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Abstract. This paper presents a novel video smoke removal method
based on a smoke imaging model and space-time pixel compensation.
First, we develop an optical imaging model for natural scenes that con-
tain smoke. Then, we remove the smoke in a video, frame-by-frame, based
on the smoke imaging model and conventional dehazing approaches.
Next, we align the smoke-removed frames using corresponding pixels.
To obtain the corresponding pixels, we use SIFT and color features with
distance constraints. Finally, to reproduce clear video appearance, we
compensate pixel values by utilizing the space-time weightings of the cor-
responding pixels between the smoke-removed frames. Validation exper-
iments show our method can provide effective smoke removal resulting
in dynamic scenes.

Keywords: Smoke removal · Dehazing · Dark Channel Prior · Smoke
imaging model · Pixel compensation

1 Introduction

Natural and artificial disasters often critically damage our lives. In such disaster
situations, we have a critical need for quick lifesaving actions, disaster inves-
tigations, and post-disaster monitoring. In these situations, it is often difficult
to enter disaster areas because of unstable footing and poisonous gases. Thus,
the uses of machines, such as drones or small robots, is effective in dealing with
such disasters. Drones, particularly, are useful investigation tools for disaster
scenes [1,2]. They make it possible to obtain a large amount of information by
flying over the affected area. Rescue robots can take many forms for searching
through rubble and water [3,4]. In such machines, on-board compact cameras
are employed for scene recognition and autonomous actions. However, the per-
formance of these cameras and machine vision algorithms are degraded because
of smoke and other gases in the disaster areas. Because fog and haze as well as
smoke reduce scene visibility, many dehazing methods have been proposed [5–11].
Tan proposed a single-image dehazing method to enhance the contrast [5]. Fattal
presented an image dehazing method based on a haze imaging model [6]. He et al.
restored haze image visibility based on the above haze imaging model and Dark
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Channel Prior algorithm [7] (see next section). Gibson and Nguyen evaluated
He’s approaches by using principal component analysis and minimum volume
ellipsoid approximations [8]. Fattal proposed a dehazing method using colorlines
[11], which realized better clarity than his previous method [7]. Video dehazing
methods for video are often realized by extending previous single-image dehaz-
ing techniques [12–14]. Tarel et al. presented a fast dehazing algorithm based
on a median filter, and applied it for video dehazing in vehicle cameras [12].
Zhang et al. used spatial and temporal coherence based on a Markov random
field (MRF) model for reducing spatial veiling and temporal flicker [13]. Kim et
al. presented video dehazing based on block-based restoration [14].

However, there are two problems in applying conventional approaches to
video smoke removal. One is the spatial non-uniformity of smoke density. The
conventional dehazing techniques assume that uniform scene haze covers all parts
of an image. Moreover, it is assumed that conventional haze imaging models
depend only on scene distance and do not take into account non-uniform haze
and density that do not depend on distance. Further, single-image dehazing
approaches cannot sufficiently remove partially covered strong fog and smoke
in each frame. Another problem is the inappropriate reuse of the haze imaging
model. Even though a smoke imaging model is actually different from the haze
imaging model, some conventional methods have applied the haze imaging model
not only for dehazing, but also smoke removal. For proper image/video smoke
removal, a smoke imaging model should be constructed in the same way as the
haze imaging model.

In this study, we propose a smoke imaging model and smoke removal method
for video sequences. In our approach, the video camera moves freely, and par-
tially covered smoke areas are temporally shifting. The scene and smoke do not
keep relative positions. First, we remove the smoke from each frame. Next, we
calculate corresponding pixels between the frames. For this calculation, we use
SIFT and color features with distance constraints. Then, we compensate each
pixel color by space-time weighting of adjacent frames. This paper is organized
as follows: We describe the haze imaging model and a conventional dehazing app-
roach in Sect. 2. The model and approach are the basis of our proposed method.
Then, we propose a smoke imaging model and our smoke removal method in
Sect. 3. In Sect. 4, we show experimental results and discussions. Moreover, we
compare our method with conventional methods. Finally, conclusions and future
research are discussed in Sect. 5.

2 Dehazing Model and Conventional Approach

Figure 1 shows transmission of light in a natural scene containing haze. In gen-
eral, the haze imaging model is given by the following equation:

I(x) = J(x)t(x) + A(1 − t(x)), (1)

where x is pixel coordinates in camera image is pixel coordinates in camera
image I, J is scene radiance, A is global atmospheric color, and t is medium
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Fig. 1. Haze imaging model.

transmission of scene radiance. If an image does not contain scene haze, light
from the scene objects reach the camera directly without any diffusions in the air.
On the other hand, when haze is present in the air, the scene radiation is diffused
by the haze prior to reaching the camera. In this situation, light scattered by
the particles in the atmosphere also reach, as shown in Fig. 1. The transmission
value t is defined by

t = exp(−β · d(x)), (2)

where β is a diffusion coefficient, and d is the distance between objects and a
camera. As shown in Eq. (2), haze is uniformly distributed in scenes, and depends
only on distances. Input image I could be restored by estimating t, A, and
J. He et al. found that at least one of the RGB values in a patch was very low
(almost zero) when using an image under clear daylight [7]. This phenomenon,
called Dark Channel Prior, is as follows:

Jdark(x) = min
c∈r,g,b

( min
y∈Ω(x)

Jc(y)) � 0, (3)

where Ω is a patch region of a pixel x, and c is an RGB channel. Then, based
on Eqs. (1) and (3), a transmission map is estimated:

t̄(x) = 1 − ω min
c∈r,g,b

( min
y∈Ω(x)

(
Ic(y)
Ac

)), (4)

where ω is a parameter for keeping some amount of haze for far-distant objects.
In order to estimate atmospheric color A, it is necessary to find a pixel of
t(x) = 0. Based on Eq. (2), the transmission value t(x) will be 0 at the pixel
of infinite distance d(x) → ∞. Assuming that the distance in the sky area will
be infinite, they employ the brightest pixel in an input image as the sky area.
The estimated transmission map t̄ generally contains block noise due to the
patch-based processing. After the refinement of noisy transmission map t̄ by soft
matting, scene radiance J is estimated by

J(x) =
I(x) − A

max(t(x), t0)
+ A, (5)

here t0 is a lower limit transmission threshold for noise reduction.
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3 Proposed Video Smoke Removal Method

In this study, we propose a novel video smoke removal method. The flow chart
of our framework is shown in Fig. 2. As can be seen in this flowchart, the input
is a video sequence of a smoke scene. The video smoke removal for the output
is executed by compensating pixel colors based on space-time information. For
realizing this purpose, first, we develop a smoke imaging model similar to a haze
imaging model. Then, we apply a smoke removal method, frame by frame, based
on the smoke imaging model and Dark Channel Prior [7] to calculate a smoke
density map. In addition to a smoke density map, a detail layer is used for precise
pixel selection. The detail layer is generated by applying the bilateral filter to an
input frame. Then we align pixel positions between temporally-adjacent frames.
Finally, we synthesize video frames using pixel selection maps based on smoke
density maps and detail layers.

In the conventional method discussed in Sect. 2, there are several issues
regarding video smoke removal. He et al.’s method assumed spatial uniformity of
haze density. Their approach cannot sufficiently remove partially covered thick
fog and smoke in each frame. Moreover, the haze imaging model was applied
to smoke removal, in spite of the fact such a model was different from a smoke
imaging model. Instead, we developed a smoke imaging model and a video smoke
removal framework for addressing the above issues.

Fig. 2. Flowchart of the proposed algorithm.

3.1 Smoke Imaging Model

Figure 3 shows the imaging model for a scene containing haze and smoke. If
input videos contain smoke, each frame can be represented by the sum of scene
radiance, global atmospheric light, and light scattered by particles of smoke.
Here, the smoke imaging model is given by

I(x) = (1 − ψ(x)) (J (x) t (x) + (1 − t (x))A) + ψ(x)S, (6)
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Fig. 3. Smoke imaging model. In a scene containing smoke, the three components
(scene radiance, atmospheric light and light through smoke) reach the camera.

where x, I, J, A, and t are the same as Eq. (1). S is smoke-scattered light
color, and ψ is smoke density. This is a typical smoke imaging model contain-
ing both haze and smoke. Here, we assume that the smoke density ψ does not
depend on distance ds between objects and smoke. In addition, if the distance
between objects and camera is sufficiently short, I is not affected by the global
atmospheric color A due to scene haze. In other words, we can ignore the trans-
mission (t(x) ≈ 1). In this situation, Eq. (6) can be rewritten as

I(x) = J (x) (1 − ψ (x)) + ψ(x)S. (7)

Here, let be ρ(x) = 1 − ψ(x), Eq. (7) can be formed as

I(x) = J (x) ρ (x) + S (1 − ρ (x)). (8)

When setting the smoke density ψ(x) = 0, scene radiance is not affected by
smoke. On the other hand, when ψ(x) = 1, camera image I is equal to smoke
color S. Comparing Eq. (1) with Eq. (8), the smoke imaging model and haze
imaging model can be substantially given by an equivalent expression. Thus,
we estimate ψ and S from I for recovering the scene radiance J. We can solve
Eq. (8) by the same manner described in Sect. 2. In this method, we apply the
Dark Channel Prior algorithm [7] in each frame. After the frame-by-frame smoke
removal process, smoke remains in several regions. Figure 4 shows an example
of smoke removal. As can be seen in this example, the visibility of the smoke-
removed frame is better than that of the input frame. However, regions with
smoke still remain. Thus, in the next step, we address a method to recover
better visibility by using temporally-adjacent frames (See Sect. 3.3).

3.2 Frame Alignment with Distance and Color Constraints

SIFT features are often used to detect corresponding points between frames.
However, in frames containing smoke, it is difficult to achieve accurate alignment
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Fig. 4. Example of smoke removal; (a) input frame. (b) smoke-removed frame based
on a smoke imaging model. This smoke removal is executed frame-by-frame (not using
temporal information).

by using only SIFT features. Therefore, we add two constraints to SIFT for
detecting robust corresponding points between smoke frames.

One constraint is to set a limitation on detection ranges. The amount of
movement between frames can be assumed to be small. Thus, searching a feature
point kn′ , which is corresponding to a feature point kn is limited within the
surrounding h × h pixels of the feature point kn.

The other constraint is to use the color information of a patch. The corre-
sponding points obtained by only SIFT features are few, because the pixel values
affected by smoke are different in each frame. We use the RGB information of
surrounding l × l pixels of a feature point. Then we employ the Euclidean dis-
tances of SIFT feature and color information for evaluating correspondences.
The evaluation value EAlign is given by

EAlign = (1 − w)ϕ(vkn ,vkn′ ) + wϕ(pkn ,pkn′ ), (9)
ϕ(v,v′) = ‖v − v′‖2, (10)

where vkn ,vkn′ are the SIFT features (128 dimensions) of points kn, kn′ , respec-
tively, in the frame n, n′. pkn , pkn′ are the RGB features (3l2 dimensions), repre-
sented by the surrounding l × l pixels of feature points kn, kn′ . w is a parameter
containing the ratio of the Euclidean distance of SIFT features to color features.
It is possible to obtain correct corresponding points by using smaller evalua-
tion values EAlign < thAlign. Then, we calculate a homography matrix using
RANSAC. When the number of the obtained corresponding points is too small,
the homographic transformation cannot be correctly performed. In such situa-
tions, we do not use the frame for the pixel compensation. Figure 5 shows an
example of corresponding point detection. As can be seen in Fig. 5, we obtain a
correct homography matrix by using SIFT with the above two constraints.

3.3 Pixel Compensation with Space-Time Weighting

After frame alignment, we compensate pixel values by space-time weightings
of corresponding pixels in smoke-removed frames. For using a precise pixel, we
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Fig. 5. Corresponding point detection of adjacent two frames; (a) SIFT features only.
(b) SIFT features with distance and color constraints.

apply smoke density maps ψ(x) as same as t(x) in He et al.’s method [7]. In
addition to smoke density maps, we use detail layers to evaluate the decrease
of component detail caused by smoke. This is because smoke reduces details, as
well as color saturations of a scene. We generate a detail layer by calculating the
difference between the input frame and bilateral filtered frame as follows:

YD = Y − YB , (11)

where YD, Y , and YB are a detail layer, an input frame and filtered frame, respec-
tively. Then, we compensate pixel values based on the combinations of the smoke
density maps and detail layers. The evaluation value E is given by

E(x) = λρ(x) + (1 − λ)YD(x), (12)

where λ is a parameter to control the weighting between a smoke density map
and detail layer.

Pixel correspondence reliability is affected by spatial and temporal distances.
Thus, we add spatial and temporal weights for compensating precise pixel values.
The weighted evaluation value Eweight is given by

Eweight(x, n, n′) = Gt(n, n′) · Gs · E(x), (13)

where Gt(n, n′) is the temporal Gaussian weight given by

Gt(n, n′) =
1

2πσ2
t

exp(−|n′ − n|
2σ2

t

), (14)

and Es(x) is E(x) in Eq. (12) with the spatial Gaussian weight given by

Gs · E(x) =
∑

y∈Ω(x)

λ · ρ(y) · g(y, σs) + (1 − λ) · YD · g(y, σs), (15)

g(y, σs) =
1

2πσ2
s

exp(−‖x − y‖2
2

2σ2
t

), (16)
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Fig. 6. Example of a pixel selection map; (a) input frame, (b) smoke density map, (c)
detail layer, (d) pixel selection map (red: n − 3, green: n − 2, blue: n − 1, yellow: n,
white: n+1, cyan: n+2 and magenta: n+3 frame, respectively). (Color figure online)

where Ω is a patch of pixel x, and σs, σt are parameters that control the space
and time weightings. By selecting the pixel with the maximum evaluating value,
we replace a pixel value of a current frame with one from temporally adjacent
frames. We store selected frame numbers, which have precise pixel values in a
pixel selection map. Figure 6 shows a pixel selection map using a smoke density
map and detail layer. As described above, the pixel selection map is actually
generated by using smoke density maps and detail layers of temporally adja-
cent frames. Finally, we synthesize smoke-removed frames via the pixel selecting
maps.

4 Results and Discussion

In this study, we captured videos containing smoke by using a Drone camera
(Parrot’s Bebop Drone). Smoke in a scene was generated using commercial fire-
works. The drone is freely flown in the scene with smoke. When we executed the
proposed method, the videos were resized from original 1920 × 1080 to down-
sampled 800 × 450 pixels, in order to shorten the processing time. Parameters
were set as shown in Table 1.

Figure 7 shows an example of our experimental results. In this figure, we used
seven adjacent frames in the synthesis. As shown in Fig. 7(a), an input frame is
fully covered by smoke. In particular, we cannot see a part of the tree on the right.
As shown in Figs. 7(b) and (c), a smoke density map and a detail layer enable
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Table 1. Parameter setting.

Smoke removal of frame-by-frame

ω Parameter in Eq. (4) 0.95

t0 Transmission lower limit 0.1

Frame alignment with constraints

h Limit of detection range 61

l Patch size 5

w Weight of corresponding point 0.5

thAlign Evaluation of corresponding point 1.0

Frame select and pixel compensation

λ Parameter for space-time weighting 0.7

σt Parameter of temporal weighting 10

σs Parameter of spatial weighting 0.64

Fig. 7. Our input and result example; (a) input frame, (b) smoke density map, (c)
detail layer, (d) pixel selection map (red: n − 3, green: n − 2, blue: n − 1, yellow: n,
white: n + 1, cyan: n + 2 and magenta: n + 3 frame, respectively), (e) frame-by-frame
smoke removal, (f) our final result. (Color figure online)



52 S. Yamaguchi et al.

precise smoke detection. Then, a pixel selection map in Fig. 7(d) was generated
based on smoke density maps and detail layers of temporally-adjacent frames. As
shown in Fig. 7(d), we can see that pixel colors can be restored from temporally-
adjacent frames. The result of smoke removal, frame-by-frame, in Fig. 7(e) has
better visibility than that in Fig. 7(a). However, Fig. 7(e) still presents a dull
appearance. On the other hand, as shown in Fig. 7(f), our method can restored
a clear appearance in the tree on the left and fallen leaves on the ground. A part
of the tree on the right was not fully restored because scene radiance information
is almost lost in this dense smoke region.

Further, we recorded videos with and without smoke for comparing the
ground truth with the smoke-removed results. The videos were recorded using
a camera with constant motion and a panel in front of the camera. Figure 8 is a

Fig. 8. Comparison of each method; (a) input frame containing the smoke, (b) ground
truth, (c) He et al. [7], (d) our method.

Fig. 9. Failure case of the proposed method; (a) result frame with smoke remaining,
(b) pixel selection map using our algorithm.
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comparison of the conventional dehazing methods and our result. In this figure,
we used five adjacent frames in the synthesis. As can be seen in Fig. 8(c), smoke
in the lower left corner was not completely removed by He et al.’s method [7].
Moreover, smoke in the other region was similarly not removed well by their
method. Figure 8(d), using our pro-posed method, achieves removal of almost
all the smoke. Figure 9 shows a smoke-removed frame and its frame selection
map in a failure case. The smoke region remains in this result. This is because
the number of detected corresponding points is too small. In this case, only two
frames were used for pixel compensation.

5 Conclusion

In this paper, we have proposed an algorithm to remove smoke in a video by com-
bining multiple frames. We described optical phenomena for natural scenes con-
tain smoke. Then, we developed a smoke imaging model. Moreover, we applied
dehazing methods in each frame, detected the corresponding point using SIFT
with two constraints, and aligned frames. Finally, we selected the clearest pixels
without smoke using the smoke density map and detail layer for synthesizing
the smoke-removal frame. In our experiment, some smoke still remained in the
video frame, because of the wrong correspondence of feature points between
frames. We should improve the matching technique by brightness adjustment
and additional image information.
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