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Abstract This paper investigates the local cuts approach for the multidimensional

knapsack problem (MKP) which has more than one knapsack constraints. The imple-

mentation of the local cuts-based cutting plane algorithm is an extension of the exact

knapsack separation scheme of Vasilyev et al. (J Glob Optim 1–24, [13]). Compar-

isons are made with the global lifted cover inequalities (GLCI) proposed in our recent

paper in Computers & Operations Research (Gu, Comput Oper Res 71:82–89, [7]).

Preliminary results show that the local cuts approach may be powerful for the MKP.
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1 Introduction

The multidimensional knapsack problem (MKP) is a well-known strongly NP-hard

combinatorial optimization problem which has been applied to various resource

allocation-related practical problems [4]. Given m knapsacks with capacities bi,
i = 1,… ,m, and n items contributing profits cj, j = 1,… , n, the MKP maximizes

the total profits of selected items under the knapsack capacity limitations. In MKP,

an item j requires simultaneous resource consumption of ai,j units in the ith knap-

sack (i = 1,… ,m, j = 1,… , n). The MKP can be formulated as an integer linear

programming (ILP):

(MKP) z∗ = max{cTx ∶ Ax ≤ b, x ∈ {0, 1}n} (1)

where c = [c1, c2,… , cn]T is the profit vector; x = [x1, x2,… , xn]T is a vector of 0-1

decision variables; xi is equal to 1 if item i is selected, otherwise 0; A = [ai,j], i =
1, 2,… ,m, j = 1, 2,… , n is the resource consumption matrix; b = [b1, b2,… , bm]T
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is the vector of knapsack capacities. For MKP, all parameters are assumed to be

nonnegative integers.

A large amount of research efforts has been committed to MKP which is closely

related to the classical knapsack problem (KP) [12]. In spite of the huge theoretical

and computational progress in combinatorial optimization, MKP remains a challeng-

ing problem [5, 14]. It still takes many hours on a modern computer to obtain the

best-known solutions for some of the well-known benchmark problems.

In this paper, we focus on the cutting plane approach which has found tremen-

dous success in the commercial and open-source mixed integer programming (MIP)

solvers. For knapsack problem, the cover-based valid inequalities are among the best-

studied classes and have been shown useful, especially for solving difficult binary

integer programming problems including the MKP [8, 11]. Recently, exact knap-

sack separation algorithms (EKSA) were proposed in [6, 11]. Although EKSAs can

produce stronger valid inequalities, they are more or less useless in the branch and

cut paradigm due to much longer computation time. An efficient EKSA was imple-

mented in [13] and was found useful for solving large instances of some classical

MIP problems.

Recently, the global lifted cover inequalities (GLCI) [10] and its variants were

proposed for MKP to take into account multiple knapsack constraints simultaneously

when lifting the coefficients of a valid inequality. The face defined by GLCI may

not be of higher dimensions than lifted cover inequalities (LCI) for MKP; however,

computational results demonstrated that GLCI can be more effective in tightening

the integrality gap, especially when the number of knapsack constraints increases.

Furthermore, the computationally stronger GLCI can lead to improved performance

of core-based heuristics [7]. This motivates the research in this paper to combine the

power of exact separation and global lifting, which the authors’ believe belongs to the

local cuts paradigm which is very different from the traditional template paradigm

[2].

This paper is organized as follows. We first describe the cutting plane algorithm

based on the local cuts approach in Sect. 2. The details of the exact separation for

the reduced problem is given in Sect. 3. The global lifting procedure is described in

Sect. 4. Computational results are presented in Sect. 5. The conclusion is given in

Sect. 6.

2 Cutting Plane Algorithm Based on Local Cuts

The cutting plane approach [15] can be used to strengthen the linear programming

(LP) relaxation of MKP which is defined as

(MKP-LP) z̄ = max{cTx ∶ Ax ≤ b, x ∈ [0, 1]n} (2)

MKP-LP is solved at each iteration of the cutting plane approach with additional

constraints corresponding to the cuts generated from previous iterations. Assume
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that an optimal continuous solution xk is obtained at the kth iteration, an attempt

will be made to generate a cut separating xk from the convex hull of the MKP poly-

tope. If cuts are successfully generated, they are added to MKP-LP and the process is

repeated until some termination criteria are met. Since the separation algorithm can

be time-consuming in practice, this process has to be terminated earlier without the

exact description of the convex hull of the MKP polytope. In the local cuts approach,

a reduced problem of MKP (RMKP) is created at each iteration which can be effi-

ciently separated due to much lower dimension. A valid cut for the original problem

can then be induced. The cutting plane algorithm based on local cuts (CPALC) is

described as follows:

Algorithm 1: Cutting Plane Algorithm Based on Local Cuts (CPALC)

Input: MKP

Output: a set of valid inequalities for MKP

k = 1;1
repeat2

solve the cut strengthened MKP-LP with optimal solution xk;3
if xk is an integer solution then break;4
generate the separation problem for the reduced MKP (RMKP) problem;5
compute cuts for RMKP;6
induce valid cuts for MKP to separate xk;7
if no cut then break;8
add cuts to MKP-LP;9

until enough cuts or time limit reached;10
return all the generated cuts;11

The creation of the separation problem for RMKP is described in the next section.

A cut for the original MKP can always be induced from a cut for RMKP through the

global lifting procedure discussed in Sect. 4.

3 Exact Separation Algorithm for RMKP

Given xk, the LP relation solution of MKP in CPALC, let Vk = {i|xki = 1}, and Wk =
{i|xki = 0}. Denote Rk = N ⧵ (Vk ∪Wk) = {r1, r2,… , rp}, the RMKP is defined as

RMKP max z =
∑

1≤j≤p
crjyj

s. t.

∑

1≤j≤p
airj yj ≤ ̃bki , i = 1,… ,m

yj ∈ {0, 1}, 1 ≤ j ≤ p

with ̃bki = bi −
∑

j∈Vk aij, i = 1,… ,m.
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The separation problem for RMKP is to separate yk defined as ykj = xkrj , 1 ≤ j ≤ p.

The RMKP polytope has much lower dimension than that of MKP, which may be

amenable to the exact separation approach. The exact separation formulation can

take many different forms. Our implementation of the exact separation for RMKP is

an adaptation of the source code of [13] for single knapsack problem and is based

on the formulation below [13]:

RMKP-S max
𝜋

z = 𝜋

Tyk

s. t. hT𝜋 ≤ 1, ∀h ∈ P
𝜋 ∈ Π

where P ≠ ∅ is the feasible set of RMKP, and Π ⊂ Rp
is a sufficiently large con-

vex compact set containing the origin in its interior. Denote the optimal solution to

RMKP-S by 𝜋̄

k
, then yT 𝜋̄k ≤ 1 is a valid cut separating yk from the RMKP polytope

if ykT 𝜋̄k
> 1. The nice property of RMKP-S is that the cut yT 𝜋̄k ≤ 1 also defines a

facet of RMKP.

RMKP-S can be solved by row generation. At the lth iteration, 𝜋
l
is solved as an

optimal solution to

RMKP-S(l) max
𝜋

z = 𝜋

Tyk

s. t. hT𝜋 ≤ 1, ∀h ∈ Pl
⊂ P

𝜋 ∈ Π

If ykT𝜋l ≤ 1, yk is an interior point of the RMKP polytope since ykT𝜋l ≥ yT 𝜋̄k
.

Otherwise, a new row may be obtained by solving

Row-Gen max
h

z = hT𝜋l

s. t. h ∈ P

which has optimal objective value zl and optimal solution hl.
If zl ≤ 1, then 𝜋̄

k = 𝜋

l
and yT𝜋l ≤ 1 is a cut for RMKP; otherwise, hl can be added

to Pl
and a new row is generated for RMKP-S(l).

To avoid numerical errors, all coefficients in the cut need to be converted into

integer. In [13], 𝜋̄
k

is multiplied by a proper integer to make it an integer vector

𝜋̃

k
(within a tolerance of 10−5). The separation procedure fails if no such integer

multiplier can be found within the range [1,… , 104]. Then, the right-hand side can

be calculated as

𝜋

k
0 = max{hT 𝜋̃k ∶ h ∈ P} (3)

yT 𝜋̃k ≤ 𝜋

k
0 is a valid cut for RMKP if it is violated by yk.
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If yj can be fixed to 0 in RMKP, i.e., ∃i ∈ [1,… ,m], ai,rj > ̃bki , we can generate

a cut for RMKP in the form yj ≤ 0 instead of solving RMKP-S which will set 𝜋̄
k
j to

the largest value of 𝜋j in Π.

The exact separation algorithm for RMKP (ESAR) can be described as follows:

Algorithm 2: Exact Separation Algorithm for RMKP (ESAR)

Input: RMKP, yk
Output: a set of cuts separating yk from RMKP polytope

compute F = {j ∈ [1,… , p] ∶ ai,rj > ̃bki , ∃i ∈ [1,… ,m]};1

if F ≠ ∅ then2
generate cuts yj ≤ 0, ∀j ∈ F;3

return4

l = 1, P1 = {e1,… , ep} where ei is the ith unit vector;5

Loop6
solve RMKP-S(l) with the optimal solution 𝜋

l
;7

if ykT𝜋l ≤ 1 then return //yk is interior point8
solve Row-Gen with optimal value zl and optimal solution hl;9
if zl ≤ 1 then10

𝜋̄

k = 𝜋

l
; //yT𝜋l ≤ 1 is a cut for RMKP11

break;12

Pl+1 = Pl ∪ {hl}, l = l + 1;13

compute the integral inequality yT 𝜋̃k ≤ 𝜋

k
0 according to (3);14

generate a cut yT 𝜋̃k ≤ 𝜋

k
0 if it is violated by yk;15

return16

4 Global Lifting Algorithm

The valid inequality for RMKP generated by ESAR can be sequentially lifted to

become valid for MKP. We apply the same idea as for GLCI in [7] by considering

all the constraints in MKP when lifting a variable.

Let K be the feasible set of MKP, and S(V ,W) = K ∩ {x ∈ {0, 1}n|xj = 0, ∀j ∈
W, xj = 1, ∀j ∈ V}. A variable in V can be down-lifted according to the following

proposition:

Proposition 1 Given
∑

j∈N⧵(V∪W) 𝜋jxj ≤ 𝜋0 is valid for S(V ,W). For i ∈ V, if S(V ⧵
{i},W) ≠ ∅, then 𝛾ixi +

∑
j∈N⧵(V∪W) 𝜋jxj ≤ 𝜋0 + 𝛾i is valid for S(V ⧵ {i},W) for any

𝛾i ≥ 𝜁 − 𝜋0, where

𝜁 = max{
∑

j∈N⧵(V∪W)
𝜋jxj|xi = 0, x ∈ S(V ⧵ {i},W)} (4)

A variable in W can be up-lifted according to the following proposition:
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Proposition 2 Given
∑

j∈N⧵(V∪W) 𝜋jxj ≤ 𝜋0 is valid for S(V ,W). For i ∈ W, if
S(V ,W ⧵ {i}) ≠ ∅, then 𝛼ixi +

∑
j∈N⧵(V∪W) 𝜋jxj ≤ 𝜋0 is valid for S(V ,W ⧵ {i}) for any

𝛼i ≤ 𝜋0 − 𝜁 , where

𝜁 = max{
∑

j∈N⧵(V∪W)
𝜋jxj|xi = 1, x ∈ S(V ,W ⧵ {i})} (5)

For a cut generated by ESAR in the form of yT 𝜋̃k ≤ 𝜋

k
0, we can have

∑
1≤j≤p xTrj

𝜋̂

k
xj
≤ 𝜋

k
0 with 𝜋̂xj = 𝜋̃

k
j , which is valid for S(Vk

,Wk). Then, the variables in Vk
are

down-lifted sequentially in the non-decreasing order of the reduced costs obtained

when solving for xk at step 3 of Algorithm 2. Finally, the variables in Wk
are up-lifted

sequentially in the non-increasing order of the reduced costs. To reduce computation

time on lifting, we calculate the down-lifting coefficient according to 𝛾i = 𝜁LP − 𝜋0,

and the up-lifting coefficient according to 𝛼i = 𝜋0 − 𝜁LP, where 𝜁LP is the linear relax-

ation upper bound of 𝜁 in (4) and (5).

Denote the valid inequality after lifting by xT 𝜋̂k ≤ 𝜋̂

k
0, we have

xkT 𝜋̂k − 𝜋̂

k
0 = ykT 𝜋̃k − 𝜋

k
0 (6)

Therefore, the cut for RMKP is also a cut for MKP after the lifting.

5 Computational Results

We first compare the exact knapsack separation algorithm (EKSA) of [13] with our

implementations of GLCI and its variants [7]. Then, EKSA is compared with the

local cuts (LC)-based separation algorithm CPALC implemented in this paper. All

experiments are carried out on the comprehensive Cho test set in [1] and the widely

used Chu and Beasley MKP test set in [3]. The algorithms presented in this paper

were implemented in C++ and compiled with gcc 4.4. All tests were run on a com-

puter with 2.3 GHz AMD CPU and Red Hat 4.4 operating system. We use CPLEX

12.5 to solve the LP and IP problems in CPALC with a time limit of 60 s and a limit

on the maximum number of threads to 8. The number of cuts in CPALC is limited to

100 as for GLCI, but there is no limit for the number of cuts in EKSA which typically

takes no more than a few seconds. In RMKP-S(l), Π is set to be [−106, 106]p.

The Cho test set contains classes of randomly generated instances for each combi-

nation of n ∈ {50, 100, 250} items and m ∈ {5, 10, 30} constraints. Each class con-

tains 30 instances. The Cho test set represents a much larger range of correlation

values than the Chu and Beasley test set under the MKP structure and was created

according to a well-designed comprehensive problem generation scheme [9]. The

results of GLCIs and EKSA for the Cho test set are reported in Table 1. The columns

in Table 1 are explained as follows: The first column n.m represents the class of test

cases where n is the number items and m is the number of knapsack constraints; the
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Table 1 Comparison of GLCI and EKSA on the Cho test set [1]

n.m z∗ z̄ 𝛥D GSA-LP GSA-IP EKSA

IC Nc Tv IC Nc Tv IC Nc Tv
50.5 1481.6 1494.6 0.91 51.9 13.0 – 49.5 12.9 0.2 78.6 43.7 0.1

50.10 1199.2 1214.9 1.32 50.2 19.9 0.1 53.4 22.6 1.3 66.2 53.7 0.1

50.25 968.7 984.6 1.63 46.9 29.8 0.2 49.6 37.9 7.4 57.2 63.8 0.4

100.5 2824.7 2830.8 0.22 41.8 9.2 – 44.2 10.0 0.5 83.3 62.6 0.2

100.10 2548.2 2558.8 0.42 33.3 15.8 – 33.5 18.6 1.9 59.9 76.1 0.4

100.25 1959.5 1972.3 0.64 34.1 23.6 0.2 37.4 30.0 8.2 50.7 82.5 0.6

250.5 7036.3 7040.2 0.05 41.2 9.1 0.1 42.3 9.3 0.7 74.8 90.6 0.7

250.10 6097.8 6103.2 0.09 26.2 12.5 0.2 28.2 13.2 2.2 58.7 107.6 0.9

250.25 4874.6 4882.7 0.16 22.0 17.7 0.6 23.9 22.2 17.5 38.6 113.1 1.3

second column reports the best-known objective value z∗ found in the literature; the

next column presents the objective value of the LP relaxation z̄ without additional

cuts; the fourth column gives the relative integrality gap𝛥D = (z̄ − z∗) × 100∕z̄%; the

next column reports the closed integrality gap in percentage; GSA-LP and GSA-IP

are the different implementations of GLCI in [7]; and the next two columns present

the total number of cuts generated by the corresponding separation scheme and the

total CPU time spent Tv in seconds. The value of Tv is replaced with “–” if it is smaller

than 0.1 s. For each class of test cases, the arithmetic mean of the 30 instances of the

same class is reported. It can be seen that EKSA significantly outperforms GLCIs in

terms of the percentage of integrality gap closed. The computation time of EKSA is

only slightly higher than that of GSA-LP. The superiority of EKSA may be due to

the weak interactions of the knapsack constraints in the instances.

The results of EKSA and CPALC for the Cho test set are reported in Table 2. The

time for the exact separation in Sect. 3 and the time for the global lifting in Sect. 4 are

Table 2 Comparison of EKSA and CPALC on the Cho test set [1]

n.m z∗ z̄ 𝛥D EKSA CPALC

IC Nc Tv IC Nc Tv Tc Tl
50.5 1481.6 1494.6 0.91 78.6 43.7 0.1 100.0 48.2 11.7 11.5 0.1

50.10 1199.2 1214.9 1.32 66.2 53.7 0.1 100.0 55.6 18.3 18.2 0.1

50.25 968.7 984.6 1.63 57.2 63.8 0.4 98.7 70.9 69.6 69.3 0.3

100.5 2824.7 2830.8 0.22 83.3 62.6 0.2 100.0 64.1 13.4 12.6 0.8

100.10 2548.2 2558.8 0.42 59.9 76.1 0.4 92.8 80.8 61.0 60.1 0.9

100.25 1959.5 1972.3 0.64 50.7 82.5 0.6 86.4 88.7 125.9 124.5 1.5

250.5 7036.3 7040.2 0.05 74.8 90.6 0.7 92.8 82.4 41.8 38.1 3.7

250.10 6097.8 6103.2 0.09 58.7 107.6 0.9 84.4 95.0 64.3 60.4 3.9

250.25 4874.6 4882.7 0.16 38.6 113.1 1.3 64.6 101.0 176.7 170.0 6.7
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Table 3 Comparison of GLCI, EKSA, and CPALC on 100-item instances from Chu and Beasley

test set [3]

m.𝛼 GSA-LP GSA-IP EKSA CPALC

IC Nc Tv IC Nc Tv IC Nc Tv IC Nc Tv
5. 25 6.99 15.8 – 6.80 16.3 0.4 19.18 119.5 1.6 41.85 101 239.5

5. 50 6.11 13 – 6.38 14.4 0.2 22.65 122.6 2.7 44.54 101 256.8

5. 75 6.50 12.7 – 7.46 12.7 0.2 23.52 121.4 3.7 51.33 101 241.1

10. 25 6.49 19 – 8.78 37.3 9.1 5.9 100.5 1.9 24.88 76.6 754.4

10. 50 6.96 21.8 – 10.28 30 4.5 7.83 120.7 3.7 28.06 80 1070.1

10. 75 4.18 13.2 – 5.07 14.8 2 7.62 97.5 3.5 32.15 79.2 908.4

30. 25 2.74 15.5 1.1 6.49 73.1 269.9 0.22 12.3 1.6 6.17 10.5 645.4

30. 50 5.30 33.5 2.3 7.79 90.5 233.1 0.55 38.4 2.8 5.89 8.4 323.7

30. 75 4.84 28.4 2.5 11.26 86.7 230.5 0.63 37 2.9 11.09 15.8 1286.8

reported as Te and Tl in seconds. It can be seen that CPALC significantly outperforms

EKSA in terms of closed integrality gap. The computation time of CPALC is much

higher than that of EKSA. The global lifting is very efficient in terms of computation

time. EKSA failed to close integrity gap on many instances even without the limit on

the number of cuts. CPALC can always separate the LP solution which is consistent

with the theory; however, the convergence can be slow on large instances with more

constraints.

The Chu and Beasley test set contains a total of 270 instances randomly generated

for 27 classes which are combinations of the number of items n ∈ {100, 250, 500},

the number of knapsack constraints m ∈ {5, 10, 25}, and knapsack capacity tight-

ness ratios 𝛼 ∈ {0.25, 0.5, 0.75}. The results for the Chu and Beasley test set are

reported in Table 3 for test cases with 100 items. For each class of test cases, the

arithmetic mean of the 10 instances of the same class is reported. For cases with

five constraints, EKSA closed much higher integrity gaps than GLCIs with mar-

ginally longer computation time. However, GLCIs perform significantly better than

EKSA when m = 30. The reason could be that the intersection of single knapsack

polytopes is not a good approximation of the MKP polytope as the number of con-

straints increases. The exact separation procedure of CPALC failed on many cases

when m = 10 and m = 30 due to the difficulty to make integral the cutting plane

obtained from RMKP-S(l). However, CPALC achieved similar amount of closed

integrity gaps with many fewer cuts when compared with GSA-IP, which demon-

strated the superior strength of the exact separation procedure for MKP.

6 Conclusion

The local cuts approach was implemented for the 0–1 multidimensional knapsack

problem. Based on LP solution of MKP, a reduced separation problem is solved

exactly with the row generation algorithm. The valid inequality for the reduced MKP
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problem is then globally lifted to the original MKP problem. Computational experi-

ments are carried out on a comprehensive set of MKP instances which demonstrate

the superiority of the local cuts approach in terms of closed integrity gap. Further

research is needed to reduce the computation time and investigate the possibility to

combine the local cuts approach with a branch and bound algorithm or other meta-

heuristics.
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