CASD: A Framework for Context Aware Service
Discovery and Selection

Altaf Hussain'®), Wendy MacCaull', and Yngve Lamo?

1 St. Francis Xavier University, Antigonish, Nova Scotia, Canada
altaf_sust_82@yahoo.com, wmaccaul@stfx.ca
2 Bergen University College, Bergen, Norway
yngve.lamo@hib.no

Abstract. We present the architecture for a framework for semantic
web-based service discovery, suitable for integration with relational data-
base systems. Existing discovery algorithms often lead to poor results
due to limitations of the service description used and lack of domain
data. Our framework incorporates context aware service discovery vis a
vis dynamic (run-time) update using relational (domain) data from a
legacy system. A template for service ontologies is provided, so the user
may represent their services and the interrelationships between them.
The domain data is represented as an OWL-ontology. The systems takes
information in the service and domain ontologies and performs rule based
reasoning using rules articulating inter-service dependencies as well as
dependencies between services and domain data. An aggregation over
service quality properties allows the aggregated selection of the best-
suited services. The framework is implemented as a web application fol-
lowing the Service Oriented Architecture; extensive testing shows that
the system is robust. Features of the framework are illustrated using a
detailed case study for the health-care domain.

Keywords: Ontology - Data integration - Dynamic context representa-
tion - Context aware service discovery - Domain and Service Integration

1 Introduction

Nowadays, people are dependent on services which are entities that offer value to
consumers. Web Service (WS) [10] is the technology that makes various services
available as consumable entities, accessed and consumed through computers,
such as the Email Service. WS technology, backed by Service Oriented Archi-
tecture (SOA) [16] has gained a lot of focus and popularity in the commercial
computing sector as an enabling technology for service planning, development,
delivery and management methodology. In addition, with the advancement of
Relational Database technology, businesses have invested in and developed data

Acknowledgment: The second author was supported by grant by the Natural Sciences
and Engineering Research Council of Canada.
© Springer International Publishing AG 2017

I. Ciuciu et al. (Eds.): OTM 2016 Workshops, LNCS 10034, pp. 252-264, 2017.
DOI: 10.1007/978-3-319-55961-2_26

CASD: A Framework for Context Aware Service Discovery and Selection 253

driven dynamic applications resulting in a new spectrum of web applications sup-
porting business-to-business integration, e-commerce, and industry wide collabo-
ration. These applications are empowered by the WS technology, which provides
a platform of independent communication and machine-to-machine interaction.
However, WS technologies need extensive human involvement for optimizing
service discovery, selection and composition [16].

In recent years, a new paradigm has evolved, called the Semantic Web
(SW) [18], which supports machine-readability through an Artificial Intelligence
inspired content markup language based on the Web Ontology Language (OWL)
[17]. Tts ability to express logical relations among entities on the web has led to a
new kind of WS technology called the Semantic Web Service (SWS) [18]. Due to
the lack of adequate service description, many discovery approaches often lead
to poor discovery results. Most current approaches for service discovery per-
form syntactic matching and semantic Input/Output matching which retrieve
services using a description that contains particular keywords from the user’s
service query. Context aware service discovery approaches provide a promising
way to more accurately discover services based on the domain or user’s context.
Contextual information, by nature, is dynamic and can reflect the current state
and condition of the domain. However, existing context aware service discovery
approaches provide limited support for the mechanisms required to dynamically
represent and update the context.

Here, we present a framework called CASD for context aware, domain data
dependent and inter-service relationship based service discovery, which auto-
matically selects the best suited services via aggregation over service quality
properties. This paper is organized as follows: first we provide a motivating
example. Section 2 provides an overview of the CASD framework. Section 3 pro-
vides a brief description of the knowledge base of the framework. Sections4 and
5 provide the system architecture and performance analysis of the framework,
respectively. Related and future work are provided in Sect. 6.

1.1 Motivating Example

Suppose a person gets injured in an accident. Depending on the status of the
patient (i.e., context), paramedics need to decide how to relocate the patient to
a medical facility. For example, if the patient’s condition is critical, the fastest
mode of relocation should be used, otherwise the cheapest relocation service may
be used. However if the patient has respiratory problems, oxygen supply should
be ensured. Suppose the paramedics have the option to select from an Ambulance-
Service, a HelicopterService, and a BusService. Among these services suppose the
HelicopterService is the fastest service, the BusService is the cheapest, but only
the Ambulance Service has oxygen supply. Now, if the paramedics decide that the
patient’s condition is normal and does not require oxygen, the BusService, i.e., the
cheapest service is the best option for the context. On the other hand, if patient’s
condition is critical and he is not suffering from respiratory problems, paramedics
can select the fastest service for relocation, that is, the HelicopterService service.

254 A. Hussain et al.

However, if the patient’s condition is critical and he is also suffering from respira-
tory problems the Ambulance Service should be selected as that is the only service
that provides oxygen. Here we have provided a simplified imaginary emergency
care guideline. Real-world guidelines for emergency care, response and life sup-
port are obviously much more complex [7,8].

In the above example, the patient status after the accident such as: Patient
Condition is critical, Patient shows Respiratory Problems is referred as the Con-
text. The ‘if-else’ rules on which the paramedics decide what to do are called
Context Based Rules. The quality the paramedics seek in a specific service such
as the fastest service, or the cheapest service, is found by performing quantita-
tive reasoning over some of the service properties say: the cost or speed of the
relocation. We refer to Cost and Speed as Quality of Service (QoS) properties.
This type of discovery and selection of services is referred to as Context Aware
Service Discovery. The selection of Ambulance Service which enables Ozygen
Supply Service is based on the relationships between these two services which
we refer as an Inter-Service relationship. In addition, selection of a service may
differ based on patient clinical history or age, which may restrict consumption of
a service. Eg., humidified oxygen supply may be required if the patient is a child.
Hence, the service discovery process should also take the domain data (in this
case, patient data) into consideration. We refer to this type of service discovery
as Domain Data Dependency based Discovery.

2 CASD Framework: Features and Approach Overview

In this section we briefly discuss the features and provide an overview of the
service discovery approach of our framework. The features include:

1. Interoperability Between Legacy Systems and SW Systems: The CASD frame-
work provides automatic integration with a legacy system’s relational data-
base (RDB) or domain database and SW system. The CASD framework
provides and uses a tool called “RDB20”to convert a domain database to
semantic web accessible data or ontology (called Domain ontology).

2. Dynamic Context Representation and Update: Domain database schema can
be used as a source of vocabulary for concept and relationships to create the
Domain ontology, which eventually represents the context. As we create a
Domain ontology from a domain database automatically, the CASD frame-
work can represent the context dynamically for a domain.

3. Service Ontology Template: In the CASD framework, we provide a Service
ontology template, which provides the concepts and relationships necessary to
include services that can be accessible in a domain, the service quality prop-
erties (QoS) and the inter-service dependency properties. The inter-service
relationships express whether a consumer can consume a service depending
on the consumption history of another service by the consumer.

4. Context Aware Service Discovery and Aggregated Selection: By combining
the domain and the service ontologies we can define service discovery and
selection rules using relations and concepts from both ontologies. The CASD

CASD: A Framework for Context Aware Service Discovery and Selection 255

framework utilizes the context present at runtime in the domain ontology to

discover and automatically select the best-suited services. The context aware

discovery process uses rule based reasoning through the Pellet reasoner [19]

for discovery of services.

(a) Domain Data Dependent Discovery and Selection: The CASD framework
can discover and select services not only based on the QoS properties,
but also on the domain data. For example, in the health-care domain,
depending on whether a patient’s condition is critical or not, the CASD
framework can select the fastest or the cheapest service.

(b) Inter-service Relationship based Service Discovery: Based on service rela-
tionships, there might be services which may not allow consumption of
other services or there might be services that have to be consumed with
another service. In the motivating example, we have to select the second
fastest service, the Ambulance Servie, which is the only service that allows
the consumption of the required OzygenSupplyService.

5. Accessibility and Extendability of the CASD framework: The CASD frame-

work is designed and developed as a web application, which is easily accessible
through browsers.

3 Knowledge Base and Context Aware Service Discovery

The KB used in the CASD framework consists of the following;:

1.

Domain Ontology: We create the Domain ontology from a domain database
automatically using our tool, RDB20. RDB20O creates the ontology Tgox
by converting the domain database schema. The Tgey contains the concepts
and relationships which are created based on a database-ontology conversion
mapping algorithm in RDB20. The Domain ontology Agex consisting of facts,
is populated with domain data at the runtime.

Service Ontology: The Service Ontology Tgex provides concepts and proper-
ties for domain services. The user can instantiate related Ago or instances of
services and their relationships based on the services offered by the domain.
The Service ontology also contains another type of service called the Run-
timeQoSFlagService, which is not consumable and is created at runtime by
CASD framework based on QoS properties of individual domain services.
Context Based Rules: We express context based rules using the Semantic
Web Rule Language (SWRL) [12], which is an expressive OWL-based rule
language. SWRL includes a high-level abstract syntax for Horn-like rules. We
can write context based rules using concepts and properties from both the
Domain and Service ontologies. The following is a rule expressed in SWRL:
If the the patient’s condition is critical, select the fastest relocation service:
Patient(?p) A hasCondition(?p,” Critical”) A MaxSpeedQoSFlagService
(?maxSpeedServ) — SelectedService(?maxSpeedServ).

Figure1 shows the items in the CASD process for discovery and selection of
services, which are briefly described below:

256 A. Hussain et al.

------------ {_ Database ru-i:
i
1d (int) ;;
H v H i
Name (Varchar(Max)) i: Hasld(Patient, int))} String)
PatientCondition (Varchar(Max)) |4 o e e ¥
yCondtiond (Varchar(MAX)) i} (Patient, String) ‘ (Patient, String) (ParamedicService) (Relocation Services
—-.—» Service Ontol
Patient Table Schema) Converted to Ohtology TBox Domein OntologyTeox) ¥ esvice: Ontology
[(PatientTable Data) B Domain Ontology D..
. . . Ty [——
Id Name PatientConditon RespiratoryCondition 1
1 Runtime Fact
001 John Doe Normal Normal t Assertion i
v i HasName{002, Marti
] 002 Martin smith | Critical Unstable [11 Hasld(002))i = ams?(nith) - '
- — ;
003 Chris Gayle Normal Normal E P ondition) | P T H
q (002, Unstable) (002, Critical)
H —
ac e L) ' Domain Ontology ABox Insertion
E [| FastestServiceFl “ [Services |
4 SlowestServiceFlag =
' £ Kl - ~—a
: Gan sd(ooz{ i Lo e = =
(H 1 ic i
1 \ Smith) [Heliopter Sene | vsmmm&;\‘. CheapestsenvceFiag)
H y ﬂndmon‘ ‘ondition) Bus Service Paramedicservies eche = = = S
: |7 (002, Unstable) ™02, critical) e
3 Domain Data Ontology TBox | ParamedicService * Service Meta Data Ontology
= o s T wr s s sy’ a2 aia's s s = o e R S a0 s s !
) SWRL Ruies) (3 Selected Services After Rule Firing)
If Patient Condition is Critical, Provide Paramedic Service While Relocating
Patient(?p)A hasCondition(?p, “Critical”) AParamedicService(?ps) - SelectedService(?ps) e .)
H :
a IfPatlen(’snesplratoryCondmon is Unstable, Oxygen Supply Service Needtohel'mvldedwhlle Relocating | | 1 v
Patient(?p)/ i "Critical”) ADxyge . %elededServlces
a IfPa!nentComiuonscrmcal Select Fastest Relocation Service H {
hasCondition(?p, “Critical”) A iceFlag(?sfs) > ice(?sfs) 0 ¢ FastestServiceFlag
1 i
n If Patient Condition is Normal, Select Cheapest Service for Relocation 0 ‘—’E
Patient(?p)A hasCondition(?p, "Normal”) AC g (Pcsf) > 2csf) d P ey
'
,-{ Selected Service After Quantitati ing and then i ing ...

HasSpeed (AmbulanceService, 85))

[; ice(, vice,
OxygenSupplyService)
,2000)

ice, none) |

Ambulance Service
Helicopter Service

OxygenSupplyService

“FastestServiceFlag
Relocation Services

CheapestServiceFlag

HasSpeed(BusService, 70)
HasEnabledService(BusService, none)

Fig. 1. Example of setup steps and usage of the CASD framework

A. Here we see an example legacy system relational database schema that is to
be used as domain data provider. In the figure, the schema of a Patient table is
shown, which is part of a health-care application, eg., the EHR [2]. We convert
the schema of the database into an ontology to get the Domain ontology.

B. In this item, we combine the Domain ontology, the Service ontology and the
Context Based Rules to create the KB.

C. Shows example data in the Patient table.

D. Based on the user query and rules in the domain, we gather data from the
legacy system database and assert them into the Domain ontology i.e., into the
KB. Item D shows how the data for the requested patient, whose id is 002, is
collected from the domain database and asserted in the Domain ontology.

E. Shows examples of populated Domain and Service ontologies with required
patient data and service instances, respectively.

F'. Shows rules the reasoner applies to discover services for the current context.

CASD: A Framework for Context Aware Service Discovery and Selection 257

G. In this item, the services that are required to be selected are shown which
resulted from executing the rules in the reasoner. From rule 1, the reasoner
concluded that the patient needs OxygenSupplyService. From rule 2, it is rea-
soned that the patient requires the fastest service for relocation. Combining these
results we can conclude that the user needed to be relocated using the fastest
service that enables OxygenSupplyService.

H. In item H, the CASD applies aggregation over the QoS property Speed, to find
the fastest service that enables OxygenSupplyService. Here the AmbulanceSer-
vice is the fastest service that supports, i.e., enables the OxygenSupplyService.

4 Architecture

We design the CASD framework following the SOA and N-tier architecture which
makes integration of different components easier while providing better separa-
tion among user interface, logic layers and data layers. We have developed the
framework using C#.NET, ASP.NET and Java. For ontology and rule process-
ing we use DotNetRDF APT [20], OWLAPI and Jena API [4]. The CASD frame-

L CASD Framework Architecture]
EGACY SYSTEM
ur SERVICE

(PATIENT APP) REPOSITORY UI

PROOF OF CONCEPT'
o PROOF OF CONCEPT APP

FRONT END

|

- ———
LEGACY SERVICE
SYSTEM WEB I REPOSITORY

SERVICE SERVICES WEB SERVICE

'WEB SERVICE
LAYER

QUANTITATIVE SEMANTIC REASONING 21
PELLET + SWRL RULE BASED O
REASONING REASONING g k3
a
&
DOMAIN AND DATA
LEGACY

SYSTEM DATA SERVICE DATA
BROKER ;. BROKER

(LSDB)

Patient APP
App Ul
Data

UI Data

o
i
o
<
o
ES
=
=
o
a
o
>
a
=
<
a
=
S
¥
[s]
<<
3

4Q uteuiog
wened
DB AND KR LAYER

| o Concepts

A || Individuals
_~/|* Rules

A |e Facts

Fig. 2. Full architecture of the CASD framework

258 A. Hussain et al.

work provides the RDB20 tool [13] and uses it as an API to easily convert and
integrate legacy system data and can leverage real-time data to generate ontol-
ogy facts and represent context using an ontology. The architecture of the CASD
framework is given in Fig. 2 and has the following tiers:

1. CASD Front End: The CASD front end is developed as a web application
which can be accessed from browsers. We have also provided integration of
the CASD framework with two other applications, namely, a simple health-
care system and a service repository.

2. Web Service Layer: We provide service discovery functionalities of the CASD
framework as web services. This layer also provides web services for a health-
care system and service repository, which are used for integration with the
CASD framework.

3. The Back End and Middle-ware Layer: The back end tier and the middle-ware
layer components of the CASD framework are responsible for service discovery
and selection, data conversion, accessing data and updating ontologies at
runtime.

(a) Legacy System Data Broker (LSDB): This collects data from a domain
database depending on the rules using algorithms specified based on types
of atoms in the rule. For each atom in the rule, the LSDB creates SQL
queries at runtime to select data from the domain database.

(b) Service Discovery Engine (SDM): The SDE accepts user queries from the
UI module and determines what data need to be collected, after consulting
the Data Mediator, LSDB and KB modules.

(¢) Reasoning: The Reasoner is responsible to carry out the rule based reason-
ing using Pellet. A SDM request starts the reasoning process and gathers
the result.

(d) Quantitative Reasoner: This performs procedural processing and provides
the aggregation functionality and, indeed, any post processing required.

(e) RDB20 APIL: The RDB20 API allows the CASD framework to access
the database to ontology conversion mapping used for Domain ontology
creation at runtime and thus allows the Ontology Processor (see below)
to assert facts in the Service and Domain ontologies according to the
mapping used in conversion.

(f) Data Mediator: The Data Mediator is responsible for communicating with
the LSDB. It passes the request from the SDM to the LSDB for the data
required for the SDM and also collects data and relays the data to the
SDM.

(g) Domain Data and Context Manager: The Manager keeps records and
relationships of domains, associated ontologies and runtime context for a
particular domain.

(h) Service Data Broker: The Service Data Broker allows the CASD frame-
work to access a service repository at runtime to generate service facts
and passes these facts to Data Mediator for assertion into the Service
ontology by the Ontology Processor.

(i) Ontology Processor: This updates and modifies both the Domain and
Service ontologies as facts become available at runtime.

CASD: A Framework for Context Aware Service Discovery and Selection 259

4. Data and Knowledge Representation (KR) Layer: The Data and KR layer
contains the domain database (patient database), the service repository, the
database for the CASD application and the Domain and Service ontologies.

5 Robustness and Performance of the CASD Framework

In this section we provide a performance analysis of the framework with basic
functional testing and load based testing. The CASD framework is deployed as
a web application on IIS 7.0 on a Lenovo ThinkPad running on Windows 7
64 bit. The computer has 12 GB ram, Intel(R) Core (TM) i5 @ 2.50 GHz.

(A) CASD: Service Discovery and Selection with (8) CASD: Performance for 1 User, 1000 Requests
Domain and Service Fact Generation

=
kS

e
-

a,
60608080008060 387 60

3 TV006000000080 800060 #0090 80e7 0 TEOT0%0 B

G

-4

o

Avg. Page Response Time (Sec)

°
@
a
= 02 Pree e SN s ~—
@ g et T T TR s T PR AR
£ N NS A A e, £
£ b= TR e o
e
o FEE e e B e X 6 s e X
0
o2 umberoffules ®f 0w —o— DiscoveryWithDomainAndServiceFactGen VAR:0.00021 AVG:0.313
--o-- Total — - ServiceFactGen. == =DiscoveryWithPatientFactGenereation VAR: 0.00002 AVG:0.195
-+ DiscoveryWithDependency ~ —x - DomainFactGen. -+ ServiceDiscoveryAndSelection VAR: 0.00006 AVG:0.174

Fig. 3. Testing and performance analysis of the CASD framework

There are settings in the CASD framework called “GenerateServiceFacts”
and “GenerateDomainFacts”, which, respectively, determine whether to generate
service facts to insert into the Service ontology with updated QoS properties
from the service repository and domain facts to update the domain ontology
or context with up-to-date domain data at runtime. Otherwise, it reuses the
facts from the previous run and can save time for service and/or domain facts
generation.

Figure 3(A), shows the time required for service discovery and selection (line:
..+..), for domain fact generation (line:~X-X-), for service fact generation (line:
—..—..) and total time for discovery and selection when both domain facts and
service facts generation are enabled (line:- -o- -o- -), as we gradually increase the
number of rules from 1 to 15. Effectively, the total time for discovery is the sum
of time required for service discovery and selection, domain fact generation, and
service fact generation. As we can see from the graph, the time for domain fact
generation (line:—X-X-) remains flat as we apply services for only one patient
and for each request, the CASD framework generates the domain ontology for the
same patient (or domain object) regardless the number of services to discover or
number of patients in the database. The time required for discovery and services
(line:..+..+..) increases as the number of rules (for this domain, executing 15
rules, discover 13 services) increases, as more QoS properties and more inter-
service dependencies by quantitative reasoning have to be satisfied. The time
required for runtime service facts generation (line: —.—..) increases in a linear
fashion as the number of services in the repository increases.

260 A. Hussain et al.

We measured the performance of the CASD framework for 1000 requests to
execute 10 rules by a single simulated user using the Visual Studio 2013 load
test tool. The graph in Fig.3(B) shows the average page response time for the
different settings discussed above. The page response time constitutes the time
required for posting the request to the server for a particular patient, receiving
response or rules execution result, rendering discovery and selection of services.
The time required for service discovery and selection without service and patient
facts generation (line: .4+.4.+.) remains flat over the time of tests resulting in
a fixed page response time. The time for required for discovery and selection
of services with only domain (patient) facts generation (line:......) is somewhat
higher, than the time required with no facts generation (line .4...4..+.). The
time required for service discovery and selection with both service facts and
patient facts generation enabled is shown using line:-0-0-0-0-, which is somewhat
higher than other two test criteria.

We have also tested the framework with more scenarios (due to space lim-
itations these results are not included) such as: (i) Load test for 10 vs 15 user
executing 10 rules, (ii) Executing 10 rules for a fixed patient vs a different patient
for each run, and (iii) Load test for 1 vs 10 vs 15 users using the system to exe-
cute 1000 requests with 15 rules. For each of these test cases, we found the result
is satisfactory and consistent (see the first author’s Masters thesis, [13]).

6 Related and Future Work

The desirability for automation in service discovery and collaboration backed
the escalation of the SWS with the maturity of the SW. The most widely used
conceptualizations of the SWS are the OWL-S [18], the WSMO [11] and the
SADI framework [21]. OWL-S helps software agents discover web services that
satisfy some specified quality constraints (QoS) in terms of Input, Output, Pre-
conditions, Post-condition and Effects (IOPEs). OWL-S also helps the service
composition and service interaction by providing a minimal set of composition
templates including: Sequence, Split, Unordered, Split+Join, etc. OWL-S does
not provide any methodology for domain data integration with service model,
thus does not support service discovery based on domain data, which is sup-
ported by the CASD framework. On the other hand, WSMO provides a concept
vocabulary to express service description in terms of IOPEs and currently only
supports syntactical matching of a user’s goal against service descriptions. The
WSMO supports selecting a service based on one or the other of two criteria,
namely, “always the first” or multi-criteria selections, which depends on nonfunc-
tional properties like reliability, and security. The SADI [21] framework discovers
services based on IO matching and can make dynamic composition of services to
match service IO requirements. The CASD framework discovers services based
on dynamic QoS properties, inter-service dependency relationships, and domain
context and automatically selects best-suited services.

OWLS-MX [15] and WSMX [11] are the SWS execution and testing environ-
ments for the OWL-S and WSMO approaches, respectively. OWLS-MX imple-
mented the hybrid service discovery matchmaking (semantic matching of service

CASD: A Framework for Context Aware Service Discovery and Selection 261

description and user query provided) using the OWL-2 reasoner, Pellet. The
OWL-S API uses the Jena Semantic Web Framework under the hood to mod-
ify the OWLS-MX matchmaker ontology. WSMX can work with Pellet. We are
using Pellet and Jena and the OWL-API for reasoning, ontology manipulation,
fact writing, and running SWRL rules.

In [9], several types of inter-process dependencies are modeled using UML
including Enabling, Canceling, Triggering, and Disabling dependencies. How-
ever, no implementation was provided. We have integrated two of these service
dependencies in the CASD framework by implementing the Enabling and Dis-
abling dependencies.

In Table 1 we summarize features of the different frameworks for service dis-
covery and selection (Based on literature provided). Due to space limitations we
are not providing comparison with OWLS-MX.

Table 1. Comparisons among different frameworks for service discovery and selection

Features CASD WSMX SADI

Service ontology Service QoS and Inter-service rel WSMO ontology Service 10

Domain data integration Domain ont. (run-time) d Not supported Not supported
Context rep Service and domain ont.(dynamic) | Not supported Not supported
Context data source RDB (run-time data) Not supported Not supported
Reasoning support Yes (rule based) Semantic IO matching | Yes (SPARQL Query)
Domain setup by user Yes No Limited

User SW knowledge req Not needed for basic user Required Required

Context aware discovery Yes No No

Aggregated selection Yes No No

Inter-service rel. discovery Yes No No

Discovery focus Which service, when to use Which service ‘Which service
Legacy system integration Yes Not supported Not supported
Security support Implemented No Implemented
Accessibility and extendibility | Web based, Web APIs, SOA Desktop application ‘Web based, Web APIs

S. Cuddy et al. proposed a context aware service discovery technique base
on static and dynamic service properties in [5]. This approach provides dynamic
context representation with XML, using weighted service properties based on
the user preferences, which must be provided for each discovery request. Also, if
multiple services are discovered from a request, the approach randomly selects a
service without taking the most suitable service into account. The CASD frame-
work discovers services based on context represented from real-time domain data
as well as dynamic service properties and inter-service dependencies. The CASD
framework also features automatic service selection using aggregation over ser-
vice properties. T. Broens et al. proposed another context aware service discovery
approach which represents the context using an ontology [1]. This approach pro-
posed using a pre-defined vocabulary for a domain built by consensus from a
related community. The approach proposed by Xiao et al. [22] also represents
context using an ontology, but uses some static features of the services such
as location, keywords, etc. In our framework, we use a dynamic context rep-
resentation using an ontology, that uses vocabulary directly from the Domain

262 A. Hussain et al.

ontology which we gather by converting the domain database. Moreover, our
framework supports most up-to-date context values as the framework can access
the domain data and update the Domain ontology to reflect the changes in
the context. Table 2 provides comparisons among different context aware service
discovery and selection approaches with the CASD framework (comparisons are
provided based on the literature provided). A more comprehensive analysis of
related work can be found in [13].

Table 2. Comparisons among different approaches for context aware service discovery
and selection

Features CASD framework S. Cuddy et al. Xijao et al.
Context representation Service and domain ontologies XML Ontology
Dynamic context vocabulary | Yes (service and domain onto.) Partially dynamic (QoS) | Pre-defined
Runtime context update Converted from RDB (at run-time) | User defined User defined
Discovery criteria QoS and domain context QoS (IO matching) QoS

Domain data integration Yes No No

Data dependent discovery Yes No No

Inter-service rel. discovery Yes No No

QoS based discovery Yes (dynamic QoS, aggregation) Yes (partially dynamic) Yes (static QoS)
Automatic service selection Yes (fully automatic) Random Yes (static QoS)

To provide integration of legacy systems with SW systems, we need a tool
that can convert a database to an ontology and can be used as an API for
runtime data conversion. There are tools like [3,6] that can provide mappings
of domain databases to ontologies. However, there are not many implemented
tools available but some require intermediate manual mapping via bridge pro-
gramming and do not provide run-time data conversion as an API. DB20WL
[6] and RDB20OWL [3] each provides an easy mapping process but the first can
not handle self-reference of Tables and the second requires a manual mapping
process. In our RDB20O tool, the mapping is based on the relationships and
constraints specification among tables which can provide a database to ontology
conversion automatically (without any manual mapping) and can be used as an
API for run-time data mapping. We implement RDB20 using C#.NET and it
can convert MS-SQL Server databases.

Our approach is still preliminary and some improvements can be made. The
generation of ontological facts at runtime from a domain database is based on
a serial algorithm. For larger domain databases, we may gain significant per-
formance benefits if the fact generation process can be parallelized. Also when
running multiple rules, which results in the discovery and selection of multiple
secondary services, the discovery process is dependent on the sequence of the
specific rule execution. This situation arises when we try to satisfy inter-service
dependencies. A promising way go to froward is by defining discovery priorities
based on service types for secondary services based on domain data.

Earlier [14] we discussed providing Service Enabled Workflow (SEW) lever-
aging the CASD framework. SEW imagines workflow as a collection of tasks
with control flows where tasks are carried out as services. A workflow task has

CASD: A Framework for Context Aware Service Discovery and Selection 263

defined specifications, which can be imagined as a user query for the discovery of
services to the CASD framework. The workflow user may select a service to exe-
cute from the discovered list of services against a task specification. Continuing
in this fashion, we can provide dynamic composition of services: the overall result
is SEW. In order to achieve SEW support using the CASD framework, we need
to implement a workflow engine to provide control flow and develop an inter-
connection with the workflow engine and CASD framework for service discovery
and selection for discovering services based on workflow task specification.

References

10.

11.

12.

13.

14.

. Broens, T., Pokraev, S., Sinderen, M., Koolwaaij, J., Dockhorn Costa, P.: Context-

aware, ontology-based service discovery. In: Markopoulos, P., Eggen, B., Aarts, E.,
Crowley, J.L. (eds.) EUSAI 2004. LNCS, vol. 3295, pp. 72-83. Springer, Heidelberg
(2004). doi:10.1007/978-3-540-30473-9_7

Canada Health Infoway: EHRS Blueprint Version 2. https://www.
infoway-inforoute.ca/en/component/edocman/391-ehrs-blueprint-v2-full/
view-document. Accessed Mar 2016

Cerans, K., Bimans, G.: RDB20WL: a language and tool for database to ontology
mapping. In: 27th International Conference on Advanced Information Systems
Engineering (2015). http://ceur-ws.org/Vol-1367/paper-11.pdf

Clark, P.: The OWL API http://owlapi.sourceforge.net/. Accessed Mar 2016
Cuddy, S., et al.: Context-aware service selection based on dynamic and static
service attributes. In: Wireless and Mobile Computing, Networking and Commu-
nications, vol. 4, pp. 13-20. IEEE (2005)

Cullot, N., Ghawi, R., Yétongnon, K.: DB20WL: a tool for automatic database-
to-ontology mapping. In: 15th Italian Symposium on Advanced Database Systems
(SEBD 2007), pp. 491-494 (2007)

Emergency Health Service Branch, Ministry of Health, Long-Term Care: Basic life
support patient care standard. http://www.health.gov.on.ca/. Accessed Mar 2016
Emergency Medical Services, Manitoba Health, Province of Manitoba: Emer-
gency treatment guidelines. http://www.gov.mb.ca/health/ems/guidelines/etg.
html. Accessed Mar 2016

Grossmann, G., et al.: Modeling inter-process dependencies with high-level business
process modeling languages. In: Hinze, A., Kirchberg, M. (eds.) 5th Asia-Pacific
Conference on Conceptual Modelling, vol. 79, pp. 89-102 (2008)

Haas, H., et al.: Web services glossary. W3C Working Group Note (2004)

Herold, M.: WSMX documentation. Digital Enterprise Research Institute Galway,
Ireland 3 (2008). http://www.wsmx.org:8080/wsmxsite/papers/documentation/
WSMXDocumentation.pdf

Horrocks, 1., Boley, H., et al.: SWRL: a semantic web rule language combining
OWL and RuleML. W3C Member Submission 21, 79 (2004)

Hussain, A.: A framework for context aware service discovery and selection, MSc.
thesis. St. Francis Xavier University (2016)

Hussain, A., MacCaull, W.: Context aware service discovery and service enabled
workflow. In: 4th Canadian Semantic Web Symposium, CEUR-WS pp. 45-48
(2013). http://ceur-ws.org/Vol-1054/paper-11.pdf

http://dx.doi.org/10.1007/978-3-540-30473-9_7
https://www.infoway-inforoute.ca/en/component/edocman/391-ehrs-blueprint-v2-full/view-document
https://www.infoway-inforoute.ca/en/component/edocman/391-ehrs-blueprint-v2-full/view-document
https://www.infoway-inforoute.ca/en/component/edocman/391-ehrs-blueprint-v2-full/view-document
http://ceur-ws.org/Vol-1367/paper-11.pdf
http://owlapi.sourceforge.net/
http://www.health.gov.on.ca/
http://www.gov.mb.ca/health/ems/guidelines/etg.html
http://www.gov.mb.ca/health/ems/guidelines/etg.html
http://www.wsmx.org:8080/wsmxsite/papers/documentation/WSMXDocumentation.pdf
http://www.wsmx.org:8080/wsmxsite/papers/documentation/WSMXDocumentation.pdf
http://ceur-ws.org/Vol-1054/paper-11.pdf

264

15.

16.

17.

18.

19.

20.

21.

22.

A. Hussain et al.

Klusch, M., et al.: OWLS-MX: A hybrid semantic web service matchmaker for
OWL-S services. Web Semant. Sci. Serv. Agents World Wide Web 7(2), 121-133
(2009)

Krafzig, D., Banke, K., Slama, D.: Enterprise SOA: Service-Oriented Architecture
Best Practices. Prentice Hall Professional, Upper Saddle River (2005)
McGuinness, D.L., Others: OWL web ontology language overview. http://static.
twoday.net/71desalbif/files/ W3C-OWL-Overview.pdf. Accessed Mar 2016
Mcllraith, S.A., et al.: Semantic web services. Intell. Syst. IEEE 16(2), 46-53
(2001)

Sirin, E., et al.: Pellet: a practical OWL-DL reasoner. Web Semant. Sci. Serv.
Agents World Wide Web 5(2), 51-53 (2007)

Vesse, R., Team: dotNetRDF - semantic web, RDF and SPARQL library for C-
sharp/.Net, http://www.dotnetrdf.org/. Accessed Mar 2016

Wilkinson, M.D., et al.: The semantic automated discovery and integration (SADI)
web service design-pattern, API and reference implementation. J. Biomed. Semant.
2(1), 1-23 (2011)

Xiao, H., Zou, Y., et al.: An approach for context-aware service discovery and
recommendation. In: 2010 IEEE International Conference on Web Services, pp.
163-170. IEEE (2010)

http://static.twoday.net/71desa1bif/files/W3C-OWL-Overview.pdf
http://static.twoday.net/71desa1bif/files/W3C-OWL-Overview.pdf
http://www.dotnetrdf.org/

	CASD: A Framework for Context Aware Service Discovery and Selection
	1 Introduction
	1.1 Motivating Example

	2 CASD Framework: Features and Approach Overview
	3 Knowledge Base and Context Aware Service Discovery
	4 Architecture
	5 Robustness and Performance of the CASD Framework
	6 Related and Future Work
	References

