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Abstract. We propose qPCF, a functional language able to define and
manipulate quantum circuits in an easy and intuitive way. qPCF follows
the tradition of “quantum data & classical control” languages, inspired
to the QRAM model. Ideally, qPCF computes finite circuit descriptions
which are offloaded to a quantum co-processor (i.e. a quantum device)
for the execution. qPCF extends PCF with a new kind of datatype:
quantum circuits. The typing of qPCF is quite different from the main-
stream of “quantum data & classical control” languages that involves lin-
ear/exponential modalities. qPCF uses a simple form of dependent types
to manage circuits and an implicit form of monad to manage quantum
states via a destructive-measurement operator.

1 Introduction

In the last fifteen years, the definition and the development of quantum pro-
gramming languages catalyzed the attention of a part of the computer science
research community. Quantum computers are a long term but concrete reality.
Even if physicists and engineers have to continuously face tricky problems in
the realization of quantum devices, the advance of these innovative technologies
promises a noticeable speedup.

A calculus for quantum computable functions should present two different
facets. On the first hand there is the unitary aspect of the calculus, that cap-
tures the essence of quantum computing as algebraic transformations of state
vectors by means of unitary operators. On the other hand, it should be pos-
sible to control the quantum steps by means of classical computational steps,
“embedding” the pure quantum evolution in a classical computation. Behind
this second perspective we have the usual idea of computation as a sequence of
discrete steps on (the mathematical description of) an abstract machine. The
relationship between these different aspects gives rise to different approaches to
quantum functional calculi (as observed in [1]). If we divide the two features, i.e.
we separate data from control, we adopt the so called quantum data & classical
control (qd&cc) approach. This means that classical computation is hierarchical
dependent from the quantum part: a classical program (ideally in execution on
a classical machine) computes some “directives”: these directives are sent to a
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hypothetical device which apply them to quantum data. Therefore classical pro-
gram controls quantum data or, in other words, classical computational steps
control the unitary part of the calculus. In general, the classical control acts on
the quantum side of the computation in two way: by means of the selection of
unitary transformations to be applied and by means of data observations, i.e.
by means of measurements. A different approach based on the quantum con-
trol is the superposition-of-programs paradigm. See [34], Part III, for details.
This idea is inspired to an architectural model called Quantum Random Access
Machine (QRAM). The QRAM has been defined in [10] and can be viewed as a
classically controlled machine enriched with a quantum device. On the grounds
of the QRAM model, Selinger defined the first functional language based on
the quantum data-classical control paradigm [28]. This work represents a mile-
stone in the development of quantum functional calculi and inspired a number
of different investigations. A key research line tried to retrace, in the quantum
setting, foundational results about computability. In this direction, calculi for
quantum computable functions have been defined, and equivalence results with
other computational models, such as Quantum Turing Machine and Quantum
Circuit Families, have been proved [4,11,12,35]. Moreover, interesting proposals
to provide satisfactory denotational semantics for qd&cc functional calculi have
been proposed in [8,19,29]. Many quantum programming languages [7,28,29]
implementing the (qd&cc) approach have been proposed in literature. A recent
and interesting proposal is Quipper which is an embedded, scalable functional
programming language for quantum computing proposed in [28]. Quipper is essen-
tially a high-level circuit description language: circuits can be created, manipu-
lated, evaluated in a mixture of procedural and declarative programming styles.
The most important quantum algorithms can be easily encoded thanks to a
number of programming tools, macros, and extensive libraries of quantum func-
tions. The idea of the separation between control and data is definitely reformu-
lated in terms of quantum-coprocessor [31]. Quipper has been mainly developed
as a concrete language. Authors are not interested in the foundational study
of it. Quipper is based on the lambda calculus with classical control proposed
in [28], and this relationship is discussed in [26], by means of a suitable calculus
named Proto-quipper. In [14], the semantics of Proto-Quipper is further formal-
ized by means of the linear specification logic SL. The type system is based on a
linear logic approach that ensures the correct interaction of classical and quan-
tum types. The “qd&cc” philosophy, in particular the circuit generation oriented
approach, has been also adopted in the purely linear core-language QWire, intro-
duced in [22]: a low-level quantum language developed to be a “quantum plugin”
for a hosting classical language like Haskell. QWire and qPCF are based on some
similar ideas. Differently from qPCF, QWire retains the focus on quantum states
which is typical of the qd&cc tradition. In qPCF quantum states are not more
atomic data, they are replaced by quantum circuits. In this paper we advance
in the research on the languages for qd&cc paradigm by formalizing a flexible
quantum language. We propose qPCF, a simple extension of PCF. We quickly
list the main features of qPCF.
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– Absence of explicit linear constraints: the management of linear resources is
radically different from the ones proposed in languages inspired to Linear Logic
such as [4,11,12,14,26,28,35]; so, we do not use linear/exponential modalities.

– Use of dependent types : we decouple the classic control from the quantum
computation by adopting a simplified form of dependent types that provide a
sort of linear interface.

– Emphasis of the Standardization Theorem: the Standardization Theorem,
proved in [4,35], and largely used in circuit description languages such as Quip-
per, decomposes computations in different phases, according to the quantum
circuit construction by classical instructions and the successive, independent,
evaluation phase involving quantum operations.

– Unique measurement at the end of the computation: following the “principle
of deferred measurement” which states that any quantum circuit is equivalent
to one where all measurements are performed as the very last operations (see,
e.g., [17]), we add an explicit measurement operator to qPCF syntax that
models the (von Neumann) Total Measurement [17], a kind of measurement
that reduces a quantum state to a classical one (a sequence of classical bit).
Essentially we are using a monad-style programming, and we “embed” both,
quantum evaluation and measurement into the operator dmeas (see Sect. 3 for
dmeas operational behavior).

– Implicit representation of quantum states: differently from other proposals
(e.g. [4,28,35]), we hide quantum states we are working on. This can be
achieved thanks to the monadic-style approach we mentioned above.

– Turing Completeness: qPCF retains PCF expressive power. So, a qPCF term
can represent an infinite class of circuits.

Synopsis: Section 2 introduces syntax and typing system of qPCF; the opera-
tional semantics of qPCF is in Sect. 3; Sect. 4 sketches some properties of qPCF;
Sect. 5 contains some examples of qPCF circuit encodings; Sect. 6 is devoted to
discuss conclusions and future work.

2 qPCF

In this section we describe qPCF, a programming language that pursue seri-
ously the application of the standardization theorem of [4,35]: it states that, in
the “quantum-data & classic control languages”, the quantum evaluation can
always be postponed after the classical execution. On the other hand, the classi-
cal evaluation designs a quantum circuit that can be evaluated in a second time.
Ideally, qPCF computes a finite circuit description which is offloaded to a quan-
tum co-processor for the execution. qPCF is definitively more flexible than the
languages presented in [4,19,27–29]. It extends PCF with quantum circuits, viz.
a new kind of classical data. Indeed, as observed in [22], quantum circuits can
be freely duplicated and erased. We realized that the linearity of mainstream
typing systems of “quantum-data & classic control” languages has been used
to impose constraints on both the management of quantum-data and the man-
agement of classic control. qPCF neatly splits these linear facets by using two
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different solutions. On the one hand, qPCF shows that linearity for quantum
control can be completely confined to atomic datatypes by using a simplified
form of dependent types [23]. A dependent type picks up a family of types that
bring in the type auxiliary information (just circuit arity in our case). On the
other hand, the linearity needed to manage quantum state is hidden in a destruc-
tive measure operator (by means of an implicit form of monad) that model von
Neumann Measurement [17] and allows us to avoid the explicit management of
intermediate quantum states.

In the rest of the paper, we assume some familiarity with notions as quantum
bits (the quantum equivalent of classical data), quantum states [15,16,32,33]
(systems of n quantum bits), quantum circuit and quantum circuit families [18].
A quantum circuit generalizes the idea of classical circuit, replacing the ele-
mentary classical gates (AND, OR, NOT...) by elementary quantum gates [17],
that enjoy matemathical descriptions in terms of unitary operators on suitable
Hilbert spaces. A quantum circuit family can be (quite informally) considered
as a function K : N → K (denotable as (Ki)i<ω), where K is the set of circuit
descriptions; K(n) returns Kn, i.e. the circuit of ariety n. See [35] for a friendly
introduction to quantum computing. We remand to [17] for a complete overview
about the topic. See also [9,18] for details about quantum circuit families and
some crucial discussions about the universality of sets of quantum gates. Finally,
see [25] for a rigorous algebraic characterisation of quantum computing.

2.1 Syntax

Dependent types have been widely used in strongly normalizing settings (usually,
with logic goals) where the evaluation of expressions is always terminating. But
in programming settings the strong normalization [21] is not realistic. Unfortu-
nately, to allow types that embeds undefined terms (viz. not strongly normaliz-
ing ones) requires the management of “undefined types” [3]. We circumvent this
issue by identifying a subclass of terms (always normalizing) that we use in our
dependent types. qPCF extends PCF [5,6,24] to manage some additional atomic
data structures: indexes (always normalizing number expressions) and circuits.

The row syntax of qPCF follows.

M, N ....= x | λx.M | MN | n | pred | succ | if | Yσ | set | get
| �EE′ | s | append | iter | reverse | size | dMeas .

In the first row we extended PCF with syntactic sugar to facilitate the bitwise
access to digit: get allows us to read the i-th digit of the binary representation
of a numeral, i.e. its i-th bit; set allows us to modify the i-th bit of a numeral.

Index expressions (ranged over by E) are completely formalized via the typing
(cf. Table 1). They include numerals and some total operations on expressions:
� ∈ {+, ∗} (viz. sum, product).

We assume U to range on a given set of selected gates (i.e. unitary operator,
see [17]): if U is a fixed set of computable unitary operators then, we associate
to each computable operator U ∈ U a symbol U. We represent circuits by means
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of strings, viz. the Kleene-closure of the following symbols: the parallel compo-
sition of circuits denoted ‖ (i.e. side-by-side placing of circuits), the sequential
composition of circuits ⦂ and gate-names U. append sequentializes two circuits
of the same arity. iter produces the parallel composition of a first circuit with a
given numbers of a second one. The goal of the operator reverse is to transform
a circuit in its adjoint one (in case the gate-base has been chosen closed under
adjunction, otherwise it will be meaningless).

size is an operator that applied to a circuit returns its arity: an index infor-
mation. It is worth to notice that size do not add any expressivity to qPCF,
because the programmer can explicitly manage pairs of “circuit together with
arity”: so that, a projection provides the arity of the circuit. We added size
to qPCF to emphasize the gain that dependent type can provide in a concrete
context, although this makes the proofs of the language properties more complex.

Last, but not least, we use dMeas (a.k.a. destructive measure) to evaluate
circuits initialized via a numeral (representing a binary classical state): dMeas
returns the classic state (encoded in the binary representation of a numeral)
obtained measuring the final quantum state of the considered circuit. Tradition-
ally qd&cc languages focus on quantum states, while qPCF focuses on circuits
(hiding states in an monadic measure).

Typically, U will include a universal base for quantum circuits (see [9]). We
like to remark that we can instance U to interesting family of gate as reversible
ones: in these cases we are not properly building a quantum programming lan-
guage. If k ∈ N then we denote U(k) the gates in U having arity k + 1, so
U =

⋃ω
0 U(k). Notice that we do not introduced explicit permutations, because

they can be provided by means of a convenient choice of quantum gates (see,
e.g. [30]). Thus, the choice U determines whose permutations our circuits can
use. We also notice that the gate identity is a particular permutation.

2.2 Typing System

Standard PCF types are extended to manage circuits and their dependencies.
We use types decorated by numerals to define a denumerable family of circuits.
Our approach is closely inspired to that mentioned in [23, Sect. 30.5] to manage
types of vectors (with dependencies): the decoration carry around some arity
information. We avoided general dependent types systems (see [3] for a survey)
because their great expressiveness is exceeding our need, we preferred to maintain
the qPCFtype system as simple as possible by aiming to show the feasibility of
the approach and its concrete benefits. Our approach to dependent types is based
on a special kind of numeric expressions that can be managed in a limited way:
index. Summing up, types of PCF (i.e. integers and arrows) are flanked by two
new types: circuits (viz. strings typed with dependent types that carry around
numeric information about arities) and indexes (that grasp a subset of numeric
expressions that express only terminating expressions).

Types of qPCF are formalized by the following grammar:

σ, τ ....= Nat | Idx | σ → τ | circ(E) | Πx.τ
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where E is an index expressions (morally, a strongly normalizing numeric expres-
sion). As in standard dependent type system, we replace arrows involving depen-
dencies by quantified types, namely an arrow σ → τ is replaced by Πxσ.τ when-
ever xσ occurs in τ in order to emphasize that τ depends from x.

Index. Idx aims to pick up a subset of expressions on natural numbers being
strongly normalizing, i.e. we want to cut out undefined PCF-expressions as
YNat(λxNat.x) (viz. a looping forever term). The leading use of Idx is to type
terms M embodied in dependent types (i.e. used in types via circ(M)). The goal
is to select numeric expressions that made the equivalence decidable (when such
expressions are closed). We focus on a restricted, but revealing, syntax of index
expressions is E ....= xIdx | n | � E E′ where � ∈ {+, ∗} viz. operators denoting
addition and multiplication. We are considering a very basic set of binary oper-
ators that can be conveniently extended in a concrete case, e.g. by adding the
(positive subtraction) −̇, or the %, or a selection ifx and so on.

Above expressions are typed Idx by the following rules:

B[x : Idx] � xIdx : Idx
(i1)

B � n : Idx
(i2)

B � E0 : Idx B � E1 : Idx
B � � E0 E1 : Idx

(i3)

where B denotes a standard typing base, i.e. sets of pairs (variable and type).
Index expression are closed when they do not contain any free variable. As

usual for PCF, the evaluation is focused on closed expressions, and formalized
by the following rules:

n ⇓⇓⇓ n
(n)

E0 ⇓⇓⇓ m E1 ⇓⇓⇓ n

� E0 E1 ⇓⇓⇓ m � n
(op)

where we use the � to denote both its name and its straighforward semantics.
We remark that we are considering a strict subset of the index expressions of
qPCF in order to increase some intuition (e.g. by neglecting size).

It is immediate that the above index expressions are normalizing with the
proposed evaluation strategy, when we focus on closed terms. Moreover, we
can informally claim that they are strongly normalizing in the straightforward
lambda-calculus behind our semantics, that can be obtained as usual by includ-
ing some δ-rules for constants.

The most basic property of paradigmatic typing system is that well-typed
terms do not “go wrong”, i.e. types are preserved by the evaluation and, if the
evaluation stops then the result is a value.

Theorem 1 (Preservation & Progress). (i) If � E : Idx and E ⇓⇓⇓ E′ then
� E′ : Idx. (ii) If � E : Idx and E ⇓⇓⇓ E′ then E′ is a numeral.

Remaining typing. We can now extend the typing to the whole qPCF: the typing
system is given in Table 1 (be careful to implicit assumption remarked in the
caption).
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Table 1. Typing Rules. Each typing rule contains implicit premises: (i) all occurrences
of circuits types (also those in bases) embody a term typed Idx with the given base;
(ii) all free variables (occurring in terms and types) are typed in the base.

Finite sets of pairs variable, type are called bases whenever variable-names
are disjoint: we use B to range on them. We write B[x : σ] to denote the set
where the pair x : σ is added (possibly replacing an pair involving x. As usual,
dependent type systems include a typing rule making explicit some type inter-
convertibility. We consider types up to a congruence 	. We define 	 as the
smaller equivalence that includes: (i) the α-conversion of bound variables and β-
conversion, (ii) sum and product are associative and commutative; (iii) product
distributes over the sum, i.e. (∗ E (+ E0 E1)) 	 (+ (∗ E E0)(∗ E E1)); (iv) 0 is the
neuter element for the sum; and, (v) 1 is the neuter element for the product. We
use the type equivalence often implicitly. In particular in the typing system (cf.
Table 1) types (containing dependencies) are considered up to equivalence.

Rules (p1), (p2), (p3), (p4), (p5), (p6), (p7), (p8) are directly inherited from
PCF and do not require special care. We also note that (p1) can be instan-
tiated to (i1) (which has not been included in the system). Rules (p6), (p8)
are restricted to excludes undefined index expressions. This restriction avoid
types containing terms (i.e. index expressions) being not normalizing. The cases
excluded by (p3), (p4) are managed by rules (x1), (x2). Rules (x1), (x2) reflect
the usual approach of dependent types.

Rule (b1), (b2) type get and set that use the second numeral to select a bit
in the binary representation of the first argument: get extract such bit, set
modify it. The rule (x3) allows us to transform an index in a numeral typed Nat.
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The rule (x4) is typing an operator that allows us to recover in the computation
the index information carried around by the circuit type.

Rules (c1), (c′
1), (c′′

1),(c2), (c3), (c4), (c5) conclude our type-equipment. (c1),
(c′

1), (c′′
1) type strings representing circuits. (c2) allows to parallel compose cir-

cuits: a base circuit M and some copies of a circuit N. (c3) allows to sequentialize
circuits of the same arity. (c4) transforms a circuit in its adjoint one.

Example 1. An interesting example of typed term that provides evidence of
the circularity arising from dependent types is: x : ΠzIdx. circ(z) � x size (M) :
circ(size (M)) where M can be any term of qPCF typed by a circuit.

The above example shows that in types can occur undefined terms, maybe
containing open variables not typed Idx. In particular, size can contain any
term (that can be typed as a circuit of a given arity). Luckily, the evaluation
of size does not need the normalization of its argument: it just requires the
normalization of its type.

3 Operational Semantics

As standard for PCF, the evaluation focuses on closed terms of ground types,
viz. Nat, Idx, circ(E). Because the inclusion of dependent types and the presence
of the operator size, we assume that an evaluated terms brings implicitly in it,
its whole typing information. We denote V the closed values of ground types,
namely numerals (typed either Nat or Idx), and strings (typed as circuits of a
given arity). The operational evaluation is formalized by means of the evaluation
predicate M ⇓⇓⇓ V: it holds whenever it is the conclusion of a derivation built
on the rules presented in Table 2 (we included also the rule for the evaluation
of index expressions). Table 2 includes the standard call-by-name semantics of
PCF, namely the first two lines of rules. Since they are well-known, we do not
insist further on them. The rules (sz), (op) compute some index expressions. In
particular, (sz) recovers the numeral decorating the type circuit of a closed term.
Since the involved expressions do not contain open variables, the evaluation does
not pose any problem.

Let 
m�n be notation for ((m / 2) . . . / 2
︸ ︷︷ ︸

n

)%2 where / is the integer division and

% is the modulo. Thus, 
m�0 is the rightmost bit of the binary representation of m.
Moreover, if k is the logarithm (base 10) of m then 
m�k−1 = 1 and, for all h greater
than k, 
m�h = 0. The rule (gt) and (st) get/set a bit of the first argument (the
one selected by the second argument). Notice that set, get are syntactic sugar
managing classical input states. In particular, the numeral set 0 n + 1 represents
the state 1 0 . . . 0︸ ︷︷ ︸

n

.

The rules (u), (u′), (u′′), (r0), (r1), (r2), (a), (d) build circuits, i.e. strings on
⦂, ‖ and the gate-names U. The semantics of append is simply the sequential post-
position of circuits. The semantics of iter is the parallel composition of circuits,
driven by an argument of type Idx: thus the arity of the generated circuit is well
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Table 2. Operational Semantics.

defined. The semantics of reverse is build to produce the adjoint circuits when
a suitable endo-function ‡ is provided by the co-processor. If the co-processor
do not provide it (for instance, because the set U of unitary gate is not closed
under adjunction) then we let ‡ be the identity, so that reverse is well-defined
but uninteresting.

Let m�k to denote the numeral k such that the binary representation of n is
the restriction of the binary representation of m on the first k bits. It is worth
to recall that, conventionally, each classic state is represented via an integer
having (implicitly) a number of relevant bits as the arity of the circuit. The
rule (m) evaluates the dMeas arguments and uses the results of these evaluations
to feed an external evaluation: morally, a quantum co-processor [31]. The co-
processor call is done by using the auxiliary evaluation circuitEval. It executes
the quantum circuits on the provided classical initialization, then it returns the
measure of the whole final state. The rule explicitly restricts the evaluation of
the first argument to the relevant number of bits (i.e. the arity of the circuit).

In order to define our co-processor we need two ingredients. The first one is
the semantic for the evaluation of the circuit. We denote Circ the valid strings
of circuits, and O the set of unitary operators on finite dimensional Hilbert
spaces (informally, we are mapping circuit descriptions into their mathematical
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denotation, i.e. into corresponding algebraic operators). So that we can define
the circuit semantic by using the function Hilb : Circ → O defined as follows:
Hilb(U) ....= U; Hilb(C0 ‖ C1) ....= Hilb(C0) ⊗ Hilb(C1); Hilb(C0 ⦂ C1) ....= Hilb(C0) ◦
Hilb(C1). The second one is the semantic of the measure that rest on the von
Neumann Measurement [9], here dubbed vMeas. We define circuitEval(n, C) to be
the measure of the application of the circuit to our initial state (in the assumed
base), namely circuitEval(n, C) ....= vMeas(Hilb(C), n).

Equivalence. The operational equivalence can be defined by just considering
closed terms of type Nat because the operational differences in the other types
can be traced back to Nat (the reverse can be easily proved be false).

For many reasons, we are remarking the relevance of the notion of program
of PCF, i.e. a closed term of type Nat. First, the result of a circuit-measure
is a list of bits, viz. a natural number. Second, the circuits are represented
by using strings on a finite alphabet, that still (in a Turing-complete setting)
can be straightforwardly represented by numbers (at worst, paying some code-
obfuscation). These remarks should make clear why the evaluation of qPCF is
focused on natural numbers and the standard notion of program, as any PCF-like
programming language.

4 Properties of qPCF

qPCF is, morally, a PCF-like language endowed with a quantum co-processor.
This co-processor allows us to execute a quantum circuits that has been designed
by executing a classical control. The co-processor returns a measure (total, in
the sense that we measure the whole quantum state) of a run of the given circuit
on a given input, to our classical processor.

A first property of a paradigmatic programming language as qPCF is some
form of subject reduction. Moreover, we prove preservation, i.e. if a well-typed
term takes a step of evaluation then the resulting term is also well typed. A
second property expected for a programming language is progress [23]: well-
typed terms evaluation do not stuck. Roughly, a term P is stuck whenever the
evaluation of P ends in a normal form, which is not a ground value.

The main complexity in this proof comes from the fact that we have infinite
(two plus a family) ground types (viz. Nat, Idx, circ(E)). Example 1 shows that
each term can occurs in a type (in an index expression using size). To prove
preservation and progress we must unravel the mutual relationship that holds
between them.

Lemma 1. If B, x : τ � M : σ and B � N : τ then B � M[N/x] : σ[N/x] and,
moreover, if σ = Πzτ .σ′ then B � MN : σ′[N/x].

Proof. The proof follows by induction on the derivation B, x : τ � M : σ.

Theorem 2 (Idx-safety). If � M : Idx then M ⇓⇓⇓ n.
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Proof. The proof is quite complex but it can be done by defining a suitable
predicate of computability à la Tait.

Remark that Theorem 2 is stronger than both preservation and progress, in
fact it immediately implies both: (i) if M is closed, � M : Idx and M ⇓⇓⇓ N then N
is closed and � N : Idx, and (ii) if M is closed, � M : Idx and M ⇓⇓⇓ N then N is a
numeral.

Theorem 3 (Preservation). If M is a closed term such that � M : σ and M ⇓⇓⇓ N
then N is a closed term such that � N : σ.

Proof. The evaluation is applied only to terms typed by ground types, viz. Nat,
Idx, circ(E). Indeed, the rule in Table 2 are applied to them. The proof follows
by proving by mutual induction on the following statements: (i) if M is closed,
� M : Nat and M ⇓⇓⇓ N then N is closed and � N : Nat; and, (ii) if M is closed,
� M : circ(E) and M ⇓⇓⇓ N then N is closed and � N : circ(E). The fact that we
are restricting our attention on closed terms typed by ground types simplify our
proof by conveniently restricting the possible cases. The proof of (i) involves only
the rules (n), (s), (p), (β), (if l), (ifr), (Y), (gt), (st), (m), because the others are
excluded by hypothesis. The proof of (ii) involves only the rules (β), (if l), (ifr),
(Y), (u), (u′), (u′′), (r0), (r1), (r2), (a), (it), because the others are excluded by
hypothesis.

Likewise, a form of progress can be proved.

Theorem 4 (Progress)

– If M is a closed term such that � M : Nat and M ⇓⇓⇓ N then N is a numeral.
– If M is a closed term such that � M : circ(E) and M ⇓⇓⇓ N then there is a numeral

k such that E ⇓⇓⇓ k and N is a circuit of arity k.

Proof. The proof is similar to the that of the Preservation Theorem.

Progress and preservation together tell us that a well-typed term can never
reach a stuck state during evaluation.

We conclude this section with some preliminary comments about confluence.
It is well-known that quantum-measures break the deterministic evolution of a
quantum system. As a consequence, in presence of a measurement operator in a
quantum language (equipped with an universal basis of quantum gates), one nec-
essarily lost confluence. This loose of standard properties is typical in presence
of “non classical” operators (this holds for examples also in languages including
non deterministic or probabilistic choices [2,13]). Given an evaluation of a pro-
gram P, a second evaluation can ends with a different result; in particular, the
results of two evaluations of a same program can be different natural numbers.
Clearly, the “measurement-free” fragment of qPCF, i.e. the whole calculus minus
dMeas is patently deterministic. Finally, one can observe that the presence of the
measure does not imply the loss of the determinism, if we limits the use of qPCF
to deterministic circuits (by a suitable choice of unitary operators included in
U , e.g. only swaps).
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5 Examples

In this section we propose some higher-order encoding of quantum circuit fam-
ilies. In the following examples, we exploit the full expressive power of the lan-
guage. A qPCF term can be parametric, viz. it can represent an entire (infinite)
quantum circuit family. In general, given an input numeral n we define a term
that generates the description of the n-dimensional circuit of the family. Notice
that, in some sense, circuits can be parameterized both in “horizontal” and in
“vertical”, that correspond to the two basic ways to built greater circuits from
smaller ones, i.e. by sequential and parallel composition.

Example 2. The following term, applied to a circuit C : circ(k) and a numeral n,
concatenates n + 1 copies of C.

Mseq = λucirc(k).λkNat.Y Wuk : circ(k) → Nat → circ(k), where
W = λwσ.λucirc(k).λkNat.if x (u)

(
append (u) ((λycirc(k).λzNat.wyz) u pred(x))

)

has type σ → σ, with σ = circ(k) → Nat → circ(k). It is easy to show that MseqC0
generates the circuit built upon a single copy of the circuit C and so on.

It is straightforward to parameterize the above term in order to transform it
in a template for a circuit-builder that can be used for any arity. It suffices to
replace k with the variable kIdx and to abstract it; so that, the resulting term is
typed ΠkIdx. circ(k) → Nat → circ(k).

Example 3. The following term, applied to a numeral n and two unitary gates
U1 and U2 of arity k and h respectively, generates a simple circuit built upon a
copy of gate U1 in parallel with n copies of gate U2:

Mpar = λxIdx.λucirc(k)λwcirc(h). iter x u w : ΠxIdx. circ(k) → circ(h) → circ(x ∗ h + k)

It is straighforward to parameterize the above example. It suffices to replace
numerals k and h in the above example by variables and to abstract, by obtaining
a term typed ΠkIdx.ΠhIdx.ΠxIdx. circ(k) → circ(h) → circ(x ∗ h + h).

Example 4 (Deutsch-Jozsa). We provide the qPCF encoding of the circuit that
implements the generalised version of the Deutsch’s problem [17].

The “simple case” of Deutsch’s problem can be formulated as follows. Given a
block box Bf implementing some function f : {0, 1} → {0, 1}, determine whether
f is constant or balanced. The classical computation to determine whether f is
constant or balanced is very simple: one computes f(0) and f(1), and then check
if f(0) = f(1). This requires two different calls to Bf (i.e. one to compute f(0)
and one to compute f(1)) in the classical computing model. By means of the
“quantum superpower”, Deutsch showed how to achieve this result with a single
call of Bf in the quantum case.

The problem can be generalised considering a function f : {0, 1}n → {0, 1}
which acts on many input bits. This yields the n-bit generalization of Deutsch’s
algorithm, known as the Deutsch-Josza algorithm. The following picture repre-
sents the circuit, up to the last,measurementphase, for theDeutsch-Joszaproblem.
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When fed with a classical input state of the form |0 . . . 01〉, the outputmeasurement
of the first n−1 bits reveals if the function f is constant or not. If all n−1 measure-
ment results are 0, we can conclude that the function was constant. Otherwise, if
at least one of the measurement outcomes is 1, we conclude that the function was
balanced. See [17] for details about Deutsch and Deutsch-Josza algorithm.

Consider now the following qPCF terms. They easily show how to encode dif-
ferent levels of the measurement-free parametric circuit for the Deutsch’s prob-
lem. The last, evaluation-measurement phase, will be performed by our evalua-
tion dMeas, suitably fed with the representation of the classical input state (i.e.
set 0 0). Let H : circ(0) and I : circ(0) be the (unary) Hadamard and Identity
gates respectively (so the index is 0). Suppose MBf : circ(n) is given for some n
such that MBf ⇓⇓⇓ Uf where Uf : circ(n) is the qPCF§-circuit that represents the
function f .

Observe that λxIdx. iter xHH : ΠxIdx. circ(x) clearly generates x + 1 parallel
copies of unary Hadamard gates H, and λxIdx. iter xIH : ΠxIdx. circ(x) concate-
nates in parallel x copies of unary Hadamard gates H and one copy of the unary
identity gate I.

Thus the generator term of the parametric measurement-free Deutsch-Jozsa
circuit, here dubbed DJ− can be defined as
DJ− = λxIdx.λycirc(x). append(append(iter x H H)y)(iter x I H) : σ where
σ = ΠxIdx. circ(x) → circ(x).

We finally evaluate DJ− by means of dMeas, providing the encoding
MBf circ(n) of the black-box function f having arity n+1. Let us assume that

the term dMeas(set00,DJ−nMBf ) evaluated by means of ⇓⇓⇓, yields the numeral
m: the rightmost n digit of the binary representation of m are the result. Notice
that DJ−0MBf returns the circuit description of Deutsch algorithm.

6 Conclusions and Future Work

We introduced qPCF, an extension of PCF for quantum circuit generation and
evaluation. In this seminal work, we introduced qPCF syntax, typing rules and
evaluation semantics. We started to study its properties and we provided some
examples of parametric circuit families encoding. The presented research is the
first step of some works in progress and for several short time investigations.
First, we are further investigating qPCF properties sketched in Sect. 4. Second,
we aim to deepen qPCF flexibility, e.g. studying specialization of qPCF: for exam-
ple, we aim to focus on the (still “silent”) reverse operator (of the calculus), also
in different settings w.r.t quantum computing. We like to remark that gates
can range on different interesting sets. Since reversibility is nowadays one of the
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most interesting trend in computer science [20], a reversible specialization of
qPCF seems to be intriguing. Even if the use of total measurement does not rep-
resent a theoretical limitation, a partial measurement operator can represent an
useful programming tool. Therefore, another interesting task will be to integrate
in qPCF the possibility to perform partial measures of computation results.
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