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Abstract Polyhedral analysis is one of the most interesting elements of integer pro-

gramming and has been often overlooked. It plays an important role in finding exact

solutions to an integer program. In this paper, we will discuss what polyhedral analy-

sis is, and how some constraints for an integer programming model are “ideal” in the

sense that if the model contains all of these “ideal” constraints, then the integer opti-

mal solution can be obtained by simply solving a linear programming relaxation of

the integer program. This paper serves as a quick guide for young researchers and

PhD students.

Keywords Polyhedral Analysis ⋅ Integer Programming ⋅ Combinatorial

optimization

1 Introduction

Integer Programming (IP) has been widely used in real-life combinatorial optimiza-

tion problems, such as routing, scheduling, rostering, and hub-locations. There are

three major types of integer linear programs. Let c be a nonnegative vector in ℝn
, g

be a nonnegative vector in ℝp
, A be an m × n matrix, D be a m × p matrix, and b a

m-vector, with all elements in c, g, A, D, and b real numbers.

A mixed integer linear programming problem (MILP) is of the form:

max{cx + gy ∶ Ax + Dy ≤ b, x ∈ ℤn
+, y ∈ ℝp

+} (1)

As with usual practice, we do not distinguish between row and column vectors in

our notation. The focus of our paper will be on pure integer linear programming
problems (ILPs):
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max{cx ∶ Ax ≤ b, x ∈ ℤn
+}, (2)

and in particular, pure binary linear programming problems (BIPs):

max{cx ∶ Ax ≤ b, x ∈ {0, 1}n}. (3)

Of all aspects of an integer programming model, perhaps one is most interested in

how well it performs in terms of finding the optimal solution(s). Without doubt, the

solution methodology used (e.g., branch-and-bound, branch-and-cut, column gener-

ation etc.) plays a key role in the computational performance; however, the perfor-

mance also largely depends on the strength of the constraints of the integer program.

Consider two pure general integer programs described below.

𝐈𝐏𝟏 ∶ max{cx + dy ∶ 2x + 2y ≤ 5, x, y ∈ ℤ} (4)

𝐈𝐏𝟐 ∶ max{cx + dy ∶ x + y ≤ 2, x, y ∈ ℤ} (5)

Both IP1 and IP2 contain the same set of feasible integer points:

X = {(0, 0), (0, 1), (0, 2), (1, 0), (2, 0), (1, 1)}.

But IP2 is better in the sense that by solving the LP relaxation of IP2, we get the

integer solution for free and hence obtain the optimal solution to the integer program,

whereas with IP1, depending on the values of c and d, we may get a fractional value

when an LP relaxation is solved, in which case we obtain only an upper bound to

the optimal value of the integer program. IP2 is, therefore, an ideal formulation. We

now introduce the mathematical background, definitions, and notation.

Let P = {x ∈ ℝn
+ ∶ Ax ≤ b} be a polytope (a bounded polyhedron) containing

the set of all integer solutions to the system of linear inequalities Ax ≤ b. A point

x ∈ P is a convex combination of points in P if there exists xi
, for i ∈ {1, … , t} such

that x =
∑t

i=1 𝜆ixi
, where

∑t
i=1 𝜆i = 1 and 𝜆i ≥ 0 for all i = 1, … , t. Let X = {x ∈

ℤn
+ ∶ Ax ≤ b}. In this case, P is the linear programming relaxation of X.

The convex hull of X denoted by conv(X) contains all feasible convex combina-

tions of the points in X. An integer programming model is ideal if P = conv(X),
in which case solving P will produce naturally integer solutions, hence the optimal

solution for the integer program. In other words, there is no LP-IP (integrality) gap.

There are very few classic combinatorial optimization problems that present no inte-

grality gap, except for the ones for which the following property holds.

Proposition 1 ([1], Proposition 3.3) A linear program max{cx ∶ Ax ≤ b, x ∈ ℝn
+}

has an integral optimal solution and finite optimal objective value under the neces-
sary and sufficient condition that A is totally unimodular, and that b is a vector of
integers.

One classic combinatorial optimization problem with such properties is the assign-

ment problem.
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We say that P is full-dimensional if dim(P) = n, the number of decision variables,

in which case, one can find n + 1 affinely independent points in P.

Consider again the system of linear inequalities Ax ≤ b. Let M=
be the index sets

of equality constraints in Ax ≤ b, we denote these constraints by (A=
, b=); and M≤

be

the index sets of inequalities of Ax ≤ b, we denote these constraints by (A≤
, b≤). We

assume that (A≤
, b≤) cannot be written as a linear combination of (A=

, b=). We have

that M= ∩ M≤ = ∅ and that M= ∪ M≤ = M, with M the index set of all constraints in

Ax ≤ b. Now, if P is not full-dimensional, then dim(P) = n − rank(A=
, b=).

Let X = {x ∈ ℤn
+ ∶ Ax ≤ b}, if conv(X) is full-dimensional, then there is a unique

set of constraints that describes the conv(X). If such a complete polyhedral descrip-

tion is found, then solving the linear programming relaxation will give us the optimal

solution to the integer program for free.

In most real-life integer programming models, however, particularly the clas-

sic traveling salesman- and vehicle routing-family problems, as there are equal-

ity constraints (the degree constraints), the corresponding polytopes are not full-

dimensional. In such cases, there are in fact infinitely many complete polyhedral

descriptions. Take the following integer program as an example.

X = {x1, x2 ∈ ℤ | x1 + x2 = 6, 2 ≤ x1 ≤ 5, 1 ≤ x2 ≤ 4}. (6)

The only feasible points are: X = {(2, 4), (3, 3), (4, 2), (5, 1)} and that conv(X) is one-

dimensional, with (2, 4) and (5, 1) the extreme points. Given these two extreme points

given, one possible complete description of conv(X) is:

X = {x1, x2 ∈ ℝ | x1 + x2 = 6, x1 ≥ 2, x1 ≤ 5}. (7)

and another is:

X = {x1, x2 ∈ ℝ | x1 + x2 = 6, x2 ≥ 1, x2 ≤ 4}. (8)

One can easily see that there are in fact infinitely many complete descriptions of

conv(X).
We now introduce a few terminologies regarding constraints of an integer pro-

gram. Again, let X = {x ∈ ℤn
+ ∶ Ax ≤ b}. For simplicity, we will use (𝜋, 𝜋0) to rep-

resent a constraint defined by 𝜋x ≤ 𝜋0. We say that (𝜋, 𝜋0) is a valid constraint if 𝜋x ≤

𝜋0 for all x ∈ X. We say that F defines a face of conv(X) if F = {x ∈ X ∶ 𝜋x = 𝜋0}.

A face is a proper face if F ≠ ∅ and F ≠ conv(X).
A face is called a facet if dim(F) = dim(conv(X)) − 1. One way to show that

(𝜋, 𝜋0) defines a facet is to use the following theorem.

Theorem 1.1 ([2], Theorem 3.6 in Sect. 1.4) Let P = {x ∈ ℝn ∶ Ax ≤ b}, let
(A=

, b=) be the equality set of P ∈ ℝn, and let F = {x ∈ P ∶ 𝜋x = 𝜋0} be a proper
face. We have that F is a facet of P, if and only if there exists 𝛼 ∈ ℝ1 and 𝜇 ∈ ℝ|M=|

such that (𝛼𝜋 + 𝜇A=)x = (𝛼𝜋0 + 𝜇b=), for all x ∈ F.
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As an illustration, let:

X = {x1, x2, x3 ∈ ℤ3
+ ∶ x1 + x2 ≤ 6, x1 ≤ 5, x2 ≤ 4, x3 = 3}. (9)

Suppose we want to show that x2 ≤ 4 is facet-defining for conv(X). We have that

F = {x ∈ X ∶ x2 = 4}, (𝛼𝜋 + 𝜇A=) = (0, 𝛼, 𝜇), with 𝛼, 𝜇 as unknowns, and for every

x ∈ F = {(0, 4, 3), (1, 4, 3), (2, 4, 3)}, we have that (0, 𝛼, 𝜇)x = (𝛼𝜋0 + 𝜇b=) = (4𝛼 +
3𝜇). Hence x2 ≤ 4 is a facet for X.

The theorem is mathematically very elegant, however in practice, it is easier to

just demonstrate that the dimension of F is one less than the dimension of conv(X),
by finding the rank of the matrix with each row representing a distinct x ∈ F.

A complete polyhedral description is made up of facets. However hard it may

seem, the more facets we can find for an integer program, the more likely we will

have a small integrality gap, and consequently the more likely the exact method based

on the integer program will perform well.

2 The Double Description Methods and Open Source Tools

There are a few good open source software that can be utilized for polyhedral

analysis. For polytopes that are full-dimensional, one can use, e.g., cdd/cdd+ [3]

and PORTA [4]. However, PANDA [5] can handle polytopes that are not full-

dimensional. In any case, all software are based on the idea of double description

of a polyhedron.

The double description method was first proposed in [6]. Essentially, the idea is

that every polyhedron can be described in two equivalent ways: a complete polyhe-

dral description P = {x ∈ ℝn ∶ Ax ≤ b}, or the set of all extreme points in P, and

from one, we can deduce the other. The former is referred to as the H-representation

and the latter, the V-representation.

To explain how PANDA works, consider the following example.

X = {x, y ∈ {0, 1}2 ∶ 2x + 2y ≤ 3}. (10)

We first enter the LP relaxation of (10) into PANDA, using the H-representation, as

below.

Names:
x y
Inequalities:
2x + 2y <= 3
x <= 1
y <= 1
x >= 0
y >= 0
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We then run PANDA by entering the command ./panda Toy.ine >
Toy.ext. In the output file Toy.ext, we have the V-representation of the extreme

points of the LP relaxation of (10).

Vertices/Rays:
1 2 2
2 1 2
0 1 1
1 0 1
0 0 1

The points above are the extreme points {( 1
2
, 1), (1, 1

2
), (0, 1), (1, 0), (0, 0)} for the

LP relaxation of (10). For binary integer programs, to obtain the extreme points for

conv(X), one can simply remove the fractional extreme points.

To obtain the facets for conv(X), one can enter the modified V-representation of

the integer extreme points: (0, 1), (1, 0), and (0, 0), as below:

Names:
x y
Vertices:
0 1
1 0
0 0

with the command ./panda Toy1.ext > Toy1.ine. PANDA will then

return the facets for conv(X).
Inequalities:

-x <= 0
-y <= 0
x + y <= 1

Since conv(X) is full-dimensional, the three constraints above define the complete

description of the convex hull, and the description is unique.

In Fig. 1, we present an example of a basic formulation, in H-representation, of the

Cardinality Constrained Multi-cycle Problem (CCMcP) [7] (see Model 4 therein),

with only four vertices on the graph, and a cardinality restriction of three. (Readers

are referred to the paper for the IP model, hence we do not repeat the description of

CCMcP in this paper.)

When we execute PANDA, we obtain all the extreme points for the LP relaxation,

including the fractional ones. After removing the fractional points, we obtain the set

of extreme points in Fig. 2.

For pure binary integer programming problems, the extreme points of the convex

hull are in fact the set of all feasible points. Let x∗1 and x∗2 be two distinct extreme

points of a BIP; let X = {x ∈ {0, 1}n ∶ Ax ≤ b}; and let x = 𝛼x∗1 + (1 − 𝛼)x∗2, for

0 < 𝛼 < 1, then 0 < xj < 1 for at least one j ∈ {1, … , n}, hence x ∉ X. If we are

able to systematically generate all the feasible points, then we have the set of all

extreme points. (See, e.g., [8] for an example). When we do not know the set of

all feasible integer points, we must carry out the steps described above. For most

classic combinatorial optimization problems, however, in particular the TSP-family
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Fig. 1 H-representation of model 4 of CCMcP in [7], with 4 vertices on the graph, and a cardinality

restriction of 3



A Quick Practical Guide to Polyhedral Analysis in Integer Programming 181

Fig. 2 Extreme points for the IP presented in Fig. 1

and VRP-family problems, as well as cycle and chain problems, we do know the set

of all feasible integer solutions.

When we enter the V-representation of all the extreme points of a BIP, PANDA

will return one complete description of the convex hull of the feasible integer points.

Recall that if a polytope is full-dimensional, there is only one unique complete poly-

hedral description, otherwise, there are infinitely many. In Fig. 3, we have one of the

complete polyhedral descriptions of the small CCMcP example returned by PANDA.

So, even though we may have a class of constraints that we suspect is facet-defining,

the fact that it does not appear in the output returned by the software does not mean

that the constraint is definitely not facet-defining. The benefit of using a software for

obtaining even one of the complete polyhedral description is that it can give us some

constraints that we did not know are facet-defining, then we can proceed to establish

the proofs.

Notice that the bound constraint x ≥ 0 is often facet-defining, see, e.g., [9], these

are considered trivial constraints. Notice also that sometimes a constraint is only

facet-defining for small problems, so in the end we cannot prove that they are facet-

defining for all problem sizes. A constraint can also be facet-defining for larger prob-

lems, not toy-sized ones, so they are not found by a software.

3 Proof Techniques

Direct proof For BIPs of small scale, when we have all the extreme points explicitly

generated, to show that a constraint (𝜋, 𝜋0) is facet-defining, one needs to show that

the set of extreme points (e.g., x1, … , xt
, where each of xj

, for j = 1, … , t, is a n-

dimensional vector) that satisfy 𝜋x = 𝜋0 are of dimension dim(conv(X)) − 1. This

can be done by calculating the rank of (x1,−1), … , (xt
,−1). If the rank is exactly

dim(conv(X)), then there are dim(conv(X)) affinely independent feasible solutions
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Fig. 3 One complete

polyhedral description of the

convex hull of the small

CCMcP example

that satisfy the constraint (𝜋, 𝜋0) at equality, that is, dim(F) = dim(conv(X)) − 1,

and therefore (𝜋, 𝜋0) defines a facet.

For BIPs of large scale, we have to explicitly construct dim(conv(X)) affinely

independent feasible integer points that satisfy (𝜋, 𝜋0) at equality. One way is to make

sure a new variable is used in each new solution. Examples of such direct proofs

can be found in [10] for the ATSP and VRPs with time windows or precedence
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constraints, and [11] for cardinality constrained quadratic knapsack problem and the

quadratic selective TSP.

Mathematical induction A one-dimensional mathematical induction framework

for the Asymmetric Travelling Salesman Problem was proposed in [12], and the

concept is essentially to use vertex insertion and can be applied in many cycle-based

combinatorial optimization problems. When there are side constraints, however, e.g.,

cycle-cardinality constraints, a two-dimensional mathematical induction is required,

(see e.g., [13] in the context of the Asymmetric Travelling Salesman Problem with

Replenishment Arcs (RATSP)).

Monotone polytope Let P = {x ∈ ℝn ∶ Ax ≤ b} and lies in the positive orthant.

The monotone polytope is defined by ̃P = {x̃ ∈ ℝn ∶ 0 ≤ x̃ ≤ x, for some x ∈ P}.

The monotone polytope is full-dimensional, hence easier to analyze, though one will

still need the results for the original polytope that is not full-dimensional. Fortu-

nately, the theoretical result presented in [14] enabled us to translate results from the

monotone polytope to the original polytope of an integer program. See also [15] for

background mathematics.

Definition 1 Let dim(̃P) = n; N be the index set of variables, (𝜋, 𝜋0) be a valid

inequality for ̃P; N0 = {j ∈ N | 𝜋j = 0}; A=
0 be the r by |N0| submatrix of A=

with

only columns with indices in N0
. The inequality (𝜋, 𝜋0) is said to be support reduced

with respect to P if A=
0 has a full row rank. Further, w.l.o.g., let Nr = {j1, … , jr} be

the index set of the columns of a basis for A=
0 . If (𝜋, 𝜋0) satisfies the condition that

for each k ∈ N0 ⧵ Nr
, if N0 ⧵ Nr ≠ ∅, there exists a pair x1, x2 ∈ {x ∈ P | 𝜋x = 𝜋0},

such that

{jk} ⊆ {j ∈ N | x1j ≠ x2j } ⊆ N0 ⧵ Nr

then (𝜋, 𝜋0) is strongly support reduced.

Consider again (9) and the inequality x2 ≤ 4. We have that A= = [0, 0, 1], N0 =
{1, 3}, and A=

0 = [0, 1]. As A=
0 has a full row rank, it is support reduced. The index

set for its column basis is Nr = {3}. Now, let F = {x ∈ X | x2 = 4} (with X the fea-

sible set for (9)). Consider x1, x2 ∈ F with x1 = (0, 4, 3) and x2 = (1, 4, 3), we have

that {j ∈ N | x1j ≠ x2j } = {1}, which is ⊇ {1} and ⊆ N0 ⧵ Nr = {1}. Hence, x2 ≤ 4
is strongly support reduced.

Theorem 3.1 ([14]) Let 𝜋x ≤ 𝜋0, where 𝜋0 ≠ 0, be facet-defining for the monotone
polytope conv( ̃X). If 𝜋x ≤ 𝜋0 is strongly support reduced with respect to conv(X),
then it is also facet-defining for conv(X).

Hence, x2 ≤ 4 is facet-defining for X in (9). An application of this theorem in the

context of minimum-span graph labeling problem with integer distance constraints

can be found in [16].
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4 Literature and Research Directions

There are a number of rather good papers that one can consult before embarking on a

polyhedral analysis project, e.g., [17] for the p-cycle polytope, [18] for the Cardinal-

ity Constrained Covering Traveling Salesman Problem, [19] on the cycle polytope of

a directed graph and its relaxations, [20] on the k-cycle polytope, [21] on the circuit

polytope, [22] on the Capacitated Vehicle Routing Problem, [12] on ATSP, and many

more. One should also consult a few very good textbooks on polyhedral studies, e.g.,

[1, 2].

For polytopes that are not full-dimensional, to generate an alternative set of facets

from the complete polyhedral description provided by a software may be a worth-

while exercise. Firstly, some constraints have better structures that make it possible

to develop fast separation algorithms. Secondly, some constraints are simply easier

to prove that they are facet-defining. Further, one should not give up so quickly and

jump straight to (meta-) heuristics just because the full IP did not perform well on

a commercial IP solver. One should always explore stronger constraints and experi-

ment with different relaxations and decomposition methods, or even using these as

part of a heuristic method.
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