 0; hence such law implies the additive one is more general.

It should be remarked that a priori values are not always attainable from past
historical data records; this is the case in some linguistic cases, such as the
afore-mentioned “Candidate X will win the election” when, for instance, such a
candidate participates in an election for the first time. In such cases, a priori values
could be approximate through the experience, or subjective evidence, the observer
can (directly or indirectly) have on the corresponding situation; furthermore the
contextual knowledge (or evidence) can lead to attributing a value to the a priori
ones. Only if there is “contextual ignorance”, t(q) = t(q′), can it be accepted to take
the value t(q) = 0.5, because such equality, and provided it were t(q′) = 1 − t(q),
would imply t(q) = 1/2.

If the previous evidence is represented by e, the prior formula can be written in
the form

t p=q � eð Þ ¼: te q\pð Þ ¼ t p � q � eð Þð Þ=t q � eð Þ;

and only in the ignorance case is it acceptable to take t(q � e) = 0.5 that, because
from p � (q � e) < q � e it follows that t(p � q � e) � t(q � e) = 0.5, and the con-
clusion that follows, te(q < p) � 1, gives no actual information inasmuch as te is
always less than or equal to one.

For instance, using additional information to specify either a measure m for a
predicate P, or a degree t for the validity of a linguistic expression, is nothing more
than a priori information (perhaps supplied by an expert, and not always coming
from numerical data records; hence, and in a Bayes-style line of thought, it seems
necessary for upgrading a priori measures. The use of additional a priori infor-
mation, or evidence, seems to be a proper and unavoidable resource for the
mathematical modeling of commonsense reasoning.

Nevertheless, the measuring of the extent to which a conditional can be a valid
one in plain language is indeed an open problem and, when no numerical records
are known, it should rely on some subjective information. Note that holding q �
p < p, and hence t(q < p) � t(p), from the former expression follows the upper
bound

t q\pð Þ�min 1; t pð Þ=t qð Þð Þ

for the measure of the conditional.

14.11. For ending this chapter, let’s add a comment on conditional statements
p < q, not from the point of view of deducing, but from that of guessing, and further
than was advanced in the former Sects. 5.4 and 11.1. That is, by avoiding deducing
from either modus ponens (p � (p < q)) < q, or modus tollens (MT)

14 Questions on Uncertain, Possible, and Probable 141



(q′ � (p < q)) < p′, and analyzing what can be conjectured or refuted from the sets
of premises {p, p < q}, or {q′, p < q}.

A conjecture and a refutation of the first set of premises (MP) are, respectively,
elements c and r, such that p � (p < q) � / c′, and p � (p < q) < r′; concerning the
second set of premises (MT), a conjecture is an element d such that q′ � (p < q)
� /d′, and a refutation is an s such that q′ � (p < q) < s′. The problem consists in
finding these kinds of four elements.

In principle, it seems easier to confront the refutations, and, concerning the
conjectures, those in which it is, respectively, c′ < p � (p < q), and d′ < q′ � (p < q).
To “solve” these inequalities, it is necessary to count with a calculus in an algebraic
framework, in which both the symbol < and an expression with connectives
equivalent to p < q could be identified.

For instance, in the framework of a Boolean algebra, from q′ � (p′ + q) � r′,
equivalent to q′ � p′ � r′, or to r � q + p, it follows that what refutes a condi-
tional are those r that are below the union of the antecedent and the consequent.
Analogously, from d′ � q′ � (p′ + q) , d′ � q′ � p′ , p + q � d follows that
the elements that are greater than the union of antecedent and consequent are
conjectures.

14.12. What about the counterfactual conditionals? This is a strongly semantic and
scarcely syntactic subject in which background knowledge is, in addition to context
and purpose, essential. Without imagining a nonexisting actual situation where the
antecedent could be true, the conditional could lose sense.

For instance, and returning to the former example,

– t(p < q) = max (1 − t(p), t(q)), provided t(p) = 1, it would follow that
t(p < q) = t(q): If the antecedent is true, the truth value of the conditional
coincides with that of the consequent; both should be simultaneously true or
false. But, were the antecedent false, t(p) = 0, it would follow that t(p < q) = 1:
a false antecedent produces a true conditional.

– With the conjunctive representation the situation changes for what refers to false
antecedents, because t(p < q) = t(p � q) = min(t(p), t(q)), and t(p) = 1 implies t
(p < q) = t(q), as in the former case, but t(p) = 0 implies t(p < q) = 0: the
conditional only can be true provided its antecedent and consequent were true.

Anyway, with counterfactuals p < q the sources for the truth or falsity of p and
q are actually different: p comes from an imaginary source, but q from a real one. It
seems that for the analysis of counterfactuals, the usual Boolean model is insuffi-
cient, even if the conjunctive one can seem to facilitate a more realistic represen-
tation. Of course, there are many more ways of interpreting p < q in Boolean
algebras, even without a single expression; for instance, identifying p < q with

– p′ + q, if p is contradictory with q, and
– p � q, if they are not contradictory,
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an interpretation satisfying the modus ponens inequality. Namely, in Boolean
algebras, the equivalence p � (p ! q) � q , p ! q � p′ + q, allows us to
construct expressions such as the former easily; for instance,

– q, if p = 0, and
– p � q, otherwise.

In Boolean algebras there are many possible representations of the conditionals,
and finding some of them appropriate to represent a counterfactual conditional is an
open topic. For instance, checking if the last form for the conditional, or other
similar, can represent some type of counterfactual, could be a way to start such a
study, as it also can be by understanding the antecedent as a hypothesis for the
consequent.

14.13. Another question with conditionals refers to when a conditional refutes
“p and q”; that is, in Boolean algebras, p � q � (p ! q)′ , p ! q � p′ + q′. In
addition, p < q is a type-one speculation of p � q, provided p � q were not com-
parable with p ! q, but (p � q)′ � p ! q , p′ + q′ � p ! q. Still, a condi-
tional is a hypothesis for p � q , p ! q � p � q. Obviously, for the wild
type-two speculations there is no equational way for directly posing and trying to
answer the question.

A more realistic and deep study of the conditional’s representation problem
could come from designing suitable experiments in language, establishing mathe-
matical models and testing them against “reality” and concerning all types of
conjectures, doing it, of course, in a not blind but systematic form, within back-
ground knowledge, and inside the context-dependent and purpose-driven praxis in
plain language and ordinary reasoning.

Nevertheless, a complete study of the symbolic representation and measuring of
conditionals still is, in almost all its aspects and for plain language, an open problem
affecting, for example, the symbolic representation of children’s stories in view of
their automatic computer mechanizing, and it is manifested by the more than 40
operators that, in fuzzy logic, have been used to represent conditionals.
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Chapter 15
Questions on Domesticating
and Controlling Analogy

Some additional comments should be added, after the short previous glance at
analogy in Chap. 9, that can lead to more questions which still remain open,
especially to controlling analogy through degrees of the extent to which it is
actually present, and provided such numerical control were possible.

15.1. To begin with, it should be remarked that, in ordinary reasoning, analogy is
often expressed in plain language, sometimes with the help of some real or virtual
figures; this implies the use, sometimes intensive, of imprecise words in an
uncertain setting. Hence, representing analogy would require fuzzy sets, with which
if some intervening concepts were precise, they could also be represented by
membership discontinuous functions only taking the values 0 or 1.

Both for representing imprecision and controlling uncertainty it could be suitable
to count with a “degree of analogy” between pairs of concepts. The values of such
degree, varying between 0 and 1, should indicate the total dissimilarity of the two
elements if their degree is null, and the total similarity if their degree is one.
Provided the degree up to which “x is P is analogous or similar with y is Q” is a
number S (lP(x), lQ(y)) 2 [0, 1], which properties should verify the function
S: [0, 1] x [0, 1] ! [0, 1]?

The properties, S(a, a) = 1, and S(a, N(a)) = 0, if N is a negation function,
undoubtedly seem to reflect properties of analogy; note that the value of S for a pair
(lP (x), lP

a(x)) is not necessarily null, but it could be different from 0 because P and
Pa can show some degree of analogy.

A typical analogy scheme,

a : b :: c : d , a is to b as c is to d;

should imply S(a, b) � S(c, d), although the reciprocal cannot always be sustained,
and even if an e-approximation of the type “it exists a small number e > 0, such that
IS(a, b) − S(c, d)I � e”, also could be suitable.
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What does not seem to be always adequate is presuming S(a, b) = S(b, a) for all
a, b in [0, 1], because in general supposing “x is P” is analogous with “y is Q” does
not mean that “y is Q” is analogous to “x is P”.

To establish a list of axioms for S is not easy; there is no single type of analogy.
Anyway, in analogy the problem of breaking it also appears, such as that formerly
mentioned with synonyms, and that admits an interpretation by means of the
generalized idea on transitivity that follows.

It is said that function S is F-transitive for an operation F: [0, 1] x [0, 1] ! [0, 1]
provided,

F S a; bð Þ; S b; cð Þð Þ� S a; cð Þ; for all a; b; and c in 0; 1½ �:

Such definition translates into the degrees, the transitive law “a: b & b: c ) a:
c”, allowing a decreasing of degrees in chains of analogy eventually leading to the
disappearance of the analogy between the first and last step in the chain. Which
properties should be attributed to the operation F?

If it can be accepted that

a : b& b : cmeans the same as b : c& a : b;

something not at all odd, the commutative property of F is beyond doubt, as they
are beyond doubt that F(1, 0) = F(0, 1) = 0, once accepting S(a, a) = 1,
S(a, N(a)) = 0, and F-transitivity; for instance, F(S(a, a), S(a, N(a)) � S(a, N(a))
just show F(1, 0) = 0. It also seems beyond doubt that F(1, 1) = 1 once accepting
S(a, a) = 1. To add F(0, 0) = 0 also does not seem rare at all provided it were
accepted that “S(a, b) = S(b, c) = 0 ) S(a, c) = 0”. Neither basic properties for S,
nor those for F, can be easily fixed; it seems to be something of a contextual
character.

In sum, let’s call S: [0, 1] x [0, 1] ! [0, 1], an F-similitude function, or an index
of (symmetrical) analogy, provided it were to verify

– S(a, a) = 1, for all a in [0, 1],
– S(a, b) = S(b, a), for all a, b in [0, 1], and
– There exists a commutative operation F in [0, 1], verifying the border conditions

F(0, 0) = F(0, 1) = 0, and F(1, 1) = 1, with which it is:

FðS l xð Þ; r xð Þð Þ; S r xð Þ; k xð Þð ÞÞ� S l xð Þ; k xð Þð Þ;

for all l, r, k in [0, 1]X, and x in X.
Of course, if more properties were added to S and F, more could follow from this

definition. For instance, provided neutrality and monotony, F(a, 1) = 1, and
a � b ) F(a, c) � F(b, c) for all a, c in [0, 1], respectively, were added to F,
then a � 1 and c � d would imply F(a, c) � F(1, d) = d. Thus, provided it were
e � a, and e � b, it would be
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F e; eð Þ�F a; bð Þ; but not necessarily e�F a; bð Þ;

unless it were e � F(e, e). Note that, although with some reservation for what
concerns symmetry in analogy, it is presumed that S is symmetrical, and it means
that the former definition of S cannot be considered too general, but only suitable
for a symmetrical analogy.

Let’s show an example with F = Wf, a t-norm in the Lukasiewicz family that,
obviously, can be taken as a function F. If it is

e� S l xð Þ; r xð Þð Þ; and e� Sðr xð Þ; k xð ÞÞ;

it follows that

Wf e; eð Þ ¼ f�1ðmaxð0; 2f ðeÞ � 1Þ�Wf ðSðlðxÞ; rðxÞ; SðrðxÞ; kðxÞÞÞ� SðlðxÞ; kðxÞÞÞ
) maxð0; 2f ðeÞ � 1Þ� f ðSðlðxÞ; kðxÞÞÞÞ:

That is, provided 2f(e) – 1 � 0 , f(e) � 1/2 , e � f−1(1/2), nothing could
be concluded, and only if 1/2 < f(e) , f−1(1/2) < e, would it follow that 0 < f−1

(2f(e) − 1) � S(l(x), k(x)). Hence, under the hypotheses that l(x) corresponds to
“x isP”, r(x) to “x isQ”, k(x) to “x isR”, and that it is f−1(1/2) < e, it can be established
that if “x is P” is similar to “x is Q”, and this statement is similar to “x is R”, with
respective degrees greater than e, then the first statement is similar to the third with a
degree greater than f−1(2f(e) − 1)) > 0.

To keep e � S(l(x), k(x)), it suffices that

e� f�1 2f eð Þ � 1ð Þ , 1� f eð Þ , 1� e implying e ¼ 1;

and the three statements are fully similar. Hence, if, as usual, 0 < e < 1, it would be
0 < f−1(2f(e) − 1) < e, showing that the degree of similarity between the first and
third statements actually decreased; consequently, where e 2 (0, 1), a threshold of
analogy, that is, a level under which analogy ceases to be preserved, the analogy
would be lost by not surpassing such a threshold. It can happen in three steps as in
the example, or in more steps, but the decreasing values show that arriving at a step
not keeping analogy with the first can be assured.

What happens with F = prod? With F = prod, e2 � S(l(x), k(x)) is obtained,
and because for 0 < e < 1 it is 0 < e2 < e, the same conclusion follows.

For not having decreasing degrees, it should be F(e, e) = e, and this is only
possible (with continuous t-norms) either if F = min, or F is an ordinal sum
counting e among its idempotent elements. Anyway, with these last t-norms the
chains of analogous statements will not break, and this seems to be something
actually rare in analogy, as it is with synonymy that can be seen as a linguistic
phenomenon of graded analogy of meaning. Among t-norms only those in the
family of W seem suitable for modeling analogy’s breaks.
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15.2. In artificial intelligence, and namely in case-based reasoning where reasoning
is conducted by analogy, it is important to control analogy by means of a threshold.
For instance, there is a system trying to mechanize geometrical reasoning by
analogy, in which the function S is given by:

S a; bð Þ ¼
X

min ai; bið Þ=max
X

ai;
X

bi
� �

2 0; 1½ �;

provided both figures a and b were characterized by the same attributes A1, …, An,
but satisfying each one with degrees ai and bi in [0, 1] (1 � i � n), respectively.
As it is easy to see, it is,

– S a; bð Þ ¼ 1 , ai ¼ bi for all i 2 1; 2; . . .; nf g;
– S a; bð Þ ¼ 0 , min ai; bið Þ ¼ 0; for all I;
– Provided S were F-transitive, F(a, b) = 0 should imply a + b � 1, and, pro-

vided it were F � W, then S is F-transitive.

Hence, by constraining F to be a continuous t-norm, it should be a t-norm Wf,
smaller than W, and neither min, nor prod, make SF-transitive.

In praxis, by trial and error, a threshold of analogy was empirically found equal
to 0.7 with which the system works well. Note that for approaching the former low
bound 0 < f−1(2f(e) − 1) to 0.7, it suffices to take the order automorphism f(x) = x2,
with which it is Wf � W, and

max 0; 2e2 � 1
� �1=2

[ 0 ,
ffiffiffiffiffiffiffiffiffiffiffi
1=2ð Þ

p
\e:

Because √(1/2) * 0.707107, it suffices to take 0.708 � e as the threshold; as
the builders of the system only appreciate up to the first decimal digit, they just took
0.7 instead of 0.708. Wf-transitivity helps to foresee a lower bound for the threshold
of analogy.

Formulae such as the former are important for the goal of “controlling” analogy.
In fact, analogy often depends on the attributes that are taken for considering it; for
instance, as said, if the only considered attribute is “spherical form”, oranges and
apples could be seen as similar, but as soon as more attributes such as color, taste,
smell, and so on, are considered, such similarity would cease. Analogy is often
used, as it is in case-based reasoning, to substitute an element a by another b seen as
similar, and on which is known more than is known on a; for instance, in the former
example and when S(a, b) > 0.7, the properties shown by figure a are presumed for
figure b. This permits, for reasoning on b, to guess that it enjoys the properties of a
which are under consideration.

The importance of controlling analogy directly comes from the necessity of not
seeing “a like b” when the degree of analogy between a and b is too low, in short
and joking, for not eating apples instead of oranges, or oranges instead of apples. It
is for this reason that, once an index of similarity or analogy S is known, it is
important to fix a threshold of analogy; only two objects a, b such that the index S
(a, b) is greater than the threshold, could be interchanged for reasoning. On the
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contrary, not doing it is foolish and can actually lead to (saying it metaphorically)
confounding melons and footballs.

Hence, analogy deserves to be controlled and, in such respect, it is an open
problem to know which indexes of analogy are, actually, measures of the contextual
meaning of the word “analogous”, for which the empirical relationship “less
analogous than” should be previously captured.

15.3. Reasoning by using analogy for conjecturing or for refuting is not always
controlled by means of numerical indexes such as, for instance, is not done in
commonsense reasoning where numerical comparisons are not usual. Anyway, it
does not exclude some kind of verbal or linguistic control by, for instance,
attending to the diverse attributes in play and limiting the analogy to them; it is the
case when saying that John and his sister Anne have the “same eyes as their
mother”. In these cases, it is obvious that it is not said that John and Anne are fully
similar, but just that they are physically similar with respect to the attribute “eyes”;
they hold no similarity with respect to mouth, ears, hair color, hands, and so on,
and, provided the number of these attributes were 10, it could be said that they have
1/10 = 0.1 as a similarity index, a value that is very far from the value 1 of full
similarity. It is more difficult to establish an index when considering not-physical
characteristics of John and Anne, such as social behavior, gesticulating, and the
like, or something else that can also be appreciated such as, “John and Anne argue
like their parents did.” A very simple index of analogy is the ratio “positive
attributes/total number of attributes”, that, nevertheless, does not take into account
the degrees to which attributes are satisfied. Anyway, analogy should be always
controlled; numerically if possible.

Analogy is still full of mystery concerning the establishment of a suitable
mathematical framework for its formal study, that is, for its scientific domestication;
but what is beyond doubt is that the analogy between two objects, images, persons,
and the like, is rarely considered an identity even if identity can be seen as a
particular case of analogy. Analogy always refers to some peculiarities of what is
considered, but not always to its “totality”, something that often enough is only
metaphysical. For instance, the John that currently is 65 years old, appearing in a
photo of him taken 50 years ago, is different but analogous, similar, to the current
John, this to the extreme of saying that both are the same John. Not all charac-
teristics of the second John are taken into account, but only some of them.

Also for instance, in the framework of the curves given by quadratic equations, it
can be said that a circle and an ellipse whose focal points are close are similar
figures, even if they are not identical and nobody with some elemental knowledge
of mathematics will confuse circles with ellipses, such as balls with melons; in the
end, a circle is but a particular case of ellipse when the two focal points coincide.
Anyway, in a problem of graphical design, it is perfectly conceivable to see both
figures as analogous with the aim of graphically translating to the circle some
property of the ellipse; even in plane geometry there are problems whose solutions
are well conjectured after a graphical approximate reasoning with analogous
figures.
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15.4. A short additional reflection is still in order. In the same vein that circles and
ellipses cannot be confused, as well as the John of 50 years ago is not physically the
same as today’s John, for a rough reasoning in commonsense reasoning, analogy
usually forgives some attributes and just concentrates on others, but, for doing
reasonings such as those of science, analogy should be refined.

Beyond formal frames, identity is often a kind of illusion; there is no more
identity than a full coincidence in all the imaginable orders, that is, a is identical to
b if and only if a were to coincide fully with b, that is, if a could be substituted by
b everyplace; it is the old Leibniz “identity of indiscernibles”, when two real objects
in the world, or two virtual objects in the brain, are not identical, are just different,
and analogy is but a form of graduating differences in such a way that when the
degree is one are taken as identical, and only are fully different when the degree is
zero. In this sense, the symbols = and 6¼ are but particular exceptions of the
symbol * denoting analogy, and the human senses seem to count with an innate
possibility for not only grasping difference, but refining it to analogy.

Surely, without such intellectual capability, the evolution of mankind would be
another and different. This capability is possibly already inserted in the brain, with
repercussions on reasoning, where analogy should be seen, as said before, as
something essential, for instance, for passing from the perception of “big tree”, to
“big mountain”, to “big number”, and to “big money”. From perceiving that stones
are of different sizes, to see that different stones can be (imprecisely, of course)
classified in several subtypes, such as small, big, and middle, only with time, and
when the ideas of weighting and its measuring appeared and numerical degrees
established, did the idea of numerical degree of similitude appear.

15.5. To end this chapter, let’s remark that analogy between things, or between
physical situations, passed to analogy between virtual objects and situations, passed
to fiction, and to metaphorical stories such as those for children and, finally, to
intellectual tasks such as writing novels, philosophy, and also to scientific research.
The case of the falling lift of Einstein, the falling apple of Newton, or the ouroboros
of Kekulé, are but examples of analogies suggesting a conjecture that, in science, is
not only for telling it, but that it should, first of all, be proven by some reasoning
perhaps supported by an F-similitude function.

In the same vein, when the classical logical calculus was generalized to the fuzzy
one, and the universal connectives and, or, not, and if/then, passed to operations
that should be specified at each particular context, the difference suggested that, in
large statements, or in systems of many rules, linguistic connectives expressed by
the same word deserve to be specified by different operations at each of the
statement parts depending on their respective meanings. For instance, in the
statement “John and Anne bought a new house, and thought of either repainting all
of it, or modernizing the kitchen,” the first “and” seems to be commutative, but the
second seems to be not; hence, if translating it into fuzzy terms, the first could be
represented by a t-norm, but to represent the second a noncommutative operation
should be chosen.
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15.6. Another analogy that can give birth to fuzzy sets came from comparing the
{0, 1}-valued characteristic function of a crisp set with the truth values of precise
statements and then, by analogy, enlarging this set of values to the full unit interval
[0, 1] and allowing the “new sets” corresponding to imprecise statements to be
characterized by a function ranging in the unit interval. This is a view not supposing
that fuzzy sets are a simple generalization of crisp sets, but obtained by some kind
of aggregation of them. It is a presumption that, by enlarging the analogy, does not
lead to considering only the basic connectives min, max, and 1 − id, in particular to
believe that “p and p”, and “p or p” always mean p.

For instance, if, in the universe X = {1, 2, 3, 4, 5}, the sets A = {1, 2, 3} and
B = {3, 4, 5}, are “operated” (through their respective characteristic functions) with
the arithmetic mean M(x, y) = (x + y)/2, what results is

1=0:5þ 2=0:5þ 3=1þ 4=0:5þ 5=0:5

that, represented by M(A, B) = (A + B)/2, could suggest, by analogy, to consider
all the entities obtained by applying aggregation functions to sets, such as all the
means, as fuzzy sets. Also, for instance, the noncommutative pondered mean
N(x, y) = (x + 3y)/4 leads to

N A;Bð Þ ¼ Aþ 3Bð Þ=4 ¼ 1=0:25þ 2=0:25þ 3=1þ 4=0:75þ 5=0:75:

These examples serve to pose the question of which membership functions
can come from aggregating a finite number of crisp sets, and to observe that
commutativity cannot always hold with them because, for instance, it is
M(A, B) = M(B, A), but N(A, B) 6¼ N(B, A).

Although not all fuzzy sets can come from aggregating a finite number of crisp
sets, it does not mean that given a fuzzy set l on X there is not a family of
aggregation functions {Ax; x 2 X}, each giving a value of the membership function
l(x) = Ax(Ch(x)) for some numerical characteristic Ch(x) of each x such as in the
limiting case of a single aggregation, with the formers M(A, B), and N(A, B). At the
end, it is similar to what was formerly said on obtaining the numerical values
l(x) by a statistical methodology.
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Chapter 16
Questions on the Classical Schemes
of Inference

In the classical calculus with precise concepts, some schemes of deductive infer-
ence are used such as the modus ponens (MP), and the modus tollens (MT), but also
the so-called disjunctive mode, among others. They are instances of what is often
known as the Aristotelian logical forms, and are of some interest for the mecha-
nizing of formal deduction.

In what follows a scrutiny of the validity of these schemes is conducted for first
certifying them in Boolean algebras, second (in Chap. 5) to know which conditions
can hold in a basic fuzzy algebra (BAF), and finally what can be said about their
validity in the general case of ordinary reasoning under the model of natural
inference. Of course, several laws should be applied for proving such schemes in
the classical calculus, laws that, in general, cannot always be presumed in ordinary
reasoning.

16.1. Concerning the schemes of modus ponens and modus tollens, respectively,

p; p\q : q; and q0; p\q : p0;

they can be posed in three not properly coincidental forms; the first is purely
algebraic, the second is tautological, and the third concerns truth values for modus
ponens. They are the following.

– p and p ! q ¼ p0 þ q; imply q;
– p ¼ 1; and p ! q ¼ p0 þ q ¼ 1; imply q ¼ 1;

and
– t pð Þ ¼ tðp ! qÞ ¼ t p0 þ qð Þ ¼ 1; imply t qð Þ ¼ 1:

The first is formally proven by: p � (p′ + q) = p � q � q; the second follows
immediately because p = 1, means 1 = p′ + q = 0 + q = q; and, concerning the
third t(p) = 1 implies 1 = t(p′ + q) = max (1 − t(p), t(q)) = max(0, t(q)) = t(q).

© Springer International Publishing AG 2017
E. Trillas, On the Logos: A Naïve View on Ordinary Reasoning and Fuzzy Logic,
Studies in Fuzziness and Soft Computing 354, DOI 10.1007/978-3-319-56053-3_16

153



Hence, the Boolean model actually certifies that the three versions of the scheme
hold.

It should be noted that MP holds universally in the former model of ordinary
reasoning, provided the “conditional statement” p < q, once p is known, would
effectively allow a “movement” up to q. Concerning MT, once q′ is known, and
because p < q implies q′ < p′, if p′ can be effectively reached, MT also holds in the
general model. In it, MT is a consequence of MP (q′: p < q => q′: q′ < p′:: q′),
although the reciprocal cannot always be stated.

Regarding the Boolean case, the three previous forms also hold for MT because
p ! q = q′ ! p′; MT is only equivalent to MP in the Boolean framework.

Regarding the Boolean case with p ! q expressed in conjunctive form p � q, note
thatMP always holds in all lattices because (p � (p ! q)) = p � (p � q) = p � q � q),
but MT cannot hold in Boolean algebras because q′ � (p � q) = 0. It should be pointed
out that,were the lattice aDeMorgan algebra, then q′ � (p � q) = p � (q � q′) would not
always be 0, hence q′ � (p ! q) = q′ � (p � q) = p � (q � q′) = q � (p � q′) � q, and
MT holds for the non-Boolean elements. Thus, the validity ofMT not only depends on
the laws of the corresponding algebraic structure, but also in how the conditional
p ! q is expressed.

16.2. Consider the disjunctive scheme:

If p0 and pþ q; then q:

In fact, it follows from p′ � (p + q) = p′ � q � q, and q can be concluded.
Another form of posing this scheme is:

p0 ¼ 1; pþ q ¼ 1; q ¼ 1

by presuming that both p′ and p + q are tautologies. Thus, p = 0 and
1 = p + q = 0 + q = q.

Finally, the last form is with just truth values:

t p0ð Þ ¼ 1; t pþ qð Þ ¼ 1; t qð Þ ¼ 1

where neither p′, nor p + q, are necessarily tautologies but have truth value one. In
this case, t(p′) = 1 − t(p) implies t(p) = 0 and 1 = t(p + q) = max(t(p), t(q)) = t(q).
Thus, t(q) = 1 is concluded.

Under the three forms of posing the question, q is concluded, and the Boolean
model certifies a scheme that has been accepted from very old times in precise
deductive reasoning.

Concerning its possible universal validity in the general model, such as those of
the schemes MP, MT, once q < p + q is accepted, it follows that (p + q)′ < q′; thus
once q′ is obtained and provided the negation of q were intuitionistic, (q′)′ < q (or
strong), q is forward reached from the negation of q′. Hence, with the conditions
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that the negation reverses the inferential relation < and it is intuitionistic or strong
in particular, the disjunctive scheme holds universally.

16.3. Regarding the scheme of proving by reduction to absurdity,

q; p\q0 : p0;

expressed in its three versions in a Boolean algebra,

– q � p0 þ q0ð Þ ¼ q � p0 � p0;
– q ¼ 1; 1 ¼ p0 þ q0 ¼ p0 þ 0 ¼ p0; and
– 1 ¼ t qð Þ ¼ t p0 þ q0ð Þ ¼ max t p0ð Þ; 1�t qð Þð Þ ¼ max t p0ð Þ; 0ð Þ ¼ t p0ð Þ;
is also certified in the Boolean model. Note that it does not hold in a lattice
whatsoever with p ! q = p � q, inasmuch as q � (p ! q′) = q � (p � q′) = 0.

Regarding the general model, provided the negation of q were weak, or strong in
particular, that is, it would verify q < (q′)′, because from p < q′ follows (q′)′ < p′;
then and provided the negation reverses <, and the triplet (q, (q′)′, p′) is transitive, it
would result in q < p′. Thus, under the conditions of reversing <, weak or strong
negation, and transitivity, reductio ad absurdum, holds universally; but, provided
one of these conditions were to fail, the question would remain open. Reduction to
absurdity is risky when <- transitivity fails.

16.4. The so-called scheme of resolution,

p0\q; q\s : pþ s;

algebraically follows from

pþ qð Þ � q0 þ sð Þ ¼ p � q0 þ p � sþ q � s� pþ sþ s ¼ pþ s;

with the distributive law playing a pivotal role.
In the case of tautologies, p + q = q′ + s = 1, it also follows that 1 � 1 = 1

p + s, or p + s = 1.
With truth values, t(p + q) = t(q′ + s) = 1, or max(t(p), t(q)) = 1, and max(1 − t

(q), t(s)) = 1. The first implies either t(p) = 1, or t(q) = 1. If t(q) = 1, the second
shows t(s) = 1; if t(p) = 1, then t(q) can be either 0 or 1, and if t(q) = 0, t(s) is
whatever 0 or 1. In conclusion t(p + s) = max(t(p), t(s)) always equals 1.

Note that this scheme holds in all lattices when p ! q = p � q, because
(p′ ! q) � (q ! s) = p′ � q � s � s � p + s.

Concerning its universal validity in the general model, note that if the triplet
(p′, q, s) is transitive, it follows p′ < s, and once s < p + s is accepted, provided the
triplet (p′, s, p + s) were also transitive, it would be concluded that p + s. Hence,
the scheme of resolution could be stated in plain reasoning under the transitive law
for <, but not without it.
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16.5. The “constructive dilemma” is the scheme,

p þ q; p\r; q\s : rþ s;

that, in the case of tautologies and because it is p � q , p′ + q = 1, follows
immediately from p � r, q � s => p + q � r + s.

Algebraically, it also follows from

p þ qð Þ � p0 þ rð Þ � q0 þ sð Þ ¼ p � q0 � rþ p � r � sþ q � p0 � sþ q � r � s
� rþ rþ sþ s ¼ rþ s:

With truth values,

t p þ qð Þ ¼ t p0 þ rð Þ ¼ t q0 þ sð Þ ¼ 1, and,

– if t pð Þ ¼ 1; follows t rð Þ ¼ 1;
– if t pð Þ ¼ 0; follows t sð Þ ¼ 1;

thus, in both cases, it is t(r + s) = max(t (r), t(s)) = 1.
Concerning its universal validity in the general model, once transitivity is

presumed, it is p < r + s and q < r + s, and once it is accepted that p < p + q
(q < p + q), it is a backward path from p + q to p(q), and a forward one from p
(q) to r + s. Hence under transitivity, r + s can be reached from p + q with com-
bined forward–backward “movements”. In plain reasoning the constructive
dilemma can fail if transitivity fails.

16.6. The scheme

p0 þ q0; r\p; s\q : r0 þ s0;

is called the “destructive dilemma”, and the proofs of it in a Boolean algebra are
obtained analogously to those of the constructive dilemma.

Concerning its universal validity, because it follows that p′ < r′ and q′ < r′, it
also follows that p′ < r′ + s′ and q′ < r′ + s′, provided the transitive law were to
hold. Hence, from p′ < p′ + q′ (q′ < p′ + q′), it is a backward path from p′ + q′ up
to p′(q′), and a forward path from p′(q′) up to r′ + s′, that allows reaching r′ + s′. In
any case, r′ + s′ can be reached from p′ + q′. Under transitivity, it holds under a
combined backward-forward movement, but it can fail with a lack of transitivity.

16.7. The four most well-known schemes of deductive reasoning, the ancient
“modus” of the old logic, are the following.

– MP, Modus ponendo ponens, shortened to modus ponens
– MT, Modus tollendo tollens, shortened to modus tollens
– MPT, Modus ponendo tollens, shortened to disjunctive scheme,
– MTP, Modus tollendo ponens, (p � q)′, q : p′.
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Of them, it only lacks reviewing MTP in Boolean algebras, and reflecting on the
possibility of its universal validity. The first is immediate after proving what seems
was unknown in Middle Ages logic: That the four “modi” are equivalent in a
Boolean framework to p ! q = p′ + q. Such proof is as follows.

– p ! q ¼ q0 ! p0; shows MP , MT:
– pþ q ¼ p0 ! q; shows MT , MPT
– p � qð Þ0¼ p0 þ q0 ¼ q ! p0; shows MP , MTP:

Hence, although MTP can be directly proven algebraically by the Boolean
calculation (p � q)′ � q = (p′ + q′) � q = p′ � q � p′, its equivalence with MP
allows avoiding any additional consideration.

Regarding MTP′s possible universal validity in the general model, it is obvious
that it cannot be certified by the last considerations, and, in particular, due to the
Boolean identification of p < q with p′ + q. Nevertheless, as shown in the dilem-
mas, the following can just be said. Because p � q < p implies p′ < (p � q)′, pro-
vided it were accepted that this also implies q � p′ < q � (p � q)′, it would then be
clear that, once the data q � (p � q)′ are known, q � p′ can be backward reached, and
that from q � p′ < p′, p′ is finally forward reached. Hence, provided the law of
monotony a < b => c � a < c � b for any c, were accepted, p′ could be concluded
after a backward deduction up to q � p′, and a forward one up to p′. In any case,
such a law of monotony does not seem to be a bizarre one for ordinary reasoning or,
at least, for some parts of it, and what remains an open question is to know on
which weak suppositions the four modi can be equivalent in the general model of
ordinary reasoning.

Let’s recall that the Latin words ponendo and tollens, mean “placing” and
“suppressing,” respectively. For instance, in the MTP it refers to reaching truth by
first suppressing it, and secondly, placing it; in MPP = MP, it refers to reaching
truth by first placing it, and secondly also placing it. In the naïve symbolic repre-
sentation managed here, placing corresponds to doing a forward movement, and
suppressing to a backward one. The old terminology still keeps some significance,
and it is credible that in Middle Age’s scholastics the modi were seen in a form that
the new general model reproduces in different and symbolic terms.

In the old scholastic logic, the four modi were not seen as equivalent. Because
these modi are not known to be equivalent for all kinds of ordinary reasoning,
neither Boolean algebras, nor non-Boolean De Morgan algebras, nor non-Boolean
orthomodular lattices, nor BAF, would be possible models for the totality of
ordinary reasoning, but only for some and perhaps very small parts of it. It is clear
that a more general mathematical framework is necessary for a formal global study
of ordinary reasoning.

16.8. What has been presented in this section only refers to deduction, but what
about conjecturing and refuting by means of the classical schemes? Something was
further advanced on MP and MT, but it still lacks asking for the other schemes. Is
there some actual possibility for using them to refute or to conjecture? For instance,
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MT and MTP are actually ways for deductively refuting p, and MP and MPT for
deductively proving p. What can be said about conjecturing or refuting with the
schemes of resolution and MPT?

For instance, can the data in MPT serve p′ and p + q to refute q? In the Boolean
framework it is equivalent to satisfy the inequality p′ � (p + q) = p′ � q � q′,
implying p′ � q = 0, forcing q = q � p + q � p′ = q � p; that is, q � p or q′ + p = 1:
q ! p should be a tautology.

Can these data serve to reach q as a type-one speculation? This is equivalent to
both p′ � (p + q) NC q, and q′ � p′ � (p + q), but the first is impossible because it is
p′ � (p + q) = p′ � q � q, and the second would imply q′ � p′ � q, meaning q′ = 0,
or q = 1. No type-one speculation is available from {p′, p + q}.

Can q be a hypothesis? Can it be q � p′ � (p + q) = p′ � q? It would imply
q = p′ � q , q � p′ that q is contradictory to p and that p already refutes q.

The scheme of reduction to absurdity actually refutes p. Can it serve to say that p′ is
a hypothesis for the data q and p < q′? It would require p′ � q � (p′ + q′) = q � p′
, p′ = q � p′ , p′ � q , p′ � (q′)′ that p′ and q′ should be contradictory and
that q′ already refutes p′. For serving to conjecture p, it should be p′ � q NC p,
something that is actually possible provided p 6¼ 0 and p′ � q 6¼ 0, because if it were
p � p′ � q it would imply p = 0, and if it were p′ � q � p it would imply p′ � q = 0.
Thus, for being a type-one speculation it should be p′ � p′ � q , p′ =
p′ � q , p′ � q , q′ � (p′)′, q′ and p′ should be contradictory; p′ should already
refute q′.

Can the scheme of resolution, whose data are p′ < q and q < s serve for refuting
p + s? It should be (p + q) � (q′ + s) = p � q′ + p � s + q � s � (p + s)′ = p′ � s′,
implying p + s = 1.

– Can it serve for conjecturing p + s? The answer is no, because the former
expression is, obviously, less than or equal to p + s.

– Can p + s be a hypothesis? For it, the former union should equal p + s:
p � q′ + (p + q) � s = p + s, a Boolean equation whose solution could enlighten
a possible answer. For instance, from it follows p � q′ � s′ = p � s′ , p �
s′ � q′ , q � p′ + s, meaning that the possible involved triplets
(p, q, s) should be searched between those verifying q � p′ + s, and so on.

16.9. Although the typical scholarly proofs by means of truth-tables hides them, the
rules for deducing consequences can be translated into the Boolean formal model
by means of equations and inequalities. It also happens with hypotheses and, in
some cases, with type-one speculations, but never with type-two speculations just
characterized by the lack of comparability with the reasoning’s premises and its
negation.

This does not mean, nevertheless, that these speculations are never accessible
step by step through some forward and backward deductive paths; perhaps some of
those speculations could be reached by means of a system of inequalities mixing
forward (� ), and backward (� ) paths.
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For instance, in a finite Boolean algebra with five atoms a, b, c, d, e, taking a + c as
the résumé of the premises, b + d is neither below nor after a + c, and is (a + c) NC
(b + d), and (a + c)′ = b + d + e � b + d; hence b + d is a type-one speculation of
a + c. Nevertheless, because a + c � a + c + b + d � b + d, b + d is reachable
from a + c by means of a first forward movement up to a + c + b + d, followed by a
backward one to b + d. It analogously happens with a + c and b + c, for which it is
(a + c) NC (b + c), a + c NC (b + c)′ = a + d + e, and hence b + c is a type-two
speculation of a + c; but because c � a + c, c � b + c, the speculation is reached
by a backward movement up to c followed by a forward one up to b + c.

Characterizing speculations that can be reached by a sequence of backward and
forward movements, that is, that are algorithmically reachable step by step, is an
open question surely dependent on the formal framework; anyway, those that are
not reachable are the properly inductive or creative speculations.

Another open topic, perhaps related to this last, refers to obtaining a definition of
the heuristics used in artificial intelligence programs, and for which it is needed to
know something previously on a searched conclusion.

Because (deductive) logic cannot be seen as a subject only concerning the
preservation of Aristotelian logical forms, nor as only doing reasoning by using
them, it is important to study whether there are other forms that, even possibly of an
approximate character, can be useful for not only doing deductive reasoning. Its
existence can be, eventually, of relevance for the computer mechanization of
ordinary reasoning.
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Chapter 17
Questions on Fuzzy Inference Schemes

As soon as the field of precise words is abandoned, the topic of the Aristotelian
logical forms, the deductive inference schemes, changes; when imprecision and
uncertainty appear, everything should be designed and approximation present. In
any case, a formal framework, that is, a particular basic fuzzy algebra (BAF),
should be found for knowing if a given scheme holds in it; as always, the schemes
do not hold at any fuzzy algebra, but they can hold in some of them. Only after
knowing which can be such formal frameworks, can the corresponding scheme be
freely used for conducting a formal reasoning within it; in a given fuzzy framework
in which a scheme can be freely used, there may be other schemes that cannot.

With imprecise words, the classical schemes of deductive reasoning do not hold
in a unique framework. Hence, their use in a representation of ordinary reasoning is
not always fully guaranteed, but bounded to some mathematical frameworks, that
is, within some BAFs.

In any case, the fact that some of the before-considered schemes can hold (in one
way or another, but with transitivity) in the new and general frame of ordinary
reasoning with the primitive relation <, indicates that for each of them a suitable
fuzzy algebra, or a family of them, in which the scheme holds, can exist; of course,
what is not sure is that such an algebra is functionally expressible by a standard
continuous triplet (T, S, N) allowing us to pose it by an inequality and to be solved
thanks to the properties such functions enjoy.

To overview this topic, let’s presume that the appearing membership functions
are designed to represent some linguistic labels in a universe of discourse X. In what
follows, everything is analyzed in a standard algebra ([0, 1]X, T, S, N), because it is
possible to solve functional equations and inequalities in them, although it is not
always easy, thanks to the many laws of continuous t-norms, t-conorms, and strong
negations. Thus, the question is the mathematical one concerning whether the
schemes hold inside some of these particular BAFs.
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17.1. Let’s first do a review of the modus tollens (MT) scheme:

r0; l ! r : l0;

that, translated into a standard BAF, and as does the formerly seen modus ponens
(MP) scheme, gives the functional inequality

T N bð Þ; J a; bð Þð Þ�N að Þ; �½ �;

for all a, b in [0, 1] and the unknowns T, N, and J. Hence, the MT inequality is
equivalent to

J a; bð Þ� JT N bð Þ;N að Þð Þ; with JT a; bð Þ ¼ Supfz 2 0; 1½ � : T z; að Þ� bg;

not only showing that JT ∘ (N � N) is the greatest function with which the MT
inequality holds once a continuous t-norm T and a strong negation N are chosen, but
that for any continuous pair (T, N), J verifies inequality [*] if and only if it is
J � JT ∘ (N � N).

For instance, and as is easy to check, J(a, b) = a.b (typical of fuzzy control)
neither verifies the MT inequality with T = prod, nor with T = min, and
N = 1 − id. For its part, and being W(1 − b, a.b) = max(0, b(a − 1)) = 0, because
a � 1, meaning that the conjunction of the premises, r′ � (l ! r) is l0, the
membership function of the empty set, the function J = prod, verifying the MP
inequality with any t-norm (because J verifies it with min), cannot be used to
represent a conditional that should verify the deductive rule of MT.

Instead, the function J(a, b) = max(1 − a, b), verifying MP with T = W, also
verifies MT with this t-norm, because it is contra symmetrical: J(1 − b,
1 − a) = max(1 − (1 − b), 1 − a) = max (b, 1 − a) = max (1 − a, b) = J(a, b). In
addition, the W-conjunction of the premises, W(1 − b, max(1 − a, b)) =
max(0, 1 − (a + b)) is not constantly null; hence this J can be safely used for MT.

For using a scheme of reasoning, it should be previously known for which
connectives (T, S, N, J) holds, and if they verify the conditions at which the scheme
can be submitted, such as it is the nonnull character of the premises’ conjunction.

17.2. To answer the question about the validity of the disjunctive scheme,

lþ r; r0:l;

it should be analyzed if the functional inequality

T S a; bð Þ;N bð Þð Þ� a;

can be solved. Its solutions, if existing, can actually be used provided the con-
junction T(N(b), S(a, b)) were not always null.
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Notice that for the triplet (min, max, 1 − id), the scheme does not hold, because,
for instance, min(max(0.5, 0.3), 1 − 0.3) = 0.5 > 0.3, but it holds with the triplets
(W, max, 1 − id), and (W, prod*, 1 − id), because:

– W max a; bð Þ; 1�bð Þ ¼ max 0;max a; bð Þ�1ð Þ�maxð 0; a � bð Þ� a;
– W prod � a; bð Þ; 1�bð Þ ¼ max 0; aþ b�ab�bð Þ ¼ max 0; a 1�bð Þð Þ� a;

with the respective “conjunctions” different from zero.

Hence the disjunctive scheme has no general validity, but depends on the
solutions of the former functional inequality. By making a = 0, it reduces to the
functional equation T(b, N(b)) = 0, a well-known one whose solutions are T = Wf

and N � Nf. This is, of course, a necessary but not sufficient condition for the
inequality’s solutions and, in addition, it is sufficient that S � W�

f . With it, and
because

WfðSða; bÞ;NðbÞÞ�WfðW�
f ða; bÞ;NfðbÞÞ ¼ f�1ðmaxð0;minð1; f að Þþ f ðbÞÞ� f bÞÞð Þ

¼ f�1ðmaxð0;minð1� f ðbÞ; f ðaÞÞ� f�1ðmaxð0; f ðaÞÞ ¼ f�1ðf ðaÞÞ ¼ a;

the former triplets are solutions of the inequality. Hence, although these are not all
the inequality’s solutions, it is at least solved for the many triplets (T, S, N) verifying
T = Wf, S � W�

f , and N � Nf, including the two former nondual instances, and
also the dual triplet (W, W*, 1 − id). The disjunctive scheme can be used for rea-
soning with imprecise words represented by fuzzy sets, at least provided the con-
nectives were on those triplet’s family, and it should be remarked that, being T = Wf,
duality is limited to when it is S = W�

f and N = Nf.
Summing up, if the scheme cannot be freely used in all fuzzy frameworks, there

are some algebras where it can be used for formally conducting reasoning with
imprecise words.

17.3. What about the scheme of reduction to absurdity,

r0; l0 ! r:l?

Now, the corresponding symbolic inequality,

r0 � ðl0 ! rÞ� l;

should be posed in terms of the functional inequality,

T N bð Þ; J N að Þ; bð Þð Þ� a;

for all a, b in [0, 1], and whose left term cannot be zero for all pairs (a, b).
With a = 0, it follows that T(N(b), J(1, b)) = 0 implying, provided J(1, b) 6¼ 0,

T = Wf. Namely, if J is such that J(1, b) = b for all b in [0, 1], then and apart from
the last specification of T, it suffices that N � Nf and f(J(a, b)) � 1 − f(N(b)) + f
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(N(a)). Condition J(1, b) = b is verified by many functions J actually used in fuzzy
logic.

Note that with f = id, and N = 1 − id, it is T = W, and J(a, b) � min
(1, 1 − a + b); with f = id, and N = 1 − id/1 + id, it is also T = W, but J(a, b)
(1 − a.(1 − b) + 3b)/(1 + a).(1 + b).
Hence the scheme of reduction to absurdity can hold in fuzzy logic in such a way

that, although the “and” should be of a very restrictive type, there is a lot of room
for both the negation N and the function J representing the conditional.

Summing up, if the scheme is not always valid, there are many algebras where it
holds, and in which a formal reasoning using the scheme can be freely used.

Note that for formally using both schemes of disjunction, and reduction to
absurdity, at least the conditions shown in Sects. 17.1 and 17.2 jointly hold; that is,
a formal fuzzy framework is given by T = Wf, S � W�

f , N � Nf, and f(J) � 1 − f
(N(b)) + f(N(a)).

17.4. The constructive dilemma in fuzzy logic is

lþ r; l ! a; r ! k : rþ k:

It leads to analyzing the symbolic inequality

lþ rð Þ � ðl ! aÞ � ðr ! kÞ� rþ k;

through the complex functional inequality

T S a; bð Þ; J a; cð Þ; J b; dð Þð Þ� S b; dð Þ;

for all a, b, c, d in [0, 1], with the left term different from zero, and the unknowns
T, J, and S.

Provided J were fixed by J(a, b) = S(N(a), b), and T were consistent with N, that
is, T(a, b) = 0 implies b � N(a), it is not so difficult to prove that it should be
T = Wf, N = Nf, and S = max. In fact, in the former functional inequality, a =
c = d = 0 implies T(b, N(b)) = 0, and d = b = 0 impliesWf(a, S(N(a), c)) = T(a, c),
from which when a > N(c) follows S(N(a), c) = c = max(N(a), c), and therefore
S = max. The reciprocal is immediate by just checking the solution.

Hence, the constructive dilemma with J(a, b) = S(N(a), b), holds in fuzzy
frameworks given by standard algebras with T = Wf, S = max, and N = Nf. Only in
these frameworks can the constructive dilemma be freely used in a formal deductive
reasoning with the imprecise words represented by membership functions.

It should be pointed out where the defined consistency of Twith N actually comes
from; it is from a typically Boolean property. It is known that in ortholattices con-
tradiction implies incompatibility, but what is not always the case is that p � q = 0
implies p � q′, that incompatibility implies contradiction, except in Boolean alge-
bras where the law of perfect repartition allows it. This is what consistency adds for
finding the solutions of the former functional inequality.
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Note that, for jointly using the three schemes of disjunction, reduction to
absurdity, and the constructive dilemma, the triplet should be (Wf, max, Nf),
because max is the minimum t-conorm, and J(a, b) = max(1 − a, b) actually ver-
ifies the condition of Sect. 5.2; that is, max(1 − a, b) � 1 − (1 − b) +
(1 − a) = (1 − a) + b. Of course, the problem is not yet completely solved by this
solution inasmuch as it lacks analyzing what happens with other functions J among
those fuzzy logic uses.

Regarding the destructive dilemma,

l0 þ r0; a ! l; k ! r:a0 þ k0;

the corresponding functional inequality has the same solutions as that for the
constructive dilemma, and just provided J were contra symmetrical, that is, J(a,
b) = J(N(b), N(a)), J = J o (N � N), as it happens in the Boolean case with
p ! q = p′ + q.

17.5. The solutions just reached allow some comments on approximate imprecise
reasoning.

(a) With the constructive dilemma’s solutions, and provided it were

– e�ðl ! rÞ x; yð Þ ¼ max ð 1�l xð Þ; r yÞÞ;
– d�ðk ! aÞ x; yð Þ ¼ maxð1�k xð Þ; aðyÞÞ;
– h�ðl ! kÞðx; yÞ ¼ max ð1�lðxÞ; kðyÞÞ;with e, d, h in [0, 1], it follows

that

W e; d; hð Þ�max ðaðxÞ; rðyÞÞ; or
maxð0; eþ dþ h� 2Þ�maxðaðxÞ; rðyÞÞ;

which, with the condition 2 < e + d + h, shows the approximation

0\eþ dþ h�2�maxðrðyÞ; aðxÞÞ:

(b) With the approximate disjunctive scheme,

e�W � l xð Þ; r yð Þð Þ; d� 1�l xð Þ;

it follows that
W(e, d) = max(0, e + d − 1) � W(W*(l(x), r(y)), 1 − l(x)) = min(1 − l(x),
r(y)) � r(y), which, provided 1 < e + d, would add to l(x) � 1 − d the
bounding e + d − 1 � r(y).

(c) With the approximate scheme of resolution,
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e�max ðlðxÞ; rðyÞÞ; d�max ð1�rðxÞ; kðyÞÞ;

follows

Wðe; dÞ ¼ maxð0; eþ d�1Þ�maxðlðxÞ; kðyÞÞ:

This bounding is significant provided 1 � e + d, in which case would be
0 < e + d − 1 � max(l(x), k(y)).

(d) With the approximate reduction to absurdity,

e� 1�rðyÞ; d� J 1�lðxÞ; rðyÞð Þ;

with J such that J(1, b) = b, and J(a, b) � 1 − a + b, it follows that

W e; dð Þ ¼ max 0; eþ d�1ð Þ�W ð1�r yð Þ; J 1�l xð Þ; r yð Þð Þ
¼ W 1�l xð Þ; r yð Þþ l xð Þð Þ ¼ l xð Þ;

which, provided 1 � e + d, would facilitate bounding 0 < e + d − 1 � l(x).
It translates an approximate reasoning such as

If “not p” is up a level e > 0, “if not q, then p” would be up to a level d > 0, and
if it is 1 � e + d, q would be up to the level e + d − 1 > 0.

17.6. Let’s make a comment on the difference between approximate reasoning with
imprecise words, and with precise words. In the second, the design of what inter-
venes is limited to specifying crisp sets for its precise linguistic terms, and to
finding a suitable probability, because usually approximation refers to the uncer-
tainty surrounding the statements or events. For instance, provided it were known
that it is e � prob(p), and d � prob(p ! q), for a continuous t-norm T it would
follow that T (e, d) � T (prob(p), prob(p′ + q)), and it should be observed that only
with T = W can the second member be easily continued for arriving at prob(q):

W prob pð Þ; prob p0 þ qð Þð Þ ¼ max 0; prob pð Þþ prob p0 þ qð Þ�1ð Þ
¼ maxð0; prob p � p0 þ qð Þð Þþ probðpþ p0 þ qÞ�1ÞÞÞ
¼ max 0; prob p � qð Þð Þ ¼ prob p � qð Þ� prob qð Þ:

Hence, W (e, d) = max (0, e + d − 1) � prob(q) is obtained, that, provided it
were 1 < e + d, would lead to the bounding 0 < e + d − 1 � prob(p), that is, to an
approximate probabilistic modus ponens. Note that e = d = 1 leads to 1 = prob(p),
which means a probabilistic recovering of the crisp situation.

Analogously, if what is known is e � prob(q′), and d � prob (p′ + q), it would
follow that
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e � d� prob q0ð Þ � prob p0 þ qð Þ ¼ prob q0ð Þ � prob p0ð Þ þ prob qð Þ�prob p0 � qð Þð Þ
� prob p0ð Þ þ prob qð Þ�prob p0 � qð Þ� prob p0ð Þ; since p0 � q
� q implies prob qð Þ�prob p0 � qð Þ� 0:

Hence

e � d� prob p0ð Þ;

reflects the approximate probabilistic modus tollens. Obviously e = d = 1 gives
1 = prob(p′), leading to probabilistically recovering the crisp situation.

Notwithstanding, and as formerly said, the calculus of probability does not
interpret prob (If p, then q) by prob(p′ + q), but by prob(q/p), hence both proba-
bilistic MP and MT deserve to be posed in such form. For instance, for MP,
e � prob(p), d � prob(q/p), leads to

e � d� prob p � qð Þ� prob qð Þ;

which is a better bounding than the former, inasmuch as it is W(e, d) � e.d. In the
case of MT, from e � prob(q′) and d � prob(q/p) a bounding for prob(p′) should
be found.

As a last probabilistic example, the probabilistic scheme of reduction to
absurdity:

e� prob q0ð Þ; d� prob ðp0 ! qÞ ¼ prob pþ qð Þ;

leads to

W e; dð Þ�W prob q0ð Þ; prob pþ qð Þð Þ ¼ max 0; prob q0ð Þ þ prob pþ qð Þ�1ð Þ
¼ max 0; prob pþ qð Þ�prob qð Þð Þ ¼ prob pþ qð Þ�prob qð Þ
¼ prob pð Þ�prob p � qð Þ� prob pð Þ:

Hence provided 1 � e + d, it is 0 < e + d − 1 � prob(p). For instance, with
e = d = 0.9, it results in 0.8 � prob(p), or prob(p′) � 0.2. Obviously, e = d = 1
gives 1 = prob(p), a probabilistic recovering of the crisp situation.

This scheme also deserves to be posed under conditional probability, that is, with
e � prob(q′), d � prob(q/p′): e.d � (prob(q′)/prob(p′)).prob (q � p′), from which
a bounding should be found for prob(p).

17.7. A scheme of classical deductive reasoning not considered in the above
sections, but still deserving a comment, is the transitive scheme, or “chaining
syllogism”: p < q, q < r: p < r, of which something was said formerly.

In the Boolean model, this scheme always holds, because (p′ + q) � (q′ + r) =
p′ � q′ + p′ � r + q � r � p′ + r. Concerning the fuzzy model l ! r, r ! k:
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l ! k, already taken into account, it seems of some interest to look at its
approximate version, consisting in the following.

Once the boundings are known,

ðl ! rÞ x; yð Þ� e; and ðr ! kÞ y; zð Þ� d;

a bound a = a (e, h) � (l ! k)(x, z) should be found.
These inequalities can be translated into J (a, b) � e, J (b, c) � h =>

J (a, c) � a, for which the T-transitivity of J is sufficient, in which case it follows
that

T e; hð Þ� T J a; bð Þ; J b; cð Þð Þ� J a; cð Þ; with T e; hð Þ[ 0 if e[ 0; and h[ 0;

showing that J (a, b) 2 (0, T (e, h)].

– If J is Wf-transitive, the bound Wf(e, h) = f−1 (max(0, f(e) + f(h) − 1)) can be
null; it happens if and only if f(e) + f(h) � 1, equivalent to h � f−1(1 − f
(e)) = Nf(e); that is, numbers h and e are contradictory with respect to the
negation Nf.

– In the null case what is obtained is the uninformative conclusion J(a, c) 2 [0, 1],
informing of nothing; for having Wf(e, h) > 0, it is necessary and sufficient to
have h > Nf(e), that Nf(e) acts as a strict hypothesis for h, and then the con-
clusion is the truly informative J(a, c) 2 (0, Wf(e, h)].

These links between e and h, like other similar ones that formerly appeared,
show that many structural questions on the crossed reasonings between precise or
imprecise statements in a universe of discourse, and the reasoning’s properties on
numbers in the real line, still deserve careful scrutiny for what refers to the prop-
erties each one can show. For instance, perhaps it could be suitable to start such a
scrutiny with probabilistic reasoning, where the strong Boolean laws to which the
involved precise statements/events are subjected, and the laws probability enjoys
(additivity in particular), can allow a better understanding of the former, perhaps
“cryptic,” statement.

17.8. Translating the schemes of deductive reasoning into a mathematical repre-
sentation’s framework offers very different possibilities for their validity in formal
reasoning, depending on the abundance or scarcity of structural laws in the
framework in which the representation is actually made. For instance, as shown, the
four modi of classical reasoning are always valid and equivalent in any Boolean
setting, but neither in De Morgan or orthomodular settings, nor in a fuzzy one as is
the case shown before with MP and MT. At each setting, reasoning cannot be done
under the same schemes as in the crisp case, and a suitable framework should be
searched for it.

Of course, although the diverse algebras of fuzzy sets follow less defining laws,
or axioms, than ortholattices and De Morgan algebras, and, for instance, the four
modi either cannot be defined by the proto-form p ! q = p′ + q, or do not hold, it
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is proven that for some BAF the schemes can also hold with imprecise statements.
It should be recalled that the basic schemes were justified in the general setting
introduced in this book, and that it is mainly the lack of <-transitivity that can cause
its failing.

What is still to be explored is if, with p ! q different of p′ + q, those modi can
hold. For instance, as was noted, in a De Morgan algebra with p ! q = p � q, it is
p � (p � q) = p � q � q, and MP holds, but because the conjunction of the premises
is null, q′ � (p � q) = 0, and although if it is obviously less than or equal to p′ (� p′),
MT cannot be freely used. In addition, the scheme of disjunctive reasoning is not yet
completely studied when the inclusive or, +, is substituted by the exclusive one,
p D q = (p + q) � (p � q)′, as is often done in plain language. For instance, and as
can be easily seen with examples, the disjunctive scheme cannot always hold in
orthomodular lattices.

The analysis of the validity of some schemes is still an open problem of some
interest for doing, computationally, ordinary reasoning with precise and imprecise
concepts, and once plain language is represented in fuzzy terms.

For transforming reasoning in a calculus, as Leibniz supposed it can be done,
and although restricted to some parts of language, such a calculus requires a specific
mathematical framework that, when confronting imprecise concepts represented by
the membership functions of the linguistic collectives (the fuzzy sets their linguistic
labels generate) requires, as always, previously following a process for well
designing the meanings of the involved predicates, connectives, relationships,
schemes, and the like. Anyway, a small window for computers is opened by the
schemes’ general validity with forward, backward, forward–backward, and back-
ward–forward movements.

17.9. A short comment concerning classical crisp transitivity of conditionals is still
in order. It was shown that the usual conditional operation p ! q = p′ + q, is
transitive with respect to the Boolean conjunction (�), implying, in the tautological
case p � q , p′ + q = 1, that the order relation � is transitive, because p �
q & q � r , p′ + q = 1 & q′ + r = 1 => 1 = (p′ + q) � (q′ + r) = p′ � q′ + p′ �
r + q � r � p′ + r, or 1 = p′ + r , p � r.

With the conjunctive conditional operation p ! q = p � q, if q ! r = q � r, it
also follows that (p � q) � (q � r) = p � q � r � p � r = p ! r, showing that it is
also transitive, and that in the tautological case p ! q = 1 , p = q = 1, the
associated binary relation is also transitive. Analogously, with the conditional
operation p ! q = p � q + p′ � q′, q ! r = q � r + q′ � r′, follows

p � qþ p0 � q0ð Þ � q � rþ q0 � r0ð Þ ¼ p � q � rþ p0 � q0 r0 � p � rþ p0 � r0 ¼ p ! r:

In the same vein, with p ! q = q, and q ! r = r, it follows that
q � r � r = p ! r.

Notwithstanding, the question whether all the Boolean conditionals are transitive
has a negative answer. For instance, with the conditional operation
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p ! q ¼ p � q ; if p � q 6¼ 0;

and

p ! q ¼ p0 þ q; if p � q ¼ 0;

it is (p ! q) � (q ! r) = q � r (provided p � q = 0 and q � r 6¼ 0), but it is not
q � r � p ! r in all cases, as it is clear if p � r 6¼ 0 because it is not necessarily
q � r � p � r. Hence, in the classical case, not all conditional operations show
transitivity; this scheme does not universally hold for conditionals.

17.10. Not all the classical schemes were considered in Chaps. 4 and 5. For
instance, nothing has been said regarding the schemes of

– Importation, p ! (q ! r) = p � q ! r,
and
– Exchange, p ! (q ! r) = q ! (p ! r),

whose validity and equivalence in the classical case is proven by

– With p ! q = p′ + r: p ! (q ! r) = p′ + (q′ + r) = (p′ + q′) + r = (p � q)′ +
r = p � q ! r, and p′ + (q′ + r) = q′ + (p′ + r) = q ! (p ! r),

– With p ! q = p � q: p ! (q ! r) = p � q ! r = p � q � r.
Their validity in fuzzy logic depends, obviously, on the particular BAF in which

function J and conjunction T are used. For instance,

– With T = min, and J(a, b) = max(1 − a, b), it is

J(min(a, b), c) = max(max(1 − a, 1 − b), c) = max(1 − a, 1 − b, c), and J(a, J
(b, c)) = max(1 − a, max(1 − b, c)) = max(1.a, 1 − b, c), and the classical scheme
holds.

– With T = prod, and the same J, it is

J(a. b, c) = max(1 − a. b, c), and J(a, J (b, c)) = max(1 − a, 1 − b, c),
that are not coincidental and the scheme fails. For instance, c = 0 shows the first
equal to 1 − a. b, but the second equal to max (1 − a, 1 − b), and it suffices
a = b = 1/2, to have the first equal to 3/4, and the second equal to 1/2.

Nevertheless, if these schemes are well and deeply analyzed in the framework of
the current theoretical fuzzy logic, the proving of their general validity with the
primitive relation < of natural inference is only immediate for the scheme of
importation [p < (q < r)] 	 [p � q < r] under transitivity. In fact, provided p �
q < q, with q < r being attainable from p, and presuming the triplet (p � q, q, r) is
transitive, it would be p � q < r.

Summing up, because the classical schemes of crisp reasoning are not univer-
sally valid with imprecise words in a fixed framework, they should be carefully
used in the mathematical frames where ordinary reasoning can be represented.
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That many schemes hold in the general setting of natural inference does not
mean that in a formal representation frame with fuzzy sets they all should hold, but
that for each of them there should exist some BAFs where it holds. What can be
difficult is to find a particular functionally expressible BAF for a given scheme.
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Chapter 18
Questions on Monotony

The existing or lacking character of monotony is, to some extent, an important
characteristic of reasoning. In general, monotony concerns how conclusions vary
when evidence increases, when more “safe” premises are added. When the number
of conclusions cannot decrease, it is said that reasoning shows monotony, when
they cannot increase shows antimonotony, and when it cannot be foreseen, that is,
when there is no law in such respect, shows nonmonotony.

Indeed, information actually flows and hence reasoning is not a static, but a
dynamic, process, often supported on some relationships between the premises and
the conclusions that can be expected. Because reasoning is mainly done under
conditionality, analyzing either the monotonic or nonmonotonic character of con-
ditionals has some interest.

This chapter is devoted to reflections on this topic for both precise and imprecise
concepts represented, respectively, in a Boolean framework, and in a standard BAF
(basic fuzzy algebra). A study, currently incomplete, on monotonic relations and,
particularly, on monotonic conditionals whose managing is basic for reasoning,
could help us better understand in what nonmonotonic reasoning actually consists.
Provided monotonic conditionals were characterized, it would lead to determining
when a conditional is nonmonotonic; even incomplete, such is the goal of this
chapter.

18.1. Let’s consider a crisp conditional relation in a set X, that is, a binary relation
< � X � X, submitted to verify the modus ponens (MP) scheme: p, p < q: q, but
seeing it from the point of view of the existence of subsets V of X, verifying:

If p 2 V and ðp; qÞ 2 \; or p\q; then q 2 V ;

as a way of expressing modus ponens. The family of these subsets V is not empty;
at least, one of them is, obviously, X; they just generalize the set of true elements in
the classical calculus, and the capital letter V stands for “veritable”.
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The binary relation < is said to be �—monotonic provided,

– X is endowed with an operation (�) representing the linguistic “and”,
– If p < q, then p � r < q, for all r in X,

that is, the new information furnished by r does not change the consequent q after
the conjunction of the antecedent p with r. Once any r is “conjunctively added”
(p � r) to the former antecedent, the conjunction keeps q as a consequent under <,
although some new consequent can also appear.

The sets V of veritable elements can be called “states” of the conditional; those
sets are preserving “the veritable”. For instance, if X were an ortholattice or a De
Morgan algebra with < equal to its lattice’s order � , one of its states would be
V = {1}, only containing the lattice’s maximum, representing the element that
allows propagating total truth under the relation < = � ; in the case of a Boolean
algebra, and also with < = � , the natural lattice’s order, and for V = {1}, such
elements are the tautologies. Obviously, if p = 1 and p � q (1 � q), then q = 1.

Note that in lattices, and with < = � , it is always p � p, for all p, and it is
“p � q => p � r � q”, because p � r � p, and � is transitive; the natural partial
order of lattices is �—monotonic. It represents a particular instance because, as
commented, < is not always transitive in plain language although it is taken as
reflexive, but it also holds in general provided it holds the property p � r < p,
because it is always accepted that p < p. Under this supposition the natural infer-
ence relation < is �—monotonic.

Note that taking the bivalued membership, or characteristic, function l<:
X � X ! {0, 1} of <, instead of it, �—monotony can be defined in the equivalent
and compact form,

l\ðp; qÞ� l\ p � r; qð Þ; for all p; q; r inX:

Then, the states V are those whose bivaluate membership function lV is such that
if l<(p, q) = 1, and lV(p) = 1, then it is lV(q) = 1 that, in its turn, can be compacted
in the single and equivalent inequality,

l\ðp; qÞ� min lVðpÞ; lVðqÞð Þ; for all p; q inX;

showing that V is a state for < if and only if the characteristic function of such
relation is upper bounded by the Cartesian product relation V � V, defined by
(lV � lV) (p, q) = min(lV(p), lV(q)), that is, if it is < � V � V. Provided it were
l<(p, q) = 1, it would imply 1 = lV(p) = lV(q), or p 2 V, and q 2 V, for all p,
q 2 V. Provided it were l<(p, q) = 0, then p, and q, would be free of being or not in
V.

Provided p � r 2 V were always to imply p 2 V, and r 2 V, then the relation
RV = (V � V) U (Vc � X), would be �—monotonic. Hence, it suffices a subset W of
X such that there is an instance p � r 2 W such that either p is not in W, or r is not in
W, to have the nonmonotonic relation RW = (W � W) U (Wc � X). Note that it is
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ðp; qÞ 2 RW , ðp 2 W and q 2 WÞ; or ðp is not inWÞ;

mimicking the expression p′ + p � q that, as is well known, is equivalent in Boolean
algebras to p′ + q.

18.2. What about probabilistic relations in a Boolean algebra?
For instance, is it that conditional probability establishes a monotonic relation?

Is it prob (p/q) � prob(p � r/q) for all r in the Boolean algebra? Conditional
probability can be seen as reflexive, because prob (p/p) = 1, but the answer is,
obviously, not, and to see it suffices to take r such that r � p′ , r � p = 0, because
then the second probability is zero, but the first is not necessarily null. Thus,
conditional probability is not �—monotonic.

Another nonmonotonic example, but with a precise relation in a Boolean algebra
endowed with a probability prob, is the following.

p\q , Either prob ðpÞ ¼ 0; or prob ðpÞ[ 0; and prob ðq=pÞ[ 0;

with which,

– If prob (p) = 0, it would be p < x for all x in the Boolean algebra, and, in
particular, p < p.

– If prob (p) > 0, it would be prob (p/p) = prob(p � p)/prob (p) = prob (p)/prob
(p) = 1 > 0, and p < p.

Consequently, it is always p < p, and < is a reflexive relation, but < is not �—
monotonic. Indeed, if p < q, it suffices to choose an element r such that prob
(p � r) > 0, and prob (p � q � r) = 0, with which it is prob (q/p � r) = 0, and it is not
p � r < q.

18.3. What about with respect to the states for crisp conditionals, that is, the sets
V allowing propagation of the veritable character by modus ponens?

It depends, of course, on the conditional definition; for instance, in an ortho-
lattice with < = � , all order “intervals” [a, 1] = {x; a � x � 1}, are states,
because it is a � b if and only if b 2 [a, 1]. Notice that the union of all these order
intervals is X; in fact, it is obvious that such a union is contained in X, and if a 2 X,
[a, 1] were contained in X, and [0, 1] were also contained in such a union. Their
intersection is obviously {1}.

In the case of a standard algebra, a fuzzy relation R: [0, 1]X � [0, 1]X ! [0, 1],
with a continuous t-norm T representing the conjunction “and”, can be defined to be
T-monotonic, provided

Rðl; rÞ�RðTðl; kÞ; rÞ; for all l; r; k 2 ½0; 1�X ;

and its fuzzy states as those a 2 [0, 1]X, such that, and analogously, the relation
a � a is an upper bound of R, that is,
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Rðl; rÞ x; yð Þ�min aðxÞ; aðyÞð Þ; for all x; y in X:

Note that the numerical values of R(l, r) reflect how strong, or weak, the link is
between l and r at each point (x, y).

Instead of relations such as R, the fuzzy case often deals with “operations”, such
as those coming from expressing conditionals by statements; for instance, when it is
understood “If l, then r” (l ! r) by “not l, or r” (l′ + r), or as “l and r” (l � r).

In these cases, the operation ! is �—monotonic provided it were

l ! r� l � k ! r; for all l; r; k in ½0; 1�X ;

and its states can be defined as those fuzzy sets a, such that

ðl ! rÞ ðx; yÞ�minðaðxÞ; aðyÞÞ:

For instance, the definition l ! a = l � r, giving a conjunctive conditional
operator with T = min, min(l, l � r) � l � r � r, is not min-monotonic because
it is l � r � k � l � r. Inasmuch as the same inequality holds for some operations
* � min, as are all t-norms, the conjunctive conditional is never *—monotonic for
those operations. Hence, working with a conjunctive conditional, like working with
the conditional probability, could easily lead to nonmonotony, and to not deducing.
What follows from l � r also follows from l � r � k that is less than or equal to l � r,
but there can exist fuzzy sets following this second and not the first; after con-
junction with k, nonpreviously existing consequences can appear.

What about those fuzzy conditionals l ! r that can be represented by operators
J of the types S(N(l), r), and JT(l, r)?

The second are reflexive, because it is JT(a, b) = 1 , a � b, a property not
fulfilled by the first; for instance, with the operator max (1 − a, b), it is l1/4 !
1/4 = lmax(1 − ¼, ¼) = l3/4.

Notwithstanding, all these conditionals are T-monotonic for any continuous t-
norm T, because they verify the decreasing property for antecedents:

a� b ) Jða; cÞ� Jðb; cÞ for all c in ½0; 1�;

and hence because l � k � l, it is J(l � k, r) = l � k ! r � l ! r = J(l, r),
with a � b = T(a, b) for all a, b in [0, 1]X, and any t-norm T. For instance,

– If a � b, because N(b) � N(a), it follows that S(N(b), c) � S(a, c), or
b ! c � a ! c.

– Because T(z, a) � T(z, b), it is {z 2 [0, 1]; T(z, b) � c} � {z 2 [0, 1];
T(z, a) � c}, and JT(a, c) � JT(b, c).

All these conditionals allow dealing with �—monotony.

18.4. What about with respect to the states for both the S and the conditional
operators JT?
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For instance, in the case of an S operator, its states are those a such that S(N
(l(x)), r(y)) � min(r(x), a(y)), from what follows N(l(x)) � a(x), and r(y) �
(y), and it suffices to find those a verifying N(a(x)) � l(x), and r(x) � a(x), or N
(a(x)) � N(r(x)), that is, a′ � l and a′ � r′, or a′ � min(l, r′) , max(l′,
r) � a. The states are among the fuzzy sets in the pointwise order interval [max
(l′, r), l1].

Regarding JT operators, the states a should verify JT(l(x), r(y)) � min(a(x),
a(y)). Thus,

– With T = W, it is JW(l, r) (x, y) = min(1, 1 − l(x) + r(y)) � min(a(x), a(y)),
from where it would follow that 1 = min(a(x), a(y)), if l(x) � r(y), and
1 − l(x) + r(y) � min(a(x), a(y)), if l(x) > r(y). Hence, the states are among
those a such that for some y is a(y) = 1, and 1 − l(x) + r(x) � a(x) for the
other x.

– With T = prod, it is Jprod(a, b) = min(1, a/b), and (l ! r) (x, y) = min(1, l(x)/
r(y)) � min(a(x), a(y)). Hence, if l(x) � r(y) is 1 = min(a(x), a(y)) and if
l(x) > r(y) it would be l(x)/a(y) � min(a(x), a(y)), with which if there is an x
such that a(x) = 1, and the states are among those a verifying l(x)/r(x) � a(x),
that is, those a 2 [0, 1]X, whose values belong to the closed numeric interval
[min(1, l(x)/r(x)), 1].

– With T = min, because it is Jmin(a, b) = 1, if a � b, and Jmin(a, b) = b, if
a > b, it would follow that 1 = min(l(x), r(y)) if l(x) � r(y), and r(y) � min
(a(x), a(y)) if l(x) > r(y). That is, the states should be searched among the a 2
[0, 1]X such that a � r, among the a in the interval [l0, r].

18.5. Even if what is in this section were not only incomplete, but also insufficient,
it seems that the study of either nonmonotonic relations, or operations, deserves to
be continued, mainly, for counting with the possibility of recognizing which type of
nonmonotonic relation, or operation, can be suitable for representing a linguistic
relationship whose praxis clearly appears as a nonmonotonic one. In fact, such is an
open subject currently only closed for preorders and fuzzy preorders.
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Chapter 19
Questions on “Not Covered By”

When fuzzy sets were introduced in 1965, the only back referents to endow them
with some theory were those theories on classical sets, on classical predicate logic,
and those on the multiple-valued logics. These last were used for the design of
electrical circuits not only closing or opening its gates.

Instead, more than 50 years later, when the challenge consists in developing a
theory on which can be based Zadeh’s idea on computing with words (CwW), what
should be taken into account as referents are the many aspects and problems of
plain language and ordinary reasoning not well covered by sets and formal
deduction. New points of view seem to be necessary to face CwW’s theoretical
future and mainly for foreseeing which kind of research, and on which topics, it
should be conducted for grounding CwW in an experimental science of language
and reasoning, that is, in a kind of physics of language and reasoning. One such
topic, for instance, is that concerning what can be understood in plain language by
“not totally covered by P”, or “partially covered by not P”, and how they can be
represented for what refer the elements in the universe of discourse and further than
membership functions.

This is a question that, with a long history, could be thought about in several
forms but whose first and basic problem is with Q naming “not totally covered by
P” in a universe X, to capture those relations <Q that eventually can coincide with
<P′ or with \P

a, when Q can be identified with either not P, or with an opposite of
P, or with another word used in language. A linguistic example of such words is
done by the predicate Pm = not P and not Pa = P′ � (Pa)′, usually known as the
“middle term” of P, and once accepting that the negation of the antonym has sense:
for example, medium for “big and not short”, or warm for “hot and not cold”. The
problem partially lies in founding “names”, existing in plain language, for such
predicates Q, such as the former “medium” and “warm”, on analyzing their uses or
meanings and particularly those of (Pa)′ and the medium term, as well as on
introducing mathematical models testable against the reality of language, and
consequently accepted or refused in each contextual situation. Although all this is,
indeed, a currently open subject, a reflection on it is in order.
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19.1. Remember that it is \P
a = \P

�1 � < P′, \P
m = \P0 �ðPa Þ0 = <P′ \ \ðPa Þ0 ,

and (Pa)a = P, but that P is not always comparable with (P′)′, even if sometimes it
were to hold “If x is (P′)′ then x is P”, or “If x is P, then x is (P′)′”, and, as a
particular situation, P and (P′)′ can coincide. That is, for instance, at least Q can be
understood as covering “not all P”, or covering “not totally P”, or “partially P”. It
can be supposed that <Q � \P

a � < P′, or that \P
a � <Q � < P′, and, conse-

quently, some meaning’s measures for Q studied provided, in the first case, it
were <Q 6¼ Ø.

The relation of coherence between negation and antonym, lPa � lP′, should
hold for all the opposites of P. Thus, provided P′ were functionally expressible by a
strong negation NP, the function

Sup lP
a; for allPaf g ¼ K Pð Þ� lP0 ¼ NP o lP

can be seen as the “fuzzy kernel of negation”, that can, or cannot, coincide with lP′.
For instance, in X = [0, 1] with P = big, and accepting identification of the

symmetries sbig of [0, 1] with the strong negations Nf = f−1 o (1 − f), whose
supremum is the (discontinuous) greatest negation function,

Nmin xð Þ ¼ 1; if x2 0; 1½ Þ; andNmin 1ð Þ ¼ 0;

it is K(big) = Nmin, specifying the crisp subset [0, 1). Hence, under these suppo-
sitions, the only element in the unit interval that can always be qualified as big is 1,
the always accepted prototype of big in [0, 1].

Of course, on the idea of the fuzzy kernel of negation it is neither known for
what it can practically serve, nor is it well studied. It is not known if function
K(P) could represent an opposite, a negation, or simply one of the above predicates
Q. For instance, the function K(big) = l[0, 1) could be seen as representing the
linguistic label “totally not big”, whose negation 1 – K(big) = l{1}, represents
“totally big”. Anyway, and for doing such an investigation, more examples in
universes different from [0, 1] should be studied.

19.2. The crisp set

A Pð Þ ¼ x; lP xð Þ� lP
a xð Þf g;

containing those elements of X showing P less than they show Pa, that is, those that
are less covered by P than by Pa, can be called the “crisp kernel of opposition”, and,
for instance, if X = [a, b] were a closed interval of the real line, the number Sup
A(P) would exist that can be seen as separating what is P from what is Pa.

For instance, with X = [0, 10], P = big, and Pa = small, with lbig(x) = x/10, and
the symmetry s(x) = 10 − x, it is
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x=10� 10�xð Þ=10 , x� 5;

hence A(big) = [0, 5], and Sup A(big) = 5. In [0, 5] there are the elements in [0, 10]
that are “less big than small”, and they are separated by 5 from those that are “less
small than big”. Nevertheless, with the different symmetry s(x) = 10(10 − x/
10 + x), from x/10 � 10 − x/10 + x , x2 + 20x − 100 � 0, follows A(big) =
[0, 10√2 − 1, 10], with Sup A(big) = 10√2 – 1 � 4. 1421. As always, everything
depends on the designed terms.

As is obvious, provided P were a precise word in X, and hence specified by a
crisp subset, it would not be sure that A(P) could always coincide with the com-
plement of such a subset; it would depends on the symmetry sP = s taken for
obtaining lPa = lP o s. A question remaining open, is if the subset A(P) of X can
substitute, in some parts of ordinary reasoning, the typical complement for precise
words, or the negation membership function for the imprecise ones, or can it
facilitate a crisp representation of what is not under Pa.

19.3. From the self-contradiction inequality l � l′, a crisp kernel of negation can
be defined by

N Pð Þ ¼ x; lP xð Þ�Nf lP xð Þð Þ� � ¼ x; lP xð Þ� f�1 1=2ð Þ� �
;

containing those points in X showing P less than not P, those that are less covered
by P than by not P, and the points that are more not P than P. Were X = [a, b], then
the number Sup N(P) 2 [a, b] would exist, separating what is P from what is not P,
and allowing us to see the interval [a, Sup N(P)] as the crisp kernel of negation.

For instance, if X = [0, 10], P = big, and lbig(x) = x/10, with the negation
(1 − x)/(1 + x) whose fixpoint is √2 − 1, is N(big) = {x 2 [0, 10]; x/10 � √2 − 1};
that is, Sup N(P) = 10(√2 − 1), and N(big) = [0, 10(√2 − 1)]. With it, the numbers
that can be considered as actually big are those that are greater than
10(√2 − 1) � 4.142. Note that with the negation N(x) = 1 − x, is x/10 � 1 − x/10
, x � 5, and N(big) = [0, 5].

It should be noted that, provided P were precise, the crisp kernel of negation
would coincide with its crisp complement. Actually, because in this case lP(x) 2
{0, 1}, and lP′(x) = 1 − lP(x) has fixpoint l1/2, it is N(P) = {x; lP(x) � ½} = {x;
lP(x) = 0}, the crisp complement of the subset {x; lP(x) = 1} specified by
P. Hence, if P is imprecise, the set N(P)c, the complement of N(P), can be seen as
that containing the elements that are more P than not P.

Note also that provided antonym and negation are coherent, lPa � lP′, it is
A(P) � N(P). It happens, for instance, in the former example with P = big,
N(x) = 1 − x/1 + x, s(x) = 10(1 − 10x/1 + 10x), and lbig(x) = x/10. Because it is
N(P)c � A(P)c, it supports seeing the elements in N(P)c as those that are properly
P, and that are separated from the others by the point Sup N(P).
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19.4. There are some theoretically driven fuzzy researchers who derive the
negation function N from the conditional functions JT, with T a continuous t-norm,
and by defining N(a) = JT(a, 0), that reproduces the classical equivalence
p′ = p′ + 0 = p ! 0. For continuous t-norms different from an ordinal sum, it is:

– If T = min, or T = prodf, it would be JT(a, 0) = Nmin(a)
– If T = Wf, it would be JT(a, 0) = f−1(1 − f(a)) = Nf(a).

Hence, under this interpretation of the negation, coming from understanding “if
p, then q” in a form generalizing “not p or q”, strong negations only appear linked
to the t-norms in the family of W, that of Lukasiewicz, that is, from a restrictive
form of representing conditionals that is reminiscent of classical logic.

Note that representing conditionals by the functions J(a, b) = T(a, b) as is usual
in fuzzy control, J(a, 0) = 0 for all a in [0, 1] gives no negation function.

The reason lies in that the interests of logic are mainly related to formal lan-
guages, but not with the plain ones where no universal form of representing con-
ditional statements exists, and where sometimes it is very difficult to describe
perfectly by words the antecedent’s negation.

19.5. In this chapter it is only tried to reflect on a topic that fuzzy logic’s praxis
perhaps manages in a too simplistic form concerning plain language, and in the way
towards counting with the calculus necessary for actually arriving at CwW. It refers
to a view on what is not properly under a linguistic label, and for what language not
only counts with negation, but with opposites, and middle terms. All this served
Zadeh for introducing linguistic variables as a form of dealing with something
analogous to the crisp partitions, and that in fact generalizes the concepts of cov-
erage and partition to the fuzzy world.

What is exposed in Sects. 19.2 and 19.3 is just for helping theoreticians not only
to go towards the true basis on which CwW is grounded, but also to anchoring it in
plain language and ordinary reasoning concerning the elements in the universe of
discourse, and instead of membership functions. CwW cannot be an isolated
mathematical subject, but a broader subject dealing with linguistic imprecision and
the nonrandom uncertainty of imprecise statements.

As is apparent, both what is under “crisply covered by”, and “crisply not covered
by”, still deserves more study, because it is neither closed by strong negations nor
by symmetries for representing opposites. With the advancing of CwW, the time of
considering larger statements than those considered in the current applications
sooner or later will arrive and will call for a deeper knowledge of the linguistic
separation between what is under a predicative imprecise word, and what is not, that
is, calling for a new view of the idea of “linguistic complement”, of which this
chapter is but a tentative attempt at offering a new and different focus than that
currently offered.
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Chapter 20
Questions on Sorites in Ordinary
Reasoning

The sorites paradox, that seems to have been introduced by Eubulides of Miletus in
the fourth century BC, comes from the Greek word, soros, heap, and refers to
something like the following. If in a heap of wheat there are one million grains and
one of them is removed, it still remains a heap, but, removing one grain after the
other a moment will arrive at which the heap will disappear, and it will remain only
a simple mass of wheat, no longer being a heap. Posed in another way, if a grain is
not a heap, and two grains is not a heap, and three grains is not a heap, … , how
many grains will actually constitute a heap? Are there a number of grains not
constituting a heap, but such that by adding one more grain a heap appears?

For a layperson, viewing a heap only depending on the number of grains but not,
for instance, on its three-dimensional shape, can appear as something surprising,
inasmuch as it is shape that allows people to recognize what a heap actually is;
hence it seems that a reflection on the subject from a point of view closer to that of
laypeople can be suitable. In the end how people perceive things is relevant for both
plain language and ordinary reasoning; because of it, and instead of only talking
about computing with words (CwW), Lotfi A. Zadeh usually and rightly talks about
computing with words and perceptions.

20.1. The word heap is used as a vague one, of which it seems difficult to measure
its meaning for the obvious difficulty of recognizing if this is “less a heap” than that.

The word “heap” is well anchored in language because people recognize, even
with the presence of borderline cases, what a heap is, or is not, and its philosophical
analysis was based on a type of argument known as “little by little”. But there is a
new possibility for seeing it from the point of view of the former “crisp kernels” of
negation and opposition. It is also a possibility for trying to look again at the “point
of separation” between, for instance, heap and mass; a point separating what is from
what is not, as was done in the former chapter, and about which, for instance, the
philosopher Max Black stated that it should exist but, simultaneously, that it is
impossible to be found. Keeping many doubts about if what exists can be never
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found, a tentative move towards its clarification could be interesting for any sci-
entifically motivated spirit.

Note that the word heap has no clearly accepted antonyms in plain languages
such as English and Spanish; neither, for instance, does the word “unheap”, nor
anything similar exist in Spanish. Nevertheless, and as shown, this does not mean
that once a membership function for “heap” was designed, no membership func-
tions for its antonyms can be obtained.

20.2. For trying to see if Black’s separation point can be found, let’s start with
some comments on such a question with the help of the toy example given by the
word “small” when playing with numbers in the interval [0, 10]. Let’s remember
that in plain language’s use of “small” it is not enough to state that if x is qualified
as small, also are such all y � x, but that all those z that are very close and greater
than x, are also small; provided the number 2.6 can be qualified as small, not only
2.5999 but also 2.6001 could be qualified as small. That is, a number e > 0 should
exist such that if x is qualified as small, all the numbers z 2 (x − e, x + e), are also
small; this means that small is flexible, and its quantitative meaning is captured by
any continuous, strictly decreasing, membership function lsmall.

For instance, if lsmall(x) = 1 − x/10, and x – e < z < x + e, it would be
lsmall(x + e) � lsmall(z) � lsmall(x − e), and it could not be lsmall(x − e) = 0
because it would imply lsmall(z) = 0 for all z 2 (x − e, x + e); that is, it follows the
absurd that lsmall is not strictly decreasing in the interval (x − e, x + e). There
cannot be points different from z = 10 with null value of the membership function
lsmall, it cannot show jumps, and no characteristic function of a crisp set can
represent small.

In addition, that such a predicate cannot truly specify a crisp subset of [0, 10] can
be proven as follows.

A set S containing those numbers qualifiable as small actually exists, because 0
is small, and consequently all x in [0, e) should also be small; it is S 6¼ Ø. Because
[0, 10] is a compact set in the topology of the real line, and 10 is not in S, there
exists s = Sup S in [0, 10] such that all the x < s are small, and, hence also s is
small, and also those in [s, s + e] are small, contradicting that s is the supremum
among the small numbers. In principle it was presumed that it is s 6¼ 10, therefore
the only possible conclusion is that there is not a crisp subset S containing all
numbers in [0, 10] that are qualifiable by small in plain language.

This is what the old sorites paradox shows, and that right now just instantiates
that there are words whose use cannot be specified by a crisp set in the corre-
sponding universe of discourse.

Anyway, and thanks to the former chapter kernel’s idea, some such uses can be
approached by crisp sets that, nevertheless, cannot be seen as a fair representation
of the corresponding word, but just as crisp approximations to it.

Obviously, the set {x 2 [0, 10]; lsmall(x) � lnot small(x)} is the crisp kernel of
negation of small, and its supremum separates what is qualifiable as small from
what is not; hence there are some cases in which Black’s separation point can be
found. For instance, with the membership function 1 − x/10, and the negation
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1 − Id, the kernel is the interval [5, 10], and because the separation point is s = 5, a
set “approaching” small in [0, 10] is [0, 5).

Of course, when available, the separation point depends on both the membership
function (the word’s meaning) and the negation; there is no “universal separation
point” between small and not small, but one for each specification of small and not;
it depends on how small and its negation are used in plain language.

For instance, were “small” used with the same membership function, but with
the negation N(x) = 1 − x/1 + x, whose fixpoint is (√2 − 2)/4, it would result in
s = 5/2(6 − √12) � 6.34, with the kernel of negation [6.34, 10], and approaching
set [0, 6.34). Approaching sets can be seen as crisp theoretic precisifications of the
corresponding word, small in these cases. There is no single one, but many.

Of course, the point s will always exist provided the membership function is
monotonic and defined in a compact set, but were it nonmonotonic, that is, for
instance, decreasing in some part of X, and nondecreasing in another part, then
s could not exist. Anyway, even if the membership function is asymptotic but
monotonic, the separation point can exist.

For instance, with lsmall(x) = e−x in R+ = [0, +∞), and N = 1 − Id, it is
e�x � 1� e�x , e�x � 0:5 , �loge0:5 � 0:69� x, and the set approaching this
use of small in R+ can be taken as the very short interval [0, 0.69), corresponding to
the kernel of negation [0.69, +∞).

Of course, all that has been presented can be repeated with the crisp kernel of
opposition A(P), with which a larger approximation set may be obtained because
A(P) � N(P) implies N(P)c � A(P)c. Were P precise in X, and because, as was
shown, N(P) is the complement of the subset specified by P in X, the approximation
set would coincide with that specified by P in X; what has been said reduces to what
corresponds to the classical calculus. In each case, it should be previously decided if
the separation point should be taken with the negation, or with an opposite word.

In conclusion, after the former numerical toy examples, it neither can be stated
that Black’s separation point always exists, nor that it can never be found. It is a
question deserving more study and for which a finest acquaintance with the rep-
resentations of the true uses of words in language seems to be unavoidable. Both
controlled experimentation and mathematical modeling seem to be required.

20.3. Let’s, provisionally, introduce the word “flat” to denote an opposite of
heap. The correct use of the term heap requires the recognition that something is
either flat, or is not a heap; in this way, and once a universe is fixed, the use of the
word heap can be well learned, as with small in an interval of the real line, or with
odd in the set of positive integers, and so on.

Under the typical hypothesis that a heap H only depends on the number N of
grains it contains, and supposing N is a big enough integer, the universe of grains
can be taken as the set of integers between 0 and N, and the degree up to which H is
a heap described by the piecewise linear function:
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lHðxÞ ¼ 0; if 0� x�N=3;

lHðxÞ ¼ 3x=N � 1; if N=3� x� 2N=3;

lHðxÞ ¼ 1; if 2N=3� x�N:

Then, with the negation 1 − Id, is:

lH
0ðxÞ ¼ 1� lHðxÞ ¼ 1; if 0� x�N=3;

lH
0ðxÞ ¼ 2� 3x=N; if N=3� x� 2N=3;

lH
0ðxÞ ¼ 0; if 2N=3� x�N:

And with the symmetry N − x, is:

lH
aðxÞ ¼ lflatðxÞ ¼ lHðN � xÞ ¼ lH

0ðxÞ;

showing that Ha = flat coincides with H′ (not heap), in agreement with the inex-
istence of antonyms for heap, and making Ha (flat) appearing as a nonregular
opposite.

Undoubtedly, a heap is constituted by grains although it is not perceived through
the number of grains it contains, and that no observer will never try to count, but by
its three-dimensional shape in which it should be a balance between the area of its
base, and its height; for instance, with a small base and a large height, the heap will
go down.

Considering that heaps are in three-dimensional Euclidean space, prototypes of
heaps are, for instance, pyramids and circular cones; in the first case, because its
volume is V = 1/3(base’s area � height), the ratio or balance volume/height is
V/h = base’s area/3; in the second, because V = 1/3(p � r2 � h), the ratio is
V/h = p � r2/3. In both cases, the balance is one third of the area of the base; a ratio
that seems possibly recognizable for a heap by a perceptive estimation.

With N a sufficiently large integer, denote by S(p), p � N, a set of p grains, with
which it can be stated “S(p) is a heap”; in addition, the set {S(p); p � N}, can be
endowed with the order SðpÞ� � S ðqÞ , p� q, and it can be recognized if S
(p) were a heap by perceptively comparing it with a prototype, such as it is a
circular cone. For such a goal, let k(S(p)) 2 (0, 1] a coefficient perceptively obtained
by comparing the shape of S(p) with that of a prototype, and only submitted to
verify that if S(p*) has p* grains, and if it is p � p*, then k (S(p)) � k(S(p*)).

For instance, were the prototype a circular cone with height 1 m, and base radius
1/2 m, whose volume is p/12 cubic meters, a presumed heap showing an estimated
similarity of 50% (k = 1/2), would have an estimated volume of around p/48 m3.
Of course, k(S(p)) = 0 means that no similarity is perceived with the prototype, and
k(S(p)) = 1 that a full similarity is perceived.

Then, with an order automorphism f of the unit interval, it can be defined,
Degree up to which ‘S(p) is a heap’ = lH(S(p)) = k(S(p)). f(p/N),
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because SðpÞ� � SðqÞ , p� q , p=N� q=N , f p=Nð Þ� f q=Nð Þ, and as it
should be also k(S(p)) � k(S(p*)), it is k(S(p)). f(p/N) � k(S(p*)).
f q=Nð Þ , lH S ðpÞð Þ� lH S ðqÞð Þ.

Obviously, it is lH(S(p)) 2 [0, 1], and by suitably choosing f, different models
can be considered, such as the linear one with f = Id, lH(S(p)) = k(S(p))p/N, a
quadratic model with f(x) = x2, lH(S(p)) = k(S(p))p2/N2, and so on. Note that:

(1) With p = N, lH(S(N)) = k(S(N)), shows that k(S(N)) is the degree up to which
S(N) is a heap.

(2) lH SðpÞð Þ ¼ 1 , k SðpÞð Þ ¼ 1=f p=Nð Þ that, in the linear model means
k (S (p)) = N/p.

(3) lH SðpÞð Þ ¼ 0 , k SðpÞð Þ ¼ 0, or f p=Nð Þ ¼ 0 , k SðpÞð Þ ¼ 0, or p = 0.
(4) k(S(p)) = 1 ) lH(S(p)) = f(p/N), that if f = Id, would be just p/N.
(5) k(S(p)) = 0 => lH(S(p)) = 0.

Provided it is k(S(p)) > 0, and that “S(p) is not a heap” can be represented by a
strong negation Ng, l0H = Ng o lH, then:

l0H SðpÞð Þ� lH SðpÞð Þ , g�1ð1� gðk SðpÞð Þf p=Nð ÞÞÞ , k SðpÞð Þf p=Nð Þ
, g�1 1=2ð Þ=k SðpÞð Þ , f p=Nð Þ , Nf�1ðg�1 1=2ð Þ=k SðpÞð ÞÞ� p;

and the crisp kernel of negation is the interval [0, Nf−1(g−1(1/2)/k(S(p))]. For
instance,

– If g = Id, and f(x) = x2, the separation point between heap and not heap would
be N√(1/2k(S(p))) = 0.71N√(1/k(S(p)), that, with k (S(p)) = 1, would be 0.71N,
and whose integer part could be taken as the number of grains.

– If g = f = Id, the separation point would be N/(2k(S(p)), that, with k(S(p)) = 1,
would be N/2 grains, of which it suffices taking its integer part as the number of
grains.

20.4. Up to some extent, analyzing sorites with just the help of classical Boolean
reasoning recalls either studying nature before Renaissance times, or the heavens
before the telescope. Anyway, this section is just an approach to the questions on
sorites close to those a layperson could pose, and that, even accepting that a heap is
constituted by grains, never will even try to count them.

As with everything in this book, such intent starts from a situational point of
view considering the context in which things are perceived and concepts are
learned, a naïve point of view that, nevertheless, allows going a little ahead in, for
instance, the controversy on the possible existence of a separation point between
what is and what is not, and its founding, by showing that even some imprecise
words applied to a bounded numerical universe can show two such points, one for
the kernel’s complement of negation, and the other for the larger complement of the
kernel of opposition. And, additionally, it opens the question of both numerical but
not bounded universes and imprecise words not representable by monotonic
membership functions. It is obvious that the topic still deserves further study.
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Concerning the membership function of the term “heap”, what is attempted is the
introduction of a way of analyzing it by comparison with a prototype, but many
aspects of it remain inconclusive; heap is a word that is well enough managed in
language, but whose description is not easy.

In conclusion, this section tries to show that translating a conversation involving
imprecise terms, such as heaps, into formal symbols, is still far from being clarified.
Passing from perceptions and words to a calculus with them to reach conclusions is
still further from the Leibniz wish of just computing. In particular, a realistic
calculus with imprecise words whose meaning can be approached by crisp kernels
of negation, or of opposition, is unknown, something that comes from the ignorance
of which elements in the universe of discourse are approximately covered by words
and its negations. It lacks, perhaps, a theory of “approximate crisp sets” of which,
perhaps, the theory of rough sets is but an example.

20.5. What is really unknown is how to “approach by sets” the linguistic collec-
tives generated by imprecise words not actually specifying a subset in the universe
of discourse, a classification of them, and a realistic calculus with such approxi-
mations that can preserve the corresponding approximations.

A last question in such respect is whether such a calculus is possible without
membership functions, but with sets coming from measures of the meaning of the
corresponding words (such as they are the former kernels), and endowed with a
suitable algebra. Something that, for what has been said, seems to be very doubtful
with, at least, a unique algebra and, less again, if all of them are tried to be endowed
with a lattice’s structure. Anyway, and even vaguely, the question is posed.
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Chapter 21
A Few Questions on Naming Concepts

Vagueness can be seen as coming from a lack of distinguishability between those
instances falling into both a word and its negation, and creating a borderline zone
with elements not clearly separable by negation, something coming from a lack of
distinction, or distinguishability, from the meaning of a word and its negation. In
what is possible it would be desirable to deal with the word “vague” when it is
measurable, and produce a coverage of the elements in clusters, usually with
nonempty intersections and that, at least for the borderline zones, seem to need to be
seen as fuzzy sets.

21.1. Analogously as formerly described, typical instruments for reaching such a
goal are those fuzzy relations R: X � X ! [0, 1], verifying the three laws:

(a) Rðx; xÞ� r
(b) Rðx; yÞ ¼ R ðy; xÞ
(c) F R ðx; yÞ; Rðy; zÞð Þ�Rðx; zÞ;
for a fix r 2 (0, 1], all x, y, z in X, and called F–r-indistinguishability relations. The
first law is r-reflexivity that coincides, when r = 1, with what has been denoted
reflexivity, and then, if F is a t-norm T, R is just a T-indistinguishability relation, but
0 < r � 1 allows us to keep some imprecision on the picturing of reflexivity by
accepting a level of indistinguishability in recognizing each x, the second picture’s
symmetry, and the third T-transivitity. Notice that trouble appears from

Rðx; yÞ�F Rðx; xÞ; Rðx; yÞð Þ ¼ F r; Rðx; yÞð Þ;

that provided F(a, b) � b, can imply that r should verify R(x, y) = F(r, R(x, y)) for
all pairs x, y; for instance, were F = prod or F = min, it would imply r = 1, and
with F = W it is also a ¼ Wðr; aÞ , a ¼ maxð0; rþ a� 1Þ , r ¼ 1. Hence,
r-reflexivity forces us to define F-transitivity (c) with a function F different from
a t-norm, or not to consider the universe’s totality but a part of it.
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For instance, for some important relations such as those in X = (0, 1] given by
R(x, y) = T(x, y), that are symmetric and min-transitive, R(x, x) = T(x, x) is usually
different from 1, but, for instance, it is prod (x, x) = x2 � r, iff √r � x,
min(x, x) = x � r, and W(x, x) = max(0, 2x − 1) � r, iff x � (1 + r)/2. Thus,
the r-transitive law allows counting with a range in X, where a kind of reflexivity
under a threshold can be considered. Where r = 0.9 (close to one), it is, respec-
tively, √0.9 = 0.95 and 0.9-reflexivity holds for prod between 0.95 and 1, for min
between 0.9 and 1, and for W also between 0.95 and 1.

F–r-indistinguishability relations, when applied to [0, 1]X, help to graduate the
lack of distinction between a fuzzy set and its negation by the number R(l, l′), or
the corresponding degree of distinguishability 1 − R(l, l′) between them.

21.2. Let’s make a remark on a very theoretical view. In a logical calculus
introduced with logical “equivalence” (�), the famous Polish logician
J. Lukasiewicz defined the verum of a statement p as the new statement (p � p),
and the falsum of p as (p � 0), by denoting with 0 a “false” statement such as it can
be p � p′. Analogously, the diffusum of p can be defined as (p � (p � 0)), the
equivalence between verum and falsum.

Given a T–r-indistinguishability relation R, V(l) = R(l, l) can be defined
as the verum of l, the falsum as F(l) = R(l, l0), and the diffusum as D(l) = R(l, R
(l, l0)). With it, the function diffusum permits quantifying the indistinguishability
of imprecise words whose membership functions or measures of their meaning are
known. In some cases, the falsum coincides with the negation l′, and then D(l) =
R(l, l′).

21.3. Some linguistic predicates are instances of words that are irreducibly
imprecise in the corresponding context, and most of them are often learned in an
“ostensive” way; for instance, teaching a child what the color red is, often is done
by showing him or her some red objects. Thus, the labeling of new properties is
frequently carried out by indistinguishability with other objects considered proto-
typical for such a label. In fuzzy logic and as formerly pointed out, there is the
theoretically unsolved problem of labeling those membership functions resulting
after operating some labeled membership functions, the so-called “linguistic
approximation” problem. As formerly said, naming objects, or concepts, is always
important.

Science is a process of constant invention, in which new horizons are continually
viewed, and in which the problem of giving a name to something new is posed.
Even if this can be debatable, it actually seems reasonable when referring to a
scientific language; names of the newly appearing concepts are often coined due to
some similarity they keep with other already known concepts, and even in a very
different situation. It is in this context that the problem of naming a new concept can
be posed and sometimes solved by synonymy. Notwithstanding, and in a large
enough piece of language, synonymy cannot be seen as an “exact” phenomenon;
what follows tries to explain this impossibility.

192 21 A Few Questions on Naming Concepts



Let E be a universe of discourse, and O = {oi} a set of observers with a set
T0 containing linguistic terms, words t enabling the naming of some of the objects
in X. The relation L0 establishing a correspondence between objects in X and lin-
guistic terms in T0 is the “object language” of O. In the same way, the set
E(t) = {x 2 X; (x, t) 2 L0} can be called the “extensional meaning” of the term
t 2 T0, and it can be said that two terms t and t* are synonyms in L0, t � t*,
provided E(t) = E(t*); that is, if they have the same extensional meaning.

Nevertheless, this “precise conception” of synonymy in L0 cannot capture the
before-mentioned phenomenon of the breaking of synonyms’ chains because
relation � is an equivalence, and because of its transitivity each chain t1 � t2 � � � �
� tn implies t1 � tn.

The problem is not of exact extensional meaning, but of meaning as a measure,
that is, of representing each term t by a membership function lt of a fuzzy set
labeled t. With it, a numerical degree of synonymy between terms can be defined by

Sðt; t�Þ ¼ 1� d lt; lt�ð Þ;

with a distance d having sense between the “fuzzy extension” of terms, and rep-
resenting how far t is from t*. It is obviously S(t, t) = 1, and S(t, t*) = S(t*, t), and it
can also be easily proven that

W S t; t�ð Þ; S t�; t��ð Þð Þ� S t; t��ð Þ; for any terms t; t�; t��;

thanks to the triangular inequality d(t, t**) � d(t, t*) + d(t*, t**) of the distance
d. Therefore, once a suitable distance d is chosen, the index S = 1 − d, is
a W-indistinguishability relation coming from the properties of d, and allowing, as
seen formerly, capturing the breaking of synonymy chains.

For each suitable threshold of synonymy e > 0, the approximate relation of
synonymy can be set

t �e t
� , e� S t; t�ð Þ , d t; t�ð Þ� 1� e;

that, additionally, contains the former particular case e = 1 with d(t, t*) = 0. This
reflexive, symmetrical, but not transitive, precise relation can enable managing the
breaking of the chains of synonyms, and allows approaching the problem of naming
a new concept t by means of other already used names t* and t**. It shows how the
indistinguishability can come from a distance between the linguistic terms.

The strategy consists in looking for linguistic terms slightly different from others
already known, that is, in finding terms t*, t** such that satisfy, with S, the W-
transitive inequality by verifying d(t, t*) � 1 − e, and d(t*, t**) � 1 − e, with e
the selected threshold of synonymy. It is, perhaps, in this way that the speakers of a
language can feel inclined to use one of these terms to name t; in this form an
approximate synonym of t* and t** will be obtained. Associating a name with an
object or concept, known as “binding” it, is actually relevant in many fields from
science and technology, to management and business.
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All that is, in addition, a way under which synonymy spreads vagueness
throughout language, and shows that to represent it in measurable forms, mem-
bership functions of fuzzy sets are unavoidable. The relation of graded synonymy
can allow us to approach the problem of naming new concepts by analogy, con-
sidering some of those already named, seen as close to them, leading to some
economy of language, and allowing the intermingling of meaning that is necessary
for reasoning.

In reasoning there is often a manifest incompatibility between precision and
significance: too much precision can lead to an excessive shortening of the meaning
of statements, and that can cut either a problem’s fertile view, or the posing of good
questions.

As Lotfi A. Zadeh wrote in respect to his “principle of incompatibility,” “Stated
informally, the essence of this principle is that as the complexity of a system
increases, our ability to make precise and yet significant statements about its
behavior diminishes until a threshold is reached beyond which precision and sig-
nificance (or relevance) became almost mutually exclusive characteristics.”
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Chapter 22
Instead of a Conclusion

It is difficult to conclude something when almost no certitudes, but mainly reflec-
tions, questions, and doubts, are actually presented, and most of whose answers are,
actually, still “blowing in the wind.”

Such reflections leading to questions and doubts appeared, especially, while
Lotfi A. Zadeh was introducing his, initially academically heterodox, ideas on the
new field of “computing with words” (CwW), a challenging and exciting one in
which the potentiality of the creative ideas it contains can truly flourish, and whose
basis I see grounded on ordinary reasoning and plain language.

It may be that the only conclusion for this not very technical book, is that CwW
= fuzzy logic, cannot be further seen as just a theoretic and formal discipline, that it
should be rebuilt as a discipline of an experimental type with formal models testable
against the reality of plain language and ordinary reasoning. Such formal models
are necessary, for instance, for the design of linguistically described systems.

As it can be said that matter and energy are the grounding of physics, plain
language and ordinary reasoning are the grounding of fuzzy logic. The plain rea-
soning people do should not be confounded with the formal reasoning that is done,
let’s say, with pencil and paper thanks to some mathematical framework. The
second is but a more or less trustworthy translation of the first that, notwithstanding,
benefits from the calculus the framework facilitates.

For completing the ideas that generated the book there still lack:

– Explaining how its author saw (of course, in a subjective personal form), the
prolegomena to the introduction of CwW in 1993, and what motivated the
presented approaches to ordinary reasoning and the linguistic meaning of words.

– Some additional comments on classification, and on the modalities on which
modus ponens (MP) appears.

22.1. When Charles A. Elkan published his controversial paper in 1993 on the
“paradoxical success” of fuzzy logic, many researchers among the most qualified in
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the “fuzzy” field, replied to him in papers in which they responded by contradicting
what he wrote.

Elkan’s paper begins with a theorem proving that, in the standard algebra given
by the triplet (min, max, 1 − id), a truth degree t with values in [0, 1] reduces to
only values in {0, 1}, provided some logical form holds. It is based on the analysis
in such algebra of the formula p′ + q = q + p′ � q′, the equality between the typical
Boolean conditional and the Dishkant one used in quantum logic that, as is known,
are identical in Boolean algebras.

The structure given in [0, 1] by the triplet (min, max, 1 − id) is not Boolean, but
a De Morgan algebra with Boolean elements 0 and 1, in which the distributive law
q + p′ � q′ = (q + p′) � (q + q′) holds, and without always being q + q′ = 1, it is not
possible to conclude the former equality for all p and q, but only the obvious
inequality q + p′ � q′ � q + p′ = p′ + q.

Elkan’s theorem is neither surprising nor destructive for fuzzy logic; its argu-
ment can be repeated, and more easily, with formulae such as p + p′ = 1, with which
1 = t(p + p′) = max(t(p), 1 − t(p)), implies t(p) 2 {0, 1}. It is even not difficult to
prove that the formula used by Elkan is equivalent, in any De Morgan algebra, to
the formula q � q′ � p that, with p = 0, shows it is only valid if q � q′ = 0, that is, if
q is a Boolean element, if either q = 0 or q = 1. Hence in ([0, 1]X, min, max, 1 − id)
the formula only holds with the crisp sets.

The only thing that such a theorem shows is that in De Morgan algebras there are
Boolean formulae, classical laws, not holding universally, something already well
known in 1993. The debate around Elkan’s paper even induced a paper on some
sociological aspects of scientific research in which the true spirit of theoretic fuzzy
logic is not present; up to some extent, the polemics surpassed the limits of AI and
fuzzy logic.

Some years later, around 2000, and jointly with Claudi Alsina, we studied in
which standard algebras of fuzzy sets ([0, 1]X, T, S, N), the formula l′ + r = r + l′�
r′ can hold, and, by solving the corresponding numerical functional equation,
S(N(a), b) = S(b, T(N(a), N(b)), we obtained that these algebras are those given by
T = prodf, S = W�

f , and N = Nf and, consequently, that such a law cannot coexist
with the duality laws in, at least, the standard algebras of fuzzy sets, thus, that in
plain language there could be some parts of it showing imprecision, in which,
without duality, the formula used by Elkan can actually hold.

Because the previous formula does not reflect a short statement, we also studied
the case in which the “or”, and the “not” appearing in it, are not represented by the
same S and N; that is, studying the more complex functional equation S1(N1(a), b) =
S2(b, T(N2(a), N3(b)), from which it easily follows that N1 = N2 = N3, and many
solutions with different S1 and S2 were found.

Finally, we also studied where von Neumann’s law of perfect repartition
l = l � r + l � r′ can hold, whose validity, as formerly explained, also excludes
duality. Were all the Boolean laws valid, a standard algebra would be a Boolean
algebra and, as previously shown, no BAF (basic fuzzy algebra) can be an
ortholattice.
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In the end, all that does not represent something surprising in fuzzy logic, but
opened my eyes towards reflecting on the minimal number of laws necessary for
trying to establish an initial formalization of ordinary reasoning based on plain
language, and, at least, within environments of imprecision. Under this view,
I established the axioms for a BAF that, with a new abstraction step, can still be
weakened as follows.

22.2. A quadruplet (X, <; ‘; �, +), with X = {p, q, r, …}, verifying the axioms,

(1) p\q ) q0\p0

(2) p � q\p; and p � q\q
(3) p\pþ q; and pþ q\q
(4) There exists a nonempty proper subset B of X, for all whose pairs of elements

(p, q), there holds p � p′ < q + q′.

can be called a basic abstract algebra (BAA), and, of course, either ortholattices
(and a fortiori orthomodular lattices and Boolean algebras), De Morgan–Kleene
algebras, and BAF, are BAAs.

A basic abstract algebra is but a very weak algebraic structure whose first three
axioms are just those allowing us to pose the representation of ordinary reasoning in
a primitive, symbolic, and naïve form, although for either studying some parts of
reasoning or reaching some results some additional axioms on negation (‘), con-
junction (�), and disjunction (+), as well as on the transitivity of <, seem to be
needed and, consequently, added. The failure of such conditions, as well as how
p and (p′)′ are either linked by <, or are not, seem to be responsible for a big chasm
between the reasoning formalized in strong structures, and some important aspects
of ordinary reasoning, such as creative reasoning.

Hence, it seems that the BAA algebraic structure is a minimal one that, by
sometimes adding more axioms to it, can permit some advances towards a formal
symbolic analysis of the complex phenomena of ordinary reasoning. We did it by
showing that it only consists in conjectures and refutations, that speculations can
facilitate hypotheses, how to falsify hypotheses, and so on. Indeed, everything that
is presented in Chap. 8 can be formalized in a BAA.

To continue such study, more empirical knowledge on ordinary reasoning is
required; that is, some parts of nondeductive ordinary reasoning should be sub-
mitted to processes of not blind but systematic observation, followed first by the
establishment of mathematical models, then by controlled experiments trying to
falsify such models, provisionally accepting a model, and so on. This path is but the
usual, always unending, for acquiring scientific knowledge. It could be initiated, for
instance, by experimentally testing some of the results presented in this book’s
Part I, Sowing Ideas; until it is done, these results will remain but working
hypotheses.

Nevertheless, the only researcher who offered a new view, after the polemics
provoked by the Elkan paper, was Zadeh, whose not too much farther in time
proposition of fuzzy logic as CwW, returned to the same origin of fuzzy sets, and
simultaneously opened a new way towards trying to solve the complex practical
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problems posed by the representation of questions described in plain language, and
the ordinary reasoning people employ for dealing with them, towards copying with
the reasoning people do. This was something that could mean a new step in the long
path Leibniz started with his famous shout, “Calculemus!” for which a calculus
with words is essential, and that cannot be thought only within the framework given
by the former four axioms of a BAA, but requires the possibility of extending them
with more suitable axioms at each particular case.

What should be avoided is trying to study ordinary reasoning theoretically with
either a single mathematical framework, or presuming laws without being sure of
their actual validity. It does not seem that a single mathematical model can represent
“all” ordinary reasoning; jointly with plain language, ordinary reasoning constitutes
a system that is, perhaps, the most complex system with which computer science is
currently faced. Both language and reasoning are essentially intermingled, and the
second cannot be deeply studied without knowing more about the first.

Zadeh’s CwW represents a big theoretical challenge that, in my view, requires
looking at plain language and ordinary reasoning from broader points of view than
those currently assumed by just mathematical fuzzy logic, something for which
more knowledge is necessary. For instance, and to quote just two actually important
and lacking topics, neither a mathematical model of ambiguity is currently known,
nor is there general agreement on how to deal with uncertainty and probability, in
particular for nonrandom and imprecise events as these concepts appear in plain
language.

22.3. Concerning the model of meaning as a quantity, it came from the Aldo De
Luca and Settimo Termini idea of a nonprobabilistic “fuzzy entropy”, that is, on the
measuring of fuzziness, with which this concept appeared as a strengthening of the
wider philosophical concept of vagueness, namely as a measurable part of it. With
their fuzzy entropies, De Luca and Termini reached a new view of vagueness that,
although referring to only a part of it, meant an advance towards its still incomplete
scientific domestication.

The basic problem for measuring vagueness lies in the difficulties appearing for
counting with a clear form to recognize when “this is less vague than that”, in part
due to the appearance of vagueness in a multitude of different contexts, with
intermingled situations in a given context and coming from the different sources
from which vagueness arises, that is, in a particular universe of discourse X,
founding a graph (X[P], <vague), with “vague” the mother-predicate of the concept
“vagueness” and, at least, applied to statements “x is P”, in short, for capturing the
qualitative meaning of the word “vague” even in a relatively simplified context.
This is just what, changing vagueness by fuzziness, De Luca and Termini did with
the predicate “fuzzy” applied to those words that are represented by membership
functions in X.

De Luca and Termini translated “P is less fuzzy than Q” into “lP is less fuzzy
than lQ” once, obviously, the meanings of P and Q in X were, respectively, mea-
sured by their (designed) membership functions. With this in mind, they presumed

198 22 Instead of a Conclusion



lP\fuzzylQ , The values lP(x) are closer to 0 and 1 than those of lQ (x) are,
and suggested them to define the relation <fuzzy by

lP\fuzzylQ , 0� lPðxÞ� lQðxÞ� 0:5; or 0:5� lQðxÞ� lPðxÞ� 1:

Note that, indeed, what they actually did was to change the linearly ordered unit
interval ([0, 1], � ) by the same unit interval [0, 1] but endow it with the sharpened
partial order � s, defined by

a� sb , Either 0� a� b� 0:5; or 0:5� b� a� 1;

splitting the unit interval, and pointwise translating it into [0, 1]X. Hence, because
the sharpened unit interval ([0, 1], � s) has the two minimals 0 and 1, and the
maximum 1/2, in [0, 1]X the minimals with respect to <fuzzy are just the membership
functions of the crisp sets, and there is only a maximal, its maximum, the mem-
bership function l1/2 constantly equal to one half.

Thus, once the graph ([0, 1]X, <fuzzy) is established representing the qualitative
meaning of the predicative word “fuzzy”, a measure of this word’s meaning is but a
mapping E: [0, 1]X ! [0, 1] such that:

(1) l\fuzzyr ) E ðlÞ�E ðrÞ
(2) a 2 0; 1f gX) E ðaÞ ¼ 0
(3) E ðl1=2Þ ¼ 1

a definition that is coincidental with that of a “fuzzy entropy” given by De Luca
and Termini by only changing <fuzzy by � s.

Hence, after accepting that the use, or qualitative meaning, the predicate “fuzzy”
shows in [0, 1]X can be recognized once reflected by the partial order relation
<fuzzy = � s, each measure E facilitates a full meaning of “fuzzy” by means of the
corresponding quantity ([0, 1]X, <fuzzy, E).

As always, there is not a unique E; in each case, to specify one of such measures,
more conditions should be presumed according to the corresponding context, and,
after the paper by De Luca and Termini was published, several papers were devoted
to different possible models for the measure E. In addition, and with all that, the
concept of fuzziness acquired a scientific context with which vagueness is not yet
endowed. Since then, fuzziness can be seen as a scientifically domesticated part of
vagueness; it appears as a type of (measurable) vagueness restricted to words with a
measurable meaning, permitting us to take into account how much fuzzy/vague a
word is in language and, eventually, trying to reduce or, at least, numerically
control its fuzziness. In addition, and when representing P, between the several
possible membership functions, it seems suitable to select one with minimal
entropy; that is, choosing the less than possible fuzzy one. Fuzziness is often not
avoidable, but it is always better to work with membership functions showing it as
less as possible; in no case is clarity to be disdained.
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Anyway, and although the idea of entropy is presented here in terms slightly
different from those De Luca and Termini originally used to introduce it, their ideas
are what led me to see meaning as a quantity; allowed me to see the “ideal”
membership function of a fuzzy set as a measure of its linguistic label’s meaning;
helped me to pose the meanings of the linguistic particles, or connectives, and, or,
not, introducing an analysis of the opposites, as well as their difference with
negation; and so on.

Note that De Luca and Termini took the threshold of fuzziness as 1/2, which is
just the fixpoint of the negation 1 − id, but, provided negation should be repre-
sented by a different strong negation N, then the laws of a fuzzy entropy can be
slightly modified by just taking the fixpoint of N instead of 1/2. It also could be
thought of as substituting negation by an opposite, an option that remains an open
possibility if the used negation is not strong.

As with the polemics of Elkan and Zadeh’s introduction of CwW, which led to
reflecting on the necessity of going towards a symbolic study of ordinary reasoning,
the De Luca–Termini trial studying the linguistic label “fuzzy” led to seeing the
meaning of predicative words as a quantity, also by abstracting the general concept
of measure from Michio Sugeno’s [11] fuzzy measures. Reflecting on what wise
people wrote is always very important; trying to advance from “the shoulders of
giants” is always good.

22.4. Some last comments on the main topics touched on in this book can be
pertinent. First and among them are those concerning the (practical) dangerous risk
of using mathematical models endowed with laws or axioms whose practical
validity has not been previously tested in the corresponding language’s context.
Second is the necessity of classifying the elements in the universe, that is, of
separating them in what is possible for looking more clearly at them with those
concepts taken into account, and that, in precise reasoning, is done by using crisp
partitions coming from the perfect classification a set and its complement facilitate,
something that does not happen, in general, with fuzzy sets labeled with imprecise
words.

In the first respect, it is worthwhile explaining a true story. A colleague, and
good friend of mine, came to me perplexed because the mathematical model he was
using did not fit the contextual data of which he was totally sure. Because he knew
that the conjunction was given by the t-norm prod, and because the distributive law
l + r � k = (l + r) � (l + k) holds, the problem appeared by believing that it forces
the pair of connectives (min, max). The t-conorm max was all right with him, but
T = min instead of T = prod was what had him worried. Five minutes sufficed to
convince him that there was no trouble at all, because such distributive law holds if
and only if S = max, regardless of which T can be taken.

This story shows that those designing fuzzy systems should be well acquainted
with the theoretical armamentarium fuzzy logic counts with at each moment, and
that if the adopted model does not fit the contextual information, the obtained
solutions can be wrong. This is what would happen by substituting prod by min in
my colleague’s case, and illustrates a true risk that could come from using an either
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not well understood, or wrong, mathematical model. Designers of fuzzy systems
should be acquainted with theoretical fuzzy logic.

22.5. Regarding classifications, they are needed for separating the universe in
subcollectives responding to several linguistic labels, and that, often and later on,
still could deserve to be refined in more subcollectives arising from the former ones.

With precise words, that is, with crisp sets, the problem consists in perfectly
classifying the universe X in nonoverlapping subsets A1, …, An, such that their
union is X; hence, for instance, the complement of A1 is A2U … UAn, and it
corresponds to generate a finite Boolean algebra by means of the n atoms a1,…, an,
corresponding to the “names”, or linguistic labels, specifying the subsets Ai.

The problem can come from an initial, precise, linguistic label P, reflecting a
concept that is, later on and in its turn, classified by means of several predicates,
such as in the case with conjectures that were classified in consequences,
hypotheses, and speculations that, in turn, become classified in type-one and
type-two speculations.

Note that a perfect classification {A1, …, An} of X, comes from a classical
equivalence relation having the subsets Ai as its classes of equivalence, that is, from
a reflexive, symmetrical, and transitive previous relation.

Nevertheless, when the linguistic labels are imprecise, this is, in general, not
possible, and a usual resource is given by the formerly introduced T-indis-
tinguishability relations, functionally expressed through functions R: [0, 1] � [0, 1]
! [0, 1], verifying the reflexive, symmetrical, and T-transitive laws. Once a is fixed
in [0, 1], the fuzzy set with membership function A(x) = R(a, x), for all x, can be
seen as an imprecise class of T-indistinguishability, and, provided R only takes its
values in {0, 1}, it is obvious that the former laws reduce to those of a classical
equivalence and that functions A are but the characteristic functions of their (crisp)
equivalence classes.

T-indistinguishabilities generalize crisp equivalences, reducing to them when
their values just range in {0, 1} � [0, 1]. As formerly said, all definitions done in
the “fuzzy field,” should reduce to the classical ones for crisp sets, a reduction that
is necessary for allowing any fuzzy calculus to deal with both precise and imprecise
words because, indeed, statements can usually contain precise and imprecise words.
Note also that T(R(a, x), R(x, b)) = T(A(x), R(x, b) � A(b), means that the “fuzzy
classes” A are but MP’s states of R.

If R were not precise, and in any case, provided the set {(a, b); R(a, b) = 1} were
not empty (indeed, it would not be if R were reflexive), it would be a crisp relation
that, obviously, is always a classical equivalence. What is different concerns the
other “levels of crispness” of R, that is, the crisp sets in X � X,

R ðeÞ ¼ ða; bÞ; R ða; bÞ� ef g; with e in ½0; 1�:

These crisp relations R(e) are, for e < 1, always reflexive and symmetrical, but
only are transitive if and only if R were min-transitive. Hence, only the fuzzy
min-equivalences are decomposable in the crisp equivalences R(e), each facilitating
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a crisp partition of X. Because e � s implies ‘R(a, b) � e ) R(a, b) � s′, the
partition associated to R(s) is a refinement of that associated with R(e).

In this form, given X and a fuzzy min-equivalence R, a triplet of crisp partitions
of X is obtained, each indexed with a value of e, and whose respective number of
equivalence classes decreases from the level e = 1 up to the level with the smallest
value for e.

For instance, the very simple fuzzy relation in the set X = {1, 2, 3} given by

R ð1; 1Þ ¼ R ð2; 2Þ ¼ R ð3; 3Þ ¼ 1;

R ð1; 2Þ ¼ R ð2; 1Þ ¼ R ð1; 3Þ ¼ R ð3; 1Þ ¼ 0:5;

R ð2; 3Þ ¼ R ð3; 2Þ ¼ 0:7;

generates the three partitions of X,

{{1}, {2}, {3}}, with index e =1,
{{1}, {2, 3}}, with index e = 0.7, and
{{1, 2, 3}} = {X}, with index e = 0.5,

the first refining the second, and this refining the third. Note that such sequence
of partitions goes from separating, or distinguishing, each element in X at the
maximum level e = 1, to separating nothing, that is, only distinguishing X at
the minimum level e = 0.5, and separating the subsets {1} and {2, 3} at the
intermediate level e = 0.7. Of these partitions, only the second seems actually
informative, inasmuch as the first and the third just mean recognizing that there is a
set X with different elements, but the second recognizes that elements 2 and 3 share
something in common that separates them from element 1.

The situation is very different when departing from a predicative imprecise word.
As was said, the classes are fuzzy sets whose overlapping is necessarily different
from the crisp case because each one affects, in principle, all points in the universe,
and only fuzzy clusters can appear.

An example of it lies in Zadeh’s idea of a “linguistic variable”, as it is with the
imprecise predicate P = cold in a scale X of external temperatures. In it, the play
among P, Pa = hot, and Pm = warm, suffices for obtaining, not obviously a crisp
partition, but a fuzzy coverage of X. With it, each of the points (x) in the scale
X counts with the associated triplet of numbers (lcold(x), lwarm(x), lhot(x)) that,
provided their addition were up to 1 at each x, could be seen as a “fuzzy partition
of X”. Remember, in this respect, that in the crisp case each x in X belongs to just
one of the classes; hence, the values such x takes for its membership in the
n classes, are 0 for n − 1 of them, and 1 for that to which it belongs; that is, the sum
total of these values is 1.

A linguistic variable arises from a linguistic label P, and is linguistically gen-
erated by P and Pa, or P′, jointly with some more terms such “middle”, or “very P”,
“more or less P”, and so on. Hence a linguistic variable generated by P is but the set
of words {P, Pa, P′, Pm, vP, …} with which a (flexible) coverage of the universe
related to the principal term P is obtained, and is known as a “fuzzy partition”
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provided the sum of the corresponding values for the respective linguistic labels is,
at each point, equal to one.

The linguistic variable’s idea is anchored in plain language where, to “better
separate” the universe to which an imprecise predicate P is applied, between five
and nine linguistic terms derived from P are often used, the so-called “seven plus or
minus two” empirical law that was statistically established as the limits between
which people are usually able to discriminate, or to graduate, or to internally
separate, concepts. It should be noted that in the simpler applications of the calculus
with linguistic variables, only three terms are often used.

The introduction of linguistic variables by Zadeh can be signaled as the first step
from fuzzy logic to its concretion as CwW, because they are intrinsically related to
plain language and to how people actually manage linguistic concepts. For instance,

– The linguistic variable “Age”, {young, old, middle-aged, not old, not very
young, …}

– The linguistic variable “Size”, {large, small, medium, very large, very short, not
very large, …}

– The linguistic variable “Truth”, {true, false, very true, not very false, not
true, …}

– The linguistic variable “Height” (for people), {tall, short, medium, very tall, not
very short, …}

– The linguistic variable “Height”(for buildings, etc.), {high, low, medium, very
high, not very high, not low, …}

– The linguistic variable “Speed”, {fast, slow, not fast, very slow, not very fast,
not slow, …}

– And so on

The given-name attributed to each linguistic variable corresponds to a concept of
which either P or Pa is its mother-predicate; once the predicates actually used as the
linguistic values of a linguistic variable are designed by membership functions in
the universe X, theoretic fuzzy logic facilitates a calculus with them.

To end this section, let’s point out an important difference the calculus with
linguistic variables shows, in contrast with that of the classical (bivaluate) calculus
of predicates; such difference is that, in the imprecise case, everything should be
designed according to the available contextual information. Being as best as pos-
sible acquainted with how the imprecise predicates and the connectives are con-
textually used (i.e., their respective meanings in the corresponding universes of
discourse) is fundamental for representing something well in fuzzy terms.

22.6. Provided M were a function between either {0, 1}X or [0, 1]X into [0, 1] (e.g.,
the identity, a fuzzy set, a measure of probability or possibility, etc.), the MP
inequalities would appear in one of the two forms,

– T M ðpÞ; R ðp; qÞð Þ ¼ M ðp � qÞ�M ðqÞ;
– T M ðpÞ; R ðp; qÞð Þ ¼ T� M ðpÞ; M ðqÞð Þ�M ðqÞ;
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provided the function M in the first inequality (the “internal” case), and the
operation T* in the second (the “external” case) permits reaching the inequalities.
The names internal and external come from the two conjunctions before the symbol
� of inequality; the first is in the domain of M and between elements, and the
second is in the range of M and between its images.

For instance, as has been shown, in Boolean algebras and in probabilized
Boolean algebras, the MP inequality is attained in the forms:

– p � p0 þ qð Þ ¼ p � q� q

and,

– prob ðpÞ � prob ðq=pÞ ¼ prob ðp � qÞ� prob ðqÞ;
respectively. Also, for instance, in fuzzy logic the MP inequality is analogously

reached in well-known cases including

– If R(a, b) = max(1 − a, b), is W(a, R(a, b)) = W(a, b) � b
– If R(a, b) = 1 − a + a�b, is W(a, R(a, b)) = a�b � b
– If R(a, b) = min(1, 1 − a + b), is W(a, R(a, b)) = min(a, b) � b.

Such two routes for reaching the MP inequality can be expressed by the
diagrams

– Internal, p ! q, p 2 V:p � q 2 V::q 2 V,
– External, p ! q, p 2 V:p 2 V and q 2 V::q 2 V.

Hence similarly to the before-considered nonmonotonic relations, if the classical
equivalence between “p � q 2 V” (p and q is V), and “p 2 V and 2 V” (p is V and
q is V), were broken, two different routes would actually exist for attaining the rule
of modus ponens. As was said, the inference with nonmonotonic relations deserves
more analysis.

Returning to plain language, it should be known if, when “q is V” does not
follow from “p and q is V”, it would hold that “q is V” follows from “p is V and
q is V” if between the two “and”, actually were or were not, the usually presumed
equivalence. The different uses of the linguistic particle “and” are not yet fully
analyzed, and, for instance, a way of looking at them not only as “joining” state-
ments is still open, but as defining either forward or backward inferences by con-
ditionals that can, or not, be monotonic.
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Chapter 23
To Conclude

The book has arrived at its end, and the following five quotations, always moti-
vating the author, can allow us to imagine the roots of what it contains.

– The novelist Julio Cortázar was obsessed, in his youth, by looking at a dic-
tionary, and his father asked him, “What do you search for in the dictionary?”
He answered, “For all.”

– Albert Einstein said that, “The chemical analysis of a soup has no taste.”
– The Nobel Laureate physicist Isidor J. Rabi, when asked what made him a

scientist, answered, “In my neighborhood, mothers used to ask their children if
they did learn something new at School, but my mother always asked me if I did
ask good questions. Even without intending it, she did make me a scientist.”

– The writer Stefan Zweig wrote, in a known memoir, “The last pending mystery
concerns people’s creativity.”

– The mathematician Karl Menger, in addition to recommending more “exact
thinking” than possible, wrote that good questions are those allowing us to get
fertile answers.

Brain and its functioning, language and reasoning, are, jointly with the senses,
the arms and the hands, the legs and the feet, a good part of what Nature gifted us
with for living. Of them, only language and reasoning can be seen as typically
privative of the species Homo; the others are not the best among animals, not even
mammals in particular. Imagining a person unable to express himself or herself by
some type of language (oral, written, gestured, etc.) is very difficult, if not
impossible. Today, for instance, computers can be managed by people without
hands; information and communication are necessary for reasoning, and reasoning
for living. Exact thinking is necessary for understanding.

Research (and not only the scientific one) requires people being endowed with
curiosity, a taste for personal endeavor, intellectual skills for posing good questions,
and specialized knowledge for getting fertile answers. For arriving at fertile answers
it is necessary to be creative, and creativity requires large doses of curiosity and
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imagination, hard study, and critical knowledge. Usually, neither good questions,
nor its fertile answers, are unique; often, creativity comes from a skewed look at a
problem.

Today science is in front of new frontiers for understanding the joint play of
language and reasoning, and it counts with chances enough for posing good
questions allowing fertile answers in such respect for trying to domesticate rea-
soning scientifically.

For it, the purely abstract point of view should be changed through a new trial
towards an experimental science, dealing with the intermingled pair constituted by
plain language and ordinary reasoning, a change towards a kind of physics of lan-
guage and reasoning. For it, and because language and reasoning are strongly per-
meated by imprecision, a rethought and down-to-top new view of fuzzy logic surely
would be relevant if and when it would not be further seen as a purely mathematical
subject, and is completed with studying ambiguity, and how the uncertainty of
nonrandom and imprecise “events” can become effectively measurable.

In addition to the previous (more insinuated between the lines than clearly
posed) questions, the most currently challenging scientific and pending question is
that referring to understanding what is actually the wellspring of progress, that is,
creative reasoning. How it works, how monotony fails in it, how it is boosted by
analogy, how it can be classified, and how it could be either computationally
mechanized or truly known regarding its impossibility, are among the more
important intellectual challenges. New forms of posing such questions seem to be
needed.

In the end, “Quidquit recipitur ad modum recipientis recipitur,”(‘Whatever is
received into something is received in the manner of the receiver’, that can be
paraphrased as ‘What is in a container, takes the container’s form’) the Thomist
(and static) principle so dear to the Middle Age’s scholastic philosophers, often
requires breaking down the old container for advancing towards something new. It
happened, for instance, when the container with the real numbers did not allow
capturing something new, and a larger container with complex numbers was
introduced, not only new mathematical questions arose, but some aspects of physics
were measured and rethought.

Neither thinking, nor knowledge, nor science, nor technology, are static, but
dynamic, and now a breakthrough seems to be possible for scientifically domes-
ticating creative reasoning or, at least, for knowing if it is not totally possible, and,
in such case, up to what extent it is possible.

In the (literary) words of the Spanish philosopher José Ortega y Gasset,
“Metaphor is one of the more fruitful potentialities of man. Its efficiency scraps
magic, and seems to be an instrument for creation God did forget inside one of its
creations.”

It is hidden that creative reasoning indeed scraps magic by not being deductive
and facilitating creativity; it is currently a big and intriguing mystery that, in my
view, only would be theoretically clarified by researchers looking at the problem
with a new and open look, including a naïve attitude and a personal feeling of how
tasteful such a challenge is for them.
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The reflections this book contains, and maybe just consists in, are written for
calling the attention of those researchers who would try to afford the presented
goals and questions by, but not only, breaking down the old container and changing
it to a new one.

All in the book is, to some extent, endowed with some philosophical flavor,
along the lines of Jerry A. Fodor’s words in 1981, “The form of a philosophical
theory, often enough is: Let’s try looking over here.”

This is not, indeed, a book directed to those who are already “specialists,” but to
researchers aiming at scrutiny into what is over there in the fog of plain language
and ordinary reasoning.

In its deep background, the book is concerned with a trial for pragmatically
approaching the human Logos that, in the praxis and essentially, consists in the
capabilities of questioning, guessing, telling, and computing. It is, perhaps, from a
pragmatic view of Logos that a methodology permitting mechanizing it up to the
greatest degree possible can flourish. Anyway, agreeing with the Socratic, “All I
know is that I know nothing,” that what is unknown is much more than what is
believed to be known, is always essential.
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