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Preface

Theory and Applications of Models of Computation (TAMC) is a series of annual
conferences that aims at bringing together a wide range of researchers with interest in
computational theory and its applications. These conferences have a strong interdis-
ciplinary character; they are distinguished by an appreciation of mathematical depth
and scientific rather than heuristic approaches as well as the integration of theory and
implementation.

Some of the most important theoretical aspects of a model of computation are its
power, generality, simplicity, synthesizability, verifiability, and expressiveness.
The TAMC series of conferences explores the algorithmic foundations, computational
methods, and computing devices to meet the rapidly emerging challenges of com-
plexity, scalability, sustainability, and interoperability, with wide-ranging impacts on
virtually every aspect of human endeavor.

Due to a policy change in China, the 13th such conference had to be canceled. As a
consequence, the Steering Committee of TAMC decided to give the authors of those
articles that had been accepted for TAMC 2016 the option to present them at TAMC
2017. For TAMC 2016 a total of 24 papers was accepted out of 35 submissions.
For TAMC 2017, which was held in Bern during April 20–22, we had 68 submissions
and could accept 27. In both cases the reviewing process was rigorous and conducted
by international Program Committees. The authors and reviewers for TAMC 2017
were from 29 countries. This volume contains 45 of the 51 accepted submissions of
TAMC 2016 and TAMC 2017.

The main themes of TAMC 2017 were computability, computer science logic,
complexity, algorithms, models of computation, and systems theory, as reflected also
by the choice of the invited speakers.

This volume contains abstracts or full papers of the invited lectures of TAMC 2017
and the written versions of those contributions to TAMC 2016 and TAMC 2017 that
were presented at Bern.

If indeed, as Hilbert asserted, mathematics is a meaningless game played with meaningless
marks on paper, the only mathematical experience to which we can refer is the making of marks
on paper.

Eric Temple Bell, The Queen of the Sciences, 1931

We are very grateful to the Program Committees of TAMC 2016 and TAMC 2017,
and the many external reviewers they called on, for the hard work and expertise that
they brought to the difficult selection process. We thank all those authors who sub-
mitted their work for our consideration. We thank the members of the Editorial Board
of Lecture Notes in Computer Science and the editors at Springer for their encour-
agement and cooperation throughout the preparation of this conference.



Last but not least we thank our sponsors for providing the financial and structural
basis to have TAMC 2017 in Bern:

– Universität Bern
– Schweizerischer Nationalfonds
– Akademie der Naturwissenschaften Schweiz
– Burgergemeinde Bern
– Kanton Bern
– Engagement Stadt Bern
– Springer
– NASSCOM

April 2017 T.V. Gopal
Gerhard Jäger
Silvia Steila
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Cognitive Reasoning and Trust
in Human-Robot Interactions

Marta Kwiatkowska

Department of Computer Science, University of Oxford, Oxford, UK
marta.kwiatkowska@cs.ox.ac.uk

Abstract. We are witnessing accelerating technological advances in autono-
mous systems, of which driverless cars and home-assistive robots are prominent
examples. As mobile autonomy becomes embedded in our society, we
increasingly often depend on decisions made by mobile autonomous robots and
interact with them socially. Key questions that need to be asked are how to
ensure safety and trust in such interactions. How do we know when to trust a
robot? How much should we trust? And how much should the robots trust us?
This paper will give an overview of a probabilistic logic for expressing trust
between human or robotic agents such as “agent A has 99% trust in agent B’s
ability or willingness to perform a task” and the role it can play in explaining
trust-based decisions and agent’s dependence on one another. The logic is
founded on a probabilistic notion of belief, supports cognitive reasoning about
goals and intentions, and admits quantitative verification via model checking,
which can be used to evaluate such trust in human-robot interactions. The paper
concludes by summarising recent advances and future challenges for modelling
and verification in this important field.



Approximate Counting via Correlation Decay

Pinyan Lu

Shanghai University of Finance and Economics, Yangpu, China
lu.pinyan@mail.shufe.edu.cn

In this talk, I will survey some recent development of approximate counting algorithms
based on correlation decay technique. Unlike the previous major approximate counting
approach based on sampling such as Markov Chain Monte Carlo (MCMC), correlation
decay based approach can give deterministic fully polynomial-time approximation
scheme (FPTAS) for a number of counting problems. Based on this new approach,
many new approximation schemes are obtained for counting problems on graphs,
partition functions in statistical physics and so on.



On Extraction of Programs
from Constructive Proofs

Maria Emilia Maietti

Università di Padova, Padua, Italy
maietti@math.unipd.it

A key distinctive feature of constructive mathematics with respect to classical one is the
fact that from constructive proofs one can extract computable witnesses of provable
existential statements. As a consequence all the constructively definable number the-
oretic functions are computable.

In this talk we argue that for certain constructive dependent type theories known to
satisfy the proofs-as-programs paradigm, the extraction of computable witnesses from
existential statements must be done in a stronger proofs-as-programs theory, for
example in a realizability model. This is the case both for Coquand’s Calculus of
Constructions in [1] extended with inductive definitions and implemented in the
proof-assistant Coq, and for its predicative version represented by the intensional level
of the Minimalist Foundation in [2, 3].

References

1. Coquand, T.: Metamathematical investigation of a calculus of constructions. In: Odifreddi, P.
(ed.) Logic in Computer Science, pp. 91–122. Academic Press (1990)

2. Maietti, M.E.: A minimalist two-level foundation for constructive mathematics. Ann. Pure
Appl. Logic 160(3), 319–354 (2009)

3. Maietti, M.E., Sambin, G.: Toward a minimalist foundation for constructive mathematics. In:
Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis: Practicable
Foundations for Constructive Mathematics. Oxford Logic Guides, vol. 48, pp. 91–114.
Oxford University Press (2005)



Computational Complexity for Real Valued
Graph Parameters

Johann A. Makowsky

Israel Institute of Technology, Haifa, Israel
janos@cs.technion.ac.il

A real-valued graph parameter is a function f which maps (possibly weighted) graphs
into the real number R such that two isomorphic (weighted) graphs receive the same
value. Typical examples are graph polynomials FðG; �XÞ 2 R½�X� in k indeterminates,
partition functions and Holant functions. The talk is based [1, 2]. We address the
following issues:

(i) How to choose the computational model?
the complexity of evaluating FðG; �aÞ The weighted graphs are best modeled as
metafinite structures. In our discussion computations over the reals R are per-
formed in unit cost in the computation model of Blum-Shub-Smale (BSS).

(ii) What are the complexity classes?
In BSS polynomial time PR and non-determinsitic time NPR are well defined.
However, we are looking for an analogue of #P, which captures the complexity
of evaluating a graph polynomial FðG; �XÞ at real values of �X, for which there are
complete problems.

(iii) Are there dichotomy theorems?
For a graph polynomial FðG; �XÞ we look at the complexity spectrum which
describes how the complexity of evaluating FðG; �aÞ varies for different �a 2 R

k.
The analogue of Ladner’s Theorem, which states that there are many interme-
diate complexity classes, unless P ¼ NP, also holds in BSS. However, in all the
cases known in the literature, the complexity of evaluating FðG; �aÞ is either in
PR or NPR-hard (the Difficult Point Dichotomy). We present infinitely many
new graph polynomials for which this dichotomy holds. We shall also discuss
the difficulties in proving such a dichotomy in general, and formulate various
conjectures, which state that such a dichotomy holds for wide classes of graph
polynomials.

Johann A. Makowsky—During 2016 partially supported by the Simons Institute, Berkeley, USA.



References

1. Goodall, A., Hermann, M., Kotek, T., Makowsky, J.A., Noble, S.D.: On the complexity of
generalized chromatic polynomials (2017). arXiv: 1701.06639

2. Makowsky, J.A., Kotek, T., Ravve, E.V.: A computational framework for the study of par-
tition functions and graph polynomials. In: Proceedings of the 12th Asian Logic Conference
2011, pp. 210–230. World Scientific (2013)

Computational Complexity for Real Valued Graph Parameters XVII

http://arxiv.org/abs/1701.06639


Natural Language Processing,
Moving from Rules to Data

Carlos Martín-Vide

Rovira i Virgili University, Tarragona, Spain
carlos.martin@urv.cat

Abstract. During the last decade, we assist to a major change in the direction
that theoretical models used in natural language processing follow. We are
moving from rule-based systems to corpus-oriented paradigms. In this paper, we
analyze several generative formalisms together with newer statistical and
data-oriented linguistic methodologies. We review existing methods belonging
to deep or shallow learning applied in various subfields of computational lin-
guistics. The continuous, fast improvements obtained by practical, applied
machine learning techniques may lead us to new theoretical developments in the
classical models as well. We discuss several scenarios for future approaches.

Joint work with Adrian-Horia Dediu and Joana M. Matos.



An All-or-Nothing Flavor
to the Church-Turing Hypothesis

Stefan Wolf1,2

1 Faculty of Informatics, Università della Svizzera italiana (USI),
6900 Lugano, Switzerland

wolfs@usi.ch
2 Facoltà indipendente di Gandria, Lunga Scala, 6978 Gandria, Switzerland

Abstract. Landauer’s principle claims that “Information is Physical.” It is not
surprising that its conceptual antithesis, Wheeler’s “It from Bit,” has been more
popular among computer scientists — in the form of the Church-Turing
hypothesis: All natural processes can be computed by a universal Turing
machine; physical laws then become descriptions of subsets of observable, as
opposed to merely possible, computations. Switching back and forth between
the two traditional styles of thought, motivated by quantum-physical Bell cor-
relations and the doubts they raise about fundamental space-time causality, we
look for an intrinsic, physical randomness notion and find one around the second
law of thermodynamics. Bell correlations combined with complexity as ran-
domness tell us that beyond-Turing computations are either physically impos-
sible, or they can be carried out by “devices” as simple as individual photons.



Computing on Streams and Analog Networks

Jeffery Zucker

McMaster University, Hamilton, Canada
zucker@mcmaster.ca

In [5] John Tucker and I defined a general concept of a network of analog processing
units or modules connected by analog channels, processing data from a metric space A,
and operating with respect to a global continuous clock T, modelled by the set of
non-negative reals. The inputs and output of a network are continuous streams
u : T ! A, and the input-output behaviour of a network with system parameters from A
is modelled by a function of the form

U : C½T;A�p � Ar ! C½T;A�q;
where C½T;A� is the set of all continuous streams equipped with the compact-open
topology. We give an equational specification of the network, and a semantics when
some physically motivated conditions on the modules, and a stability condition on the
behaviour of the network, are satisfied. This involves solving a fixed point equation over
C½T;A� using a contraction principle based on the fact that C½T;A� can be approximated
by metric spaces. We analysed in detail a case study of analogue computation, using a
mechanical system involving a mass, spring and damper, in which data are represented
by displacements. The curious thing about this solution is that it worked only for certain
ranges in the values of the parameters M (mass), K (spring constant) and D (damping
constant), namely M[maxðK; 2DÞ, www which has no obvious physical interpreta-
tion. (More on this below.)

The fixed points found as above are functions of the parameters of the system,
considered as inputs (in our example, the external force applied to the mass, as a
function of time). The functionals characterizing the system are then stream trans-
formations. Tucker and I showed [6, 7] that these transformations are (respectively)
continuous (w.r.t. a suitable topology) and computable, w.r.t. a suitable notion of
concrete computation on the reals, where the computable reals, and operations on them,
are represented respectively by codes for effective Cauchy sequences, and operations
on them – essentially equivalent to Grzegorczyk-Lacombe computability.

The significance of continuity of the fixed point function is that it implies stability
of the fixed point as the solution to the specification. This is related to Hadamard’s
principle which (as (re-)formulated by Courant and Hilbert) states that for a scientific
problem to be well posed, the solution must (apart from existing and being unique)
depend continuously on the data.

This work was done in collaboration with John Tucker, Nick James and Diogos Poças. Research
supported by NSERC (Canada).



Returning to the problem indicated above that the functionals (apparently) converge
to fixed points only for certain values in the range of the parameters, this was suc-
cessfully solved by Nick James [1, 2] who, developing a theory of stream functions on
Banach spaces, showed that the important thing is how the network is modularized. By
re-modularizing our original mass/spring/damper suitably, he obtained an equivalent
system in which the (unnatural seeming) limitations on the sizes of the parameters are
removed.

We turn to the next development in this theory. Diogo Poças [3] investigated
analog networks which were based on Shannon’s GPACs (general purpose analog
computers). He has made a number of significant developments in this theory, which
also impacts on the work described above: (1) He worked in the context of Fréchet
spaces, not Banach spaces, which provides a more natural framework for investigating
the space C½T;A�. (2) He characterized the class of functions over the reals, computable
by GPACS, as the differential algebraic functions. (3) He has extended the structure of
GPACS to X-GPACS, which allows two independent variables: t, ranging over time, as
before, and also x, ranging over space. This to the use of partial differential equations.

It turns out that the X-GPAC generable functions are precisely those solvable by
partial differential algebraic systems [4]. Now certain interesting functions, such as the
gamma function, and the Riemann zeta function, are not differentially algebraic, and
(therefore) not X-GPAC computable. (4) This motivates a further extension of the
X-GPAC model to the LX-GPAC model, (“L” for limit), which permits the use of limit
operations (either discrete, over the naturals, or continuous, over segments of the reals).
This facility permits the generation of both the gamma function and Riemann zeta
function [3, Ch. 4]

It remains to find a useful characterization, in terms of concrete computation
models, of the class of functions generated by LX-GPACs.

References

1. James, N.D.: Existence, continuity and computability of unique fixed points in analog net-
work models. Ph.D. thesis, Department of Computing and Software, McMaster University
(2012)
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(2013)
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Abstract. We are witnessing accelerating technological advances in
autonomous systems, of which driverless cars and home-assistive robots
are prominent examples. As mobile autonomy becomes embedded in
our society, we increasingly often depend on decisions made by mobile
autonomous robots and interact with them socially. Key questions that
need to be asked are how to ensure safety and trust in such interac-
tions. How do we know when to trust a robot? How much should we
trust? And how much should the robots trust us? This paper will give
an overview of a probabilistic logic for expressing trust between human
or robotic agents such as “agent A has 99% trust in agent B’s ability
or willingness to perform a task” and the role it can play in explaining
trust-based decisions and agent’s dependence on one another. The logic
is founded on a probabilistic notion of belief, supports cognitive reason-
ing about goals and intentions, and admits quantitative verification via
model checking, which can be used to evaluate trust in human-robot
interactions. The paper concludes by summarising future challenges for
modelling and verification in this important field.

1 Introduction

Autonomous robotics has made tremendous progress over the past decade, with
dramatic advances in areas such as driverless cars, home assistive robots, robot-
assisted surgery, and unmanned aerial vehicles. However, high-profile incidents
such as the fatal Tesla crash [11] make clear the risks from improper use of
this technology. Our decisions whether to rely or not on automation technology
are guided by trust. Trust is a subjective evaluation made by one agent (the
truster) about the ability or willingness of another agent (the trustee) to perform
a task [6,14]. A key aspect of a trust-based relationship is that the trustor’s
decision to trust is made on the expectation of benevolence from the trustee
[15], and the trustor is, in fact, vulnerable to the actions of the trustee. Studies
of trust in automation [12] have concluded that it is affected by factors such
as reliability and predictability: it increases slowly if the system behaves as
expected, but drops quickly if we experience failure. However, autonomous robots

This work is supported by EPSRC Mobile Autonomy Programme Grant
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4 M. Kwiatkowska

are independent decision-makers, and may therefore exhibit unpredictable, and
even surprising, behaviour. Further, they need to correctly interpret the social
context and form relationships with humans, thus becoming members of society.

Human relationships are built on (social) trust, which is a key influence in
decisions whether an autonomous agent, be it a human or a robot, should act
or not. Social trust is an expression of a complex cognitive process, informed
by the broader context of cultural and social norms. Reasoning with trust and
norms is necessary to justify and explain robots’ decisions and draw inferences
about accountability for failures, and hence induce meaningful communication
and relationships with autonomous robots. There are dangers in acting based on
inappropriate trust, for example, ‘overtrust’ in the Tesla crash. We need to pro-
gram robots so that they can not only be trusted, but also so that they develop
human-like trust in humans and other robots, and human-like relationships.

While reliability for computerised systems has been successfully addressed
through formal verification techniques such as model checking, trust and ethics
for robotics has only recently emerged as an area of study, in response to the
rapid technological progress [10]. Elsewhere, for example in management, psy-
chology, philosophy and economics, trust has been studied widely. Digital trust
concepts are also prominent in e-commerce, where trust is based on reputation
or credentials. However, the notion of trust needed for human-robot partnerships
is social trust, which has been little studied: it involves cognitive processes (i.e.
mental attitude, goals, intentions, emotion) that lead to a decision whether to
trust or not, and is influenced through past experience and preferences.

This paper gives an overview of recent progress towards a specification for-
malism for expressing social trust concepts. The resulting logic, Probabilis-
tic Rational Temporal Logic (PRTL*), is interpreted over stochastic multia-
gent systems (essentially concurrent stochastic games) extended with goals and
intentions, where stochasticity arises from randomness and environmental uncer-
tainty. Trust is defined in terms of (subjective) probabilistic belief, which allows
one to quantify the amount of trust as a belief-weighted expectation, informally
understood as a degree of trust. The logic can express, for example, if A is a
human rider of an autonomous car B, that “A has 99% trust in B’s ability to
safely reach the required destination”, and “B has 90% trust in A’s willingness
not to give unwise instructions”. The key novelty in the framework is the addi-
tion of the cognitive dimension, in which (human or robotic) agents carry out
their deliberations prior to decision-making; once the decision has been made,
the agents act on them, with the actions taking place in the usual temporal
dimension. The logic, under certain restrictions, admits a model checking pro-
cedure, which can be employed in decision-making to evaluate and reason about
trust in human-robot relationships, and to assist in establishing accountability.
We illustrate the main trust concepts by means of an example, referring the
reader to the details in [7].
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2 An Illustrative Example

We illustrate the key features of social trust using a variant of a trust game
called the Parking Game due to Vincent Conitzer [3], see Fig. 1. Trust games
are often used in economics, where it is assumed that players act on the basis of
pure self-interest. However, experiments with human subjects consistently show
that humans behave differently and are often willing to act on the assumption
of the other player’s goodwill.

The Parking Game illustrates a situation where cars A and B (let us assume
they are autonomous) are waiting for a parking space, with car B behind A. Car
A either waits or can move aside to let car B through, on the assumption that B
is in a hurry and wants to pass. Car B, however, can steal A’s parking space if
it becomes available, or pass. Though somewhat artificial, we will also allow an
iterated version of this game, where the cars return to compete for the parking
space in the same order. The payoffs in this game indicate that the best outcome
for both A and B is for A to move aside and B pass. As experience shows, this is
a typical situation if the cars were driven by human drivers. However, according
to the standard game-theoretic solution the Nash equilibrium is for A to wait,
rather than move aside, to avoid the parking space being taken.

In [13] an alternative solution method is proposed that results in the equi-
librium of A moving aside and B passing. A similar game is considered in [8],
where the computation of the payoff is amended to include trust value. This
paper puts forward a different solution, where we explicitly model the evolution
of trust starting from some initial value, and update that (subjective) trust based
on experience (that is, interactions between agents), preferences and context.

(Car A, Car B) steal space pass
wait (3,0) (3,0)

move aside (0,3) (4,1)

Fig. 1. The ‘Parking Game’ due to Vincent Conitzer [3] (reproduced with permission).
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3 The Model

We work with stochastic multiplayer games as models, to capture both exter-
nal uncertainty as well as internal probabilistic choices. We sometimes refer to
players of the game as agents.

Let D(X) denote the set of probability distributions on a set X. For sim-
plicity, we present a simplified variant of the model, and remark that partial
observability and strategic reasoning can be handled [7].

Definition 1. A stochastic multiplayer game (SMG) is a tuple M =
(Ags, S, sinit, {ActA}A∈Ags , T ), where Ags is a finite set of agents, S is a finite
set of states, sinit ∈ S is an initial state, ActA is a finite set of actions for agent
A, and T : S × Act → D(S) is a (partial) transition probability function such
that Act = ×A∈AgsActA and for each state s there exists a unique joint action
a ∈ Act such that a (non-unique) state s′ is chosen with probability T (s, a)(s′).

Let aA be agent A’s action in the joint action a ∈ Act. We let Act(s) = {a ∈
Act | T (s, a) is defined} and ActA(s) = {aA | a ∈ Act(s)}. For technical reasons,
we assume that Act(s) �= ∅ for all s ∈ S.

States S are global, and encode agents’ local states as well as environment
states. In each state s, agents independently (and possibly at random) choose a
local action (which may include the silent action ⊥), the environment performs
an update, and the system transitions to a state s′ satisfying T (s, a)(s′) > 0,
where a is the joint action.

We define a finite, resp. infinite, path ρ in the usual way as a sequence of
states s0s1s2... such that T (si,−)(si+1) > 0 for all i ≥ 0, and denote the set
of finite and infinite paths of M starting in s, respectively, by FPathM

T (s) and
IPathM

T (s), and sets of paths starting from any state by FPathM
T and IPathM

T ,
and omit M if clear from context. For a finite path ρ we write last(ρ) to denote
the last state. We refer to paths induced from the transition probability function
T as the temporal dimension.

For an agent A we define an action strategy σA as a function σA : FPathM
T −→

D(ActA) such that for all aA ∈ ActA and finite path ρ it holds that σA(ρ)(aA) > 0
only if aA ∈ ActA(last(ρ)). An action strategy profile σ is a vector of action
strategies (σA)A∈Ags . Under a fixed σ, one can define a probability measure
PrM,σ on IPathM

T (sinit) in the standard way.
In order to reason about trust, we endow agents with a cognitive mechanism

inspired by the BDI framework (beliefs, desires and intentions) in the sense of
[2]. We work with probabilistic beliefs. A cognitive mechanism includes goals,
intentions and subjective preferences. For an agent A, the idea is that, while
actions ActA represent A’s actions in the physical space, goals and intentions
represent the cognitive processes that lead to decisions about which action to
take. We thus distinguish two dimensions of transitions, temporal (behavioural)
and cognitive.

Definition 2. We define a cognitive mechanism as a tuple ΩA =
({GoalA}A∈Ags , {IntA}A∈Ags , {gpA,B}A,B∈Ags , {ipA,B}A,B∈Ags), where GoalA
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is a finite set of goals for agent A; IntA is a finite set of intentions for agent
A; gpA,B : S −→ D(2GoalB ) assigns to each state, from A’s point of view, a
distribution over possible goal changes of B; and ipA,B : S −→ D(IntB) assigns
to each state, from A’s point of view, a distribution over possible intentional
changes of B.

An agent can have several goals, not necessarily consistent, but only a single
intention. We think of goals as abstract attitudes, for example altruism or risk-
taking, whereas intentions are concretely implemented in our (simplified) setting
as action strategies, thus identifying the next (possibly random) action to be
taken in the temporal dimension.

We refer to a stochastic multiplayer game endowed with a cognitive mech-
anism as an autonomous stochastic multiagent system. We extend the set of
temporal transitions with cognitive transitions for agent A corresponding to a
change of goal (respectively intention) and the transition probability function T
in the obvious way. We denote by FPathM (s), IPathM (s), FPathM and IPathM

the sets of paths formed by extending the sets FPathM
T (s), IPathM

T (s), FPathM
T

and IPathM
T of temporal paths with paths that interleave the cognitive and tem-

poral transitions.
To obtain a probability measure over infinite paths IPathM (sinit), we need

to resolve agents’ possible changes to goals or intentions. Similarly to action
strategies, we define cognitive reasoning strategies gA and iA, which are history
dependent and model subjective preferences of A. Formally, we define the cog-
nitive goal strategy as gA : FPath −→ D(2GoalA), and the intentional strategy
as iA : FPath −→ D(IntA). We remark that such strategies arise from cognitive
architectures, with the subjective view induced by goal and intentional prefer-
ence functions, gpA,B and ipA,B , which model probabilistic prior knowledge of
agent A about goals and intentions of B, informed by prior experience (through
observations) and aspects such as personal preferences and social norms. For
details see [7].

Example 1. For the Parking Game example, let us consider two possible goals for
A, altruism and selfishness. The intention corresponding to altruism is a strategy
that always chooses to move aside, whereas for selfishness it is to choose wait.
Another goal is absent-mindedness, which is associated with a strategy that
chooses between moving aside and waiting at random. A preference function for
B could be based on past observations that a Google car is more likely to move
aside than, say, a Tesla car.

4 Probabilistic Rational Temporal Logic

We give an overview of the logic PRTL∗ that combines the probabilistic temporal
logic PCTL∗ with operators for reasoning about agents’ beliefs and cognitive
trust. The trust operators of the logic are inspired by [4], except we express
trust in terms of probabilistic belief, which probabilistically quantifies the degree
of trust as a function of subjective certainty, e.g., “I am 99% certain that the
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autonomous taxi service is trustworthy”, or “I trust the autonomous taxi service
99%”. The logic captures how the value of 99% can be computed based on the
agent’s past experience and (social, economic) preferences.

Definition 3. The syntax of the language PRTL∗ is:

φ :: = p | ¬φ | φ ∨ φ | ∀ψ | P��qψ | GAψ | IAψ | CAψ |
B

��q
A ψ | CT��q

A,Bψ | DT��q
A,Bψ

ψ :: = φ | ¬ψ | ψ ∨ ψ | © ψ | ψUψ | �ψ

where p is an atomic proposition, A,B ∈ Ags, ��∈ {<,≤, >,≥}, and q ∈ [0, 1].

In the above, φ is a PRTL∗ formula and ψ an LTL (path) formula. The oper-
ator ∀ is the path quantifier of CTL∗ and P��dψ is the probabilistic operator of
PCTL [1,5], which denotes the probability of those future infinite paths that
satisfy ψ, evaluated in the temporal dimension. We omit the description of stan-
dard and derived (φ1 ∧ φ2, ♦ψ and ∃φ) operators, and just focus on the added
operators.

The cognitive operators GAψ, IAψ and CAψ consider the task expressed as
ψ and respectively quantify, in the cognitive dimension, over possible changes
of goals, possible intentions and available intentions. Thus, GAψ expresses that
ψ holds in future regardless of agent A changing its goals. Similarly, IAψ states
that ψ holds regardless of A changing its (not necessarily available) intention,
whereas CAψ quantifies over the available intentions, and thus expresses that
agent A can change its intention to achieve ψ.

B
��q
A ψ is the belief operator, which states that agent A believes ψ with prob-

ability in relation �� with q. CT��q
A,Bψ is the competence trust operator, meaning

that agent A trusts agent B with probability in relation �� with q on its capability
of completing the task ψ, where capability is understood to be the existence of a
valid intention (in IntB(s) for s being the current state) to implement the task.
DT

��d
A,Bψ is the disposition trust operator, which expresses that agent A trusts

agent B with probability in relation �� with q on its willingness to do the task
ψ, where the state of willingness is interpreted as that the task is unavoidable
for all intentions in intentional strategy (i.e., iB(ρ) for ρ being the path up to
the current point in time).

Example 2. For the Parking Game example, the formula

DT
≥0.7
A,B ¬stealA

where stealA is an atomic proposition, expresses that A’s trust in B’s willingness
not to steal a space is at least 70%, and

B
≥0.8
A DT

≥0.7
B,A moveA

states that A’s belief that B has at least 70% trust in its willingness to move
is at least 80%, where moveA is an atomic proposition. Assuming that B has
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absent-mindedness as its goal, and A has two goals, altruism and selfishness,
with the corresponding intentions, as in Example 1, then

GA¬DT≥0.7
B,A moveA

states that, for all goal changes of A, B does not trust in A’s willingness to move
with probability at least 70%, where moveA is an atomic proposition.

We interpret formulas φ in an autonomous stochastic multiagent system M
in a state reached after executing a path ρ, in history-dependent fashion. Note
that this path ρ may have interleaved cognitive and temporal transitions. The
cognitive operators quantify over possible changes of goals and intentions in M in
the cognitive dimension only, reflecting the cognitive reasoning processes leading
to a decision. The probabilistic operator computes the probability of future paths
satisfying ψ (i.e. completing the task ψ) in M in the temporal dimension as for
PCTL∗, reflecting the physical actions resulting from the cognitive decision, and
compares this to the probability bound q. The belief operator corresponds to
the belief-weighted expectation of future satisfaction of ψ, which is subjective,
as it is influenced by A’s prior knowledge about B encoded in the preference
function. The competence trust operator reduces to the computation of optimal
probability of satisfying ψ in M over possible changes of agent’s intention, which
is again belief-weighted and compared to the probability bound q. Dispositional
trust, on the other hand, computes the optimal probability of satisfying ψ in M
over possible states of agent’s willingness, weighted by the belief and compared
to the probability bound q.

The logic PRTL∗ can also express strong and weak dependence trust notions
of [4]. Strong dependence means that A depends on B to achieve ψ (i.e. ψ can be
implemented through intentional change of B), which cannot be achieved other-
wise (expressed as a belief in impossibility of ψ in future), and weak dependence
that A is better off relying on B compared to doing nothing (meaning intentional
changes of B can bring about better outcomes).

Example 3. If B is in a hurry, then

DT
≥0.9
B,A ♦leaveB ∧ ¬B≥0.9

B ♦leaveB

where leaveB is an atomic proposition, expresses that B’s leaving the car park
strongly depends on A’s willingness to cooperate.

Our framework encourages collaboration by allowing agents to update their
trust evaluation for other agents and to take into consideration each other’s
trust when taking decisions. Trust thus evolves dynamically based on agent
interactions and the decision to trust can be taken when a specific trust threshold
is met. Therefore our notion of social trust helps to explain cases where actual
human behaviour is at variance with standard economic and rationality theories.

Example 4. For the Parking Game example, we model the evolution of trust
based on interactions and prior knowledge, whereby A’s trust in B decreases if
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B steals the space, and increases otherwise. A guards its decision whether to
move aside by considering the level of trust in B’s willingness not to steal, e.g.
DT

≥0.7
A,B ¬stealB .

The precise value of the threshold for trust is context-dependent. The trust
value higher than an appropriately calibrated level is known as ‘overtrust’, which
can be expressed using our formalism, see [7].

5 Concluding Remarks

This paper has provided a brief overview of recent advances towards formali-
sation and quantitative verification of cognitive trust for stochastic multiplayer
games based on [7]. Although the full logic is undecidable, we have identified
decidable sublogics with reasonable complexity. As the next step we aim to
implement the techniques as an extension of the PRISM probabilistic model
checker [9] and evaluate them on case studies. To this end, we will define a
Bellman operator and integrate with reasoning based on cognitive architectures.

This paper constitutes the first step towards developing design methodologies
for capturing the social, trust-based decisions within human-robot partnerships.
Pertinent scientific questions arise in the richer and challenging field of ethics
and morality. How can we communicate intent in the context of human-robot
interactions? How do we incentivise robots to elicit an appropriate response?
How do we ensure that robotic assistants will not cause undue harm to others in
order to satisfy the desires of their charge? Or that a self-driving car is able to
decide between continuing on a path that will cause harm to other road-users,
or executing an emergency stop which may harm passengers? These questions
call for an in-depth analysis of the role of autonomous robots in society from a
variety of perspectives, including philosophical and ethical, in addition to tech-
nology development, and for this analysis to inform policy makers, educators
and scientists.
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Abstract. In a dependent type theory satisfying the propositions as
types correspondence together with the proofs-as-programs paradigm,
the validity of the unique choice rule or even more of the choice rule says
that the extraction of a computable witness from an existential state-
ment under hypothesis can be performed within the same theory.

Here we show that the unique choice rule, and hence the choice rule,
are not valid both in Coquand’s Calculus of Constructions with indexed
sum types, list types and binary disjoint sums and in its predicative ver-
sion implemented in the intensional level of the Minimalist Foundation.
This means that in these theories the extraction of computational wit-
nesses from existential statements must be performed in a more expres-
sive proofs-as-programs theory.

1 Introduction

Type theory is nowadays both a subfield of mathematical logic and of computer
science. A perfect example of type theory studied both by mathematicians and
by computer scientists is Martin-Löf’s type theory [21], for short ML. This is a
dependent type theory which can be indeed considered both as a paradigm of
a typed functional programming language and as a foundation of constructive
mathematics. The reason is that, on one hand, types can be seen to represent
data types and typed terms to represent programs. On the other hand, both
sets and propositions can be represented as types and both elements of sets and
proofs of propositions can be represented as typed terms. These identifications
are named in the literature as the propositions-as-types paradigm or the proofs-
as-programs correspondence or Curry-Howard correspondence.

An important application of dependent type theory to programming is that
one can use a type theory such as ML to construct a correct and terminating
program as a typed term meeting a certain specification defined as its type.
Pushing forward this correspondence one may ask whether from the proof-term
p(x) of an existential statement under hypothesis

p(x) ∈ ∃y ∈ B R(x, y) [x ∈ A]

one may extract a functional program f ∈ A → B whose graph is contained in
the graph of R(x, y), namely for which we can prove that there exists a proof-
term q(x) such that we can derive

q(x) ∈ R(x, f(x)) [x ∈ A]
c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 12–23, 2017.
DOI: 10.1007/978-3-319-55911-7 2
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This property is called choice rule. Then, we call unique choice rule the corre-
sponding property starting from a proof-term of a unique existential statement

p(x) ∈ ∃!y ∈ B R(x, y) [x ∈ A]

from which we may extract a functional term f ∈ A → B whose graph is
contained in the graph of R(x, y).

It is worth noting that such choice rules characterizes constructive arith-
metics, i.e. arithmetics within intuitionistic logic, with respect to classical Peano
arithmetics (see [25,26]).

In Martin-Löf’s type theory both the unique choice rule and the choice rule
are valid given that they follow from the validity of the axiom of choice

(AC) ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A → B ∀x ∈ A R(x, f(x))

thanks to the identification of the ML-existential quantifier with the the strong
indexed sum of a set family, which characterizes the so called propositions-as-sets
isomorphism.

However in other dependent type theories proposed as foundations for con-
structive mathematics the existential quantifier is not identified with the strong
indexed sum type whilst it is still a type of its proofs. As a consequence in such
theories the validity of the mentioned choice rules is not evident.

A notable example of such a dependent type theory is Coquand’s Calculus
of Inductive Constructions [6,7] used as a logical base of the proof-assistant
Coq [4,5] and Matita [2,3]. Here we consider its fragment CC+ extending the
original system in [6] with indexed sum types, list types and binary disjoint sums.
In CC+ propositions are defined primitively by postulating the existence of an
impredicative type of propositions. In particular in CC+ the identification of the
existential quantifier with the strong indexed sum type is not possible because
it makes the typed system logically inconsistent (see [6]). In fact in CC+ the
axiom of choice and even the axiom of unique choice

(AC!) ∀x ∈ A ∃!y ∈ B R(x, y) −→ ∃f ∈ A → B ∀x ∈ A R(x, f(x))

are not generally provable as shown in [24]. In [24] it was left open whether the
choice rule is validated in the original system [6]. Here we show that the choice
rule is not validated in CC+ by proving that in CC+ the unique choice rule
implies the axiom of unique choice and hence it is not valid. Of course, from this
it follows that also the choice rule is not valid in CC+.

Another example of foundation for constructive mathematics based on a
dependent type theory where the existential quantifier is given primitively is the
Minimalist Foundation, for short MF, ideated by the author in joint work with
G. Sambin in [16] and completed in [12]. An important feature of MF, which
is not present in other foundations like CC+ or ML, is that it constitutes a
common core among the most relevant constructive and classical foundations,
introduced both in type theory, in category theory and in axiomatic set theory.
Moreover it is a two-level system equipped with an intensional level suitable
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for extraction of computational contents from its proofs, an extensional level
formulated in a language as close as possible to that of ordinary mathematics
and an interpretation of the latter in the former showing that the extensional
level has been obtained by abstraction from the intensional one according to
Sambin’s forget-restore principle in [23].

The two-level structure of MF brings many advantages in comparison to a
single level foundation for constructive mathematics as CC+ or ML.

First of all the intensional level of MF, called mTT in [12] for Minimalist
Type theory, can be used as a base for computer-aided formalization of proofs
done at the extensional level of MF. Moreover, we can show the compatibility
of MF with other constructive foundations at the most appropriate level: the
intensional level of MF can be easily interpreted in intensional theories such
as those formulated in type theory, for example Martin-Löf’s type theory [21]
or the Calculus of Inductive Constructions, while its extensional level can be
easily interpreted in extensional theories such as those formulated in axiomatic
set theory, for example Aczel’s constructive set theory [1], or those formulated
in category theory as topoi [10,11].

Both intensional and extensional levels of MF consist of type systems based
on versions of Martin-Löf’s type theory with the addition of a primitive notion
of propositions: the intensional one is based on [21] and the extensional one is
based on [20].

In particular mTT constitutes a predicative counterpart of CC+ and to
which the argument disproving the validity of the unique choice in CC+ adapts
perfectly well.

As a consequence of our results we get that the extraction of programs com-
puting witnesses of existential statements under hypothesis proved in CC+ or
in mTT needs to be performed in a more expressive proofs-as-programs theory.
We also believe that the arguments presented here can be adapted to conclude
the same statements even for CC+ with generic inductive definitions.

It is worth noting that we can choose Martin-Löf’s type theory as a more
expressive theory where to perform the mentioned witness extraction from proofs
done in mTT. Another option is to perform such a witness extraction in the
realizability model of mTT extended with the axiom of choice and the formal
Church thesis constructed in [9] (note that the axiom of choice and the for-
mal Church thesis say that we can extract computable functions from number-
theoretic total relations). Furthermore, in the case we limit ourselves to extract
computable witnesses from unique existential statements proven in mTT then
we can use other realizability models such as that in [17,18] validating mTT
extended with the axiom of unique choice and the formal Church thesis.

To perform witness extraction from proofs of existential statements done in
CC+, an impredicative version of Martin-Löf’s type theory is not available. We
do not even know whether there exists a realizability model proving consistency
of CC+ extended with the axiom of choice and the formal Church thesis.
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2 The Dependent Type Theory DTΣ and the Choice
Rules

Here we briefly describe a fragment, called DTΣ , of the intensional type the-
ory mTT of the Minimalist Foundation in [12] which is sufficient to show that
the unique choice rule implies the axiom of unique choice. This is the frag-
ment of mTT needed to interpret many-sorted predicate intuitionistic logic
where sorts are closed under strong indexed sums, dependent products and also
comprehension.

DTΣ is a dependent type theory written in the style of Martin-Löf’s type
theory [21] by means of the following four kinds of judgements:

A type [Γ ] A = B type [Γ ] a ∈ A [Γ ] a = b ∈ A [Γ ]

that is the type judgement (expressing that something is a specific type), the type
equality judgement (expressing that two types are equal), the term judgement
(expressing that something is a term of a certain type) and the term equality
judgement (expressing the definitional equality between terms of the same type),
respectively, all under a context Γ .

The word type is used as a meta-variable to indicate two kinds of entities:
sets and small propositions, namely

type ∈ {set, props}

Therefore, in DTΣ types are actually formed by using the following judgements:

A set [Γ ] φ props [Γ ]

saying that A is a set and that φ is a small proposition of DTΣ .
It is worth noting that the adjective small is there because in mTT we defined

small propositions as those propositions closed under quantification over sets,
while generic propositions may be closed under quantification over collections.
In DTΣ there are no collections and hence all “DTΣ-propositions” are small
but we keep the adjective to make DTΣ a proper fragment of mTT.

As in the intensional version of Martin-Löf’s type theory and in mTT, in
DTΣ there are two kinds of equality concerning terms: one is the definitional
equality of terms of the same type given by the judgement

a = b ∈ A [Γ ]

which is decidable, and the other is the propositional equality written

Id(A, a, b) props [Γ ]

which is not necessarily decidable.
We now proceed by briefly describing the various kinds of types in DTΣ ,

starting from small propositions and then passing to sets.
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Small Propositions in mTT include all the logical constructors of intuition-
istic predicate logic with equality and quantifications restricted to sets:

φ props ≡ ⊥ | φ ∧ ψ | φ ∨ ψ | φ → ψ | ∀x∈A φ | ∃x∈A φ | Id(A, a, b)

provided that A is a set. Their rules are those for the corresponding small propo-
sitions in mTT.

In order to close sets under comprehension and to define operations on such
sets, we need to think of propositions as types of their proofs:

props-into-set)
φ props

φ set

Then sets in DTΣ include the following:

A set ≡ φ props | Σx∈A B | Πx∈A B

where the notation Σx∈A B stands for the strong indexed sum of the family of
sets B set [x ∈ A] indexed on the set A and Πx∈A B for the dependent product
set of the family of sets B set [x ∈ A] indexed on the set A.

Their rules are those for the corresponding sets in mTT and we refer to [12]
for their precise formulation.

Both DTΣ as well as mTT can be also essentially seen as fragments of a
typed system, which we call CC+, extending the Calculus of Constructions in
[6] with the inductive rules in [4,5,7] defining binary disjoint sums, list types
and strong indexed sums (see [12]).

For their crucial role to get the results in this paper, here we just recall
the rules of formation, introduction, elimination and conversion of the strong
indexed sum as a set:

Strong Indexed Sum

F-Σ)
C(x) set [x ∈ B]

Σx∈BC(x) set
I-Σ)

b ∈ B c ∈ C(b) C(x) set [x ∈ B]

〈b, c〉 ∈ Σx∈BC(x)

E-Σ)

M(z) set [z ∈ Σx∈BC(x)]
d ∈ Σx∈BC(x) m(x, y) ∈ M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ(d, m) ∈ M(d)

C-Σ)

M(z) set [z ∈ Σx∈BC(x)]
b ∈ B c ∈ C(b) m(x, y) ∈ M(〈x, y〉) [x ∈ B, y ∈ C(x)]

ElΣ(〈b, c〉, m) = m(b, c) ∈ M(〈b, c〉)
By using these rules we recall that we can define the following projections

π1(z) ≡ ElΣ(z, (x, y).x) ∈ B [z ∈ Σx∈BC(x)]
π2(z) ≡ ElΣ(z, (x, y).y) ∈ C(π1(z)) [z ∈ Σx∈BC(x)]

satisfying

π1(〈b, c〉) = b ∈ B [Γ ] π2(〈b, c〉) = c ∈ C(b) [Γ ]
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provided that C(x) set [Γ, x ∈ B], b ∈ B [Γ ] and c ∈ C(b) [Γ ] are derivable in
DTΣ .

We also recall the following abbreviations: for set A set [Γ ] and B set [Γ ] we
define the set of functions from A to B as

A → B ≡ Πx∈A B

Now we are ready to define the choice rule:

Definition 1. The dependent type theory DTΣ satisfies the choice rule if for
every small proposition R(x, y) props [x ∈ A, y ∈ B] derivable in DTΣ , for any
derivable judgement in DTΣ of the form

p(x) ∈ ∃y∈B R(x, y) [x ∈ A]

there exists in DTΣ a typed term

f(x) ∈ B[x ∈ A]

for which we can find a proof-term q(x) and derive in DTΣ

q(x) ∈ R(x, f(x)) [x ∈ A]

Then we recall the definition of the axiom of choice by internalizing the above
choice rule as follows:

Definition 2. The axiom of choice is the following small proposition

(AC) ∀x ∈ A ∃y ∈ B R(x, y) −→ ∃f ∈ A → B ∀x ∈ A R(x, f(x))

defined for any small proposition R(x, y) props [x ∈ A, y ∈ B].

A special instance of the choice rule is the following unique choice rule

Definition 3. The dependent type theory DTΣ satisfies the unique choice rule
if for every small proposition R(x, y) props [x ∈ A, y ∈ B] derivable in DTΣ , for
any derivable judgement in DTΣ of the form

p(x) ∈ ∃!y∈B R(x, y) [x ∈ A]

there exists a typed term f(x) ∈ B[x ∈ A] for which we can find a proof-term
q(x) and derive in DTΣ

q(x) ∈ R(x, f(x)) [x ∈ A]

where

∃!y ∈ B R(x, y) ≡
∃y ∈ B R(x, y) ∧ ∀y1, y2 ∈ B(R(x, y1) ∧ R(x, y1) → Id(B, y1, y2))
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Then the axiom of unique choice is the internal form of the unique choice
rule defined as follows:

Definition 4. The axiom of unique choice is the following small proposition

(AC!) ∀x ∈ A ∃!y ∈ B R(x, y) −→ ∃f ∈ A → B ∀x ∈ A R(x, f(x))

defined for any small proposition R(x, y) props [x ∈ A, y ∈ B].

Observe the following obvious relation between the above rules and the cor-
responding axioms:

Lemma 1. If DTΣ satisfies the choice rule then DTΣ proves the unique choice
rule.

Lemma 2. If DTΣ proves the axiom of choice then DTΣ proves the axiom of
unique choice.

Now we are ready to show the following crucial proposition:

Proposition 1. If DTΣ satisfies the unique choice rule then DTΣ proves the
axiom of unique choice.

Proof. Suppose that R(x, y) props [x ∈ A, y ∈ B] is derivable in DTΣ . Observe
that we can derive in DTΣ

π2(z) ∈ ∃!y∈B R(π1(z), y) [z ∈ Σx∈A ∃!y∈B R(x, y)]

Suppose now that the unique choice rule is valid in DTΣ . Then, by using this
rule there exists a typed term

f(z) ∈ B [z ∈ Σx∈A ∃!y∈B R(x, y)]

and a proof-term q(z) of DTΣ for which we can derive

q(z) ∈ R(π1(z), f(z)) [z ∈ Σx∈A ∃!y∈B R(x, y)]

By using these proof-terms we can derive

〈m(w), h(w)〉 ∈ ∃g∈A→B ∀x ∈ A R(x, g(x)) [w ∈ ∀x∈A ∃!y∈B R(x, y)]

where
m(w) ≡ λx′.f(〈x′, w(x′)〉)

since we can derive

w(x′) ∈ ∃!y∈B R(x′ , y) [w ∈ ∀x∈A ∃!y∈B R(x, y), x′ ∈ A]

and

〈x′, w(x′)〉 ∈ Σx∈A ∃!y∈B R(x, y) [w ∈ ∀x∈A ∃!y∈B R(x, y), x′ ∈ A]
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and where

h(w) ≡ λx′′.q(〈x′′, w(x′′)〉) ∈ ∀x ∈ A R(x , m(w)(x))

since

q(〈x′′, w(x′′)〉) ∈ R(π1(〈x′′, w(x′′)〉) , f(〈x′′, w(x′′)〉)) = R(x′′, m(w)(x′′))

for x′′ ∈ A and w ∈ ∀x∈A ∃!y∈B R(x, y).
Finally we conclude that

λw.〈m(w), h(w)〉 ∈
∀x ∈ A ∃!y ∈ B R(x, y) −→ ∃f ∈ A → B ∀x ∈ A R(x, f(x))

i.e. we conclude that the axiom of unique choice is valid in DTΣ .

Observe that the above proof can be adapted to show that also the choice
rule implies its axiomatic form by simply replacing ∃!y∈B with ∃y∈B in the
proof of Proposition 1 and hence we also get:

Proposition 2. If DTΣ satisfies the choice rule then DTΣ satisfies the axiom
of choice.

By definition DTΣ is a fragment of mTT and therefore by repeating the
proofs above we conclude that:

Proposition 3. If mTT satisfies the unique choice rule then mTT satisfies
the axiom of unique choice.

Proposition 4. If mTT satisfies the choice rule then mTT satisfies the axiom
of choice.

Now, observe that DTΣ can be seen essentially as a fragment of CC+ after
interpreting DTΣ-sets as CC+-sets and DTΣ-small propositions as the corre-
sponding CC+-propositions. In the same way mTT can be also viewed essen-
tially as a fragment of CC+ as first described in [12]. Therefore, we also get the
following:

Proposition 5. If CC+ satisfies the unique choice rule then it satisfies the
axiom of unique choice.

Proposition 6. If CC+ satisfies the choice rule then CC+ satisfies the axiom
of choice.

Note that the above propositions hold also for the extension of CC+ with
inductive definitions [7].
Then, we recall the following result by T. Streicher:

Theorem 1 (T. Streicher). CC+ does not validate the axiom of unique choice
and hence the axiom of choice.
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Proof. This is based on [24] and the fact that types are interpreted as assemblies
which can be organized into a lextensive regular locally cartesian closed category
with a natural numbers object [8,22].

Again since DTΣ and mTT can be both viewed essentially as fragments of
CC+, we also get from Theorem 1:

Corollary 1. Both DTΣ and mTT do not validate the axiom of unique choice
and hence the axiom of choice.

Now from Proposition 1 and Corollary 1 we get:

Theorem 2. DTΣ does not validate the unique choice rule and hence the choice
rule.

Analogously, from Proposition 3 and Corollary 1 we also get:

Theorem 3. mTT does not validate the unique choice rule and hence the
choice rule.

And from Proposition 5 and Theorem 1 we finally get:

Theorem 4. CC+ does not validate the unique choice rule and hence the choice
rule.

We conclude by saying that, as suggested by T. Streicher, it is very plausible
that the model in [24] can be extended to interpret generic inductive definitions
and hence to show that the axiom of unique choice is not provable in CC+

extended with generic inductive definitions. Therefore, if this is confirmed, from
Proposition 5 we can conclude that the unique choice rule is not valid even in
this extension of CC+.

Remark 1. We believe that in the context of categorical models of dependent
type theories we can prove categorical results corresponding to Propositions 1
and 2.

Indeed, the relationship between the choice rules and their axiomatic form
in Propositions 1 and 2 was inspired by categorical investigations done in a
series of papers [13–15] about setoid models used in dependent type theory to
interpret quotient sets. In particular these papers focus their analysis on the
quotient model used in [12] to interpret the extensional level of the Minimalist
Foundation into its intensional level mTT. As shown in [19], the model used in
[12] coincides with the usual exact completion in category theory if and only if
the unique choice rule is valid in the completion. We expect to be able to prove
also in the context of [19] that the unique choice rule implies the axiom of unique
choice, as well as that the choice rule implies the axiom of choice.
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3 Conclusion

From the above results it follows that when proving a statement of the form

∀x∈A∃y ∈ B R(x, y)

in the dependent typed theory CC+ or in mTT we can not always extract a
functional term f ∈ A → B computing the witness of the existential quantifica-
tion depending on a x ∈ A, within the theory itself and we need to find it in a
more expressive proofs-as-programs theory.

For mTT we can use Martin-Löf’s type theory ML as the more expressive
theory where to perform the mentioned witness extraction. This is done by first
embedding into ML the proof-term

p ∈ ∀x∈A ∃y ∈ B R(x, y)

derived in mTT and then using ML-projections to extract f .
Another possibility is to perform this witness extraction in the realizability

model in [9] showing consistency of mTT extended with the Formal Church
thesis and the axiom of choice. Moreover, in the case we simply want to extract
computable witness from unique existential statements proved in mTT under
hypothesis we can use also other realizability models such as that in [17,18]
showing consistency of mTT with the axiom of unique choice and the formal
Church thesis.

For CC+, and even more for its extension with inductive definitions, it is
an open problem whether there is a realizability model showing its consistency
with the axiom of choice and the formal Church thesis.
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Abstract. During the last decade, we assist to a major change in the
direction that theoretical models used in natural language processing
follow. We are moving from rule-based systems to corpus-oriented para-
digms. In this paper, we analyze several generative formalisms together
with newer statistical and data-oriented linguistic methodologies. We
review existing methods belonging to deep or shallow learning applied
in various subfields of computational linguistics. The continuous, fast
improvements obtained by practical, applied machine learning techniques
may lead us to new theoretical developments in the classic models as well.
We discuss several scenarios for future approaches.
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1 Introduction

Despite the huge research efforts, models capable to explain even partially two
of the most important components of human intelligence, language acquisition
and communication, are still missing. According to Winston [86], the search for
a comprehensive theory of language understanding will keep linguist busy for
many years.

Computational linguistics, also known as natural language processing (NLP),
aims to learn, understand, and produce human language content (Hirschberg
and Manning [36]). According to the 2012 ACM Computing Classification Sys-
tem [2], we find NLP (a subfield of artificial intelligence (AI), which is a branch
of computing methodologies) with the following research directions:
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– information extraction,
– machine translation,
– discourse, dialogue and pragmatics,
– natural language generation,
– speech recognition,
– lexical semantics,
– phonology/morphology, and
– language resources.

It is generally accepted that a theory of natural language processing should
be based on an appropriate model for knowledge representation. Bellegarda and
Monz [8] acknowledge that one of the most challenging problems of natural lan-
guage processing is to find an appropriate model for meaning representations.
Many research groups still prefer first-order logic for formal semantic repre-
sentations (see Montague [59]). To get over the limitation of first-order logic
and the lack of expressive power capable to capture all the subtleties of human
languages, various extensions represent viable alternatives as we can find for
example in Chierchia [12], Dekker [20], Kamp and Reyle [43], Muskens [62], etc.

A new research trend appeared in computational semantics that shifted the
interest from formal knowledge representation to distributional semantics, where
the meaning of a word depends on the context in which it appears (Rieger [70],
Sahlgren [74]). The meaning of larger constituents, such as sentences, phrases,
or even paragraphs or a whole document, is then calculated based on the rules
of composition that combines semantic representations of constituent elements
(see for example Mikolov et al. [55]).

We assist to a continuous improving of NLP performances, moving from sym-
bolic to statistical methods, from hand written rule-based systems to data-driven
approaches. This evolution was possible together with a significant qualitative
and quantitative development of the following factors:

1. computing power,
2. availability of linguistic data,
3. machine learning (ML) methods,
4. understanding the structure of human language.

For a first category of problems that are almost solved, we do not actu-
ally need a semantic representation. For example, part of speech (POS) tagging
(Brill [11], Schmid [76]), currently reaches 97.3% token accuracy, as Manning [51]
shows. What do we need to improve the results even furthermore? Manning
claims that probably better training data, that is, improved descriptive linguis-
tics could lead us to even better results.

For a second category of problems that should deal directly with the mean-
ing representation, despite the continuous progress from the last decades, we
still cannot rely on the automatic tasks performed by computer programs. For
example, in text summarization tasks, that take input as text document(s) and
try to condense them into a summary, the results are still under the expecta-
tions, we recall here only a brief overview of the results in this area citing the
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papers by Hovy and Lin [39], Kastner and Monz [44], Knight and Marcu [46],
Zajic et al. [87], etc. The situation is similar for machine translation (MT) that
involves the use of more than one natural language, with the source language
different from the target language. In his article “Machine Translation: The Dis-
appointing Past and Present”, Kay [45] says that we cannot view this problem
as a mainly linguistic one, but also the alternatives to incorporate in a trans-
lation system general knowledge and common sense that humans have is not
yet possible either. We mention other works in this domain, Koehn [47] and
Lopez [50].

Next we present several computational models for NLP, we could have fol-
lowed the lines from Cole [13], focusing on classifiers, connectionist techniques,
or optimization and search methods, however, we prefer a hierarchical approach.
In the next sections we present several models used at morphologic, syntactic
and semantic levels. We conclude presenting our vision about future trends and
expected results in NLP.

2 Morphologic Level - Finite State Models for NLP

We follow the notations and definitions well established by formal language the-
ory (see for example Hopcroft et al. [37] or Sudkamp [79]), also integrating the
practical point of view of Jurafsky and Martin [41], explaining how to use these
models in NLP tasks. We assume that the reader is familiar with the basic
notions of graph theory, probability theory, and complexity theory. We briefly
present an overview of the basic concepts we use in this paper.

We denote by N the set of natural numbers, that is {0, 1, 2, . . .} and by R the
set of real numbers.

Let f, g be functions defined from N into R, n, n0 ∈ N and c ∈ R (we follow
the notations from Rothlauf [72]). We define:

– f ∈ O(g) ⇔ ∃c > 0, ∃n0 > 0 such that |f(n)| ≤ c · |g(n)|,∀n ≥ n0 (asymptotic
upper bound).

– f ∈ o(g) ⇔ ∀c > 0, ∃n0 > 0 such that |f(n)| < c · |g(n)|,∀n ≥ n0 (asymptoti-
cally negligible).

– f ∈ Ω(g) ⇔ g ∈ O(f) (asymptotic lower bound).
– f ∈ Θ(g) ⇔ f ∈ O(g) and g ∈ O(f) (asymptotically tight bound).

Some authors use the “soft-O” notation that ignores also the logarithmic
factors, for example, Θ̃(f(m)) represents Θ(f(m) logc m), for some constant c.

Let Σ be a finite set of symbols, called the alphabet. A finite sequence of
elements of Σ is called a string over Σ. For a given string w, |w| represents
the length of the string. We denote by ε the empty string, with |ε| = 0. We
define a binary operation between strings in the following way. For two strings
w = a1 . . . an and x = b1 . . . bm over Σ, the concatenation of the two strings is
the string a1 . . . anb1 . . . bm. The concatenation operation is denoted by w · x (or
simply wx when there is no confusion).
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Let Σ∗ be the set of strings over Σ. A language L over Σ is a subset of Σ∗.
The elements of L are also called words. For any given nonnegative integer k,
Σ≤k denotes the language of words w with |w| ≤ k.

Definition 1 (Deterministic finite automata, Freund et al. [29]). A
deterministic finite automaton (DFA1) is a tuple M = (Q,Σ, Γ, τ, λ, q0), where
Q is a finite set of states, Σ is a finite and nonempty alphabet called the input
alphabet, Γ is a finite and nonempty alphabet called the output alphabet, τ is a
partial function from Q × Σ to Q called the transition function, λ is a mapping
from Q to Γ called the output function, and q0 is a fixed state of Q called the
initial state.

We extend τ to a map from Q×Σ∗ to Q in the usual way. We take τ(q, ε) = q
and τ(q, α · a) = τ(τ(q, α), a), for all states q in Q, for all strings α in Σ∗, and
for all characters a in Σ, provided that τ(q, α) and τ(τ(q, α), a) are defined. For
a state q and a string x over the input alphabet, we denote by qx the state
τ(q, x), and by q〈x〉, the sequence of length |x|+1 of output labels observed
upon executing the transitions from state q dictated by x, that is, the string
λ(q)λ(qx1), . . . , λ(qx1 . . . xn), where n is the length of the string x and x1, . . . , xn

are its characters.
A deterministic finite acceptor is a DFA with the output alphabet Γ = {0, 1};

if λ(q) = 1, then q is an accepting state, otherwise, q is a rejecting state. A string
x is accepted or recognized by a finite acceptor with the initial state q0 if q0x is an
accepting state. The definition of automata with final states (see, for example,
Hopcroft and Ullman [38]) is equivalent with our definition of finite acceptors,
with the convention that final states are the accepting states. For a finite acceptor
A = (Q,Σ, Γ, τ, λ, q0), we define the language L(A) as the set of strings accepted
by the acceptor A.

In Chap. 3 of Jurafsky and Martin [41] we find out about using DFA for
morphological parsing, that is taking the surface or the input form of a word
and producing a structured output, a stem (the “main” morpheme of the word,
supplying the main meaning) and an affix (“additional” meanings of various
kinds, indicating inflectional or derivative forms). Chapter 4 of the same book
describes how to use DFA for converting text-to-speech (TTS), that is, the out-
put of an input text is the spoken voice. The methodology for using DFA for
TTS actually discovers incrementally the DFA by some models of unsupervised
machine learning of phonological rules.

We can classify the methods of learning automata as active or passive. We
assume the existence of two entities, a teacher who has access to a target lan-
guage, and a learner who acquires the language. In the passive model, the learner
has no control over the data received, while in the active model, the learner can
experiment with the target language. We mention Gold [33] with learning in the
limit (an example of passive learning), Valiant [81] with probably approximately

1 Angluin et al. [5] use the term “automaton with output”. In formal language books,
like Hopcroft and Ullman [38], this definition corresponds to a Moore automaton,
and the notion of acceptors that we define next, corresponds to a DFA.
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correct learning and query learning Angluin [3] (an example of active learning),
as the initiators of the most important research directions for learning automata.
Depending on the way in which the learner has access to the training data, there
are two main models, on-line learning if the data arrives during the learning
process, and off-line or batch learning if a training data set is available. The
data might be positive, if it is examples belonging to the learned language, or
negative, if it is examples not in the target language.

An interesting result from Angluin and Becerra-Bonache [4] shows how an
extension of DFA can be used as a model of meaning and denotation. A well-
known extension of DFA, weighted automata, described by Mohri [58], are suc-
cessfully used for automatic speech recognition (ASR).

3 Syntactic Level

We follow the definitions from Dediu and T̂ırnăucă [18]. The trees are finite,
their nodes are labeled with symbols from an alphabet Σ, and the branches
leaving any given node have a specified order. Starting from the root and going
through the leaves, we may associate with every node in a tree an address in an
inductive way. Note that this is known, especially in linguistics, as Gorn address.
The root node has the empty address ε or (). For a child node we take the parent
address and we add a dot, followed by the child number counted from left to right
(the counting always starts from 0). More formally, let U be the set of all finite
sequences of nonnegative integers separated by dots, including also the empty
sequence ε. The prefix relation ≤ in U is: u ≤ v iff u.w = v for some w ∈ U .
Then D ⊆ U is a (finite) tree domain iff: (1) if u ≤ v and v ∈ D, then u ∈ D, and
(2) if u.j ∈ D, i, j ∈ N, and i < j, then u.i ∈ D. A tree domain D may be viewed
as an unlabeled tree with nodes corresponding to the elements of D. The root is
ε, and the leaves are the nodes that are maximal in U with respect to ≤. A Σ-
tree, i.e., a labeled finite tree, is a mapping t : D → Σ, where D is a tree domain
and for every u ∈ D, t(u) ∈ Σ. An example of a tree with numbered nodes and
labeled by symbols in Σ = {S, V,N,NP, V P, you, see,George} is presented in
Fig. 1, where D = {(), 0, 1, 0.0, 1.0, 1.1, 0.0.0, 1.0.0, 1.1.0, 1.1.0.0}. We denote by
TΣ the set of all finite trees labeled by symbols in Σ. Subsets of TΣ are called
Σ-tree languages. We can also speak generally about trees and tree languages
without specifying the alphabet (see Gécseg and Steinby [30,31] for details).

Context-free grammars (CFGs) are a well-known class of language generative
devices extensively used for describing syntax of programming languages and
some significant number of structures of natural language sentences.

Definition 2 (Hopcroft and Ullman [38]). A context-free grammar is a tuple
G = (Σ,N,P, S), where:

– Σ is a finite alphabet of terminals,
– N is a finite alphabet of nonterminal symbols,
– P is a finite set of productions (or rules) of the form A → α, where A is a

nonterminal and α is a string from (Σ ∪ N)∗,
– S ∈ N is a distinguished nonterminal called start symbol.
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Fig. 1. A tree in which addresses of nodes are marked.

The tree structure of a string, called derivation tree, shows how that string
can be obtained by applying the rules of a given grammar, and also describes the
structure of the sentence. Note that a string can have multiple derivation trees
associated. Parsing represents the process of analyzing a string (its structural
description) and constructing its derivation tree (or parse tree). A parser is an
algorithm that takes as input a string and either accepts or rejects it (depending
on whether it belongs or not to the language generated by the grammar), and
in the case it is accepted, also outputs its derivation trees.

We recall a yield mapping denoted by yd : TΣ → Σ∗ that extracts a word
from each tree. More precisely, for every tree t ∈ TΣ , yd(t) is the string formed
by the labels of all its leaves, read from left to right. For example, the yield of
the tree depicted in Fig. 1 is youseeGeorge.

Even if the usefulness of CFGs in representing the syntax of natural lan-
guages is well established, there are still several important linguistics aspects
that cannot be covered by this class of grammars. For example, the languages
of multiple agreement {an

1an
2 . . . an

k | n ≥ 1, k ≥ 3}, copy {ww | w ∈ {a, b}∗}
and cross agreement {anbmcndm | n,m ≥ 1} ⊂ {a, b, c, d}∗ cannot be generated
by any CFG. Thus, a more powerful class of grammars, called tree adjoining
grammars, was introduced in Joshi [40], yielding interesting mathematical and
computational results.

Definition 3 (Joshi [40]). A tree adjoining grammar (TAG) is a 5-tuple G =
(Σ,N, I,A, S), where:

– Σ is a finite alphabet of terminals,
– N is a finite alphabet of nonterminal symbols,
– I is a finite set of trees called initial trees, each of them having

• all interior nodes labeled by nonterminal symbols, and
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• all leaf nodes labeled by terminals, or by nonterminal symbols marked for
substitution with ↓,

– A is a finite set of trees called auxiliary trees, each of them having
• all interior nodes labeled by nonterminal symbols, and
• all leaf nodes labeled by terminals, or by nonterminal symbols marked for

substitution with ↓ except for one node, called foot node, annotated by “*”
(the label of the foot node must be identical to the label of the root node),
and

– S ∈ N is a distinguished nonterminal called start symbol.

The trees with root labeled by the nonterminal A are called A-type trees. The
elements of I are usually identified by α1, . . . , αk, and the ones of A by β1, . . . , βl,
respectively. Taking Gorn address into consideration, the label of a node of a
given tree (auxiliary or initial, i.e., elementary) can be uniquely identified by
the pair (treeName, nodeAddress)2.

Sikkel [78] gives an overview of several parsing algorithms valid for both,
programming languages and NLP, using an interesting formalism suggestively
entitled primordial soup.

The known parsing algorithms for NLP are ruled-based or probabilistic (see
Kakkonen [42] for comparisons, details and further references). Generally, higher
grammar costs and computational complexity characterize rule-based algorithms
while a higher speed (even linear complexity) and an accuracy lower than 100%
are typical for probabilistic parsing algorithms. In such algorithms where prob-
abilities are associated to rules, the idea of supertagging from Bangalore and
Joshi [6] (an extension of the notion of “tag” from part of speech to reach syn-
tactic information) followed by a Lightweight Dependency Analysis reached an
accuracy of 95 % with a linear complexity. A good overview on such techniques
and details about their applications is Bangalore and Joshi [7].

For TAGs, numerous ruled-based parsing algorithms, most of them Earley-
type (Schabes and Joshi [75]) or CKY-type (Vijay-Shanker and Joshi [82]), were
developed over the past two decades with the aim to speed up the process, use
less resources, offer a better understanding or broad the applications’ area. For
such algorithms, the complexity in the worst case is known to be O(n6), where
n is the length of the input string.

Grammatical evolution (GE) is a new approach which makes use of the deriva-
tion trees generated by CFGs and the searching capabilities of an evolutionary
algorithm to perform parsing (O’Neill and Ryan [66], Dempsey et al. [21], Hem-
berg [35]). Adapting GE for TAGs was done by Dediu and T̂ırnăucă [18]. We
mention as other works in this domain the papers by Bikel [9] and Collins [14].

4 Word Senses

Word sense disambiguation (WSD) is the capability to assign each occurrence of
a word to one or more classes of meaning (sense(s)) based on the evidence from
2 Note that infinite derivations are not allowed because input strings are finite. Empty

elementary trees can be avoided in the same way as eliminating ε-productions from
CFGs.
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the context and from external knowledge sources, as Navigli [63] specifies in his
survey. Other surveys on WSD are Denkowski [22] and Pal and Saha [67]. A
well-known series of evaluations of computational semantic systems is given by
SemEval/Senseval [77], the most recognized reference point in WSD, organized
as a workshop of the Conference of the Association for Computational Linguistics
(ACL [1]).

Understanding word senses is important for quantifying several textual mea-
surements. In fact, Rowcliffe [73] (citing De Beaugrand and Dressler [16]), gives
a very nice overview of the seven defining characteristics of text, we present them
as Table 1.

Table 1. Seven standards of textuality

Mostly, writer oriented features Reader interpretation dependent characteristics

1 Cohesion 4 Acceptability

2 Coherence 5 Informativity

3 Intentionality 6 Situationality

7 Intertextuality

We give further details on the first two characteristics of texts, and briefly
explain the rest. Acceptability indicates the reader’s recognition of a coherent and
cohesive text. Informativity defines the new knowledge a reader can get. Situ-
ationality gives the time, space or other contextual information. Intertextuality
indicates the connectivity of a text with other texts. Intentionality associates
meanings in the light of some motivation.

Ferenč́ık [27] explains that cohesion is the way in which linguistic items of
text constituents are meaningfully interconnected. He describes four types of
cohesion:

– lexical organization – establishes semantic chains through connections such as
repetition, equivalence - synonymy, hyponymy (shows the relationship between
more general term (lexical representation) and the more specific instances of
it), hyperonymy (hyponymy and hyperonymy are asymmetric relations), para-
phrase (alternative way to rephrase some information), collocation (habitual
juxtaposition of a particular word with another word or words with a frequency
greater than chance).

– reference – either points out of the text (to some common knowledge or real
world items), or refers to an item within the text. If the references are back-
ward, we call them anaphoric, otherwise they are cataphoric.

– ellipsis is an instance of textual anaphora with the omission or indicating
something referred to earlier (e.g., Have some more).

– conjunction – Roen [71] describes four kinds of cohesive conjunctions (see
Table 2).
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Table 2. Cohesive conjunctions

Conjunctive cohesion type Examples

1 Additive also, likewise, moreover

2 Adversative on the other hand, however, and conversely

3 Causal consequently, as a result, for this reason

4 Temporal next, finally, and then

Ulbaek [80] (citing De Beaugrand and Dressler [16]) says that a text is coher-
ent if it shows a general line of continuity of senses. The connection between the
structures of cohesion and coherence of a text was studied by Harabagiu [34].

WSD should rely on the coherence of a text to find the right context and
hence the right sense of some word. It is generally accepted that currently WSD
faces two major problems (McCarthy [54]). One of the problems is the lack of
training data. The other is about the granularity of senses we work with. For
example, WordNet (Miller [57] and Fellbaum [26]) which is one of the largest
computational lexicon publicly available, has a great many subtle distinctions
between various senses of words that may in the end not be required. We would
try to briefly explain how the information is organized in WordNet.

Words are organized into synonym sets (synsets), each representing one
underlying lexical concept. Different relations link the synonym sets. Since the
word “word” is commonly used to refer both to an utterance and the associ-
ated concept, to reduce ambiguity, we use, “word form” to refer to the utterance
and “word meaning” to refer to the semantic concept. We can say that the
starting point for lexical semantics is the mapping between forms and meanings
(Miller [56]). The same word form F might have different meanings, that is, F
is polysemous. The same meaning M might have several word forms associated,
they are synonyms (relative to a context). In fact, some meaning M is repre-
sented in WordNet by word forms that can be used to express it: {F1, F2, . . .}.
The synonym sets do not explain what the concepts are. The only purpose they
serve is discriminative, a person knowing English or another entity assumed to
have already acquired one concept, should be able to recognize it only from the
list of words. As words in different syntactic categories cannot be synonyms,
it was necessary to partition words into nouns, verbs, adjectives, and adverbs.
Other relations are also stored in WordNet, for example antonyms, hyponyms,
meronyms (“has a-” relation), are all present as internal links between words.
Morphological relations, that is, inflectional forms of words are incorporated only
in the querying interface of WordNet, and not in the internal database.

Although started as a project only for English, WordNet rapidly developed
to Global WordNet, sharing and providing WordNets for all languages in the
world (Global WordNet [32]). Integrating the lexical concept from WordNet
and the encyclopedic knowledge from Wikipedia, we get BabelNet (Navigli and
Ponzetto [64]). By using BabelNet, was also possible to create SEW, Semanti-
cally Enriched Wikipedia (Raganato et al. [69]). These components are part of a
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larger project, MultiJEDI, a 5-year ERC (European Research Council) Starting
Grant (2011-2016) headed by Roberto Navigli (MultiJEDI [61]).

5 Natural Language Processing Trends

A new paradigm, appeared on our computers, telephones and tablets under the
generic name of intelligent personal assistants (IPA). They use ASR with the pur-
pose of operate devices, access information, and manage personal tasks. Weng et
al. [84] promote the idea that well-known IPAs like Apple Siri, Google Assistant,
Microsoft Cortana, Amazon Echo, etc., marked a significant progress after 2012,
mainly due to the recent advances in deep learning technologies [19] — espe-
cially deep neural networks (DNNs). Traditionally, ASR was performed based
on hidden Markov models (HMMs), however, the biggest limitation of HMM is
the assumption that the observations are conditionally independent of all other
variables.

IPAs can vary in complexity being able to recognize from several simple com-
mands up to long document writing systems. They can process the information
in real time and they are also capable to recognize in context formatting com-
mands, instructions for deleting text or reorganize the sentences. Despite the
impressive progress, there are still steps to be done, especially receiving infor-
mation from the syntactic layer, or from the proper context for a given word.
For example, the latest version of the most powerful voice recognition software
available today, has problems to distinguish between “suggest” and “suggests”
(Branscombe [10]).

We believe that the next research in WSD will try to find an intelligent iden-
tification of the context. Starting from the assumption that only some words in
the surrounding context are indicative of the correct sense of the target word, an
intelligent selection of the right context used in the disambiguation process could
potentially lead to much better results and faster solutions than considering all
the words in the surrounding context. We can identify lexical chains (sequences
of semantically related words interconnected via semantic relations, as shown by
Erekhinskaya and Moldovan [24]) in the surrounding context, and only include
in the context analysis those words that are found in chains containing the tar-
get word. For this method to be effective, we need also to adopt a proper size
for the surrounding context. The general principle underlying the method of
deciding the expansion of a context is that the text must be coherent; however,
since coherence is very hard to detect, we must rely on cohesion, which is closely
associated to coherence (Fortu and Moldovan [28]). The idea to employ lexical
chains to represent text cohesion was inspired by an older work of Morris and
Hirst [60]. There are several classes of context types, all initiated by different key
words called seeds, then the contexts grow according to the cohesion of sentences
(Crossley et al. [15]). The main problem we see with this approach is that the
algorithms constructing lexical chains are clearly NP. Closer the word senses for
which we construct the lexical chains, easier for the algorithm to construct the
chain; for more far away word senses, the algorithm needs more computations.
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There are several contingency solutions: one, we can pre-process lists of lexical
chains for the most used pairs of words and memorize them; another solution
could use some heuristic methods (like evolutionary algorithms) to drop the
analysis for non-promising chains.

Despite the fact that there are known results on contexts in AI in general
(McCarthy [54]) and in formal languages in particular (Marcus [52], Păun [68],
Kudlek et al. [48]), there are fewer results on context taxonomy, boundary detec-
tion, and how to use them in language understanding. The representation of
contexts for WSD ranges from flat specifications (Mariòo et al. [53], Le and
Mikolov [49], Fahrenberg et al. [25]) to structured descriptions such as trees or
(hyper)graphs (Widdows and Dorow [85], Dorow and Widdows [23], Véronis [83],
Navigli and Velardi [65], Dediu et al. [17]).

We estimate that the following NLP processing systems will continue to
give an increasing importance of linguistic training data, however, new parallel
hybrid system incorporating both symbolic and data driven methods, capable
to select the best technique depending on the available processing time, will fur-
ther improve the current results. At the same time, domain specific applications
will be capable to perform better than general applications, mainly due to the
reduced size of the external context required by WSD.

Studying WSD problems using for training only written documents it is just
a glimpse into the dimension and the quantity of data we could process based on
an appropriate semantic model. We face similar problems when processing for
example images and trying to interpret them, or even multimedia files. There
are so many calling problems in this new world of tremendous data emergence,
not only for movies, but also analyzing survey and security data, information
retrieval, automatic classification of information.
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Abstract. Landauer’s principle claims that “Information is Physical”.
It is not surprising that its conceptual antithesis, Wheeler’s “It from
Bit”, has been more popular among computer scientists — in the form
of the Church-Turing hypothesis: All natural processes can be computed
by a universal Turing machine; physical laws then become descriptions
of subsets of observable, as opposed to merely possible, computations.
Switching back and forth between the two traditional styles of thought,
motivated by quantum-physical Bell correlations and the doubts they
raise about fundamental space-time causality, we look for an intrinsic,
physical randomness notion and find one around the second law of ther-
modynamics. Bell correlations combined with complexity as randomness
tell us that beyond-Turing computations are either physically impossible,
or they can be carried out by “devices” as simple as individual photons.

1 Introduction

1.1 Ice versus Fire

According to Jeanne Hersch [20], the entire history of philosophy is coined by
an antagonism rooting in the fundamentally opposite world views of the pre-
Socratic philosophers Parmenides of Elea (515 B.C.E. – 445 B.C.E.) on the one
hand and Heraclitus (520 B.C.E. – 460 B.C.E.) on the other. For Parmenides,
any change, even time itself, is simply an illusion, whilst for Heraclitus, change
is all there is. The “cold logician” Parmenides has been compared to ice, and
Heraclitus’ thinking is the fiery one [26]. If Hersch is right, and this opposition
between these styles crosses the history of philosophy like a red line, then this
must be true no less for the history of science.

A textbook example illustrating the described antagonism is the debate
between Newton and Leibniz [36]: For Newton, space and time are fundamental
and given a priori, just like a stage on which all the play is located. For Leibniz,
on the other hand, space and time are emergent as relational properties: The
stage emerges with the play and not prior to it, and it is not there without it.
With only a few exceptions — most notably Ernst Mach — the course of phys-
ical science went for Newton’s view; it did so with good success. An important
c© Springer International Publishing AG 2017
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example here is, of course, Einstein’s relativity: Whilst its crystallization point
was Mach’s principle, stating that intertial forces are relational (as opposed to
coming from acceleration against an absolute space), the resulting theory does
not follow the principle since there is (the flat) space-time also in a massless
universe.

In the present work, we turn our attention to physical phenomena such as the
second law of thermodynamics and Bell correlations from quantum theory. We
find here again the opposition between Parmenides’ and Heraclitus’ standpoints,
and we directly build on their tension with the goal of obtaining more insight,
hereby bridging the gap separating them to some extent.

The Heraclitean style can be recognized again in the spirit of Ferdinand
Gonseth’s “La logique est tout d’abord une science naturelle” — “Logic is, first
of all, a natural science”. This is a predecessor of Rolf Landauer’s famous slogan
“Information Is Physical”, [24] putting physics at the basis of the concept of
information and its treatment.

This is in sharp contrast to Shannon’s [31] (very successful) making informa-
tion abstract, independent of the particular physical realization of it (e.g., a spe-
cific noisy communication channel). To the Parmenidean paradigm belongs also
the Church-Turing hypothesis [22], stating that all physically possible processes
can be simulated by a universal Turing machine. This basing physical reality on
information and computation was later summarized by John Archibald Wheeler
as “It from Bit” [37].

1.2 Non-Locality, Space-Time Causality, and Randomness

After Einstein had made the world mechanistic and “local” (without actions at
a distance), he was himself involved in a work [14] paving the (long) way to that
locality to fall again. The goal of Einstein et al. had, however, been the exact
opposite: to save locality in view of correlations displayed in the measurement
behavior of (potentially physically separated) parts of an entangled quantum
state. The claim was that quantum theory was an only incomplete description
of nature, to be refined by hidden parameters determining the outcomes of all
potential, alternative measurements. It took roughly thirty years until that claim
was grounded when John Stewart Bell [6] showed the impossibility of the pro-
gram — ironically making the case with the exact same states as “EPR” had
introduced. The consequences of Bell’s insight are radical: If the values are not
predetermined, then there must be fresh and at the same time identical pieces of
classical information popping us spontaneously — this is non-locality. The con-
ceptual problem these correlations lead us into is the difficulty of explaining their
origin causally, i.e., according to Reichenbach’s principle — which states that
a correlation between two space-time events can stem from a common cause
(in the common past) or a direct influence from one event to the other [30].
Bell’s result rules out the common cause as an explanation, thus remains the
influence. Besides the fact that it is an inelegant overkill to explain a non-
signaling phenomenon (not allowing for transmitting messages from one party to
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the other) using a signaling mechanism, there are further problems: Hidden influ-
ences as explanations of Bell correlation require both infinite speed [1,13,33] and
precision [39].

In view of this, it appears reasonable to question the (only) assumption made
in Reichenbach’s principle: The a priori causal structure [27].1 If we turn back
the wheel to the Newton-Leibniz debate, and choose to follow Leibniz instead,
seeing space-time as appearing only a posteriori, then there is a first victim to
this: Randomness: In [12], a piece of information is called freely random if it is
statistically independent from all other pieces of information except the ones in
its future light cone. Clearly, when the assumption of an initially given causal
structure is dropped, such a definition is not founded any longer.2 (It is then
possible to turn around the affair and base past and future on postulated freeness
of bits [5].) In any case, we are now motivated to find an intrinsic, context-free,
physical definition of randomness and choose to look at: Watt’s Steam Engine.

2 The Search for an Intrinsic Randomness Notion: From
Steam Pipes to the Second Law of Thermodynamics

2.1 The Fragility and the Robustness of the Second Law

The second law of thermodynamics has advanced to becoming pop culture.3 It is,
however, much less famous than Einstein’s relativity, Heisenberg’s uncertainty,
or quantum teleportation because it does not have any glamour, fascination, or
hope attached to it: The law stands for facts many of us are in denial of or try to
escape. We ask whether the attribution of that formalized pessimism to physics
has historical reasons.

The validity of the second law seems to depend on surprising conditions such as
the inexistence of certain life styles (e.g., Maxwell’s demon or photosynthesizing
plants — Kelvin [21] writes: “When light is absorbed other than in vegetation, there
is dissipation [...]”). To make things worse, there is always a non-zero probability
(exponentially small, though) of exceptions where the law fails to hold; we are not
used to this from other laws of physics. Can this be taken as an indication that the
fundamental way of formulating the law eludes us?

The described fragility of the second law is strangely contrasted by its being,
in another way, more robust than others (such as Bell violations only realiz-
able under extremely precise lab conditions): We certainly do not need to trust
experimentalists to be convinced that the second law is acting, everywhere and

1 It has been shown [4] that if causality is dropped but logical consistency maintained,
then a rich world opens — comparable to the one between locality and signaling.

2 Note furthermore that the definition is consistent with full determinism: A random
variable with trivial distribution is independent of every other (even itself).

3 See, e.g., Allen, W., Husbands and Wives (1992): The protagonist Sally is explaining
why her marriage did not work out. First she does not know, then she realizes: “It’s
the second law of thermodynamics: sooner or later everything turns to shit. That’s
my phrasing, not the Encyclopedia Britannica”.
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always. It has even been claimed [35] to hold a “supreme position” among physi-
cal laws: It appears easier to imagine a world where relativity or quantum theory
do not hold than to figure out a reality lacking the validity of the second law.
(Concerning the reasons for this, we can only speculate: Would we be forced to
give up the mere possibility of perception, memory — the arrow of time?)

2.2 History

This story (see [35]) starts with Sadi Carnot (1796–1832) and his study of heat
engines such as James Watt ’s steam pipe. The assumption, in consequence, that
the law is closely related to such engines, and to the circular processes involved, is
of course not wrong, but it underestimates a fundamental logical-combinatorial-
informational fact ; perhaps steam engines are for the second law what telescopes
are for Jupiter’s moons.

Carnot argued that the maximal efficiency of a heat engine between two heat
baths depended only on the two temperatures involved. (The derived formula
motivated Lord Kelvin to define the absolute temperature scale.)

Rudolf Clausius’ (1822–1888) [11] version of the second law reads: “Es kann
nie Wärme aus einem kälteren in einen wärmeren Körper übergehen, ohne dass
eine andere damit zusammenhängende Änderung eintritt”. — “No process can
transport heat from cold to hot and do no further change”.

Lord Kelvin (1824–1907) [21] formulated his own version of the second law
and concluded — in just the next sentence — that the law may have consequences
deeper than what was obvious at first sight: “Restoration of mechanical energy
without dissipation [...] is impossible. Within a finite period of time past, the
earth must have been, within a finite time, the earth must again be unfit for the
habitation of man”.

Also for Clausius, it was only a single thinking step from his version of the
law to concluding that all temperature differences in the entire universe will
vanish (the Wärmetod) and that then, no change will be possible anymore.
He speaks of a general tendency of nature for change into a specific direction:
“Wendet man dieses auf das Weltall im Ganzen an, so gelangt man zu einer
eigentümlichen Schlussfolgerung, auf welche zuerst W. Thomson [Lord Kelvin]
aufmerksam machte, nachdem er sich meiner Auffassung des zweiten Haupt-
satzes angeschlossen hatte. Wenn [...] im Weltall die Wärme stets das Bestreben
zeigt, [...] dass [...] Temperaturdifferenzen ausgeglichen werden, so muss es sich
mehr und mehr dem Zustand annähern, wo [...] keine Temperaturdifferenzen
mehr existieren.” — In short: “He was right after he had realized that I had
been right: At the end, no temperature differences will be left in the universe.”

Ludwig Boltzmann (1844–1906) brought our understanding of the second law
closer to combinatorics and probability theory (in particular, the law of large
numbers). His version is based on the fact that it is more likely to end up in a
large set (of possible states) than in a small one: The more “microstates” belong
to a given “macrostate”, the more likely is it that you will find yourself in that
macrostate. In other words, if you observe the time evolution of a system (by
some reason starting in a very small, “unlikely” macrostate), then the “entropy”
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of the system — here simply (the logarithm of) the number of corresponding
microstates — does not decrease.4

The notion of macrostate and its entropy have been much debated. Von
Neumann remarked [35]: “No one knows what entropy really is, so in a debate
you will always have the advantage”. We aim at a version of the second law
avoiding this advantage: a view without probabilities or ensembles, but based
on intrinsic, one-shot complexity instead. Crucial steps in that direction were
made by Zurek [40]. We take a Church-Turing view and follow Landauer [24]
whose role or, more specifically, whose choice of viewpoint around the second
law can be compared with Ernst Specker ’s [32] take on quantum theory: logical.

2.3 Reversibility

Landauer investigated the thermodynamic price of logical operations. He was
correcting a belief by John von Neumann that every bit operation required free
energy kT ln 2 (where k is Boltzmann’s constant, T the environmental temper-
ature, and ln 2 owed to the fact that 2 is not a natural but a logical constant).
According to Landauer — and affirmed by Fredkin and Toffoli’s “ballistic com-
puter” [18]—, this limitation or condition only concerns (bit) operations which
are logically irreversible, such as the AND or the OR. On the positive side, it has
been observed that every function, bijective or not, can in principle be evaluated
in a logically reversible way, using only “Toffoli gates”, i.e., made-reversible and
then-universal AND gates; its computation can be thermodynamically neutral:
It does not have to dissipate heat.

Landauer’s principle states that erasing (setting the corresponding memory
cells to 0) N bits costs kTN ln 2 free energy which must be dissipated as heat to
the environment (of temperature T ). This dissipation is crucial in the argument:
Heating up the environment compensates for the entropy loss within the memory
cell, realized as a physical system (spin, gas molecule, etc.).

Let us consider the inverse process: Work extraction. Bennett [7] made the
key contribution to the resolution of the paradox of Maxwell’s demon. That
demon had been thought of as violating the second law by adaptively handling a
frictionless door with the goal of “sorting a gas” in a container. Bennett took the
demon’s memory (imagined to be in the all-0-state before sorting) into account,
which is in the end filled with “random” information, an expression of the original
state of the gas. The growth of disorder inside the demon compensates for the
4 Boltzmann imagined further that the universe had started in a completely “uniform”

state, so the entire, rich reality perceived would be a simple fluctuation. (Note that
the fact that this fluctuation is extremely unlikely is irrelevant if we can condition
on our existence, given our discussing this.) He may have been aware that this way
of thinking leads straight into solipsism: “My existence alone, simply imagining my
environment, seems much more likely than the actual existence of all people around
me, let alone all the visible galaxies, etc.” — he killed himself in a hotel room in
Duino, Italy; it has been told that this was also related to “mobbing” by Mach in
Vienna. In any case, we choose to comfort us today with the somewhat religious
assumption that the universe initiated in a low-entropy state, called the big bang.
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order she creates outside (i.e., in the gas) — the second law is saved. The initial
0-string is the demon’s resource allowing for her order creation.

If we break Bennett’s argument apart in the middle, we end up with the con-
verse of Landauer’s principle: The all-0-string has work value, i.e., if we accept
the price of the respective memory cells to become “randomized” in the process,
we can extract kTN ln 2 free energy from the environment (a heat bath of tem-
perature T ). In a constructivist manner, we choose to view the work-extraction
process as an algorithm which, according to the Church-Turing hypothesis, we
imagine as being carried out by a universal Turing machine. It then follows that
the work value of a string S is closely related to the possibility of lossless com-
pression of that string: For any concrete data-compression algorithm, we can
extract kT ln 2 times the length of S (uncompressed) minus the length of its
compression: Work value is redundancy (in representation) of information. On
the other end of the scale, the upper bound on work extraction is linked to the
ultimate compression limit: Kolmogorov complexity, i.e., the length of the short-
est program for the extraction demon (Turing machine) generating the string in
question. This holds because a computation is logically reversible only if it can
be carried out in the other direction, step by step.

There is a direct connection between the work value and the erasure cost
(in the sense of Landauer’s principle) of a string. We assume here that for both
processes, the extraction demon has access to an additional string X (modeling
prior “knowledge” about S) which serves as a catalyst and is to be unchanged
at the end of the process. For a string S ∈ {0, 1}N , let WV(S|X) and EC(S|X)
be its work value and erasure costs, respectively, given X. Then5

WV(S|X) + EC(S|X) = N .

To see this, consider first the combination extract-then-erase. Since this is
one specific way of erasing, we have

EC(S|X) ≤ N − WV(S|X) .

If, on the other hand, we consider the combination erase-then-extract, this leads to

WV(S|X) ≥ N − EC(S|X) .

Given the results on the work value discussed above, as well as this connection
between the work value and erasure cost, we obtain the following bounds on the
thermodynamic cost of erasing a string S by a demon, modeled as a universal
Turing machine U with initial tape content X.

Landauer’s principle, revisited. Let C be a computable compression function

C : {0, 1}∗ × {0, 1}∗ −→ {0, 1}∗

such that (A,B) �→ (C(A,B), B) is injective. Then we have

KU (S|X) ≤ EC(S|X) ≤ len(C(S,X)) .

5 Let kT ln 2 = 1.
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Landauer’s revised principle puts forward two ideas: First, the erasure cost is
an intrinsic, context-free, physical measure for randomness (entirely independent
of probabilities and counter-factual statements of the form “some value could
just as well have been different”, i.e., removing one layer of speculation). The
idea that the erasure cost — or the Kolmogorov complexity related to it — is a
measure for randomness independent of probabilities can be tested in a context
in which randomness has been paramount: Bell correlations [6] predicted by
quantum theory, see Sect. 3 for details.

The second idea starts from the observation that the price for the logical
irreversibility of the erasure transformation comes in the form of a thermody-
namic effort.6 In an attempt to harmonize this somewhat hybrid picture, we
invoke Wheeler’s [37] “It from Bit : Every it — every particle, every field of
force, even the space-time continuum itself — derives its function, its meaning,
its very existence entirely [...] from the apparatus-elicited answers to yes-or-no
questions, binary choices, bits”. This is an anti-thesis to Landauer’s slogan, and
we propose the following synthesis of the two: If Wheeler suggests to look at
the environment as being information as well, then Landauer’s principle ends
up to be read as: The necessary environmental compensation for the logical irre-
versibility of the erasure of S is such that the overall computation, including the
environment, is logically reversible: no information ever gets completely lost.

Second law, Church-Turing view. If reality is assumed to be computed by
a Turing machine, then that computation has the property of being injective:
Nature computes with Toffoli, but no AND or OR gates.

This fact is a priori asymmetric in time: The future must uniquely determine
the past, not necessarily vice versa. (This is identical with Grete Herrmann’s [19]
take on causality.) In case the condition holds also for the reverse time direction,
the computation is deterministic, and randomized otherwise.

2.4 Consequences

If logical reversibility is a simple computational version of a discretized second
law, does it have implications resembling the traditional versions of the law?

Logical Reversibility Implies Quasi-Monotonicity

First of all, we find a “Boltzmann-like” form, i.e., the existence of a quantity
essentially monotonic in time. More specifically, the logical reversibility of time
evolution implies that the Kolmogorov complexity of the global state at time t
can be smaller than the one at time 0 only by at most K(Ct) + O(1) if Ct is a
string encoding the time span t. The reason is that one possibility of describing
the state at time 0 is to give the state at time t, plus t itself; the rest is exhaustive
search using only a constant-length program simulating forward time evolution
(including possible randomness).
6 Since the amount of the required free energy (and heat dissipation) is proportional

to the length of the best compression of the string, the latter can be seen as a
quantification of the erasure transformation’s irreversibility.
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Logical Reversibility Implies Clausius-like Law

Similarly, logical reversibility also implies statements resembling the version of
the second law due to Clausius: “Heat does not spontaneously flow from cold to
hot”. The rationale here is that if we have a computation — the time evolution
— using only (logically reversible) Toffoli gates, then it is impossible that this
circuit computes a transformation mapping a pair of strings to another pair such
that the Hamming-heavier of the two becomes even heavier whilst the lighter
gets lighter. A function accentuating imbalance, instead of lessening it, is not
reversible, as a basic counting argument shows.

Example. Let a circuit consisting of only Toffoli gates map an N(= 2n)-bit string
to another. We consider the map separately on the first and second halves and
assume the computed function to be conservative, i.e., to leave the Hamming
weight of the full string unchanged at n (conservativity can be seen as some
kind of first law, i.e., the preservation of a quantity). We look at the excess
of 1’s in one of the halves (which equals the deficit of 1’s in the other). We
observe that the probability (with respect to the uniform distribution over all
strings of some Hamming-weight couple [wn, (1−w)n]) of the imbalance substan-
tially growing is exponentially weak. The key ingredient for the argument is the
function’s injectivity. Explicitly, the probability that the weight couple changes
from [wn, (1 − w)n] to [(w + Δ)n, (1 − w − Δ)n] — or more extremely — , for
1/2 ≤ w < 1 and 0 < Δ ≤ 1 − w, is

(
n

(w+Δ)n

)(
n

(1−w−Δ)n

)

(
n

wn

)(
n

(1−w)n

) = 2−Θ(n) .

Note here that we even get the correct, exponentially weak “error probability”
with which the traditional second law can be “violated”.

Logical Reversibility Implies Kelvin-like Law

“A single heat bath alone has no work value”. This, again, follows from a sim-
ple counting argument. There exists no reversible circuit that, for general input
environments (with a fixed weight — intuitively: heat energy), extracts redun-
dancy, i.e., work value, and concentrates it in some pre-chosen bit positions:
Concentrated redundancy is more of it.

Example. The probability that a fixed circuit maps a “Hamming bath” of
length N and Hamming weight w to another such that the first n positions
contain all 1’s and such that the Hamming weight of the remaining N − n posi-
tions is w − n (again, we are assuming conservation here) is

(
N−n
w−n

)

(
N
w

) = 2−Θ(n) .

2.5 Discussion and Questions

We propose a logical view of the second law of thermodynamics: the injectivity
or logical reversibility of time evolution. This is somewhat ironic as the second
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law has often been related to its exact opposite: irreversibility.7 It implies, within
the Church-Turing view, Clausius-, Kelvin-, and Boltzmann-like statements. We
arrive at seeing a law combinatorial in nature — and its discovery in the context
of steam pipes as a historical incident.

A logically reversible computation can still split up paths [15].8 This “ran-
domness” may bring in objective time asymmetry. What is then the exact mech-
anism by which randomness implies that a record tells more about the past than
about the future? (Does it?)

3 Bell Correlations and the Church-Turing Hypothesis

We test the obtained intrinsic notion of randomness, in the form of erasure cost
or Kolmogorov complexity, with a physical phenomenon that we have already
mentioned above as challenging a-priori causality: “non-local” correlations from
quantum theory. In fact, randomness has been considered crucial in the argu-
ment. We put this belief into question in its exclusiveness; at the same time we
avoid in our reasoning connecting results of different measurements that, in fact,
exclude each other (in other words, we refrain from assuming so-called counter-
factual definiteness, i.e., that all these measurement outcomes even exist alto-
gether).9 For the sake of comparison, we first review the common, probabilistic,
counter-factual reasoning.

3.1 Bell Non-local Correlations

Non-locality, manifested in violations of Bell inequalities, expresses the impossi-
bility to prepare parts of an entangled system simultaneously for all possible mea-
7 Since new randomness cannot be gotten rid of later, the equation reads: “Logical

reversibility plus randomness equals thermodynamic irreversibility”. If you can go
back logically in a random universe, then you certainly cannot thermodynamically.

8 Note that there is no (objective) splitting up, or randomness, if time evolutions
are unitary, e.g., come from Schrödinger, heat-propagation, or Maxwell’s equations.
What is then the origin of the arrow of time? The quantum-physical version of
injectivity is Hugh Everett III’s relative-state interpretation. How do we imagine the
bridge from global unitarity to the subjective perception of time asymmetry? When
we looked above, with Landauer, at a closed classical system of two parts, then
the (possible) complexity deficit in one of them must simply be compensated in a
corresponding increase in the other. In Everett’s view, this means that there can
be low-entropy branches of the wave function (intuitively, yet too näıvely, called:
parallel universes) as long as they are compensated by other, highly complex ones.

9 The counter-factual nature of the reasoning claiming “non-classicality” of quan-
tum theory, that was the main motivation in [38], has already been pointed out by
Specker [32]: “In einem gewissen Sinne gehören aber auch die scholastischen Speku-
lationen über die Infuturabilien hieher, das heisst die Frage, ob sich die göttliche All-
wissenheit auch auf Ereignisse erstrecke, die eingetreten wären, falls etwas geschehen
wäre, was nicht geschehen ist”. — “In some sense, this is also related to the scholas-
tic speculations on the infuturabili, i.e., the question whether divine omniscience
even extends to what would have happened if something had happened that did not
happen”.
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surements. We look at an idealized non-local correlation, the Popescu-Rohrlich
(PR) box [28]. Let A and B be the respective input bits to the box and X and Y
the output bits; the (classical) bits satisfy

X ⊕ Y = A · B . (1)

According to a result by Fine [17], the non-locality of the system (i.e., condi-
tional distribution) PXY |AB , which means that it cannot be written as a convex
combination of products PX|A · PY |B, is equivalent to the fact that there exists
no preparation for all alternative measurement outcomes P ′

X0X1Y0Y1
such that

P ′
XiYj

= PXY |A=i,B=j

for all (i, j) ∈ {0, 1}2. In this view, non-locality means that the outputs cannot
exist10 before the inputs do. Let us make this qualitative statement more precise.
We assume a perfect PR box, i.e., a system always satisfying X ⊕ Y = A · B.
Note that this equation alone does not uniquely determine PXY |AB since the
marginal of X, for instance, is not determined. If, however, we additionally
require no-signaling, then the marginals, such as PX|A=0 or PY |B=0, must be
perfectly unbiased under the assumption that all four (X,Y )-combinations, i.e.,
(0, 0), (0, 1), (1, 0), and (1, 1), are possible. To see this, assume on the contrary
that PX|A=0,B=0(0) > 1/2. By the PR condition (1), we can conclude the same
for Y : PY |A=0,B=0(0) > 1/2. By no-signaling, we also have PX|A=0,B=1(0) >
1/2. Using symmetry, and no-signaling again, we obtain both PX|A=1,B=1(0) >
1/2 and PY |A=1,B=1(0) > 1/2. This contradicts the PR condition (1) since two
bits which are both biased towards 0 cannot differ with certainty. Therefore,
our original assumption was wrong: The outputs must be perfectly unbiased.
Altogether, this means that X as well as Y cannot exist (i.e., take a definite
value — actually, there cannot even exist a classical value arbitrarily weakly
correlated with one of them) before the classical bit f(A,B) exists for some
nontrivial deterministic function f : {0, 1}2 → {0, 1}. The paradoxical aspect of
non-locality — at least if a causal structure is in place — now consists of the
fact that fresh pieces of information come to existence in a spacelike-separated
manner that are nonetheless perfectly correlated.

3.2 Kolmogorov Complexity

We introduce the basic notions required for our alternative, complexity-based
view. Let U be a fixed universal Turing machine (TM).11 For a finite or infinite

10 What does it mean that a classical bit exists? Note first that classicality of infor-
mation implies that it can be measured without disturbance and that the outcome
of a “measurement” is always the same; this makes it clear that it is an idealized
notion requiring the classical bit to be represented in a redundant way over an infi-
nite number of degrees of freedom, as a thermodynamic limit. It makes thus sense
to say that a classical bit U exists, i.e., has taken a definite value.

11 The introduced asymptotic notions are independent of this choice.
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string s, the Kolmogorov complexity [23,25] K(s) = KU (s) is the length of the
shortest program for U such that the machine outputs s. Note that K(s) can be
infinite if s is.

Let a = (a1, a2, . . .) be an infinite string. Then

a[n] := (a1, . . . , an, 0, . . .) .

We study the asymptotic behavior of K(a[n]) : N → N. For this function, we
simply write K(a), similarly K(a | b) for K(a[n] | b[n]), the latter being the length
of the shortest program outputting a[n] upon input b[n]. We write

K(a) ≈ n :⇐⇒ lim
n→∞

K(a[n])
n

= 1 .

We call a string a with this property incompressible. We also use K(a[n]) = Θ(n),
as well as

K(a) ≈ 0 :⇐⇒ lim
n→∞

K(a[n])
n

= 0 ⇐⇒ K(a[n]) = o(n) .

Note that computable strings a satisfy K(a) ≈ 0, and that incompressibility is,
in this sense, the extreme case of uncomputability.

Generally, for functions f(n) and g(n) �≈ 0, we write f ≈ g if f/g → 1.
Independence of a and b is then12

K(a | b) ≈ K(a)

or, equivalently,
K(a, b) ≈ K(a) + K(b) .

If we introduce

IK(x; y) := K(x) − K(x | y) ≈ K(y) − K(y |x) ,

independence of a and b is IK(a, b) ≈ 0.
In the same spirit, we can define conditional independence: We say that a

and b are independent given c if

K(a, b | c) ≈ K(a | c) + K(b | c)
or, equivalently,

K(a | b, c) ≈ K(a | c) ,

or
IK(a; b | c) := K(a | c) − K(a | b, c) ≈ 0 .

12 This is inspired by [9] (see also [10]), where (joint) Kolmogorov complexity — or, in
practice, any efficient compression method — is used to define a distance measure on
sets of bit strings (such as literary texts of genetic information of living beings). The
resulting structure in that case is a distance measure, and ultimately a clustering as
a binary tree.
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3.3 Correlations and Computability

We are now ready to discuss non-local correlations with our context-free ran-
domness measure. The mechanism we discover is very similar to what holds
probabilistically: If the choices of the measurements are random (uncomputable)
and non-signaling holds, then the outputs must be random (uncomputable) as
well. We prove the following statement.

Uncomputability from Correlations. There exist bipartite quantum states
with a behavior under measurements such that if the sequences of setting encod-
ings are maximally uncomputable (incompressible), then the sequences of mea-
surement results are uncomputable as well, even given the respective setting
sequences.

Proof. We proceed step by step, starting with the idealized system of the PR box.
Let first (a, b, x, y) be infinite binary strings with

xi ⊕ yi = ai · bi . (2)

Obviously, the intuition is that the strings stand for the inputs and outputs of
a PR box. Yet, no dynamic meaning is attached to the strings anymore (or to
the “box”, for that matter) since there is no “free choice” of an input and no
generation of an output in function of the input; all we have is a quadruple
of strings satisfying the PR condition (2). However, nothing prevents us from
defining this (static) situation to be no-signaling :

K(x | a) ≈ K(x | ab) and K(y | b) ≈ K(y | ab) . (3)

We argue that if the inputs are incompressible and independent, and no-
signaling holds, then the outputs must be uncomputable: To see this, assume
now that (a, b, x, y) ∈ ({0, 1}N)4 with x ⊕ y = a · b (bit-wisely), no-signaling (3),
and

K(a, b) ≈ 2n ,

i.e., the “input” pair is incompressible. We conclude

K(a · b | b) ≈ n/2 .

Note first that bi = 0 implies ai ·bi = 0, and second that any further compression
of a ·b, given b, would lead to “structure in (a, b)”, i.e., a possibility of describing
(programming) a given b in shorter than n and, hence, (a, b) in shorter than 2n.
Observe now

K(x | b) + K(y | b) ≥ K(a · b | b)
which implies

K(y | b) ≥ K(a · b | b) − K(x | b) ≥ n/2 − K(x) . (4)

On the other hand,

K(y | a, b) ≈ K(x | a, b) ≤ K(x) . (5)
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Now, no-signaling (3) together with (4) and (5) implies

n/2 − K(x) ≤ K(x) ,

and
K(x) ≥ n/4 = Θ(n) :

(This bound can be improved by a more involved argument [3].) The string x
must be uncomputable.

A priori, it is not overly surprising to receive uncomputable outputs upon
inputs having the same property. Thus, we now turn our attention to the condi-
tional output complexities given the inputs: We consider the quantities K(x | a)
and K(y | b). Note first

K(x | a) ≈ 0 ⇔ K(x | ab) ≈ K(y | ab) ≈ 0 ⇔ K(y | b) ≈ 0 ,

i.e., the two expressions vanish simultaneously. We show that, in fact, they both
fail to be of order o(n). To see this, assume K(x | a) ≈ 0 and K(y | b) ≈ 0. Hence,
there exist programs Pn and Qn (both of length o(n)) for functions fn and gn

with
fn(an) ⊕ gn(bn) = an · bn . (6)

For fixed (families of) functions fn and gn, asymptotically how many (an, bn) can
at most exist that satisfy (6)? The question boils down to a parallel-repetition
analysis of the PR game: A result by Raz [29] implies that the number is of
order (2 − Θ(1))2n. Therefore, the two programs Pn and Qn together with the
index, of length

(1 − Θ(1))2n ,

of the correct pair (a, b) within the list of length (2−Θ(1))2n lead to a program,
generating (a, b), that has length

o(n) + (1 − Θ(1))2n ,

in contradiction to the assumption of incompressibility of (a, b).
Unfortunately, perfect PR boxes are not predicted by quantum theory. We

show that correlations which are achievable in the laboratory [34] allow for the
argument to go through; they are based on the chained Bell inequality [2] instead
of perfect PR-type non-locality.

To the chained Bell inequality belongs the following idealized system: Let
A,B ∈ {1, . . . , m} be the inputs. We assume the “promise” that B is congruent
to A or to A + 1 modulo m. Given this promise, the outputs X,Y ∈ {0, 1} must
satisfy

X ⊕ Y = χA=m,B=1 , (7)

where χA=m,B=1 is the characteristic function of the event {A = m,B = 1}.
Barrett, Hardy, and Kent [2] showed that if A and B are random, then X

and Y must be perfectly unbiased if the system is no-signaling. More precisely,
they were even able to show such a statement from the gap between the error
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probabilities of the best classical — Θ(1/m) — and quantum — Θ(1/m2) —
strategies for winning this game.

We assume (a, b, x, y) ∈ ({1, . . . , m}n)2 × ({0, 1}n)2 to be such that the
promise holds, and such that

K(a, b) ≈ (log m + 1) · n , (8)

i.e., the string a||b is maximally incompressible given the promise; the system
is no-signaling (3); the fraction of quadruples (ai, bi, xi, yi), i = 1, . . . , n, satisfy-
ing (7) is of order (1 − Θ(1/m2))n. Then K(x) = Θ(n).

To see this, observe first that K(a, b) being maximal implies

K(χa=m,b=1 | b) ≈ n

m
: (9)

The fractions of 1’s in b must, asymptotically, be 1/m due to the string’s incom-
pressibility. If we condition on these positions, the string χa=m,b=1 is incom-
pressible, since otherwise there would be the possibility of compressing (a, b).

Now, we have

K(x | b) + K(y | b) + h(Θ(1/m2))n ≥ K(χa=m,b=1 | b)
since one possibility for “generating” the string χa=m,b=1, from position 1 to n,
is to generate x[n] and y[n] as well as the string indicating the positions where (7)
is violated, the complexity of the latter being at most13

log
(

n

Θ(1/m2)n

)
≈ h(Θ(1/m2))n .

Let us compare this with 1/m: Although the binary entropy function has
slope ∞ in 0, we have

h(Θ(1/m2)) < 1/(3m)

if m is sufficiently large. To see this, observe first that the dominant term of h(x)
for small x is −x log x, and second that

c(1/m) log(m2/c) < 1/3

for m sufficiently large.
Together with (9), we now get

K(y | b) ≥ 2n

3m
− K(x) (10)

if m is chosen sufficiently large. On the other hand,

K(y | ab) ≤ K(x | ab) + h(Θ(1/m2))n (11)

≤ K(x) +
n

3m
. (12)

13 Here, h is the binary entropy h(x) = −p log2 p − (1 − p) log2(1 − p). Usually, p
is a probability, but h is invoked here merely as an approximation for binomial
coefficients.
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Now, (3), (10), and (12) together imply

K(x) ≤ n

6m
= Θ(n) ;

in particular, x must be uncomputable. This concludes the proof. �

3.4 Kolmogorov Amplification and the All-or-Nothing Nature of
the Church-Turing Hypothesis

The shown result implies that if the experimenters are given access to an incom-
pressible number (such as Ω [8]) for choosing their measurement bases, then the
measured photon (in a least one of the two labs) is forced to generate an uncom-
putable number as well, even given the string determining its basis choices.

This is a similar observation as in the probabilistic realm, where certain “free-
will theorems” have been formulated in the context. In fact, stronger statements
hold there, since non-local correlations allow for randomness amplification as
well as expansion (see, e.g., [12]): The randomness generated by the photons
as their measurement output qualitatively and quantitatively exceeds what is
required for the choices of the measurement settings. This also holds in our
complexity-based model: Indeed, it has been shown in [3] that functionalities
such as Kolmogorov-complexity amplification and expansion are possible using
Bell correlations. The consequence is that there is either no incompressibility or
uncomputability at all in the world, or it is full of it.

All-or-Nothing Feature of the Church-Turing Hypothesis. Either no
device exists in nature allowing for producing uncomputable sequences, or even
a single photon can do it.

4 Concluding Remarks and Open Questions

The antagonism between the pre-Socratic philosophers Parmenides and
Heraclitus is still vivid in today’s thinking traditions: The Parmenidean line
puts logic is the basis of space-time and dynamics — in the end all of physics.
It has inspired researchers such as Leibniz, Mach, or Wheeler. Central here is
a doubt about a priori absolute space-time causality: Is it possible that these
concepts only emerge at a higher level of complexity, along with macroscopic,
classical information?

Fundamentally opposed is the Heraclitean style, seeing physics and its objects
at the center: space, time, causality, and dynamic change is what all rests upon,
including logic, computation, or information. To this tradition belong Newton,
most physicists including Einstein, the logician Gonseth, certainly Landauer.

According to Paul Feyerabend [16], a specific tradition comes with its own
criteria for success etc., and it can be judged from the standpoint of another (with
those other criteria). In this spirit, it has been the goal of our discourse to build
bridges between styles, and to use their tension to serve us. This allowed, for
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instance, to get more insight into the second law of thermodynamics or the “non-
local” correlations from quantum theory. The latter challenge our established
views of space and time; they, actually, have us look back to the debate between
Newton and Leibniz and to question the path most of science decided to take,
at that time.

For the sake of a final thought, assume à la Leibniz that space, time, and
causality do not exist prior to classical information — which we understand as
an idealized notion of macroscopically and highly redundantly represented infor-
mation; an ideal classical bit can then be measured without disturbance, copied,
and easily recognized as being classical. In this view, classicality is a thermody-
namic notion. Thus the key to the quantum measurement process, and the prob-
lems linked to it, may lie within thermodynamics. (Yet, even if this is successful:
How come we observe correlations of pieces of classical information unexplain-
able by any reasonable classical mechanism? How can quantum correlations and
thermodynamic classicality — Bell & Boltzmann — be reconciled?)
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Abstract. Turbo-charging is a recent algorithmic technique that is
based on the fixed-parameter tractability of the dynamic versions of some
problems as a way to improve heuristics. We demonstrate the effective-
ness of this technique and develop the turbo-charging idea further. A new
hybrid heuristic for the Dominating Set problem that further improves
this method is obtained by combining the turbo-charging technique with
other standard heuristic tools including Local Search (LS). We imple-
ment both the recently proposed “turbo greedy” algorithm of Downey
et al. [8] and a new method presented in this paper. The performance of
these new heuristics is assessed on three suites of benchmark datasets,
namely DIMACS, BHOSLIB and KONECT. Experiments comparing our
algorithm to both heuristic and exact algorithms demonstrate its effec-
tiveness. Our algorithm often produced results that were either exact or
better than all the other available algorithms.

1 Introduction

Parameterized problems can be classified as either being fixed-parameter
tractable (or FPT) or hard for some other class such as W [1] or W [2]. If a prob-
lem is FPT, then we often have practical algorithms to solve it exactly when
the input parameter is small. It may also be possible to apply efficient kernel-
ization methods. That is, there is a polynomial-time preprocessing algorithm
which when applied to an arbitrary problem instance is guaranteed to yield an
equivalent instance whose size is bounded by a function of the (relatively small)
parameter. For many problems, kernelization reduces the size to a polynomial
or even linear function of the parameter. This has been shown to be effective in
improving many heuristics for NP-hard problems [4].
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When a parameterized problem is not FPT, the seemingly only time-efficient
approach is to resort to heuristic algorithms. This is the case of the W [2]-
Complete Dominating Set problem (henceforth DS). Recently, however, a
dynamic version of DS was shown to be FPT [8], and it was suggested that
a fixed-parameter algorithm for the dynamic version can be used to improve
heuristic algorithms. This idea can be used as a general framework to improve
heuristic search in some sort of a time-quality trade-off, which is demonstrated
in Sect. 2.1.

The notion of a parameterized dynamic problem plays a key role in this paper.
A dynamic problem is one whose input is assumed to have changed after some
initial solution was found. Thus, a problem instance is accompanied by the initial
instance and its solution along with parameters quantifying the changes made
and a bound on the difference between the original solution and the one to be
found. The Dynamic Dominating Set (DDS) and Greedy Improvement

of Dominating Set (Greedy-DS) problems were introduced in [8].
Furthermore, the DDS parameterization can be used, in order to improve

heuristic search algorithms for DS. This is based on using a “fixed-parameter”
DDS algorithm as a subroutine in what was coined in as turbo-charging LS prob-
lems. In this paper, the “turbo-charging” idea is implemented for the first time.
The technique uses a greedy heuristic as the inductive route to then applying
a fixed-parameter algorithm for the dynamic version of the problem as a sub-
routine. Note that the approach is not limited to the heuristic it is applied to.
A number of alternative popular greedy and LS heuristics can be used. These
heuristics are described in Sect. 1.2.

When it was introduced in [8] the greedy heuristic used was based on choosing
the vertex of the highest degree. This was used to illustrate the approach, but it
is not the most effective method. Here, this original algorithm is modified to use
the classic greedy heuristic (based in the notion of vertex utility) presented by
Chvatal as follows: order the vertices from lowest to highest utility and then to
each vertex select its highest utility neighbor in the solution. A second improved
heuristic (FPT Turbo Hybrid) that instead uses the current-best greedy LS of
Sanchis et al. [22] is then presented.

The effectiveness of this approach is then evaluated by comparing its perfor-
mance using a selection of datasets from DIMACS [17], BHOSLIB [25] (Bench-
marks with Hidden Optimum Solutions for Graph Problems) and KONECT
(The Koblenz Network Collection) [18].

We implement and test our methods and provide an initial evaluation of
the turbo-charging technique. Our experiments show that our improved version
outperforms the well-known Greedy-Vote heuristic [22] which adopts the greedy
randomized adaptive search procedure GRASP of [10].

1.1 Terminology

Throughout this paper, we work with simple undirected graphs, i.e., no loops
and no multiple edges. Given a graph G = (V,E), V and E (or V (G) and E(G))
denote the set of vertices and edges in G, respectively. The open neighborhood of
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a vertex v is the set of all vertices adjacent to v, denoted as NG(v). The closed
neighborhood is NG[v] = NG(v) ∪ {v}. The subscript G will be dropped when
the graph name is known from the context. If S ⊆ V (G), NG(S) denotes all the
vertices of V (G)\S that are adjacent to the vertices in S and NG[S] = NG(S)∪S.
If NG[S] = V (G), we say S is a dominating set for G. When computing a
dominating set we gradually add vertices to a (partial dominating) set S. If
NG[S] � V (G), the number of non-dominated neighbors of a vertex v is dubbed
the utility of v in this paper.

The DS problem and its variants are among the most broadly studied and the
most important problems in graph theory and computer science. They find appli-
cations in many fields such as message routing with sparse tables [21], replica
caching in operation systems and databases [20], server placement in a computer
network [3], multicast systems [24], and political science [5]. Among the variants
of DS is the classical, naturally parameterized, DS problem which asks whether
we can find a dominating set whose size is less than or equal to a parameter k.
The problem is known to be NP-hard [13] as well as W[2]-hard [9], and further-
more, it is NP-hard to approximate DS within a ratio of (1 − ε) ln n for every
ε > 0 [7].

The current asymptotically-fastest exact algorithm of Fomin et al. [12] finds
a dominating set whose size is minimum among all dominating sets with a time
complexity in O∗(20.61n). Despite its exponential time complexity, the algorithm
was shown to behave well in practice using the implementation method reported
in [1]. On the other hand, current heuristic algorithms for DS are based on either
the greedy method with improved objective functions [22] or LS.

The most common greedy approach is based on the assumption that a ver-
tex with high degree is more likely to be included in a dominating set. On the
other hand, the common LS approach starts from a feasible solution and tries
to improve it iteratively [14]. A common technique used for obtaining an initial
feasible solution for LS heuristics is to generate a range of solutions using the
random greedy heuristics. These solutions can then be improved using LS heuris-
tics [15]; however, for the DS problem, experimental results suggest that this is
not often the case [22]. In [22] an alternative heuristic of Greedy Vote was
presented, followed by a simple LS to obtain very small reductions in O(|V (G)|)
time.

1.2 Greedy Heuristics

The turbo-charging technique, proposed in [8] will be applied to the DS problem
using a variety of greedy heuristics as the inductive route from which a turbo-
charging subroutine is called. To do this, we first implement the classic Greedy
heuristic of Chvatal [6]. An effective but minor improvement of the objective
function for this heuristics is given in Sanchis [22]. We further explore how the
original turbo-charging subroutine can be improved using a variety of standard
FPT techniques as well as providing some new improvements.

GREEDY CHVATAL: Chvatal’s greedy heuristic chooses the vertices of the
solution based on the maximum utility of a vertex with respect to the remaining



62 F.N. Abu-Khzam et al.

vertices. Parekh [19] showed that any solution size obtained using this heuristic
is at most |V | + 1 − √

2|E| + 1. A brief consideration of this bound shows that
the heuristic can work relatively well on dense graphs but the guarantee of its
performance is not as good on sparse graphs. To avoid ambiguity, we will refer
to this heuristic as Greedy Chvatal being the most classical one.

GREEDY VOTE: The Greedy Vote heuristic of Sanchis et al. [22] is essen-
tially the same as the Greedy Chvatal, but instead of using the highest utility
to choose the next vertex to add to the solution, it uses a vote measure to favor
vertices with lower degree neighbors as a tie breaker among vertices with the
same utility. These heuristics are further improved using the turbo-technique
described below.

GREEDY VOTE GRASP: Sanchis et al. [22] also further improve the GRASP
LS of [11] by applying the Greedy Vote heuristic as a starting point. For
some datasets, this gave a minor improvement.

2 Dynamic FPT Heuristics

The “turbo-charging” technique introduced in [8] uses a simple greedy heuristic
to apply the fixed-parameter algorithm for the dynamic version of the DS prob-
lem. For simplicity, and as noted earlier, the original algorithm selects vertices
based on the degree; however in practice using orders such as maximum utility
is more effective. We will refer to this latter algorithm as FPT Turbo I.

Although this algorithm does prove effective, it lacks a number of obvious
modifications that were likely to (1) produce better solutions and (2) reduce the
running time. We herein abstract these modifications into a general framework.

In general, turbo-charging is expected to perform better when the following
techniques are applied:

– Applying reduction rules;
– Using an alternative measure(s) when guessing a solution;
– Checking whether the solution(s) obtained are minimal;
– Using alternative orderings;
– Adding a heuristic guarantee (if possible.); and
– Applying an appropriate LS heuristic to refine the solution.

The above framework can be applied to other problems. A remarkable advan-
tage of our use of dynamic problems is the fact that new parameterizations can
reveal reduction rules that do not otherwise apply to the non-dynamic versions.
Four reduction rules for the Dynamic DS problem are given in Sect. 2.2, some
of which do not apply to the non-dynamic version.

After presenting the basic FPT Turbo I algorithm, we shall develop a new
hybrid algorithm by applying the improvements listed above to produce the
FPT Turbo Hybrid algorithm. The motivation and details of this approach
are then discussed.
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2.1 The Original DS Turbo-Charging Technique: FPT TURBO I

Initially, the FPTTurbo I heuristic was implemented exactly as given in Downey
et al. [8]. Discussion with the authors revealed some minor corrections in the
ordering of vertices. In FPT Turbo I, the vertices are first ordered from the
lowest degree to the highest. Starting from an empty subgraph G0 with a cor-
responding empty dominating set S0, the algorithm proceeds through the list
of vertices one at a time. At each iteration, the vertex vi is added to Gi−1 to
form Gi.

Whenever a vertex vi is found that is not dominated by Si−1, the highest
utility vertex is selected from N [vi] and added to Si−1 (to form Si) to dominate
vi. A budget is set for the largest size of |Si| we will allow. As the algorithm
continues to add vertices to Gi, it may reach a point where it suffers a “moment
of regret”, if the number of vertices added to Si exceeds the allowed budget. In
this paper, the moment of regret is based on the difference in size between Si and
Si−k (which must be at least two, otherwise the solution cannot be improved).

At this point, the heuristic backs up the process by the last k additions to Gi

and employs the (fixed-parameter) dynamic problem subroutine DDS FPT to
determine if a smaller solution can be found. When calling the DDS FPT algo-
rithm we set k = de(G′

i, Gi) . Here G′
i is a virtually constructed graph from Gi

with (at most k) augmenting edges between Si−k and V (Gi\Gi−k).
Pseudocode of the FPT Turbo I algorithm is shown below. In the sequel we

shall describe the changes made to obtain the FPT Turbo Hybrid algorithm.

2.2 Reduction Rules

A number of reduction rules are employed in different components of our imple-
mentation of the FPT Turbo I and FPT Turbo Hybrid algorithm (described
below). In practice, even for W [2]-hard problems, such as DS, the effective use
of reduction rules can significantly reduce the size of many non-synthetic input
datasets [23].

The details of the reduction rules follow. We first implemented the two reduc-
tion rules (R1 and R2) that appeared in [2]. Despite being effective on small
graphs, we tested them on many large graphs and noticed they were not efficient
enough for our target data sets. For efficient implementations, it is sometimes
important to apply simple (or fast) reduction rules.

It was noted in [8] that the chief benefit of using these two rules was that
it could disconnect the input graph. We note that in such cases we obtained a
speedup of around a factor of two.

Although Downey et al. [8] showed that the DDS problem has no polynomial-
size kernel, the dynamic formulation of the problem did allow for a number of
reduction rules that do not apply to the DS problem. The soundness of the
following reduction rules can be verified easily by the reader.

Reduction Rule 3 (R3). If there is a non-dominated vertex v of degree 0,
then add v to the graph G0 and solution set S0 and update v as dominated.
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Algorithm 1. FPT Turbo I

1: Rank the list L = {v0, . . . , vn} of vertices in G from lowest to highest degree;
2: Set u0 ← the highest utility vertex in NG[v0];
3: S0 ← {u0};
4: i ← 0;
5: do
6: i ← i + 1;
7: if vi is dominated by Si−1 then
8: Gi ← Gi−1 ∪ {vi};
9: Si ← Si−1;

10: else
11: Set ui the highest utility vertex in NG[vi];
12: Si ← Si−1 ∪ {ui};
13: Construct Gi from Gi−1 with {vi, ui} and incident edges in G;
14: if is moment of regret(Gi,ui,Si) then
15: r ← min(r, |Si| − |Si−k|);
16: S′

i ← DDS FPT(G′
i, Gi, Si−k, k, r);

17: if |S′
i| < |Si| then

18: Si ← S′
i; � Si becomes the new dominating set for Gi;

19: end if
20: end if
21: end if
22: while (Not all the vertices are dominated);
23: Return the final Si as the dominating solution for G;

Reduction Rule 4 (R4). If there is a non-dominated vertex v of degree 1, then
add the neighbor u of v into the solution set S0, add N [u] into G0 and update
N [u] as dominated.

Reduction Rule 5 (R5). If there is non-dominated vertex v of degree two such
that u and w are the neighbors of v and all the non-dominated elements of N [u]
are in N [w], then add w into S0 and add N [w] into G0.

Reduction Rule 6 (R6). If there is non-dominated vertex v of degree two such
that u and w are the neighbors of v, and N(u)\v and N(w)\v are dominated
but any, or both, of u and w are not dominated, then add v into S0 and add
N [v] into G0.

2.3 A Hybrid Turbo-Charged Algorithm

There were a number of obvious key limitations in the way the DDS FPT algo-
rithm was applied by the FPT Turbo I algorithm, for which simple improve-
ments exist. FPT Turbo Hybrid is the result of applying simple and effective
improvements to address these issues. The details and reasons for each of these
improvements are discussed below.

Using an alternative measure(s) when guessing a solution. As part of
the underlying heuristic, the FPT Turbo I first tries to dominate the next non-
dominated vertex by considering its closed neighborhood and choosing the vertex
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with the highest utility to add to the solution. Other measures for choosing the
next vertex vi to add to the dominating set used by the Greedy Vote [19] may
also be used, instead. These alternative measures yield notably improved results.
In fact, this ability to vary the objective function illustrates how turbo-charging
can be adapted to other problems and more generally applied to improve
heuristics.

Using an alternative vertex-ordering. Varying the ordering of the list
L, which controls the order according to which the vertices are included in
the graph, obviously affects the quality of the solution. As mentioned earlier,
FPT Turbo I orders the vertices from the lowest to the highest degree, as was
intended by the authors in [8]. Some variations were considered during our inves-
tigation: the FPT Turbo Hybrid algorithm uses the vote measure described in
Sanchis et al. [22], which favors vertices with lower degree neighbors in the order-
ing, whenever the vertices have the same utility. Considering all the orderings
improves the solution at the cost of increasing the running time of the heuristic.
Our FPT Turbo Hybrid algorithm uses four different orders and selects the
best solution.

Checking if the solution is minimal. A key component of the “turbo-
charging” technique is to use the dynamic version of the problem as a subroutine;
however, Downey et al. [8] proved that the variation of the Dynamic Dominat-

ing Set problems that allowed vertices to be removed from the original solution
remains W [2]-hard. Thus, the dynamic search FPT algorithm cannot also search
for vertices that can be removed from the solution Si. To address this, we sim-
ply check, in each iteration, if the solution found is minimal and remove any
unneeded vertices.

Using the GRASP local search heuristic. It has been shown that LS heuris-
tics work best when starting from a quality initial solution than from a number
of poorer quality starting points [10]. Thus, the combination of the FPT Turbo

I heuristic with a LS seems likely to provide improved results. In addition, the
application of LS is an obvious way to address the above mentioned limitation
of using dynamic problems, which cannot include removing vertices from exist-
ing solution S. Moreover, in some cases, it may be best to apply a LS at each
iteration, but for the GRASP LS, we found no benefit in doing this. So, as its
application was time-consuming, it was deferred to the end.

Using a heuristic guarantee. The next improvement is to check that the local
optimization of the Dynamic Dominating Set search has not overlooked an
obvious global solution. To do this, we employ a simple greedy heuristic to the
graph Gi and exchange the solution for Si if it is smaller. This modification also
guarantees that the solution is no worse than the one produced by the Greedy
heuristics. In the FPT Turbo Hybrid, this is done by calling Greedy Chvatal

and Greedy Vote in each iteration to get a solution of the graph instance
before invoking DDS FPT which can then also be used as an upper bound for r,
the number of vertices that can be added by the DDS FPT subroutine to reduce
execution time.
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3 Experimental Analysis

All algorithms presented in this paper are implemented in the Java programming
language. The experiment is run by a computer of the OSX Yosemite operating
system with a CPU of 3.5 GHz, 6-Core Intel Xeon E5, and 32 GB memory.

In order to evaluate the performance of the “turbo-charging” technique, the
solution sizes as well as execution times obtained were recorded. These results
are compared to the results obtained using the two most known Dominating

Set heuristics; Chvatel [6] and the Greedy Vote GRASP improvement given
in [22]. Note that the solution sizes for the original FPT Turbo I heuristics is
presented in its raw form without improvements such as pre-processing using
reduction rules or other techniques described in Sect. 2.3.

The exact algorithm of Fomin et al. [12], implemented using the hybrid
method of Abu-Khzam et al. [1], is used to calculate the exact solution and,
whenever possible, the solution size of the exact algorithm was used in the com-
parison.

The DIMACS, BHOSLIB and KONECT datasets were used as benchmark-
tests. The DIMACS and BHOSLIB datasets were chosen because they are both
commonly-used. Note that due to their constructions – the main purpose of their
design was to test Maximum Clique and Maximum Independent Set (MIS) and
Minimum Vertex Cover (MVC) algorithms, the DIMACS datasets have a very
small and easy-to-obtain dominating sets.

This is due to the relatively dense nature (high number of edges) of this data;
however, Parekh [19] showed that the simple greedy heuristics perform very well
for dense graphs. For BHOSLIB instances, while the simple Chvatal heuristics
still performed well, the exact algorithm was not able to obtain an answer for
these datasets in a week’s processing.

The KONECT dataset consists of Non-Synthetic data mainly from social
networks adding a practical flavor to the data. Unlike the other two datasets,
the KONECT graphs are more sparse. The first 11 dataset from KONECT
were used. The others were considered to large for the current algorithm and
comparison LS heuristic. A detailed description of the graph properties of the
KONECT datasets is also available at the KONECT web site [18].

Overall, the performance of Greedy Chvatal and Greedy Vote GRASP

was similar, but the second performed better than the former, on average.
FPT Turbo Hybrid performs at least as well as Greedy Chvatal and obtains
a better solution for around 29.27% of the instances; Similarly, it returns a bet-
ter solution for about 12.2% of the instances when compared to Greedy Vote

GRASP. Moreover, the FPT Turbo Hybrid obtained better (smaller) solu-
tions than FPT Turbo I heuristic in almost all the instances. We now focus on
the size of solution considering instances from the three sample benchmarks.

(1) For the KONECT datasets, the Greedy Vote GRASP, FPT Turbo

I and FPT Turbo Hybrid were all able to obtain optimum sized solutions.
Furthermore, with the additional refinement of the GRASP LS, Greedy Vote

GRASP was able to obtain smaller solutions in all cases when the obtained
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solutions were not already optimum. This mainly applied to the larger non-
synthetic instances in the KONECT datasets. In all instances, the FPT Turbo

Hybrid either obtained an optimum solution, or a solution that was better
(smaller) than that obtained by the other heuristics. Moreover, the improvements
of FPT Turbo Hybrid were much more significant on larger sparse instances.
The experimental results for the KONECT datasets are presented in Table 1. The
first three columns contain the name, order and size of the graph tested. This is
then followed by the optimum solution when it was known. NA is shown if this
could not be obtained. The minimum solution and execution times obtained is
shown for each of the algorithms considered.

Table 1. A comparison of the algorithm performance on the KONECT data sets (Time
in sec).

DataSet Opt Greedy

Chvatal [6]

Greedy

Vote

GRASP[19]

FPTTurbo I [8] FPTTurboHybrid

Name |V| |E| Size Size Time Size Time Size Time Size Time

Dolphins 62 159 14 17 0.0027 15 0.025 14 1.4 14 4.11

Jazz musicians 198 2742 13 14 0.0207 13 0.224 14 0.261 13 4.89

PDZBase 212 244 NA 54 0.0115 52 0.584 52 0.189 52 24.9

U.Rovira Virgili 1133 5451 210 229 0.765 213 246 215 6.88 211 607

Euroroad 1174 1417 384 471 0.57 400 271 419 16.1 399 1390

Hamsterster 2426 16631 416 437 4.59 416 1740 417 67.7 416 3720

For the FPT Turbo Hybrid algorithm, a box has been placed around the
solution when the obtained best result and the results which are known to be
optimum are shown in bold. For these experiments, DDS search was restricted
to searching for k = 10. Instances for which all algorithms performed equally are
omitted to save space.

(2) For the DIMACS datasets, the difference in solution size among dif-
ferent heuristics is very small, mostly because the optimum solution for many
of these instances have only 2 or 3 vertices. For some instances, the optimum
solution could be obtained by the Greedy Chvatal heuristic. Nevertheless,
the experimental results confirm that the FPT search heuristics did perform well
when the optimum solution has a small size. In fact, the FPT Turbo Hybrid

algorithm produced optimum results for the 19 DIMACS instances where the
optimum was known, and the remaining solutions were at least as good as those
found by any of the other techniques. Moreover, even though the solutions were
trivial, the FPT Turbo Hybrid still found an improvement on one instance.

(3) For the BHOSLIB datasets, the FPT Turbo Hybrid heuristic was
able to outperform all the other heuristics. This is of particular significance as it
was not possible to obtain optimum solutions for any of the BHOSLIB datasets.
Moreover, the FPT Turbo Hybrid heuristic solutions were never worse than
those obtained by the other heuristics. In contrast there are three instances
for which the Greedy Chvatal heuristic outperformed the Greedy Vote
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Table 2. A comparison of the algorithm performance on the BHOSLIB data sets.

DataSet Greedy

Chvatal

[6]

Greedy

Vote

GRASP[19]

FPTTurbo I [8] FPTTurboHybrid

Name |V| |E| Size Time Size Time Size Time Size Time

frb35-17-5 595 28143 14 0.252 15 4.24 16 0.532 13 54.5

frb53-24-3 1272 94127 21 1.44 21 34.7 23 2.37 20 264

frb56-25-5 1400 109601 22 1.71 22 43.9 23 2.7 21 323

GRASP heuristic. For the remaining 10 of 32 instances the solution size of
Greedy Vote GRASP was smaller (better) than that of Greedy Chvatal.
Table 2 shows highlights from the BOSLIB experimental results. Only instances
where the results show significant improvement are provided. The others are not
provided due to space requirements.

4 Conclusion

Downey et al. proposed the turbo-charging method as a general framework for
improving heuristics [8]. The details for implementing this method were not
completely developed. In this paper, we have resolved many of the technical
details and the original algorithm has been improved by addressing a limitation
to the originally proposed theoretical techniques. Furthermore, using the Domi-

nating Set problem as a case study, we demonstrated that the turbo-charging
technique, which consists mainly of using a fixed-parameter algorithm for the
dynamic FPT problem as a subroutine, can be used to improve the results of
heuristics.

We also observed that in some cases the improvement of using some
FPT guarantee resulted in a better solution than Chvatel’s heuristic [6]. While
two FPT heuristics are given, we note that the best results were always obtained
by using FPT Turbo Hybrid, the FPT Turbo I heuristic execution time was
much faster than both Greedy Vote GRASP and FPTTurbo Hybrid heuris-
tics. For this reason, the FPT Turbo I heuristics may also be well suited for use
in other heuristics. Future work will explore how to improve the solution using
a meta-search based on the order the vertices are processed.

A new algorithm that is based on the inclusion-exclusion technique has been
presented in [16] for Set Covering (SC), parameterized by the size of a small
universe. The worst case running time is O∗(2k). It should be possible to obtain
a significantly improved running time for a future FPT turbo-charging algorithm
using this Set Cover algorithm.
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Abstract. Let T be an edge weighted tree and let dmin, dmax be two
non-negative real numbers where dmin ≤ dmax. A pairwise compatibility
graph (PCG) of T for dmin, dmax is a graph G such that each vertex
of G corresponds to a distinct leaf of T and two vertices are adjacent
in G if and only if the weighted distance between their corresponding
leaves lies within the interval [dmin, dmax]. A graph G is a PCG if there
exist an edge weighted tree T and suitable dmin, dmax such that G is
a PCG of T . Knowing that all graphs are not PCGs, in this paper we
introduce a variant of pairwise compatibility graphs which we call multi-
interval PCGs. A graph G is a multi-interval PCG if there exist an edge
weighted tree T and some mutually exclusive intervals of nonnegative
real numbers such that there is an edge between two vertices in G if and
only if the distance between their corresponding leaves in T lies within
any such intervals. If the number of intervals is k, then we call the graph
a k-interval PCG. We show that every graph is a k-interval PCG for
some k. We also prove that wheel graphs and a restricted subclass of
series-parallel graphs are 2-interval PCGs.

Keywords: Pairwise compatibility graphs · Phylogenetic trees · Series-
parallel graphs

1 Introduction

Let T be an edge weighted tree and let dmin, dmax be two non-negative real
numbers where dmin ≤ dmax. A pairwise compatibility graph (PCG) of T for
dmin and dmax is a graph G = (V,E) where each vertex of G corresponds to a
distinct leaf of T and two vertices are adjacent in G if and only if the weighted
distance between their corresponding leaves lies within the interval [dmin, dmax].
The tree T is called a pairwise compatibility tree (PCT) of G. We denote a
pairwise compatibility graph T for dmin, dmax by PCG (T, dmin, dmax). A given
graph is a PCG if there exist suitable T , dmin, dmax such that G is a PCG of T .
Figure 1(b) illustrates a pairwise compatibility graph G of the edge weighted tree
T in Fig. 1(a) for dmin = 3 and dmax = 5. For a pairwise compatibility graph G,
c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 71–84, 2017.
DOI: 10.1007/978-3-319-55911-7 6



72 S. Ahmed and Md.S. Rahman

a b

c d e
1 2

1.5 2.5

0.5

4 1

(a)

a′

b′

c′

d′
e′

(b)

2

3 2.5
4.5

1.5

a

b c d

e

(c)

Fig. 1. (a) An edge weighted tree T , (b) a pairwise compatibility graph G of T for
dmin = 3 and dmax = 5 and (c) another pairwise compatibility tree of G.

pairwise compatibility tree T may not be unique. For example, Fig. 1(c) shows
another pairwise compatibility tree of the graph G in Fig. 1(b) for the same dmin

and dmax.
PCGs have their applications in modeling evolutionary relationship among

set of organisms from biological data which is also called phylogeny. Phylogenetic
relationships are normally represented as a tree called phylogenetic tree. While
dealing with a sampling problem from large phylogenetic tree, Kearney et al. [9]
introduced the concept of PCGs. They also showed that “the clique problem”
can be solved in polynomial time for a PCG if a pairwise compatibility tree can
be constructed in polynomial time.

Kearney et al. [9] conjectured that all graphs are PCGs, but later Yanhaona
et al. [12] refuted the conjecture by showing a bipartite graph with fifteen ver-
tices which is not a PCG. Later Calamoneri et al. proved that every graph with
at most seven vertices is a PCG [4]. It is also known that the graphs having
cycles as their maximum biconnected components, tree power graphs, Steiner k-
power graphs, phylogenetic k-power graphs, some restricted subclasses of bipar-
tite graphs, triangle-free maximum-degree-three outer planar graphs and some
superclass of threshold graphs are PCGs [6,11–13]. Calamoneri et al. gave some
sufficient conditions for split matrogenic graph to be a PCG [5]. Recently a graph
with eight vertices and a planar graph with sixteen vertices is proved not to be
PCGs [7]. Iqbal et al. showed a necessary condition and a sufficient condition for
a graph to be PCG [8]. However, the complete characterization of PCGs is not
known yet.

As not all graphs are PCGs, some researchers has tried to the relax con-
straints on PCGs and thus some variants of PCGs are introduced [3,5]. One
such variant of PCG is improper PCG which allows multiple leaves correspond-
ing to a vertex of a graph [3]. In this paper we introduce a new variant of PCGs
which we call k-interval PCGs. The idea behind a k-interval PCG is to allow k
mutually exclusive intervals of nonnegative real numbers instead of one. We call
a graph G a k-interval PCG of an edge weighted tree T for mutually exclusive
intervals I1, I2, · · · , Ik of nonnegative real numbers when each vertex of G corre-
sponds to a leaf of T and there is an edge between two vertices in G if the distance
between their corresponding leaves lies in I1 ∪ I2 ∪ · · · Ik. Figure 2(a) illustrates
an edge weighted tree T and Fig. 2(b) shows the corresponding 2-interval PCG
where I1 = [1, 3] and I2 = [5, 6].
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Fig. 2. (a) An edge weighted tree T , (b) a 2-interval PCG G of T where I1 = [1, 3],
I2 = [5, 6].

In this paper we show that all graphs are k-interval PCGs for some k. We
also show that wheel graphs Wn, which are not yet proved to be PCGs for n ≥ 8
are 2-interval PCGs. Moreover, we proved that a restricted subclass of series-
parallel graphs are 2-interval PCGs and provide an algorithm for constructing
2-interval pairwise compatibility tree for graphs of this subclass.

The remainder of the paper is organized as follows. Section 2 gives some nec-
essary definitions, previous results and preliminary results on k-interval PCGs.
In Sect. 3 we give our results on 2-interval PCGs. Finally we conclude in Sect. 4.

2 Preliminaries

In this section we define some terms which will be used throughout this paper
and present some preliminary results.

Let, G = (V,E) be a simple, undirected graph with vertex set V and edge
set E. An edge between two vertices u and v is denoted by (u, v). If (u, v) ∈ E,
then u and v are adjacent and the edge (u, v) is incident to u and v. The degree
of a vertex is the number of edges incident to it. A path Puv in G is a sequence
of distinct vertices w1, w2, w3, · · · , wn in V such that u = w1 and v = wn and
(wi, wi+1) ∈ E for 1 ≤ i < n. The vertices u and v are called the end-vertices
of path Puv. If the end-vertices are the same then the path is called a cycle.
A tree T is a graph with no cycle. A vertex with degree one in a tree is called
leaf of the tree. All the vertices other than leaves are called internal nodes. An
weighted tree is a tree where each edge is assigned a number as the weight of the
edge. The weight of an edge (u, v) is denoted as w(u, v). The distance between
two nodes u, v in T is the sum of the weights of the edges on path Puv and
denoted by dT (u, v). A star graph Sn is a tree on n nodes with one node having
degree n−1 and all other nodes having degree 1. A caterpillar is a tree for which
deletion of leaves together with their incident edges produces a path. The spine
of a caterpillar is the longest path to which all other vertices of the caterpillar
are adjacent. A wheel graph with n vertices, denoted by Wn, is obtained from
a cycle graph Cn−1 with n − 1 vertices by adding a new vertex p and joining
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an edge from p to each vertex of Cn−1. The vertex p is called hub. A graph
G = (V,E) is called a series-parallel (SP ) graph with source s and sink t if
either G consists of a pair of vertices connected by a single edge or there exists
two series-parallel graphs Gi(Vi, Ei) with source si and sink ti for i = 1, 2 such
that V = V1 ∪ V2, E = E1 ∪ E2 and either s = s1, t1 = s2 and t = t2 or
s = s1 = s2 and t = t1 = t2 [10].

We now review a previous result on cycles [11,13] and show a construction
process of a pairwise compatibility tree of a cycle which will be used later in
this paper. Let Cn be a cycle with n vertices v′

1, v
′
2, v

′
3 · · · , v′

n where (v′
i, v

′
i+1)

are adjacent for 1 ≤ i < n and (v′
1, v

′
n) are also adjacent. We construct an edge

weighted caterpillar T as follows. Let v1, v2, v3 · · · , vn−1 be the leaves of T and
u1, u2, u3, · · · , un−1 be the vertices on the spine of T such that ui is adjacent to
vi for 1 ≤ i < n. We assign weight d to edge (ui, ui+1) for 1 ≤ i < n − 1 and
weight w to the edges incident to a leaf where w > (n + 1)d

2 . If n is odd then we
put a vertex un in the middle of the path Pu1un−1 as illustrated in Fig. 3(a). If n
is even then we use un

2
as un which is shown in Fig. 3(b). Then we place the last

vertex vn as a leaf adjacent to un. We assign weight wn = w − (n − 3)d
2 to the

edge (un, vn). This concludes the construction of T and we call this construction
process Algorithm ConstructCyclePCT. The leaf vi of T corresponds to the
vertex v′

i of Cn. The tree constructed in this way is a PCT of Cn for dmin = 2w+d
and dmax = 2w + d. It is easy to observe that max{dT (vi, vj)} = 2w + (n − 1)d.

v1 v2 v3 vn−1
2

vn

vn+1
2

vn−3

un−2d ddd

(n − 1)d2w − (n − 3)d2
u1 u2 u3 un−1
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Fig. 3. (a) A pairwise compatibility tree of a cycle with odd number of vertices and
(b) a pairwise compatibility tree of a cycle with even number of vertices.
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Fig. 4. An |E|-interval pairwise compatibility tree for any graph with n vertices.

We now introduce a new concept called k-interval PCG. Let T be an edge
weighted tree and I1, I2, I3, · · · , Ik be k non-negative intervals such that Ii∩Ij =
∅ for i �= j. A k-interval PCG of T for I1, I2, I2, · · · , Ik is a graph G = (V,E)
where each vertex u′ ∈ V represent a leaf u in T and there is an edge (u′, v′) ∈ E
if and only if dT (u, v) ∈ I1 ∪ I2 ∪ I3 ∪ · · · ∪ Ik. Obviously, a PCG is a k-interval
PCG for k = 1, but a k-interval PCG may not be a PCG. The graph shown in
Fig. 2 is not a PCG [7] but a 2-interval PCG.

The following theorem describes a preliminary result on k-interval PCGs.

Theorem 1. Every graph is an |E|-interval PCG.

Outline of the Proof: We give a constructive proof. Let G = (V,E) be a graph with
n vertices v′

1, v
′
2, v

′
3, · · · , v′

n. We construct a star T with n leaves v1, v2, v3, · · · , vn

where vi corresponds to v′
i of G as illustrated in Fig. 4. Let w(i) be the weight of

the edge incident to vi in T . We take w(i) as follows.

w(i) =

⎧
⎨

⎩

1 if i = 1
2 if i = 2

w(i − 1) + w(i − 2) if i > 2

For each edge (vi, vj) in E we take an interval Iij = [dT (vi, vj), dT (vi, vj)].
Thus we have total |E| number of intervals. Then for every edge (vi, vj) ∈ E,
dT (vi, vj) ∈ Iij . Similarly, if (vi, vj) /∈ E, then there is no such interval Iij such
that dT (vi, vj) ∈ Iij . Thus T is an |E|-interval PCT of G. 	


3 2-Interval PCGs

In this section we give some results on 2-interval PCGs.

3.1 Wheel Graphs

In this section we prove that wheel graphs are 2-interval PCGs as in the following
theorem.

Theorem 2. Every wheel graph is a 2-interval PCG.
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v1 v2 v3 vn vn−3 vn−2 vn−1

w w w w w w

d dd d

wn

p

wp

Fig. 5. A 2-interval pairwise compatibility tree of Wn.

Proof. Let Wn+1 be a wheel graph with n + 1 vertices v′
1, v

′
2, v

′
3 · · · , v′

n, p′ where
p′ is the hub and v′

1, v
′
2, v

′
3 · · · , v′

n forms the outer cycle C. We first construct a
pairwise compatibility tree T for C by Algorithm ConstructCyclePCT. Note
that the maximum distance between any pair of leaves in T is 2w+(n−1)d. We
then place a vertex p representing the vertex p′ in Wn+1 such that it is adjacent
to un in T and assign weight wp to the edge (p, un) as illustrated in Fig. 5. We
choose wp such that wp > 2w + (n − 1)d.

Clearly dT (p, vi) > 2w + (n − 1)d = max{vi, vj} for i, j ≤ n. Then T is
a 2-interval pairwise compatibility tree of Wn for I1 = [2w + d, 2w + d] and
I2 = (2w + (n − 1)d,∞). 	


3.2 Series-Parallel Graphs

In this section we define a restricted subclass of series-parallel graphs which we
call SQQ series-parallel graphs and show that this class of graphs are 2-interval
PCGs.

Let G = (V,E) be a series-parallel graph with source s and sink t. A pair of
vertices {u, v} of a connected graph is a split pair if there exist two subgraphs
G1(V1, E1) and G2(V2, E2) satisfying following two conditions: 1. V = V1 ∪ V2,
V1 ∩ V2 = {u, v}; and 2. E = E1 ∪ E2, E1 ∩ E2 = ∅, |E1| ≥ 1, |E2| ≥ 1.
The SPQ-tree T of a series-parallel graph G with respect to a reference edge
(u, v) describes a recursive decomposition of G induced by its split pairs [1,2].
Figure 6(a) illustrates a series-parallel graph G and Fig. 6(b) shows the SPQ-tree
of G with respect to s, t. T is a rooted ordered tree and it contains three types
of nodes: S, P and Q. Subtrees rooted at each node x of T corresponds to a
subgraph of G called its pertinent graph G(x). In this paper we use a modified
definition of G(x): G(x) contains the leftmost and rightmost children of x in T
in order from source to sink if x is a P -node or Q-node; if x is an S-node G(x)
does not contain the leftmost and rightmost children. Figure 6(c) illustrates the
pertinent graph of the P -node at height 2 in T . Let x be any S-node in T other
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s t

a
b

c

d e

f

(a)

P

S S

P

S S

(s, a) (c, t)

(a, b) (b, c) (a, d) (d, e) (e, c)

(s, f) (f, t)

(s, t)

(b)

a

b

c

d e

(c)

Fig. 6. (a) A series-parallel graph G, (b) An SPQ-tree of G with respect to s and t
and (c) pertinent graph of the non-root P -node.

S

Q Q

S

Q Q

y1 y2

(a)

w + d
2

(b)

Fig. 7. (a) An S-node x with 2 children and (b) constructed tree Tx for x.

than the root and let y1, y2, y3, · · · , yn be the children of x in order from source
to sink. If both y1 and yn are Q-nodes then we call G an SQQ series-parallel
graph. We now give the following theorem.

Theorem 3. Every SQQ series-parallel graph is a 2-interval PCG.

Proof. We give a constructive proof. Let G = (V,E) be an SQQ series-parallel
graph with source s′ and sink t′ and T be an SPQ-tree of G with respect to s′

and t′. Note that if T consists of a single Q-node then G is trivially a 2-interval
PCG. We thus assume that T has at least one S-node or P -node. We construct
a 2-interval pairwise compatibility tree of G using a bottom up computation on
T . For each internal node x of T we first compute 2-interval PCT for each of
it’s child node and then we add additional component and combine them to get
a 2-interval PCT Tx of G(x). Let s′

x and t′x be the source and sink of G(x) and
sx, tx be the leaves of Tx representing s′

x and t′x respectively. Depending on the
type of the current node we have to consider two cases.

Case 1: The current node x is an S-node. Let y1, y2, y3, · · · , yn be the chil-
dren of x in order from s′

x to t′x. This is illustrated in Fig. 8(a). According to
the property of an SQQ series-parallel graph y1 and yn are Q-nodes. If n = 2,
then we have only one node between s′

x and t′x in G. In this case we construct
a tree Tx with two leaves and one edge between them. One of the two leaves of
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S

Q P Q P Q

S

Q P Q P Q

y1 y2 y3 y4 yn

(a)

w − gxl w − gxl

d + 2gxl

syi tyi

uyi vyi

(b)

w − gxl w − gxl

d + 2gxl + 2zyiδ

syi tyi

uyi vyi

(c)

w − gxl w − gxl

sy2 sy3

w − gxl

sy4

w − gxl

sy5

w − gxl w − gxl

syn−1 syn

= ty1 = ty2 = ty4= ty3
= tyn−2 = tyn−1

(d)

Fig. 8. (a) An S-node with more than 2 children, (b) constructed tree Γyi for a child
Q-node yi, (c) constructed tree Tyi for a child P -node yi and (d) merged tree Tx for S
node x.

Tx represents the only node between s′
x and t′x. We assign weight w + d

2 to that
edge. This is illustrated in Fig. 7(a) and (b). If x is the root node then we also
place two leaves representing s′

x, t′x and make them adjacent to a leaf in Tx. We
then assign weight w + d

2 to the newly added edges.
We now consider the case where n > 2. In this case we have two subcases.
Case 1(a): yi be a Q-node. At first we consider yi for i �= 1, n. In this case

we construct a caterpillar Γyi
with two leaves syi

, tyi
and two internal nodes uyi

,
vyi

where uyi
, vyi

are adjacent to syi
, tyi

respectively. Here syi
, tyi

represent s′
yi

,
t′yi

of G respectively. Let gx be an indicator variable which is 1 if depth of x
modulo 4 is equal to 0 or 1 in T and -1 otherwise. We now assign weight w − gxl
to each edge incident to a leaf and weight d + 2gxl to the edge (uyi

, vyi
) where

l � d at least as small as d
100|V | as is illustrated in Fig. 8(b). Then for i = 1, n

we also construct trees in the way mentioned above if x is the root node of T ,
otherwise trees will be constructed for y1 and yn while processing the parent
P -node of x.

Case 1(b): yi be a P -node. In this case we have a caterpillar Γyi
induced by

two leaves syi
and tyi

of Tyi
according to the construction process described in

case 2 as shown in Fig. 8(c). Let uyi
, vyi

be the vertices on spine of Γyi
that are

adjacent to the leaves syi
and tyi

.
We thus have a caterpillar Γyi

for each i �= 1, n. We next merge all this
caterpillars such that tyi

and vyi
lie on syi+1 and uyi+1 and get a single caterpillar

Γx with n − 1 leaves induced by s2, s3, · · · , sn as illustrated in Fig. 8(d).
Case 2: The current node x is a P -node. In this case x can have at most

one Q-node as its child and if it has one then it represents an (s′
x, t′x) edge. We

first construct a caterpillar Γx with two leaves sx, tx representing s′
x and t′x, and

two internal nodes ux, vx where ux is adjacent to sx and vx is adjacent to tx. We
now assign weight w + gyi

l to each edge incident to a leaf in Γx where gyi
is the
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indicator variable of any child S-node yi of x in T . If x has a child Q-node in T
we assign weight d−2gyi

l to the edge (ux, vx), otherwise we assign d−2gyi
l+2δ

where δ � l. We now replace the edge (ux, vx) by a path ux, ax, bx, vx where ax

and bx are two degree 2 vertices. We call ax, bx the port nodes of Γx. Then we
reassign weight such that w(ux, ax) = 1

2dTx
(ux, vx) and w(ax, bx) = δ. Let zx be

an indicator variable which is 1 if there is a child Q-node of x and 0 otherwise.
Then w(ux, ax) = d

2−gyi
l+zxδ, w(ax, bx) = δ and w(bx, vx) = d

2−gyi
l+(zx−1)δ.

See Fig. 9(a).

d
2 − gyi l + zxδ

d
2 − gyi l + (zx − 1)δδ

sx tx

ux vx

ax bx
w + gyil w + gyil

(a)

d
2 − gyi l + zxδ

d
2 − gyi l + (zx − 1)δδ

sx tx

ux vx

ax bx
w + gyil w + gyil

(ni − 2)(d2 + gyi l) + (mi − 1)δ (ni − 2)(d2 + gyi l) + (mi + 1)δ

ui1 ui2 ui3 ui(ni−1)ui(ni−2)ui(ni−3)

u′
i1 u′

i(ni−1)

w − gyil w − gyil w − gyil w − gyil w − gyil w − gyil w − gyil w − gyil

c − (ni − 1)d2 − (ni − 3)gyi l − (mi + zx)δ

(b)

d
2 − gyi l + zxδ

d
2 − gyi l + (zx − 1)δδ

sx tx

ux vx

ax bx
w + gyil w + gyil

w + d
2

c − d − zxδ

(c)

d
2 − gyi l + zxδ

d
2 − gyi l + (zx − 1)δδ

sx tx

ux vx

ax bx
w + gyil w + gyil

(d)

Fig. 9. (a) Constructed tree Γx with souce and sink for P -node, (b) merged tree with
2-interval PCT of a children S-node having than 2 children, (c) merged tree with 2-
interval PCT of a children S-node having 2 children and (d) final 2-interval PCT Tx

of G(x) where x is a P -node.

Let y1, y2, y3, · · · , yn be the children of x where yi is an S-nodes for 1 ≤ i ≤ n.
At first we construct 2-interval PCT Tyi

of G(yi) for 1 ≤ i ≤ n according to case
1. Let yi be an S-node with ni children where ni > 2. Then we have a caterpillar
Γyi

with ni − 1 leaves induced by the sources and sinks of some children of yi

in Tyi
, which is merged while processing the S-node according to case 1. Let

ui1, ui2, ui3, · · · , ui(ni−1) be the leaves of Γyi
and let u′

i1, u
′
i2, u

′
i3 · · · , u′

i(ni−1) be
the vertices on spine where uij is adjacent to u′

ij for 1 ≤ j ≤ n. Note that any
edge (uij , u

′
ij) has weight w and (u′

ij , u
′
i(j+1)) has weight d+2gyi

l or d+2gyi
l+2δ.

Let mi be the number of edges of weight d + 2gyi
l + 2δ on the spine where

mi ≤ (ni − 2). Thus the spine has length of (ni − 2)(d + 2gyi
l) + 2miδ. We now

put a vertex vi on the spine such that dΓi
(u′

i1, vi) = (ni−2)(d+2gyi
l)+2miδ

2 − δ and



80 S. Ahmed and Md.S. Rahman

s′ t′

v′
1

v′
2

v′
3

v′
4 v′

5

v′
6 v′

7 v′
8

v′
9

v′
10 v′

11

(a)

P

P

S SS

S S

(s, v′
1) (v′

9, t)

(v′
1, v

′
3)

(v′
1, v

′
2) (v′

2, v
′
3) (v′

3, v
′
4)(v

′
4, v

′
5) (v′

5, v
′
6) (v′

3, v
′
6) (v′

6, v
′
7) (v′

7, v
′
8) (v′

8, v
′
9)

(v′
10, v

′
11)(s′, v′

10) (v′
11, t

′)
P

(s′, t′)

(b)

v2 v2

v2

w
+

d 2

v1 v3

d + 2l

v3
w + d

2

d
2 + l

d
2 + l

c
−d

v4 v5

w
+

l

w
+

l

d − 2l

v6 v7

d − 2l

v8

d − 2l

v4 v5

d − 2l

v6 v7 v8

d − 2l

v3 v9

d + 2l + 2δ

v4 v5 v6 v7

d − 2l − δ

v8

d − 2l

v3 v9

d
2 + l + 2δ d

2 + l

d
2 − l − δ

d
2 − l + δ δ

c − d − δ

c−
3d2 +

l −
δ

w
+

l

w
+

l

w
+

l

w
+

l

w
+

l

w
+

l

w
− l

w
− l

w
+

l

w
+

l
w

+
l

w
+

l

w
+

l

w
−l

w
−l

w
+

d 2

w
−l

w
−l w

−l

w
−l

v4 v5 v6 v7

d − 2l − δ

v8

d − 2l

v3 v9

d
2 + l + 2δ d

2 + l

d
2 − l − δ

d
2 − l + δ δ

c − d − δ

c−
3d2 +

l −
δ

w
+

l
w

+
l

w
+

l

w
+

l

w
−l

w
−l

d
2 + l

d
2 + l

c − d

w + d
2

v1

v1 v2

w
−l

w
+

l

w
+

l

d − 2l

w
+

l

(c)

w
+

l

v4 v5 v6 v7

d − 2l − δ

v8

d − 2l

v3 v9

d
2 + l + 2δ d

2 + l

d
2 − l − δ

d
2 − l + δ

δ

c−
d − δ

c−
3d2 +

l −
δ

w
+

l
w

+
l

w
+

l

w
+

l

w
−

l

w
−

l

d
2 + l

d
2 + l

c − d

w + d
2v1 v2

w
−

l
w

+
l

v11

w
−

ld
2 + l + δ

d
2 + l − δ

w
−

l

v10

t

d
2 − l − δd

2 − l + δ

w
+

l

v4

c −
d − δ

c−
3d2 −

l −
δ

(d)

Fig. 10. (a) An SQQ series-parallel graph G, (b) an SPQ-tree of G (c) construction of
2-interval PCT of pertinent graph of the leftmost child of the root which is an S-node
and (d) constructed 2-interval PCT of G.
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we add an edge between vi and port node bx. We assign weight c − (ni − 1)d
2 −

(ni − 3)gyi
l − (mi + zx)δ to the edge (vi, b) as illustrated in Fig. 9(b). We choose

a very large value for c such that c > 2(d + 2δ + 2l)|V | where |V | is the number
of vertices in G.

Let yj be an S-node with exactly 2 children. Then we have 2-interval PCT
Tyj

consists of two nodes and the edge between them has weight w + d
2 . In this

case we add an edge between port node ax and one of the leaves. We assign
weight c − d − zxδ to the newly added edge as illustrated in Fig. 9(c). We call
any edge joining Γx with Tyi

for i ≤ n a caterpillar-connecting edge. An example
of the construction process is illustrated in Fig. 10.

We now prove that the tree T constructed by the algorithm above is a 2-
interval PCT of G for intervals I1 = [2w + d, 2w + d] and I2 = [c + 2w, c + 2w].
We prove this by an induction on the height h(T ) of the SPQ-tree T of G. Let
x be the root of T having n children y1, y2, · · · , yn and ni be the number of
children of yi.

Assume that G is an SQQ series-parallel graph with h(T ) =1. Then T con-
sists of an S-node x as its root and all the children of the root are Q-nodes.
In this case the algorithm produces a caterpillar with n leaves where each edge
incident to a leaf has weight w − gxl and each edge on the spine has weight
d + 2gxl. Thus if (u, v) is a Q-node in T then dT (u, v) = 2w + d and otherwise
2w +d < dT (u, v) < c+2w because of our choice of c being very large. Thus the
basis is true.

Assume that h(T ) >1 and the claim is true for every SQQ series-parallel
graph with h(T ) < h. Let G be an SQQ series-parallel graph with h(T ) = h
and let x be the root of T . Let y1, y2, y3, · · · , yn be the children of x and perti-
nent graphs of y1, y2, · · · , yn are 2-interval PCGs for I1 and I2 by the induction
hypothesis. Let Ty1 , Ty2 , · · · , Tyn

be the 2-interval PCTs constructed by the algo-
rithm for y1, y2, · · · , yn.

We first consider the case where x is a P -node. Then according to Case 2
we have dT (sx, tx) = 2w + d, if there is an edge (sx, tx). Otherwise, we have
2w + d < dT (sx, tx) = 2w + d + 2δ < c + 2w. Let yi be an S-node. If yi has two
children, then there is only one node u′

i1 between sx and tx in G(yi) and ui1 is its
corresponding leaf in Tyi

. In this case dT (sx, ui1) = dT (tx, ui2) = 2w + c which
lies in interval I2. If yi has more than 2 children then the distance dT (sx, ui1) is
computed as follows.

dT (sx, ui1) = dΓx
(sx, b) + w(b, vi) + dΓyi

(vi, ui1)

= w + gyi
l +

d

2
− gyi

l + zxδ + δ + c − (ni − 1)
d

2
− (ni − 3)gyi

l

− (mi + zx)δ + w − gyi
l + (ni − 2)(

d

2
+ gyi

l) + miδ − δ

= 2w + c.
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Similarly the distance dT (sx, uni
) is computed as follows.

dT (sx, uini
) = dΓx

(sx, b) + W (b, vi) + dΓi
(vi, uin)

= w + gyi
l +

d

2
− gyi

l + zxδ + δ + c − (ni − 1)
d

2
− (ni − 3)gyi

l

− (mi + zx)δ + w − gyi
l + (ni − 2)(

d

2
+ gyi

l) + miδ + δ

= 2w + c + 2δ.

Thus dT (sx, uini
) > c + 2w. Now clearly dT (sx, uij) < 2w + c for j �= 1, ni;

as they are at least d + 2gyi
l less than 2w + c + 2δ. Again dT (sx, uij) > 2w + d

because we choose c > 2(d + 2δ + 2l)|V |. Doing similar calculation for tx we get,
dT (tx, uini

) = 2w+c, dT (tx, ui1) = 2w+c−2δ and 2w+d < dT (tx, uij) < 2w+c
for j �= 1, ni. Now the path from uij and ukl where i �= k consists of 2 caterpillar-
connecting edge, 2 edge from leaf to spine for each leaf and some additional edges
on the spines. Thus we get,

dT (uij , ukl) ≥ 2(w − gyi
l) + c − (ni − 1)

d

2
− (ni − 3)gyi

l − (mi + zx)δ

+ c − (nk − 1)
d

2
− (nk − 3)gyi

l − (mk + zx)δ

≥ 2w + 2c − (ni + nk − 2)
d

2
− (mi + mk + 2zx)δ

− (ni + nk − 4)gyi
l

> 2w + 2c − c

= 2w + c.

The calculation above implies that for any two leaves (u, v) who have more
than two caterpillar- connecting edges on path Puv we get dT (u, v) > 2w + c.
Thus if x is a P -node then only the distance between sx, ui1 and tx, uini

are equal
to 2w + c, distance between sx, uij and tx, uij are less than 2w + c but greater
than 2w + d, any distance between two leaves having two or more caterpillar-
connecting edge between them is greater than 2w + c.

On the other hand if x is an S-node then Γx is a caterpillar with n − 1
leaves sy2 = ty1 , sy3 = ty2 , · · · , syn

= tyn−1 . If yi is a child Q-node of x then
dT (syi

, tyi
) = 2w + d for i �= 1, n. Also 2w + d < dT (syi

, syj
), dT (tyi

, tyj
),

dT (syi
, tyj

) < 2w + c for i �= j as the path between any of the mentioned
pair of leaves contains at least two edge with weight d + 2gl or larger and c >
2(d + 2δ + 2l)|V |.

Let yi be a child P -node of x and rj be any child S-node of yi in T . Clearly
Γx and Γrj

is connected by a caterpillar connecting edge. Let rj has nrj
children

which implies Γrj
has nrj

− 1 leaves. Let u1, u2 be two leaves in Γrj
where

dΓrj
(u1, u2) = max{dΓrj

(ui, uj)}. From the proof of processing at P -node we
know dT (syi

, u1) = 2w + c and dT (tyi
, u2) = 2w + c. Let v be a leaf in Γrj

where
dΓrj

(u1, v) < dΓrj
(u2, v) and the path Pu1v contains erj

edges on the spine. We
also assume that frj

edges among those erj
edges are of weight d + 2grj

+ 2δ.
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Thus dT (v, syi
) = 2w + c − erj

(d + 2grj
l) − 2frj

δ. Let syk
be a leaf in Γx where

dΓx
(syk

, syi
) < dΓx

(syk
, tyi

). We also assume that the path Psyi
syk

contains ex

edges on the spine of Γx and fx edges among them are of weight d + 2gx + 2δ.
Then dT (v, syk

) = 2w + c − erj
(d + 2grj

l) − 2frj
δ + ex(d + 2gxl) + 2fxδ =

2w+c+(ex−erj
)d+2(exgx−erj

grj
)l+2(fx−frj

)δ. Now as rj is a grandchild of x
we get gx = −grj

. So, dT (v, syk
) > c+2w if ex > wrj

, 2w+d < dT (v, syk
) < c+2w

if ex < wrj
. On the other hand if ex = erj

then dT (v, syk
) > c+2w if gx = 1 and

2w+d < dT (v, syk
) < c+2w if gx = −1. Similarly if dΓx

(syk
, syi

) > dΓx
(syk

, tyi
),

we get dT (v, syk
) = 2w+c+(ex −erj

)d+2(exgx −erj
grj

)l+2(fx −frj
−2)δ. This

also implies that dT (c, syk
) /∈ I2. By doing similar calculation it can be shown

that dT (v, syk
) /∈ I2 if dΓrj

(u1, v) ≥ dΓrj
(u2, v). Also the distance between any

pair of leaves that have more than two caterpillar-connecting edge in the path
between them is greater than 2w + c. Thus T is a 2-interval PCT of G for
I1 = [2w + d, 2w + d] and I2 = [c + 2w, c + 2w]. 	


4 Conclusion

In this paper, we have introduced a new notion named k-interval pairwise com-
patibility graphs. We have proved that every graph is a k-interval PCGs for
some k. We have also showed that wheel graphs and a restricted subclass of
series-parallel graphs are 2-interval PCGs. Inception of k-interval PCGs brings
in some interesting open problems. It is not known whether some constant num-
ber of intervals are sufficient for every graph to be a k-interval PCG. Whether
all series-parallel graphs are 2-interval PCGs or not is also unknown.

Acknowledgments. We thank Kazuo Iwama of Kyoto University who pointed out
this variant of the problem when the second author discussed the PCG problem with
him in 2014.
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Abstract. We study effective categoricity for linear orderings. For a
computable structure S, the degree of categoricity of S is the least Turing
degree which is capable of computing isomorphisms among arbitrary
computable copies of S.

We build new examples of degrees of categoricity for linear orderings.
We show that for an infinite computable ordinal α, every Turing degree
c.e. in and above 0(2α+2) is the degree of categoricity for some linear
ordering. We obtain similar results for linearly ordered abelian groups
and decidable linear orderings.

Keywords: Linear ordering · Computable categoricity · Computable
structure · Categoricity spectrum · Degree of categoricity · Autostability
spectrum · Ordered abelian group · Decidable structure · Autostability
relative to strong constructivizations

1 Introduction

The study of computably categorical structures goes back to the works of
Fröhlich and Shepherdson [19], and Mal’tsev [25,26]. Since then, the notion
of computable categoricity and its relativized versions have been the subject of
much study.

Definition 1. Let d be a Turing degree. A computable structure A is d-
computably categorical if for every computable structure B isomorphic to A,
there exists a d-computable isomorphism from A onto B. 0-computably cate-
gorical structures are also called computably categorical.

The categoricity spectrum of a structure A is the set

CatSpec(A) = {d : A isd-computably categorical} .

A Turing degree d0 is the degree of categoricity of A if d0 is the least degree in
the spectrum CatSpec(A).

Categoricity spectra and degrees of categoricity were introduced by Fokina,
Kalimullin, and Miller [18]. Note that some of the literature (see, e.g., [8,9,22])
c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 85–96, 2017.
DOI: 10.1007/978-3-319-55911-7 7
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uses the terms autostability spectrum and degree of autostability in place of cate-
goricity spectrum and degree of categoricity, respectively.

Suppose that n is a natural number and α is a computable ordinal. Fokina,
Kalimullin, and Miller [18] proved that every Turing degree d that is d.c.e. in
and above 0(n) is the degree of categoricity of a computable structure. This
result was extended by Csima, Franklin, and Shore [12] to hyperarithmetical
degrees. They proved that every degree that is d.c.e. in and above 0(α+1) is
a degree of categoricity. They also showed that 0(α) is a degree of cateroricity.
Miller [28] constructed the first example of a computable structure with no degree
of categoricity. For more results on categoricity spectra, see the survey [17] and
the recent papers [1,8,16]

In this paper, we study categoricity spectra for linear orderings. Goncharov
and Dzgoev [24], and independently, Remmel [29] proved that a computable
linear ordering L is computably categorical iff its set of successivities S(L) =
{(a, b) : (a <L b)&¬∃x(a <L x <L b)} is finite. We summarize known examples
of degrees of categoricity for linear orderings in Table 1. The table is read as
follows. Frolov [20] proved that every Turing degree d.c.e. in and above 0′′ is the
degree of categoricity for some linear ordering.

Table 1. Known examples of degrees of categoricity for linear orderings.

Conditions for a degree Reference

d.c.e. in and above 0′′ [20]

c.e. in and above 0(2k), 2 ≤ k < ω [9]

c.e. in and above 0(2α+1), ω ≤ α < ωCK
1 [9]

d.c.e. in and above 0(n), 3 ≤ n < ω Frolov announced in his
talk at Kazan Federal
University (January 2016)

This short note is a companion to [7,9]. Here we prove the following result.

Theorem 1. Suppose that 1 ≤ k < ω, α is an infinite computable ordinal, and
d is a Turing degree such that it satisfies one of the following conditions:

(A) d ≥ 0(2k+1), and d is c.e. in 0(2k+1);
(B) d ≥ 0(2α+2), and d is c.e. in 0(2α+2).

Then d is the degree of categoricity for a computable linear ordering.

The proof is based on the ideas from [7,9]. For simplicity, we give the detailed
proof for the case (A). The proof of the case (B) is essentially the same.
Theorem 1 and the results from Table 1 yield the following.

Corollary 1. Suppose that α is a computable successor ordinal, and α ≥ 2.
Every Turing degree c.e. in and above 0(α) is the degree of categoricity for some
linear ordering.
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2 Preliminaries

We consider only computable languages, and structures with universe contained
in ω. For a structure S, D(S) denotes the atomic diagram of S. For a set X,
card(X) is the cardinality of X. We refer the reader to [5,15] for background on
computable structures.

We treat linear orderings as structures in the language LLO = {≤2}. Let B
be a substructure of a linear ordering A. The ordering B is called an interval of
A if b1, b2 ∈ B, a ∈ A, and b1 <A a <A b2 together imply that a ∈ B. We also
assume that the empty set is an interval of A. Suppose that a, b ∈ A, and a ≤A b.
Then [a, b[A denotes the interval of A with the universe {x : a ≤A x <A b}. Let
[a, b]A denote the interval with the universe {x : a ≤A x ≤A b}

Suppose that {Ln}n∈ω is a computable sequence of linear orderings, and A
is a computable linear ordering with the universe ω. Then

∑

n∈A
Ln denotes the

generalized sum, i.e. the structure with the universe {(x, n) : n ∈ ω, x ∈ Ln} and
the ordering defined as follows: (x, n) ≤ (y,m) iff n <A m or (n = m)&(x ≤Ln

y). We identify the ordering
∑

n∈A
Ln with its natural computable copy.

Let η denote the linear ordering of rationals, and ζ denote the ordering
of integers. For further background on linear orderings, the reader is referred
to [13,30].

2.1 Infinitary Formulas

For a language L, infinitary formulas of L are formulas of the logic Lω1ω. For
a countable ordinal α, infinitary Σα and Πα formulas are defined in a standard
way (see, e.g., [5, Chap. 6]).

We give a short informal description for the class of computable infinitary
formulas of L that was introduced in [4]. These formulas allow disjunctions and
conjunctions over computably enumerable (c.e.) sets of formulas. Let α be a
non-zero computable ordinal.

1. Computable Σ0 and Π0 formulas are quantifier-free first-order L-formulas.
2. A computable Σα formula is a c.e. disjunction

∨∨
i ∃ūiψi(x̄, ūi), where ψi is a

computable Πβi
formula for some βi < α.

3. A computable Πα formula is a c.e. conjunction
∧∧

i ∀ūiψi(x̄, ūi), where ψi is
a computable Σβi

formula for some βi < α.

For the formal definition of computable infinitary formulas and their properties,
see Chap. 7 in [5].

For a countable ordinal α, we define infinitary formulas Fα(x, y) and Sα(x, y).
These formulas were introduced in [9] and are based on Example 4 from [5,
Sect. 6.2]. The formulas satisfy the following: for a well-ordering A and elements
a, b from A, we have:

1. A |= Fα(a, b) iff a ≤ b and the interval [a, b[A is isomorphic to an ordinal
β < ωα;

2. A |= Sα(a, b) iff a < b and the interval [a, b[A is isomorphic to ωα.



88 N. Bazhenov

Suppose that β is a countable ordinal, and δ is a countable limit ordinal. We set:

F0(x, y) = (x = y),
S0(x, y) = (x < y) & ¬∃z (x < z < y) ,

Fβ+1(x, y) = Fβ(x, y) ∨
∨∨

k∈ω

∃z0 . . . ∃zk+1

[
x = z0 & &

i≤k
Sβ(zi, zi+1) &

Fβ(zk+1, y)
]
,

Fδ(x, y) =
∨∨

γ<δ

Fγ(x, y),

Sγ(x, y) = (x < y) & ¬Fγ(x, y) & ∀z (x ≤ z < y → Fγ(x, z)) ,

where γ ∈ {β + 1, δ}.

It is not difficult to verify the following claim.

Lemma 1. Let α be a computable ordinal. The formula Fα is logically equivalent
to a computable Σ2α formula, and the formula Sα is equivalent to a computable
Π2α+1 formula.

2.2 Relative Δ0
α Categoricity

Let α be a computable ordinal. A computable structure A is relatively Δ0
α cat-

egorical if for every B ∼= A, there is a Δ0
α(D(B)) isomorphism from A onto

B.
Note that relative Δ0

1+α categoricity implies 0(α)-computable categoricity.
Goncharov [23] constructed a computably categorical structure that is not rela-
tively computably categorical. For a computable successor ordinal α, Goncharov,
Harizanov, Knight, McCoy, Miller, and Solomon [21] built a 0(α)-computably
categorical structure that is not relatively Δ0

1+α categorical. Chisholm, Fokina,
Goncharov, Harizanov, Knight, and Quinn [11] extended this result to com-
putable limit ordinals α. Downey, Kach, Lempp, Lewis-Pye, Montalbán, and
Turetsky [14] proved that for any computable ordinal α, there exists a com-
putably categorical structure that is not relatively Δ0

α categorical.
Let S be a structure. A formally Σ0

α Scott family for S is a c.e. set Φ of
computable Σα formulas (with a fixed finite tuple of parameters c̄ from S) such
that

1. every tuple from S satisfies some φ ∈ Φ, and
2. if ā and b̄ are tuples from S satisfying the same formula φ ∈ Φ, then (S, ā) ∼=

(S, b̄).

Theorem 2 ([2,10]). Let α be a non-zero computable ordinal. A computable
structure S is relatively Δ0

α categorical if and only if it has a formally Σ0
α Scott

family.
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A computable structure A is uniformly relatively Δ0
α categorical if, given an

X-computable index for a structure B ∼= A, one can effectively find a Δ0
α(X)-

computable index for an isomorphism from A onto B. We will use the following
corollary of Theorem 2.

Corollary 2 ([21, p. 230]). Suppose that a computable structure S has a
formally Σ0

α Scott family with no parameters. Then S is uniformly relatively Δ0
α

categorical.

Here we give two examples of uniformly relatively Δ0
α categorical structures.

These structures will be used in the proof of Theorem 1.

Proposition 1 ([3, Theorem 8], see also [5, Theorem 17.5]). Suppose that
β is a non-zero computable ordinal. The ordinal ωβ has a formally Σ0

2β Scott
family with no parameters. Thus, the structure ωβ is uniformly relatively Δ0

2β

categorical.

Proposition 2. Let β be a non-zero computable ordinal. The linear ordering
L = ωβ · (1 + η) is a uniformly relatively Δ0

2β+1 categorical structure.

The proof of Proposition 2 appears in Appendix A.

2.3 Pairs of Computable Structures

Suppose that L is a language, A and B are L-structures, and α is a countable
ordinal. We say that A ≤α B if every infinitary Πα sentence true in A is true in
B. The relations ≤α are called standard back-and-forth relations.

Let α be a computable ordinal. A family K = {Ai : i ∈ I} of structures in
the language L is called α-friendly if the structures Ai are uniformly computable
in i ∈ I, and the relations

Bβ =
{
(i, ā, j, b̄) : i, j ∈ I, ā is from Ai, b̄ is from Aj , (Ai, ā) ≤β (Aj , b̄)

}

are computably enumerable uniformly in β < α.
The proof of Theorem 1 uses the following result on pairs of computable

structures.

Theorem 3 ([6, Theorem 3.1]). Let α be a non-zero computable ordinal. Sup-
pose that A and B are computable L-structures such that B ≤α A and the family
{A,B} is α-friendly. Then for any Π0

α set S, there is a uniformly computable
sequence of structures {Cn}n∈ω such that

Cn
∼=

{A, if n ∈ S,
B, otherwise.



90 N. Bazhenov

3 Proof of Theorem 1

Recall that we prove the case (A) of Theorem 1. The proof of the case (B) is
essentially the same except that one needs to use the oracle ∅(2α+2) in place of
∅(2k+1). Assume that k is a non-zero natural number, and a Turing degree d
satisfies the following: d ≥ 0(2k+1), and d is c.e. in 0(2k+1).

First, we build the computable sequence {Cn}n∈ω of linear orderings. We give
the lemmas which allow us to apply Theorem 3.

Lemma 2 ([6, Proposition 5.4]). Suppose that α, β, and γ are countable
ordinals. Then we have:

(a) ωβ ·(1+η) ≤γ ωα iff either (α ≤ β)&(γ ≤ 2α+1), or (α > β)&(γ ≤ 2β+1);
(b) ωα ≤γ ωβ · (1 + η) iff either (β < α)&(γ ≤ 2β + 2), or (β ≥ α)&(γ ≤ 2α).

Lemma 3 ([6, p. 225]). Suppose that α and β are computable ordinals, β �= 0,
and κ = card(β). There exists an α-friendly family K = {Ai : i ∈ ω}∪{Bj : j <
κ} with the following properties:

1. for an ordinal γ < ωβ, there is a unique i such that Ai
∼= γ;

2. for an ordinal γ < β, there is a unique j such that Bj
∼= ωγ · (1 + η);

3. for every i ∈ ω, there exists an ordinal γ < ωβ such that Ai
∼= γ;

4. for every j < κ, there exists an ordinal γ < β such that Bj
∼= ωγ · (1 + η).

Lemma 3 implies the following result.

Corollary 3. Suppose that α, β, and γ are computable ordinals. There exists
an α-friendly family Kα = {A,B} such that A ∼= ωβ · (1 + η) and B ∼= γ.

Assume that S is a Π0
2k+2 set such that S ∈ d. By Corollary 3, there exists

a (2k + 2)-friendly family K = {A,B} such that A ∼= ωk · (1 + η) and B ∼= ωk+1.
By Lemma 2, we have ωk+1 ≤2k+2 ωk · (1+η). Thus, by Theorem 3, there exists
a computable sequence {Cn}n∈ω such that for any t ∈ ω, we have

C4t
∼= ωk · (1 + η), C4t+3

∼= ωk+1,

C4t+1
∼= C4t+2

∼=
{

ωk · (1 + η), if t ∈ S,
ωk+1, if t �∈ S.

For a natural number m, the parity of m is defined as follows:

p(m) =
{

0, if m is even,
1, if m is odd.

For t,m ∈ ω, set C[t,m,0] = C4t+2p(m) and C[t,m,1] = C4t+2p(m)+1. Fix a com-
putable copy ζ0 of the ordering ζ with the following properties: ζ0 has the uni-
verse ω, the successor relation S0(ζ0) is a computable set, and ζ0 |= S0(a, b)
implies that p(a) �= p(b).
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We define

L =
∑

t∈ω

(
t + 3 + η + 1 +

∑

m∈ζ0

(
1 + η + C[t,m,0] + 2 + η + C[t,m,1]

)
)

.

The next two lemmas show that d is the degree of categoricity for the ordering
L.

We define the function q : ζ0 × Z → ω. For an element a ∈ ζ0 and a natural
number k, we choose b and c such that b ≤ζ0 a ≤ζ0 c and card([b, a[ζ0) =
card([a, c[ζ0) = k, and we set q(a,−k) = b and q(a, k) = c.

Lemma 4. Suppose that S is a computable copy of the structure L. There exists
a d-computable isomorphism f from L onto S.

Proof. The lemma is similar to Lemma 3.1 in [9]. For the sake of self-
completeness, we give a brief sketch of the proof. First, we define auxiliary
formulas:

(a) The finitary Π2 formula D(x, y) says that the interval [x, y] is a dense linear
ordering.

D(x, y) = (x < y) & ∀u∀v(x ≤ u < v ≤ y → ¬S0(u, v)).

(b) The finitary Π3 formula Dmax(x, y) says that [x, y] is a maximal (under
inclusion) dense interval.

Dmax(x, y) = D(x, y) & ∀z(z < x → ¬D(z, y)) &
∀w(y < w → ¬D(x,w)).

(c) The finitary Π3 formula N(x, y, u, v) says that [x, y] and [u, v] are adjacent
maximal dense intervals.

N(x, y, u, v) = Dmax(x, y) & (y < u) & Dmax(u, v) &
∀w∀z(y < w < z < u → ¬D(w, z)).

(d) For s ∈ ω, the finitary Σ4 formula Ds(x, y) says that the interval [x, y] is
isomorphic to the ordering (s+1+η+1), and [x, y] contains a maximal dense
interval. Moreover, there is no z < x with the property [z, y] ∼= (s+2+η+1).

Ds(x, y) = ¬∃zS0(z, x) & ∃z0 . . . ∃zs+1[x = z0 & &
i≤s

S0(zi, zi+1) &

Dmax(zs+1, y)].

Given a computable copy S of the ordering L, we describe the con-
struction of the d-computable isomorphism f from L onto S. Note that
∅(3) ≤T ∅(2k+1) ≤T S. Using the formulas N and Ds, s ∈ ω, we can effectively
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in ∅(3) find computable indices of the intervals Dt,m,i (where t,m ∈ ω and
i ∈ {0, 1}) such that

S =
∑

t∈ω

(
t + 3 + η + 1 +

∑

m∈ζ0

(
1 + η + Dt,m,0 + 2 + η + Dt,m,1

)
)

.

Note that every interval Dt,m,i is isomorphic either to ωk+1, or to ωk ·(1+η).
By Proposition 1, the ordinal ωk+1 is uniformly relatively Δ0

2k+2 categorical.
In addition, by Proposition 2, the structure ωk · (1 + η) is uniformly relatively
Δ0

2k+1 categorical. Therefore, now it is sufficient to build a d-computable func-
tion ψ : ω → ω such that for every t ∈ ω, we have C[t,0,0]

∼= Dt,ψ(t),0 and
C[t,0,1]

∼= Dt,ψ(t),1.
Indeed, suppose that ψ is such a function. Then, given t ∈ ω, z ∈ Z,

and i ∈ {0, 1}, we can effectively in d find computable indices for the order-
ings C[t,q(0,z),i] and Dt,q(ψ(t),z),i. It is clear that these orderings are isomorphic.
Moreover, since we can use the oracle S, we can determine whether we have
C[t,q(0,z),i]

∼= ωk+1, or C[t,q(0,z),i]
∼= ωk · (1 + η). Hence, uniform relative Δ0

β cat-
egoricity (where β ∈ {2k + 1, 2k + 2}) allows us to build (uniformly in t, z, i)
a 0(2k+1)-computable isomorphism ft,z,i from C[t,q(0,z),i] onto Dt,q(ψ(t),z),i. It is
well-known that the ordering η is uniformly relatively computably categorical
(see, e.g., Example 3.1 in [13]). Thus, the map

⋃
t,z,i ft,z,i can be extended to a

d-computable isomorphism f from L onto S.
The function ψ is defined as follows. If t ∈ S, then find the least (under the

standard ordering of ω) elements a and b such that S |= Sk(a, b) and a, b ∈ Dt,m,1

for some m. Set ψ(t) = q(m, 1). Note that in this case we have C[t,0,1]
∼= ωk ·(1+η)

and Dt,m,1
∼= ωk+1. Thus, it is easy to note that C[t,0,0]

∼= C[t,0,1]
∼= Dt,ψ(t),0

∼=
Dt,ψ(t),1

∼= ωk · (1 + η).
If t /∈ S, then we find the least elements a, b with the property: S |= Sk(a, b)

and a, b ∈ Dt,m,0 for some m. Again, we define ψ(t) = q(m, 1). It is not difficult
to check that the value ψ(t) satisfies the desired conditions. This concludes the
proof of Lemma 4.

Lemma 5. There exists a computable copy L1 of the structure L with the fol-
lowing property: every isomorphism f from L onto L1 computes the set S.

Proof. Using Theorem 3, it is not hard to build a computable sequence {Dn}n∈ω

such that for any t ∈ ω, we have

D4t
∼= ωk · (1 + η), D4t+1

∼= ωk+1,

D4t+2
∼= D4t+3

∼=
{

ωk · (1 + η), if t ∈ S,
ωk+1, if t �∈ S.

For t,m ∈ ω, define D[t,m,0] = D4t+2p(m) and D[t,m,1] = D4t+2p(m)+1. We set

L1 =
∑

t∈ω

(
t + 3 + η + 1 +

∑

m∈ζ0

(
1 + η + D[t,m,0] + 2 + η + D[t,m,1]

)
)

.
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It is straightforward to check that L1 is a computable copy of the ordering L.
Let at be the element in L such that at corresponds to the least element in

the ordering C[t,0,0]. Let bt,m be the element in L1 such that bt,m corresponds
to the least element in D[t,m,0]. We may assume that the sequences {at}t∈ω and
{bt,m}t,m∈ω are computable. For an isomorphism f from L onto L1, we have:

a) if t ∈ S, then f(at) = bt,2r+1 for some r;
b) if t �∈ S, then f(at) = bt,2r for some r.

Therefore, f computes the set S. This concludes the proofs of Lemma 5 and
Theorem 1.

4 Corollaries

This section discusses some consequences of Theorem 1. Melnikov [27] con-
structed the transformation of a linear ordering L into the linearly ordered
abelian group G(L). Using this transformation, it is not hard to prove the fol-
lowing.

Corollary 4. Suppose that α is an infinite computable ordinal, and d is a Tur-
ing degree c.e. in and above 0(2α+2). Then d is the degree of categoricity for
some computable linearly ordered abelian group.

Goncharov [22] initiated the systematic study of spectra of autostability rela-
tive to strong constructivizations (SC-autostability spectra). We give some basic
definitions from this area. Recall that a computable structure S is decidable
if, given a first-order formula φ(x̄) and a tuple ā from S, one can effectively
determine whether φ(ā) is true in S or not.

Let d be a Turing degree. A decidable structure A is d-SC-autostable if for
every decidable structure B isomorphic to A, there is a d-computable isomor-
phism from A onto B. The SC-autostability spectrum of a decidable structure A
is the set

SCAutSpec(A) = {d : A isd-SC-autostable} .

A Turing degree d0 is the degree of SC-autostability for A if d0 is the least degree
in SCAutSpec(A).

Informally speaking, the world of decidable structures has its own counterpart
to the notion of computable categoricity. And this is SC-autostability. Theorem 1
and the results from [7] yield the following.

Corollary 5. Suppose that α is an infinite computable ordinal, and d is a Tur-
ing degree c.e. in and above 0(2α+2). Assume that L is the linear ordering (from
the proof of Theorem 1) such that d is the degree of categoricity for L. Then the
ordering ζ · L has a decidable copy, and d is the degree of SC-autostability for
ζ · L.

Acknowledgements. The author is grateful to Sergey Goncharov for fruitful dis-
cussions on the subject. The reported study was funded by RFBR, according to the
research project No. 16-31-60058 mol a dk.
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A Appendix: Proof of Proposition 2

For a non-zero countable ordinal α, we define the auxiliary formula Ordα(x, y).
Suppose that the Cantor normal form of α is equal to

ωβ0 · n0 + ωβ1 · n1 + . . . + ωβt · nt,

where β0 > β1 > . . . > βt and 0 < ni < ω for all i. We set:

Ordα(x, y) = ∃z0,0∃z0,1 . . . ∃z0,n0∃z1,0∃z1,1 . . . ∃z1,n1 . . .

∃zt,0∃zt,1 . . . ∃zt,nt

[
x = z0,0 & &

i<n0
Sβ0(z0,i, z0,i+1) &

z0,n0 = z1,0 & &
i<n1

Sβ1(z1,i, z1,i+1) & . . . &

zt−1,nt−1 = zt,0 & &
i<nt

Sβt
(zt,i, zt,i+1) & zt,nt

= y
]
.

It is not difficult to prove the following claim.

Lemma 6. Assume that β is a computable ordinal, and ωβ < α < ωβ+1. For a
well-ordering A and elements a, b ∈ A, we have A |= Ordα(a, b) iff the interval
[a, b[A is isomorphic to α. Moreover, the formula Ordα is logically equivalent to
a computable Σ2β+2 formula.

Now suppose that L0 is a computable copy of the ordinal ωβ with the fol-
lowing property: given a pair of elements a <L0 b, one can effectively find the
Cantor normal form of the interval [a, b[L0 . We may assume that L = L0 ·(1+η).

We describe the formally Σ0
2β+1 Scott family Φ for the structure L. Let

ψ(x) = ∀y[y < x → ¬Fβ(y, x)].

It is easy to show that ψ is equivalent to a computable Π2β formula.
First, we define the Scott formula φa for an element a ∈ L. If a is the least

element in L, then set φa(x) = ∀y(x ≤ y). If a is not the least element and
L |= ψ(a), then define φa = ψ. Now assume that L �|= ψ(a). We find the element
b such that L |= ψ(b) & Fβ(b, a). Let γ be the ordinal such that the interval
[b, a[L is isomorphic to γ. Set

φa(x) = ∃y(y < x & φb(y) & Ordγ(y, x)).

Let ā = a0, a1, . . . , an be a tuple from L such that a0 <L a1 <L . . . <L an.
For i < n, we set

ψi(x, y) = (x < y) &

&

⎧
⎨

⎩

¬Fβ(x, y), if L �|= Fβ(ai, ai+1),
Ordγ(x, y), if L |= Fβ(ai, ai+1) and

[ai, ai+1[L∼= γ;

φā(x0, x1 . . . , xn) = &
i≤n

φai
(xi) & &

i<n
ψi(xi, xi+1).
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It is straightforward to prove that L |= φā(ā). Moreover, for a tuple b̄ from L,
L |= φā(b̄) implies that the tuple b̄ is automorphic to ā. Furthermore, the formula
φā is logically equivalent to a computable Σ2β+1 formula. We use the effective
procedure for calculating Cantor normal forms to construct the formulas φā and
to build the desired c.e. Scott family Φ consisting of computable Σ2β+1 formulas.
Note that the formulas have no parameters. Hence, by Corollary 2, the structure
L is uniformly relatively Δ0

2β+1 categorical.
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Abstract. The Shortest Superstring Problem (SSP) consists, for a set
of strings S = {s1, · · · , sn} (with no si substring of sj), to find a mini-
mum length string that contains all si, 1 ≤ i ≤ n, as substrings.

This problem is proved to be NP-Complete and APX-hard. Guar-
anteed approximation algorithms have been proposed, the current best
ratio being 2 11

30
, which has been achieved through a long and difficult

process. SSP is highly used in practice on Next Generation Sequencing
(NGS) data, which plays an increasingly important role in modern bio-
logical and medical research. In this note, we show that on NGS data
the SSP approximation ratio reached by the classical algorithm of Blum
et al. [2], is usually below 2 11

30
, while assuming specific characteristics of

the data that are experimentally verified on a large sampling set. More-
over, we present an efficient linear time test for any input of strings of
equal length, which allows to compute the approximation ratio that can
be reached using the classical algorithm in [2].

Keywords: Shortest Superstring Problem · Approximation algo-
rithms · Next Generation Sequencing

1 Introduction

The Shortest Superstring Problem (SSP) consists, for a set of strings S =
{s1, · · · , sn} (with no si substring of sj), in constructing a string s such that any
element of S is a substring of s and s is of minimal length. For an arbitrary number
of strings n, the problem is known to be NP-Complete [10,11] and APX-hard [2].
Lower bounds for the achievable approximation ratios on a binary alphabet have
been given [16,20], and the best approximation ratio so far for the general case
is 2 11

30 ≈ 2.3667 [21], reached after a long series of improvements [1–4,7,15,17–
19,22,23,25] leading to increasingly involved algorithms. An SSP greedy algo-
rithm is known to reach good performances in practice but its guaranteed approx-
imation ratio has only been proved to be 3.5 [15] and conjectured 2.

This work was supported by the PEPS INS2I-CNRS project CompX and by a Geno-
type to Phenotype project of the Life Sciences Department of University of Bordeaux.

c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 97–111, 2017.
DOI: 10.1007/978-3-319-55911-7 8



98 T. Braquelaire et al.

Also, the SSP problem was tackled from the perspective of compression and
several compression SSP algorithms have been designed. The idea is to ensure a
fixed compression ratio between the sum of the lengths of the strings in the set
and the optimal superstring on this set. In this context, the above mentioned
greedy algorithm is proved to achieve a compression ratio of at least 1

2 , while
the best compression algorithm achieves a ratio of 38

63 [17].
In this article, we focus on guaranteed algorithms for practical applications

of SSP, like assembling reads produced by Next Generation sequencers. Over
the past decade, the landscape of sequencing and assembly deeply changed,
with the increasing development of Next Generation Sequencing (NGS) devices.
These relatively cheap devices produce in a single run, millions of randomly read,
relatively short, equal length DNA sequences. Such sequences are named reads
and each read is typically 32 to 1000 bases long, with a low and still decreasing
cost per base.

Considering the specificity of read sequences (i.e., equal length, specific
period distribution), the question that arises is whether it is possible to propose
better approximation algorithms for this type of data. Note that our results can
easily be extended to the case where the lengths of the input strings are not
necessarily equal but very close, by considering the maximum length. However,
for simplicity, we prefer to restrain our presentation to equal length strings.

This research, similar to the one targeting better algorithms for small-world
graphs in social networks, aims to better suit the actual data. The greedy SSP
algorithm was already studied in the general case of DNA sequences (not neces-
sarily of equal length) in [8] and proved to be efficient.

In this article, we refine the approximation bound of the classical (and one
of the simplest) SSP algorithm in [2] taking into account (a) the strings being
of equal length and (b) the period distribution of those strings. Then, given any
set of equal length strings, we propose a linear-time algorithm to compute the
approximation ratio the classical algorithm can reach. If the period distribution
fits a specific model (see Sect. 4), this ratio can be better than the best actual
ratio of 211

30 .
Our experiments show that on real NGS datasets, the ratios we obtain are

most of the time better than 211
30 , allowing us to use a better guaranteed and sim-

pler algorithm for its assembling. For instance, on the NGS dataset SRR069579,
we reach a 2.0738 approximation ratio (see Table 1). In the appendix we present
the result of the ratio computation on 100 sets of reads.

To our knowledge, the only related work where sequences have the same
length is [12]. Up to 7 bases, they propose a better approximation ratio, with
a De Bruijn graph approach. However, these sequences are much shorter than
real-world reads.

Note that some theoretical variations of SSP have also been studied [5,27].
Here we neither dwell on these studies since their focus is far from ours, nor
detail the greedy algorithm approximation conjecture, which is a subject in itself
[9,15,24].
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2 The Classical 3-Approximation Algorithm for SSP

We consider the Shortest Superstring Problem (SSP) on n strings over a finite
alphabet Σ, in a set S = {s1, s2, . . . , sn}, with no si substring of sj .

For two strings u, v we define the maximum overlap of u and v, denoted
ov(u, v), as the longest suffix of u that is also a prefix of v. Also, we define
the prefix of u relatively to v, denoted pref(u, v), as the string x such that
u = x · ov(u, v), i.e., the maximum prefix of u that does not overlap v.

The prefix graph (also called the distance graph) built on S is a com-
plete directed graph with the vertex set V = S and the edges set E =
{ei,j = (si, sj)|∀si, sj ∈ V }, with label l(ei,j) = pref(si, sj) and weight
w(ei,j) = |pref(si, sj)|. Figure 1 shows the prefix graph built on the set of strings
S = {ACGACG, CGACGA, ATGTAG,TAGATG, GACGAT, ATGATG}. For
the sake of simplicity, the prefix graph depicted in Fig. 1 is not complete; indeed,
edges corresponding to pairs of non overlapping strings are not represented, as
they do not impact our example.

Let c be a cycle in the prefix graph and let w(c) denote its weight, that
is the sum of the weights of its edges. Now let r be a string corresponding to
one of the vertices in this cycle. Then r can be expressed by turning around
the cycle a certain number of times and concatenating the labels of the edges.

Fig. 1. The prefix graph of S = {ACGACG, CGACGA, ATGTAG, TAGATG,
GACGAT, ATGATG}. Vertices in the graph are numbered from [0] to [5]. We highlight
a cycle cover made of two cycles, whose edges are in bold: (1) [0] - [1] and (2) [2] - [3] -
[4] - [5].
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Algorithm 1. Shortest superstring - factor 3
Data: S = {s1, s2, . . . , sn} a set of n strings

Result: τ a superstring of the strings in S

1 Compute a minimum weight cycle cover C = c1 . . . cnc of the prefix graph

built on S;

2 For each cycle ci = si1 , . . . sil
in C, arbitrarily choose one of the strings in

ci (let us say si1) as the representative string ri for ci. Let

σi = pref(ri, si2)· ... ·pref(sil−1 , sil
) · pref(sil

, ri) · ri; Let Sσ = {σi} and

||Sσ|| =
∑ |σi|.

3 Compress Sσ using an SSP compression algorithm, like the greedy

algorithm, and output the result τ .

For instance, on cycle (1) in Fig. 1, ACGACG can be expressed as A from node
[0] to [1], followed by CG from node [1] to [0], then again by A from [0] to [1]
and eventually by CG from [1] to [0]. In this case, turning 2 times around the
cycle allows expressing ACGACG. Note that the number of cycle tours is not
necessarily an integer, as a string can be expressed as a ratio of the weight of
the cycle.

A cycle cover of a graph is a collection of disjoint cycles that cover all the
vertices. Let OPT denote the length of a solution for the SSP on the strings in
the set S. It was shown that OPT can be lower-bounded by the minimum weight
of a cycle cover of the prefix graph of S [26]. Based on these considerations, a
classical algorithm described in [2,26] was proposed, whose general framework is
given in Algorithm 1 (for a complete description of the algorithm see Chapter 7
in [26]).

For the example in Fig. 1, if we consider vertex [0] (ACGACG) as the rep-
resentative for cycle (1) then σ1 = A · CG · ACGACG = ACGACGACG. For
cycle (2), let us choose arbitrarily vertex [2] (ATGTAG) as the representative.
Then σ2 = ATG · TAGAT · GACG · ATG · ATGTAG = ATGTAGATGAC
GATGATGTAG. Thus, in Algorithm 1 we obtain Sσ = {ATGTAGATGAC
GATGATGTAG,ACGACGACG}.

Algorithm 1 is proved to be a 3-approximation when using the greedy com-
pression algorithm of ratio 1

2 . Below, we show that when applied on data having
specific characteristics, the approximation factor of Algorithm 1 is in fact better.
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3 Algorithm 1 on a Particular Instance of the SSP

In this section we consider a particular instance of the Shortest Superstring
Problem, namely when the n strings in S have the same length m with 0 <
m � n. We begin this section with several notations, lemmas and corollaries,
followed by an analysis of Algorithm 1 on this particular instance of the SSP.

For a string s of length m, an integer 1 ≤ p ≤ m is a period of s if s[i] = s[i+p]
for all 1 ≤ i ≤ m − p. Note that s has at least one period that is its length.
The smallest period of s is called period of s, and denoted period(s). Let n(i)
(1 ≤ i ≤ m) denote the number of strings of period i.

We denote the period of a cycle as being equal to its weight. Note that the
period of a cycle is at least 2, as a cycle is composed of at least two vertices
thus of at least two edges, and as the weight of an edge is at least 1 (otherwise a
string would be a substring of another thus contradicting the definition of SSP).

Lemma 1. Let c ∈ C be a cycle and s1 . . . sk the strings in c, then period(c) ≥
maxk

i=1{period(si)}.

Proof. Each string in the cycle can be expressed by turning around the cycle.
If period(c) < period(s) for a given s ∈ {s1 . . . sk}, then period(c) is also a
period of s, which is smaller than the smallest period of s. Contradiction. Thus
period(c) ≥ period(si), 1 ≤ i ≤ k.

Corollary 1. Let 1 ≤ i ≤ m, the maximal number of cycles of period less or
equal to i is bounded by 1

2

∑i
k=1 n(k).

Proof. By Lemma 1, strings in a cycle c of period i must have a period less than
or equal to i. There are

∑i
k=1 n(k) strings that can compose these cycles. Given

that a cycle contains at least two strings, there are at maximum 1
2

∑i
k=1 n(k)

cycles of period ≤ i.

A cycle cover is composed of cycles of different periods. For example, in Fig. 1,
the period of cycle (1) is 3, while that of cycle (2) is 16. The period of a cycle
determines the number of turns needed in order to express a string on that cycle.
Indeed, a string s that is part of a cycle c is expressed by turning around the
cycle m

period(c) times. Note that given that all strings have the same length m,
the smaller the period of a cycle, the more we need to turn around the cycle in
order to express a string (see Fig. 2).

We split the set of cycles in two subsets with respect to their periods: small
cycles with periods less than or equal to mα, and large cycles with periods greater
than mα, where 0 < α ≤ 1 is a parameter that will be discussed later in the
paper. For instance for α = 0.8, it is straightforward to see that in Fig. 2, cycle
(1) is small while cycle (2) is large.

Corollary 2. Let c ∈ C be a cycle and s1 . . . sk the strings in C. If period(c) ≤
mα, period(si) ≤ mα, where 1 ≤ i ≤ k.
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Fig. 2. Expressing a representative r on a small cycle (having a period inferior to mα)
in (1) versus on a large cycle (with a period superior to mα) in (2), where α = 0.8.

Proof. By Lemma 1, the periods of the strings in a cycle are smaller than or
equal to the period of the cycle.

Based on this corollary, the partition of the set of cycles with respect to mα
generates a partition of the set of reads: reads with periods less than or equal
to mα that can be part of the small cycles, and reads with periods comprised
between mα and m that can only be part of the large cycles.

Below we will show that ||Sσ|| (see Step 2, Algorithm 1) for equal length
strings, approaches OPT when having a maximum number of cycles with large
periods.

Lemma 2

||Sσ|| ≤ wt(C)+wt(C)
1
α

+
1
2

mα∑

k=1

n(k)(m− k

α
) ≤ (1+

1
α

)OPT +
1
2

mα∑

k=1

n(k)(m− k

α
)

Proof. It is straightforward to see that Sσ has the length equal to
∑nc

i=1 |σi|. A
σi on a cycle ci is given by pref(ri, si2) · ... · pref(sil−1 , sil

) · pref(sil
, ri) · ri. As

|pref(ri, si2) · ... · pref(sil−1 , sil
) · pref(sil

, ri)| = wt(ci), we first sum over these
prefixes of each σi. This leads to the first global wt(C) in Lemma 2.

We now have to consider
∑nc

i=1 |ri|. As all ri have the same length m, this
gives

∑nc
i=1 |ri| = m · nc. However, this is not entirely useful given that it is not

possible to finely bound the number of cycles in the cycle cover, nc. Therefore
we will have to pursue a different approach, that is further decompose this result
on large and small period cycles and exploit the fact that expressing an ri on a
cycle ci requires m

period(ci)
cycle tours.

We consider the total length of the ri for the large cycles (with periods > mα).
From the observation above we get that the expression of such an ri requires
at maximum 1

α cycle tours and its length can be formulated as 1
α · wt(ci). Thus

their total length is bounded by 1
α · wt(C). Note that wt(C) is the sum of the

weights of all cycles and not only of the large ones.
We now have to address the total length of the ri for the small cycles (with

periods ≤ mα). As, by Corollary 1, there are at most 1
2

∑mα
k=1 n(k) such cycles,

the sum of the lengths of the corresponding ri is upper bounded by m
2

∑mα
k=1 n(k).
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This can be further refined given that 1
α cycle tours for the small cycles are

already taken into account in the computation for the large cycles, i.e., k
α from

this upper bound. Note that the worst case for counting the small cycles of period
k from 2 to mα is when there is a maximum of small cycles at each step k. By
Corollary 1, the number of cycles from step k−1 to step k can only be increased
by n(k)

2 . Expressing the representatives of these n(k)
2 additional cycles of period

k requires n(k)
2 (m

k − 1
α ) tours. The number of tours has to be multiplied by k in

order to obtain their total length. Finally, we get an upper bound for the sum
of the lengths of the ri for the small cycles of 1

2

∑mα
k=1 n(k)(m − k

α ). Eventually,
as wt(C) ≤ OPT , the result follows.

Instead of using the greedy algorithm in the last step of Algorithm 1, we
compress Sσ using the guaranteed 38

63 compression algorithm [17], similarly to
the classical approaches related to the superstring approximation. We define
OPTσ as the length of an optimal superstring on Sσ and τ as the result of the
38
63 compression algorithm on Sσ. The next lemma (Lemma 7.7 in [26]) links
OPTσ and OPT.

Lemma 3. OPTσ ≤ OPT + wt(C)

By applying the 38
63 compression algorithm on Sσ, we thus derive the following

result:

Lemma 4

|τ | ≤ 2OPT +
25
63

(
1 − α

α

)
OPT +

25
126

mα∑

k=1

n(k)(m − k

α
)

Proof. Let us denote Δ =
(
1−α

α

)
OPT+ 1

2

∑mα
k=1 n(k)(m− k

α ) (see Fig. 3). Lemma
2 states that ||Sσ|| ≤ 2OPT + Δ.

Lemma 3 gives OPTσ < OPT+ wt(C) ≤ 2OPT. As ||Sσ|| − |τ | ≥ 38
63 (||Sσ|| −

OPTσ), the following inequality also holds: ||Sσ|| − |τ | ≥ 38
63 (||Sσ|| − 2OPT ).

Let us define |τ0| as the value of |τ | obtained in the worst case, when ||Sσ||−
2OPT = Δ. Then |τ0| ≤ 2OPT + 25

63Δ. Assume now that ||Sσ|| is less than the
worst case, that is ||Sσ|| − 2OPT < Δ. Then the |τ | obtained after compressing
||Sσ|| is less than |τ0| (Fig. 3). Thus |τ | ≤ |τ0| ≤ 2OPT + 25

63Δ = 2OPT +
25
63

(
1−α

α

)
OPT + 25

126

∑mα
k=1 n(k)(m − k

α ).

An important point is that OPT ≥ n, since any superstring contains at least
one character from each string, as no string is a substring of another. Combined
to Lemma 4, this leads to:

Theorem 1

|τ |
OPT

≤ 2+
25

63

(
1 − α

α

)
+

25
126

∑mα
k=1 n(k)(m − k

α
)

OPT
≤ 2+

25

63

(
1 − α

α

)
+

25

126n

mα∑
k=1

n(k)(m− k

α
)

Proof. The approximation ratio of |τ | with respect to OPT is computed by divid-
ing |τ | by OPT . As OPT ≥ n,

25
126

∑mα
k=1 n(k)(m− k

α )

OPT ≤ 25
126n

∑mα
k=1 n(k)(m − k

α ).
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Fig. 3. Compressing Sσ using the 38
63

algorithm [17].

4 The Shortest Superstring Problem on NGS Reads

In the previous section we have shown that the classical SSP algorithm
(Algorithm 1), when applied on strings of equal length, might give a better
approximation factor than in the general case, depending on the period distrib-
ution of the sequences.

This approximation factor is parametrized by a parameter α, 0 < α ≤ 1,
which is inferred from the set of strings given as input. This the novely of our
approach. The approximation factor is ad-hoc, computed on the data trough a
linear time procedure.

The parameter α allows to partition the set of strings in two subsets: strings
with periods ≤ mα and the others with periods comprised between mα and m,
and thanks to Corollary 2 it also roughly partitions the set of cycles (see Sect. 3).
Thus the choice of α determines the number of small and large cycles and as
we have seen above (see Lemma 2), the lower the number of small cycles with
respect to the number of large cycles, the better the approximation factor. In
this section we describe a procedure that allows to compute the optimal value
for the parameter α on a given dataset, and apply this procedure on real NGS
datasets composed of equal length reads. We observe that for a large panel of
these NGS datasets the optimal value of α is relatively high (between 0.8 and 1),
which means that the number of small cycles becomes “negligible” with respect
with the number of reads when the period of the reads increases.

As our approach is data driven, we performed extensive tests (see Appendix,
Table 5) on 100 sets of reads of differents species, and we took several parameters
into account. For instance, in Fig. 4, we show such four sets of reads with lengths
of 32, 36, 98 and 200. The x-axis represents the periods, and the y-axis the
number of reads on a log10 scale. We plotted three types of curves:

– n(x) (red circles) of the corresponding set of reads;
– random values of n(x) (oblique dotted curve) experimentally generated for the

total number of sequences of the set of reads;
– parameters mα (vertical dotted line) computed on the set of reads.

Compared to random periods, this value of mα roughly corresponds to the
area where the curves n(x) join the random values. It would be a natural
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Fig. 4. Four sets of reads from left to right, top to bottom: SRR069579 (human),
ERR000009 (yeast), SRR211279 (human), SRR959239 (human). The x-axis is the
period and the y-axis is the number of reads on a log10 scale. The circles represent
n(x) and the curve represents a distribution of periods on a random dataset. The dash
vertical line corresponds to the final mα (computed in Sect. 5). (Color figure online)

approach to fit our experimental curves to the theoretical random distributions
under some probabilistic source assumptions (Bernoulli or Markov for instance).
However, obtaining these theoretical distributions is an open study [13,14], which
is out of the scope of this article.

For a set of equal length strings, the computation of the value of α consists
in (a) computing all minimal periods of all input sequences and (b) computing
n(i) for all 1 ≤ i ≤ m and (c) computing for each 1 ≤ i ≤ m the parameters α,
γ = 25

126n

∑mα
k=1 n(k)(m − k

α ) and β = 2 + 25
63

(
1−α

α

)
+ γ. Eventually, we keep the

lower β as the approximation ratio if it is below 211
30 ≈ 2.3667. Given a string

of size m on a fixed alphabet Σ, the computation of its smallest period can be
done easily in expected linear time O(m), in worst case O(m) or even in optimal
sublinear expected time O(

√
m. log|Σ| m) using a more involved algorithm [6].
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Table 1. SRR069579 read set, 3702308 reads of size 36, γ = 25
126n

∑mα
k=1 n(k)(m − k

α
)

and β = 2 + 25
63

(
1−α

α

)
+ γ.

Period nbseq cum. nbseq α 1 + 1
α

2 + 25
63

(
1−α

α

)
γ β

1 4 4 0.0277778 37 15.888889 0 15.888889

2 6 10 0.0555556 19 8.746032 3.8585968E-6 8.746036

. . . . . . . . . . . . . . . . . . . . . . . .

33 98795 140121 0.9166667 2.090909 2.036075 0.011829347 2.0479045

34 247451 387572 0.9444444 2.0588236 2.0233426 0.024179146 2.0475218

35 829535 1217107 0.9722222 2.0285716 2.0113378 0.05718735 2.068525

36 2485201 3702308 1 2 2 0.15358844 2.1535885

Table 2. ERR000009 read set, 4049489 reads of size 32

Period nbseq cum. nbseq α 1 + 1
α

2 + 25
63

(
1−α

α

)
γ β

1 4 4 0.03125 33 14.301587 0 14.301587

2 101 6895 0.0625 17 7.952381 3.135806E-6 7.9523845

. . . . . . . . . . . . . . . . . . . . . . . .

29 88979 149801 0.90625 2.1034484 2.041051 0.021079484 2.0621305

30 341091 490892 0.9375 2.0666666 2.026455 0.03537932 2.0618343

31 953109 1444001 0.96875 2.032258 2.012801 0.073584706 2.0863857

32 2605488 4049489 1 2 2 0.18015388 2.1801538

Table 3. SRR211279 read set, 25103766 reads of size 200

Period nbseq cum. nbseq α 1 + 1
α

2 + 25
63

(
1−α

α

)
γ β

1 2 2 0.005 201 80.968254 0 80.968254

100 23 25 0.5 3 2.3968253 3.1298662E-6 2.3968284

. . . . . . . . . . . . . . . . . . . . . . . .

195 38013 54574 0.975 2.025641 2.010175 0.002138306 2.0123134

196 134284 188858 0.98 2.0204082 2.0080984 0.0028290136 2.0109274

197 473686 662544 0.985 2.0152283 2.006043 0.0050281105 2.011071

198 1685038 2347582 0.99 2.0101008 2.0040083 0.012494448 2.0165029

199 5811666 8159248 0.995 2.0050251 2.0019941 0.038533505 2.0405276

200 16944518 25103766 1 2 2 0.12880057 2.1288006

Performing n such computations and a m-buckets sorting allows to solve the
steps (a) and (b) in O(n

√
m. log|Σ| m) time. Step (c) is then computed in O(n)

time.
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Table 4. SRR959239 read set, 4143243 reads of size 98

Period nbseq cum. nbseq α 1 + 1
α

2 + 25
63

(
1−α

α

)
γ β

1 1 1 0.010204081 99 40.492065 0 40.492065

50 4 5 0.5102041 2.96 2.3809524 4.5991887E-6 2.380957

. . . . . . . . . . . . . . . . . . . . . . . .

94 17083 28491 0.9591837 2.0425532 2.0168862 0.0016021793 2.0184884

95 65228 93719 0.96938777 2.031579 2.0125313 0.0038173746 2.0163486

96 302973 396692 0.97959185 2.0208335 2.0082672 0.010567973 2.018835

97 942267 1338959 0.9897959 2.0103092 2.004091 0.036372084 2.0404632

98 2804284 4143243 1 2 2 0.12577005 2.12577

5 Experimental Results

We first present and explain experimental results for the sets of reads SRR069579
(Table 1), ERR000009 (Table 2), SRR211279 (Table 3), and SRR959239
(Table 4).

In each table, for each period i from 1 to m we show : (a) n(i), (b) the
cumulative number of sequences, (c) the value of α corresponding to i/m, (d)
the value of 1+ 1

α , (e) 2+ 25
63

(
1−α

α

)
which corresponds to the term of Theorem 1

due to the large cycles, (f) γ which is the part of the final ratio brought by the
small cycles, and eventually (g) β, the final ratio that can be reached by using
the value of α from the previous line in the table.

The resulting approximation ratios on the read sets cited above are respec-
tively 2.0475, 2.0618, 2.0109 and 2.0163, which are much lower than 2.3667 using
a much simpler algorithm.

We then tested our approach on 100 sets of reads from different organisms
(see Appendix, Table 5) in order to compute the ratios with the previous method.
One set only (ERR1041316 Tupaia belangeri) is above the best actual bound of
2.3667, all the others being lower and many very close to 2.0 which is the lower
bound of our approach.

Appendix

Table 5. Results on 100 sets of reads

Set of reads β Set of reads β

ERR019943 Mus
caroli

2.0524175 ERR032202
Martes pennanti

2.0289187

ERR1041207
Chlorocebus

2.1107855 ERR1041268
Otolemur

2.1259987

ERR1041282
Felis catus

2.1143007 ERR1041292
Heterocephalus

2.0799367



108 T. Braquelaire et al.

Table 5. (Continued)

Set of reads β Set of reads β

ERR1041296 Mustela 2.0784738 ERR1041303 Macaca
mulatta

2.093892

ERR1041306 Callithrix 2.175384 ERR1041315 Cavia 2.0918944

ERR1041316 Tupaia 2.4811444 ERR1111185 Phoca 2.0267568

ERR1124353 Mus
spretus

2.0095918 ERR1197879 Pan
paniscus

2.0089042

ERR1197887 Pan
troglodytes

2.0089052 ERR1197895 Pongo 2.0088482

ERR1255554 Lynx 2.010125 ERR1353573
Peromyscus

2.00725

ERR1474986
Sarcophilus

2.0161307 ERR264173 Mus
cervicolor

2.0531373

ERR266393 Cavia
aperea

2.0532582 ERR572143
Lagenorhynchus

2.0864253

ERR576124 Gorilla
beringei

2.0059924 ERR650934 Equus
hemionus

2.0095165

ERR668455 Lama
glama

2.0030081 ERR669551 Equus
grevyi

2.009401

ERR866454 Cricetulus 2.0112803 ERR874023 Sus
cebifrons

2.0065095

ERR977083 Sus
verrucosus

2.0277126 ERR988518 Hippidion 2.0637908

SRR1003027 mouse-rat 2.108472 SRR1036149 Tupaia 2.0358806

SRR109018 Ovis aries 2.0331614 SRR1325023 Microtus 2.1520696

SRR1347548 Physeter 2.020535 SRR1528585
Cercocebus atys

2.0089693

SRR1552610 Vicugna
pacos

2.0088954 SRR1653659 Saimiri 2.1446104

SRR1659070 Bison
bison

2.0084386 SRR1664251
Piliocolobus

2.0095925

SRR1665158 Odobenus
rosmarus

2.0217118 SRR1724110
Miniopterus

2.1718283

SRR1745916
Hipposideros

2.0110621 SRR1758975 Macaca 2.0088358

SRR1802582
Balaenoptera

2.0091696 SRR1929941
Loxodonta

2.0089402

SRR1947236 Camelus 2.0089786 SRR1970869 Panthera 2.0042064

SRR2012205 Elephas 2.0138304 SRR2016453
Phascolarctos

2.0065088
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Table 5. (Continued)

Set of reads β Set of reads β

SRR2017644
Rhinopithecus bieti

2.0098438 SRR2017692
Rhinopithecus
roxellana

2.009081

SRR2017931
Mammuthus
primigenius

2.027854 SRR2043984
Nannospalax galili

2.0074072

SRR2058116 Pongo
abelii

2.0104375 SRR2137054 Marmota
monax

2.060049

SRR2141214 Fukomys
damarensis

2.0095904 SRR2154048 Eptesicus
fuscus

2.026683

SRR2175612
Mesocricetus auratus

2.0250208 SRR2546897
Tamiasciurus
hudsonicus

2.0024154

SRR2547421 Microtus
ochrogaster

2.0138535 SRR2737541 Acinonyx
jubatus

2.0091531

SRR278622 Sorex
araneus

2.1920824 SRR2899805 Hystrix
cristata

2.0163338

SRR2925016 Neovison
vison

2.015167 SRR2981140 Macaca 2.0073588

SRR2981977
Peromyscus leucopus

2.0187445 SRR2995138 Pteropus
alecto

2.0172942

SRR3158616 Papio
cynocephalus

2.0101697 SRR3159949 Macaca 2.0033646

SRR317809 Echinops
telfairi

2.148989 SRR328420 Chinchilla
lanigera

2.0144074

SRR329659 Trichechus
manatus latirostris

2.074164 SRR3470780 sus scrofa 2.1215959

SRR3480541 Macaca
nemestrina

2.0156894 SRR353137 Condylura
cristata

2.0268734

SRR3587085 dog 2.02617 SRR3608910
Monodelphis domestica

2.0083923

SRR361229 Bos mutus 2.02437 SRR3630971 Panthera
leo

2.0609856

SRR3634324 Papio
anubis

2.0105252 SRR3659132 Capra
hircus

2.1219108

SRR3659145 capra 2.1962154 SRR3669996 Rattus
norvegicus

2.0878835

SRR3683913
Galeopterus variegatus

2.010047 SRR3709478
Chlorocebus aethiops

2.0311713
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Table 5. (Continued)

Set of reads β Set of reads β

SRR504904 Ailuropoda
melanoleuca

2.0157156 SRR556101
Chlorocebus
pygerythrus

2.009286

SRR617095 Myotis
brandtii

2.010544 SRR628072 Myotis
davidii

2.0363553

SRR709450
Daubentonia
madagascariensis

2.0109098 SRR837385 Cynopterus 2.0135381

SRR873443 Equus
asinus

2.0088918 SRR942310 Ursus
maritimus

2.0092664

SRR955365
Spermophilus dauricus

2.026139 SRR069579 2.0475218

ERR000009 2.0618343 SRR211279 2.0109274

SRR959239 2.0163486 NG-6201 B6Rg1Lg8
apricot tree

2.0427585

References

1. Armen, C., Stein, C.: A 2 2
3

superstring approximation algorithm. Discrete Appl.
Math. 88(1–3), 29–57 (1998). http://dx.doi.org/10.1016/S0166-218X(98)00065-1,
http://www.sciencedirect.com/science/article/pii/S0166218X98000651, Computa-
tional Molecular Biology DAM - CMB Series

2. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation of
shortest superstrings. J. ACM 41(4), 630–647 (1994). doi:10.1145/179812.179818,
http://doi.acm.org/10.1145/179812.179818

3. Breslauer, D., Jiang, T., Jiang, Z.: Rotations of periodic strings and short super-
strings. J. Algorithms 24(2), 340–353 (1997). http://dx.doi.org/10.1006/jagm.
1997.0861, http://www.sciencedirect.com/science/article/pii/S0196677497908610

4. Armen, C., Stein, C.: Improved length bounds for the shortest superstring problem.
In: Akl, S.G., Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1995. LNCS, vol.
955, pp. 494–505. Springer, Heidelberg (1995). doi:10.1007/3-540-60220-8 88

5. Crochemore, M., Cygan, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter,
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Abstract. In this article we study the minimum number κ of additional
automata that a Boolean automata network (BAN) associated with a
given block-sequential update schedule needs in order to simulate a given
BAN with a parallel update schedule. We introduce a graph that we call
NECC graph built from the BAN and the update schedule. We show
the relation between κ and the chromatic number of the NECC graph.
Thanks to this NECC graph, we bound κ in the worst case between n/2
and 2n/3+2 (n being the size of the BAN simulated) and we conjecture
that this number equals n/2. We support this conjecture with two results:
the clique number of a NECC graph is always less than or equal to n/2
and, for the subclass of bijective BANs, κ is always less than or equal to
n/2 + 1.

Keywords: Boolean automata networks · Intrinsic simulation · Block-
sequential update schedules

1 Introduction

In this article, we study Boolean automata networks (BANs). A BAN can be
seen as a set of two-states automata interacting with each other and evolving
in a discrete time. BANs have been first introduced by McCulloch and Pitts in
the 1940s [17]. They are common representational models for natural dynamical
systems like neural or genetic networks [7,12–14,25], but they are also compu-
tational models with which we can study computability or complexity. In this
article we are interested in intrinsic simulations between BANs, i.e. simulations
that focus on the dynamics rather than the computational power. More con-
cretely, given a BAN A we want to find a BAN B which reproduces the dynam-
ics of A while it satisfies some constraints. There have been few studies using
intrinsic simulation between BANS before the 2010s [2,8,23,24]. More recently,
this notion has received a new interest [18–21] and we are convinced that it is
essential and deserves to be dealt with. Meanwhile, intrinsic simulation of many
other similar objects (cellular automata, tilings, subshifts, self-assembly, etc.)
has been really developing since 2000 [3,4,6,11,15,16,22].
c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 112–128, 2017.
DOI: 10.1007/978-3-319-55911-7 9



On the Cost of Simulating a Parallel Boolean Automata Network 113

A given BAN can be associated with several dynamics, depending on the
schedule (i.e. the order) chosen to update the automata. In this article, we will
consider all block-sequential update schedules: we group automata into blocks,
and we update all automata of a block at once, and iterate the blocks sequentially.
Among these update schedules are the following classical ones: the parallel one
(a unique block composed of n automata) and the n! sequential ones (n blocks of
1 automaton). The pair of a BAN and its update schedule is called a scheduled
Boolean automata network (SBAN).

For the last 10 years, people have studied the influence of the update schedules
on the dynamics of a BAN [1,5,9,10]. Here, we do the opposite. We take a SBAN,
and try to find the smallest SBAN with a constrained update schedule which
simulates this dynamics. For example, let N be a parallel SBAN of size 2 with
2 automata that exchange their values. There are no SBANs N ′ of size 2 with
a sequential update schedule which simulates N . Indeed, when we update the
first automaton, we necessarily erase its previous value. If we did not previously
save it, we cannot use the value of the first automaton to update the second
automaton. Thus, N ′ needs an additional automaton to simulate N under the
sequential update schedule constraint. A SBAN N of size n with a parallel update
schedule can always be simulated by a SBAN N ′ of size 2n with a given sequential
update schedule. Indeed, we just need to add n automata which copy all the
information from the original automata and then, we compute sequentially the
updates of the originals automata using the saved information. The goal of this
article is to establish more precise bounds on the number of required additional
automata, function of n, in the worst case.

In Sect. 2, we define BANs and detail the notion of simulation that we use.
In Sect. 3, we consider the dynamics of a BAN F with automata set V and
the parallel update schedule and we consider a block-sequential update schedule
W . We focus on the minimum number κ(F,W ) of additional automata that a
SBAN needs to simulate this dynamics with an update schedule identical to W
on V . In Sect. 4, we define a graph which connects configurations depending on a
BAN F and a block-sequential update schedule W . We prove that the chromatic
number of this graph determines the number κ(F,W ) defined in the previous
section. We also state the following conjecture: κ(F,W ) is always less than or
equal to n/2, where n is the size of the BAN F . In Sect. 5, we define another
graph constructed from the previous graph where we identify configurations
which have the same image. We prove that the chromatic number of this new
graph is always greater than that of the previous graph. We deduce an upper
bound for κ(F,W ). In Sect. 6, we try to support our conjecture by finding an
upper bound for the clique number of the graph defined in Sect. 4. Finally, in
Sect. 7, we study κ(F,W ) in the case where F is bijective.
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2 Definitions and Notations

2.1 BANs and SBANs

In this article, unless otherwise stated, BANs have a size n ∈ N, which means
that they are composed of n automata numbered from 0 to n − 1. Usually, we
denote this set of automata by V = {0, 1, . . . , n − 1} (which will be abbreviated
by �0, n�). Each automaton can take two states in the Boolean set B = {0, 1}.
A configuration is a Boolean vector of size n, interpreted as the sequence of
states of the automata of the BAN. In other words, if x is a configuration, then
x ∈ B

n and x = (x0, . . . , xn−1) with xi the state of automaton i (for all i in
V ). For all I ⊆ V , we denote by xI the restriction of x to I. In other words, if
I = {i1, i2, . . . , ip} with i1 < i2 < · · · < ip then xI = (xi1 , xi2 , . . . , xip). We also
denote by xI the restriction of x to V \ I.

For all b ∈ B, we denote by b the negation of the state of b. In other words, 0 =
1 and 1 = 0. We also denote by x the negation of x, such that x = (x0, . . . , xn−1).
Furthermore, we denote by xi or xI the negation of x respectively restricted to
an automaton i or a set I of automata, that is, xI

i = xi if i ∈ I, and xI
i = xi if

i ∈ V \ I.
In this article, we only study BANs with block-sequential update schedules.

A SBAN N = (F,W ) is characterized by:

– a global update function F : Bn → B
n which represents the BAN;

– a block-sequential update schedule W .

The global update function of a BAN is the collection of the local update
functions of the BAN: we have F (x) = (f0(x), . . . , fn−1(x)), where for all i ∈ V ,
fi : B

n → B is the local update function of automata i. We also use the I-
update function FI , with I ⊆ V , which gives a configuration where the states
of automata in I are updated and the other ones are not. In other words, ∀i ∈
V, FI(x)i = fi(x) if i ∈ I and xi otherwise. And, for singleton, we simply write
Fi(x) = F{i}(x).

Remark 1. It is important not to confuse FI(x) and F (x)I . The first one is the
I-update function that we have just defined. The second is the configuration
F (x) restricted to I.

A block-sequential update schedule is an ordered partition of V . The set of
ordered partitions of V is denoted by

−→
P(V ). Let W ∈ −→

P(V ) and p = |W |
and W = (W0, . . . ,Wp−1). We make particular use of FW defined as FW =
FWp−1 ◦ · · · ◦ FW0 . If x ∈ B

n is the configuration of the BAN at some time step,
then FW (x) is the configuration of the BAN at the next step. There are two
very particular kinds of block-sequential update schedules:

– the parallel update schedule where all automata are updated at the same time
step. So, we have W = [V ] (i.e. |W | = 1 and W0 = V ) and FW = F ;

– the sequential update schedules where automata are updated one at the time.
So, we have |W | = n and ∀i ∈ �0, n�, |Wi| = 1.
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For any j ∈ �0, p�, we denote W<j =
j−1⋃

i=0

Wi. In particular, we have

W<0 = ∅ and W<p = V . Furthermore, for any i ∈ �0, p�, we denote W<i =
(W0,W1, . . . ,Wi−1). W<i is an ordered partition of W<i. In particular, we have
W<0 = [ ] (the empty vector) and W<p = W .

We will often use the following two notations:

(i) FW<j

= FWj−1 ◦ · · · ◦ FW0 is the function which makes the first j steps of
the transition of the SBAN (F,W );

(ii) FW<j
= FW0∪···∪Wj−1 is the function which updates only the automata in

the first j blocks of W .

Let W ∈ −→
P(V ) be an update schedule. We know that each automaton of a

block-sequential SBAN is updated only in one step of the update schedule. We
denote by W (i) the step at which i is updated. More formally, ∀i ∈ V,W (i) is
the number j ∈ �0, p� such that i ∈ Wj .

2.2 Simulation

Here, we define the notion of simulation used in this article. We consider that a
SBAN N of size m simulates another SBAN N ′ of size n if there is a projection
from B

m to B
n such that the projection of the update in N ′ equals the update

in N of the projection.

Definition 1. Let F : Bn → B
n and F ′ : Bm → B

m with m ≥ n, V = �0, n�

and V ′ = �0,m�, W ∈ −→
P(V ) and W ′ ∈ −→

P(V ′). Let h : V → V ′ be an injective
function and ϕh : B

m → B
n be defined by ϕh(x) = (xh(i))i∈V . We say that

(F ′,W ′) h-simulates (F,W ), and note (F ′,W ′) �h (F,W ), if ϕh ◦F ′W ′
= FW ◦

ϕh. Moreover, (F ′,W ′) simulates (F,W ), which is denoted by (F ′,W ′) � (F,W )
if there is a h such that (F ′,W ′) �h (F,W ).

In this article we often use an id-simulation which is a h-simulation with h
the identity function (h(i) = i).

3 Number of Required Additional Automata

In this section, we define the main object of this article. Given a BAN F with
automata V and a block-sequential update schedule W ∈ −→

P(V ), we consider
the smallest SBAN (F ′,W ′) which simulates the parallel SBAN (F, [V ]), where
W ′ extends W by preserving its order. We could as well study the problem
of finding a block-sequential SBAN (F ′,W ′) which simulates another block-
sequential SBAN (G,W ). However, this problem is in fact the same. Indeed, for
any block-sequential SBAN (G,W ), the parallel SBAN (GW , [V ]) id-simulates
(G,W ).

Let us formalize the notion. From an update schedule W and a BAN of size
n, we define the notion of update schedule extending W for a bigger BAN of
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size m. Let V ′ = �0,m�. Let h : V → V ′ be an injective function. We denote
by Eh(W,V ′) the set of update schedules W ′ extending W such that each W ′

preserves the order of W for the projection by h of the automata of V . That is
to say, if one automaton is updated before another one according to W , then
the projection of these automata into V ′ will preserve the same update order
in W ′. More formally, Eh(W,V ′) = {W ′ ∈ −→

P(V ′) | ∀i ∈ V,W (i) ≤ W (i′) ⇐⇒
W ′(h(i)) ≤ W ′(h(i′))}. In particular, if two automata i, j ∈ V are updated at
the same step W (i) = W (j), then the projections h(i), h(j) of these automata
are updated at the same step W (h(i)) = W (h(j)) in W ′. In other words, h
induces a map h̃ : �0, p�→ �0, p′� such that W (h(i)) = h̃(W (i)) for all i ∈ V , and
h̃(W ) is a subordered partition of W ′.

Definition 2. If F is a BAN over automata V = �0, n� and W ∈ −→
P(V ) is an

update schedule, we define κ(F,W ) as the smallest k such that there exist an
update schedule W ′ ∈ Eh(W,V ′) extending W and a BAN F ′ : Bn+k → B

n+k

such that (F ′,W ′) � (F, [V ]), with V ′ = �0, n + k�.
Furthermore, κn is the value of κ(F,W ) in the worst case among all SBANs

with automata V . In other words, κn = max({κ(F,W ) | F : Bn → B
n and W ∈−→

P(V )}).

4 NECCs Set and NECC Graph

In order to answer the main problem of this article which is is to bound the
values of κn, we introduce a new concept: the not equivalent and confusable
configurations or NECCs and the NECC graph. Theorem 1 will show that the
logarithm of the chromatic number of the NECC graph of a SBAN and the κ of
this SBAN are equal. NEC (the acronym standing for non-equivalent configura-
tions) is the set of pairs of configurations with different images by F . In other
words,

NECF = {(x, x′) ∈ B
n × B

n | F (x) �= F (x′)}.

We call confusable configurations and denote by CCF,W , or simply CC (the
acronym standing for confusable configurations), the set of pairs of configurations
which become identical when we update the first i blocks of W for some i ∈
�0, p�). Formally,

CC = {(x, x′) ∈ B
n × B

n | ∃i ∈ �0, p�, FW<i
(x) = FW<i

(x′)}.

Definition 3. NECCF,W , or simply NECC (the acronym standing for not
equivalent and confusable configurations), is the set of pairs of configura-
tions which are confusable and not equivalent at the same time, NECCF,W =
CCF,W ∩NECF .

Also, for all x, x′ ∈ B
n, we denote by CCF,W (x, x′) (or just CCF,W (x, x′))

the set of time steps i which make them confusable. More formally, ∀x, x′ ∈
B

n, CCF,W (x, x′) = {i ∈ �0, p� | FW<i
(x) = FW<i

(x′)}.
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Remark 2. We have CC(x, x′) = ∅ if and only if (x, x′) �∈ CC.

Definition 4. The NECC graph, denoted by (Bn,NECC), is the nondirected
graph which has the set of configurations Bn as nodes and the set of NECC pairs
as edges.

In the sequel, we make a particular use of two concepts of graph theory. A
valid coloring of G is a coloring of all the nodes of G such that two adjacent
nodes do not have the same color. We denote by χ(G) the chromatic number of
the graph G, namely the minimum number of colors of a valid coloring of G.
Furthermore, the chromatic number of the NECC graph is denoted by χ(NECC) =
χ((Bn,NECC)). We see in Lemma 1 that we can get a valid coloring of the
NECCF,W graph from the SBAN (F ′,W ′) which simulates (F, [V ]). This coloring
does not use more than 2k colors with k the number of additional automata of
F ′. We color the configuration of the NECC graph using the values of the added
automata after the update.

Lemma 1. For any BAN F : Bn → B
n and any block-sequential update schedule

W , κ(F,W ) ≥ �log2(χ(NECCF,W ))�.
Proof. Let h : V → V ′ injective, W ′ ∈ Eh(W,V ′), p = |W |, p′ = |W ′|
and F ′ : B

n+k → B
n+k such that (F ′,W ′) �h (F, [V ]). We prove that

k ≥ �log2(χ(NECC))�. Let z, z′ be such that z
h(V )

= z′
h(V )

= [0]k and (x, x′) =
(ϕh(z), ϕh(z′)) ∈ NECC, and let us prove that F ′(z)

h(V )
�= F ′(z′)

h(V )
. Suppose

the contrary. Since (x, x′) ∈ NECC, we have F (x) �= F (x′) and ∃j ∈ �0, p�,

FW<j
(x) = FW<j

(x′). Let Z = F ′W ′<h̃(j)
(z) = and Z ′ = F ′W ′<h̃(j)

(z′). By
assumption, we have z

h(V )
= [0]k = z′

h(V )
and F (z)

h(V )
= F (z′)

h(V )
. Thus,

Z
h(V )

= Z ′
h(V )

. Furthermore, we have ϕh(Z) = FW<j
(x) = FW<j

(x′) = ϕh(Z ′).
As a result, Zh(V ) = Z ′

h(V ) and Z = Z ′. Consequently, F ′(z) = FW ′
p−1

◦
· · · ◦ FW ′

h̃(j)
(Z) and F ′(z′) = FW ′

p−1
◦ · · · ◦ FW ′

h̃(j)
(Z ′) are equal. However,

(x, x′) ∈ NEC. Thus, F ′(z)h(V ) = F (x) �= F (x′) = F ′(z′)h(V ). As a conse-
quence, we have also F ′(z) �= F ′(z′). There is a contradiction. We have proven
that if (x, x′) ∈ NECC then F (z)

h(V )
�= F (z′)

h(V )
. In other words, a valid color-

ing of NECC is obtained by coloring each vertex x by F (z)
h(V )

, where φh(z) = x

and x
h(V )

= [0]k. Hence {F (z)
h(V )

|z
h(V )

= [0]k} has at least χ(NECC) different

values. To encode these values, we need to have k = |h(V )| ≥ �log2(χ(NECC)�.
So κ(F,W ) ≥ log2(χ(NECC)).

We see in Lemma 2 that we can get a SBAN (F ′,W ′) which simulates (F, [V ])
from a valid coloring of the NECCF,W graph.

Lemma 2. For any BAN F : Bn → B
n and any block-sequential update schedule

W , κ(F,W ) ≤ �log2(χ(NECCF,W ))�.
Proof. Let k = �log2(χ(NECC))�. We define W ′ such that we start by
updating sequentially the last k nodes, and after this, we update as
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W : W ′ = ({n}, {n + 1}, . . . , {n + k − 1},W0,W1, . . . ,Wp−1). Let color : Bn → N

be a minimum coloring of the NECC graph. For all x ∈ B
n, let COLOR(x) be the

number color(x) encoded with a Boolean vector of size k. It is possible to encode
it with k Boolean numbers because with k bits we can encode 2k ≥ χ(NECC) =
|color(Bn)| values. Let x ∈ B

n and y ∈ B
k. We define z = x||y ∈ B

n+k by
z�0,n� = x and z�n,n+k� = y. For all j ∈ �0, p�, let Aj(x||y) = {F (x′) | x′ ∈
B

n and COLOR(x′) = y and FW<j
(x′) = x}. We can prove that |Aj(x||y)| ≤ 1.

For the sake of contradiction, suppose ∃F (x′), F (x′′) ∈ Aj(x||y), F (x′) �= F (x′′).
Clearly, (x′, x′′) ∈ NEC. Moreover, FW<j

(x′) = x = FW<j
(x′′) gives that

(x′, x′′) ∈ CC. So (x′, x′′) ∈ NECC. However, COLOR(x′) = y = COLOR(x′′),
which contradicts the construction of the coloring. Let F ′ : B

n+k → B
n+k

be defined for all x||y ∈ B
n+k by F ′

�n,n+k�(x||y) = COLOR(x) and ∀j ∈
�0, p�, F ′(x||y)W ′

k+j
= zWj

if Aj(x||y) = {z}, and [0]|Wj | if Aj(x||y) is empty.
Now, let z = x||y ∈ B

n+k and we show that F ′W ′
(x||y)�0,n� = F (x). Let us

show by induction that ∀j ∈ �0, p�, F ′W ′<k+j

(z)�0,n� = FW<j
(x). Let j = 0. We

have F ′W ′<k+j

(z)�0,n� = F ′W ′<k

(z)�0,n� = x (because in the first k steps of W ′

we only update the automata of �n, n + k�) and FW<j
(x) = FW<0(x) = x.

So F ′W ′k+j ](z)�0,n� = FW<j
(x). Now let j ∈ �0, p�, z′ = F ′W ′<k+j

(z), and
assume that z′

�0,n� = FW<j
(x). We have F ′W ′<k+j+1

(z)�0,n� = F ′
W ′k+j+1(z′).

Thus, F ′W ′<k+j

(z)�0,n�\W ′
k+j+1 = z′

�0,n�\W ′
k+j+1

= FW<j
(x)�0,n�\Wj+1 =

FW<j+1(x)�0,n�\Wj+1 . Furthermore, COLOR(x) = F (z)�n,n+k� = z′
�n,n+k�,

and by induction hypothesis, FW<j
(x) = z′

�0,n�. Thus, F (x) ∈ Aj(z′). As

a consequence, F ′W ′<k+j+1
(z)W ′

k+j+1 = F ′
W ′k+j+1(z′)W ′

k+j+1 was defined as
F (x)W ′

k+j+1 = F (x)Wj+1 . As a result, F ′W ′<k+j+1
(z)�0,n� = FW<j+1(x). Con-

sequently, ∀z = x||y ∈ B
n+k, F ′W ′

(z)�0,n� = F (x). Thus, (F ′,W ′) �id (F, [V ]).
Finally, κ(F,W ) ≤ �log2(χ(NECC))�.

Lemmas 1 and 2 show that there is an equivalence between a coloring of the
NECCF,W graph and a SBAN (F ′,W ′) which simulates (F, [V ]). Moreover, we
can see in Lemma 2 that one optimal simulation is always achieved by applying
sequentially the additional automata before applying the constrained schedule.

Theorem 1. For any BAN F : Bn → B
n and any block-sequential update sched-

ule W , κ(F,W ) = �log2(χ(NECCF,W ))�.
In Lemma 3 below, using the example of n/2 automata which exchange their

values, we find a lower bound for κn. We use the fact that if we take the good
update schedule W , this NECCF,W graph has a big clique number.

Lemma 3. ∀n ∈ N, κn ≥ �n/2�.
Proof. Let us suppose that n is even (if not, we just have to add a useless
automaton and the proof remains valid). Let us consider the BAN F such that:

∀i ∈ �0, n/2�, fi(x) = xi+n/2 and ∀i ∈ �n/2, n�, fi(x) = xi−n/2.
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We also consider the simple sequential update schedule W = ({0}, . . . , {n}). Let
X = {x ∈ B

n | x�n/2,n� = [0]n/2}, and x, x′ ∈ X such that x �= x′. When we
update the first half of the automata, x and x′ both become the configuration full
of 0. Then, for i = n/2, we have FW<i

(x) = [0]n = FW<i
(x′). Thus, (x, x′) ∈ CC.

We also have x �= x′. So ∃i ∈ �n/2, n� such that xi �= x′
i and fi+n/2(x) = xi

and fi+n/2(x′) = x′
i. Consequently, fi+n/2(x) �= fi+n/2(x′). Then, F (x) �= F (x′)

and (x, x′) ∈ NEC. As a result, we have (x, x′) ∈ NECC. We know that X is a
clique. Moreover, X is a clique of size 2n/2. Thus, the chromatic number of the
NECC graph is at least 2n/2 and κ(F,W ) ≥ n/2. Hence, ∀n ∈ N, κn ≥ n/2.

We conjecture that �n/2� is the upper bound as well. This conjecture has
not been proven yet, but Theorem 3 supports it by giving an upper bound to
the clique number of a NECC graph.

Conjecture 1. ∀n ∈ N, κn ≤ �n/2�.

5 INECC Graph

In this section, we define the INECC graph which is the NECC graph after we
quotient its configurations which have the same image. We can prove that the
INECC graph has a bigger chromatic number than the NECC graph, find an
upper bound of its chromatic number and deduce an upper bound for the NECC
graph as well.

Definition 5. The INECC graph is the graph such that:

– the vertex set is {F (x) | x ∈ B
n}, i.e. the set of the images of the configurations

of the NECC graph;
– two vertices y and y′ are connected to each other if ∃x, x′ ∈ B

n such that
F (x) = y, F (x′) = y′ and (x, x′) ∈ NECC.

Let us now prove that we can use a valid coloring of the INECC graph to
color the NECC graph.

Lemma 4. χ(INECC) ≥ χ(NECC).

Proof. We partition the configurations into sets of equivalent configurations (i.e.
configurations which have the same image) E1, E2, . . . , Ek. We denote by yi ∈
B

n the image of the configurations of Ei for each i ∈ �0, k�. In other words,
∀i ∈ �0, k�,∀x ∈ Ei, F (x) = yi. Let color : �0, k�→ N

∗ be an optimal coloring
of the INECC graph. In the NECC graph, we can color all the configurations of
a set Ei by the color of yi in the INECC graph. Let x, x′ ∈ B

n. If x and x′ have
the same color:

– either x and x′ are in the same set Ei, and then (x, x′) /∈ NECC because they
are equivalent;
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– or they are in two distinct sets Ei and Ei′ . In this case (x, x′) /∈ NECC
otherwise yi and yi′

would be connected in the INECC graph and they would
have different colors.

So, the coloring is a valid coloring and does not need more colors than the INECC
graph coloring and we conclude that χ(INECC) ≥ χ(NECC).

Remark 3. We can see that if we take two SBANs (F,W ) and (F,W ′) with W ′

a sequentialized version of W (i.e. an update schedule that breaks the blocks of
W into blocks of size 1), the chromatic number of the NECC graph of (F,W )
is always greater than or equal to that of the NECC graph of (F,W ′). Indeed,
the set of edges of the NECC graph of (F,W ) is included in the set of edges of
the NECC graph of (F,W ′). Thus, the chromatic number of the latter is greater.
Furthermore, the same reasoning applies to the INECC graph. As a result, if we
want to find an upper bound to the chromatic number of the NECC or INECC
graph, we can restrict our study to SBAN updated sequentially.

Remark 4. We can see that if we have a SBAN (F,W ), with W a sequential
update schedule, we can find another SBAN (F ′,W ′) with W ′ the simple sequen-
tial update schedule ({0}, {1}, · · · , {n− 1}) which will have the same NECC and
INECC graphs up to a permutation. As a consequence, their chromatic numbers
of their NECC and INECC graphs are equal, respectively. Thus, if we want to
find an upper bound to the chromatic number of the NECC or INECC graph, we
can restrict our study to the SBAN with the simple sequential update schedule
({0}, {1}, · · · , {n − 1}).

Let us find now an upper bound for the chromatic number of the INECC
graph, by defining a coloring method of the graph based on a greedy algorithm.

Lemma 5. χ(INECC) ≤ 22n/3+2.

Proof. Consider the BAN F : B
n → B

n and the simple sequential update
schedule W = ({0}, {1}, · · · , {n − 1}). We partition the configurations into
sets of equivalent configurations E1, E2, . . . , Ek. Let us denote by yi ∈ B

n

the images of the configurations of Ei for each i ∈ �1, k�. In other words,
∀i ∈ �1, k�,∀x ∈ Ei, F (x) = yi. We denote the neighbors of the ith image
by N(i), i.e.

N(i) = {i′ | ∃x ∈ Ei, x
′ ∈ Ei′ , (x, x′) ∈ NECC}.

The degree of the ith image is denoted by D(i) = |N(i)|. We sort the images
by decreasing degree so that ∀i < i′, D(i) ≥ D(i′). To choose the color of yi,
we apply a greedy algorithm. We use the smallest color not already used by a
neighbor of yi: color(yi) = min(N∗ \ {color(yi′

) | i′ < i and i′ ∈ N(i)}).
We can see that it is a proper coloring. Let us prove that if (yi, yi′

) ∈ INECC
then color(yi) �= color(yi′

). Indeed, let (yi, yi′
) ∈ INECC. With no loss of gener-

ality, let us say that i′ < i. By definition of INECC, ∃(x, x′) ∈ NECC such
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that F (x) = yi and F (x′) = yi′
. So i′ ∈ N(i), and by definition of color,

color(yi) �= color(yi′
). As a consequence, that is a proper coloring.

Now, let c be the biggest color used and k′ the index of (one of) the images
which have c as color. By construction, we have c ≤ D(Ek′) + 1 and c ≤ k′.
For all i, we note �i = �log2(D(Ei) + 1)� and � = �k′ . Since c ≤ D(Ek′) + 1,
we have c ≤ 2�+1. Consider M(i) = {i′ | (yi)�0,n−�i� = (yi′

)�0,n−�i�} and L(i) =
N(i)\M(i). Clearly, |M(i)| ≤ 2�i−1, and i ∈ M(i). So L(i) = (N(i)∪{i})\M(i).
We also know that i /∈ N(i). As a consequence, |N(i) ∪ {i}| = D(Ei) + 1 ≥ 2�i .
Thus, |L(i)| ≥ 2�i − 2�i−1 = 2�i−1.

Moreover, ∀x ∈ Ei, {x′ ∈ Ei′ | i′ ∈ L(i) and (x, x′) ∈ NECC} ⊆
{x′ | x�n−�i,n� = x′

�n−�i,n�} because such a pair (x, x′) should be confusable at
some step j ≤ n − �i. So ∀x ∈ Ei, |{x′ ∈ Ei′ | i′ ∈ L(i) and (x, x′) ∈ NECC}| ≤
2n−�i+1. Putting things together, we get:

2�i−1 ≥ |L(i)|
≥ |{(x, x′) ∈ Ei × Ei′ ∩ NECC | i′ ∈ L(i)}|
≥ |Ei|2n−�i+1.

We get |Ei| ≤ 2�i−1/2n−�i+1 = 22�i−n−2.

Furthermore,
k′∑

i=1

|Ei| ≤ 2n and ∀i ≤ k′, |Ei| ≥ 22�i−n−2 ≥ 22�−n−2. So

k′22�−n−2 ≤ 2n and k′ ≤ 22n+2−2�. Thus, c ≤ 22n+2−2�. However, we have
also c ≤ 2�+1. An upper bound for c is reached when 2�+1 = 22n+2−2� (see
Fig. 1). In other words, when 23� = 22n+1 ⇐⇒ 2� = 2(2n+1)/3. So, we have c ≤
2(2n+1)/3+1 and c ≤ 22n/3+2. Furthermore, χ(INECC) ≤ c. As a result, χ(INECC)
≤ 22n/3+2.

�

22n−2�

2�+1

n0
0

22n

2n+1

maximum value of c

Fig. 1. Upper bound for c.
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From Lemmas 4 and 5, we can deduce an upper bound for the chromatic
number of a NECC graph. Furthermore, using the relation between the chromatic
number of a NECCF,W graph and κ(F,W ), we can find an upper bound for κn.

Theorem 2. ∀n ∈ N, κn ≤ 2n/3 + 2.

Proof. Let F : B
n → B

n and W ∈ −→
P(V ). Thanks to Lemmas 4 and 5,

we know that χ(NECCF,W ) ≤ χ(INECCF,W ) and χ(INECCF,W ) ≤ 22n/3+2.
As a consequence, χ(NECCF,W ) ≤ 22n/3+2, log2(χ(NECCF,W )) ≤ 2n/3 + 2
and κ(F,W ) ≤ 2n/3 + 2. Thus, we have ∀F : B

n → B
n and W ∈ −→

P(V ),
κ(F,W ) ≤ 2n/3 + 2, which gives by definition, κn ≤ 2n/3 + 2.

0100 0101

0000

1111

(a) INECC graph of (F, W )

1000

0100 0000

1100

(b) NECC graph of (F, W )

Fig. 2. INECC and NECC graphs of (F, W ).

Remark 5. The chromatic number of the INECC graph gives an upper bound
for the NECC graph. However, the NECC graph can have a smaller chromatic
number. For instance, let us consider the following BAN. Let F : B4 → B

4 be
such that F ((0, 0, 0, 0)) = (0, 0, 0, 0), F ((1, 1, 0, 0)) = (0, 0, 0, 0), F ((1, 0, 0, 0)) =
(0, 1, 0, 0), F ((0, 1, 0, 0)) = (0, 1, 0, 1), and for all other x ∈ B

4, F (x) = (1, 1, 1, 1).
Let W be the simple sequential schedule ({0}, {1}, {2}, {3}). Figures 2a and b
show that the chromatic number of the INECC and NECC graphs are respectively
3 and 2. So, even if the worst INECC graph had a chromatic number equal to
22n/3, it would not disprove the conjecture: we can still hope that the worst NECC
graph has a better chromatic number, by coloring some equivalent configurations
differently.

6 Clique Number in the NECC Graph

The clique number of a graph G, denoted by ω(G), is the size of the biggest
clique of G. We denote by ω(NECC) the clique number of the NECC graph. In
this part, we find the maximum value that ω(NECC) can get. It is important
because we know that the chromatic number is bigger that the clique num-
ber. So if in a NECC graph the clique number were bigger than 2n/2, then the
chromatic number would be bigger as well and the conjecture would be wrong.
However, if the clique number is smaller than 2n/2, then we cannot deduce any-
thing about the conjecture. Lemma 6 below proves that the set of steps at which
two configurations are confusable is an interval.
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Lemma 6. Let (x, x′) ∈ CC, I = CC(x, x′), a = min(I) and b = max(I). Then
I = �a, b�.

Proof. Since a = min(I) and b = max(I), we have I ⊆ �a, b�. For the sake
of contradiction, let us suppose that there exists j ∈ �a, b� such that j �∈ I.
Let j be the smallest such number. So FW<j

(x) �= FW<j
(x′), j �= a because

a ∈ I and j − 1 ∈ �a, b� (because j �= a). Furthermore, j − 1 does not valid this
propriety, because j is the smallest number which validates it. As a consequence,
FW<j−1(x) = FW<j−1(x

′) and FW<j
(x) �= FW<j

(x′). So F (x)Wj−1 �= F (x′)Wj−1 .
Furthermore, FW<b

(x)Wj−1 = F (x)Wj−1 because j ≤ b (and then Wj−1 ⊆ W<b)
and FW<b

(x′)Wj−1 = F (x′)Wj−1 . So FW<b
(x)Wj−1 �= FW<b

(x′)Wj−1 , and thus
FW<b

(x) �= FW<b
(x′). As a consequence, b /∈ I which is a contradiction. This

gives I = �a, b�.

Lemma 7 shows that if two configurations are confusable with a third one at
a given step, then they are also confusable between themselves at this step.

Lemma 7. Let x, x′, x′′ ∈ B
n. We have: CC(x, x′) ∩ CC(x, x′′) ⊆ CC(x′, x′′).

Proof. Let i ∈ CC(x, x′)∩CC(x, x′′). Thus, FW<i
(x) = FW<i

(x′) and FW<i
(x) =

FW<i
(x′′). As a consequence, FW<i

(x′) = FW<i
(x′′) and i ∈ CC(x′, x′′). Hence,

we have ∀i ∈ CC(x, x′) ∩ CC(x, x′′), i ∈ CC(x′, x′′).

Lemma 8 shows that if two configurations are confusable with a third one,
the two former ones are confusable if and only if they are confusable with the
third one at some simultaneous step.

Lemma 8. Let x, x′, x′′ ∈ B
n such that (x, x′) ∈ CC and (x, x′′) ∈ CC. Then,

we have: CC(x, x′) ∩ CC(x, x′′) �= ∅ ⇐⇒ (x′, x′′) ∈ CC.

Proof. Suppose that CC(x, x′) ∩ CC(x, x′′) �= ∅. By Lemma 7, we know that
CC(x, x′)∩CC(x, x′′) ⊆ CC(x′, x′′). So CC(x′, x′′) �= ∅. As a result, (x′, x′′) ∈ CC.
Now, suppose that we have (x′, x′′) ∈ CC and let �a, b� = CC(x, x′) and �a′, b′� =
CC(x, x′′). For the sake of contradiction, consider that CC(x, x′)∩CC(x, x′′) = ∅,
i.e. �a, b� ∩ �a′, b′� = ∅. With no loss of generality, consider that 0 ≤ a ≤ b <
a′ ≤ b′ < p = |W |. Let j ∈ CC(x′, x′′). Thus, FW<j

(x′) = FW<j
(x′′). We can

show that j �∈ �a, b� ∪ �a′, b′�. Indeed, if j ∈ �a, b�, then j ∈ CC(x, x′) and
FW<j

(x) = FW<j
(x′). So FW<j

(x) = FW<j
(x′′) (because, by definition of j, we

have FW<j
(x′) = FW<j

(x′′)) and, as a consequence, j ∈ CC(x, x′′) and thus
j ∈ CC(x, x′) ∩ CC(x, x′′). As a result, CC(x, x′) ∩ CC(x, x′′) �= ∅. There is a
contradiction, so j �∈ �a, b�. Similarly, we can prove that j /∈ �a′, b′�. Now, let
us prove that j /∈ �0, a�. For the sake of contradiction let us say that j ∈ �0, a�.
Then, ∃j′ ∈�j, a�, F (x′)Wj′ �= F (x′′)Wj′ . Otherwise, we would have FW<a

(x′′) =
FW<a

(x′) = FW<a
(x) and then �a, b� ∩ �a′, b′� �= ∅. Furthermore, we know that

FW<a
(x′) = FW<a

(x) (because a ∈ CC(x, x′)) and Wj′ ⊆ W<a (because j′ <
a) so F (x′)Wj′ = F (x)Wj′ and thus F (x′′)Wj′ �= F (x)Wj′ . As a consequence,
FW<a′ (x′)Wj′ �= FW<a′ (x)Wj′ (because Wj′ ⊆ W<a′ since j′ < a < a′). So
a′ /∈ CC(x, x′′). This is a contradiction. So j /∈ �0, a�. Now, let us prove that j /∈
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�b, a′�∪�b′, p�. If j ∈�b, a′�∪�b′, p� then j > b. We know that F (x)Wb
�= F (x′)Wb

(otherwise we would have FW<b+1(x) �= FW<b+1(x
′) and then b + 1 ∈ CC(x, x′)).

However, we have F (x)Wb
= F (x′′)Wb

, because Wb ⊆ W<a′ since b < a′. So
F (x′)Wb

�= F (x′′)Wb
. Thus, FW<j

(x′) �= FW<j
(x′′) because W<j because b < j,

which is a contradiction. As a consequence, j /∈ �b, a′�∪�b′, p�. As a result, j does
not exist. Thus, CC(x′, x′′) = ∅, and finally, (x′, x′′) /∈ CC.

Lemma 9 shows that all cliques of the NECC graph have at least one step
during which all the configurations of the clique are simultaneously confusable.

Lemma 9. Let X be a clique of the NECC graph. Then, we have: ∃i,∀x, x′ ∈
X, i ∈ CC(x, x′).

Proof. Let x ∈ X = {x1, x2, . . . , xk} such that |X| = k, and let I = I1∩I2∩· · ·∩
Ik where I1 = CC(x, x1), . . . , Ik = CC(x, xk). We can prove that all the intervals
intersect each other two by two. In other words, ∀i, i′ ∈ �0, k�, Ii ∩ Ii′ �= ∅. For
the sake of contradiction, assume that there are disjoint intervals. In this case,
we would have x′, x′′ ∈ X such that CC(x, x′) ∩ CC(x, x′′) = ∅. By Lemma 8,
we would have (x′, x′′) /∈ CC. However, x′, x′′ ∈ X, so (x′, x′′) ∈ CC. There is
a contradiction. Consequently, all the intervals intersect each other two by two,
and we know that if a set of intervals intersect each other two by two then they
have an interval in common. So I �= ∅.

Let i ∈ I. Now, let us prove that ∀x′, x′′ ∈ X, i ∈ CC(x′, x′′). Let x′, x′′ ∈
X. We have i ∈ CC(x, x′) and i ∈ CC(x, x′′). Thus, FW<i

(x) = FW<i
(x′) and

FW<i
(x) = FW<i

(x′′), which implies that FW<i
(x′) = FW<i

(x′′). As a result,
i ∈ CC(x′, x′′) and ∀x′, x′′ ∈ X, i ∈ CC(x′, x′′).

Using Lemma 9, Theorem 3 shows that the clique number of any NECC graph
is less than or equal to 2n/2.

Theorem 3. ω(NECC) ≤ 2�n/2�.

Proof. Let X be the biggest clique of the NECC graph, x ∈ X and i such that
∀x, x′ ∈ X, i ∈ CC(x, x′) (Thanks to Lemma 9, we know there is one). In
other words, ∀x′ ∈ X, FW<i

(x′) = FW<i
(x). So ∀x, x′ ∈ X, xW<i

= x′
W<i

and
F (x)W<i

= F (x′)W<i
. Let x ∈ X. There are 2 cases:

– |W<i| < n/2. Then, we have |W<i| ≥ n/2. Thus, |{x′ | x′
W<i

= xW<i
}| < 2n/2

and, since X ⊆ {x′ | x′
W<i

= xW<i
}, we have |X| < 2n/2.

– |W<i| ≥ n/2. Then, we have {F (x′) | x′ ∈ X} ⊆ {x′ | F (x′)W<i
= F (x)W<i

}
and |{F (x′) | F (x′)W<i

= F (x)W<i
}| ≤ 2n/2. In this case, since all configura-

tions of X are not equivalent, we have ∀x, x′ ∈ X, x �= x′ =⇒ F (x) �= F (x′).
Thus, |X| ≤ |{F (x′) | x′ ∈ X}|. As a consequence, |X| ≤ 2n/2.

In all cases, we have |X| ≤ 2n/2. So ω(NECC) ≤ 2n/2.

This result supports Conjecture 1 because the NECC graphs with the biggest
chromatic number that we succeeded to build are graphs with big clique number.
It seems we reached the limit of this technique.
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7 Class of Bijective BANs

In this part, we study BANs whose global transition functions are bijective, i.e.
BANs whose dynamics with a parallel update schedule are only composed of
recurrent configurations. For this class of BANs, we can prove a result which is
really close to the conjecture. We prove this using two intermediate lemmas. The
first one is that if two configurations are confusable then either the first parts of
the two images are equal or the second parts of the two configurations are.

Lemma 10. If W = (0, 1, . . . , n) then ∀(x, x′) ∈ CC, F (x)�0,n/2� = F (x′)�0,n/2�

or x�n/2,n� = x′
�n/2,n�.

Proof. Let (x, x′) ∈ CC. Then, ∃i ∈ �0, n�, F�0,i�(x) = F�0,i�(x′). Let i be the
smallest such number. We have: F (x)�0,i� = F (x′)�0,i� and x�i,n� = x′

�i,n�. Then,
i can follow the two cases below:

– i ≤ n/2. Then, �n/2, n�⊆ �i, n� and x�n/2,n� = x′
�n/2,n�;

– i ≥ n/2. Then, �0, n/2�⊆ �0, i� and F (x)�0,n/2� = F (x′)�0,n/2�.

And we get the expected result.

The next lemma is a simple consequence of Lemma 10: if we take the neigh-
bors of a configuration in a NECC graph and we take the set of images of these
configurations when we apply F , then this set has less than 2n/2+1 −2 elements.

Lemma 11. If W ′ = (0, 1, . . . , n) then ∀x ∈ B
n, |{F (x′) | (x, x′) ∈ NECC}| ≤

2n/2+1 − 2.

Proof. Let x ∈ B
n. According to Lemma 10, ∀x′ ∈ B

n, F (x)�0,n/2� =
F (x′)�0,n/2� or x�n/2,n� = x′

�n/2,n�. Then, {x′ | (x, x′) ∈ NECC} ⊆
{x′ | x�n/2,n� = x′

�n/2,n�}∪{x′ | F (x)�0,n/2� = F (x′)�0,n/2�}. So {F (x′) | (x, x′) ∈
NECC} ⊆ {F (x′) | x�n/2,n� = x′

�n/2,n�} ∪ {F (x′) | F (x)�0,n/2� = F (x′)�0,n/2�}.
Thus, |{F (x′) | (x, x′) ∈ NECC}| ≤ |{F (x′) | x�n/2,n� = x′

�n/2,n�}| +
|{F (x′) | F (x)�0,n/2� = F (x′)�0,n/2�}|. And we have: |{F (x′) | F (x)�0,n/2� =
F (x′)�0,n/2�}| ≤ 2n/2. Furthermore, |{x′ | x�n/2,n� = x′

�n/2,n�}| ≤ 2n/2. As a
consequence, |{F (x′) | x�n/2,n� = x′

�n/2,n�}| ≤ 2n/2. So, |{F (x′) | (x, x′) ∈
NECC}| ≤ 2n/2+1. Furthermore, F (x) ∈ {F (x′) | x�n/2,n� = x′

�n/2,n�} and
F (x) ∈ {F (x′) | F (x)�0,n/2� = F (x′)�0,n/2�} but F (x) /∈ {F (x′) | (x, x′) ∈
NECC}. Consequently, |{F (x′) | (x, x′) ∈ NECC}| ≤ 2n/2+1 − 2, which is the
expected result.

Using the fact that we are talking about a bijective function, and thanks
to Lemma 11, we bound the degree of every configuration in the NECC graph.
Then, we deduce a bound for the chromatic number of the NECC and, thus, a
bound for κ.

Theorem 4. If F : Bn → B
n is a bijective function then κ(F,W ) ≤ n/2 + 1.
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Proof. Let F : B
n → B

n be a bijective function. For all x ∈ B
n, let d(x) be

the degree of x in the NECC graph. In other words, ∀x, d(x) = |{x′ | (x, x′) ∈
NECC}|. Let x ∈ B

n be the configuration with maximal degree. We know by
Lemma 11 that |{F (x′) | (x, x′) ∈ NECC}| ≤ 2n/2+1 − 2. However, since F is a
bijective function, we have |{F (x′) | (x, x′) ∈ NECC}| = |{x′ | (x, x′) ∈ NECC}|
and then, d(x) ≤ 2n/2+1−2. So, χ(NECC) ≤ 2n/2+1−1. Thus, log2(χ(NECC)) ≤
n

2
+ 1. As a result, κ(F,W ) ≤ n

2
+ 1.

8 Conclusion and Future Research

In this article, we were interested in the minimal number κ of additional
automata that a SBAN associated with a block-sequential update schedule needs
to simulate another given one with a parallel update schedule, in the worst case.
The maximum value that κ can take for all SBANs of size n is denoted by κn. To
answer this question, we introduced the concept of NECC graph, a graph built
from SBANs. We proved that the log of the chromatic number of this graph and
the κ of a SBAN are the same quantity. We achieved to bound κn in the inter-
val [n/2, 2n/3 + 2] and we conjectured that κn is equal to n/2. To support this
conjecture, we showed that the maximum clique number that a NECC graph can
have is equal to 2n/2. This means that the NECC graph of a SBAN which would
have a κ greater than n/2 would have a NECC graph with a chromatic number
greater than the clique number. Finally, we showed that the conjecture is true
(up to one extra automaton) if we restrain to SBANs whose global transition
functions are bijective.

More work is needed to close the gap [n/2, 2n/3 + 2] left on κn. There is also a
related problem where, given a SBAN with a parallel update schedule, we search
the number of additional automata needed for a SBAN with any sequential
update schedule (i.e., we do not impose any order on the update schedule)
to simulate the first SBAN. We can see that for some BANs, this number is
really smaller than when we impose an order. We can take the example used in
Lemma 3. The BAN has n/2 pairs of automata that exchange their values. If
the mandatory order is to update one automaton only of every pair of automata
and then the other we need n/2 additional automata. But if the order is free
then we can update all the pairs of automata one at a time and do with only
one additional automaton using a parity trick. This is a particular BAN and the
problem of finding an upper bound in the worst case better than κn is still open.

Furthermore, we could study the issue presented in this article with other
kinds of update schedules (which update many times each automata for instance)
or other kinds of intrinsic simulations (where many automata can represent one
simulated automaton for example).

These results could also help to design new SBANs behaving the same way as
a given one, with different update schedule, and as small as possible. Associated
with the concept of functional modularity, we could also use them to replace
a small functional module with an unexpected behavior in some situations by
another module that is more robust to schedule variations.
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Abstract. The van Lambalgen theorem is a surprising result in algo-
rithmic information theory concerning the symmetry of relative random-
ness. It establishes that for any pair of infinite sequences A and B, B
is Martin-Löf random and A is Martin-Löf random relative to B if and
only if the interleaved sequence A�B is Martin-Löf random. This implies
that A is relative random to B if and only if B is random relative to A
[1–3]. This paper studies the validity of this phenomenon for different
notions of time-bounded relative randomness.

We prove the classical van Lambalgen theorem using martingales and
Kolmogorov compressibility. We establish the failure of relative random-
ness in these settings, for both time-bounded martingales and time-
bounded Kolmogorov complexity. We adapt our classical proofs when
applicable to the time-bounded setting, and construct counterexamples
when they fail. The mode of failure of the theorem may depend on the
notion of time-bounded randomness.

1 Introduction

In this paper, we explore the resource-bounded versions of van Lambalgen’s theo-
rem in algorithmic information theory. van Lambalgen’s theorem deals with the
symmetry of relative randomness. The theorem states that an infinite binary
sequence B is Martin-Löf random and a sequence A is Martin-Löf random rel-
ative to B if and only if the interleaved sequence A0B0A1B1 . . . is Martin-Löf
random [1]. It follows that A is Martin-Löf random relative to B if and only if
B is Martin-Löf random relative to A.

This result is quite surprising, since it connects the randomness of A with
the computational power A possesses [2,3]. Symmetry of relative randomness
is desirable for any robust notion of randomness. However, we now know that
it fails in several other settings - both Schnorr randomness and computable
randomness exhibit a lack of symmetry of relative randomness [4].
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We explore whether this symmetry holds when Martin-Löf randomness is
replaced with time-bounded randomness. Considering the failure of the analo-
gies of van Lambalgen’s theorem in many settings, it is natural to guess that
such a resource-bounded version of van Lambalgen’s theorem is false. Indeed,
the existence of one-way functions [5] from strings to strings which are easy
to compute but hard to invert, can be expected to have some bearing to the
validity of the resource-bounded van Lambalgen’s theorem. In the context of
polynomial-time compressibility, Longpré and Watanabe [6] establish the con-
nection between polynomial-time symmetry of information and the existence
of one-way functions, and analogously, Lee and Romaschenko [7] establish the
connection for CD complexity [8].

Modern proofs of van Lambalgen’s theorem proceed by defining Solovay tests
(see [2,3]). The notion of a resource-bounded Solovay test has not been stud-
ied, while the notion of resource-bounded martingales [9] and resource-bounded
Kolmogorov complexity have been studied extensively (see Allender et al. [10]).
We approach the classical van Lambalgen’s theorem using prefix-free incom-
pressibility and martingales, inspired by the Solovay tests. This part may be
of independent interest. We then attempt to adapt these proofs to resource-
bounded settings.

Our main results are the following. Let t be a superlinear time bound, and
tX denotes t-computable functions with oracle access to the sequence X. Let
A � B denotes the interleaving of A and B.

1. Using the notion of t-bounded martingales, we show that there exists a t-
nonrandom sequence A � B where B is t-random and A is tB-random. This
result is unconditional, and analogous to the result of Yu [4].

2. There are sequences A and B where A is tB-nonrandom, but B is tA-random.
However for this pair, A � B is still t-nonrandom. Thus the randomness of
the interleaved sequence and mutual relative randomness of the pair are dis-
tinct notions for time-bounded martingales. We establish a sufficient con-
dition under which a t-random B and a tB-nonrandom A could still create
t-random A � B. This involves a non-invertibility condition reminiscent of
one-way functions.

3. There are t-compressible A � B such that B is t-incompressible and A is
t-incompressible relative to B. This is an unconditional result analogous to 1.

4. If B is t-compressible or A is t-compressible with respect to B, then A � B is
t-compressible. This is in contrast to 2.

Thus van Lambalgen’s theorem fails in resource-bounded settings. Surprisingly,
the manner of failure may depend on the formalism we choose.

The results in the paper also provide indirect evidence that resource-bounded
randomness may vary depending on the formalism. In particular, the set of
sequences over which resource-bounded martingales fail may not be the same
as the set of resource-bounded incompressible sequences. The results in 2 and
4 actually provide us a conditional separation between these two formalisms in
case of resource-bounded settings, which were identical in general.
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The manner of failure in 2 has to do with the oracle access mechanism, and
the proof hinges on a technical obstacle which may be tangential to time-bounded
computation. In the final section of the paper, we propose a modified definition
which we call t-bounded “lookahead” martingales with which we are able to show
that if B is t-lookahead-nonrandom or A is t-lookahead-nonrandom relative to
B, then A�B is t-lookahead nonrandom. Here, the van Lambalgen property for
t-lookahead martingales fails in precisely the same manner as t-incompressibility.
This may be a reasonable model to study resource-bounded martingales.

2 Preliminaries

We assume familiarity with the basic notions of algorithmic randomness at the
level of the initial chapters in Downey and Hirschfeldt [3] or Nies [2].

We use the notation N for the set of natural numbers, Q for rationals, and
R for reals. We work with the binary alphabet Σ = {0, 1}. We denote the set
of finite binary strings as Σ∗ and the set of infinite binary sequences as Σω.
Finite binary strings will be denoted by lower-case Greek letters like σ, ρ etc.
and infinite sequences by upper-case Latin symbols like X, Y etc. The length of
a string σ is denoted by |σ|. The letter λ stands for the empty string. For finite
strings σ and ρ and any infinite sequence X, σ � ρ and σ � X denote that σ is
a prefix of ρ and X respectively.

The substring of length n starting from the mth position of a finite string σ
or an infinite sequence X is denoted by σ[m . . . m+n−1] and X[m . . . m+n−1],
where m + n − 1 < |σ|. When m is 0, i.e. the first position, we abbreviate the
notation as σ � n and X � n - e.g. σ � n is σ[0 . . . n − 1].

The concatenation of σ and τ is written as στ . The notation A � B stands
for the sequence we get by interleaving the bits in A with the bits in B, i.e.
A0B0A1B1 . . . .1

A set of finite strings S is said to be prefix-free if no string in S can be a
proper prefix of another string in S.

Theorem 1 (van Lambalgen, 1987) [1]. For any two infinite sequences A and
B, B is Martin-Löf random and A is Martin-Löf random relative to B if and
only if A � B is Martin-Löf random.

3 A Proof Using Incompressibility

We now prove Theorem 1 via incompressibility notions. Throughout the remain-
der of the paper, we fix a canonical set of prefix-free codes for partial computable
functions by P.

Definition 1. The self-delimiting Kolmogorov complexity of σ ∈ Σ∗ is defined
by K(σ) = min{|π| | π ∈ P outputs σ}.
1 It is also common to use ⊕, but we want to avoid confusion with the bitwise xor

operation.



132 D. Chakraborty et al.

Similarly, the conditional Kolmogorv complexity of σ ∈ Σ∗ given τ ∈ Σ∗ is
defined by K(σ | τ) = min{|π| | π ∈ P outputs σ on input τ}.

Using the notion of incompressibility, it is well-known that we can formulate
an equivalent definition of random sequences [2].

Definition 2. An infinite binary sequence A is said to be incompressible if
∃c ∀n K(A � n) ≥ n + c. The sequence A is incompressible with respect to
another binary sequence B (or B-incompressible) if ∃c ∀n KB(A � n) ≥ n+c.

The set of Martin-Löf random sequences are precisely the set of incompressible
sequences. Relativizing the same result, the set of Martin-Löf random sequences
relative to a sequence B is precisely the set of sequences incompressible with
respect to B.

We now prove van Lambalgen’s theorem using incompressibility. When we
consider the issue of resource-bounded van Lambalgen’s theorems, we try to
either adapt these proofs where applicable, or examine the issues which prevent
such an adaptation. As in the martingale proof, we prove the two directions of
the van Lambalgen’s theorem separately so as to emphasize the issues which
arise in the resource-bounded setting.

The proof of the first direction relies on a form of Symmetry of Information,
a result first established by Levin and Gács [8]. To this end, we mention basic
results from the theory of self-delimiting (prefix-free) Kolmogorov complexity.

Definition 3. A computably enumerable set L ⊆ Σ∗×N is said to be a bounded
request set if

∑
(σ,n)∈L

1
2n ≤ 1.

We may view each element (w, n) as a request to encode w using at most n
bits. The boundedness condition is a promise that the requested code lengths
satisfy the Kraft inequality. The Machine Existence Theorem states that there
is some prefix-free code which can satisfy all requests in a bounded request set.

Theorem 2 (Machine Existence Theorem) [2]. Let L be a bounded request set.
Then there is a prefix-free set of codes P which, for each (y,m) ∈ L, allocates a
prefix-free code τ ∈ Σm ∩ P for y.

The coding theorem relates the algorithmic probability of a string to its
prefix-free Kolmogorov Complexity. We state it here in the form applicable to
pairs of strings, but an analogous result holds for strings.

Theorem 3 (Coding Theorem) [2]. Let τ be a finite string. Let P be a prefix-
free encoding of partial-computable functions outputting pairs of strings. Denote
Pτ ⊆ P as the set of prefix-free codes which output pairs (σ, τ) for some arbitrary
string σ. Then there is a constant c such that

2c−K(σ,τ) >
∑

ρ∈P outputting (σ,τ)

2−|ρ|

Using these, we now state and prove the variant of “Symmetry of Informa-
tion” which we use to establish Lemma 2.



On Resource-Bounded Versions of the van Lambalgen Theorem 133

Lemma 1. Let σ be a finite string with K(σ) > |σ|+ c, and τ be a finite string.
Then |σ| + K(τ |σ) ≤ K(σ, τ) + O(1).

Proof. Let pi be an arbitrary program in the computable enumeration of P, the
set of programs which output string pairs. Consider the program Rpi

which can
be generated from pi, defined by the following algorithm.

1. Input σ.
2. Let U(pi) output the string pair (α, τ).
3. If α is equal to σ, then we output (τ, |pi| − |σ| + c), where c satisfies the

inequality below.

Corresponding to the computable enumeration p1, p2, . . . of P, we obtain a
computable enumeration Rp1 , Rp2 , . . . . We now show that this forms a valid
enumeration of a bounded request set (see, for example, [2] page 78).

Let Nσ be the set of indices i ∈ P where U(pi) outputs a pair of strings of
the form (σ, τ) for some τ . First, we have

∑

i∈Nσ

1
2|pi|−|σ|+c

< 2|σ|−c
∑

i∈Nσ

1
2|pi| < 2|σ|−c+c′ ∑

τ∈Σ∗

1
2K(σ,τ)

=
2|σ|−c+c′

2K(σ)
< 1,

where the second inequality follows from the Coding Theorem (see, for example,
Nies [2], Theorem 2.2.25), and the last inequality follows from the assumption.

Hence Rp1 , Rp2 , . . . is a computable enumeration of a bounded request set.
By the Machine existence theorem for prefix-free encoding (see for example, [2]
Theorem 2.2.17), it follows that for any request (τ, |pi| − |σ| + c), there is a
prefix-free encoding of τ given σ which has length |pi| − |σ| + c. Now, consider
a shortest prefix-free code pi for (σ, τ). We have that |pi| = K(σ, τ). Hence
K(τ | σ) ≤ K(σ, τ) − |σ| + O(1). ��
Lemma 2. If B is incompressible and A is B-incompressible, then A � B is
incompressible.

Proof. Suppose that for every n, K(B � n) ≥ n+c and KB(A � n) ≥ n+c′. This
implies that K(A � n | B � (n − 1)) ≥ n + c′. By the version of the Symmetry of
information in Lemma 1, we have

(2n − 1) + c′ < (n − 1) + KB(A � n) ≤ K((A � B) � (2n − 1)) + O(1).

A similar argument will work for K((A�B) � 2n) and this completes the proof. ��
The above proof relied on symmetry of information of prefix-free Kolmogorov
Complexity. Since reasonable complexity-theoretic hypotheses imply that this
fails in resource-bounded settings, we can foresee that this direction fails in
resource-bounded settings, as we show in Sect. 5.

Since the first direction was a consequence of Symmetry of Information, it is
reasonable to expect the converse direction to follow from the subadditivity of
K: K((A�B) � 2n) ≤ K(B � n)+KB(A � n)+O(1). However, this runs into
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the following obstacle. If the prefix of B is compressible with complexity, say n−
log(K(n)), and the prefix of A is B-incompressible with conditional complexity
n + K(n), then we cannot conclude from subadditivity that K((A � B) � 2n)
is less than 2n. Thus concatenating the shortest prefix-codes for B � n and A � n
given B � n to obtain a prefix-free code for (A � B) � 2n may be insufficient
for our purpose. We now show the converse direction through more succinct
prefix-free codes.

Lemma 3. If B is compressible or A is B-compressible, then A � B is com-
pressible.

Proof. Let K(B � n) < n + c, and let σ be a shortest program from the c.e. set
of codes P which outputs B � n. Consider the prefix-free set defined by

Qn = {τρ | τ ∈ P, |ρ| = n}. (1)

This is a prefix-free c.e. set of codes. Then σ(A � n) is a code for A � B
for some machine M which first runs R(σ) to output B � n, then interleaves
A � n with B � n to produce (A � B) � n. The length of this code is at most
K(B � n) + n + O(1), showing that A � B is compressible at length 2n.

Now, assume that A is B-compressible, and let n and m satisfy

K(A � n | B � m) ≤ n + c.

Since we can make redundant queries, without loss of generality, we assume
that m ≥ n. Let P be the set of prefix-free encodings of one-argument partial
computable functions. We construct a prefix-free code to show that (A � B) is
compressible at length 2m. Consider Qm,n defined by

Qm,n = {τσ | τ ∈ P, σ ∈ Σ2m−n}. (2)

Since P is a prefix-free set and we append strings of a fixed length to the prefix-
free codes, Qm,n is also a prefix-free set. If P is computably enumerable, then so
is Q. Moreover, there is an encoding of A0B0 . . . Am−1Bm−1 in Qm,n given by
α(B � m)(A[n . . . m − 1]). This encoding has length n + c + m + m − n, which is
less than or equal to 2m + c. ��

We may expect this proof to be easily adapted to resource-bounded settings.
Inherent in the above proof is the concept of universality – since there is a
universal self-delimiting Turing machine which incurs at most additive loss over
any other prefix-free encoding, it suffices to show that there is some prefix-free
succinct encoding. We appropriately modify this in resource-bounded settings
which lack such universal machines in general.

4 Martingales and van Lambalgen’s Theorem

We now approach van Lambalgen’s theorem using martingales, adapting the
Solovay tests in the literature [2,3].
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Definition 4. A function d : Σ∗ → [0,∞) is said to be a martingale if d(λ) = 1
and for every string w, d(w) = (d(w0) + d(w1))/2, and a supermartingale if for
every string w, d(w) ≥ (d(w0) + d(w1))/2.

A martingale or a supermartingale is said to be computably enumerable
(c.e.) if there is a Turing Machine M : Σ∗ × N → Q such that for every string
w, the sequence M(w, n) monotonically converges to d(w) from below.

The rate of convergence in the above definition need not be computable.

Definition 5. We say that a martingale d succeeds on X ∈ Σω if
lim supn→∞ d(X � n) = ∞, and write X ∈ S∞[d]. If no computably enumerable
martingale or supermartingale succeeds on X, then we say that X is Martin-Löf
random. We say that X is non-Martin-Löf random relative to Y if there is a com-
putably enumerable oracle martingale d such that lim supn→∞ dY (X � n) = ∞.

Lemma 4. If B is not Martin-Löf random or A is not Martin-Löf random
relative to B, then A � B is not Martin-Löf random.

Proof. Let dB be a martingale that succeeds on B. Then the martingale dAB

defined by setting dAB(λ) to 1 and

dAB(σ0τ0 . . . τn−2σn−1) = dAB(σ0τ0 . . . τn−2). (3)
dAB(σ0τ0 . . . σn−1τn−1) = dB(τ0τ1 . . . τn−1).

The above definition is a martingale since for any n ≥ 2,

dAB(α0β0 . . . βn−2αn−1) = dB(β0 . . . βn−2).

Clearly, lim supn→∞ dAB(A � B) = lim supn→∞ dB(B) and hence dAB succeeds
on A � B.

Now, suppose d succeeds on A given oracle access to B. Consider martingale
m defined by setting m(λ) to 1 and setting

m(σ0τ0 . . . σn−1)[s] = dτ�s(σ0σ1 . . . σn−1)
m(σ0τ0 . . . τn−1)[s] = m(σ0τo . . . σn−1)[s],

where the notation m(α)[s] denotes the value that the computation m assigns to
α at stage s and for any string x ∈ Σ∗, the value of m(x) = lim sups→∞ m(x)[s].
Note that in the computation of d in the second step, each fixed initial segment
of v can query longer initial segments of w when they become available.

Since d is a c.e. oracle martingale, it follows that m is a c.e. martingale. For
every pair of infinite sequences V and W and for every l, there is a number
s′ computable from V � l and W such that for all large enough stages s ≥ s′,
dW �s(V � l) = dW (V � l). Thus for each l, the value of m((V � l) � (W � l))[s] is
the same as m((V � l) � (W � l))[s′] for all s ≥ s′, for some large enough s′. It
follows that m is c.e. martingale. Since dB succeeds on A, m succeeds on A � B
and this completes the proof. ��
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We mention that the converse also holds. We show later that in time-bounded
versions, the analogous results may not hold.

Lemma 5. If A�B is not Martin-Löf random, then either B is not Martin-Löf
random or A is not Martin-Löf random relative to B.

5 Resource-Bounded Relative Randomness and
Incompressibility

We consider time-bounded self-delimiting Kolmogorov complexity in this section.
While there are several variants of this notion (see e.g. [6,10]), we deal with the
simplest one here.

The time-bound is a function of the lengths of its output2 as in [6]. We first
fix a prefix-free set P encoding the set of partial-computable functions. We do
not insist that P consist solely of functions which run in t steps, since the results
are identical with or without this assumption.

Definition 6. The t-time-bounded complexity of σ is defined as defined by
KT (σ; t) = min{|π| | π ∈ P outputs σ in ≤ O(t(|σ|)) steps.} and the condi-
tional t-time-bounded complexity of σ given τ be defined by KT (σ | τ ; t) =
min{|π| | π ∈ P, π(τ) outputs σ in ≤ O(t(|σ|)) steps.}.

For any fixed time bound t, we do not have universal machines within the class
of t-bounded machines. However, there are invariance theorems (see e.g. [8]
Chap. 7). Hence we can use the definition of time-bounded complexity to define
the notion of incompressible infinite sequences.

Definition 7. An infinite binary sequence X is said to be t-incompressible if
∃c ∀n KT (X � n) ≥ n + c and tY -incompressible if ∃c ∀n KT (X � n | Y �
m) ≥ n + c for some m depending on the value of n.

If for t′ > t, a sequence X is t′-incompressible, then it is t-incompressible as
well. Moreover, for every X and n, KT (X � n) ≥ K(X � n). Since the set of K-
incompressible sequences has measure 1, we know that the set of t-incompressible
sequences has measure 1 as well.

We now show that for time-bounded Kolmogorov complexity, only one direc-
tion of the implication holds. We first show that it is possible to compress A�B
within the time bounds if B can be compressed, or A can be compressed relative
to B within the same time bound.

Lemma 6. If B is t-compressible or A is tB-compressible, then A � B is t-
compressible.

2 Considering time bound that is dependent on output length is not unnatural for
decompressors. To make it input-length dependent it is customary to append 1l as
an additional input where l is the output length.
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Proof. Assume that B is t-compressible. Then there is a constant c and infinitely
many n such that there is a short program in β ∈ P with |β| < n + c which
outputs B � n within O(t(n)) steps.

For any such n, consider the prefix-code defined by

Qn = {σα | σ ∈ P, |α| = n}. (4)

This forms a prefix encoding, containing a code [β(A � n)] for (A � B) � 2n.
Moreover, it is possible to decode (A � B) � 2n from its code within O(t(2n))
steps.

Suppose A is tB-compressible. Assume that KT ((A � n) | (B � m); t) ≤ n+c,
witnessed by a code α. Without loss of generality, we may assume n ≤ m. Then
consider Qm,n as defined in (2). We see that Qm,n is a computably enumerable
prefix set. The code (α(B � m)A[n . . . m − 1]) ∈ Qm,n of (A � B) � 2n can be
decoded in time O(t(2m)), and is shorter than 2m + c.

Hence KT ((A � B) � 2m) < 2m + c. ��
The converse of the above lemma is false. We do not appeal to the failure

of polynomial-time (in general, resource-bounded) symmetry of information (see
for example, [6]), but directly construct a counterexample pair.

Lemma 7. There are sequences A and B where A � B is t-compressible, but B
is t-incompressible and A is t-incompressible relative to B.

Proof. In s = 0, we have As = Bs = λ. Then in stage s ≥ 1, assume that we have
inductively defined prefixes As−1 of A and Bs−1 of B and additionally |As−1| =
|Bs−1| = ls−1. We select strings αs, βs and γs satisfying specific incompressibility
properties and then define

As = As−1αsγs and Bs = Bs−1βsαs

We choose αs, βs, γs which satisfy following incompressibility requirements.

1. Length requirements: |αs| = s, |βs| = |γs| = 2t(2ls−1)
2
,

2. Incompressibility requirements for B: K(βs | Bs−1) ≥ |βs| + c for some con-
stant c and K(αs | Bs−1βs) ≥ |αs| + c′ for some constant c′.

3. Incompressibility requirements for A relative to B: K(αs | As−1) ≥ |αs| + c′′

for some constant c′′ and K(γs | As−1αs, Bs−1βs) ≥ |γs| + c′′′ for some
constant c′′′.

It suffices to show we can find such strings αs, βs and γs. We can select
the strings in the following order. First, select a string βs which satisfies K(βs |
Bs−1) ≥ 2t(2ls−1)

2
+ c for some constant c. Then select the string αs to satisfy

K(αs | As−1, Bs−1βs) ≥ s + c′ for some constant c′. Finally, select γs satisfying
K(γs | As−1αs, Bs−1βs) ≥ 2t(2ls−1)

2
+ c′′ for some constant c′′. Each of these

selections is possible because the set of incompressible strings conditioned on any
other strings is non-empty (for example, see the Ample Excess Lemma [11]).

By the above construction it is clear that B is incompressible and A � B is
compressible for any function t(n) > n due to the shared component αs for all s
between A and B. However by the argument used in the proof of Lemma 8, we
can show that A is tB-incompressible and this completes the proof. ��
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6 Resource-Bounded Relative Randomness and
Martingales

In this section, we show that the symmetry of relative randomness does not hold
for resource-bounded martingales. Let t : N → N be a superlinear function. For
any input σ ∈ Σ∗, we henceforth restrict ourselves to martingales computed in
time O(t(|σ|)) and we define t-randomness accordingly.

Lemma 8. There is a t-random sequence B and a sequence A which is tB-
random, where A � B is t-nonrandom.

The idea of the construction is that at some positions, substrings in A are copied
exactly from regions of B. These regions of B sufficiently far so that it is not
possible to consult the relevant region in time O(t). Of course, A � B is non-
random since a significant suffix of B can be computed directly from the relevant
region of A.

Elsewhere, if B is random, and A random relative to B, then we can make
B t-random, and A to be tB-random.

In short, the construction ensures that B has sufficient time to look into the
prefix of A, but A does not have time to look into the extension of B.

Proof. We construct two sequences A and B in stages, where at stage s = 0, we
have As = Bs = λ. At stage s ≥ 1, let us assume that we have inductively defined
prefixes As−1 of A and Bs−1 of B and additionally |As−1| = |Bs−1| = ls−1. We
select strings αs, βs and γs satisfying specific randomness properties and then
define

As = As−1αsγs and Bs = Bs−1βsαs

We choose strings αs, βs and γs which satisfy all the following randomness
requirements.

1. Length requirements: |αs| = s, |βs| = |γs| = 2t(2ls−1)
2
,

2. Randomness requirements for B: for some universal martingale dBs−1 which
has an oracle access to the sequence Bs−1, for every v � βs, d(v) ≤ 1 and for
some universal martingale dBs−1βs which has an oracle access to the sequence
Bs−1βs, for every v � αs, d(v) ≤ 1.

3. Randomness requirements for A relative to B: for some universal martingale
dAs−1 which has an oracle access to the sequence As−1, for every v � αs,
d(v) ≤ 1 and for some universal martingale dAs−1αs,Bs−1βs which has oracle
access to the sequence As−1αs and Bs−1βs, for every v � γs, d(v) ≤ 1.

It suffices to show we can find such strings αs, βs and γs. We can select the
strings in the following order. First, select a string βs which satisfies the fact
that for a universal martingale dBs−1 which has an oracle access to the sequence
Bs−1, for every v � βs, d(v) ≤ 1. Such a string βs exists because the martingale
property together with the Markov inequality allows us to show that the set of
strings w ∈ Σj such that ∀v � w, d(v) ≤ 1 has positive probability. By a similar
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argument we can then select the string αs such that for a universal martingale
dAs−1,Bs−1βs which has oracle access to the sequence As−1 and Bs−1βs, for every
v � αs, d(v) ≤ 1. Finally, select γs satisfying the fact that for a universal
martingale dAs−1αs,Bs−1βs which has oracle access to the sequence As−1αs and
Bs−1βs, for every v � γs, d(v) ≤ 1.

By the above construction it is clear that B is Martin-Löf random and A�B
is not t-random for any function t(n) > n due to the shared component αs for
all s between A and B. However we can show that A is tB-random. By the
construction it can be noted that for any martingale dB with an oracle access
to the sequence B, for the sequence A only the part αs can give value more
than one only if it can query the corresponding portion of the sequence B. To
calculate the value of dB(A � n) it needs to query the index bigger than 2ω(t(n))

of the sequence B which is not possible if the martingale is only allowed to run
within time O(t(n)). ��

Now, we consider the converse. Before doing that let us state the following
simple fact.

Lemma 9. Let B be an arbitrary t-random sequence. Then there is a sequence
tB-nonrandom sequence A such that B is tA-random.

An easy implication of the above stated lemma is the following.

Corollary 1. There are sequences A and B such that A is tB nonrandom, A�B
is t-nonrandom, and B is tA random.

Now let us make one more simple observation.

Lemma 10. If B is t-nonrandom then for any sequence A, A � B is t-non-
random.

Proof. If dB be a t-martingale that witnesses the fact that B is t-nonrandom,
then the martingale dAB defined in (1) is a t-martingale that succeeds on A�B. ��
We wish to investigate the question of t-randomness of A � B given that A
is tB-nonrandom. We have weak converses which we now describe. The above
corollary suggests that we stipulate “honest” reductions - that a bit at position
n in A cannot depend on bits at positions o(t−1(n)) in B. With this stipulation,
we have the following weak converse to Lemma 8. First, we consider a restricted
class of reductions from A to B.

Definition 8. We say that an infinite sequence A is infinitely often reducible to
B in time t via f , written A ≤t

i.o B, if {n ∈ N | f(B[n − t(n) . . . n + t(n) − 1]) =
An} is computable in time O(t(n)), i.e., t-computable.

Note that we have incorporated an honesty requirement into the definition.

Definition 9. We say that a function f : Σ∗ → Σ is strongly influenced by the
last index if for every σ ∈ Σn, f(σ) �= f((σ � n − 1)σn).
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The function that projects the last bit of its input, and the function computing
the parity of all input bits are two examples of such functions.

Lemma 11. Let B be t-random and A ≤t
i.o B via a function that is strongly

influenced by the last index. Then A � B is also t-nonrandom.

Proof. Consider the t-computable set of positions S = {n | f(B[n − t(n) . . . n +
t(n)−1]) = An} where A queries B. We define a martingale d with initial capital
1 and which bets evenly on all positions except those in the set T defined by

T = {2(i + t(i)) + 1 | i ∈ S}.

For positions 2(i + t(i)) + 1 ∈ T , sets d(A0B0 . . . Ai+t(i)b) to 2d(A0 . . . Ai+t(i)) if
f((B � i + t(i) − 1)b) = Ai, and to 0 otherwise. Then A � B ∈ S∞[d]. ��
A second weak converse can be obtained by assuming that the t-martingale
succeeds on the interleaved sequence in a specific manner.

Definition 10. We say that a pair of sequences (A,B) is t-resilient if

1. For every oracle martingale h runs in time O(t(n)), lim supn→∞ hB�n−1(A �
n) < ∞.

2. For every oracle martingale g runs in time O(t(n)), lim supn→∞ gA�n(B �
n) < ∞.

We say that a martingale d wins at position i on a sequence X if d(X � i) >
d(X � i − 1).

Lemma 12. A � B is t-random iff (A,B) is a t-resilient pair.

Proof. Suppose that there exists a martingale d which runs in time O(t(n)) and
witnesses the fact that A�B is restricted t-nonrandom. Now construct the oracle
martingales h and g as follows:

hY (σ) = g(σ) = d(λ) if σ = λ or σ ∈ Σ

hY (X � n) =
d(X � Y � 2n − 1)
d(X � Y � 2n − 2)

· hY (X � n − 1)

gX(Y � n) =
d(X � Y � 2n)

d(X � Y � 2n − 1)
· gX(Y � n − 1)

Clearly h is dependent on B � n − 1 and g is dependent on A � n. Since
lim supn→∞ d(A � B � n) ↑ ∞, we claim that one of h and g succeeds over
A and B given B � n − 1 and A � n respectively. We have

lim sup
n→∞

hB�n−1(A � n) · gA�n(B � n) = lim sup
n→∞

d(A � B � 2n)
c

≤ lim sup
n→∞

hB�n−1(A � n) · lim sup
n→∞

gA�n(B � n)
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for some fixed constant c (independent of n). Note that LHS is ∞ because
d(A � B � n) is a sequence which satisfies the property

2d(A � B � n − 1) ≥ d(A � B � n) ≥ 0

and lim supn→∞ d(A � B � n) = ∞. So one of the term involving h or g has
to go to ∞. Now we show that h and g are oracle martingales which run in
time O(t(n)). By construction h and g are oracle functions computable in time
O(t(n)). Now

∑

b∈Σ

h((A � n)b) =
h(A � n)

d(A � B � 2n)

∑

b∈Σ

d((A � B � 2n)b) = 2 · h(A � n)

and thus h is a oracle martingale. By a similar argument g will also become a ora-
cle martingale which runs in time O(t(n)). Since either lim supn→∞ hB�n−1(A �
n) = ∞ or lim supn→∞ gA�n(B � n) = ∞, it follows that (A,B) is a not a
t-resilient pair.

Conversely, if (A,B) is not a t-resilient pair then either there is a oracle
martingale h runs in time O(t(n)) such that lim supn→∞ hB�n−1(A � n) = ∞, or
a oracle martingale g runs in time O(t(n)) such that lim supn→∞ gA�n(B � n) =
∞. If the first condition holds, then

d(A � B � 2n − 1) = hB�n−1(A � n),
d(A � B � 2n) = d(A � B � 2n − 1)

is a t-martingale witnessing that A � B is t-nonrandom. If the second condi-
tion holds then we can define a similar martingale d based on g, witnessing
t-nonrandomness of A � B. ��

7 A Modified Definition of Resource-Bounded
Martingales

In this section, we propose an alternate definition of a time-bounded martingale
whose behavior with respect to van Lambalgen’s theorem is identical to the
definition using time-bounded prefix-complexity. In the light of van Lambalgen’s
theorem, we may view this as a reasonable variant definition.

Definition 11. We say that a martingale d : Σ∗ → [0,∞) is a t-bounded
lookahead martingale if the following conditions are satisfied.

1. d(λ) = 1 and L0 = ∅.
2. For any string σ, d(σ0) + d(σ1) = 2d(σ).
3. For any string σ ∈ Σn−1, if n − 1 �∈ Ld,σ then to compute d(σb), b ∈ Σ, the

martingale can query a set of positions S ⊆ {0, . . . , n−2, n, . . . , O(t(n))} and
Ld,σb is set to Ld,σ ∪ S; otherwise set d(σb) = d(σ) for all b ∈ Σ and Ld,σb is
set to Ld,σ.
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Definition 12. We say that an infinite sequence is t-lookahead-non-random if
there is a t-bounded lookahead martingale which succeeds on it.

To compute d(X � n), the martingale is allowed to wait until an appropriate
extension length is available, and base its decision on a few bits ahead. However,
we have to be careful not to reveal Xn−1 itself, and to ensure that positions once
revealed can never later be bet on. These restrictions ensure that the betting
game is not trivial, and that there are unpredictable or random sequences.

Lemma 13. There is a t-lookahead random sequence B and a tB-lookahead ran-
dom sequence A such that A � B is t-lookahead nonrandom.

The proof is essentially the same as that of Lemma 8.
With the modified definition, we can now prove result similar to Lemma 6.

Lemma 14. If B is t-lookahead nonrandom or A is tB-lookahead nonrandom.
Then A � B is t-lookahead nonrandom.

Proof. Suppose h is a t-lookahead-martingale that succeeds on B. Then define
the t-lookahead martingale d by setting d(λ) = 1 and Ld,λ = ∅, and

d((X � Y ) � 2n + 1) = d((X � Y ) � 2n), Ld,(X�Y )�2n+1 = Ld,(X�Y )�2n

d((X � Y ) � 2n + 2) = h(Y � n), Ld,(X�Y )�2n+2 = {2i + 1|i ∈ Lh,Y �n}.

Then clearly A � B ∈ S∞[d] as B ∈ S∞[h].
Now, assume that A ∈ S∞[gB ] for a t-lookahead martingale g. Then we

define the t-lookahead martingale d by d(λ) = 1 with Ld,λ = ∅ and

d((X � Y ) � 2n + 2) = d((X � Y ) � 2n + 1), Ld,(X�Y )�2n+2 = Ld,(X�Y )�2n+1

d((X � Y ) � 2n + 1) = gY �O(t(n))(X � n),
Ld,(X�Y )�2n+1 = Ld,(X�Y )�2n ∪ {2i|i ∈ Lg,X�n} ∪ {2i + 1|i ∈ Qg,X,Y,n},

where Q(g,X, Y, n) are the bits in the oracle queried by gY (X � n). We know
that A ∈ S∞[gB ]. Hence A � B ∈ S∞[d]. ��
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Abstract. We consider the following scheduling problem. We have m
identical machines, where each machine can accomplish one unit of work
at each time unit. We have a set of n jobs, where each job j has sj units
of workload, and each unit workload could be executed on any machine
at any time unit. A job is said completed when its whole workload has
been executed. The objective is to find a schedule that minimizes the
total weighted completion time

∑
wjCj , where wj is the weight of job

j and Cj is the completion time of job j. We first give a PTAS of this
problem when m is constant. Then we study the approximation ratio of
a greedy algorithm, Largest-Ratio-First algorithm. Any permutation is a
possible outcome of this algorithm when wj = sj for each job j, and for
this special case we show that the approximation ratio depends on the
instance size, i.e. n and m. Finally, when jobs have arbitrary weights, we
prove that the upper bound of the approximation ratio is 1 + m−1

m+2
.

1 Introduction

In scheduling problems, the total weighted completion time is one of the objective
functions and is nowadays well studied [2]. More formally, we have a set of n jobs
and a set of m machines. Each job j is defined by a workload sj and a weight wj .
The goal is to schedule all jobs such that the total weighted completion time is
minimized, i.e.

∑
j wjCj where Cj is the completion time of job j. In the single

machine case, Smith [13] showed that this problem could be solved optimally by
a greedy algorithm, the Largest-Ratio-First algorithm.

Related Works. For the classical multiple machine case, each job has to be
scheduled without preemption, i.e. when a job starts, it has to finish on the
same machine before another job is executed on the machine. This problem
is proved to be NP-hard in [3] for a fixed number of machines and a dynamic
programming algorithm has been proposed in [10]. Kawaguchi and Kyan [6] gave
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the worst case analysis of lrf schedules. Later, Skutella and Woeginger [12] gave
a PTAS for this problem.

When jobs have release dates, most of total weighted completion time min-
imization problems are NP-hard. Afrati et al. [1] gave PTASs for some classes
of total weighted completion time minimization problems with release dates.
Schulz and Skutella [11] provided a 2-approximation randomized algorithm for
the multiple machines case. A variant has also been studied where each job has
to be scheduled on a fixed number of machines at the same time. Fishkin et al.
[4] gave a PTAS for this problem.

In the concurrent open shop model where there are a set of machines, and
each job is required to be scheduled on several machines and it can be scheduled
at the same time, the problem is proved to be NP-hard [7,9,14], while Garg et
al. [5] showed that it is APX-hard. Recently, Mastrolilli et al. [8] proposed a
primal-dual 2-approximation algorithm.

In this paper, we study another variant of this problem in which we consider
fully parallel environment, aiming to minimize total weighted completion time.
This model has been introduced by Zhang et al. in [15]. The difference with the
classical problem is that the same job can be scheduled in parallel (at the same
time) and always by unit part, i.e. a job cannot be scheduled for a fractional
length. They proved that this problem is strongly NP-hard when the number of
machines is the input of the problem and proposed a 2-approximation algorithm.

Our Contributions. First, we propose a PTAS for this problem when the number
of machines is fixed. Then, we study the worst case of a greedy algorithm, the
Largest-Ratio-First (LRF) algorithm and give the corresponding approximation
ratio, as well as the tight bound with corresponding instance structure. The LRF
algorithm may return any order of jobs when jobs have equal density, i.e. sj =
wj ,∀j ∈ J . For this special case, we prove that the approximation ratio depends
on the number of jobs and the number of machines. More specifically, we prove
that the approximation ratio is upper bounded by 1 + 2i−2n/m

i(i+1) where i = � 2n
m �.

Finally, for the general case in which the jobs have arbitrary weights, we improve
the result in [15] and show that the approximation ratio is bounded by 1+ m−1

m+2 .

2 Formulation

Given m as the number of identical machines, an instance J is a set of jobs
defined as J = {(wj , sj) | wj > 0, sj ∈ N}, where sj is the workload and wj is the
weight of job j. We consider fully parallel jobs which are allowed to be executed
on any machines at any time unit. Each machine can execute at most one job
of one unit workload during one time unit. A schedule S is a table M where
M(i, t) defines the job that the i-th machine executes during time unit [t− 1, t),
where 1 ≤ i ≤ m, t ∈ {1, 2, 3, ...}. For job j, the completion time is defined
as Cj = max

M(i,t)=j
t, while the starting time is defined as Rj = min

M(i,t)=j
(t − 1).

All jobs are available at time zero, a schedule is feasible if each job receives
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Fig. 1. Fully parallel schedule

required processing resources, i.e. sj = | { (i, t) | M(i, t) = j } |,∀j ∈ J . The
objective is to minimize T =

∑
j∈J wjCj .

First, we assume that the machine is never idle unless there are no more
jobs to be executed on that machine. Second, we assume jobs are executed
consecutively in any feasible schedule, as the way shown in Fig. 1b. Otherwise,
we can always swap the execution to obtain a schedule with better or equal
objective value. In Fig. 1a, by swapping the execution of M(1, 5) and M(3, 6),
we get a better schedule, shown in Fig. 1b, where the completion time of job 3
becomes smaller. Therefore, we assume that in a feasible schedule, the execution
of one job is consecutive, i.e. no preemption is needed to achieve optimality.
Hence, a feasible schedule is a permutation of jobs.

We refer to the length of job j as the workload sj , and the density of job j as
the ratio wj

sj
. Given a feasible schedule S of instance J , we use i �S j to denote

that job i is equal to job j or job i is scheduled before job j in schedule S.

Our Approach. Largest-Ratio-First (LRF) schedule is a schedule that assigns
jobs in non-increasing order of w

s . It has been proved by Zhang et al. [15] that
the upper bound of the approximation ratio of LRF schedule is 2 when jobs have
arbitrary weights. However, when the number of machines m and the number of
jobs n are fixed, the upper bound of the approximation ratio of LRF schedule
can be smaller than 2, and it is related to m and n.

In this paper, we investigate the approximation ratio of the LRF schedule of
this problem. Since the LRF schedule may return many possible orders of jobs
when some jobs have exactly the same density w/s, we focus on the worst order
that an LRF schedule may return, i.e. the order that maximizes the objective
value1. In the sequel, LRF schedule always refers to the one that maximizes the
objective value when there are several possible LRF schedules2.

In Sect. 3, we present a PTAS. In Sect. 4, we first consider the instance of
jobs with equal density, and focus on the worst order of jobs that an LRF
schedule could return. Next, we try to locate and explore the properties of the
instance (which we call organized instance) that contributes to the maximum
approximation ratio of the LRF schedule, when the number of machines m and
the number of jobs n are fixed. Then, we give a tight bound of the approximation
ratio, which is related to

⌈
2n
m

⌉
. Finally, we consider the instance of jobs with

1 Without preemption and without idle time in order to preserve the order of jobs.
2 One can always manipulate the order returned by LRF algorithm by changing the

weight a little bit.
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arbitrary weights, and show that the approximation ratio of the LRF schedule
takes maximum value when there are only two jobs.

3 PTAS of Fixed Number of Machines

In this section, we give a PTAS for this problem when the number of machines
m is a constant. Let ε > 0 and set q = (m − 1) �1/ε�.
PTAS: Given job set J , we pick a subset Q ⊆ J such that |Q| = q. We make
jobs Q as the first q jobs, and try every possibility and every permutation of
jobs Q. For the remaining jobs Q = J\Q, we apply the Largest-Ratio-First rule.

Time Complexity: (n
q ) · (q)! · n = nq+1 = O(n1+(m−1)(1+1/ε)).

Approximation Ratio: Now, we assume the schedule of jobs Q is fixed. Let SQ =∑
j∈Q sj , then we have SQ ≥ |Q| = q. We will compare the total weighted

completion time (refer to as cost) of jobs Q under two objectives: objective
T1 =

∑
j∈Q wj · SQ+

∑
i∈Q,i�j si

m and objective T2 =
∑

j∈Q wj ·
⌈

SQ+
∑

i∈Q,i�j si

m

⌉
,

where the latter is the objective of this problem.
Let σ be the order of jobs Q under Largest-Ratio-First rule. One should note

that under objective T1, schedule σ is still optimal (adjacent swapping is still
effective). Let β be the order of jobs Q in the optimal schedule under objective
T2. Therefore the cost of jobs Q of our algorithm could be upper bounded:

cost(Q) =
∑

j∈Q
wj ·

⌈
SQ +

∑
i∈Q,i�σj si

m

⌉

≤
∑

j∈Q
wj · (

SQ +
∑

i∈Q,i�σj si

m
+

m − 1
m

)

≤ (1 + ε)
∑

j∈Q
wj · SQ +

∑
i∈Q,i�σj si

m

≤ (1 + ε)
∑

j∈Q
wj ·

SQ +
∑

i∈Q,i�βj si

m

≤ (1 + ε)
∑

j∈Q
wj ·

⌈
SQ +

∑
i∈Q,i�βj si

m

⌉

≤ (1 + ε)OPT (Q)

In the above equation, from line 1 to 2, we relax the ceiling function; from
line 2 to 3, we apply ε ·SQ ≥ m−1; from line 3 to 4, schedule σ is optimal under
objective T1; from line 4 to 5, we simply take ceiling function.

Since we try every possibility of Q, we are able to reach the case where the
schedule of jobs Q are the same as the first q jobs scheduled in the optimal
schedule. Therefore, we have

cost(J) ≤ (1 + ε)OPT (J)
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4 Worst Case of LRF Algorithm

In this section, we study the worst case of the Largest-Ratio-First algorithm. We
start from the special case where jobs have equal density, then we extend the
result to general case and give the tight upper bound.

Given a feasible schedule S over instance J , we define LS(j) =
∑

i�Sj si

as the total workload up to job j in schedule S and L(J) =
∑

j∈J sj as the
total workload of jobs J . Let CS

j (resp. RS
j ) be the completion time (resp. start-

ing time) of job j in schedule S, and let T (S, J) =
∑

j∈J wjC
S
j be the corre-

sponding objective value of schedule S. Especially, we denote T (OPT , J) (resp.
T (LRF, J)) as the objective value of the optimal schedule (resp. LRF schedule)
of instance J .

Definition 1. For any instance J , we define α(J) = T (LRF,J)
T (OPT,J) as the approxi-

mation ratio of LRF schedule of instance J . For any set of instances J, we define
α(J) = max

J ′∈J
α(J ′) as the maximum approximation ratio of the instance J ′ ∈ J.

4.1 Instance of Jobs with Equal Density

When jobs have the same density, i.e. for any pair of jobs i and j, we have wi

si
=

wj

sj
, any permutation of jobs is an LRF schedule, therefore we focus on the worst

case i.e. T (LRF, J) = maxS∈permutation(J) T (S, J). Without loss of generality,
we assume that the density of any job j is equal to 1, i.e. wj = sj , ∀j ∈ J .

Given the number of machines m and the number of jobs n, we aim to find
the instance J∗ of n jobs such that the corresponding LRF schedule has the
maximum approximation ratio. In order to find J∗, we construct three kinds of
instance sets and show that one of which always contains the worst instance.

Definition 2. We refer to the job with si = 1 as unit job and the job with
si = m as basic job.

Definition 3. Given m as the number of identical machines, we define J(m,n) =
{J | ∀j ∈ J wj = sj , |J | = n} as the set containing any instance of n jobs in
which the density of any job is equal to 1. We define J

(m,n)
one = {J | ∀j ∈ J 1 ≤

sj ≤ m, J ∈ J(m,n)} as the set containing any instance J in which each job has
a length no larger than m.

An organized instance J = J(y, z, k) is an instance composed of y basic jobs,
z unit jobs and exactly one job of length k such that L(J) > m(y + 1), where
n = y + z + 1, 1 < k ≤ m, 0 < z < n (y, z, k ∈ N). We denote J

(m,n)
org as the set

containing any organized instance of n jobs.

By Definition 3, we can see that J
(m,n)
org ⊆ J

(m,n)
one ⊆ J(m,n), obviously,

α(J(m,n)
org ) ≤ α(J(m,n)

one ) ≤ α(J(m,n)). However, in the following, we will show
that α(J(m,n)

org ) = α(J(m,n)
one ) = α(J(m,n)). In other words, we show that there
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always exists an organized instance such that it achieves the maximum approx-
imation ratio. Therefore, we focus on the organized instance. One should note
that an organized instance contains at most one job which is neither unit job
nor basic job. Based on this special structure, we then study the corresponding
optimal schedule and LRF schedule and derive the approximation ratio.

In Sects. 4.1.1, 4.1.2 and 4.1.3, we prove that α(J(m,n)
org ) = α(J(m,n)

one ) =
α(J(m,n)). First in Sect. 4.1.1, we introduce the idea of splitting jobs. Then,
we show the properties of organized instances in Sect. 4.1.2. We finish the proof
in Sect. 4.1.3. In Sect. 4.1.4, we give the tight bound of approximation ratios of
LRF schedule on organized instances. More specifically, we divide the organized
instances into regions according to the value � 2n

m � and give the corresponding
tight bound in each region.

4.1.1 Splitting of Jobs
In this part, we first introduce two kinds of jobs in a specific schedule, free job,
which is executed in one time unit, and unlucky job, whose completion time
could be reduced by one if the job has a workload just one unit less. Then, we
introduce the process of splitting jobs in a specific schedule, that replaces a job
by two jobs, keeping the schedule of the remaining jobs unchanged.

Definition 4. In a schedule S, job j is called free job if CS
j −RS

j = 1, otherwise
we call it non-free job, job j is called unlucky job if sj > 1 and LS(j)%m = 1.

Definition 5. A split process replaces a job i with si > 1 by two jobs i1 and i2
(si1 > 0, si2 > 0) such that: si1 + si2 = si and wi1/si1 = wi2/si2 = wi/si

Symmetrically, a merge process which replaces two jobs as one is the reverse of
the split process, an example shown in Fig. 2.

Moreover, the process that splits job j ∈ J into unit jobs means replacing
job j by sj unit jobs, i.e. L(J) = L(Junit), where we define the new instance
as Junit. We denote T (Junit) as the objective value of an arbitrary schedule of
Junit, since every job of Junit is a unit job.

Lemma 1. Given a feasible schedule S of instance J , for any job i ∈ J with
si > 1, the following properties hold after the split process that splits job i into
two jobs i1 and i2 (assume job i2 is scheduled after job i1), denoting J ′ (resp.
S′) as the new instance (resp. new schedule)

1. T (S, J) ≥ T (S′, J ′).
2. if job i is a free job in schedule S, then T (S, J) = T (S′, J ′).
3. if job i is a non-free job with 1 < si ≤ m, then T (S, J) − T (S′, J ′) ≤ si − 1.
4. if job i is an unlucky job with 1 < si ≤ m, then T (S, J) − T (S′, J ′) = si1 .

Proof. By the definition of split process (Definition 5), there is si = si1 + si2

and wi1
si1

= wi2
si2

= wi

si
= 1. After the split process, the new schedule S′ keeps the

execution order of jobs in S, i.e. RS′
i1

= RS
i , CS′

i2
= CS

i and CS′
i1

≤ CS
i . Thus,

T (S′, J ′) − T (S, J) = wi1C
S′
i1

+ wi2C
S′
i2

− wiC
S
i = si1(C

S′
i1

− CS
i ).
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For the first property, since CS′
i1

≤ CS
i , there is T (S′, J ′) − T (S, J) ≤ 0.

For the second property, since job i is a free job in schedule S, that is CS
i −

RS
i = 1, it implies CS′

i1
= CS′

i2
= CS

i . Consequently, T (S′, J ′) − T (S, J) = 0.
For the third property, since 1 < si ≤ m, we have CS

i − 1 ≤ CS′
i1

≤ CS
i , then

T (S′, J ′) − T (S, J) ≥ −si1 , i.e. T (S, J) − T (S′, J ′) ≤ si − 1.
For the last property, since job i is an unlucky job in schedule S and 1 <

si ≤ m, it implies the completion time of job i1 in S′ must be CS′
i1

= CS
i − 1,

that is T (S′, J ′) − T (S, J) = −si1 . 
�
As a consequence of Lemma 1, the process that splits an unlucky job i with
1 < si ≤ m into unit jobs will decrease the objective value by si − 1.

Lemma 2. For any schedule S of instance J , we have T (S, J) ≥ T (Junit).

Proof. We apply the split process to schedule S and split all jobs into unit jobs.
Since the objective value of schedule S does not increase after the split process
by Lemma 1, we have T (S, J) ≥ T (Junit). 
�

4.1.2 Properties of Organized Instance
In this part, we discuss the optimal schedule and LRF schedule of a given orga-
nized instance, while the splitting method in the previous section is applied in
the proof.

Lemma 3. For any organized instance J = J(y, z, k) ∈ J
(m,n)
org , schedule S1 =

(my, k, 1z) (which first executes y basic jobs then the job of length k and finally
z unit jobs) is an optimal schedule and T (OPT , J) = T (Junit).

Proof. In schedule S1, we consider the split process that splits all jobs into unit
jobs, we then obtain the instance Junit. As a matter of fact, all jobs in sched-
ule S1 are free jobs, by Lemma 1 the objective value will not change after the
split process, i.e. T (S1, J) = T (Junit). By Lemma 2, we have T (OPT , J) ≥
T (Junit). Therefore, schedule S1 is an optimal schedule of instance J . Moreover,
T (OPT , J) = T (S1, J) = T (Junit). 
�

1
2
...
m

i

(a)

1
2
...
m

i1

i2

(b)

1
2
3

(c)

1
2
3

(d)

Fig. 2. A schedule of three jobs is shown in (a) and (b). The second job (job i) is split
into two jobs (job i1 and i2). In (c) and (d), the LRF schedule of two jobs of length
{2, 5} with m = 3 is shown in (c). Then, the second job is split into a job of length 2
and a basic job, shown in (d).
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Lemma 4. For any organized instance J = J(y, z, k) ∈ J
(m,n)
org , schedule S2 =

(1,my, 1m−k, k, 1z+k−1−m) is an LRF schedule and α(J) = 1 + y(m−1)+(k−1)
T (OPT,J) .

Proof. We consider the split process that splits all jobs of J into unit jobs, then
we get the instance Junit. By Lemma 3, we have T (OPT , J) = T (Junit).

Since J is an organized instance, it holds that L(J) = ym + k + z and
L(J) > m(y + 1), that is, z + k > m, also 1 < k ≤ m, thus, schedule S2 is a
feasible schedule. As a matter of fact, in schedule S2 any job that is not a unit
job is an unlucky job. We then apply the split process to schedule S2. For each
unlucky job i with length si (1 < si ≤ m), after the split process, the objective
value decreases by si−1, according to Lemma 1. Therefore, after the split process,
we have T (S2, J) − T (Junit) = y(m − 1) + (k − 1).

Let σ be the LRF schedule of instance J , we then apply the split process to
schedule σ, the objective value decreases only when splitting the basic jobs and
the job of length k. Since J contains y basic jobs and one job of length k, we
have T (σ, J) − T (Junit) ≤ y(m − 1) + (k − 1), according to the third property
of Lemma 1. Therefore, T (S2, J) ≥ T (σ, J), i.e. schedule S2 is a LRF schedule.
Moreover, α(J) = T (S2,J)

T (OPT,J) = 1 + y(m−1)+(k−1)
T (OPT,J) . 
�

Lemma 5. Given m,n ≥ 2, α(J(m,n)
org ) > α(J(m,n+1)

org ).

Proof. Let instance J ∈ J
(m,n+1)
org be the instance such that α(J) = α(J(m,n+1)

org ).
Then, we show that there exists an instance J ′ ∈ J

(m,n)
org such that α(J ′) > α(J).

Suppose instance J is composed of y basic jobs, z unit jobs, and one job of
length k with L(J) > m(y+1), where n+1 = y+z+1, 0 < z < n+1, 1 < k ≤ m

(y, z, k ∈ N). Then α(J) = 1 + y(m−1)+(k−1)
T (OPT,J) , according to Lemma 4.

Case (i) 1 < k < m. Since L(J) = ym + k + z, we have k + z > m, i.e. z > 1.
Then, we construct an instance J ′ which is composed of y basic jobs, (z−1) unit
jobs, and one job of length (k +1). Since L(J ′) = ym+(k +1)+(z −1), we have
L(J ′) = L(J) > m(y + 1), which further implies that J ′ ∈ J

(m,n)
org . Therefore,

α(J ′) = 1 + y(m−1)+k
T (OPT,J ′) , according to Lemma 4. Since L(J ′) = L(J), we have

T (OPT , J ′) = T (OPT , J) = T (Junit), according to Lemma 3. Consequently, we
have α(J) < α(J ′).

Case (ii) k = m. If z > 1, then, we construct an instance J ′ which is composed
of y basic jobs, (z−1) unit jobs, and one job of length k. Since k+z > m+1, we
have L(J ′) = ym+k+(z−1) > m(y+1), which further implies that J ′ ∈ J

(m,n)
org .

As L(J ′) < L(J), combined with Lemma 3, we have T (OPT , J ′) < T (OPT , J).
Moreover, by Lemma 4, we have α(J ′) = 1 + y(m−1)+(k−1)

T (OPT,J ′) . Consequently, we
have α(J) < α(J ′).

Otherwise, z = 1. Let J
(x)
bsc be the instance that contains one unit job and

(x − 1) basic jobs where x ≥ 2. It is easy to verify that J
(n)
bsc ∈ J

(m,n)
org . In this

case, k = m and z = 1, which means J = J
(n+1)
bsc . Then by Lemma 4, we have
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α(J (x)
bsc ) = 1 + (x−1)(m−1)

m(1+2+...+x−1)+x = 1 + (m−1)(x−1)
mx(x−1)/2+x = 1 + 1− 1

m
x
2+

1
m (1+ 1

x−1 )
. Since

x − 1 ≥ 1 ≥
√

2
m , α(J (x)

bsc ) is monotone decreasing on the value of x. That is to

say, α(J (n+1)
bsc ) < α(J (n)

bsc ). Since J
(n)
bsc ∈ J

(m,n)
org , we have α(J) < α(J(m,n)

org ). 
�

4.1.3 Instance Achieving Maximum Approximation Ratio
Lemma 6. Given m,n ≥ 2, there is α(J(m,n)

org ) = α(J(m,n)
one ).

Proof. For any instance J ∈ J
(m,n)
one , we construct a series of processes that

transform J into J ′ such that α(J) ≤ α(J ′) where |J ′| ≥ n and J ′ ∈ J
(m,|J ′|)
org .

Since α(J(m,|J ′|)
org ) ≤ α(J(m,n)

org ) by Lemma 5, the proof follows.
Let σ be the LRF schedule of J . If all jobs in σ are free jobs, there is α(J) ≤ 1,

by Lemmas 1 and 2. In the following discussion, we assume at least one job in σ
is a non-free job. Step 1 and 2 show the transformation of instance J in schedule
σ, while in step 3 we analyze the approximation ratio of the LRF schedule of
the new instance. An example is shown in Fig. 3.

Step 1. For any free job in σ, we split it into unit jobs, which will not change the
objective value of schedule σ by Lemma 1. For any non-free job i in schedule σ,
if it is not an unlucky job, then we split part of job i (from right side) into unit
jobs until Lσ(i)%m = 1, i.e. job i is split into an unlucky job and several unit
jobs. In this process, the completion times of any newly split jobs are the same
as job i, i.e. the objective value of the new schedule is the same as σ. We denote
J1 as the instance after all the processes, and denote σ1 as the corresponding
schedule. Then, we have |J1| ≥ n and T (σ1, J1) = T (σ, J).

Step 2. After the first step, it is clear that for any job i ∈ J1 that is not a unit
job, it is an unlucky job. We define the set Jb as the set containing any unlucky
job in J1, which is not a basic job. More formally, Jb = {j | j ∈ J1, 1 < sj < m}.
For any two jobs i, j ∈ Jb, we split one unit of job i (from left side) into a unit
job and merge one unit job with job j (from left side) until either job i turns into
a unit job or job j turns into a basic job (keeping j as unlucky job, see Fig. 3c
and d). Since job j is an unlucky job and if sj < m then there is at least one unit
job right before job j, which guarantees that the merge process is feasible. The
split process decreases the objective value by 1, while the merge process increases
the objective value by 1. Thus, this process neither changes the objective value,
nor changes the number of jobs. We repeat this process until the number of jobs
in Jb is 0 or 1. Then we convert instance J1 into instance J2 (denote σ2 as the
corresponding schedule) with |J2| = |J1| and T (σ2, J2) = T (σ1, J1) where J2

contains some unit jobs (at least one since the first job in σ2 is always an unit
job), some basic jobs (maybe zero) and one job c with 1 < sc ≤ m (Job c is the
remaining job in Jb if |Jb| = 1, otherwise we specialize one basic job in J2 into
job c, in which case sc = m). Now we claim that J2 ∈ J

(m,|J2|)
org . Suppose there

are z unit jobs in J2. It is clear that only unit jobs and unlucky jobs exist in
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1
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(a)

1
2
3
4
5
6
7
8
9
10

(b)

1
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6
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8
9
10

(c)

1
2
3
4
5
6
7
8
9
10

(d)

Job 1

Job 2

Job 3

Job 4

unit job

(e)

Fig. 3. Four jobs of length {3, 10, 4, 5} with m = 10. The LRF schedule is shown in
(a). In (b), all free jobs (Job 1 and Job 3) are split into unit jobs, then in (c) Job 2
and Job 4 are split into two unlucky jobs and some unit jobs and finally Job 2 grows
while Job 4 is shortened shown in (d).

σ2. Thus, for job c, we have sc + z > m, which implies that J2 is an organized
instance.

Step 3. We denote the number of jobs in J2 as n′. After the above two steps, we
have n′ ≥ n, L(J2) = L(J) and T (σ, J) = T (σ2, J2), i.e. the objective value keeps
the same. Since T (σ2, J2) ≤ T (LRF, J2), we have T (σ, J) ≤ T (LRF, J2). Since
J2 ∈ J

(m,n′)
org , we have T (OPT , J2) = T (Junit) by Lemma 3. By Lemma 2, we

have T (OPT , J) ≥ T (Junit), thus T (OPT , J) ≥ T (OPT , J2). Consequently, we
have α(J) = T (σ,J)

T (OPT,J) ≤ T (LRF,J2)
T (OPT,J2)

= α(J2). Since n′ ≥ n, we have α(J(m,n′)
org ) ≤

α(J(m,n)
org ) by Lemma 5. Finally, we conclude that α(J) ≤ α(J(m,n)

org ). 
�

Lemma 7. Given n,m ≥ 2, α(J(m,n)) = α(J(m,n)
org ).

Proof. Suppose instance J ∈ J(m,n) is the instance such that α(J) = α(J(m,n)).
If J ∈ J

(m,n)
one , according to Lemma 6, we have α(J) = α(J(m,n)) = α(J(m,n)

org ).
Otherwise we assume J �∈ J

(m,n)
one , i.e. there exists a job j ∈ J such that sj > m.

Without loss of generality, we assume α(J) > 1.
Consider the split process that splits part of job j (from right side) into a

basic job. Let σ be a feasible schedule of instance J , we then apply this process
to schedule σ. As we can see, in schedule σ, the objective value will decrease
by (sj − m), since the completion time of the left part of job j will decrease
by 1 while the completion time of the right part of job j keeps the same (See
Fig. 2(c) and (d)). Denoting J∗ as the new instance, σ∗ as the new schedule, we
have T (σ∗, J∗) = T (σ, J)− (sj −m), which implies T (OPT , J∗) ≤ T (OPT , J)−
(sj −m) and T (LRF, J∗) ≥ T (LRF, J)− (sj −m). Thus, α(J∗) = T (LRF,J∗)

T (OPT,J∗) ≥
T (LRF,J)−(sj−m)
T (OPT,J)−(sj−m) > T (LRF,J)

T (OPT,J) = α(J). While it is possible, we repeat this process
and convert J into instance J ′ with n′ (n′ > n) jobs and α(J) < α(J ′) where
J ′ ∈ J

(m,n′)
one . By Lemma 5 we have α(J(m,n′)

org ) < α(J(m,n)
org ) since n′ > n. By

Lemma 6, we have α(J(m,n′)
one ) = α(J(m,n′)

org ). Thus, we have α(J) < α(J(m,n)
org ). 
�
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4.1.4 Approximation Ratio Bound
In this section, we aim to find the organized instance J ∈ J

(m,n)
org such that

α(J) = α(J(m,n)
org ) and show the approximation ratio of LRF schedule on this

instance.
Define function g(a, b) = am+b−n

ma(a+1)/2+b(a+1) (a > 0, b ≥ 0). We show that
the upper bound is related to the maximum value of this function. We define
i = � 2n

m �, which is a variable only used in this subsection.

Lemma 8. Given m,n ≥ 2, for any instance J ∈ J
(m,n)
org , α(J) = 1 + g(a, b),

where a = L(J)
m �, b = L(J) − am.

Proof. Since J ∈ J
(m,n)
org , we have T (LRF, J) = T (OPT , J)+y(m−1)+(k−1) by

Lemma 4 and T (OPT , J) = T (Junit) by Lemma 3. Moreover, L(J) = ym+k+z,
n = y + z + 1. Consequently, α(J) = 1 + L(J)−n

T (Junit) . Since L(J) = am + b

and 0 ≤ b < m, we have T (Junit) = m(1 + 2 + ... + a) + b(a + 1). Hence,
α(J) = 1 + am+b−n

ma(a+1)/2+b(a+1) . 
�

Lemma 9. ∀Ju, Jv ∈ J
(m,n)
org , the following two properties hold:

(1) if L(Ju) ≤ L(Jv) ≤ im, then α(Ju) ≤ α(Jv).
(2) if L(Ju) ≥ L(Jv) ≥ im, then α(Ju) ≤ α(Jv).

Theorem 1 is a corollary of Lemma 9, as the organized instance with total
workload im corresponds to the maximum approximation ratio.

Theorem 1. ∀J ∈ J
(m,n)
org , we have α(J) ≤ 1 + 2(im−n)

i(i+1)m .

In the following of this section, we discuss about the tightness of the bound.

Lemma 10. ∀J ∈ J
(m,n)
org , L(J) = im if and only if i ≤ n + 1 − m.

Proof. Suppose J is composed of y basic jobs, (n− y − 1) unit jobs, and one job
of length k, then L(J) > m(y + 1), 0 ≤ y < n − 1, 1 < k ≤ m.

Since L(J) = im, we have y < i − 1, i.e. y ≤ i − 2. Since L(J) = ym + k +
(n − y − 1) and k ≤ m, we have L(J) ≤ (i − 1)(m − 1) + n, i.e. i ≤ n + 1 − m.

Next we show that if i ≤ n+1−m, there always exists an organized instance
J ∈ J

(m,n)
org such that L(J) = im. Take y =  im−n−1

m−1 �, k = (im − n − 1)%
(m−1)+2. Obviously, i = � 2n

m � ≥ 2n
m , i.e. im−n−1 > 0. Since y(m−1)+(k−2) =

im − n − 1, we have L(J) = ym + k + (n − y − 1) = im. If i ≤ n + 1 − m, then
im − n ≤ (i − 1)(m − 1), which implies that y < i − 1, i.e. L(J) > m(y + 1).
Then, J is an organized instance and J ∈ J

(m,n)
org . 
�

Lemma 10 shows that the bound in Theorem1 is tight if and only if i ≤
n + 1 − m. While for the other cases, the bound is not tight, which we show the
result in Table 1. We divide the instances with n and m (n ≥ 2,m ≥ 2) into
disjoint but complete regions, according to the value i = � 2n

m �. (We will put the
proof of tightness in each region in the full version).
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Table 1. Approximation ratio bound of instances in different regions

Regions Approximation ratio Function g(a, b)

B0 = {m = 2} 1 + n−1
n2 (tight) g(n − 1,m − 1)

B1 = {m ≥ 2n,m ≥ 3} 1 + m−n+1
m+2

(tight) g(i, 1)

B∗
2 = {m = 2n − 1,m ≥ 3} 1 + m−1

2m−1
(tight) g(i − 1, n − 1)

B2 = {n ≤ m ≤ 2n − 2,m ≥ 3} 1 + 2m−n+1
3m+3

(tight) g(i, 1)

B∗
3 = {m = n − 1,m ≥ 3, n �= 4} 1 + 2m−2

6m−3
(tight) g(i − 1,m − 1)

B3 = { 2n
3

≤ m ≤ n − 2,m ≥ 3} 1 + 2(im−n)
i(i+1)m

(tight) g(i, 0)

B4 = {3 < 2n
m

≤ 4,m ≥ 3, n �= 5}
Bi = {i − 1 < 2n

m
≤ i,m ≥ 3}, ∀i ≥ 5

B∗ = {m = 3, 4 ≤ n ≤ 5} 1 + 2(im−n)
i(i+1)m

4.2 Instance of Jobs with Arbitrary Weights

Definition 6. For any job set J = {(wi, si) | 1 ≤ i ≤ n}, let J (e) =
{(w′

i, si) |w′
i = si, i ∈ J} be the corresponding job set of J in which the weight of

any job equals to its length, i.e. w′
i = si, ∀i ∈ J (e).

Lemma 11. For any instance J , there always exists a subset Js ⊆ J such that

α(J) ≤ α(J (e)
s )

Proof. We denote σ (resp. γ) as the LRF schedule (optimal schedule) of J . For
each job i we denote δi = wi

si
as the density of job i. Without loss of generality,

we assume jobs are sorted by the order in σ, i.e. δ1 ≥ δ2 ≥ ... ≥ δn > 0.
Given τ , 0 < τ < min({δi − δi+1 | δi − δi+1 > 0, 1 ≤ i < n} ∪ {δn/2}), we

define y � x as the meaning of 0 ≤ y − x ≤ τ .
We add a dummy job n + 1 into instance J , where sn+1 = m, δn+1 = τ .

It is clear that, when we take τ → 0, job n + 1 is always the last job in
both optimal schedule and LRF schedule of J , and limτ→0 δn+1sn+1C

OPT
n+1 =

limτ→0 δn+1sn+1C
LRF
n+1 = 0, which implies that the approximation ratio of

instance J will not change by adding this dummy job.
If there exists a group of jobs k ∈ [i, j] with 1 < i ≤ j < n + 1, such that

δi−1 > δi � ... � δj > δj+1 (in the sense that δi−1 > δi + τ and δj > δj+1 + τ),
we create a new instance J ′ as follows: ∀k ∈ [i, j], we change δk to δ′

k := δk + β,
i.e. s

′
k := sk, w

′
k := sk(δk + β), where δj+1 − δj + τ ≤ β ≤ δi−1 − δi − τ .

For simplicity, we denote a =
∑

k∈[i,j] skCσ
k , c =

∑
k∈[i,j] skCγ

k . In J ′, we
have δ′

i = δi + β < δi−1 and δ′
j = δj + β > δj+1, which implies new jobs still

follow Largest-Ratio-First order. However, the LRF schedule of J ′, in the worst
case, may possibly have different order due to the fact that some jobs in J ′ have
exactly equal density. Thus, T (LRF, J ′) ≥ T (σ, J) + βa. Moreover, the optimal
schedule of J is a feasible schedule of J ′, we have T (OPT , J ′) ≤ T (γ, J) + βc.
Therefore, α(J ′) = T (LRF,J′)

T (OPT,J ′) ≥ T (σ,J)+βa
T (γ,J)+βc .
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If a
c > T (σ,J)

T (γ,J) = α(J), then we set β := δi−1 − δi − τ > 0, otherwise, we set
β := δj+1 − δj + τ < 0. In either case, we have α(J ′) ≥ α(J).

While it is possible, we repeat the above process until instance J is converted
into instance J∗ such that δ∗

1 � δ∗
2 ... � δ∗

r > δ∗
r+1 � ... � δ∗

n+1, 1 ≤ r ≤ n, where
δ∗
1 = δ1, δ

∗
n+1 = δn+1 = τ , and α(J∗) ≥ α(J).

Let Jr be the set of first r jobs in J∗. When we take τ → 0 initially, we have:

(i) ∀k ∈ [r + 1, n + 1], δ∗
k = 0, which implies α(J∗) = α(Jr).

(ii) ∀k ∈ Jr, δ∗
k = δ1, which implies T (OPT , Jr) = δ1T (OPT , J

(e)
r ) and

T (LRF, Jr) ≤ δ1T (LRF, J
(e)
r ) (due to the fact that in J

(e)
r , all jobs

have exactly the same density, which is not the case of Jr). Therefore,
α(Jr) ≤ α(J (e)

r ).

Finally, we conclude that α(J) ≤ α(J (e)
r ). 
�

Combine Lemma 11 with the result in the previous section (Lemma 5), we
conclude that ∀J, α(J) ≤ α(J(m,2)

org ) = 1 + m−1
m+2 , i.e. the approximation ratio is

maximum when there are only two jobs, giving the following theorem.

Theorem 2. For any instance J , there is α(J) ≤ 1 + m−1
m+2 , which is tight.

This bound is tight since one can always add some dummy jobs (whose weight
approaches to 0) to J to make it equivalent to J

(m,2)
org .

5 Conclusion and Future Work

In this paper, we first give a PTAS for the problem when the number of machines
m is fixed. Then we investigate the approximation ratio of the LRF algorithm
and analyze the worst case, including the special case (jobs with equal density)
and general case. In the future work, it would be interesting to solve the problem
when m is fixed. It remains open that whether the problem is polynomial or not.

Acknowledgement. We gratefully thank Gruia Cǎlinescu for our helpful discussions
introducing the idea of the PTAS.
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Abstract. The classical firefighter problem, introduced by Bert Hartnell
in 1995, is a deterministic discrete-time model of the spread and defence
of fire, rumor, or disease. In contrast to the generally “discontinuous”
firefighter movements of the classical setting, we propose in the paper the
continuous firefighting model. Given an undirected graph G, at time 0,
all vertices of G are undefended, and fires break out on one or multiple
different vertices of G. At each subsequent time step, the fire spreads
from each burning vertex to all of its undefended neighbors. A finite
number of firefighters are available to be assigned on some vertices of G
at time 1, and each firefighter can only move from his current location
(vertex) to one of his neighbors or stay still at each time step. A vertex is
defended if some firefighter reaches it no later than the fire. We study fire
containment on infinite k-dimensional square grids under the continuous
firefighting model. We show that the minimum number of firefighters
needed is exactly 2k for single fire, and 5 for multiple fires when k = 2.

Keywords: Firefighter problem · Continuous firefighting · Fire contain-
ment · Infinite square grids

1 Introduction

The classical firefighter problem was introduced by Hartnell in 1995 [10]. In
the model, given a network G, a fire breaks at some vertex of G at time 0.
Subsequently, at each time step, at most a number B of firefighters can be used
to defend the fire, and the fire spreads from the burning vertices to all their
undefended neighbors. A firefighter at each time step can defend any single
unburned vertex of the network. Once a vertex is burned or defended, it remains
so from then on.

A mostly studied objective of the firefighter problem is to maximize the num-
ber of vertices that are not burned at the end of the process. On the negative side,
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the maximization problem has been shown to be NP-hard even when the under-
lying network is a tree with maximum degree three [7] or a cubic graph [11]; the
problem on general networks with n vertices does not admit nc-approximation
for any c < 1 unless NP = P [1]. On the positive side, MacGillivray and Wang
[12] solved the problem to its optimality in polynomial time for some special
trees. Cai et al. [2] presented a (1 − 1/e)-approximation algorithm for general
trees based on LP relaxation and randomized rounding. The approximation ratio
was latter improved slightly by Yutaka et al. [18].

Other objectives of the firefighter problem investigated in literature include
minimizing the budget B needed per time step in order to protect a given set of
vertices [1,3], rumor (or virus) blocking to bring the epidemic threshold above
the spreading rate [4,6], and politician’s firefighting that exhibits more locality
[16]. Among many variants of the classical model, a spreading version of firefight-
ing process, where the firefighting is viewed as a vaccination process that also
spreads over the network, was studied by Anshelevich et al. [1]. Once a vertex
is defended, at the next time step, all its unburned neighbors will be defended
simultaneously. The authors [1] showed that the firefighting spread problem to
maximize protection by using targeted vaccinations is reduced to maximizing a
submodular function with a matroid constraint. The reader is referred to [8] for
an extensive and detailed survey on the firefighter problem.

A large amount of literature on firefighter problems concerns on infinite net-
works, where the main objective is to determine the smallest number of firefight-
ers that can “contain” the fire in a finite number of steps, and to find a con-
tainment with fewest firefighters that minimizes the number of vertices burned.
Fogarty [9] gave a main tool, the Hall-like condition, to obtain a lower bound
on the number of firefighters needed to contain a fire in an infinite network. The
result was generalized by Devlin and Hartke [5].

Most work on firefighter problems in infinite networks focus on various grids
[5,9,12,13]. Moeller and Wang [17] proved that a single firefighter can not con-
tain one fire in the infinite 2-dimensional square grid, while two firefighters can
contain the fire in eight time units, and this is the best possible. The authors
[17] conjectured that 2k − 1 firefighters per time step are necessary to contain a
fire in the k-dimensional square grid for k ≥ 3. The conjecture was confirmed by
Develin and Hartke [5], who also showed that for any fixed natural number B,
there is a outbreak of finitely many fires in which B firefighters per time step are
insufficient to contain the outbreak. In addition to square grids, similar prob-
lems have been investigated for strong grids [13], triangular grids and hexagonal
grids [9]. Variations of the problem that have been considered w.r.t. grids include
determining the number of firefighters needed to contain a fire to a given region
[13], fractional defending and burning – the firefighters could extinguish some
fraction of the fire at a vertex, and then the remaining fraction of the fire is going
on to spread [9], and using a varying number of firefighters at each subsequent
time step [14,15].

Our contributions. In real-world defending of the fires, firefighters can not
“jump” from place to place discontinuously. Instead their movements are
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usually continuous. In the paper we propose a “continuous” variant of firefighting
to model the scenario. In our model, the fire breaks out at time 0 from finitely
many source vertices in given network G, and a finite number of firefighters are
available to be placed on some vertices of G at time 1. In the defending process,
each firefighter can only move from his current location (vertex) to one of his
neighbors or stay still at each subsequent time step. Namely, each firefighter
defend the fire along a continuous walk step by step. This particularly mod-
els the situation that traveling long distance takes long time, and the relative
velocity between the fire and firefighters is relatively fixed. It turns out to be
more reasonable and realistic than the classical “discontinuous” model, where
a long-distance movement and a short-distance one take the same time, and a
firefighter may go arbitrarily faster than the fire.

The present paper focus on the fire containment on infinite (square) grids
with continuous firefighting. For a single fire on the k-dimensional grid, we show
that 2k firefighters are necessary and sufficient for containment. For multiple
fires on the 2-dimensional grid, we give an efficient way to contain the fire with 5
firefighters regardless of the number and locations of sources. The most difficult
part of our work is to establish the lower bound that there is no way for 4
firefighters to contain the fire originating from two adjacent sources. Due to the
limitation on pages, we omit some proofs in this extended abstract, and postpone
them to the full version of the paper.

2 The Model

The network is modeled by an undirected graph G. At time 0, all vertices of G
are undefended, and one or multiple fires break out on some fire source vertices
(sources) of G. At each subsequent time step, the fire spreads from each burning
vertex to all of its undefended neighbor vertices. At time 1, a finite number of
firefighters can be placed on some vertices of G. At each subsequent time step
each firefighter can only move from his current location (vertex) to one of his
neighbors or stay still. A vertex is defended if and only if some firefighter reaches
it no later than the fire. Once a vertex is burning or defended, it remains so from
then on. The burning process stops when there are no more vertices can catch
fire. At the end of the process, all defended or unburned vertices are protected.

While the general goal of the continuous firefighting problem is to use a
minimum number of firefighters to protect a maximum number of vertices, in
this paper we focus on the fire containment version of the problem when G
is an infinite square grid (to be defined in the next paragraph). We study how
many firefighters are needed to satisfy the primary requirement that the burning
process stops in a finite number of time steps, i.e., only a finite number of
vertices are burned finally. Meanwhile, we show how to use a minimum number
of firefighters to contain the fire in the grids.

Infinite square grids. Let k ∈ N be a positive integer. The infinite k-dimensional
square grid, denoted as Gk, is the graph whose vertices correspond to the points
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in Z
k, and two vertices are connected by an edge whenever the corresponding

points are at distance 1. Thus in Gk, in each time step, the fire can spread from
a burning vertex a distance 1 along all the k directions, and the firefighter can
either stay still or move a distance 1 along one of the k directions. For any two
vertices u, v ∈ Gk, we often call a (simple) path between u and v in Gk a u-v
path. The distance between u and v, denoted as d(u, v), equals the length (i.e.,
the number of edges) of a shortest u-v path in Gk. Observe that if u is a fire
source, then the fire cannot spread to v earlier than time d(u, v).

We establish a k-dimensional coordinate system such that its origin is iden-
tical with some vertex of Gk and every vertex v ∈ Gk has integer coordinates
(v1, v2, · · · , vk) ∈ Z

k. For convenience, we shall identify a vertex with its coor-
dinate representation.

Lemma 1. d(u, v) =
∑k

i=1 |ui − vi| for any two vertices u, v ∈ Gk. ��

Fire containment. A major task of the paper is to determine in Gk the minimum
number Γk,s of firefighters needed to contain the fire starting from s fire sources
(i.e., to guarantee that the burning process stops in a finite number of time steps
and so with a finite number of burned vertices) regardless of the locations of fire
sources.

Given any containment c of the fire, it is specified by its defending process –
the initial positions and subsequent movements of firefighters. We will use the
terms “containment” and “defending process” interchangeably; they share the
same symbol c – the former emphasizing the containing result while the latter
laying stress on firefighters’ continuous movements.

Let F (c) denote the set of firefighters used in c, and D(c) denote the set of
vertices defended by the firefighters in F (c). In the following arguments, when
we mention a certain time point at which some vertex v ∈ D(c) was defended,
we mean the earliest time at which v was defended, and denote it by τv(c). A
firefighter in F (c) who reached (and thus defended) v at time τv(c) is called an
earliest defender of v. Formally, we aim to determine

Γk,s := max
F

{
min
c

{|F (c)| : c is a containment of F} : F is the fire

starting from s sources in Gk}
The next lemma states a crucial property implied by the continuity of fire-

fighters’ movements.

Lemma 2. In any containment c of the fire in Gk, if d(u, v) ≥ |τu(c)−τv(c)|+1
for some vertices u, v ∈ D(c), then no single firefighter in F (c) could be an
earliest defender of both u and v. ��

3 One Fire in Gk

This section studies the single fire case. For convenience of description, we assume
without loss of generality that the single fire broke out on the origin at time 0.
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Given any containment c of the fire, for each i ∈ [k], we take i+ (resp. i−) to
be the defended vertex on the positive (resp. negative) i-axis that is closest to
the origin. Clearly, the set A(c) := {i+, i− : i ∈ [k]} has cardinality 2k. For each
vertex v ∈ A(c) ⊆ D(c), let φ(v) denote the unique non-zero coordinate of v,
and Fv denote a (fixed) earliest defender of v.

Lemma 3. τv(c) ≤ |φ(v)| for each v ∈ A(c).

Proof. It is instant from the choice of v – its closeness to the origin (the fire
source) that the fire spread to v at time |φ(v)|. Now v ∈ D(c) along with the
definition of τv(c) enforces the desired inequality. ��
Lemma 4. |F (c)| ≥ 2k for any containment c for a single fire in Gk.

Proof. Note that {Fv : v ∈ A(c)} is a subset of F (c). If the lemma failed, then
|{Fv : v ∈ A(c)}| < 2k. Since |A(c)| = 2k, there exist distinct u, v ∈ A(c)
who share a common earliest defender F∗ = Fv = Fu. We may suppose without
loss of generality that 1 ≤ τu(c) < τv(c). It follows from Lemma 2 that τv(c) ≥
τu(c) + d(u, v). By Lemma 1, it is easily seen from the choices of u and v that
d(u, v) = |φ(u)| + |φ(v)|. So τv(c) ≥ τu(c) + |φ(u)| + |φ(v)| > |φ(v)| shows a
contradiction to Lemma 3. ��
Theorem 1. Γk,1 = 2k for any k ≥ 1.

Proof. Lemma 4 has shown that Γk,1 ≥ 2k. For the reversed inequality, we
observe that if 2k firefighters are placed at the 2k neighbors of the single fire
source, respectively at time 1, then the fire stops at time 1, and only the source
vertex is burned. ��

4 Multiple Fires in Gk

This section investigates the case where multiple fires originate from s different
sources. For any k, k′, s, s′ ∈ N with k ≥ k′ and s ≥ s′, it is trivial that Γk,s ≥
Γk′,s and Γk,s ≥ Γk,s′ .

Theorem 2. Γ1,s = 2 for any s ∈ N.

Proof. For containment of multiple fires on the line G1, two firefighters are obvi-
ously necessary and sufficient (one on the left of the leftmost fire source and the
other on the right of the rightmost fire source). ��

The remainder of this section is devoted to verifying the following theorem
on the 2-dimensional grid G2.

Theorem 3. Γ2,s = 5 for any s ∈ N\{1}. ��
In Sect. 4.1 we present a way in which five firefighters fulfill the containing

task for any number of fire sources on any locations of G2 (see Theorem 4). In
Sect. 4.2 we show that it is impossible for four firefighters to contain the fire
originating from two adjacent sources in G2 (see Theorem 5). The combination
of Γ2,s ≤ 5 and Γ2,s ≥ Γ2, 2 ≥ 5 establishes Theorem 3.
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4.1 The Upper Bound on Γ2, s

When finitely many vertices catched on fire at time 0 in G2 (no matter where
they are), we show how five firefighters are placed at time 1 and how they move
at each subsequent time step in order to contain the fire.

Let u, v be two vertices in G2 with the same x- or y-coordinate. We use uv
to denote the directional vertical or horizontal line segment from u to v. If a
firefighter moves from u to v along uv, we simply say that he moves along uv.

Theorem 4. Γ2, s ≤ 5 for any s ∈ N.

Proof. Given any set of s fire source vertices in G2, we observe that the s
fire sources are contained in a W × H rectangle with corners α, β, γ, δ that
has a minimum area. Suppose without loss generality that the x-axis goes
through δγ and the origin o divides δγ as evenly as possible. More specially,
α = (−�W/2	,H), β = (
W/2�,H), γ = (
W/2�, 0), δ = (−�W/2	, 0). (See Fig. 1
for an illustration).

Fig. 1. The proof of Γ2, s ≤ 5.

Based on the rectangle on α, β, γ, δ, we define an extended rectangle with
corners α′ = (−2(H+W +2),H+
W/2�+1), β′ = (H+2
W/2�+2,H+
W/2�+
1), γ′ = (H +2
W/2�+2,−(H +
3W/2�+3)) and δ′ = (−2(H +W +2),−(H +

3W/2� + 3)). Let o′ = (0,H + 
W/2� + 1) be the projection of o onto α′β′. We
consider the defending process c with five firefighters Foα, Foβ , Fβγ , Fγδ, Fδα in
which Fij started from i′ at time 1 and went through i′j′ continuously, for each
ij ∈ L := {oα, oβ, βγ, γδ, δα}. We treat each element of L either as an index for
firefighter in F (c) or a side of the extended rectangle.

Given any vertex v ∈ ∪ij∈Lij, let t(v) and T (v) be the earliest time some
firefighter and the fire reached v, respectively. To see that c is qualified to be a
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containment of the fire, it suffices to show that t(v) ≤ T (v) for all v ∈ ∪ij∈Lij.
We check five possibilities for v ∈ ij when ij is taken from L.

Case 1. v ∈ o′α′: By the movement of Foα, we have t(v) ≤1+d(o′, v) = 1−v1.
Let α′′ := (−�W/2	,H +
W/2�+1) be the projection of α onto o′α′. If v ∈ o′α′′,
then t(v) ≤ 1+d(o′, v) ≤ 1+d(o′, α′′) = 1+�W/2	 ≤ d(α, α′′) ≤ T (v); otherwise
v ∈ α′′α′ and T (v) ≥ d(α, v) = −�W/2	 − v1 + 
W/2� + 1 ≥ t(v).

Case 2. v ∈ o′β′: By the movement of Foβ , we have t(v) ≤ 1 + d(o′, v) =
1 + v1. Let β′′ := (
W/2�,H + 
W/2� + 1) be the projection of β onto o′β′. If
v ∈ o′β′′, then t(v) ≤ 1+d(o′, v) ≤ 1+d(o′, β′′) = 1+
W/2� = d(β, β′′) ≤ T (v);
otherwise v ∈ β′′β′ and T (v) ≥ d(β, v) = (v1 − 
W/2�) + (v2 − H) = (v1 −

W/2�) + 
W/2� + 1 = 1 + v1 ≥ t(v).

Case 3. v ∈ β′γ′: By the movement of Fβγ , we have t(v) ≤ 1 + β′
2 −

v2 = H + 
W/2� + 2 − v2. Let γ′′ := (H + 2
W/2� + 2, 0). If v ∈ β′γ′′, then
t(v) ≤ 1+d(β′, γ′′) = H + 
W/2�+2 = d(γ, γ′′) ≤ T (v); otherwise v ∈ γ′′γ′ and
T (v) ≥ d(γ, v) = v1 − 
W/2� − v2 = H + 
W/2� + 2 − v2 ≥ t(v).

Case 4. v ∈ γ′δ′: By the movement of Fγδ, we have t(v) ≤ 1 + γ′
1 − v1 =

H +2
W/2�+3−v1. Let δ′′ := (−�W/2	,−(H + 
3W/2�+3)). If v ∈ γ′δ′′, then
t(v) ≤ 1+d(γ′, δ′′) = H + 
3W/2�+3 = d(δ, δ′′) ≤ T (v); otherwise v ∈ δ′′δ′ and
T (v) ≥ d(δ, v) = −�W/2	−v1+(H +
3W/2�+3) = H +2
W/2�+3−v1 ≥ t(v).

Case 5. v ∈ δ′α′: By the movement of Fδα, we have t(v) ≤ 1 + v2 − δ′
2 =

v2 + H + 
3W/2� + 4. Let α′′′ := (−2(H + W + 2),H). If v ∈ δ′α′′′, then
t(v) ≤ 1+d(δ′, α′′′) = 2H + 
3W/2�+4 = d(α, α′′′) ≤ T (v); otherwise v ∈ α′′′α′

and T (v) ≥ d(α, v) = 2H + 
3W/2� + 4 + v2 − H ≥ t(v).

The combination of the five cases shows that all vertices in the four sides
∪ij∈Lij of the extended rectangle have been defended, implying that c is indeed
a solution of the given fire containment instance. ��

4.2 The Lower Bound on Γ2, 2

We show that four firefighters are not enough for the special case in which the
fire source vertices are o = (0, 0) and σ = (1, 0) in G2. Since o and σ are adjacent,
for each vertex v ∈ G2, we have d(o, v) = d(σ, v), which allows us to associate v
with a unique fire source vertex ς(v) ∈ {o, σ} that is closer to v. The next fact
is guaranteed by the property of shortest paths.

Lemma 5. Let v be a vertex and Q a shortest ς(v)-v path in G2. Then all
vertices of Q have ς(v) as their common closer fire source. ��

The high level idea behind our proof for Γ2, 2 ≥ 5 goes as follows: We assume
on the contrary that the fires originated from the two sources can be contained
successfully by four firefighters. Given any such successful defending process, we
can always construct a new simpler successful containment with four firefighters
defending vertices of a rectangle. Finally, we reach a contradiction by showing
that no four firefighters could accomplish such a rectangular containment.
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The Counterexample Containment. Suppose on the contrary that there
is a containment c of the fire originating from o and σ such that F := F (c)
consists of at most four firefighters.

Pioneer vertices. For each defended vertex v ∈ D := D(c), let Fv ∈ F denote
a fixed earliest defender of v, and write τv for τv(c). A defended vertex v ∈ D
is called a pioneer (vertex) if the fire spread to v at time d(ς(v), v), equivalently,
there exists a shortest ς(v)-v path in which all vertices but v were burned (by
the fire originating from ς(v)); we call such a path an evidencing path of v. Let
P denote the set of all pioneer vertices. The following crucial property will be
frequently used in our discussions.

Property 1. Each pioneer v ∈ P was defended at time τv ≤ d(ς(v), v). ��
Clearly, P ⊆ D = ∅. The next property particularly implies P = ∅; its proof
follows from the consideration of a defended vertex on the path that is closest
to the source.

Property 2. For each v ∈ D, if Q is a shortest path from ς(v) to v, then Q
contains a pioneer vertex and one of its evidencing paths. ��

Six special pioneers. Our next step is to prove |F | = 4. To this end, we identify
six special pioneers, which are closest to the sources horizontally or vertically
from positive or negative direction. Considering the containment of the fire orig-
inating from o, we have α, β, γ ∈ P with ς(α) = ς(β) = ς(γ) = o such that
α = (0, α2), β = (β1, 0) and γ = (0, γ2) were defended at time

τα ≤ α2, τβ ≤ |β1| = −β1 and τγ ≤ |γ2| = −γ2,

respectively. Similarly, considering the containment of the fire originating from
σ, we have κ, δ, η ∈ P with ς(κ) = ς(δ) = ς(η) = σ such that κ = (1, κ2),
δ = (δ1, 0), and η = (1, η2) were defended at time

τκ ≤ κ2, τδ ≤ δ1 − 1 and τη ≤ |η2| = −η2,

respectively. (See Fig. 2 for an illustration.) For each i ∈ {α, β, γ, κ, δ, η}, we use
Pi := {v ∈ P : Fv = Fi} to denote the set of pioneers defended by Fi.

From Property 1 of pioneers and the continuity hidden in Lemma2 we derive
the following restrictions on the defending areas of firefighters.

Claim 1. Each of Pα ∩ {v : v2 ≤ 0}, Pβ ∩ {v : v1 ≥ 0}, Pγ ∩ {v : v2 ≥ 0},
Pκ ∩ {v : v2 ≤ 0}, Pδ ∩ {v : v1 ≤ 1}, and Pη ∩ {v : v2 ≥ 0} is empty. ��

An immediate corollary of the above claim gives |F | = 4 as desired. Let
I := {α, β, γ, δ}.

Claim 2. F consists of exactly 4 firefighters Fα(= Fκ), Fβ, Fγ(= Fη), Fδ, and
P = ∪i∈IPi. ��
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Fig. 2. The counterexample containment c.

Four axis-nearest pioneers. We now proceed to identify the rectangular area
(for later construction of our new simpler containment), which is enclosed by
horizontal and vertical lines through four axis-nearest pioneers. For each i ∈ I,
as i ∈ Pi, we may take i∗ ∈ Pi such that |α∗

2|, |β∗
1 |, |γ∗

2 | and |δ∗
1 | are minimum,

i.e., i∗ is the pioneer defended by Fi that is closest to the x-axis (when i ∈ {α, γ})
or the y-axis (when i = β) or the vertical line x = 1 (when i = δ). Claim 1 and
the minimality of |α∗

2|, |β∗
1 |, |γ∗

2 |, |δ∗
1 | imply that

Claim 3. (i) α∗
2 ≥ 1, β∗

1 ≤ −1, γ∗
2 ≤ −1, δ∗

1 ≥ 1 + 1; and
(ii) each of Pα ∩ {v : v2 < α∗

2}, Pβ ∩ {v : v1 > β∗
1}, Pγ ∩ {v : v2 > γ∗

2} and
Pδ ∩ {v : v1 < δ∗

1} is empty. ��
Then the horizontal lines y = α∗

2, y = γ∗
2 and the vertical lines x = β∗

1 , x = δ∗
1

enclose a rectangle R (as shown by the grey area in Fig. 2). Let int(R) denote
the set of vertices in the interior of R. Combining Claims 2 and 3 we can prove
that

Claim 4. {o, σ} ⊆ int(R), and all vertices in int(R) were burned. ��

Four sets of blocking pioneers. In view of Claim 4, the fire spread to R should be
blocked by c somewhere on or outside R. We identify blocking pioneers w.r.t. the
four sides of R. Let Rα (resp. Rβ , Rγ , Rδ) denote the top (resp. left, bottom,
right) side of R with the two end vertices excluded. (These four end vertices are
depicted as small circles in Fig. 2.) We abuse notation here by using Ri (i ∈ I) to
denote both the line segment and the set of vertices on it. Notice from Claim 3(i)
that Ri = ∅ for all i ∈ I. For convenience of description, we note that each vertex
i = (i1, i2) ∈ I has exactly one nonzero coordinate, whose index we denote as
ξ(i). So ξ(i) ∈ {1, 2} with iξ(i) = 0 satisfies ξ(i) := 2 if i ∈ {α, γ} and ξ(i) := 1
if i ∈ {β, δ}.

For each i ∈ I and each vertex v ∈ Ri, we associate v with a fixed block-
ing pioneer v̄ ∈ P as follows. Let Av denote the ray starting from v that is
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perpendicular to Ri and disjoint from int(R). As only a finite number of ver-
tices were burned, the ray Av must contain a defended vertex, and the union
of Av and int(R) contains a shortest path between this defended vertex and its
unique closer fire source. Thus Property 2 asserts that Av ∪ int(R) contains a
pioneer vertex, which we set to be v̄, and one of its evidencing paths, which we
denote as Qv. Claim 4 along with P ⊆ D enforces v̄ ∈ Av.

Note that for i ∈ I, if i∗ ∈ Ri, then its blocking pioneer must be i∗ itself
by the above definition. For technical reasons, even if i∗ ∈ Ri, we still define
ī∗ := i∗ to be i∗’s blocking pioneer.

Claim 5. For each i ∈ I and each v ∈ Ri, there holds d(ς(v̄), v̄) = d(ς(v), v) +
|v̄ξ(i) − vξ(i)|.
Proof. We only need to consider the case of v̄ = v. Note that v̄’s evidencing path
Qv given above is a shortest ς(v̄)-v̄ path. It is the concatenation of a shortest
ς(v̄)-v path and the (vertical or horizontal) line segment from v to v̄ (which has
length |v̄ξ(i) − vξ(i)|). Therefore d(ς(v̄), v̄) = d(ς(v̄), v) + |v̄ξ(i) − vξ(i)|. Recalling
from Lemma 5 that ς(v̄) = ς(v), the claim follows. ��

The next claim specifies simple observations derived from v̄ ∈ Av when v
belongs to Rα,Rβ ,Rγ or Rδ.

Claim 6. For each i ∈ I and any vertex v ∈ Ri, exactly one of the following
holds:

(i) i = α, v̄1 = v1 ∈ (β∗
1 , δ∗

1) and v̄2 ≥ v2 = α∗
2;

(ii) i = β, v̄2 = v2 ∈ (γ∗
2 , α∗

2) and v̄1 ≤ v1 = β∗
1 .

(iii) i = γ, v̄1 = v1 ∈ (β∗
1 , δ∗

1) and v̄2 ≤ v2 = γ∗
2 ;

(iv) i = δ, v̄2 = v2 ∈ (γ∗
2 , α∗

2) and v̄1 ≥ v1 = δ∗
1 . ��

Claim 7. For each i ∈ I and any vertices u, v ∈ Ri ∪{i∗}, there holds d(ū, v̄) =
d(u, v) + |ūξ(i) − v̄ξ(i)|. ��

By the definition of blocking pioneers, it is clear that for each i ∈ I, there is
a one-one correspondence between Ri ∪ {i∗} and Bi := {v̄ : v ∈ Ri ∪ {i∗}} =
{v̄ : v ∈ Ri} ∪ {i∗} with each v corresponding to its blocking pioneer v̄. The
next lemma says that all pioneers in Bi were defended by the same firefighter
Fi, which is a key to our proof.

Claim 8. For each i ∈ I and any ū, v̄ ∈ Bi, there hold Bi ⊆ Pi and d(ū, v̄) ≤
|τū − τv̄|.
Proof. First i∗ ∈ Pi is guaranteed by the choice of i∗. Considering an arbitrary
vertex v̄ ∈ Bα\{α∗}, we have v̄1 = v1 ∈ (β∗

1 , δ∗
1) and v̄2 ≥ v2 = α∗

2 > γ∗
2 (by

Claims 6(i) and 3(i)). It follows from Claim 3(ii) that v̄ belongs to none of Pβ ,
Pδ and Pγ , and hence v̄ ∈ P belongs to Pα as P = ∪i∈IPi (by Claim 2). The
argument and the symmetric counterpart for an arbitrary vertex in Bi\{i∗},
i ∈ {β, γ, δ} verify Bi ⊆ Pi for all i ∈ I.

Since {ū, v̄} ⊆ Pi says that Fi is an earliest defender of both ū and v̄, it is
straightforward from Lemma 2 that d(ū, v̄) ≤ |τū − τv̄|. ��
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A New Defending Process. Given the movements of Fi, i ∈ I in the defending
process c, we aim to define a new containment c′ (possibly c′ is the same as c)
which uses four firefighters F ′

i , i ∈ I such that F ′
i only moves along R+

i , the
shortest elongation of Ri that covers i∗ (Note that R+

i = Ri in case of i∗ ∈ Ri).
By virtue of Claim 8, for each i ∈ I, we can “project” the movement of firefighter
Fi for defending the blocking pioneers in Bi to the movement of F ′

i as follows.

Movement projections. For each i ∈ I, we sort the pioneer vertices of Bi as
b(1), b(2), . . . , b(	), where � = |Bi|, in an increasing order of the time points at
which they were defended by (the same) firefighter Fi in c. Accordingly we sort
the vertices in Ri ∪{i∗} as r(1), r(2), . . . , r	 such that for each g ∈ [�], vertex b(g)

is the blocking pioneer r̄(g) of r(g). For any g, h ∈ [�], we refer to r(g) and b(g)

as the g-th vertices of Ri ∪ {i∗} and Bi, respectively; we write r(g) ≺ r(h) if and
only if g < h, and write r(g) � r(h) if and only if g ≤ h. The movement of F ′

i

along R+
i , as well as time records t(v), v ∈ Ri ∪ {i∗} for purpose of technical

analysis, is defined in the following recursive way:

– At time 1, F ′
i is placed on r(1). Set t(r(1)) := 1.

– For each g = 1, 2, . . . , |�| − 1, upon reaching r(g), firefighter F ′
i moves to the

r(g+1) along a shortest r(g)-r(g+1) path. (This shortest path is unique and must
be on R+

i , because r(g) and r(g+1) belong to the same (horizontal or vertical)
line segment R+

i .) Set t(r(g+1)) = t(r(g)) + d(r(g), r(g+1)).

Let c′ denote the movements (defending process) of F ′
i , i ∈ I defined above.

The vertex sorting and the time record setting provide the simple observation
that for each i ∈ I and any distinct u, v ∈ Ri ∪ {i∗},

(i) u � v if and only if τū ≤ τv̄;
(ii) F ′

i reached v at time t(v).

Claim 9. t(v) ≤ τv̄ for each v ∈ ∪i∈I(Ri ∪ {i∗}).

Proof. Suppose that v is the g-th vertex of Ri ∪{i∗}. In case of g = 1, it is trivial
that t(v) = 1 ≤ τv̄. Assume that g ≥ 2, and t(u) ≤ τū holds for the (g − 1)-th
vertex u of Ri. Then τū ≤ τv̄. The setting of time records along with Claims 7
and 8 imply t(v) = t(u) + d(u, v) ≤ τū + d(ū, v̄) ≤ τv̄. ��
Claim 10. For each i ∈ I, if u, v ∈ Ri ∪ {i∗} satisfy u ≺ v, then τv̄ − τū ≥
t(v) − t(u) + |v̄ξ(i) − ūξ(i)|. ��

Successful containment. Next, we show that c′ is indeed a containment of the
fire originating from o and σ, given the success of c. For each v ∈ ∪i∈IRi, let τ ′

v

denote the earliest time when some firefighter F ′
i , i ∈ I reached it. Obviously,

the success of c′ containing the fire is guaranteed by the following lemma.

Lemma 6. For each i ∈ I, firefighter F ′
i can defend all vertices in Ri, i.e.,

τ ′
v ≤ d(ς(v), v) holds for each vertex v ∈ Ri. ��
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Proof. We consider an arbitrary i ∈ I and an arbitrary vertex v ∈ Ri. Recall
that F ′

i reached v at time t(v). It is immediate that τ ′
v ≤ t(v), which reduces the

proof to establishing t(v) ≤ d(ς(v), v).
In case of v � i∗, i.e., says τv̄ ≤ τi∗ , and Claim 8 gives τv̄ + d(v̄, i∗) ≤ τi∗ .

On the other hand, by Property 1, the fact that i∗ ∈ P gives τi∗ ≤ d(ς(i∗), i∗) ≤
d(ς(v), i∗) ≤ d(ς(v), v) + d(v, i∗). Therefore

d(ς(v), v) ≥ τi∗ − d(v, i∗) ≥ τv̄ + d(v̄, i∗) − d(v, i∗) ≥ τv̄,

where the last inequality is guaranteed by the fact that either v = v̄ or the
triangle on v, v̄, i∗ has a right angle at v. Then t(v) ≤ τv̄ in Claim 9 shows
t(v) ≤ d(ς(v), v) as desired.

It remains to consider the case where i∗ ≺ v. Recalling ī∗ = i∗, we have
τv̄ − τi∗ ≥ t(v) − t(i∗) + |v̄ξ(i) − i∗ξ(i)| as stated in Claim 10 and t(i∗) ≤ τi∗ as
stated in Claim 9. Combining these two inequalities, we obtain

t(v) ≤ t(i∗) − τi∗ + τv̄ − |v̄ξ(i) − i∗ξ(i)| ≤ τv̄ − |v̄ξ(i) − i∗ξ(i)|.

Now by Property 1, v̄ ∈ P provides τv̄ ≤ d(ς(v̄), v̄), and therefore t(v) ≤
d(ς(v̄), v̄) − |v̄ξ(i) − i∗ξ(i)|. Recalling Claim 6, we deduce from v ∈ Ri that
vξ(i) = i∗ξ(i). Hence t(v) ≤ d(ς(v̄), v̄) − |v̄ξ(i) − vξ(i)| = d(ς(v), v), where the
last equation is guaranteed by Claim 5. ��

Note that in containment (defending process) c′, for each i ∈ I, firefighter
F ′

i never reached any vertices in ∪j∈I\{i}Rj . It follows from Lemma 6 that F ′
i

is the unique earliest defender of all vertices in Ri. Then Lemma 2 implies the
following property.

Property 3. For each i ∈ I and each pair of vertices u, v ∈ Ri, there holds
d(u, v) ≤ |τ ′

u − τ ′
v|. ��

The proof of Γ2, 2’s lower bound. In a counterclockwise visit of the rectangle
R’s sides starting from its upper-right corner, the end vertices of Rα, Rβ , Rγ

and Rδ we encounter are α′ := (δ∗
1 −1, α∗

2), α′′ := (β∗
1 +1, α∗

2), β′ := (β∗
1 , α∗

2−1),
β′′ := (β∗

1 , γ∗
2 + 1), γ′ := (β∗

1 + 1, γ∗
2 ), γ′′ := (δ∗

1 − 1, γ∗
2 ), δ′ := (δ∗

1 , γ
∗
2 + 1), and

δ′′ := (δ∗
1 , α

∗
2 − 1). See Fig. 3 for an illustration.

Property 4. For each i ∈ I, if {u, v} = {i′, i′′} and τ ′
u < τ ′

v, then d(ς(v), v) >
d(u, v).

Proof. It follows from Property 3 that τ ′
v ≥ τ ′

u + d(u, v) > d(u, v). On the other
hand, Lemma 6 says τ ′

v ≤ d(ς(v), v), implying d(ς(v), v) > d(u, v). ��
The contradiction to Lemma 6 establishes the following concluding theorem.
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Fig. 3. The proof of Γ2, 2 ≥ 5.

Theorem 5. Γ2, 2 ≥ 5.

Proof. If the four firefighters F ′
i , i ∈ I all defended i′ earlier than i′′ or all

defended i′ later than i′′, then by symmetry we may assume that the former
case happens. By Property 4, for each i ∈ I, we deduce from τ ′

i′ < τ ′
i′′ that

d(ς(i′′), i′′) > d(i′, i′′). Substituting α (resp. δ, γ, β) for i, we obtain

d(ς(α′′), α′′) = d(o, α′′) = −β∗
1 − 1 + α∗

2 > d(α′, α′′) = δ∗
1 − β∗

1 − 2
⇒ α∗

2 ≥ δ∗
1 ;

(1)

d(ς(β′′), β′′) = d(o, β′′) = −β∗
1 + (−γ∗

2 − 1) > d(β′, β′′) = α∗
2 − γ∗

2 − 2
⇒ −β∗

1 ≥ α∗
2;

(2)

d(ς(γ′′), γ′′) = d(σ, γ′′) = δ∗
1 − 2 − γ∗

2 > d(γ′, γ′′) = δ∗
1 − β∗

1 − 2
⇒ β∗

1 ≥ γ∗
2 + 1; (3)

d(ς(δ′′), δ′′) = d(σ, δ′′) = δ∗
1 − 1 + α∗

2 − 1 > d(δ′, δ′′) = α∗
2 − γ∗

2 − 2
⇒ δ∗

1 + γ∗
2 ≥ 1.

(4)

Adding the four inequalities derived in the above implications (1)–(4), we reach
a contradiction that 0 ≥ 2.

It remains to consider the case where there exist i, j ∈ I such that F ′
i defended

i′ earlier than i′′, i.e., τ ′
i′ < τ ′

i′′ , and F ′
j defended j′ later than j′′, i.e., τ ′

j′ > τ ′
j′′ .

Then there must exist such i, j such that i′ and j′′ are adjacent to the same
corner vertex. It can be easily seen that such i, j could be taken such that the
ordered pair (i, j) is one of (α, δ), (δ, γ), (γ, β) and (β, α). By symmetry, we may
assume without loss of generality that i = α and j = δ.

By τ ′
α′ < τ ′

α′′ and τ ′
δ′′ < τ ′

δ′ , it follows from Property 4 that d(ς(α′′), α′′) >
d(α′, α′′) and d(ς(δ′), δ′) > d(δ′, δ′′). The former inequality implies α∗

2 ≥ δ∗
1 as

in (1); while the latter gives

d(ς(δ′), δ′) = d(σ, δ′) = δ∗
1 − 1 − (γ∗

2 + 1) > d(δ′, δ′′) = (α∗
2 − 1) − (γ∗

2 + 1) ⇒ δ∗
1 > α∗

2.

The above contradiction disproves the assumption on the existence of the coun-
terexample containment c, establishing γ2, 2 ≥ 5. ��
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Abstract. Mediated population protocols are an extension of popula-
tion protocols in which communication links, as well as agents, have
internal states. We study the leader election problem and some applica-
tions in constant-state mediated population protocols. Depending on the
power of the adversarial scheduler, our algorithms are either stabilizing
or allow the agents to explicitly reach a terminal state.

We show how to elect a unique leader if the graph of the possible
interactions between agents is complete (as in the traditional popula-
tion protocol model) or a tree. Moreover, we prove that a leader can be
elected in a complete bipartite graph if and only if the two sides have
coprime size.

We then describe how to take advantage of the presence of a leader to
solve the tasks of token circulation and construction of a shortest-path
spanning tree of the network. Finally, we prove that with a leader we can
transform any stabilizing protocol into a terminating one that solves the
same task.

1 Introduction

Background. The population protocol model, introduced in the seminal paper
of Angluin et al. [3] has recently received a lot of interest among researchers in
distributed computing. The model consists of a set of simple anonymous finite-
state agents that interact pairwise, and each interaction changes the state of
both agents. Normally each pair of agents is supposed to interact infinitely often
in any infinite execution of the protocol; however, these interactions may occur
in any arbitrary order. This models the asynchrony and uncertainty in a distrib-
uted system. Moreover, as the agents have constant memory independent of the
size of the system, this means that the protocol can be scaled to populations of
any size. The population protocol model is useful for modeling large-scale net-
works consisting of small mobile devices, such as sensor networks or swarms of
microrobots.
c© Springer International Publishing AG 2017
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Since the introduction of this model, several variants of population protocols
have been studied. For example, there could be restrictions on which only certain
pairs of agents are allowed to interact, giving rise to arbitrary interaction graphs
instead of the complete graph [2]. This paper considers the interaction graph
to be an arbitrary connected graph on the set of agents. Another possibility is
to consider restrictions on the schedule of interactions, e.g., allowing a periodic
scheduler, or a k-bounded scheduler, or a probabilistic scheduler [1].

The power of population protocols in terms of what kinds of predicates can
be computed by them has been studied extensively. Angluin et al. [5] showed that
the class of computable predicates is exactly the class of semilinear predicates (or,
equivalently, all predicates that can be defined by first-order logical formulas in
Presburger arithmetic). Further studies introduced enhancements in the model
to increase its computational power and allow the computation of larger classes
of predicates: endowing each agent with non-constant memory [1], assuming the
presence of a leader [7], allowing a certain amount of information to be stored
on the edges of the interaction graph [12,13]. In the present paper we study
the latter category of population protocols, which are called mediated population
protocols. We assume that the amount of memory per node and per edge of the
graph is constant, and we study what can be computed in several restricted
classes of interaction graphs and with several types of schedulers.

Our Contributions. In this paper we focus on algorithms to elect a unique
leader in a mediated population protocol, as well as applications of a leader in
several common situations. In Sect. 2, we formally define the mediated popula-
tion protocol model and related concepts. The types of schedulers we consider
are the recurrent scheduler, which only implements a bland notion of fairness on
interactions, and the k-bounded scheduler, which cannot neglect any interaction
for too long. We also distinguish between stabilizing protocols, which reach a
configuration in which no agent changes state any more, and terminating pro-
tocols, in which the agents “realize” that the configuration is stable (or about
to become stable), and explicitly terminate the execution. Typically, when the
scheduler is recurrent and the task is not trivial, there exists no terminating pro-
tocol to solve it. In these cases, we will give only stabilizing protocols. On the
other hand, when the scheduler is k-bounded, we will give terminating protocols.

In Sect. 3, we study the problem of leader election in several network topolo-
gies: complete graphs, complete bipartite graphs, and trees. We prove that a
unique leader can always be elected in a complete graph and in a tree, and we
give a characterization of the complete bipartite graphs in which a leader can be
elected under a 1-bounded scheduler: those are the complete bipartite graphs in
which the two sides have coprime sizes.

In Sect. 4, we assume that the network contains a unique leader, and we
show how to use this feature to accomplish some typical tasks in arbitrary net-
works. First we show how to solve the token circulation problem and how to
construct a shortest-path spanning tree. Then we show how to convert any stabi-
lizing protocol into an “equivalent” but terminating one. As a byproduct, given
any protocol for the 2-bounded scheduler, we can make it work also under the
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k-bounded scheduler, for any k > 2. By combining these solutions with the leader
election protocols of Sect. 3, we can solve the same tasks even if a leader is not
given in advance, provided that the network is a complete graph, a complete
bipartite graph with coprime sides, or a tree.

Related Work. The task of electing a leader has been extensively studied in the
context of (non-mediated) population protocols. The majority of papers focus on
self-stabilizing leader election under the assumption that the scheduler is globally
fair. This is a more powerful scheduler than the recurrent one, and it may or may
not be more powerful than the k-bounded one. It has been shown that leader
election requires either as many states as agents [9] or the presence of an oracle
that informs agents about the presence of a leader in the system [15]. Concerning
restricted interaction graphs, in [10] self-stabilizing leader election algorithms for
trees are given; the case of the ring is studied in [15]. Both papers assume the
presence of an oracle. These results have been extended, under the same set of
assumptions, to arbitrary graphs in [6]. In [4], a constant-space algorithm for
the ring graph is also given. In the context of mediated population protocols, a
non-constant-space algorithm for leader election is shown in [16].

Under the globally fair scheduler, the self-stabilizing construction of a span-
ning tree has been investigated in [4], where an algorithm requiring O(log D)
states is given, D being the graph’s diameter. In the same paper, a self-stabilizing
token circulation algorithm for the ring graph is given. In a model similar to pop-
ulation protocols, a token circulation algorithm for arbitrary graphs is discussed
in [11], assuming the presence of an oracle.

Several papers assumed a unique leader as a computational tool to enhance
the power of population protocols. Counting algorithms are given in [7]; in [8],
a self-stabilizing transformer for general protocols has been studied in a slightly
different model and under the additional assumption of unbounded memory. In
the context of fault tolerance, [14] uses a leader to make any protocol tolerant
to omission failures.

Other papers have discussed the computational power of mediated population
protocols in terms of the predicates that can be computed [12,13].

In light of the above results, our paper represents a breakthrough in that
we show how to elect a leader in some large classes of networks using only
a constant number of states per agent and per edge; moreover, we often make
weaker assumptions on the scheduler, and we do not resort to querying an oracle.
The same holds for the applications of leader election, which in addition apply
to all networks in which a leader is present (regardless of the interaction graph’s
topology).

2 Model and Definitions

Network and Configuration. A network is an unoriented connected finite
graph G on a set V of at least two vertices, which are called agents. Each agent
has an agent state belonging to a finite set Q. In turn, Q is partitioned into input
states QI , work states QW , and terminal states QT .
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Each edge of G has a port for each of its two endpoints; the set of all ports is
denoted by P . If {a, b} is an edge of G, we denote by p(a, b) the port on a’s side
of {a, b} and by p(b, a) the port on b’s side. Each port has a port state belonging
to a finite set U ; there exists a unique initial state u0 ∈ U .

A configuration C is a pair of functions (f, g), where f : V → Q and g : P →
U . C is said to be initial if f(V ) ⊆ QI and g(P ) = {u0}.

Interaction and Scheduler. An interaction is an ordered pair of agents
(as, ar), where as is called the sender and ar is called the receiver, such that
{as, ar} is an edge of G. The set of possible interactions of G (i.e., two for each
edge) is denoted by I. A schedule S is an infinite sequence of interactions, i.e.,
S : N → I. A scheduler is a set of schedules. We define the following schedulers:

– the recurrent scheduler is the set of schedules in which each interaction of I
appears infinitely often;

– the k-bounded scheduler, where k is a positive constant, is the set of schedules
that belong to the recurrent scheduler and such that, between two consecu-
tive occurrences of the same interaction within a schedule, none of the other
interactions appears more than k times.

Let us observe that all the schedules in the 1-bounded scheduler are periodic.

Transition Function, Execution, and Task. A transition function (or pro-
tocol) is a function δ : Q × U × Q × U → Q × U × Q × U such that, if
δ(qs, us, qr, ur) = (q′

s, u
′
s, q

′
r, u

′
r) and qs ∈ QT (respectively, qr ∈ QT ), then

qs = q′
s (respectively, qr = q′

r). That is, δ leaves terminal states unchanged.
Given a configuration C = (f, g), we say that configuration C ′ =

(f ′, g′) results from C by the interaction i = (as, ar) according to transi-
tion function δ if f ′ coincides with f on V \ {as, ar}, g′ coincides with g
on P \ {p(as, ar), p(ar, as)}, and (f ′(as), g′(p(as, ar)), f ′(ar), g′(p(ar, as))) =

δ(f(as), g(p(as, ar)), f(ar), g(p(ar, as))). If this is the case, we write C
δ,i−→ C ′.

The execution of a schedule S = (i0, i1, . . .) from an initial configuration C0

according to a transition function δ is the sequence of configurations (C0, C1, . . .)

such that, for every j ∈ N, Cj
δ,ij−−→ Cj+1. Let an execution E = (Cj)j≥0 be given,

with Cj = (fj , gj). We say that E is stable if there is a j∗ ∈ N such that, for
every j′ > j∗, fj′ = fj′+1. We say that E terminates if there is a j∗ ∈ N such
that fj∗(V ) ⊆ QT . Note that an execution that terminates is also stable.

A task or problem is a set of executions. We say that a protocol δ on a set
of agent states Q and a set of port states U solves a task T under scheduler S
in a given network if the execution according to δ of every schedule in S from
any initial configuration is in T . If such executions are all stable, the protocol is
said to be stabilizing. If such executions all terminate, the protocol is said to be
terminating.

Algorithmic notation. When describing transition functions, we will some-
times use an “algorithmic style” (cf. Figs. 1 and 2). When the interaction (a, b)
occurs, the function Transition function is applied to (a, p(a, b), b, p(b, a)); note
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that, with a little abuse of notation, we identify agents and ports with their
respective states. In our formalism, a state is seen as a tuple of variables. To
refer to variable x of the state of agent a, we use the expression a.x.

3 Leader Election

In this section we study the task of electing a leader in several types of networks.
Formally, the set of agent states includes some leader states, and leader election
is the task consisting of the executions in which eventually there is a unique
agent in the network with a leader state. Note that a protocol solving the leader
election problem need not be stabilizing.

3.1 Complete Graphs

If the network is a complete graph, there is a simple leader election protocol that
works under the recurrent scheduler.

Theorem 1. There exists a stabilizing protocol that solves the leader election
problem in Kn, for all n > 1, under the recurrent scheduler.

Proof. We use only two agent states: an input state, which is also a leader state,
and a work state, which is a non-leader state. There are no terminal states and
only one port state. Whenever two agents with the leader state interact, the
sender retains the leader state and the receiver takes the non-leader state. In all
other cases, the agents retain their states.

As a result, in every execution all agents will initially have the leader state
(because it is the only input state) and, whenever two leaders meet, one will
be “eliminated”. Since all ordered pairs of agents are going to interact infinitely
many times (because the network is the complete graph and the scheduler is
recurrent), it is obvious that eventually only one agent with the leader state will
remain, and its state will never change. Hence the protocol is stabilizing. ��

3.2 Complete Bipartite Graphs

Next we give a characterization of the complete bipartite graphs in which the
leader election problem is solvable under the 1-bounded scheduler. When the
problem is solvable, we can also give a terminating protocol.

Theorem 2. There exists a (terminating) protocol that solves the leader election
problem in Km,n under the 1-bounded scheduler if and only if m and n are
coprime.

Proof. Suppose that m and n are coprime. Without loss of generality, let m < n.
The idea of our protocol is to make the m agents in the smaller side of the
graph “eliminate” m agents in the larger side. What is left is a smaller complete
bipartite graph, on which the same procedure is repeated until only one agent
remains: this agent will be the leader.
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The protocol uses the fact that the schedule has period 2mn, and hence
the concept of round can be defined as a set of 2mn consecutive interactions.
Whenever an agent a is involved in an interaction for the first time (which is
easy to detect, since a still has an input state), and its partner is some agent
b, the port p(a, b) is “marked” with a special state that also encodes the role of
a in the interaction (i.e., sender or receiver). So, when a sees the marked port
again, and its role is the same as the one encoded by the mark, it knows that
a new round has started. With this technique, agents can implicitly coordinate
their actions and do different things at different rounds.

In the first round, a maximal matching is constructed. Initially all agents
are unmatched; whenever two unmatched agents interact, they become matched
and change their state accordingly. By the end of the first round, all agents in
the smaller side of the graph have been matched. During the second round, all
agents discover if they belong to the smaller side or the larger side: the ones in
the smaller side will see some unmatched agents, and the ones in the larger side
will only see matched agents. Note that each agent can perform this check by
having a “flag” in its state that is cleared at the beginning of the round and
is set whenever an unmatched agent is encountered. During the third round,
the agents in the smaller side revert their state to unmatched, and the matched
agents in the larger side become eliminated.

This three-round cycle is then repeated, ignoring the eliminated agents, until
only one agent remains unmatched (note that this happens if and only if m and
n are coprime). Finally, this situation has to be detected by all agents, so that
the protocol can terminate. This is done by adding another flag, which is used
in the third round, to check if the encountered unmatched agents are more than
one. So, when only one unmatched agent is left, the agents in the opposite side
detect it and get a terminal (non-leader) state. As soon as the other agents see
some terminated agents, they also get a terminal state (which will be a leader
or non-leader state, depending on whether they are unmatched or matched).

Suppose now that m and n are not coprime, and let d > 1 be their greatest
common divisor. Partition one side of the graph into m/d groups of size d and the
other side in n/d groups of size d. Let A = {a0, . . . , ad−1} and B = {b0, . . . , bd−1}
be two groups of agents on opposite sides, and let SA,B be the following sequence
of d2 interactions: first all the interactions of the form (aj , bj), with 0 ≤ j < d,
then all the interactions of the form (aj , bj+1 mod d), then all the interactions of
the form (aj , bj+2 mod d), etc. We then construct a sequence S by concatenating
all the sequences SA,B for every ordered pair (A,B) of groups of agents located
on opposite sides of the graph. The resulting sequence has length 2mn and
involves all possible interactions in the network. Finally, we construct a schedule
S∗ by concatenating infinitely many copies of S.

Suppose that in the initial configuration all agents have the same input state
(which is a valid initial configuration, regardless of the protocol), and suppose
that the above scheduler S∗ is executed. Then, every d interactions, all agents
in a same group will have the same state, and in particular there will not be a
unique agent with a leader state. This means that no protocol solves the leader
election problem under the 1-bounded scheduler (since S∗ is 1-bounded). ��
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3.3 Tree Graphs

If the network is a tree and the scheduler is recurrent, we can always elect a
leader with a stabilizing protocol. Moreover, if the scheduler is k-bounded, we
have a terminating protocol.

Theorem 3. For every k ≥ 1, under the k-bounded scheduler (respectively,
under the recurrent scheduler), there exists a terminating (respectively, stabi-
lizing) protocol that solves the leader election problem in every tree.

Proof. First we describe how to elect a stable leader if the scheduler is recurrent:
the protocol is summarized in Fig. 1. Then we will show how to make the same
protocol terminate under the k-bounded scheduler. The idea of the protocol
is to establish a parent-child relation between adjacent vertices of the tree in
such a way that eventually the tree becomes rooted: the root will then be the
leader. Assuming that {a, b} is an edge, the way we represent the fact that a is
a parent of b is by setting a parent flag in the state of port p(a, b). In the initial
configuration, no parent flag is set. Each agent has a parents variable too, which
counts how many parents the agent has (initially 0, and ranging from 0 to 2).
Both agents and ports also have a busy flag, initially not set.

Whenever a pair of non-busy agents (a, b) is activated and none of p(a, b) and
p(b, a) have their parent flag set, then the parent flag of p(a, b) is set, encoding the
fact that b has become a child of a. Then the parents variable of b is incremented;
if b has now two parents, both b and p(b, a) become “busy” by setting their
respective busy flag. b will then look for its “old parent” c. Note that, while b
has its busy flag set, it will accept no more parents or children. When b interacts
again with c (which is recognizable because the parent flag of p(c, b) is set and
the busy flag of p(b, c) is not set) and c is not busy, b becomes a parent of c and c
becomes a child of b (i.e., the parent flags of p(b, c) and p(c, b) are switched). Also,
the parents variable of c is incremented; if c has two parents, then both c and
p(c, b) become busy. At the same time, the parents variable of b is decremented,
meaning that b has a unique parent again. So, the next time b interacts with a
(which is recognizable because the parent flag of p(a, b) is set), b will clear its
own busy flag, as well as the busy flag of p(b, a). In the meantime, if the busy
flag of c is set, c looks for its old parent d and does the same operations that b
just did; then d will do the same, etc.

Let us see how an execution of this algorithm works globally. Initially, all
edges of the network are “unoriented”; as soon as some edge is activated, it
gets an “orientation”, telling which of the two endpoints is the parent. As the
execution continues, a forest of oriented subtrees is constructed, and each tree
in this forest has a unique root. When two subtrees meet because an interaction
(a, b) occurs, they merge, and the root of a’s subtree becomes the root of the
new tree. So, the orientations of all the edges in the path from b to the root of
b’s subtree have to reverse. While edges are being reversed, the agents involved
become temporarily busy, so that no other subtrees can merge at those points
and interfere with the process. Note that deadlocks are impossible because the
network is cycleless. Also, progress will always be made, because the scheduler is
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recurrent, and therefore all possible interactions will eventually occur. When all
the subtrees have finally merged and all edges stop reversing, the entire tree is
oriented and has a unique root. The root is also the only agent in the tree whose
parent flag is not set. If we define this as a leader state, we have a stabilizing
leader election protocol.

1: Agent variables
2: parents := 0
3: busy := false
4:
5: Port variables
6: parent := false
7: busy := false
8:
9: Transition function δ(a, p(a, b), b, p(b, a))
10: if ¬a.busy ∧ ¬b.busy ∧ ¬p(a, b).parent ∧ ¬p(b, a).parent then
11: p(a, b).parent := true
12: b.parents := b.parents + 1
13: if b.parents = 2 then
14: b.busy := true
15: p(b, a).busy := true

16: else if a.busy ∧ ¬b.busy ∧ ¬p(a, b).busy ∧ p(b, a).parent then
17: p(a, b).parent := true
18: p(b, a).parent := false
19: a.parents := a.parents − 1
20: b.parents := b.parents + 1
21: if b.parents = 2 then
22: b.busy := true
23: p(b, a).busy := true

24: else if a.busy ∧ a.parents = 1 ∧ p(b, a).parent then
25: a.busy := false
26: p(a, b).busy := false

Fig. 1. Stabilizing leader election in a tree

Suppose now that the scheduler is k-bounded, and let us show how to make
the above protocol terminate. Observe that a technique similar to the one used
in Theorem 2 allows any agent to determine when it has interacted with all of its
neighbors in the tree. The first time an agent is involved in an interaction as the
sender, it marks the corresponding port. Then it counts how many times that
same interaction occurs; at the k + 1th occurrence, the agent knows that all the
possible interactions have occurred at least once, and therefore it has interacted
with all of its neighbors. Since k is fixed, a constant number of agent states
is sufficient to implement this counter. Furthermore, an agent can determine
whether it is a leaf or an internal vertex of the network: if the agent sees a
marked port every time it is activated as the sender of an interaction for k + 1
times consecutively, then it is a leaf. Now, if a leaf agent has a parent, it knows
that it will never become leader, and therefore it can get a terminal non-leader
state. More generally, if an agent with a parent realizes that all its neighboring
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agents except its parent are in a terminal state, then it can get a terminal non-
leader state, as well. Once again, this check can be performed with a flag and a
finite counter. It is easy to prove by induction that eventually all agents except
the final root of the tree will get a terminal non-leader state. When this happens,
the root easily realizes and gets a terminal leader state. ��

4 Applications of a Unique Leader

In this section we will show how the presence of a unique leader can help us
solve several different tasks. Formally, these are tasks consisting of executions in
which the initial configuration has a unique agent in a leader state.

4.1 Token Circulation

Here we provide a stabilizing solution to the token circulation task that works
in every network under the recurrent scheduler. Formally, the set of agent states
includes some token states, and token circulation is the task consisting of the
executions in which, if in the initial configuration there is a unique agent with
token state, then in every configuration there is a unique agent with token state,
and each agent has token state in at least one configuration.

1: Agent variables
2: token for the leader, false for non-leaders
3: tree := false
4: summoning := false
5:
6: Port variables
7: parent := false
8:
9: Transition function δ(a, p(a, b), b, p(b, a))
10: if a.token ∧ ¬a.tree then
11: a.tree := true
12: if ¬a.tree ∧ ¬a.summoning ∧ b.tree then
13: a.summoning := true
14: p(b, a).parent := true

15: if a.summoning ∧ ¬b.summoning ∧ p(b, a).parent then
16: b.summoning := true
17: p(a, b).parent := true
18: p(b, a).parent := false

19: if a.summoning ∧ b.token ∧ p(a, b).parent then
20: a.token := true
21: if ¬a.tree then
22: a.tree := true
23: a.summoning := false

24: b.token := false
25: b.summoning := false

Fig. 2. Token circulation protocol
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Protocol Variables. Each agent’s state consists of three flags: token, tree,
and summoning. Each port’s state consists of the single flag parent. The token
states coincide with the leader states, and are those in which token = true. All
flags of all agents and ports are initially set to false, with the exception of the
token flag of the leader, which is set to true.

Protocol Description. Our protocol is given in Fig. 2. The token circulates
along the edges of a spanning tree of the network, which is constructed incre-
mentally as the algorithm is executed. Each agent remembers if it has already
obtained the token: this is done by setting the flag tree. With this flag, the
agent also remembers that it belongs to the “partial” spanning tree. The flag
summoning is used by an agent to remember that the token has to be sent
to a new agent that recently joined the spanning tree. The ports of each edge
have a parent flag that we use to encode a parent-child relationship between
the endpoint agents or an orientation of the edge, in the same way as we did
in Theorem 3. The resulting oriented edges can point either in the direction of
the token (along the spanning tree) or toward an agent that is summoning the
token.

The details of the algorithm are as follows. If an agent has the token and is
not in the partial spanning tree (i.e., a.token and ¬a.tree), it sets its own tree
flag, thus becoming part of the spanning tree. This is an initialization operation
that is performed only once in every execution.

If a sender a not in the spanning tree and not summoning (i.e., ¬a.tree and
¬a.summoning) interacts with a receiver b in the spanning tree (i.e., b.tree),
then it sets it own summoning flag and orients the edge {a, b} toward b, setting
the p(b, a).parent flag.

If a summoning sender a (i.e., a.summoning) interacts with a non-summon-
ing receiver b along an edge of spanning tree that is oriented toward b (i.e.,
¬b.summoning and p(b, a).parent), then b becomes a summoner as well, and
the orientation of the edge {a, b} is reversed.

Finally, if a summoning sender a interacts with a receiver b possessing the
token and the edge {a, b} is oriented toward a, then a gets the token, while b
loses it and ceases to be a summoner (in case it was a summoner). Additionally,
if a is not in the spanning tree yet, it sets its own tree flag and stops being a
summoner.

Theorem 4. The protocol in Fig. 2 solves the token circulation task in any net-
work under the recurrent scheduler, provided that there is a unique leader. More-
over, the protocol is stabilizing and the edges with the parent flag set (on either
port) eventually define a spanning tree of the network with edges oriented toward
the token.

Proof. First we shall prove that the edges with the parent flag set always form a
tree. Indeed, initially no parent flag is set. Then, the only line of the algorithm
that creates an edge orientation is line 14 (note that lines 16 and 17 only flip an
edge that is already oriented). In turn, line 14 is triggered only when a is not in
the spanning tree and is not summoning. But as line 14 is triggered, a becomes
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summoning. Moreover, when a ceases to be summoning, it also becomes part of
the spanning tree (lines 22 and 23). And once a is part of the spanning tree,
it never leaves it (because the tree flag is never cleared in the algorithm). It
follows that a is involved in the execution of line 14 at most once. This shows
that the edges with the parent flag set never form cycles. Showing that they form
a connected sub-network (containing the token) is also easy, because line 14 is
executed only when a is a neighbor of an agent b with flag tree set, and the tree
flag is set only by the agent that initially has the token (line 11) and by agents
that have incident edges with the parent flag set (line 22). This proves that the
edges with the parent flag set form a tree throughout the execution.

Also note that the agents with the flag tree set are vertices of this partial
spanning tree: indeed, the flag is first set by the agent with the token (when the
tree has no edges yet), and then only by agents that have incident edges with the
parent flag set. Actually, the only agents that do not have the tree flag set and
are incident to edges with the parent flag set are leaves of the partial spanning
tree that have the summoning flag set.

Let us now prove the correctness of the protocol. We have to show that
eventually all agents in the network set their tree flag. Since this only happens
when they have the token, this would prove that the token reaches all agents. We
will prove by induction that the number of agents with the tree flag set is bound
to increase. Initially no agents have the tree flag set, and nothing happens until
the agent with the token is involved in an interaction and sets its own tree flag.
Note that this must happen sooner or later because the network is connected,
there are at least two agents, and the scheduler is recurrent. Then, some agent
a whose tree flag is not set will interact with an agent b whose tree flag is set,
triggering lines 12–14. So a will become a summoner and the edge {a, b} will
be oriented toward b. Of course, this may happen to several different agents,
not only to a. What will happen next is that lines 15–18 will be triggered and
some edges of the partial spanning tree will start reversing. The idea is that
each summoner tries to reach the agent with the token by reversing the edges
along the path connecting to it. This path can be easily identified because all
the non-summoners that are in the partial spanning tree point toward the token.
When an edge is reversed, its non-summoner endpoint becomes a summoner, as
well. This prevents lines 15–18 from being triggered more then once on the same
agent, and therefore prevents different summoners from interfering with each
other. Eventually, an edge reversal will reach the token. When this happens,
there is a unique path in the partial spanning tree that is oriented from the
token to a summoning leaf. Then lines 19–25 will be triggered, and the token
will follow the edges of such an oriented path, until it reaches the summoning
leaf. The agents that lose the token will clear their summoning flags, but the
one with the token will remain a summoner, to avoid triggering lines 15–18 and
avoid creating forks in the path. When the summoning leaf obtains the token
(the leaf is recognizable because its tree flag is not set), it sets its own tree flag
and clears its own summoning flag.
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This ends the proof of correctness. Note that the protocol is stabilizing
because, as soon as all agents have set their tree flag, no new summoners appear
and all edges stop reversing. ��

4.2 Construction of Shortest-Path Spanning Trees

Next we show how to solve the task of constructing a spanning tree of the network
under a k-bounded scheduler, again assuming that there is a unique leader. As
a bonus, the distance of the leader from any agent along the spanning tree
coincides with the distance over the whole network. Equivalently, this spanning
tree is generated by a breadth-first traversal of the network starting at the leader.

Theorem 5. For every k ≥ 1, under the k-bounded scheduler there exists a
terminating protocol that constructs a shortest-path spanning tree of any network,
provided that there is a unique leader.

Proof. The tree is created level by level, and the leader coordinates the construc-
tion: when a new level of the tree is completed, the leader will be notified and
will broadcast a message on the partial spanning tree, ordering the construction
of a new level. When a leaf receives a “new level” message, it expands identifying
its children among the agents that have not been included in the tree, yet. Each
of these agents will be part of the new level. Since the scheduler is k-bounded, a
leaf is able to detect when it has seen all its neighbors, as in Theorem 3. Then,
the leaf sends a “job done” message to its parent; in the message it also com-
municates if there is a new level or not. Each upper level collects all termination
messages and forwards them, until they reach the leader. Initially, the leader is
the only leaf of the tree and it will bootstrap the procedure creating the first
level. Note that the leader knows that the task has been completed when it
detects that no leaf has been able to add a new level to the spanning tree. At
that point it broadcasts a “terminate” message along the spanning tree. ��

4.3 Detection of Stability

Under the k-bounded scheduler, a unique leader can be used to convert any sta-
bilizing protocol into a terminating one, in any network. A similar technique has
been used in [17] in the context of detecting stability in message-passing systems.
As byproduct, any protocol for the 2-bounded scheduler can be simulated in all
k-bounded schedulers, for k > 2. First we give some crucial definitions.

Definitions. Let G be a network, and let δ be a transition function for G with
agent states Q and port states U . Now let Q′ = QS × Q and U ′ = US × U , and
let δ′ be a transition function for the same network G with agent states Q′ and
port states U ′. Let us refer to the sets QS and US as the simulator work states
for agents and ports, while Q and U are the simulated states.

A simulated transition for δ′ is a state transition in which some agents or
ports change their simulated states as a result of an interaction according to δ (if,
instead, only the simulator work states change, the transition is not considered
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a simulated one). Given an execution E of δ′, its simulated execution is the
execution of δ that is obtained from E by removing the non-simulated transitions
and projecting the agents’ and ports’ states on Q and U .

We say that δ′ under scheduler S ′ simulates δ under scheduler S if, for every
execution of δ′ corresponding to a schedule in S ′, its simulated execution is an
execution of δ corresponding to a schedule in S. If, additionally, δ is stabilizing
under S and δ′ is terminating under S ′, we say that δ′ detects the stability of δ.

Theorem 6. For every k > 2, given a stabilizing protocol δ, there is a protocol
δ′ that, under the k-bounded scheduler, detects the stability of δ under the 2-
bounded scheduler, from any initial configuration with a unique leader.

Proof. The protocol δ′ has an initialization phase in which the leader builds a
shortest-path spanning tree of the network, as in Theorem 5. Recall that the
spanning tree construction is terminating, hence the agents can perform other
tasks when they are finished. After the initialization phase, the protocol is struc-
tured in two alternating phases: a reset phase and a simulation phase. When the
stability is detected, the leader starts the termination phase.

In the reset phase, all the flags used in the simulation by agents and ports
are reset. This phase is performed level by level and is coordinated by the leader
as in Theorem 5. Once again, note that the agents are able to tell when they
have reset all their incident ports, because the scheduler is k-bounded.

Once all flags have been reset, the leader starts the simulation phase. In this
phase, one simulated interaction between each ordered pair of neighboring agents
is performed, starting from the leader and proceeding to the leaves, following the
levels of the spanning tree. Each edge port has a simulation flag, which tells if
the edge has already been part of a simulated interaction in the direction corre-
sponding to the port. This flag is reset during each reset phase. The simulation
at level � proceeds as follows: an agent receiving the order to simulate starts
scanning each incident port (whenever the scheduler generates the correspond-
ing interaction) and, if its simulation flag is not set, both endpoints of that edge
perform a simulated interaction according to δ and set the port’s simulation flag.
When all its incident ports have the simulation flag set (which can be verified
because the scheduler is k-bounded), the agent sets its own complete flag and
notifies the leader. The leader waits until it detects that each agent at level �
has set the complete flag: this can be done with a convergecast. Then the leader
issues another order to simulate, which reaches level �+1. The simulation phase
ends once the lowest level of the three has finished simulating. Thanks to the
complete flag, this phase can be performed in constant space.

During the simulation phase, the agents also perform a “local stability” check
on each edge. An edge {a, b} is locally stable if no (infinite) schedule consisting
only of the interactions (a, b) and (b, a) ever causes the simulated state of a or
b to change according to δ. Note that the stability of an edge can be verified
by its endpoints in a single interaction executing δ′. Each agent has an unstable
flag that is cleared during the reset phase and is set whenever the agent either
changes its simulated state or detects that an incident edge is not locally sta-
ble. Then, during the convergecast, agents also communicate the state of their
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unstable flag to the leader. When the simulation phase is over, the leader knows
if the whole network is locally stable. If it is not, it starts the next reset phase;
otherwise, it proceeds with the termination phase. The termination phase is sim-
ply a broadcast over the spanning tree that orders all agents to get a terminal
state.

The correctness of the simulation follows from the fact that, at every phase,
each simulation flag is first cleared and then set. This means that all possible
simulated interactions occur in some order at each simulation phase. So, the
resulting simulated schedule is a sequence of permutations of all the possible
interactions in the network. Each permutation contains each interaction exactly
once. Therefore, between two occurrences of the same interaction within two
consecutive permutations, no other interaction occurs more than twice. In other
words, the simulated schedule is 2-bounded.

Let us now show that the stability of δ is correctly detected and that δ′

correctly terminates. Of course, when the simulated execution of δ stabilizes,
all edges are locally stable and no agents change simulated states, and this is
detected by the leader, which then correctly executes the termination phase. We
have to prove that the leader cannot start the termination phase “by accident”
before the execution of δ has actually stabilized. Equivalently, we have to prove
that, if all edges are locally stable at some point during the simulation phase, then
the simulated execution of δ has indeed reached a stable simulated configuration.
Here the key observation is that, by the way the simulator works, the simulated
states of agents and ports change only according to δ. So, if all edges pass the
local stability test at some point in the simulation phase (and no agents change
their simulated states), it does not matter in what order they are checked, and
when. Indeed, in the next simulation phase, the simulated states of the agents
will still be the same, and therefore all edges will still be locally stable. ��
If δ′ is executed under the 1-bounded scheduler, the simulated execution obtained
in Theorem 6 corresponds to a 1-bounded schedule, as well.

Corollary 1. Given a stabilizing protocol δ, there is a protocol δ′ that, under
the 1-bounded scheduler, detects the stability of δ under the 1-bounded scheduler,
from any initial configuration with a unique leader.

Proof. Recall from Theorem 6 that the simulated schedule generated by δ′ con-
sists of a sequence of permutations of all the possible interactions. Now, if δ′ is
executed under a 1-bounded scheduler, the schedule will actually be periodic,
and so will be the resulting simulated schedule. Therefore, the simulated sched-
ule is a repetition of the same permutation of interactions, which implies that it
is 1-bounded, as well. ��
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Abstract. It is well known that AC0 circuits can be learned by the Low
Degree Algorithm in quasi-polynomial-time under the uniform distribu-
tion due to Linial, Mansour and Nisan. Furst et al. and Blais et al. Then
showed that this learnability also holds when the input variables are
mutually independent or conform to some product distributions. How-
ever, a long-standing question is whether we can learn AC0 beyond these
distributions, e.g. under some non-product distributions.

In this paper we show AC0 can be non-trivially learned under a sort
of distributions, which we call k-dependent distributions. Informally, a
k-dependent distribution is one satisfying that for a randomly sampled
string (as input to a circuit being learned), some bits of it are mutually
independent, of which each other bit is dependent on at most k ones. We
note that this sort of distributions contains some natural non-product
distributions. We show that with respect to any such distribution, if the
dependence relations of all bits of sampled strings are known, AC0 can be
learned in quasi-polynomial-time in the case that k is poly-logarithmic,
and otherwise, the learning costs exponential-time but still uses simi-
larly many examples as the former case. We note that in the latter case
although the time complexity is exponential, it is significantly smaller
than that of the brute-force method (when the size of the circuit being
learned is sufficiently large).

1 Introduction

The seminal result of Linial, Mansour and Nisan [16] showed the Fourier spec-
trum of any function in AC0 is concentrated on low-degree coefficients and then
introduced the Low Degree Algorithm to learn the low-degree coefficients under
the uniform distribution and thus generated a function approximately identical
to the concept function. Later the Fourier concentration bound for AC0 has
been improved in [5,11,17]. Following [16], some works present various Fourier
concentration results for more expressive circuits augmented from AC0 and thus
gain corresponding learning results with the Low Degree Algorithm [3,8,13].

In all above results, the uniform distribution is required. There has been a
few successful attempts to extend some of the results to product distributions.
c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 187–200, 2017.
DOI: 10.1007/978-3-319-55911-7 14
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In [7] it is shown how to learn AC0 circuits under any distribution in which
all bits are mutually independent. In [4] it is shown that AC0 circuits can be
learned under any product distribution in which the cardinal number of the
probability space of each multiplier distribution is polynomial. [6] points out
that if AC0 could be computed by a polynomial threshold function (PTF) (of
arbitrary degree) with weight at most W then under any distribution, some con-
junction has correlation at least 1/W with some circuit being learned due to dis-
criminator lemma of [9], and thus one can then apply an agnostic learning algo-
rithm for conjunctions such as [14] combined with standard boosting techniques,
to PAC learn it in max(exp(Õ(n1/2)),W ) time. However, currently it is only
known that AC0 can be approximately computed by PTFs (of poly-logarithmic
degrees)[1,2,10,18,19].

So a natural and long-standing question is whether we can learn AC0 under
non-product distributions. In this paper we are interested in this question and
will have an attempt on it.

1.1 Our Results

We present an attempt on learning AC0 under non-product distributions. Let
x of n bits denote an input to a function to be learned. As shown above, all
previous results assume that all input variables of x are mutually independent.
Thus we consider a relaxation that some bits of x sampled from a distribution
are mutually independent, of which each other bit is dependent on at most k
ones. By “each other bit is dependent on at most k ones”, we mean that the
distribution of each other bit on the condition of all bits (excluding itself) is
same as that on the condition of the ≤ k mutually independent bits. This implies
that each other bit is only dependent on these ≤ k bits essentially. So we call
this distribution k-dependent. It can be seen that k-dependent distributions are
extensions of individually independent distributions.

There is an example showing that k-dependent distributions can be non-
product. Consider the following one, in which x1, x3, · · · , xn are mutually inde-
pendent, assuming n is odd; let fi, i ∈ [1, n − 2] ∩ 2Z + 1 denote n−1

2 (pos-
sibly probabilistic) functions; set x2 = f1(x1, x3), x4 = f3(x3, x5), · · · , xn−1 =
fn−2(xn−2, xn). So this distribution of x is two-dependent. Since xi can be related
with xi−1 for ∀i ∈ [2, n], it can be non-product.

Let D be any k-dependent distribution and x is sampled from D. According
to whether the dependence relations of all bits of x are known or not to the
learning algorithm, we state our results in the following two theorems.

Theorem 1 (informal). Assuming the dependence relations of all bits of x are
known, there exists a learning algorithm that can learn AC0 to any error and
confidence (ε, δ) in time poly(2max(k,log n)O(1)

, 1
ε , log 1

δ ) with respect to D.

Theorem 2 (informal). Assuming the dependence relations of all bits of x are
unknown, there exists a learning algorithm that can learn AC0 to any error and
confidence (ε, δ) in time 2O(kn log n) · poly(2max(k,log n)O(1)

, 1
ε , log 1

δ ) with respect
to D, using poly(2max(k,log n)O(1)

, 1
ε , log 1

δ ) examples.
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We remark that the running-time and the sample complexity of our first
result is basically quasi-polynomial similar to [16] in the case that k is poly-
logarithmic. As for the second result, although the time complexity is exponen-
tial, the algorithm only uses quasi-polynomial examples as the first one. Even
considering the time complexity, in learning an AC0 circuit of size s, the method
of learning by finding a consistent hypothesis, e.g. enumerating all circuits of size
s to find the one consistent with the given examples, consumes approximately
O(s2s)-time, while the algorithm in the second result uses running-time which
is significantly smaller than O(s2s) when s is a sufficiently large polynomial.
Lastly, our results can be extended to learning the classes augmented from AC0,
but for simplicity we only focus on AC0 in this paper.

Our Techniques. Let us recall one approach in [7] that shows AC0 can be
learned when n bits in input are independent but not uniform. The approach is
this. For each input bit xi, construct a DNF formula Xi which has some boolean
variables ri as input and is such that when ri is uniform, the output of Xi(ri)
almost conforms to the distribution of xi. Let X denote (X1, · · · ,Xn), f ′ denote
the composed function f ◦X that on given input r = (r1, · · · , rn), first computes
xi ← Xi(ri) for 1 ≤ i ≤ n (in parallel) and then computes f(x1, · · · , xn). Note
that f ∈ AC0 and each Xi ∈ AC0. So is f ′. Thus the question of learning f can
be reduced to the question of learning f ′.

We extend this approach to learn AC0 under any k-dependent distribution D.
Our main task is to construct n constant-depth circuits X = (X1, · · · ,Xn) such
that for x ← D, we can efficiently sample an (almost) uniform r = (r1, · · · , rn)
such that Xi(r) = xi for all i with high probability. Still let f ′ denote the
composed function f ◦ X. Thus when given many examples of form (x, f(x)) for
x ← D, we can come up with a uniform r satisfying that Xi(r) = xi for each
i, which shows f(x) = f ′(r) (with high probability). Thus we obtain many new
examples of form (r, f(x)). Note that f ′ is of constant-depth. This shows that
we can reduce the question of learning f to that of learning f ′.

Since in each new example, there is a small probability that the label is
not equal to f ′(r), we need a learning algorithm that can agnostically learn f ′.
Fortunately, as shown in [14], the Low Degree Algorithm is actually a some-
what agnostic learning algorithm. So we can run the Low Degree Algorithm to
compute a hypothesis to approximate f ′, denoted h′.

Once obtaining h′, a hypothesis h can be constructed to approximate f as
follows. On input x ← D, it first samples a uniform r such that Xi(r) = xi for all i
with high probability, and then outputs h′(r). Since h′(r) = f ′(r) and Xi(r) = xi

for all i except for small probability and f ′ = f ◦X, we have h′(r) = f(x) except
for small probability. This shows h is indeed an approximation of f .

Organization. The rest of the paper is arranged as follows. Section 2 presents
the preliminaries. In Sect. 3 we formalize the notion of k-dependent distributions.
In Sect. 4 we show how to identify some conditional probabilities of bits from
examples. In Sect. 5 we present our core lemma that shows how to construct
the desired circuits X1, · · · ,Xn. In Sect. 6 we present our learning algorithms by
combining all obtained results.
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2 Preliminaries

This section contains the notations and definitions used throughout this paper.
The Statistic Difference between X and Y is defined as the function

�(n) = 1
2 · Σα|Pr[X = α] − Pr[Y = α]|. If the statistical difference between

X and Y is �(n), we say X is �(n)-statistically close to Y .
Chernoff Bound. Let X1, · · · ,Xm be independent identically distributed

random variables such that Xi ∈ [0, 1], E[Xi] = p and Sm =
∑m

i=1 Xi. Then
Pr[Sm/m − p ≥ t],Pr[Sm/m − p ≤ −t] ≤ e−2t2m.

2.1 Learning Models

Let C denote a class of functions. In the PAC learning model [20], a labeled
example is a pair (x, f(x)), where x ∈ X is an input and f(x) is the value of the
target function f ∈ C on the input x. A training sample labeled by f is of the
form ((x1, f(x1)), · · · , (xs, f(xs))).

Definition 1 (PAC Learning). An algorithm L is called a learner for C under
distribution D over X, if it is given a training sample in which each x is sampled
from D and ε, δ ∈ (0, 1), with probability at least 1 − δ, L outputs a function h
(not necessarily in C) such that Pr[f(x) 
= h(x)] < ε for x ← D.

If L can work under any D, we say L PAC (Probably Approximately Correct)
learns C or simply learns C. We refer to ε as the accuracy parameter and δ as
the confidence parameter.

The Agnostic learning model [12,15] is an extension of the PAC model, in
which each example-label pair is chosen from a distribution D′ on X × {0, 1}.

Definition 2 (Agnostic Learning). Let D′ be any distribution on X × {0, 1}
and let C be a class of functions. We say that an algorithm L (ε, δ)-agnostically
learns C under distribution D′ if it is given many random example-label pairs
(x, b) according to D′, then with probability 1 − δ, L outputs a hypothesis h
such that Pr[h(x) 
= b] < inff∈C(Pr[f(x) 
= b]) + ε where (x, b) ← D′.

2.2 Learning AC0 with the Low Degree Algorithm

Let AC0 denote the class of all functions computable by polynomial-size
constant-depth unbounded fan-in circuits (of AND, OR, NOT gates and of
binary output), AC0

d [s] denote the class of functions computable by circuits
with depth bounded by d and size bounded by s.

[16] shows that for each f ∈ AC0
d [s],

∑
S:|S|>t f̂2(S) < ε, where all f̂(S)

denote its Fourier coefficients and t = (20 log s
ε )d. Under the uniform distribu-

tion, when obtaining 1
2 (nt

ε0
)1/2 · log(2nt

δ ) labeled examples of the form (x, f(x)),

the Low Degree Algorithm can approximate all f̂(S) for |S| ≤ t and with prob-
ability 1 − δ recover a function h that is such that Pr[h(x) 
= f(x)] < ε + ε0.
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3 k-Dependent Distributions

Informally, a k-dependent distribution is one such that all bits of x can be divided
to two parts, and the bits in the first part are mutually independent and each
bit in the second part is dependent on at most k ones of the first part, i.e., the
distribution of each such bit on the condition of all other bits is same as that on
the condition of the ≤ k ones in the first part.

Definition 3 (k-Dependent Distribution). A distribution D over {0, 1}n is
called a k-dependent distribution if for x ← D, letting x1, · · · , xn denote the
n bits of x, there exists a set V ⊂ [1, n] satisfying the following:

1. All xi for i ∈ V are mutually independent.
2. For each i /∈ V , there exists a set Ii ⊂ V with |Ii| ≤ k such that for any values

of bw ∈ {0, 1}, w ∈ [1, n] satisfying (b1, · · · , bn) has positive probability in D,
Pr[xi = bi|∀w ∈ [1, n] − {i}, xw = bw] = Pr[xi = bi|∀w ∈ Ii, xw = bw].

Recall the example shown in Sect. 1.1 that letting x1, x3, · · · , xn denote
mutually independent random bits for odd n and f1, f3, · · · , fn−2 denote n−1

2
(possibly probabilistic) functions, x2 = f1(x1, x3), x4 = f3(x3, x5), · · · , xn−1 =
fn−2(xn−2, xn). It can be seen that the distribution of xi on the condition of all
other ones equals that on the condition of xi−1, xi+1 for even 2 ≤ i ≤ n − 1. So
x conforms to a two-dependent distribution.

4 Approximately Identifying Conditional Probabilities

Let D denote any k-dependent distribution. In this section we present the results
of recovering approximately some conditional probabilities when given many
examples of x ← D.

First we introduce following notations used throughout this paper. For each
i /∈ V , let Si denote an |Ii|-element set {bw ∈ {0, 1} : w ∈ Ii}. For convenience,
we will often consider that Ii, Si are ordered sets and there is a correspondence
between Ii and Si. Note that Si has 2|Ii| different values, since each bw in it can
be 0/1. For each value of Si, let Ii = Si denote the formula that ∀w ∈ Ii, bw ∈
Si, xw = bw (with respect to the implicit correspondence).

Let pxi=bi
, pxi=bi|Ii=Si

denote approximations of Pr[xi = bi],Pr[xi = bi|∀w ∈
Ii, bw ∈ Si, xw = bw] respectively. In each conditional probability formula if the
event in the condition occurs with zero probability, the conditional probability
is considered as 0. Let c be an integer depending on k which will be determined
in Sect. 6.

Claim 1. There exists a poly(2k, 2log
c n, 1

ε , log 1
δ )-time algorithm that when

given poly(2log
c n, 1

ε , log 1
δ ) examples of x ← D and V, Ii, i /∈ V can output pxi=bi

for i ∈ V and all bi and pxi=bi|Ii=Si
for i /∈ V and all bi, Si such that except for

probability O(δn2ke−2n) the following holds:

1. For any i ∈ V and any bi, |pxi=bi
− Pr[xi = bi]| ≤ ε2− logc n.
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2. For any i /∈ V and any bi, Si, |pxi=bi|Ii=Si
− Pr[xi = bi|Ii = Si]| ≤ ε2− logc n

if Pr[Ii = Si] ≥ ε2− logc n.

Proof. The desired algorithm runs as follows:

1. Read q(n) = 23 logc n+1 · 1
ε3 · (n+log 1

δ ) examples of x ← D. For each i ∈ V, bi,
count the fraction satisfying xi = bi in the examples, denoted pxi=bi

.
2. For the q(n) examples, for each i /∈ V , for each bi, Si, if the number of

the examples in which Ii = Si is less than 22 logc n · 1
ε2 · (n + log 1

δ ), set
pxi=bi|Ii=Si

= 0. Otherwise, count the fraction of xi = bi in the examples
where Ii = Si, denoted pxi=bi|Ii=Si

.

First for each i ∈ V , due to the Chernoff bound, Pr[|pxi=bi
− Pr[xi = bi]| ≥

ε2− logc n] ≤ O(e−ε22−2 logc n+1q) = O(δe−2n).
Second, consider the case of Pr[Ii = Si] ≥ ε2− logc n. In this case using the

Chernoff bound, the number of the examples in which Ii = Si is more than
q Pr[Ii = Si]− 22 logc n · 1

ε2 · (n+log 1
δ ) = 22 logc n · 1

ε2 · (n+log 1
δ ) with probability

O(e−2ε22−2 logc nq) = O(δe−2n).
Using the Chernoff bound again, we have Pr[|pxi=bi|Ii=Si

− Pr[xi = bi|Ii =

Si]| ≥ ε2− logc n] ≤ O(e−2ε22−2 logc n·22 logc n· 1
ε2

·(n+log 1
δ )) = O(δe−2n).

Considering the union of probability bounds for all i, bi, Si, the claim
holds. �

5 The Core Lemma

In this section we present our core lemma, which asserts that we can construct
n constant-depth circuits X1, · · · ,Xn and a sampling algorithm such that for
x ← D, the sampling algorithm can sample an almost uniform string r satisfying
Xi(r) = xi for all i (for simplicity viewing r as input to all Xi). Let Ul denote
the uniform randomness over {0, 1}l.

Lemma 1. There is a poly(2k, 2log
c n, 1/ε, log 1/δ)-time algorithm that given V

and pxi=bi
for i ∈ V and all bi, and Ii, i /∈ V and pxi=bi|Ii=Si

for i /∈ V and
all bi, Si, can output n circuits X1, · · · ,Xn and a sampling algorithm Samp such
that:

1. For each i ∈ [1, n], Xi is of constant-depth and of size O(2k(logc n+log 1/ε)).
The total input to all X1, · · · ,Xn is of O(n(logc n + log 1/ε)2)-bit, denoted r,
and each Xi has a part of r as input. For convenience of statement, we will
sometimes write Xi(r) if there is no need to character explicitly the part of r
as input to Xi.

2. For x ← D, Samp(x) can sample an input r ∈ {0, 1}O(n(logc n+log 1/ε)2) in time
poly(2k, 2log

c n, 1/ε, log 1/δ)·2logc n such that xi = Xi(r) for all i ∈ [1, n] except
for probability O(εn2k2− logc n). Moreover, r is O(n2kε2− logc n)-statistically
close to the uniformness.
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Proof. The desired algorithm works as follows:

1. First construct Xi for each i ∈ V . For each such i, if 2ε2− logc n ≤ pxi=1 <
1 − 2ε2− logc n, let Xi denote the O(logc n + log 1/ε)-size DNF formula shown
in [7] that uses only {0, 1}O(logc n+log 1/ε)2 input bits, denoted ri, and is such
that |Pr[Xi(U|ri|) = bi] − pxi=bi

| ≤ ε2− logc n. 1

Let Sampi be the algorithm that given xi, repeats sampling uniform ri at
most 1/ε · log 1/ε · 2logc n · logc n times until Xi(ri) = xi, and if no such ri can
be sampled, simply samples ri uniformly one more time, and finally outputs
ri.
Otherwise, if pxi=1 < 2ε ·2− logc n, let Xi be the 0-constant function (that still
has ri as input and always outputs 0). If pxi=1 ≥ 1 − 2ε · 2− logc n, let Xi be
the 1-constant function. In these two cases, let Sampi be the algorithm that
simply samples ri uniformly and outputs it.

2. Then construct Xi for each i /∈ V as follows:
(a) For each Si ∈ {0, 1}|Ii|, if 2ε2− logc n ≤ pxi=1|Ii=Si

< 1 − 2ε2− logc n,
construct a DNF formula, denoted ϕSi

(·), shown in [7], which has
O(logc n + log 1/ε)2 bits as input. Let ri denote the input. Thus
|Pr[ϕSi

(U|ri|) = bi] − pxi=bi|Ii=Si
| ≤ ε2− logc n.

Otherwise, if pxi=1|Ii=Si
< 2ε2− logc n, let ϕSi

be the 0-constant function.
If pxi=1|Ii=Si

≥ 1 − 2ε2− logc n, let ϕSi
be the 1-constant function.

(b) Tentatively, let Xi denote the following boolean function that has
Xw,∀w ∈ Ii, ri as input:

Xi
def=

∨

Si∈{0,1}|Ii|

(∀w ∈ Ii, bw ∈ Si,Xw = bw) ∧ (ϕSi
= 1)

i.e., Xi outputs the OR of the boolean functions corresponding to all
possible values of Si (viewed as |Ii| bits), in which each one, denoted
(∀w ∈ Ii, bw ∈ Si,Xw = bw) ∧ (ϕSi

= 1), outputs 1 if ∀w ∈ Ii, bw ∈
Si,Xw = bw and ϕSi

(ri) = 1, and outputs 0 otherwise.
(c) Replace the appearance of all Xw in Xi by their DNF formulas con-

structed at Step 1. Thus Xi is a function of rw,∀w ∈ Ii, ri and can be
computed by a circuit of constant depth and size O(2k(logc n+log 1/ε)).

(d) Let Sampi be the following algorithm that given xi, xw, w ∈ Ii follows
the sampling strategy at Step 1 to sample ri satisfying ϕSi

(ri) = xi, in
which Si satisfies ∀w ∈ Ii, bw ∈ Si, xw = bw, and finally outputs ri.

1 We sketch the DNF construction in [7]. Suppose μ is a probability that we wish to
approximate. Since now ε2− logc n difference is allowed, we only need to construct
a DNF that outputs 1 with probability μ with O(logc n + log 1/ε) bits kept after
the binary point. So just assume μ = Σl

j=1aj2
−j , where l = O(logc n + log 1/ε) and

aj ∈ {0, 1}. Create one AND for each j satisfying aj = 1 such that the AND on input
j uniform bits outputs 1 with probability 2−j . Also insure that at most one AND
among all produces 1 on each input. Let the DNF be the OR of all these AND’s
which totally has O(l2) bits as input and is of size O(l).
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3. Let Samp be the algorithm that given x ← D, runs each Sampi to generate
ri, and outputs r = (r1, · · · , rn). Finally, output X1, · · · ,Xn and Samp.

We now show Xi(r) = xi for all i except for probability O(εn2− logc n), and
r is O(nε2− logc n)-close to the uniformness. Note that for i /∈ V , Xi actually
has rw, w ∈ Ii and ri as input, where all rw have been determined prior to the
construction of Xi. So for simplicity we will often omit all rw and just write
Xi(r) as Xi(ri). Moreover, we proceed only considering those values of Si, i /∈ V
satisfying for each such value of Si, i /∈ V , Pr[Ii = Si] ≥ ε2− logc n for all i /∈ V
(which implies |pxi=bi|Ii=Si

− Pr[xi = bi|Ii = Si]| ≤ ε2− logc n as Claim 1 shows).
We can do this since any of other values of Si, i /∈ V which makes Ii = Si for
some i occurs with probability n2kε2− logc n. Thus

Pr[X1(r1) = x1, · · · ,Xn(rn) = xn : x ← D, r ← Samp(x)]

=
∏

i∈V

Pr[Xi(ri) = xi] · Pr[∀i /∈ V,Xi(ri) = xi|∀i′ ∈ V,Xi′ = xi′ ]

In the following we present estimations of
∏

i∈V Pr[Xi = xi] and Pr[∀i /∈ V,Xi =
xi|∀i′ ∈ V,Xi′ = xi′ ].

Claim. For each i ∈ V , Pr[Xi(ri) = xi] = 1 − O(ε2− logc n). So
∏

i∈V Pr[Xi =
xi] = 1 − O(nε2− logc n).

Proof. For each such Xi, first consider the case of pxi=1 > 1 − 2ε2− logc n. Thus
Xi is the 1-constant function and Pr[xi = 1] ≥ 1− 3ε2− logc n. So any ri sampled
by Sampi is such that

Pr[Xi(ri) = xi] = Pr[xi = 1] · Pr[Xi = 1] + Pr[xi = 0] · Pr[Xi = 0]

≥Pr[xi = 1] ≥ 1 − 3ε2− logc n

Second consider the case of pxi=1 < 2ε2− logc n. In this case Xi is the 0-constant
function. Thus Pr[xi = 0] ≥ 1 − 3ε2− logc n. With a similar argument, the result
also holds.

Finally consider the case of 2ε2− logc n ≤ pxi=1 < 1 − 2ε2− logc n. In this case
in each sampling of Sampi, Sampi fails to sample U|ri| satisfying Xi(U|ri|) = xi

with probability at most 1 − ε2− logc n. This is so because if xi happens to be 1,
then Pr[Xi(U|ri|) = 1] ≥ pxi=1 − ε2− logc n ≥ ε2− logc n, and if xi happens to be
0, then Pr[Xi(U|ri|) = 0] ≥ pxi=0 − ε2− logc n ≥ ε2− logc n.

Thus in the 1/ε log 1/ε · 2log
c n · logc n-time repetitions in Sampi, except for

probability (1 − ε2− logc n)1/ε log 1/ε·2logc n·logc n = O(ε2− logc n), one ri satisfying
Xi(ri) = xi can be sampled.

So
∏

i∈V Pr[Xi = xi] = (1 − O(ε2− logc n))|V | ≥ 1 − O(nε2− logc n). �

Claim. Pr[∀i /∈ V,Xi(ri) = xi|∀i′ ∈ V,Xi′ = xi′ ] = 1 − O(n2kε2− logc n).
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Proof. Since on the occurrence of variables with order number in V the remain-
der variables are independent, we have

Pr[∀i /∈ V,Xi(ri) = xi|∀i′ ∈ V,Xi′ = xi′ ] =
∏
i/∈V

Pr[Xi(ri) = xi|∀i′ ∈ V,Xi′ = xi′ ]

=
∏
i/∈V

Pr[Xi(ri) = xi|Ii = Si]

Except for probability n2kε2− logc n (that the value of Si is such that
Pr[Ii = Si] < ε2− logc n for some i), for each i /∈ V , since |Pr[ϕSi

(U|ri|) = bi] −
pxi=bi|Ii=Si

| ≤ ε2− logc n and |Pr[Xi(ri) = bi|Ii = Si] − pxi=bi|Ii=Si
| ≤ ε2− logc n

for bi = 0/1, |Pr[ϕSi
(U|ri|) = xi] − Pr[Xi(ri) = xi|Ii = Si]| ≤ O(ε2− logc n).

So the remainder can be proved with a similar analysis in the previous claim
by considering the three possibilities of pxi=1|Ii=Si

. Thus Pr[Xi(U|ri|) = xi|Ii =
Si] = 1 − O(ε2− logc n). So

∏

i/∈V

Pr[Xi(ri) = xi|Ii = Si] = (1 − O(ε2− logc n))n−|V | = 1 − O(nε2− logc n)

Lastly, considering the n2kε2− logc n probability, the claim holds. �
Thus, combining the above two claims, we have the following.

Pr[X1(r1) = x1, · · · ,Xn(rn) = xn : x ← D, r ← Samp(x)]

= (1 − O(nε2− logc n))(1 − O(n2kε2− logc n)) = 1 − O(n2kε2− logc n)

Claim. r is O(n2kε2− logc n)–statistically close to U|r|.

Proof. Let Good denote the event that Xi(ri) = xi for random x which value
makes Pr[Ii = Si] ≥ ε2− logc n for all i /∈ V . Thus Pr[Good] = 1−O(n2kε2− logc n).
Let Goodx=b denote the sub-event of Good that x = b for all possible b. Let Ei,b

denote the set of all values of ri on the condition of Goodx=b.
Let ΔGoodx=b

(r, U|r|) (resp. ΔGoodx=b
(ri, U|ri|)) denote the statistic distance

between r and U|r| (resp. between ri and U|ri|) on the condition of Goodx=b.
On the condition of Goodx=b, all ri are mutually independent. First consider
ΔGoodx=b

(ri, U|ri|) for i ∈ V . Letting b = (b1, · · · , bn), |Ei,b| = |X−1
i (bi)|.

ΔGoodx=b
(ri, U|ri|) =

1
2
(

∑

a∈Ei,b

|Pr[ri = a] − 1
2|ri| | +

∑

a/∈Ei,b

|Pr[ri = a] − 1
2|ri| |)

Notice that Pr[ri = a] = Pr[xi=bi]

|X−1
i (bi)| for a ∈ Ei,b. Thus the above formula is

ΔGoodx=b
(ri, U|ri|) =

1
2

∑

a∈Ei,b

|Pr[xi = bi]
|X−1

i (bi)|
− 1

2|ri| | +
1
2

∑

a∈{0,1}|ri|−Ei,b

1
2|ri|

=
1
2
|Pr[xi = bi] − |X−1

i (bi)|
2|ri| )| + O(ε2− logc n)

=
1
2
|Pr[xi = bi] − Pr[Xi(U|ri|) = bi]| + O(ε2− logc n) = O(ε2− logc n)
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For the case of i /∈ V , we have the same result (changing X−1
i (bi) to ϕ−1

Si
(bi),

Pr[xi = bi] to Pr[xi = bi|Ii = Si], Pr[Xi(U|ri|) = bi] to Pr[Xi(U|ri|) = bi|Ii = Si]
in the argument). Thus since all ri are mutually independent, we have

ΔGoodx=b
(r, U|r|) =

n∑

i=1

ΔGoodx=b
(ri, U|ri|) = O(nε2− logc n)

So finally,

Δ(r, U|r|) ≤
∑

Goodx=b for all b

Pr[Goodx=b] · ΔGoodx=b
(r, U|r|) + Pr[¬Good]

= O(nε2− logc n) + O(n2kε2− logc n) = O(n2kε2− logc n)
�

We remark that when replacing the appearance of Xw, w ∈ Ii in Xi by their
DNF formulas, Xi can be computed by a circuit of constant depth (which can
be determined) and of size O(2k(logc n + log 1/ε)). �

6 The Learning Algorithms

In this section we present the learning algorithms. The sketch of the algorithms
is shown in Sect. 1.1, in which our idea is to reduce the question of learning some
unknown f ∈ AC0 to that of learning some f ′ and one key step in the idea is to
construct X1, · · · ,Xn and Samp. Notice that Lemma 1 requires that V and all
Ii, i /∈ V are known (which were called the dependence relations of all bits of x
in Sect. 1.1). So in Sect. 6.1 we describe the learning algorithm in detail when the
knowledge of V and all Ii, i /∈ V is available. In Sect. 6.2 we sketch the algorithm
when this knowledge is not available.

6.1 Learning with Knowledge of V and All Ii

We first present the algorithm when it has the knowledge of V and all Ii.
Assume f is the function being learned. Let X denote (X1, · · · ,Xn) shown in
Lemma 1, x ← X(r) denote (x1, · · · , xn) ← (X1(r), · · · ,Xn(r)). Let f ′ denote
the composed function f ◦ X that on input r first computes x ← X(r) and
then computes f(x). Since f ∈ AC0

d [s] and X is of constant depth and size
O(n2k(logc n + log 1/ε)), f ′ can be computed by a circuit of depth d′ and size
s+O(n2k(logc n+log 1/ε)), where d′ −d is any upper bound for the depths of all
Xi. In the following we present the actual description of the learning algorithm.

Algorithm 1. The learning algorithm for AC0.
Input: ε, δ, s, d, k, V, Ii,∀i /∈ V , sufficiently many examples of form (x, f(x))
where each x ← D.
Output: a function h that is approximately identical to f under D.
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1. Choose c satisfying logc n > O(log n(log 1
ε + k + log n)d′+1). Let s∗ = s +

O(n2k(logc n + log 1/ε)), m = 1
2 ( |r|t∗

ε/3 )1/2 · log(2|r|t∗

δ/2 ), where t∗ = O(log s∗
ε )d′

.

(m is approximately identical to nO(log 1
ε +k+log n)d′

.)
2. Run the algorithm in Claim1 with necessary input to compute pxi=bi

for
i ∈ V and all bi and pxi=bi|Ii=Si

for i /∈ V and all bi, Si.
3. Run the algorithm in Lemma1 with necessary input to output X1, · · · ,Xn

and algorithm Samp.
4. Generate m labeled examples of form (r, f(x)) from the examples of form

(x, f(x)). Concretely, for each example (x, f(x)), run the algorithm Samp on
input X1, · · · ,Xn and x to sample r satisfying x = X(r), and let (r, f(x)) be
the newly generated example.

5. Run the Low Degree Algorithm with accuracy and confidence (ε/3, δ/2) and
the m newly generated examples to output a hypothesis h′.

6. Output the following hypothesis h:
input: x ∈ {0, 1}n.
(a) Run algorithm Samp with X1, · · · ,Xn hardwired on input x to sample

r satisfying x = X(r).
(b) Output h′(r).

End Algorithm

So what we need to do next is to prove that Algorithm1 can with probability
1 − δ output a hypothesis h such that Pr[h(x) 
= f(x)] < ε for x ← D. We
decompose the proof into the following claims.

Claim 2. For each generated example (r, f(x)) in Step 4 of Algorithm1,
Pr[f ′(r) 
= f(x)] ≤ O(n2kε2− logc n).

Proof. It can be seen that f ′(r) 
= f(x) only if Samp fails in sampling r, which
happens with probability O(n2kε2− logc n) due to Lemma 1. The claim holds. �
Claim 3. In Step 5 of Algorithm1, on input m examples, the Low Degree Algo-
rithm can with probability 1 − δ/2 output a hypothesis h′ such that Pr[f ′(r) 
=
h′(r)] < 2ε/3 for r output by Samp.

Proof. Since Pr[f ′(r) 
= f(x)] ≤ O(n2kε2− logc n) due to Claim 2, there is a small
fraction of examples which has wrong labels. So we need the Low Degree Algo-
rithm to be able to agnostically learn f . As shown in [14] (Sect. 2.3, Observation
3), the Low Degree Algorithm is indeed a somewhat agnostic learning algorithm.
Applying this result to our setting, we have that the Low Degree algorithm can
agnostically learn f ′ under the uniform distribution to error 8ε∗ + ε/3 in time
nO(t∗), where ε∗ denotes the label error probability.

Moreover, note that f ′ can be computed by an AC0 circuit of depth d′ and
size s∗. Thus m examples are sufficient to learn f ′ to (ε/3, δ/2) due to [16].

Assume the sampled r in each example is uniform. Then the Low Degree
Algorithm outputs h′ which is such that Pr[f ′(r) 
= h′(r)] ≤ O(n2kε2− logc n) +
ε/3 < 2ε/3 when r is uniform. Now actually in Step 6, each r in m examples
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is O(n2kε2− logc n)-statistically close to U|r|. So now on input these m examples
of form (r, f(x)) the Low Degree Algorithm behaves identically except for prob-
ability O(mn2kε2− logc n). Due to the choices of the parameters, mn2k2− logc n

can be sufficiently small. Thus the claim holds. �
Claim 4. When Algorithm1 outputs h, h is such that Pr[h(x) 
= f(x)] < ε for
x ← D and it runs in poly(2k, 2log

c n, 1/ε, log 1/δ)-time.

Proof. First, it can be seen that the first step of h runs algorithm Samp,
which uses poly(2k, 2log

c n, 1/ε, log 1/δ)-time, and the second step runs h′, which
running-time is less than the time in the first step. Thus the running-time is as
desired. Second, on input x ← D, h can, with probability 1 − O(n2kε2− logc n),
sample a desired r which is O(n2kε2− logc n)-statistically close to the uniform-
ness. Due to Claim 3, Pr[h′(r) 
= f ′(r)] < 2ε/3 if r is uniform. Considering
the statistic difference between r and the uniformness, Pr[h′(r) 
= f ′(r)] <
2ε/3 + O(n2kε2− logc n) for the sampled r, which means Pr[h(x) 
= f(x)] <
2ε/3 + O(n2kε2− logc n). Considering the failure probability of sampling r, the
claim holds. �

Combining all the claims above, we restate Theorem 1 formally as follows.

Theorem 3. Algorithm1 is a learning algorithm for AC0 with respect to any k-
dependent distribution D such that on input (ε, δ, s, d), V, Ii,∀i /∈ V and given m
examples (x, f(x)) for some unknown f ∈ AC0

d [s] where each x is drawn from D,
it can with probability 1−δ output a hypothesis h in time poly(2k, 2log

c n, 1
ε , log 1

δ )
satisfying Pr[h(x) 
= f(x)] < ε for x ← D.

Proof. It can be seen that if Algorithm 1 can finally output h, then due to
Claim 4, h is such that Pr[h(x) 
= f(x)] < ε for x ← D. Note that the learn-
ing algorithm needs m examples. Let us then estimate its running-time. Due
to Claim 1 and Lemma 1, the learning algorithm needs poly(2k, 2log

c n, 1
ε , log 1

δ )-
time. It can be seen that Algorithm 1 fails to output h if any of Steps 2, 5 fails.
According to Claim 1 and 3, we conclude the total failure probability is bounded
by O(δn2ke−2n) + δ/2 < δ. The theorem holds. �

6.2 Learning Without Knowledge of V and All Ii

We then consider the scenario that the learning algorithm has no knowledge of
V and all Ii. Our approach to learning is this: enumerate all possible choices of
V and all Ii; and for each choice, run Algorithm1 with the common m examples
to gain a hypothesis h; use poly(1ε , log 1

δ , n) more examples to choose the one
from all h which admits the smallest errors on these examples.

Let us count the number of all choices. First there are 2n choices for the
value of V and for each choice of V , for each variable with order number outside
V , there are less than

∑k
i=1

(
n
i

)
possibilities of how it is dependent on at most

k variables with order number in V . So multiplying all factors we get a upper
bound 2n · (

∑k
i=1

(
n
i

)
)n < 2n( en

k )kn. This means that the learning algorithm in
this subsection basically runs in time 2n( en

k )kn times that of Algorithm 1.
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Notice that in the right enumeration, i.e., the choice of V and all Ii are right,
the obtained h, with probability 1− δ, admits error 2ε/3+O(n2kε2− logc n) < 3

4ε
by Claim 4. Thus by using poly(1ε , log 1

δ , n) more examples, we can distinguish
the desired h from any function which admits an error ε except for probability
O(δe−poly(n)). So this h can be founded except for probability δ in all enumera-
tions. Thus we can restate Theorem 2 formally as follows.

Theorem 4. Algorithm1 is a learning algorithm for AC0 with respect to any k-
dependent distribution D such that on input (ε, δ, s, d, k) and m+poly(1ε , log 1

δ , n)
examples (x, f(x)) for some unknown f ∈ AC0

d [s] where each x is drawn from
D, it can with probability 1 − δ output a h in 2n( en

k )kn · poly(2k, 2log
c n, 1

ε , log 1
δ )

time satisfying Pr[h(x) 
= f(x)] < ε for x ← D.

We remark that although the time complexity now is exponential, Algo-
rithm1 uses similarly many examples as before. Even considering the time com-
plexity, in learning an AC0 circuit of size s, enumerating all circuits of size
s to find the one consistent with the given examples consumes approximately
O(s2s)-time, while Algorithm 1 uses roughly 2n( en

k )kn < O(2O(kn log n)) times
the time of one enumeration which is significantly smaller than O(s2s) when s
is sufficiently large.
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Abstract. Matrix insertion-deletion systems combine the idea of matrix
control (as established in regulated rewriting) with that of insertion and
deletion (as opposed to replacements). We study families of multisets
that can be described as Parikh images of languages generated by this
type of systems, focusing on aspects of descriptional complexity. We show
that the Parikh images of matrix insertion-deletion systems having length
2 matrices and context-free insertion/deletion contain only semilinear
languages and when the matrices length increased to 3, they contain
non-semilinear languages. We also characterize the hierarchy of family of
languages that is formed with these systems having small sizes. We also
introduce a new class, namely, monotone strict context-free matrix ins-
del systems and analyze the results connecting with families of context-
sensitive languages and Parikh images of regular and context-free matrix
languages.

Keywords: Parikh images · Semilinearity · Ins-del systems · Matrix
grammars

1 Introduction

Classically, computations are defined on words (compare the basic definitions
of finite automata or of Turing machines), leading to the description of set of
words (i.e., of languages) and hence to the consideration of families of languages
(for instance, as in the Chomsky hierarchy REG � CF � CS � RE). Rather
recently, the consideration of multiset languages (also known as macrosets [9])
has regained interest, where the basic entities are multisets of letters (as opposed
to words), as the sequence of the letters does not matter. This renewed interest
is also motivated from computational models such as membrane computing that
are inspired by biology [14].

A different and supposedly older approach to multiset languages is via Parikh
mappings [12]. Given an alphabet set Σ = {a1, . . . , an}, the Parikh mapping
of a word w can be seen as an n-dimensional vector, listing the number of
occurrences of each (alphabet) symbol as it appeared in the word. This naturally
c© Springer International Publishing AG 2017
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leads to the Parikh image of a language L, denoted by Ps L. If L is some word
language family, we can associate the Parikh set family Ps L to it. The following
summarizes what is known about this with respect to the Chomsky hierarchy.

Proposition 1. Ps REG = Ps CF � Ps CS � Ps RE.

This paper is devoted to put Parikh images of matrix insertion-deletion sys-
tems into the context of the better known classes of macrosets. This way, we
can also ascertain that several classes of matrix insertion-deletion languages are
not computationally complete, rather are semilinear or non-semilinear. This is
important, as the question to find matrix insertion-deletion systems of small size
that are still computationally complete is one of the major research directions in
that area of formal languages. As a further motivation of this study, observe that
both multiset computations and insertion-deletion systems draw one of their ori-
gins in computational biology, so it is very natural to consider them together.
Namely, insertions and deletions are actually a form of mutation and these oper-
ations in DNA, especially in connection with DNA computing, are discussed
in [16]. In connection with RNA editing, these operations are reported in [1].
We also refer to [14] for various formalizations of DNA computing in general,
including multiset computations.

Due to space constraints, several proofs in Sect. 5 have been omitted; we refer
to the long version of this paper.

1.1 General Notions and Notations

Let N denote the set of nonnegative integers, and [1 . . . k] = {i ∈ N : 1 ≤ i ≤ k}.
Let Σ be a finite set of n elements (an alphabet). Σ∗ denotes the free monoid
generated by Σ. The elements of Σ∗ are called words or strings; λ denotes the
empty string, which is the neutral element with respect to the monoid operation
on Σ∗ called concatenation. If f : X → Y is some mapping, then this can be
easily lifted to sets, i.e., f : 2X → 2Y and f− : 2Y → 2X for the inverse.

We refrain from giving detailed definitions of standard terms in Formal Lan-
guages, but rather refer to any textbook from the area, in particular, to [2].

1.2 Semilinear Sets and Beyond

A Parikh mapping ψ (or, more precisely, ψΣ) from Σ∗ into Nn is a mapping
defined by first choosing an enumeration a1, . . . , an of the elements of Σ and then
defining inductively ψ(λ) = (0, . . . , 0), ψ(ai) = (δ1,i, . . . , δn,i), where δj,i = 0 if
i �= j and δj,i = 1 if i = j, and ψ(au) = ψ(a) + ψ(u) for all a ∈ Σ, u ∈ Σ∗.
Clearly, ψ : Σ∗ → Nn becomes thus a monoid morphism (where the operation
on Nn is vector addition). Any two Parikh mappings from Σ∗ into Nn differ only
by a permutation of the coordinates of Nn. This is inessential when considering
sets of multisets of letters, or, in other words, multiset languages. Hence, if L
is some word language family, we can associate the Parikh set family Ps L to
it. Also, we can express the commutative closure of some language L ⊆ Σ∗ as
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ψ−(ψ(L)). In Proposition 1, we stated what is known about the Parikh images
of the families in the Chomsky hierarchy. The equality Ps REG = Ps CF is
also known as Parikh’s Theorem, going back to [12], and the inequalities easily
follow from separating examples L0, L1 � {a}∗ such that L0 ∈ RE \ CS and
L1 ∈ CS \ CF; we also refer to [9].

A subset A ⊆ Nn is said to be linear if there are v, v1, . . . , vm ∈ Nn such that

A = {v + k1v1 + k2v2 + · · · + kmvm | k1, k2, . . . , km ∈ N}.

A subset A ⊆ Nn is said to be semilinear if it is a finite union of linear sets.
It is also well-known that Ps REG coincides with the family of semilinear sets.

Another important classical class of multiset languages is the one that can
be seen as reachability sets of Petri nets. We are not going into details of the
respective definitions, as there is a different perspective on this that is somehow
more appropriate to us, namely matrix grammars with context-free core rules
(without appearance checking); see [6]. It might be interesting to know that
these macroset classes were also (independently) introduced from the viewpoint
of modeling chemical-based computations; see [9,17]. MAT(CF) (MAT(CF−λ),
resp.) denotes the family of languages generated by matrix context-free gram-
mars allowing (disallowing, resp.) erasing rules; see [2].

1.3 Insertion-Deletion Systems

We now give the basic definition of insertion-deletion systems, following [8,14].

Definition 1. An insertion-deletion system is a construct γ = (V, T,A,R),
where V is an alphabet, T ⊆ V is the terminal alphabet, A is a finite language
over V , R is a finite set of triplets of the form (u, η, v)ins or (u, δ, v)del, where
(u, v) ∈ V ∗ × V ∗, η, δ ∈ V +.

The pair (u, v) is called the context, η is called the insertion string, δ is called
the deletion string and x ∈ A is called an axiom. An insertion rule of the form
(u, η, v)ins means that the string η is inserted between u and v. A deletion
rule of the form (u, δ, v)del means that the string δ is deleted between u and v.
Applying (u, η, v)ins hence corresponds to the rewriting rule uv → uηv, and
(u, δ, v)del corresponds to the rewriting rule uδv → uv. If u = v = λ for a
rule, then the corresponding insertion/deletion can be done freely anywhere in
the string and is called context-free insertion/deletion and is discussed in [11]. If
|uηv| = 1, we speak of strict context-free insertion, and similarly of strict context-
free deletion if |uδv| = 1. For simplicity, we write (η)ins for context-free insertion
rules (λ, η, λ)ins, and similarly for deletion rules. Consequently, for x, y ∈ V ∗ we
write x ⇒ y if y can be obtained from x by using either an insertion rule or a
deletion rule.

For an ins-del system, the descriptional complexity measures are based on
the size comprising of (i) the maximal length of the insertion string, denoted by
n, (ii) the maximal length of the left context and right context used in insertion
rules, denoted by i′ and i′′, respectively, (iii) the maximal length of the deletion
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string, denoted by m, (iv) the maximal length of the left context and right
context used in deletion rules denoted by j′ and j′′, respectively. The size of an
ins-del system is denoted by (n, i′, i′′;m, j′, j′′). For more details, we refer to [19].

1.4 Matrix Insertion-Deletion Systems

A matrix insertion-deletion system [4,10,13] is a construct Γ = (V, T,A,R)
where V is an alphabet, T ⊆ V , A is a finite language over V , R is a finite set
of matrices {r1, r2, . . . rl}, where each ri, 1 ≤ i ≤ l, is a matrix of the form

ri = [(u1, α1, v1)t1 , (u2, α2, v2)t2 , . . . , (uk, αk, vk)tk
]

with tj ∈ {ins, del}, 1 ≤ j ≤ k. For 1 ≤ j ≤ k, the triple (uj , αj , vj)tj
is an

ins-del rule. Consequently, for x, y ∈ V ∗ we write x =⇒ri
y if y can be obtained

from x by applying all the rules of a matrix ri, 1 ≤ i ≤ l, in order.
By w =⇒∗ z, we denote the relation w =⇒ri1

w1 =⇒ri2
. . . =⇒rik

z,
where for all j, 1 ≤ j ≤ k, we have 1 ≤ ij ≤ l. The language generated
by Γ is defined as L(Γ ) = {w ∈ T ∗ | x =⇒∗ w, for some x ∈ A}. If a
matrix ins-del system has at most k rules in a matrix and the size of the
underlying ins-del system is (n, i′, i′′;m, j′, j′′), then we denote the correspond-
ing class of languages by MAT(k;n, i′, i′′;m, j′, j′′). In the special case when
k = 2, the system is said to have binary matrices. In [4], it is shown that
the family of languages MAT(k;n, i′, i′;m, j′, j′) is closed under reversal (i.e.,
MAT(k;n, i′, i′′;m, j′, j′′) = [MAT(k;n, i′′, i′;m, j′′, j′)]R).

Regarding computational completeness of the systems, it is shown in
[4,5,13] that the following matrix ins-del systems are computationally
complete: MAT(3; 1, 1, 0; 1, 1, 0), MAT(3; 1, 1, 0; 1, 0, 1), MAT(2; 1, 1, 0; 2, 0, 0),
MAT(2; 2, 0, 0; 1, 1, 0), MAT(2; 1, 0, 1; 2, 0, 0), MAT(2; 2, 0, 0; 1, 0, 1), MAT(3; 1,
0, 1; 1, 0, 1), MAT(3; 1, 0, 1; 1, 1, 0), MAT(3; 1, 1, 1; 1, 0, 0), MAT(2; 1, 1, 1; 1, 0, 1)
and MAT(4; 1, 0, 0; 1, 1, 1).

In this paper, we are interested in Parikh images of these language classes,
denoted as Ps MAT(k;n, i′, i′′;m, j′, j′′). We now discuss a few examples of
matrix ins-del system. Later, they are used in the proofs of some theorems.

Example 1. The language L1 = {w ∈ {a, b}∗ | |w|a = |w|b} can be gen-
erated by a matrix Ins-del system of size (2; 1, 0, 0; 0, 0, 0) as follows. Γ1 =
({a, b}, {a, b}, {λ}, {[(a)ins, (b)ins]}). It is easy to see that L(Γ1) = L1. Note
that L1 is a non-regular language and cannot be generated by (matrix) ins-del
system of size (1; 1, 0, 0; 1, 0, 0). It can be argued that any matrix ins-del system
Γ of size (1; 1, 0, 0; 1, 0, 0) must contain an insertion-only matrix, and this can
be applied to some axiom ω ∈ L1 of Γ to produce a word that is not in L1.

The commutative closure of L1 equals L1 itself. In other words, ψ−(ψ(L1)) =
L1. However, if we modify Γ1 a bit by changing the axiom set to {ab}, then this
new system Γ ′

1 describes a strict subset of L1 whose commutative closure equals
L1 \ {λ}, with ba ∈ (L1 \ {λ}) \ L(Γ ′

1). �	
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Remark 1. L1 = {w ∈ {a, b}∗ | |w|a = |w|b} /∈ MAT(1; 1, 0, 0; 1, 0, 0).

Proof. For the sake of contradiction, let us assume that Γ ′
1 is a matrix ins-del

system of size (1; 1, 0, 0; 1, 0, 0) such that L(Γ ′
1) = L1. Consider a word w ∈ L1

that is longer than any axiom of Γ ′
1. Hence, at some point of the derivation of w,

either a terminal symbol a (or a terminal symbol b, resp.) was inserted by using
a matrix [(a)ins] (or [(b)ins], resp.). If we skip this mentioned insertion, say, by
applying [(a)ins], in the derivation, but keep all other derivation steps, then the
finally derived string will have an unequal number of occurrences of a and b, a
contradiction to L(Γ ′

1) = L1. More precisely, the derivation of w from an axiom
ω can be described by a sequence of matrices m1, . . . ,m�, such that

ω ⇒m1 w1 ⇒m2 w2 ⇒ . . . ⇒m�
w� = w .

Now assume that mi = [(a)ins] was causing the last insertion of an a in this
sequence. Then,

ω ⇒m1 w1 ⇒m2 w2 ⇒ . . . ⇒mi−1 wi−1 ⇒mi+1 w′
i+1 ⇒ . . . ⇒m�

w′
�

is also a valid derivation according to Γ ′
1 where, for all j > i, wj = ujavj but

w′
j = ujvj . In particular, w′

� satisfies #aw′
� = #aw� −1 and #bw

′
� = #bw�; hence

#aw′
� < #bw

′
� = #bw = #aw. �	

Example 2. Hopcroft and Pansiot [7] described a so-called vector addition sys-
tem with states that generates the non-semilinear language L2 = {w ∈ T ∗ |
|w|b + |w|c ≤ 2|w|a}. Only a little scrutiny is needed to translate this mecha-
nism into some MAT (3; 1, 0, 0; 1, 0, 0) system Γ2. The axiom of Γ2 is Ac. We
take the following rules into Γ2: [(A)del, (c)del, (A′)ins], [(A′)del, (b)ins, (A)ins],
[(A)del, (B)ins], [(B)del, (b)del, (B′)ins], [(B′)del, (c)ins, (B′′)ins],
[(B′′)del, (c)ins, (B)ins), [(B)del, (a)ins, (A)ins], [(A)del]. Lemma 2.8 in [7] shows
that, with terminal alphabet T = {a, b, c}, this system generates L2. �	

2 Preparatory Results

From earlier findings [4] on MAT(k;n, i′, i′′;m, j′, j′′) and its mirror image, we
can immediately conclude the following, as the Parikh image of the mirror image
of a language L equals the Parikh image of L.

Theorem 1. For all non-negative integers k, n, i′, i′′,m, j, j′′, we have that

Ps MAT(k;n, i′, i′′;m, j′, j′′) = Ps MAT(k;n, i′′, i′;m, j′′, j′) .

This allows us to summarize the known computational completeness results
of matrix ins-del systems of small weights [4,13] as follows:

Theorem 2. (i) Ps RE = Ps MAT(3; 1, 1, 1; 1, 0, 0) = Ps MAT(4; 1, 0, 0; 1, 1, 1).
(ii) Let i′ + i′′ ≥ 1 and j′ + j′′ ≥ 1. Then, Ps RE = Ps MAT(3; 1, i′, i′′; 1, j′, j′′).
(iii) Let n + m ≥ 3, min(n,m) ≥ 1, n + i′ + i′′ ≥ 2, m + j′ + j′′ ≥ 2, as well as
i′ + i′′ + j′ + j′′ ≥ 1. Then, Ps RE = Ps MAT(2;n, i′, i′′;m, j′, j′′).
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Recall that Ps L is a class of macrosets if L is a class of languages, as a
language L ∈ L is mapped to a set of vectors ψ(L). Clearly, one can also reverse
this process and consider the language ψ−(ψ(L)) ⊇ L. Accordingly, we can form
the language class Ps−(Ps L). In general, the relation between L and Ps−(Ps L)
is unclear. However, for matrix ins-del systems, we can show the following.

Theorem 3. Let k ≥ 2, n ≥ 1, i′, i′′ ≥ 0, m ≥ 1, j′, j′′ ≥ 0. Then,

Ps−(Ps MAT(k;n, i′, i′′;m, j′, j′′)) � MAT(k;n, i′, i′′;m, j′, j′′).

In other words, we claim that nearly all the language families that are consid-
ered in this paper are closed under commutative closure. It would be interesting
to get a complete picture about for which values of n, i′, i′′,m, j′, j′′ the language
families MAT(1;n, i′, i′′;m, j′, j′′) are closed under commutative closure and for
which not. The following proof only works for k ≥ 2.

Proof. Let Γ = (V, T,A,R) be some matrix ins-del system of size
(k;n, i′, i′′;m, j′, j′′). Let V ′ = {a′ | a ∈ V } be the set of primed ver-
sions of symbols from V . Consider Γ ′ = (V ∪ V ′, T, A,R ∪ R′), where R′ =
{[(a)del, (a′)ins], [(a′)del, (a)ins]}. Then, L(Γ ′) = ψ−

T (ψT (L(Γ ))). Hence, there is
a matrix ins-del system of the required size to describe the commutative closure
of L(Γ ). The claimed strictness of the inclusion follows with Example 1. �	

3 Languages in Ps MAT(2; 1, 0, 0; 1, 0, 0) are semilinear

Consider some matrix ins-del system Γ containing binary matrices only, with
context-free insertion rules and context-free deletion rules.

First, we claim that we can assume that, without loss of generality, a deriva-
tion of some word w ∈ L(Γ ) can be decomposed into three phases that work in
the following order:

1. matrices containing two insertion rules are used;
2. matrices containing one insertion and one deletion rule (mixed type) are used;
3. only deletion rules are used.

Namely, a derivation of some w ∈ L(Γ ) that does not obey this order can be
re-ordered by first moving the insertion-only matrices to the beginning (their
applicability does not depend on the prior application of any other matrix)
and then moving all deletion-only matrices to the end, leaving in particular the
relative order of the matrices containing one insertion and one deletion rule.

Based on this observation, we are proving a normal form lemma that is useful
to show the main result of this section.

Lemma 1. Let L ∈ MAT(2; 1, 0, 0; 1, 0, 0). Then, there is a matrix ins-del sys-
tem Γ ′ of size (2; 1, 0, 0; 1, 0, 0) with L(Γ ′) = L satisfying the following properties.

1. Γ ′ contains no matrices of mixed type.
2. [(a)ins, (b)ins] is a matrix of Γ ′ if and only if [(b)ins, (a)ins] is a matrix of Γ ′.
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3. [(a)del, (b)del] is a matrix of Γ ′ if and only if [(b)del, (a)del] is a matrix of Γ ′.
4. Γ ′ contains no matrices of the form [(a)del].
5. If w ∈ L can be obtained in Γ ′ by exclusively using deletion-only matrices,

then w is an axiom of Γ ′.

Proof. Let a matrix ins-del system Γ = (V, T,A,R) of size (2; 1, 0, 0; 1, 0, 0) with
L(Γ ) = L be given. We are describing how to transform Γ in order to satisfy
the claimed normal form.

Let Rmixed collect all matrices of R that are of mixed type. Let V ′ = {a′ |
a ∈ V } be a collection of new symbols, primed variants of the original alphabet.
W.l.o.g., matrices in Rmixed contain first a deletion rule and then an inser-
tion rule. Notice that the only case when [(b)ins, (a)del] is applicable but not
[(a)del, (b)ins] is when a = b and there is no symbol a in the current sentential
form. However, as the matrix [(b)ins, (a)del] has no effect if a = b and there is
no symbol a in the current sentential form, we can neglect this in the following.
Matrices in Rmixed of the form [(a)del, (b)ins] are replaced by the two matrices
(i) [(a′)ins, (b)ins] (insertion-only matrix) and (ii) [(a)del, (a′)del] (deletion-only
matrix). We collect all these matrices in R′

mixed. Let V1 = V ∪ V ′, A1 = A,
R1 = (R \Rmixed)∪R′

mixed and Γ1 = (V1, T, A1, R1). Γ1 contains no matrices of
mixed type by construction. We will now argue that L = L(Γ1). (i) ‘⊆’: We only
have to bother about the simulation of matrices of mixed type. Now, an appli-
cation of [(a)del, (b)ins] can clearly be simulated by first applying [(a′)ins, (b)ins]
and then applying [(a)del, (a′)del].

(ii) ‘⊇’: As argued above, we can assume that the derivation of some word
w ∈ L(Γ1) first applies insertion-only matrices and then deletion-only matrices.
Clearly, the sequence of insertion-only matrices that are applied and also the
sequence of deletion-only matrices that are applied can be in any order with-
out affecting the fact that w can be generated this way. Let us therefore take
the following ordering. First, we apply insertion-only matrices from R \ Rmixed

(in any order). Secondly, we apply insertion-only matrices from R′
mixed (in an

order that we describe below). Thirdly, we apply deletion-only matrices from
R′

mixed (in an order that we describe below). Finally, we apply deletion-only
matrices from R \ Rmixed (in any order). Trivially, with Γ we can simulate all
matrices from R \ Rmixed. So, we only discuss matrices from R′

mixed in the fol-
lowing. Now, observe in order to finally generate w ∈ T ∗, for each insertion-only
matrix from R′

mixed that introduces some symbol a′, there must be one deletion-
only matrix from R′

mixed that deletes such an occurrence of a′ again. Let us
fix an arbitrary ordering < on V1. This can be used to define an ordering <R

on R′
mixed as follows. First, all insertion-only matrices are situated; these are

ordered according to [(a′)ins, (b)ins] <R [(c′)ins, (d)ins] if a′ < c′ or a′ = c′ and
b < d. Then, all deletion-only matrices are situated; these are ordered according
to [(a)del, (a′)del] <R [(c)del, (c′)del] if c′ < a′. Now observe that this implies
that right in the middle, an application of some matrix [(a′)ins, (b)ins] is imme-
diately followed by an application of [(a)del, (a′)del]. These two matrix applica-
tions could be easily simulated by the matrix [(a)del, (b)ins] contained in Rmixed.
Now consider the insertion-only matrix [(c′)ins, (d)ins] that was applied before
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[(a′)ins, (b)ins] (if there is no such matrix, our inductive argument is complete).
If a �= d, then we could clearly simulate the sequence of matrix applications of
[(c′)ins, (d)ins], [(a′)ins, (b)ins], [(a)del, (a′)del] and [(c)del, (c′)del] by first apply-
ing [(a)del, (b)ins] and then [(c)del, (d)ins]. If a = d, the simulation should be
carried out by first applying [(c)del, (a)ins] and then [(a)del, (b)ins]. By induc-
tion, we can see by this argument that we can simulate the whole sequence of
matrix applications from R′

mixed by using matrices from Rmixed. This shows that
w ∈ L(Γ ).

Let V2 = V1, A2 = A1. R2 = R1 ∪ {[(a)ins, (b)ins] | [(b)ins, (a)ins] ∈ R1}. Let
Γ2 = (V2, T, A2, R2). Γ2 satisfies the first two properties. It can be easily seen
that L(Γ1) = L(Γ2).

Let V3 = V1, A3 = A1. R3 = R2 ∪ {[(a)del, (b)del] | [(b)del, (a)del] ∈ R1}. Let
Γ3 = (V3, T, A3, R3). Γ3 satisfies the first three properties. It can be easily seen
that L(Γ2) = L(Γ3).

Let Rdel = {[(a)del] | a ∈ V1} ∩ R3. Let Γdel = (V3, V3, A3, Rdel). Let A4 =
L(Γdel). Notice that A4 is a finite language, with A4 ⊆ L(Γ3). Let R′

del =
{[(b)ins] | [(a)del] ∈ Rdel ∧ [(a)ins, (b)ins] ∈ R3}. Let R4 = (R3 \ Rdel) ∪ R′

del. Let
V4 = V1 and Γ4 = (V4, T, A4, R4). Γ4 satisfies the first four properties. We now
show that L(Γ4) = L(Γ3). Let w ∈ L(Γ4). This is certified by some derivation,
starting from some axiom ω ∈ A4. If ω /∈ A3, then we can obtain ω from A3

by using rules from Rdel ⊆ R3. By construction, rules [(b)ins] from R′
del can

be simulated by first applying a matrix [(a)ins, (b)ins] ∈ R3 and then applying
the matrix [(a)del] ∈ Rdel. As other matrices can be directly carried out within
Γ3, w ∈ L(Γ3) follows. Conversely, if w ∈ L(Γ3), then we can assume that all
matrices from Rdel are executed at the end, except those applications that delete
symbols from the axiom ω ∈ A3; these are carried out first. So, we could simulate
the derivation of w in Γ4 by starting from an axiom ω′ that is obtained from
ω by rules from Rdel. The remaining applications of matrices [(a)del] from Rdel

are obviously applied to symbols that have been introduced by insertion-only
matrices, say, [(a)ins, (b)ins] followed by [(a)del]. This can be simulated by a rule
[(b)ins] from R′

del. Hence, w ∈ L(Γ4).
Finally, let Rdel2 collect all deletion-only matrices of R4 and define A′ =

L((V4, V4, A4, Rdel2)). Again, A′ is a finite subset of L(Γ4). Moreover, with V ′ =
V4, R′ = R4, one can see that Γ ′ = (V ′, T, A′, R′) satisfies all claims of this
lemma. �	

We are going to use this normal form lemma in the proof of the following
main theorem of this section.

Theorem 4. Ps MAT(2; 1, 0, 0; 1, 0, 0) ⊆ Ps REG.

Proof. Let Γ = (V, T,A,R) be a matrix ins-del system of size (2; 1, 0, 0; 1, 0, 0)
that satisfies the previous normal form lemma. Notice that we can further assume
that |A| = 1, because it is known that Ps REG is closed under (finite) union.
So, let A = {ω}. We are going to define a right-linear grammar G = (N,T, S, P )
such that ψT (L(G)) = ψT (L(Γ )).
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We define
N = {S} ∪ {S〈v〉 | v ∈ V ≤max(|ω|,2)} .

The idea is to memorize in the nonterminal S〈v〉 those symbols that still have
to be inserted, as we already started deletion-only matrices in our simulating
derivation, stopping half-way in their simulation.

The axiom ω is dealt with using the rules

Paxiom = {S → wS〈v〉 | w ∈ T ∗ ∧∃u ∈ V ≤|ω| : ψV (uw) = ψV (ω)∧uv =⇒del
∗ λ} .

Here, we use =⇒del
∗ to denote the application of deletion-only matrices from

Γ (but no insertion-only matrices are applied). In other words, upon executing
S → wS〈v〉, we guessed that some symbols (namely those listed in u) have been
already deleted from ω by applying |u| many deletion-only matrices half-way.
The not yet applied rules are memorized in the string v. These symbols have yet
to be generated by insertion-only matrices. Recall that due to our normal form,
we can assume that no deletion-only matrix is applied to ω alone.

Then, we enter a phase to simulate the insertion-only matrices.
The simulation of an insertion-only matrix works in a way similar to the

construction of the axiom word ω. All the simulation rules are collected in Psimul.
Let us first consider the simpler case when [(a)ins] has to be simulated. To
capture the case that a is not again deleted, which is only possible if a ∈ T , we
introduce the rules S〈v〉 → aS〈v〉 for all v. If a is going to be deleted by applying
some [(a)del, (b)del] ∈ R, we capture this by two types of rules. If b occurs in v,
say, v = xby, then S〈v〉 → S〈xy〉 is added to Psimul. If b does not occur in v and
if |v| < max(|ω|, 2), then S〈v〉 → S〈vb〉 is added to Psimul.

The simulation of m = [(a)ins, (a′)ins] is more complicated yet similar. We
have three cases to consider (as also m′ = [(a′)ins, (a)ins] ∈ R: (i) none of a and
a′ are later deleted, (ii) only a is later deleted, or (iii) both a and a′ are later
deleted. Let us consider these cases in details in the following.

In case (i), we know that aa′ ∈ T ∗. Hence, we can add the rules S〈v〉 →
aa′S〈v〉 for all v.

In case (ii), a′ ∈ T is known. Assume that a is going to be deleted by
applying some [(a)del, (b)del] ∈ R. We have two subcases. If b occurs in v, say,
v = xby, then S〈v〉 → a′S〈xy〉 is added to Psimul. If b does not occur in v and
if |v| < max(|ω|, 2), then S〈v〉 → a′S〈vb〉 is added to Psimul.

In case (iii), we assume that a is going to be deleted by applying some
[(a)del, (b)del] ∈ R and that a′ is going to be deleted by applying some matrix
[(a′)del, (b′)del] ∈ R. We have four subcases. (iii.a) If b and b′ occur in v, say,
v = xbyb′z, then S〈v〉 → S〈xyz〉 is added to Psimul. (iii.b) If b occurs in v,
but b′ does not occur in v, say, v = xby, then S〈v〉 → S〈xyb′〉 is added to
Psimul. (iii.c) If b′ occurs in v, but b does not occur in v, this can be treated
symmetrically. (iii.d) If neither b nor b′ occur in v and if |v| + 1 < max(|ω|, 2),
then S〈v〉 → S〈vbb′〉 is added to Psimul.

The termination is only accomplished via the rule S〈λ〉 → λ. So, in total
P = Paxiom ∪ Psimul ∪ {S〈λ〉 → λ}.
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The main point to understand the simulation is that whenever we apply an
insertion-only matrix that generates a symbol that will be finally deleted, we can
afford storing the possibly existing second symbol that is going to be deleted by
the mentioned deletion-only matrix, because we can assume (w.l.o.g.) that the
next insertion-only matrix that is applied provides exactly the symbol that has
to be deleted next. So, the amount of information that needs to be stored in
nonterminals is finite. �	
However, the reverse inclusion of the previous result seems not clear and remains
as an open problem.

4 Beyond Semilinearity

In this section, we first define a notation which is often used in stating results
in the remainder of this paper.

Ps MAT(∗; 1, 0, 0; 1, 0, 0) =
⋃

k≥1

Ps MAT(k; 1, 0, 0; 1, 0, 0) .

Together with Theorem 4, we can conclude the following hierarchy result.

Corollary 1. For any k ≥ 3, we find the following hierarchy of strictly context-
free matrix ins-del systems:

Ps MAT(1; 1, 0, 0; 1, 0, 0) � Ps MAT(2; 1, 0, 0; 1, 0, 0)
� Ps MAT(3; 1, 0, 0; 1, 0, 0)
= Ps MAT(k; 1, 0, 0; 1, 0, 0)

Proof. The first strict inclusion follows from Example 1, as MAT(1; 1, 0, 0; 1, 0, 0)
can be viewed as ins-del systems of size (1, 0, 0; 1, 0, 0) without any matrix control
(see also Remark 1). The second strict inclusion is due to the fact that there are
non-semilinear context-free matrix languages, also refer Example 2. �	
Theorem 5. Ps MAT(3; 1, 0, 0; 1, 0, 0) = Ps MAT(∗; 1, 0, 0; 1, 0, 0) and
Ps MAT(∗; 1, 0, 0; 1, 0, 0) = Ps MAT(CF).

Proof. First, we are going to simulate a context-free matrix grammar G =
(N,T, S,M) in binary normal form, potentially with erasing rules; see [2]. This
means that the nonterminal alphabet N is partitioned into N1 ∪ N2 ∪ {S}, and
all matrices m ∈ M are of the form m = [p → q,X → w], where p ∈ N1,
q ∈ N1 ∪ {λ}, X ∈ N2, w ∈ (N2 ∪ T )∗, except the start rules, which take the
form S → pX for some p ∈ N1 and X ∈ N2, collected in a singleton matrix.
Moreover, we can assume that [p → λ,X → w] only occurs when w = λ. We
put all pX with matrices [S → pX] ∈ M into the set of axioms A of the matrix
ins-del system Γ = (V, T,A,R) that we are going to describe. The alphabet V
will contain T ∪ N1 ∪ N2 plus several auxiliary new nonterminals whose sole
purpose is to guide the application sequence of the matrices. Our description
will make clear that ψT (L(G)) = ψT (L(Γ )) as required.
For the simulation itself, we consider several cases of matrices m ∈ M .
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– If m = [p → λ,X → λ], then we can simply interpret m as a matrix m′ =
[(p)del, (X)del] containing two deletion rules and put m′ into R.

– If m = [p → q,X → λ] with p, q ∈ N1, we can simulate this with the following
ins-del matrix m′ = [(p)del, (q)ins, (X)del]: Again, we adjoin m′ to R.

– If m = [p → q,X → w] with p, q ∈ N1 and |w| ≥ 1, say, w = a1 · · · an, n = |w|,
ai ∈ (N2 ∪ T ), we can simulate this with the following ins-del matrices m[x],
where x is a prefix of w:

m[w] = [(p)del, (q[w])ins, (X)del]
m[x] = [(q[xa])del, (q[x])ins, (a)ins]

if xa is a prefix of w; we identify q[λ] and q. Now, we adjoin all these matrices
m[x] to R.

– No other matrices belong to R.

Notice that whenever we can transform a string x to y using some matrix
m, then the suggested matrices m′ (or m[x]) can be used to obtain a string y′

from x such that ψV (y) = ψV (y′). By induction, the claim follows from these
observations.

The converse direction is detailed in the long version. The basic idea is to
introduce a new nonterminal Z and also to work with pseudo-terminals (i.e.,
nonterminals a′ for each terminal a). A deletion rule can be directly interpreted
as an erasing rule, while an insertion rule is simulated by a rule of the form
Z → ZX ′. �	

As the reachability problem for Petri nets (without inhibitor arcs) is decid-
able, the membership problem is decidable for Ps MAT(∗; 1, 0, 0; 1, 0, 0). This
also implies that the inclusion Ps MAT(∗; 1, 0, 0; 1, 0, 0) � Ps RE is strict. Recall
the many computationally complete matrix ins-del systems that we listed in
Theorem 2.

We are now discussing the simulation of context-free matrix via matrix ins-
del systems explained above. If we allow the insertion of two symbols at once,
we can in fact (easily) reduce the lengths of the matrices by one except for the
matrix that simulates an erasing rule. Namely, instead of inserting two symbols
one after the other, we can do this now with just one rule. If we add on matrices
like [(X)del, (X)ins] for any symbol X, we can also make sure that, whenever
two symbols are to be deleted in some matrix of length three, then this can
be simulated by deleting two symbols next to each other with one rule. This
observation allows us to state:

Corollary 2. Ps MAT(CF) ⊆ Ps MAT(2; 2, 0, 0; 2, 0, 0).

Whether or not the converse inclusion is true is open. The problem is that
we would have to check whether two symbols in intermediate sentential forms
sit next to each other; this seems to be impossible with context-free matrix
grammars without appearance checking.
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The previous corollary also shows the strictness of one of the following two
inclusions; it is however unclear which is strict.

Ps MAT(2; 1, 0, 0; 1, 0, 0) ⊆ Ps MAT(2; 2, 0, 0; 1, 0, 0)
⊆ Ps MAT(2; 2, 0, 0; 2, 0, 0)

A similar situation arises with:

Ps MAT(2; 1, 0, 0; 1, 0, 0) ⊆ Ps MAT(2; 1, 0, 0; 2, 0, 0)
⊆ Ps MAT(2; 2, 0, 0; 2, 0, 0)

It is known that ins-del systems of size (2, 0, 0; 2, 0, 0) strictly contain context-
free languages only [18]. So, Ps MAT(1, 2, 0, 0; 2, 0, 0) ⊆ Ps CF. Thus, we see:

Corollary 3. Ps MAT(1; 2, 0, 0; 2, 0, 0) � Ps MAT(3; 1, 0, 0; 1, 0, 0).

The following result strengthens the previous argument.

Theorem 6.
⋃

k≥1,n≥1 Ps MAT(k;n, 0, 0; 1, 0, 0) = Ps MAT(CF) .

Proof. The inclusion ⊇ follows with Theorem 5. Conversely, notice that we can
always replace an insertion rule (x)ins, with x = a1 · · · aν being a word of length
1 < ν ≤ n, by the following sequence of insertions (considered as a sub-matrix of
the matrix originally containing r): [(a1)ins, . . . , (aν)ins]. This does not change
the Parikh image of the generated language, as deletions are performed only
on single symbols. Doing this repeatedly, we can transform any matrix ins-del
system Γ of size (∗;n, 0, 0; 1, 0, 0) (with terminal alphabet T ) into a matrix ins-
del system Γ ′ of size (∗; ∗, 0, 0; 1, 0, 0) such that ψT (Γ ) = ψT (Γ ′). This shows
that Ps MAT(∗;n, 0, 0; 1, 0, 0) ⊆ Ps MAT(∗; 1, 0, 0; 1, 0, 0). Applying Theorem 5
once more proves the claim. �	

Focusing on binary matrices, it is however unclear if the inclusion
⋃

n≥1

Ps MAT(2;n, 0, 0; 1, 0, 0) ⊆ Ps MAT(CF)

is strict or not. Similar open problems arise with the following chain of inclusions:

Ps MAT(2; 1, 0, 0; 1, 0, 0) ⊆ Ps MAT(2; 1, 1, 0; 1, 0, 0)
= Ps MAT(2; 1, 0, 1; 1, 0, 0)
⊆ Ps MAT(2; 1, 1, 1; 1, 0, 0)
⊆ Ps MAT(2; 1, 1, 1; 1, 0, 1)

As Ps MAT(2; 1, 1, 1; 1, 0, 1) = Ps RE (see [5] for RE = MAT(2; 1, 1, 1; 1, 0, 1)),
one of these inclusions must be strict. For the equality, we use Theorem 1.

Similarly, we can reason about systems with bigger deletion complexity.

Theorem 7.
⋃

k≥1,m≥1 Ps MAT(k; 1, 0, 0;m, 0, 0) = Ps MAT(CF) .
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Proof. The inclusion ⊇ follows with Theorem 5. Conversely, notice that we can
always replace a deletion rule (x)del, with x = a1 · · · aμ, μ ≤ m, being a word of
length μ > 1, by the following sequence of deletions (considered as a sub-matrix
of the matrix originally containing r): [(a1)del, . . . , (aμ)del]. This does not change
the Parikh image of the generated language, as insertions are performed only
on single symbols. Doing this repeatedly, we can transform any matrix ins-del
system Γ of size (∗; 1, 0, 0;m, 0, 0) (with terminal alphabet T ) into a matrix ins-
del system Γ ′ of size (∗; 1, 0, 0; 1, 0, 0) such that ψT (Γ ) = ψT (Γ ′). This shows
that Ps MAT(∗; 1, 0, 0;m, 0, 0) ⊆ Ps MAT(∗; 1, 0, 0; 1, 0, 0). Applying Theorem 5
once more proves the claim. �	

5 Monotonicity Conditions

With matrix ins-del systems, it is at least possible to define a condition that
ensures some kind of monotonicity. For simplicity, we define this concept for strict
context-free matrix ins-del systems only. So, such a system is called monotone if
no axiom equals the empty word (this prevents the system from generating the
empty word at all, but according to usual convention in formal languages, this
does not matter) and each matrix [(x1)μ1 , . . . , (xr)μr

] obeys:
r∑

i=1

|xi| · [μi = ins] ≥
r∑

i=1

|xi| · [μi = del]

where [cond] is the usual interpretation of a logical condition cond to yield 1 if
it is true and 0 otherwise. We indicate this by adding mon as a subscript.

Theorem 8. CS = MATmon(2; 3, 0, 0; 3, 0, 0).

Note that possible corollaries for RE are superseded by results from [11].
For the proof of the next characterization theorem, the following normal

form comes in handy. A strict context-free matrix ins-del system Γ is said to
be in deletion first normal form if in every matrix, all deletion rules precede all
insertion rules. (This covers, of course, the extreme cases when a matrix contains
only deletion rules or only insertion rules, as well.)

Lemma 2. To every strict context-free matrix ins-del system Γ , there exists a
strict context-free matrix ins-del system Γ ′ in deletion first normal form such
that L(Γ ) = L(Γ ′).

Theorem 9. Ps MAT(CF − λ) can be characterized by monotone systems.
Hence, Ps MAT(CF−λ) = Ps MATmon(∗; 1, 0, 0; 1, 0, 0) = Ps MATmon(4; 1, 0, 0;
1, 0, 0).

Let us indicate our simulations in the following. A rule A → w, with w =
a1 · · · aj , in a context-free matrix grammar G = (N,T, S, P ) can be simulated
by the sequence (A)del, (a1)ins, . . . , (aj)ins of deletion and insertion rules, which
is monotone. This idea can be combined with that from Theorem 5 to show the
complete simulation. For the reverse direction, we simulate a strict context-free
monotone matrix ins-del system Γ = (V, T,A,R) in deletion first normal form.
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Remark 2. It is sufficient that either all insertion or all deletion rules are strict
context-free. The other rules could be just context-free ; compare Theorems 6
and 7 for the non-monotone case.

Corollary 4. The class of Parikh images of languages generated by monotone
strict context-free matrix ins-del systems is a strict subclass of the class of Parikh
images of languages generated by monotone context-free matrix ins-del systems.

Theorem 10. Ps MATmon(1; 1, 0, 0; 0, 0, 0) = Ps MATmon(1; 1, 0, 0; 1, 0, 0) �

Ps MATmon(2; 1, 0, 0; 1, 0, 0) � Ps MATmon(3; 1, 0, 0; 1, 0, 0) = Ps REG .

6 Conclusions

In this paper, we have considered results associated with Parikh images of
languages generated by matrix ins-del systems, especially, of small sizes. We
show that Ps MAT(2; 1, 0, 0; 1, 0, 0) contains only semilinear languages. Besides,
Ps MAT(3; 1, 0, 0; 1, 0, 0) contains non-semilinear languages and we have shown
that this family of languages and the family of languages Ps MAT(CF) are the
same. We often dealt with binary matrices (matrices of length at most two)
with context-free insertion and deletion rules. We have analyzed the charac-
terization of the hierarchy of family of languages that is formed with these
small sizes. For many classes of languages, proving the strict inclusion is left
open. To the best of our knowledge, the question whether or not the inclusion
Ps MAT(CF − λ) ⊆ Ps MAT(CF) is strict is also an (old) open problem, see [2],
that obviously relates to the systems that we investigated.

Apart from ins-del systems where no deletions take place at all (as in
Example 1), it is unclear if we get somehow context-sensitive languages only.
In the context of our paper, we want to finally recall that MAT(1; 2, 2, 2; 0, 0, 0)
contains non-semilinear languages, see [14, Theorem 6.5].

Let us point out once more the many open problems that we listed through-
out the paper, concerning whether or not some inclusions between language
classes are strict. Notice that in some of these cases, the upper bounds on the
inclusion chains were mostly given by computational completeness results for
the corresponding classes of word languages. It might well be that a more gen-
uine approach to multiset languages could yield better upper bounds. For the
related area of graph-controlled insertion-deletion systems, such an attempt has
been undertaken in [3]. It might be also an idea to try to simulate Petri nets
with inhibitor arcs in order to prove the strictness of some of the inclusions. The
limits of such an approach are discussed in [15].
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LS2N UMR CNRS 6004, Université de Nantes, Nantes, France
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Abstract. Given a vertex-colored arc-weighted directed acyclic graph
G, the Maximum Colorful Subtree problem (or MCS) aims at find-
ing an arborescence of maximum weight in G, in which no color appears
more than once. The problem was originally introduced in [2] in the
context of de novo identification of metabolites by tandem mass spec-
trometry. However, a thorough analysis of the initial motivation shows
that the formal definition of MCS needs to be amended, since the input
graph G actually possesses two extra properties, which are so far unex-
ploited. This leads us to introduce in this paper a more precise model
that we call Maximum Colorful Arborescence (MCA), and exten-
sively study it in terms of algorithmic complexity. In particular, we show
that exploiting the implied color hierarchy of the input graph can lead
to polynomial algorithms. We also develop Fixed-Parameter Tractable
(FPT) algorithms for the problem, notably using the “dual parameter”
�, defined as the number of vertices of G which are not kept in the
solution.

1 Introduction

Metabolites are small molecules that are involved in cellular reactions, most
of them remaining unknown to this date. Consequently, identifying molecular
structures of metabolites is a key problem in biology. To this aim, tandem mass
spectrometry is one of the most used technologies: in a tandem mass spectrom-
etry experiment, a metabolite is fragmented into smaller molecules. The mass
spectrometer then outputs a fragmentation spectrum that consists of a series
of peaks, where ideally each peak corresponds to the mass of a fragment. If we
are able to best “explain” the spectrum by finding the molecule which corre-
sponds to each peak it contains, then the input metabolite can be infered as
well. Such identification can be achieved by comparison with some reference
database. However, the databases at hand are largely incomplete. This is why
de novo interpretation of the fragments, directly from the spectra, is a promising
alternative. In [2], Böcker et al. initiated such study, where the problem of de
novo identifying metabolites from tandem mass spectrometry spectra was for-
mally modeled by the Maximum Colorful Subtree (or MCS) problem. The
main ideas behind MCS are as follows. Let m be an unknown metabolite that
we want to infer from a tandem mass spectrum sm. We then do the following: for
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each peak p in sm (that represents a mass), we generate a set of sub-molecules
that lie in the same range of masses as p, and we “connect” two sub-molecules
whenever one can be obtained from the other by fragmentation. This situation is
represented by a directed acyclic graph (DAG) G = (V,A), in which every node
v ∈ V represents a molecule, two nodes u and v are linked by an arc {u, v} if one
molecule (represented by vertex v) is possibly the result of the fragmentation
of another (represented by vertex u), and each vertex possesses a color corre-
sponding to its mass (or better said, its mass range). We also assign a weight
function w : A → R to the arcs of G. Informally, weights correspond to a confi-
dence degree concerning the fragmentation of a molecule into its sub-molecule,
and because w is logarithmic, such weights may be negative. Note that in such
a graph, there exists a unique vertex of indegree 0, whose color is unique: this
vertex indeed represents one possible candidate for metabolite m. Now the MCS

problem, defined in [2] and further studied in [3,10,11,13], is defined as follows:
given a DAG G = (V,A), a set of colors C, a coloring function χ : V → C and a
weight function w : A → R, find a subtree T of G such that (1) no two vertices of
T carry the same color (we then say that T is colorful) and (2) T is of maximum
weight. Intuitively, a solution to MCS represents the best possible “fragmen-
tation scenario” for metabolite m with respect to spectrum sm. However, the
formalization of the initial problem via MCS does not completely reflect the
precise structure of the input. First, it is easy to see that G is not any DAG:
more precisely, as discussed above, it has a unique root r (i.e. a vertex having
indegree 0). Let us then call such DAGs r-DAGs (stands for “rooted DAGs”).
Moreover, the coloring function χ is not any function. Indeed, since vertices are
colored according to the masses of the molecules they represent, there exists a
total order P (C) on the set C of colors: for every pair of colors c1, c2 ∈ C we
say that c1 precedes c2 if the mass represented by c1 is smaller than the mass
represented by c2. We thus introduce the following notation: given a total order
P (C) and an r-DAG G = (V,A), a coloring function χ : V → C is called P -
order-preserving if there does not exist u, v ∈ V such that (i) χ(u) precedes χ(v)
in P (C) and (ii) there exists a (directed) path from v to u in G. Finally, by the
nature of the initial problem, the output tree T must necessarily contain the
root r. Thus, T is formally an arborescence, i.e. a directed graph T = (VT , AT )
with a designated root r such that there exists only one path from r to any node
v ∈ VT . This leads us to reformulate the MCS problem into the following Max-

imum Colorful Arborescence (or MCA) problem, which better reflects the
initial motivation.

Maximum Colorful Arborescence (MCA)
Input: An r-DAG G = (V,A) rooted at some vertex r, a set C of colors, a
total order P (C) on C, a P -order-preserving coloring function χ : V → C,
a weight function w : A → R.
Output: A colorful arborescence T = (VT , AT ) rooted at r and of maximum
weight w(T ) =

∑
a∈AT

w(a).



218 G. Fertin et al.

Because the definition of MCA is more accurate, it is legitimate to initiate a
developed analysis of the computational complexity of the problem, as done in
this paper. In particular, we will see that the fact that χ is P -order-preserving
can be positively exploited in some situations. Moreover, since any instance of
MCA is also an instance of MCS, any positive result (such as polynomial-time,
approximation or FPT algorithm) for MCS also applies to MCA – with a time
complexity and/or approximation ratio that may even be improved for MCA.
Besides, a negative result for MCS does not necessarily imply the same result for
MCA. Altogether, we believe that, by introducing MCA, we work for a better
understanding of the initial biological problem. In this paper, we thus study
MCA under an algorithmic viewpoint: a first goal is to distinguish tractable
instances from intractable ones (which implies focusing on the case where G is
an arborescence); a second one is to provide new polynomial and FPT algorithms
for the problem.

The paper is organized as follows. In Sect. 2, we introduce notations that
will be used throughout the paper. We then show in Sect. 3 that MCA remains
hard even for very constrained input instances. In Sect. 4, we take advantage
of the previously unexploited order-preserving nature of the coloring function
χ to describe a new range of instances that are polynomial-time solvable, and
develop new FPT algorithms. Finally, in Sect. 5, we present FPT algorithms for
MCA, essentially focused on parameter �, defined as the number of vertices not
present in the solution. Due to space constraints, some proofs are omitted from
the paper.

2 Preliminaries

Notations. For any integer k, we note [k] = {1, 2, .., k}. For any vertex-colored
and arc-weighted r-DAG G = (V,A) given as input of MCA, we let n = |V |,
m = |A| and r will always denote the root of G. We denote an arc in G from
a vertex x to a vertex y by {x, y}. For all vertices v ∈ V , N+(v) denotes the
set of outneighbors of v, d+(v) (resp. d−(v)) the outdegree (resp. indegree) of
v and Δ+ the maximum outdegree of G. Moreover, G[v] denotes the induced
r-DAG of G rooted in v. When G is an arborescence, for a vertex v ∈ V we
let f(v) be the father (thus unique inneighbor) of v in G. For any subset V ′

of V , χ(V ′) denotes the multiset of colors assigned to the vertices of V ′, and
χ∗(V ′) denotes its underlying set. We say that G is colorful when χ∗(V ) = χ(V ).
For a vertex v ∈ V , we let d(r, v) denote the distance between r and v and
Dr(G) = max{d(r, v) : v ∈ V }. If G is the input graph of MCA and C is the
associated set of colors, we note by CHG = (C,A′), the Color Hierarchy Graph
of G, which is defined as follows: for every two colors ci, cj ∈ C, {ci, cj} ∈ A′ iff
there exists x, y ∈ V such that χ(x) = ci, χ(y) = cj and {x, y} ∈ A.

The problem MCA
+ denotes the restriction of MCA to r-DAGs with posi-

tive weights, and UMCA the restriction of MCA
+ to instances having uniform

arc weights, i.e. w(a) = w ∈ R
+ for all a ∈ A. Note that MCA

+ is of interest
only when w is strictly positive, otherwise a trivial solution is just the root r of G.
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The problem MCA-x is the restriction of MCA in which any color c ∈ C appears
at most x times in χ(V ). We can also constrain the input instances of MCA both
on the weights and on the maximal number of occurrences of a color, and thus
combine the abovementioned variants, leading to e.g. the UMCA-x problem.

We say that a problem is FPT (for Fixed-Parameter Tractable) with respect
to a given parameter p if it can be solved in time O(f(p) · poly(n)) for some
computable function f , i.e. if the exponential part of its complexity depends
only on p. Three parameters will be of importance in this paper: k = |VT | is
the order of the solution output by MCA, � = n − |C| is the number of vertices
that are not part of the solution, and s is the number of arcs that need to be
removed from CHG in order to turn it into an arborescence. Finally, we note
that although G, the solution arborescence T and the color hierarchy graph CHG

are by definition directed, we will often, for simplicity and when clear from the
context, refer to the underlying undirected graph of some graph H (rather than
H) in the rest of the paper. For instance, when we talk about MCA “in trees”,
we actually mean that the underlying undirected graph of G is a tree.

Previous Results. We summarize here known results about MCS, and also note
that actually every result mentioned below concerning MCS also applies to
MCA. Indeed, MCA being a particular case of MCS, any positive result for
MCS also holds for MCA. Moreover, for all negative results below, the MCS

instances that are built in the corresponding proofs turn out to be either “direct”
MCA instances, or can be transformed into such instances.

MCS is known to be NP-hard even when every arc weight is equal to 1 [2],
and it can be seen that the result also applies to UMCA. MCS is also APX-hard
on binary trees (a result discussed in [10], refering to the conference version of
[6]), a result that also applies to UMCA-2. The only known FPT result for
MCS comes from [2], which is itself very much inspired by [12], and consists in
a dynamic programming algorithm that runs in O∗(3|C|) time and uses O∗(2|C|)
space. If we now take a close look at Theorem 1 in [10] (which reduces an instance
H of Maximum Independent Set containing nH vertices and mH edges into
an instance of MCS), it is easily seen that the constructed instance of MCS is
also an instance of MCA-1. Moreover, this MCA-1 instance can also be easily
transformed into an MCA-2 instance in which G is a tree: for this, it suffices to
duplicate every y-vertex from the instance of MCA-1, and assign the same color
to each pair of newly created vertices. This allows us to conclude that MCA-1

(resp. MCA-2 in trees) is W[1]-hard when parameterized by the weight w of the
solution. We can also conclude that MCA-1 is W[1]-hard when parameterized
by � = n − |C|. We can finally see that if P �= NP, there is no polynomial-time
approximation algorithm achieving a ratio O(n

1
2−ε) with ε > 0 for MCA-1 (resp.

MCA-2 in trees). As a side note, we point out an error in the inapproximation
ratio given in Theorem 1 in [10]: indeed, the instance of MCS constructed in
the reduction contains n = O(n2

H) for both MCA and MCS instances; thus
the correct inapproximation ratio of Theorem 1 should be O(n

1
2−ε) instead of

O(n1−ε).
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Our Results. The main results obtained in this paper are summarized in Table 1.
They will be developed in the following sections.

Table 1. Overview of the results presented in this paper for the MCA problem and
its variants. Here, k = |VT |, Δ+ is the maximum outdegree of G, � = n − |C| and
s = |A′| − |C| + 1.

DAGs Trees

MCA O∗(k!(Δ+)k) (Proposition 2)
P when CHG is a tree (Theorem 4)
O∗(2s) (Corollary 1)

P in caterpillars (Proposition 1)
O∗(2�) (Proposition 4)

MCA-1 W[1]-hard in � (from [10])

MCA
+ O∗(2�) (Proposition 3) O∗(1.62�) (Proposition 5)

UMCA-2 no O∗((2− ε)�) (Theorem6) no 2logδn approx, δ < 1 (Theorem1)

APX-hard, even in superstars (Theorem 2)

no O(n
1
3 −ε) approx. even in comb-graphs

(Theorem3)

3 MCA in Trees

In this section, we focus on MCA in the case where the input graph G is a
tree, aiming at determining which tree structures lead to (in)tractable (resp.
(in)approximable) results. We start with the following proposition, that applies
to the general case of trees.

Theorem 1. For any δ < 1, UMCA in trees cannot be approximated within
2logδn in polynomial time, unless NP ⊆ DTIME[2poly log n].

Proof. Dondi et al. introduced the Maximum Level Motif (or MLM) prob-
lem [6], a maximization variant of the Graph Motif problem [9] dealing with
colorful motifs on trees. Besides, MLM incorporates the notion of a leveled col-
oring function χ′ : V → C for which two vertices can have the same color only
if they are at the same distance from the root. The formal definition of MLM

is given below.

Maximum Level Motif
Input: A rooted tree H = (V,E), a color set C, a leveled coloring
function χ′ : V → C.
Output: A maximum cardinality subset S ⊆ V such that the induced
subgraph H[S] is connected and χ′(S) ⊆ C.

Let I be any instance of MLM. We construct an instance I ′ of MCA as follows:
graph G is built on V , and each edge in H is changed into an arc in G between
the same vertices: for this, each arc a is oriented from parent to child. We let
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w(a) = 1 for any arc, and we also apply the same coloring function χ′, given as
input of MLM, to color the vertices of G. Since χ′ is a leveled coloring function,
the colors in C are partially ordered. This partial order can thus be extended
into a(n arbitrary) total order P (C) such that χ′ is P -order-preserving. Thus,
I ′ is a correct UMCA instance. We now show that there exists a solution S of
cardinality k for MLM iff there exists a colorful arborescence T = (VT , AT ) such
that w(T ) ≥ k − 1 in G.

(⇒) Suppose there exists a solution S of MLM such that |S| = k. Let T be
the spanning arborescence of S in G, with VT = S. Trivially, T is colorful
and of weight k − 1. If r /∈ VT , we search for a vertex x ∈ VT such that
d(r, x) = min{d(r, u) : u ∈ VT }. Let Vr,x (resp. Ar,x) be the set of vertices
(resp. arcs) in the path from r to x in G. We construct a new arborescence
T ′ = (VT ′ , AT ′), with VT ′ = VT ∪ Vr,x and AT ′ = AT ∪ Ar,x. According to χ′,
Vr,x is colorful and each vertex in Vr,x has a different color from any of the
vertices in VT . Thus, VT ′ is colorful.
(⇐) Suppose there exists a colorful arborescence T = (VT , AT ) of weight k−1
in G. Then, we choose S = VT . Trivially, S is colorful and |S| = k.

Dondi et al. proved that, under the condition that NP ⊆ DTIME[2poly log n],
MLM cannot be approximated within 2logδn in polynomial time [6]. By linearity
of the above reduction, we reach the same conclusion for UMCA in trees. 
�

From the above result, it seems natural to further restrict the structure of
the input tree, in order to draw the line between tractable and intractable cases.
Note that if G is a star (i.e., every arc of G starts from the root r), MCA is
clearly in P: discard negatively weighted arcs, and for every color c ∈ C, consider
all arcs from r to a vertex of color c, and keep the one with maximum weight.
Superstars are a natural extension of stars, since they are defined as trees of
height 2. Unfortunately, the MCA problem turns out to be hard in superstars,
as shown by the following result.

Theorem 2. UMCA-2 is APX-hard, even if G is a superstar.

Proof. The proof is by reduction from MAX-2-SAT(3), which is known to be
APX-hard [1]. It can be seen as an extension of proof of Theorem 1 in [2].

MAX-2-SAT(3)
Input: A set X = {x1, x2 . . . xp} of variables, a CNF-formula φ on a
set of size-2 clauses C = {C1, C2 . . . Cq} built from X, such that each
variable occurs in at most 3 clauses.
Output: A boolean assignment β of X that satisfies the maximum num-
ber of clauses in C.

For every j ∈ [q], let lj,1 and lj,2 be the two literals that appear in clause
Cj . The reduction is as follows: for any instance of MAX-2-SAT(3), we create a
directed superstar G = (V,A) that we can see as a three-levels graph. The root
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r is at level 1, two vertices vi and v̄i are created for every i ∈ [p] at level 2, and
two vertices Cj,1, Cj,2 are created for every j ∈ [q] at level 3. There exists an
arc from r to every level 2 vertex. For all i ∈ [p] and j ∈ [q], there exists an
arc from vi (resp. v̄i) to Cj,1 if lj,1 = xi (resp. lj,1 = x̄i) or from vi (resp. v̄i)
to Cj,2 if lj,2 = xi (resp. lj,2 = x̄i). The coloring function on V (G) is defined
as follows: the root r is assigned a unique color; for all i ∈ [p], vertices vi and
v̄i are assigned the same color c(vi); for all j ∈ [q], vertices Cj,1 and Cj,2 are
assigned the same color c(Cj). Clearly, each color occurs at most twice in G,
and the coloring function is partially ordered (thus can easily be extended to
a total order), because any two vertices having the same color lie at the same
level. Finally, every arc in G is assigned a weight of 1.

We now show that there exists a boolean assignment β of X that satisfies
k clauses in φ iff there exists a colorful arborescence T = (VT , AT ) of weight
w(T ) ≥ p + k in G.

(⇒) Suppose there exists an assignment β of X that satisfies k clauses of
φ. Let ST = {vi : i ∈ [p] s.t. xi = True in β} and SF = {v̄i : i ∈ [p] s.t.
xi = False in β}. We let VT = {r} ∪ ST ∪ SF ∪ {Cj,1 : j ∈ [q] s.t. f(Cj,1) ∈
(ST ∪SF )}∪{Cj,2 : j ∈ [q] s.t. f(Cj,2) ∈ (ST ∪SF ) and f(Cj,1) /∈ (ST ∪SF )}
and we define T as the spanning arborescence of VT . By construction, there
cannot exist j ∈ [q], h ∈ {1, 2} such that Cj,h ∈ VT and f(Cj,h) /∈ VT . Thus,
T is connected. Moreover, since β satisfies k clauses, there exists k distinct
vertices of type Cj,h that belong to T , in addition to the p vertices in (ST ∪SF )
and the root r. Hence, T is clearly colorful and w(T ) = p + k.
(⇐) Suppose there exists a colorful arborescence T ′ = (VT ′ , AT ′) of weight
w(T ′) ≥ p + k in G. If VT ′ does not contain p vertices from level 2, then it
is always possible to extend it to a set VT such that VT ′ ⊆ VT , VT is colorful
and it contains p vertices from level 2. Let T be the spanning arborescence
of VT . Note that since T is colorful, for any 1 ≤ i ≤ p, either vi or v̄i is in
VT . Thus, for every i ∈ [p], if vi ∈ VT (resp. v̄i ∈ VT ) then we let xi = True
(resp. xi = False) in β. We now claim that β satisfies at least k clauses from
C. Indeed, if a vertex Cj,h, j ∈ [q] and h ∈ {1, 2} is in VT , then necessarily
f(Cj,h) ∈ VT and, by construction, Cj is satisfied by β. Moreover, Cj,1 and
Cj,2 cannot both belong to VT because T is colorful. Since T has a weight
w(T ) ≥ p + k, VT must contain at least k vertices from level 3, which means
that β satisfies at least k clauses.

To conclude the proof, recall that q ≥ k since no more than q clauses can
be satisfied. Notice also that 2q ≤ 3p as every variable appears at most three
times in φ, while every clause is of size 2. This gives us p ≥ 2q

3 ≥ 2k
3 and

p + k ≥ 2k
3 + k ≥ 5k

3 . Thus, there exists an assignment β that satisfies at least
k clauses of φ iff there exists a colorful arborescence T = (VT , AT ) of weight
w(T ) ≥ 5k

3 in G. The linearity of the reduction combined with the APX-hardness
of MAX-2-SAT(3) shows APX-hardness of UMCA-2, even on superstars. 
�

The previous result shows that even in trees with height 2, MCA remains
APX-hard. Another option consists in constraining the maximum degree of the
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input tree, which motivates the study of comb-graphs. If d(v) denotes the degree
of a vertex v in a graph, a comb-graph is defined as a tree for which d(v) ≤ 3
for any v ∈ V , and where all vertices of degree 3 lie on a single simple path.
Unfortunately, we show in Theorem 3 that UMCA-2 remains APX-hard (with
a large inapproximability ratio) even when the input tree is a comb-graph.

Theorem 3. UMCA-2 cannot be approximated within O(n
1
3−ε), with ε > 0,

even if G is a comb-graph.

Similarly to Theorem 1, Theorem 3 is about large inapproximability ratios. It
is stronger than Theorem 1 as it applies to UMCA-2 on very specific trees; how-
ever its inapproximability ratio is lower, the one of Theorem 1 almost reaching
n when δ tends to 1.

Another way of restricting the input tree structure is to consider trees that
are “close to paths”. When G is a path, it can be easily seen that MCA is in P.
The next step is to study caterpillars, which are trees that become paths after
removal of their leaves. Notice that a superstar becomes a star, i.e. a special
case of caterpillar, after removal of its leaves. Moreover, MCA is APX-hard for
superstars (see Theorem 2), and MCA is in P for stars. As shown below, more
generally, MCA in caterpillars is in P. Thus, the following theorem allows us to
draw a line between intractable and tractable instances for MCA in trees.

Proposition 1. MCA in caterpillars is in P.

Proof. The main purpose of the algorithm we present in this proof is to show
polynomiality of the problem when G is a caterpillar; no particular effort is
made here on optimizing the running time. Let S = {v ∈ V : d+(v) �= 0} be the
spine of G. Clearly, G[S] is connected according to the definition of a caterpillar.
The proposed algorithm works as follows. First, we generate all colorful subsets
S′ ∈ S such that r ∈ S′ and G[S′] is connected. Second, for each such S′, we
denote N+(S′) = {v ∈ N+(u) : u ∈ S′ and v /∈ S} and we proceed as follows: for
all colors c ∈ C \ χ(S′), take x ∈ N+(S′) of color c with the maximum weighted
incoming arc ax and add x to S′ only if w(ax) > 0. From this newly built set S′′,
we compute the spanning arborescence T ′′, and finally output the arborescence
that reaches the maximum weighted among all S′′. Clearly, the algorithm is
correct because we generated all possible connected and colorful structures built
from the spine (together with r if r does not belong to the spine). From this,
extending to the leaves of the caterpillar can be achieved greedily. There exists
O(n2) subsets of vertices S′ and each S′ is treated in polynomial time, thus the
whole algorithm is polynomial.

4 A Closer Look at the Color Hierarchy Graph CHG

One major difference between MCS and MCA lies in the P -order-preserving
character of the coloring function χ according to some total order P (C) on the
set C of colors. In this section, we exploit this fact by focusing on the structure of
the Color Hierarchy Graph CHG. The main result of the section is the following.
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Theorem 4. MCA can be solved in polynomial time whenever CHG is a tree.

Proof. The algorithm Arbo we designed for the problem is formally described in
Algorithm 1. Arbo computes a colorful arborescence T = (VT , AT ) of maximum
weight w(T ) for any input G = (V,A) such that CHG is a tree. In the following,
for any v ∈ V , we denote Tv = (Vv, Av) the colorful arborescence of maximum
weight w(Tv) that is rooted in v and computed by Arbo. Moreover, for each
such v, we denote by post(v) = {u ∈ N+(v) : u ∈ Tv} the set of outneighbors of
v that belong to VT . Finally, let H(Tv) = Dv(Tv) be the height of Tv.

We create two sets of vertices S = ∅ and LS = {v ∈ V : v is a leaf of
G[V \ S]} that are initialized in line (1) of Algorithm1. For each v ∈ V , lines
(4–14) describe how to treat a vertex v ∈ V : Arbo first computes post(v), then
w(Tv) =

∑
u∈post(v) w(Tu) + w({v, u}). For each such vertex v, lines (2) and (16–

17) ensure that v is treated only after all vertices u ∈ N+(v) have been treated.
Finally, Arbo recursively builds Tr from post(r) in lines (18–25). As each vertex
v ∈ V is treated in polynomial time, the whole algorithm is thus polynomial.

Now, we show that w(T ) = w(Tr). For this, we prove by induction that for all
v ∈ V such that H(Tv) = h, 0 ≤ h ≤ H(Tr), Tv is optimal, i.e. connected, colorful
and of maximum weight among all colorful arborescences rooted in v. First, for
all vertices v ∈ V such that H(Tv) = 0, Tv is composed of a single vertex v and
is thus trivially optimal. Let us now assume that Tv is optimal for all vertices
v ∈ V such that H(Tv) = h with 0 ≤ h ≤ H(Tr)−1. We are interested in all the
vertices v ∈ V such that H(Tv) = h+1. Recall that Vv = {r}∪{Vu : u ∈ N+(v)}
and that Av = {{v, u} : u ∈ post(v)} ∪ {Au : u ∈ post(v)}. Thus, Tv is clearly
connected as we assumed that Tu is connected for each u ∈ N+(v). Moreover, as
CHG is a tree, there cannot exist a colorful set {x, y, z} ⊆ V such that {x, z} ∈ A
and {y, z} ∈ A. In addition to the fact that post(v) is colorful for any v ∈ V ,
this implies that

⋂
u∈post(v) Vu = ∅ and thus, recursively, that Tv is a colorful

arborescence. Finally, suppose there exists a colorful arborescence T ′
v = (V ′

v , A′
v)

rooted in v such that w(T ′
v) > w(Tv). We denote post′(v) the set of outneighbors

of v in T ′
v. Observe that:

w(Tv) =
∑

c∈χ(N+(v))

max{0, w(Tu) + w({v, u}) : u ∈ N+(v) andχ(u) = c} (1)

This implies that post′(v) �= post(v) iff there exists at least a vertex u ∈ N+(v)
such that Tu is not optimal, which contradicts our assumption. As a consequence,
Tv is optimal for all v ∈ V and thus w(T ) = w(Tr). 
�

We recall that s is defined as the number of arcs that need to be removed
from CHG = (C,A′) in order for CHG to become a tree. Now, let C ′ = {c ∈
C s.t. d−(c) > 1} be the set of colors in CHG that have indegree strictly more
than one. Clearly, CHG is not a tree whenever C ′ is not empty. In the following,
for any C ′ �= ∅, we let p = min{d−(c) : c ∈ C ′}.
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Algorithm 1. Arbo

Input: A MCA instance G s.t. CHG is a tree.
Output: A colorful arborescence T = (VT , AT ) of maximum weight.

1: S ← ∅ ; LS ← {v ∈ V s.t. v is a leaf of G[V \ S]};
2: while (S �= V ) do � Compute post(v) and w(Tv)
3: for all (v ∈ LS) do � Ensure N+(v) already treated
4: for all (c ∈ χ(N+(v))) do
5: best ← 0 ; z ← v;
6: for all (u ∈ N+(v) s.t. χ(u) = c) do
7: if (w(Tu) + w({v, u}) > best) then
8: best ← w(Tu) + w({v, u}) ; z ← u;
9: end if

10: end for
11: if (best > 0) then
12: w(Tv) ← w(Tv) + best ; post(v) ← post(v) + {z};
13: end if
14: end for
15: end for
16: S ← S + LS ; LS ← {v ∈ V s.t. v is a leaf of G[V \ S]};
17: end while
18: S ← {r} ; LS ← ∅ ; VT ← {r}; � Recursively compute Tr

19: while (S �= ∅) do
20: for all (v ∈ S) do
21: LS ← LS + post(v) ; VT ← VT + post(v);
22: end for
23: S ← LS ; LS ← ∅;
24: end while
25: return T � T is the spanning arborescence of VT

Theorem 5. MCA can be solved in time O∗(p
s

p−1 ).

Proof. We design a branching algorithm that recursively removes arcs from a
set Z, where initially Z = A(CHG), thus producing a graph CH ′

G. For every
color c ∈ C ′, we recursively branch on the d−(c) different cases where only one
incoming arc of c is not removed from Z. At the end of these branching steps, each
color c ∈ C has an indegree 1 and thus CH ′

G is a tree. We then create a graph
G′ = (V,AZ) with AZ = A\{{x, y} ∈ A : {χ(x), χ(y)} /∈ Z}. Informally, we build
G′ such that CH ′

G is the Color Hierarchy Graph of G′. Hence, by Theorem 4,
we know that computing a colorful arborescence of maximum weight in G′ is
polynomial-time solvable. As a consequence, the above described algorithm is
correct.

The size of the induced search tree Ts produced by the algorithm is |Ts| =∏
c∈C′ d−(c). Assuming C ′ is not empty, we now search for the lowest real X

such that the inequality (1) d−(c) ≤ Xd−(c)−1 holds for all colors c ∈ C ′. From

(1), we have log(d−(c)) ≤ (d−(c) − 1) · log(X), thus X ≥ e
log(d−(c))
d−(c)−1 , which gives
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us X ≥ d−(c)
1

d−(c)−1 . The corresponding function f(x) = x
1

x−1 is monotonously
decreasing for all x ∈ [2;+∞]. This implies that we can set X to p

1
p−1 . Recall

that |Ts| ≤ ∏
c∈C′ Xd−(c)−1 and that s =

∑
c∈C′ d−(c) − 1, which leads to |Ts| ≤

p
s

p−1 . 
�
For instance, if p = 3, then by Theorem 5 we obtain a running time of

O∗(1.733s) for solving MCA. In general, we always have that p ≥ 2 for graphs
G such that CHG is not a tree. Thus, by setting p to 2, we obtain the following
“universal” corollary.

Corollary 1. MCA can be solved in time O∗(2s).

5 FPT Results with Respect to Parameters k and �

In this section, we study parameters k = |VT | and � = n − |C|, introduced in
Sect. 2. Parameter k (“size of the solution”) is a classical parameter for FPT
studies, and it is natural to ask whether MCA is FPT in k. At this point, we do
not have an answer to this question. However, we have the following proposition.

Proposition 2. MCA is FPT when parameterized by (k,Δ+).

Proof. The proof is by a pure combinatorial enumeration algorithm, which works
as follows: first, we generate the set Xk of all order k arborescences that are
rooted in r and contained in G; second, we output the colorful arborescence
of maximum weight in Xk, or otherwise conclude that we have a NO-instance.
Since the latter part is polynomial, it suffices to show that |Xk| only depends
on k and Δ+. First, note that we can remove from G all vertices v ∈ V such
that d(r, v) > k, as they cannot belong to any arborescence of order k that is
rooted in r. Therefore, we can always assume that G is such that Dr(G) ≤ k. Let
Tx = (Vx, Ax) be an arborescence in Xk with Vx = {vi, 1 ≤ i ≤ k}. Informally,
we build Tx vertex by vertex, starting from v1 = r. Thus, v2 is one of the
d+(v1) ≤ Δ+ outneighbors of v1. By induction, it can be shown that for any
2 ≤ p ≤ k, there are (

∑p−1
i=1 d+(vi)) − (p − 2) ≤ (p − 1)Δ+ − (p − 2) choices for

vertex vp: indeed, vp being a child of a previously considered vertex, it cannot
be taken among these already considered vertices. The above argument shows
that |Xk| ≤ ∏k

i=2((i− 1) ·Δ+ − (i− 2)) is upper bounded by
∏k

i=2(i− 1) ·Δ+ =
O(k!(Δ+)k). This proves our proposition. 
�

Parameter � = n − |C| turns out to be of particular interest for the MCA

problem. Indeed, in the tests run in [10] on real datasets, the ratio r = n
|C| can

be as low as 1.03. Unfortunately, as noted in Sect. 2, MCA-1 parameterized by
� is W[1]-hard. However, constraining the input instances allows us to derive
several positive results. For instance, we can show that MCA

+ is FPT in �.

Proposition 3. The MCA
+ problem can be solved in O∗(2�).
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Proof. We design a recursive branching algorithm based on the colors of the
input graph G. We first let S = V . If S is not colorful, we consider u, v ∈ S
such that χ(u) = χ(v) and recursively branch on two cases: either u or v is
removed from S. Recall that r has a unique color, therefore it is never removed.
We repeat this branching step until S is colorful. For each set S that we obtain,
let GS be the connected component containing r in the induced r-DAG G[S]. We
thus look for a maximum weighted spanning arborescence in each such GS – this
leads to the best solution for GS , as all weights are positive. Such arborescence
can be computed in polynomial time [4]. Clearly, the above described algorithm
is correct, and its running time is exponential only in the number of nodes of
the induced search tree TS . Since TS is binary and of height � = n − |C|, our
algorithm runs in O∗(2�). 
�

Now, if for MCA we constrain the input r-DAG to be a tree, we obtain the
following result.

Proposition 4. MCA in trees can be solved in O∗(2�) time.

Proof. We design another recursive branching algorithm with a set S = V . While
S is not colorful, we consider u, v ∈ S such that χ(u) = χ(v) and recursively
branch on two cases: either G[u] or G[v] is removed from S (instead of either
u or v in proof of Proposition 3 above). Clearly, for each set S we obtain, G[S]
is a colorful tree. Thus, notice that CHG[S] is itself a tree. As a consequence,
by Theorem 4, we can compute a maximum weighted arborescence in G[S] in
polynomial time. The search tree is binary as in the previous proof and it has a
maximum height � = n − |C|. Hence our algorithm runs in O∗(2�). 
�

Finally, we show that Proposition 4 can be improved when all arcs a ∈ A
have positive weights.

Proposition 5. MCA
+ in trees can be solved in O∗(1.62�) time.

Proof. We improve the branching algorithm discussed in proof of Propositions 3
and 4, by using a different branching procedure. Let S = V and let us apply the
following branching rule: if there exist u, v ∈ S such that (i) χ(u) = χ(v) and
(ii) |N+(u)| > 0 or |N+(v)| > 0, then we branch on two cases: either G[u] or G[v]
is removed from S. We repeat this branching procedure until it can no longer be
applied on S. We now denote US the set of vertices having a unique color in S.
Note that because of condition (ii), two vertices u, v ∈ S can have the same color
only if they are both leaves of G[S], and thus G[US ] is connected. Recall that
G is a tree and that for any arc a ∈ A, its weight w(a) is positive. Thus, G[US ]
is necessarily contained in a maximum colorful arborescence T = (VT , AT ) built
from G[S]. We now need to compute T from S: we start by taking in T all vertices
from US . Then, for every color c ∈ χ(S)\χ(US), we add to VT the vertex v ∈ S of
color c such that w({f(v), v}) is maximum – note that f(v) necessarily belongs
to US . Finally, T is defined as the tree induced by VT . It can be easily seen
that T is connected, colorful and of maximum weight, which ensures correctness
of our algorithm. The computational complexity of our algorithm derives from
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the fact that, at each step, if |G[u]| = 1 (resp. |G[v]| = 1) then |G[v]| ≥ 2
(resp. |G[u]| ≥ 2), and thus the branching vector is (1, 2), which leads to a 1.62�

algorithm1. 
�
We now turn to proving a lower bound on the computational complexity of

MCA with respect to �. In particular, our result proves that the FPT algorithm
given in Proposition 3 is optimal for MCA

+.

Theorem 6. The UMCA-2 problem cannot be solved in time O∗((2−ε)�) unless
the Strong Exponential-Time Hypothesis fails.

Proof. First note that the Strong Exponential-Time Hypothesis (SETH) states
that the CNF-SAT problem defined on p variables cannot be solved in time
O∗((2 − ε)p) for any ε > 0 [8]. The reduction from CNF-SAT we present here is
adapted from proof of Theorem 1 in [7]. We first formally define CNF-SAT.

CNF-SAT
Input: A set X = {x1, x2 . . . xp} of variables, a CNF-formula φ on a set
C = {C1, C2 . . . Cq} of clauses built from X.
Output: An assignment β of each xi ∈ X that satisfies φ.

Starting from any instance φ of CNF-SAT, we build an instance of UMCA-2

in the form of a three-level graph G. First, let r be the root at level 1. For each
variable xi ∈ X with 1 ≤ i ≤ p, we create two vertices vi and v̄i at level 2. For
each clause Cj ∈ C with 1 ≤ j ≤ q, we create a vertex zj at level 3. We then add
an arc from r to vi and to v̄i for all i ∈ [p]. There is also an arc from vi (resp.
v̄i) to zj iff literal xi (respectively x̄i) appears in clause Cj , for all i ∈ [p] and for
all j ∈ [q]. Every level 1 and level 3 vertex is assigned a unique color. At level
2, for all i ∈ [p], vi and v̄i share the same color ci. Thus, all colors c ∈ C can
appear at most twice, and these colors can easily be partially ordered (and thus
totally ordered) based on their level in the graph. Finally, the weight of every
arc is 1, and it can be seen that G is indeed an instance of UMCA-2. We now
show that there exists an assignment β that satisfies φ iff there exists a colorful
arborescence of weight p + q (and thus of order p + q + 1) in G.

(⇒) Suppose there exists an assignment True/False of each xi ∈ X, say β,
that satisfies φ. Let IT (resp. IF ) be the set of indices i ∈ [p] such that xi

is set to True (resp. False) by β. Let S = {r} ∪ {vi for all i ∈ IT } ∪ {v̄i

for all i ∈ IF } ∪ {zj for all j ∈ [q]}. Necessarily, G[S] is connected: first, r is
connected to every level-2 vertex; second, a vertex zj corresponds to a clause
satisfied by some xi (resp. x̄i), and by definition G[S] contains vi (resp. v̄i),
which is connected to zj . Now, let T = (VT , AT ) be a spanning arborescence
of G[S]. Clearly, T is colorful of total weight p + q.
(⇐) Suppose there exists a colorful arborescence T = (VT , AT ) of weight p+q,
thus of order p + q + 1. Note that T contains at most p vertices from level 2,

1 For an introduction to the analysis of branching vectors, see e.g. [5].
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and thus at least q vertices from level 3. However, level 3 contains exactly q
vertices. Thus, VT must be composed of the root, exactly p vertices at level
2 and exactly q vertices at level 3. Since level 2 is composed of 2p vertices
where each color appears twice, and since T is colorful, for all i ∈ [p], either
vi or v̄i is in VT . The assignment β is thus the following: if vi ∈ VT (resp.
v̄i ∈ VT ) then xi is set to True (resp. False). Since T is connected, then for
any zj with j ∈ [q], there exists f(zj) ∈ T , which means that every clause in
φ is satisfied by at least one literal in β.

Hence, since n = 2p + q + 1 and |C| = p + q + 1, we have that � = n − |C| = p.
As a consequence, every algorithm running in time O∗((2 − ε)�) for UMCA-2

would imply an algorithm running in time O∗((2 − ε)p) for CNF-SAT, which
would contradict SETH. 
�

6 Conclusion

In this paper, we introduced the MCA problem, a constrained version of the
MCS problem, where the input must be an r-DAG, and the coloring func-
tion must be P -order-preserving for some total order P on the colors. MCA

is designed to better represent the initial motivation of de novo inference of
metabolites from tandem mass spectra, and leads to better-shaped algorithms.
Although we showed that MCA remains APX-hard even for constrained inputs,
we also showed that it is possible to take advantage of the order-preserving
nature of the coloring function to describe new polynomial-time solvable and
FPT cases – notably, MCA is in P when the color hierarchy graph CHG is
a tree. It remains an open problem whether other polynomial-time algorithms
based on the structure of CHG can be designed.

We also introduced parameter � = n−|C|, that we consider to be promising as
experiments show that in real data, n and |C| tend to be close. Although MCA is
W[1]-hard when parameterized by �, we gave several positive results, in the form
of FPT algorithms, for some variants of MCA. Some of these may be improved,
and other results taking � as a parameter are certainly worth investigating too.
Finally, we conclude this paper by the two following questions, that concern two
other parameters: is MCA FPT in the number k of vertices of the solution? Is
it possible to devise an FPT algorithm with parameter |C| running faster than
O∗(3|C|)?
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3. Böcker, S., Rasche, F., Steijger, T.: Annotating fragmentation patterns. In:
Salzberg, S.L., Warnow, T. (eds.) WABI 2009. LNCS, vol. 5724, pp. 13–24.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04241-6 2

4. Chu, Y.J., Liu, T.H.: On shortest arborescence of a directed graph. Sci. Sinica
14(10), 1396 (1965)

5. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Cham (2015)

6. Dondi, R., Fertin, G., Vialette, S.: Complexity issues in vertex-colored graph pat-
tern matching. J. Discrete Algorithms 9(1), 82–99 (2011)

7. Fertin, G., Komusiewicz, C.: Graph Motif problems parameterized by dual. In:
Grossi, R., Lewenstein, M. (eds.) 27th Annual Symposium on Combinatorial Pat-
tern Matching, CPM 2016. LIPIcs, vol. 54, pp. 7:1–7:12. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2016)

8. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

9. Lacroix, V., Fernandes, C.G., Sagot, M.: Motif search in graphs: application to
metabolic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 3(4), 360–368
(2006)
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Abstract. We prove that one can construct various kinds of automata
over finite words for which some elementary properties are actually inde-
pendent from strong set theories like Tn =: ZFC+ “There exist (at least)
n inaccessible cardinals”, for integers n ≥ 0. In particular, we prove
independence results for languages of finite words generated by context-
free grammars, or accepted by 2-tape or 1-counter automata. Moreover
we get some independence results for weighted automata and for some
related finitely generated subsemigroups of the set Z3×3 of 3-3 matrices
with integer entries. Some of these latter results are independence results
from the Peano axiomatic system PA.

Keywords: Automata and formal languages · Logic in computer sci-
ence · Finite words · Context-free grammars · 2-tape automaton ·
Post correspondence problem · Weighted automaton · Finitely generated
matrix subsemigroups of Z3×3 · Models of set theory · Incompleteness
theorems · Large cardinals · Inaccessible cardinals · Independence from
the axiomatic system “ZFC + there exist n inaccessible cardinals” ·
Independence from Peano Arithmetic

1 Introduction

We pursue in this paper a study of the links between automata theory and set
theory we begun in previous papers [Fin09,Fin11,Fin15]

In [Fin09] we proved a surprising result: the topological complexity of an
ω-language accepted by a 1-counter Büchi automaton, or of an infinitary ratio-
nal relation accepted by a 2-tape Büchi automaton, is not determined by the
axiomatic system ZFC; notice that here the topological complexity refers to
the location of an ω-language in hierarchies, like Borel or Wadge hierarchies, in
the Cantor space of infinite words over a finite alphabet Σ, and one assume, as
usually, that ZFC is consistent and thus has a model. In particular, there is a
1-counter Büchi automaton A (respectively, a 2-tape Büchi automaton B) and
two models V1 and V2 of ZFC such that the ω-language L(A) (respectively,
the infinitary rational relation L(B)) is Borel in V1 but not in V2. We have
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proved in [Fin11] other independence results, showing that some basic cardinal-
ity questions on automata reading infinite words actually depend on the models
of ZFC.

The next step in this research project was to determine which properties
of automata actually depend on the models of ZFC, and to achieve a more
complete investigation of these properties.

Recall that a large cardinal in a model of set theory is a cardinal which
is in some sense much larger than the smaller ones. This may be seen as a
generalization of the fact that ω is much larger than all finite cardinals. The
inaccessible cardinals are the simplest such large cardinals. Notice that it cannot
be proved in ZFC that there exists an inaccessible cardinal, but one usually
believes that the existence of such cardinals is consistent with the axiomatic
theory ZFC. The assumed existence of large cardinals have many consequences
in Set Theory as well as in many other branches of Mathematics like Algebra,
Topology or Analysis, see [Jec02].

In [Fin15], we recently proved that there exist some 1-counter Büchi
automata An for which some elementary properties are independent of theories
like Tn =: ZFC + “There exist (at least) n inaccessible cardinals”, for integers
n ≥ 1. We first prove that “L(An) is Borel”, “L(An) is arithmetical”, “L(An) is
ω-regular”, “L(An) is deterministic”, and “L(An) is unambiguous” are equiva-
lent to the consistency of the theory Tn (denoted Cons(Tn)). This implies that,
if Tn is consistent, all these statements are provable from ZFC + “There exist
(at least) n + 1 inaccessible cardinals” but not from ZFC + “There exist (at
least) n inaccessible cardinals”.

We prove in this paper that independence results, even from strong set theo-
ries with large cardinals, occur in the theory of various automata over finite
words, like 1-counter automata, pushdown automata (equivalent to context-
free grammars), 2-tape automata accepting finitary rational relations, weighted
automata. We first show that if T is a given recursive theory then there exists
an instance of the Post Correspondence Problem (denoted PCP), constituted
of two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of non-empty words over a
finite alphabet Γ , which has no solution if and only if T is consistent. In other
words the theory T is consistent if and only if there does not exist any non-
empty sequence of indices i1, i2, . . . , ik such that xi1xi2 · · · xik = yi1yi2 · · · yik .
This allows to find many elementary properties of some pushdown automata,
context-free grammars, or 2-tape automata, which are independent from ZFC
or from some strong theory in the form ZFC + “There exist some kind of large
cardinals”, since many properties of these automata are proved to be undecidable
via some effective reductions of the PCP to these properties.

For instance we prove that, for every integer n ≥ 0, there exist 2-tape
automata An, Bn, Cn, and Dn, accepting subsets of A� × B�, for two alpha-
bets A and B, such that Cons(Tn) is equivalent to each of the following items:
(1) L(An) ∩ L(Bn) = ∅; (2) L(Cn) = A� × B�; (3) “L(Dn) is accepted by a
deterministic 2-tape automaton”; (4) “L(Dn) is accepted by a synchronous 2-
tape automaton”. In particular, if ZFC + “There exist (at least) n inaccessible
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cardinals” is consistent, then each of the properties of these 2-tape automata
given by Items (1)–(4) is provable from ZFC + “There exist (at least) n + 1
inaccessible cardinals” but not from ZFC + “There exist (at least) n inaccessible
cardinals”.

We also prove some independence results for weighted automata, via some
independence results for finitely generated matrix subsemigroups of Z3×3. Notice
that in this context we also obtain results of independence from Peano Arithmetic
which make sense since in the context of finite words or of integer matrices
everything can be formalized in first-order arithmetic. For instance we show
that there exists a finite set of matrices M1,M2, . . . ,Mn ∈ Z3×3, for some integer
n ≥ 1, such that: (1) “the subsemigroup of Z3×3 generated by these matrices
does not contain the zero matrix”, and (2) “The property (1) is not provable
from PA”.

These results seem of more concrete mathematical nature than the fact that
Cons(PA) is an arithmetical statement which is true but unprovable from PA.
Indeed although our results follow from Gödel’s Second Incompleteness Theo-
rem, they express some properties about some natural and simple mathemati-
cal objects: the finitely generated subsemigroups of the semigroup Z3×3 of 3-3-
matrices with integer entries.

This could be compared to the fact that if PA (respectively, ZFC) is con-
sistent then there is a polynomial P (x1, . . . , xn) which has no integer roots, but
for which this cannot be proved from PA (respectively, ZFC); this result can
be inferred from Matiyasevich’s Theorem, see [EFT94, End of Chap. 10.7]. The
above results could also be compared with other independence results obtained
by Kanamori and McAloon [KM87].

Notice that we recently discovered that in older papers it had been noted that
undecidability and incompleteness in automata theory were intimately related
and that one could for instance obtain some results about automata which are
true but unprovable in some recursive theory extending Peano Arithmetic like
ZFC, [Har85,JY81]. However the results presented here, although they are not
very difficult to prove, exhibit in our opinion the following novelties:

1. We obtain results of a different kind: we show that a great number of elemen-
tary properties of automata over finite words, are actually independent from
strong set theories.

2. We show how we can effectively construct some automata, like 1-counter or
2-tape automata, for which many elementary properties reflect the scale of a
hierarchy of large cardinals axioms like “There exist (at least) n inaccessible
cardinals” for integers n ≥ 1.

3. We show how we can use Post Correspondence Problem to get simple com-
binatorial statements about finite words which are independent from strong
set theories.

Altogether we think that the collection of results presented in this paper will
be of interest for computer scientists and also for set theorists.
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The paper is organized as follows. We recall some notions and results of
set theory in Sect. 2. We prove some independence results for various kinds of
automata over finite words in Sect. 3. Concluding remarks are given in Sect. 4.

2 Some Results of Set Theory

We now recall some basic notions of set theory which will be useful in the sequel,
and which are exposed in any textbook on set theory, like [Kun80,Jec02].

The usual axiomatic system ZFC is Zermelo-Fraenkel system ZF plus the
axiom of choice AC. The axioms of ZFC express some natural facts that we
consider to hold in the universe of sets. For instance a natural fact is that two
sets x and y are equal iff they have the same elements. This is expressed by the
Axiom of Extensionality:

∀x∀y [ x = y ↔ ∀z(z ∈ x ↔ z ∈ y) ].

Another natural axiom is the Pairing Axiom which states that for all sets x and
y there exists a set z = {x, y} whose elements are x and y:

∀x∀y [ ∃z(∀w(w ∈ z ↔ (w = x ∨ w = y)))].

Similarly the Powerset Axiom states the existence of the set P(x) of subsets of
a set x. Notice that these axioms are first-order sentences in the usual logical
language of set theory whose only non logical symbol is the membership binary
relation symbol ∈. We refer the reader to any textbook on set theory for an
exposition of the other axioms of ZFC.

A model (V, ∈) of an arbitrary set of axioms A is a collection V of sets,
equipped with the membership relation ∈, where “x ∈ y” means that the set x
is an element of the set y, which satisfies the axioms of A. We often say “the
model V” instead of “the model (V, ∈)”.

We say that two sets A and B have same cardinality iff there is a bijection
from A onto B and we denote this by A ≈ B. The relation ≈ is an equivalence
relation. Using the axiom of choice AC, one can prove that any set A can be
well-ordered so there is an ordinal γ such that A ≈ γ. In set theory the cardinal
of the set A is then formally defined as the smallest such ordinal γ.

The infinite cardinals are usually denoted by ℵ0,ℵ1,ℵ2, . . . ,ℵα, . . . The car-
dinal ℵα is also denoted by ωα, when it is considered as an ordinal. The first
infinite ordinal is ω and it is the smallest ordinal which is countably infinite so
ℵ0 = ω (which could be written ω0). The first uncountable ordinal is ω1, and
formally ℵ1 = ω1.

Let ON be the class of all ordinals. Recall that an ordinal α is said to be a
successor ordinal iff there exists an ordinal β such that α = β + 1; otherwise the
ordinal α is said to be a limit ordinal and in this case α = sup{β ∈ ON | β < α}.

We recall now the notions of cofinality of an ordinal and of regular cardinal
which may be found for instance in [Jec02]. Let α be a limit ordinal, the cofinality
of α, denoted cof(α), is the least ordinal β such that there exists a strictly
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increasing sequence of ordinals (αi)i<β , of length β, such that ∀i < β αi < α
and supi<β αi = α. This definition is usually extended to 0 and to the successor
ordinals: cof(0) = 0 and cof(α + 1) = 1 for every ordinal α. The cofinality of
a limit ordinal is always a limit ordinal satisfying: ω ≤ cof(α) ≤ α. Moreover
cof(α) is in fact a cardinal. A cardinal κ is said to be regular iff cof(κ) = κ.
Otherwise cof(κ) < κ and the cardinal κ is said to be singular.

A cardinal κ is said to be a (strongly) inaccessible cardinal iff κ > ω, κ is
regular, and for all cardinals λ < κ it holds that 2λ < κ, where 2λ is the cardinal
of P(λ).

There are many other notions of large cardinals which have been studied in
set theory, see [Dra74,Kan97,Jec02]. A remarkable fact is that the strengths of
these notions appear to be linearly ordered (and in fact well ordered).

Recall that the class of sets in a model V of ZF may be stratified in a
transfinite hierarchy, called the Cumulative Hierarchy, which is defined by V =⋃

α∈ON Vα, where the sets Vα are constructed by induction as follows:

(1) V0 = ∅
(2) Vα+1 = P(Vα) is the set of subsets of Vα, and
(3) Vα =

⋃
β<α Vβ , for α a limit ordinal.

It is well known that if V is a model of ZFC and κ is an inaccessible cardinal
in V then Vκ is also a model of ZFC. If there exist in V at least n inaccessible
cardinals, where n ≥ 1 is an integer, and if κ is the n-th inaccessible cardinal, then
Vκ is also a model of ZFC + “There exist exactly n − 1 inaccessible cardinals”
(and the same result is true if we replace “inaccessible” by “hyperinaccessible”).
This implies that one cannot prove in ZFC that there exists an inaccessible
cardinal, because if κ is the first inaccessible cardinal in V then Vκ is a model
of ZFC + “There exist no inaccessible cardinals”.

We now recall that a (first-order) theory T in the language of set theory is
a set of (first-order) sentences, called the axioms of the theory. If T is a theory
and ϕ is a sentence then we write T  ϕ iff there is a formal proof of ϕ from
T ; this means that there is a finite sequence of sentences ϕj , 1 ≤ j ≤ n, such
that ϕ1  ϕ2  . . . ϕn, where ϕn is the sentence ϕ and for each j ∈ [1, n], either
ϕj is in T or ϕj is a logical axiom or ϕj follows from ϕ1, ϕ2, . . . ϕj−1 by usual
rules of inference which can be defined purely syntactically. A theory is said to
be consistent iff for no (first-order) sentence ϕ does T  ϕ and T  ¬ϕ. If T
is inconsistent, then for every sentence ϕ it holds that T  ϕ. We shall denote
Cons(T) the sentence “the theory T is consistent”.

Recall that one can code in a recursive manner the sentences in the language
of set theory by finite sequences over a finite alphabet, and then simply over the
alphabet {0, 1}, by using a classical Gödel numbering of the sentences. We say
that the theory T is recursive iff the set of codes of axioms in T is a recursive set
of words over {0, 1}. In that case one can also code formal proofs from axioms of
a recursive theory T and then Cons(T) is an arithmetical statement. The theory
ZFC is recursive and so are the theories Tn =: ZFC + “There exist (at least)
n inaccessible cardinals”, for any integer n ≥ 1.

We now recall Gödel’s Second Incompleteness Theorem, [Göd63,Fri11].
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Theorem 1 (Gödel 1931 [Göd63] ). Let T be a consistent recursive extension
of ZF. Then T � Cons(T ).

We now state the following lemmas.

Lemma 2. Let T be a recursive theory in the language of set theory. Then there
exists a Turing machine MT , starting on an empty tape, such that MT halts iff
T is inconsistent.

Proof. We describe informally the behaviour of the machine MT . Essentially
the machine works as a program which enumerates all the formal proofs from
T and enters in an accepting state and then halts iff the last sentence of the
proof is the sentence “∃x(x �= x)”. If the theory T is consistent the machine
will never enter in an accepting state qf and never halts. But if the theory is
inconsistent then at some point of the computation the machine sees a proof
whose last sentence is actually “∃x(x �= x)” and halts. �

In [Fin15] we have focused our results on set theories, even if we noticed
that some of our results could be extended to weaker arithmetical theories and
to other recursive theories. We have shown that some elementary properties
of automata may be independent from strong set theories like ZFC + “There
exist (at least) n inaccessible cardinals”. We are going to show in this paper
that some similar phenomena still hold for some kinds of automata on finite
words. However in the context of automata over finite words, we can notice that
automata and their behaviour can be coded by integers and this can be done
in Peano arithmetic; this will be often assumed in the sequel. Then we shall
also obtain some new independence results from the axiomatic system of Peano
Arithmetic PA. Indeed while we have first stated Gödel’s Second Incompleteness
Theorem for consistent recursive extensions of ZF in the above Theorem 1, the
prooof of this Theorem leads also to the following version, see [Poi00] for a proof.

Theorem 3 (Gödel 1931). Let PA be Peano Arithmetic. Then

PA � Cons(PA).

Notice that PA is known to be consistent, since the axioms of Peano Arith-
metic are satisfied in the standard model of the natural numbers. Thus the above
Theorem 3 gives a true arithmetical statement which is not provable from Peano
Arithmetic. Notice that Gentzen gave in 1936 a proof of the consistency of Peano
Arithmetic which uses only transfinite induction up to the Cantor ordinal ε0, see
[Gen36,Hor14]; this proof can be considered as being finitistic since the ordinal
ε0 can be coded with finite objects, like finite trees.

3 Incompleteness Results for Automata over Finite
Words

We assume the reader to be familiar with the theory of formal languages
[HMU01]. We recall the usual notations of formal language theory.
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If Σ is a finite alphabet, a non-empty finite word over Σ is any sequence
x = a1 . . . ak, where ai ∈ Σ for i = 1, . . . , k, and k is an integer ≥ 1. The length
of x is k, denoted by |x|. The empty word has no letter and is denoted by ε; its
length is 0. Σ� is the set of finite words (including the empty word) over Σ.

The usual concatenation product of two finite words u and v is denoted u.v
(and sometimes just uv). This product is extended to the product of a finite
word u and an ω-word v: the infinite word u.v is then the ω-word such that:

(u.v)(k) = u(k) if k ≤ |u|, and (u.v)(k) = v(k − |u|) if k > |u|.
We now recall the well known Post Correspondence Problem (PCP), see

[HMU01, pp. 392–402]. It is one of the famous undecidable problems in The-
oretical Computer Science and in Formal Language Theory. The PCP is an
abstract problem involving strings, and it has been very useful to prove the
undecidability of many other problems by reduction of PCP to those problems.
In particular, many problems about context-free languages, those accepted by
pushdown automata or generated by context-free grammars, have been shown to
be undecidable by this method. For instance it follows from the undecidability of
the Post Correspondence Problem that the universality problem, the inclusion
and the equivalence problems for context-free languages are also undecidable.

An instance of the Post Correspondence Problem consists of two lists of finite
words over some finite alphabet Γ : (x1, x2, . . . , xn) and (y1, y2, . . . , yn). Notice
that the two lists must have the same length n ≥ 1. One says that this instance
has a solution if there exists a non-empty sequence of indices i1, i2, . . . , ik such
that xi1xi2 · · · xik = yi1yi2 · · · yik . The Post Correspondence Problem is:

“Given an instance of the PCP, tell whether this instance has a solution”.
We now recall Post’s result, now well-known as the undecidability of the Post

Correspondence Problem.

Theorem 4 (Post, see [HMU01]). Let Γ be an alphabet having at least two ele-
ments. Then it is undecidable to determine, for arbitrary n-tuples (x1, x2, . . . , xn)
and (y1, y2, . . . , yn) of non-empty words in Γ �, whether there exists a non-empty
sequence of indices i1, i2, . . . , ik such that xi1xi2 · · · xik = yi1yi2 · · · yik .

We now recall the variant of the PCP called the modified Post Correspon-
dence Problem, which is used in the proof of the above Theorem 4.

The MPCP consists, given two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn)
of non-empty words in Γ �, in determining whether there exists a non-empty
sequence of indices i1, i2, . . . , ik such that x1xi1xi2 · · · xik = y1yi1yi2 · · · yik .

The proof of Theorem 4 is given in two steps, see [HMU01]. First one can
associate in a recursive manner, to each pair (Mz, w) where Mz is the Turing
machine of index z ∈ N and w is an input word for Mz, an instance of the
MPCP consisting of two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) such that
there exists a finite sequence of indices i1, i2, . . . , ik, such that x1xi1xi2 · · · xik =
y1yi1yi2 · · · yik if and only if the Turing machine Mz does halt on the input w.

Next we can associate in an effective manner, to each instance of the MPCP
consisting of two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn), another instance
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of the PCP consisting of two n+2-tuples (x′
1, x

′
2, . . . , x

′
n+2) and (y′

1, y
′
2, . . . , y

′
n+2),

such that (x1, x2, . . . , xn) and (y1, y2, . . . , yn) form a solution of the MPCP if and
only if (x′

1, x
′
2, . . . , x

′
n+2) and (y′

1, y
′
2, . . . , y

′
n+2) form a solution of the PCP.

We can now state the following result.

Theorem 5. Let T be a recursive theory in the language of set theory or
T = PA. Then there exist two n-tuples XT = (x1, x2, . . . , xn) and YT =
(y1, y2, . . . , yn) of finite words over a finite alphabet Σ, such that there exists a
non-empty sequence of indices i1, i2, . . . , ik such that xi1xi2 · · · xik = yi1yi2 · · · yik

iff T is inconsistent.

Proof. Let T be a recursive theory in the language of set theory or T = PA.
Then there exists a Turing machine M, starting with an empty tape, which halts
if and only if the theory T is inconsistent. We can now deduce the announced
result from the proof of the undecidability of the PCP which is just sketched
above. �

Remark 6. We can easily see that the above theorem is true for the two-letter
alphabet Σ = {a, b}. Indeed if Σ = {a1, a2, . . . , ap} is an alphabet having more
than two letters, we can use the coding given by: aj → bja, where a and b are
two letters, which provides the announced claim.

Corollary 7. For every integer n ≥ 0, there exist p ≥ 1 and two p-tuples XT,n =
(x1,n, x2,n, . . . , xp,n) and YT,n = (y1,n, y2,n, . . . , yp,n) of finite words over Σ =
{a, b}, such that: “Pn: there exist no non-empty sequence of indices i1, i2, . . . , ik
such that: xi1,nxi2,n · · · xik,n = yi1,nyi2,n · · · yik,n” iff Tn is consistent.

In particular, if ZFC + “There exist (at least) n inaccessible cardinals” is
consistent, then Pn is provable from ZFC + “There exist (at least) n + 1 inac-
cessible cardinals” but not from ZFC + “There exist (at least) n inaccessible
cardinals”.

Proof. By Theorem 5, for each integer n ≥ 0, there exist p ≥ 1 and two p-
tuples XT,n = (x1,n, x2,n, . . . , xp,n) and YT,n = (y1,n, y2,n, . . . , yp,n) of finite
words over Σ = {a, b}, such that: “Pn: there exist no non-empty sequence of
indices i1, i2, . . . , ik such that xi1,nxi2,n · · · xik,n = yi1,nyi2,n · · · yik,n” iff Tn is
consistent. Recall that one can prove from ZFC + “There exist (at least) n + 1
inaccessible cardinals” that if κ is the n + 1-th inaccessible cardinal, then the
set Vκ of the cumulative hierarchy is also a model of ZFC + “There exist
n inaccessible cardinals”. This implies that the theory ZFC + “There exist n
inaccessible cardinals” is consistent and thus this also implies that there exist
no non-empty sequence of indices i1, i2, . . . , ik such that:

xi1,nxi2,n · · · xik,n = yi1,nyi2,n · · · yik,n

On the other hand if Tn is consistent, then Pn is not provable from Tn. Indeed
Tn is then a consistent recursive extension of ZFC and thus by Gödel’s Second
Incompleteness Theorem we know that Tn � Cons(Tn). �
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Moreover, since PA is consistent, we also get the following result.

Corollary 8. There exist two p-tuples X = (x1, x2, . . . , xp) and Y =
(y1, y2, . . . , yp) of finite words over Σ = {a, b}, such that:

(1) there exist no non-empty sequence of indices i1, i2, . . . , ik such that:

xi1xi2 · · · xik = yi1yi2 · · · yik

(2) The property (1) is not provable from PA.

We can now infer from Theorem 5 some incompleteness results for context-
free languages generated by context-free grammars or equivalently accepted by
pushdown automata. We use the reductions of PCP to some problems about
context-free grammars ans context-free languages given in [HMU01, pp. 404–
408]. We refer the reader to this textbook for background about context-free
grammars and context-free languages.

We first state the following result about ambiguity of context-free grammars.

Theorem 9. Let T be a recursive theory in the language of set theory or T =
PA. Then there exists a context-free grammar GT which is unambiguous iff T
is consistent.

Proof. We refer here to the proof of the undecidability of the unambiguity of
a given context-free grammar in [HMU01, pp. 404–406]. From a given instance
of the PCP constituted by two n-tuples (x1, x2, . . . , xn) and (y1, y2, . . . , yn) of
finite words over a finite alphabet Σ, is constructed a context-free grammar G
such that G is ambiguous if and only if this instance of PCP has a solution. The
result now follows from this construction and from the above Theorem 5. �

Corollary 10. For every integer n ≥ 0, there exists a context-free grammar Gn

such that Gn is unambiguous iff Tn is consistent.
In particular, if ZFC + “There exist (at least) n inaccessible cardinals” is

consistent, then “ Gn is unambiguous” is provable from ZFC + “There exist (at
least) n + 1 inaccessible cardinals” but not from ZFC + “There exist (at least)
n inaccessible cardinals”.

We now state some other results about elementary properties of context-free
languages.

Theorem 11. Let T be a recursive theory in the language of set theory or T =
PA. Then there exist context-free grammars G1,T G2,T , G3,T , and G4,T , such
that Cons(T ) is equivalent to each of the following items:

(1) L(G1,T ) ∩ L(G2,T ) = ∅;
(2) L(G3,T ) = L(G4,T );
(3) L(G3,T ) = Γ �, for some alphabet Γ .
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Corollary 12. For every integer n ≥ 0, there exist context-free grammars G1,n

G2,n, G3,n, and G4,n, such that Cons(Tn) is equivalent to each of the following
items:

(1) L(G1,n) ∩ L(G2,n) = ∅;
(2) L(G3,n) = L(G4,n);
(3) L(G3,n) = Γ �, for some alphabet Γ .

In particular, if ZFC + “There exist (at least) n inaccessible cardinals” is
consistent, then each of the properties of these context-free languages given by
Items (1)–(3) is provable from ZFC + “There exist (at least) n + 1 inaccessible
cardinals” but not from ZFC + “There exist (at least) n inaccessible cardinals”.

We are now going to state some similar independence results for other very
simple finite machines reading finite words: the class of 2-tape automata (or
transducers) accepting finitary rational relations. We shall refer to the book
[Ber79] in which some elementary problems about finitary rational relations are
proved to be undecidable by reducing the PCP to these problems, see pages
79–82 in this book.

We now state the following results.

Theorem 13. let T be a recursive theory in the language of set theory or T =
PA. Then there exist 2-tape automata A, B, and C, accepting finitary rational
relations X,Y,Z ⊆ A� × B�, for two alphabets A and B having at least two
letters, and such that Cons(T ) is equivalent to each of the following items:

(1) X ∩ Y = ∅;
(2) Z = A� × B�;
(3) A� × B� ⊆ Z.

Proof. We refer to the proof of [Ber79, Theorem 8.4, p. 81]. We assume, as
in this proof, that A contains exactly two letters and that A = {a, b}. For two
sequences u1, u2, . . . , up, and v1, v2, . . . , vp, of finite words over the alphabet B,
we define U = {(ab, u1), . . . , (abp, up)}, and V = {(ab, v1), . . . , (abp, vp)}. Then
U+ and V + are rational relations and, by [Ber79, Lemma 8.3, p. 80], the relations
Ū = A� × B� \ U+ and V̄ = A� × B� \ V + are also rational. It is noticed in
the proof of Theorem 8.4 in [Ber79] that if we set X = U+ and Y = V +, then
it holds that X ∩ Y �= ∅ iff the instance of the PCP given by (u1, u2, . . . , up),
and (v1, v2, . . . , vp) has a solution. Item (1) of the Theorem follows then from
the above Theorem 5. Moreover if we set Z = Ū ∪ V̄ , then Z = A� × B� iff
X ∩ Y = ∅, and this implies Items (2) and (3). �

Using a 2-tape automaton C accepting the finitary relation Z given by the
above theorem, it is easy to construct, with similar methods as in the paper
[Fin03] about infinitary rational relations, another 2-tape automaton D accept-
ing a finitary rational relation L ⊆ A� × B� such that L is accepted by a deter-
ministic 2-tape automaton iff L is accepted by a synchronous 2-tape automaton
iff Z = A� × B�. Thus we can state the following result. The detailed proof is
here left to the reader.
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Theorem 14. let T be a recursive theory in the language of set theory or
T = PA. Then there exists a 2-tape automaton D, accepting a finitary ratio-
nal relation L ⊆ A� ×B�, for two alphabets A and B having at least two letters,
and such that Cons(T ) is equivalent to each of the following items:

(1) L is accepted by a deterministic 2-tape automaton;
(2) L is accepted by a synchronous 2-tape automaton.

Corollary 15. For every integer n ≥ 0, there exist 2-tape automata An, Bn,
Cn, and Dn, accepting subsets of A� × B�, for two alphabets A and B having at
least two letters, such that Cons(Tn) is equivalent to each of the following items:

(1) L(An) ∩ L(Bn) = ∅;
(2) L(Cn) = A� × B�;
(3) L(Dn) is accepted by a deterministic 2-tape automaton;
(4) L(Dn) is accepted by a synchronous 2-tape automaton.

In particular, if ZFC + “There exist (at least) n inaccessible cardinals” is
consistent, then each of the properties of these 2-tape automata given by Items
(1)–(4) is provable from ZFC + “There exist (at least) n + 1 inaccessible cardi-
nals” but not from ZFC + “There exist (at least) n inaccessible cardinals”.

Since PA is consistent, we get the following result from Theorems 13 and 14
(where we assume, as we have already said at the beginning of this section, that
automata are coded by integers):

Corollary 16. There exist 2-tape automata A, B, C, and D, accepting subsets
of A� × B�, for two alphabets A and B having at least two letters, such that

(1) L(A) ∩ L(B) = ∅.
(2) L(C) = A� × B�.
(3) L(D) is accepted by a deterministic 2-tape automaton.
(4) L(D) is accepted by a synchronous 2-tape automaton.

But none of the items (1)–(4) is provable from PA.

We are now going to state some incompleteness results about weighted
automata. We shall also state some incompleteness results about finitely gener-
ated semigroups of matrices with integer entries (with the semigroup operation
of multiplication of matrices) which can be presented by automata with multi-
plicities, see [Har02].

We first recall the notion of an n-state Z-automaton, i.e. a non-deterministic
automaton with integer multiplicities, as presented in [Har02].

A non-deterministic Z-automaton is a 5-tuple A = (Σ,Q, δ, J, F ), where:
Σ = {a1, a2, . . . , ak} is a finite input alphabet and the letter ai is associated to
a matrix Mi ∈ Zn×n; Q = {1, 2, . . . , n} is the state set (and i corresponds to the
ith row and column of the matrices); J is the set of initial states and F ⊆ Q is
the set of final states; δ is the set of transitions that provides the rules

r
(ai
m)−→ s,
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where ai ∈ Σ, and m = (Mi)rs is the multiplicity of the rule.
A path

π = s1
( b1
m1

)−→ s2
( b2
m2

)−→ s3 −→ · · · −→ st

( bt
mt

)−→ st+1

is a computation of the automaton A reading a word w = b1b2 . . . bt ∈ Σ� and
the multiplicity of this path is equal to ‖π‖ = m1m2 . . . mt ∈ Z. For a word
w ∈ Σ� we denote by Πrs the set of the paths of A reading the word w which go
from state r to state s. Then the multiplicity of the word w = ai1ai2 . . . ait ∈ Σ�

from r to s is the sum

Ars(w) =
∑

π∈Πrs

‖π‖ = (Mi1Mi2 . . . Mit)rs

and we get the multiplicity of w in A from the accepting paths:

A(w) =
∑

r∈J,s∈F

Ars(w) =
∑

r∈J,s∈F

(Mi1Mi2 . . . Mit)rs.

We first state the following result.

Theorem 17. Let T be a recursive theory in the language of set theory or T =
PA. Then there exists a finite set of matrices M1,M2, . . . ,Mn ∈ Z3×3, for some
integer n ≥ 1, such that the subsemigroup of Z3×3 generated by these matrices
does not contain any matrix M with M13 = 0 if and only if T is consistent.

One can easily state corollaries of the above Theorem for strong set theories,
as for previous results in this paper. Details are here left to the reader. Moreover,
since PA is consistent, we also get the following result.

Corollary 18. There exists a finite set of matrices M1,M2, . . . ,Mn ∈ Z3×3, for
some integer n ≥ 1, such that:

(1) the subsemigroup of Z3×3 generated by these matrices does not contain any
matrix M with M13 = 0, and

(2) The property (1) is not provable from PA.

We also get the following result as a corollary of the above Theorem 17.

Corollary 19. Let T be a recursive theory in the language of set theory or
T = PA. Then there exists a 3-state Z-automaton A such that A accepts a word
with multiplicity zero iff T is inconsistent.

Corollary 20. Let T be a recursive theory in the language of set theory or
T = PA. Then there exists two 2-state N-automata A and B such that A and B
accept a word w with the same multiplicity iff T is inconsistent.

One can easily state corollaries of the above one for strong set theories or for
Peano Arithmetic, as for previous results in this paper. Details are here left to
the reader.

Following an idea of Paterson, Halava and Harju proved in [HH01] that it is
undecidable for finitely generated subsemigroups S of Z3×3 whether S contains
a matrix with M11 = 0. We now prove the following result.
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Theorem 21. Let T be a recursive theory in the language of set theory or T =
PA. Then there exists a finite set of matrices M1,M2, . . . ,Mn ∈ Z3×3, for some
integer n ≥ 1, such that the subsemigroup of Z3×3 generated by these matrices
does not contain any matrix M with M11 = 0 if and only if T is consistent.

Recall that Paterson proved in 1970 that the mortality problem for finitely
generated subsemigroups S of Z3×3 is undecidable, i.e. that one cannot decide,
for a given set of matrices M1,M2, . . . ,Mn ∈ Z3×3, whether the zero matrix
(whose all coefficients are equal to zero) belongs to the subsemigroup generated
by the matrices M1,M2, . . . ,Mn, i.e. whether there exists a sequence of integers
i1, i2, . . . ik, such that Mi1Mi2 . . . Mik = 0. Halava and Harju gave a proof of this
result in [HH01].

We can now state the following result.

Theorem 22. Let T be a recursive theory in the language of set theory or T =
PA. Then there exists a finite set of matrices M1,M2, . . . ,Mn ∈ Z3×3, for some
integer n ≥ 1, such that the subsemigroup of Z3×3 generated by these matrices
does not contain the zero matrix if and only if T is consistent.

Corollary 23. For every integer p ≥ 0, there exists a finite set of matrices
M1,M2, . . . ,Mnp

∈ Z3×3, for some integer np ≥ 1, such that the subsemigroup
of Z3×3 generated by these matrices does not contain the zero matrix if and only
if Tp is consistent.

In particular, if ZFC + “There exist (at least) p inaccessible cardinals” is
consistent, then the property “The subsemigroup of Z3×3 generated by the matri-
ces M1,M2, . . . ,Mnp

, does not contain the zero matrix” is provable from ZFC +
“There exist (at least) p+1 inaccessible cardinals” but not from ZFC + “There
exist (at least) p inaccessible cardinals”.

Moreover, since PA is consistent, we also get the following result.

Corollary 24. There exists a finite set of matrices M1,M2, . . . ,Mn ∈ Z3×3, for
some integer n ≥ 1, such that:

(1) the subsemigroup of Z3×3 generated by these matrices does not contain the
zero matrix, and

(2) The property (1) is not provable from PA.

We have used in the proof of the above results some effective reductions of
the PCP to some undecidable problems and an independence result about the
solutions of some instances of the PCP. We can also sometimes use directly
some effective reductions of the halting problem for Turing machines to some
undecidable problems along with the above Lemma 2.

We now give some examples of independence results we can get by using this
lemma.

Theorem 25. Let T be a recursive theory in the language of set theory or T =
PA. Then there exists a 1-counter automaton A, reading finite words over a
finite alphabet Σ, such that L(A) = Σ� if and only if T is consistent.
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Proof. Recall that Ibarra proved in [Iba79] that the universality problem for
languages of 1-counter automata (and actually for some very restricted classes of
1-counter automata) is undecidable. He constructed, for each single-tape Turing
machine M, a 1-counter automaton A, reading finite words over a finite alphabet
Σ, such that L(A) = Σ� iff the machine M does not halt on the blank tape.
The result now follows from the above Lemma 2. �

We can now prove the following result.

Theorem 26. Let T be a recursive theory in the language of set theory or T =
PA. Then there exists a 1-counter automaton A, reading finite words over a
finite alphabet Σ, such that Cons(T ) is equivalent to each of the following items:

(1) L(A) = Σ�;
(2) L(A) is accepted by a deterministic 1-counter automaton;
(3) L(A) is accepted by an unambiguous 1-counter automaton.

Corollary 27. For every integer n ≥ 0, there exists a 1-counter automaton An,
reading finite words over a finite alphabet Σ, such that Cons(Tn) is equivalent
to each of the following items:

(1) L(An) = Σ�;
(2) L(An) is accepted by a deterministic 1-counter automaton;
(3) L(An) is accepted by an unambiguous 1-counter automaton.

In particular, if ZFC + “There exist (at least) n inaccessible cardinals” is
consistent, then each of the properties of the 1-counter automaton An given by
Items (1)–(3) is provable from ZFC + “There exist (at least) n + 1 inaccessible
cardinals” but not from ZFC + “There exist (at least) n inaccessible cardinals”.

Remark 28. Part of Theorem 26 and of Corollary 27 subsumes Items (2) and
(3) of Theorem 11 and of Corollary 12. Indeed we can construct, from a given
pushdown automaton (and thus also from a given 1-counter automaton) accept-
ing a finitary language, a context-free grammar generating the same language.

4 Concluding Remarks

We have shown that some very elementary properties of some automata over
finite words are actually independent from strong set theories like ZFC + “There
exist (at least) n inaccessible cardinals”. The results of this paper are true for
other large cardinals than inaccessible ones. For instance we can replace inacces-
sible cardinals by hyperinaccessible, hyperMahlo, measurable, . . . and still other
ones and obtain similar results.

Some of our results are even more general because they could have been
stated for more general recursive theories,
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Abstract. We study the following scheduling problem on a single
processor. We are given n jobs, where each job ji has an integer release
time ri, processing time pi as well as deadline di. The processor can
schedule an unlimited number of jobs at any time t. Our objective is to
schedule the jobs together such that the total number of active time slots
is minimized. We present an O(n3) dynamic programming algorithm for
the case of agreeable deadlines with di ≤ dj whenever ri < rj or all
jobs are big. In the general case, we present an online algorithm with
competitive ratio 4 and show that our analysis is tight.

1 Introduction

Energy efficiency problems have been well studied by researchers in the past
decades [1,4,12]. Its objective is to reduce the energy consumption without per-
formance degradation. One way to reduce the energy consumption is to turn
off the idle machines when the machines do not have any jobs to process. For
instance, the storage cluster in the data centers can be turned off to save energy
during low utilization period [2].

“Min-gap” strategy [4,5] is one of the approaches for energy saving. When
the machines are idle, they are transited to the suspended state without any
energy consumption. However, in practice, a small amount of energy will be
consumed in the process of waking up the machines from the suspended state.
If the number of idle periods can be minimized, less energy is consumed for
waking up the idle machines. Hence, the objective of min-gap strategy is to find
a schedule such that the number of idle periods can be minimized. Baptiste [4]
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was the first to propose a polynomial-time algorithm with running time of O(n7).
Later, Baptiste et al. [5] improved the complexity to O(n5). They also presented
an O(n4) algorithm for a special instance of this problem where all jobs have
unit length. Angel et al. [3] consider the special setting of this problem, where
the jobs have agreeable deadlines with di ≤ dj whenever ri < rj . They presented
an O(n2) algorithm for the single processor case, and in the multiprocessor case
with m machines, they presented an O(n2m) algorithm for unit length jobs.
Demaine et al. [8] presented an O(n7m5) algorithm for the general case in the
multiprocessor setting where all jobs have unit length.

Besides “min-gap” strategy, the active/busy time minimization problem
introduced by Ikura and Gimple is another approach for energy saving [11] which
aims to schedule jobs together in order to maximize their idle periods to save
the energy. They proposed an algorithm to minimize the completion time for a
single batch processing machine with agreeable deadlines.

In the active/busy time minimization problem, the processor can schedule
B jobs at any time t. Let Jt be the number of jobs which are scheduled at
time t. The objective is to schedule all the jobs in the time slots satisfying
Jt ≤ B to minimize the number of active time slots. In the preemptive setting,
Chang et al. [6] proposed a linear time algorithm to schedule unit length jobs.
Khandekar et al. [13] proposed a 5-approximation algorithm and Chang et al. [7]
proposed a 2-approximation LP rounding algorithm to find a feasible schedule
for all jobs where the total active time can be minimized. Koehler and Khuller
proposed an O(n3) algorithm on parallel machines which improves the previously
known O(n8) dynamic programming algorithm [14]. Shalom et al. [15] extends
the studies of active/busy time minimization problem to the online setting. They
presented a 5 log lenmax-competitive algorithm where lenmax is the length of
the longest job. Tian et al. [17] applied this problem in cloud computing for
scheduling real-time virtual machines in the cloud data center. They presented a
β-competitive algorithm for the general case, where 1 < β < B. Flammini et al.
[10] proposed a 4-approximation algorithm to solve the non-preemptive setting
of the active/busy time minimization problem. This problem is NP hard when
B > 2 in preemptive setting [6] and B = 2 in non-premmptive setting [10].

Moreover, Khandekar et al. [13] introduced a new variant of the active/busy
time minimization problem where a processor can schedule unlimited jobs at
any time t without the constraint of B. The recent work of Tavakoli et al. [16]
and Fang et al. [9] studied this problem in a different scenario. The scenario
they use is the interval data sharing problem which is abstracted from wireless
sensor networks. When the base station broadcasts one sampled data, it can be
received and used by any number of sensors whose sampling period contains the
time point (which justifies the unlimited capacity assumption in the problem).
On the condition that each sensor receives a certain amount of data during the
sampling period, their objective is to minimize the transmission energy of the
base station. In [16], each application only requires discrete data at some time
points whereas the work in [9] considers a continuous interval of sampling data.
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In this paper, we focus on the active time minimization problem presented
in [13] which is illustrated below. We are given a collection of n jobs, where each
job ji has an integer release time ri, processing time pi and deadline di. We are
given a single processor, which can process an unlimited number of jobs at the
same time in a non-preemptive way. For any time t, whenever there exists a job
in execution, we denote t as “active time”. Otherwise we refer to time t as “idle
time”. The focus of this paper is to schedule all the jobs such that the active
time can be minimized.

In the active time minimization problem, Khandekar et al. presented a
dynamic programming algorithm with a time complexity of O(n4) to solve the
problem. Later on, a 2-approximation algorithm for the general case is provided
by [9] together with an O(n2) dynamic programming algorithm for the special
instance where the lengths of the execution for all the jobs are the same. However,
the analysis of the 2-approximation algorithm in [9] is incorrect, and there exists
a counter example showing that their algorithm cannot obtain the approximation
ratio of 2. The detail of the counter example is presented in Sect. 4. Moreover, we
study some particular cases of this problem where jobs have agreeable deadlines
or all jobs are big, and obtain a faster algorithm compared to the general case.

Our results. We present an O(n3) dynamic programming algorithm for the
case of agreeable deadlines where di ≤ dk if ri < rk or all jobs are big. In the
general case, we present a counter example to show that the algorithm proposed
by [9] cannot obtain the approximation ratio of 2. Moreover, we present an online
algorithm with competitive ratio 4 and show that our analysis is tight. To the
best of our knowledge, we are the first to study this problem in the online setting.

The remainder of this paper is organized as follows. The problem formulation
is given in Sect. 2. We introduce the dynamic programming algorithm for jobs
with agreeable deadlines or big jobs in Sect. 3. In Sect. 4, we present the counter
example showing that the approximation ratio of the algorithm presented in [9]
is not 2 and introduce an online algorithm with competitive ratio 4. Finally, we
conclude in Sect. 5.

2 Problem Formulation

We first describe the general case of the active time minimization problem. We
are given n jobs, where each job ji has an integer release time ri, processing time
pi and deadline di. For any job ji, it can only be scheduled within the [ri, di]
interval and we focus on the non-preemptive setting of the problem where the
execution starts till it finishes without any interruption in between. For any
time t, whenever there exists a job executed in t, we denote t as “active time”.
Otherwise we refer to time t as “idle time”. The objective is to schedule all jobs
by deciding the starting time si and the finishing time fi for each job ji, such
that the active time is minimized.

Besides the general case of the problem, we also study the following special
cases for this problem with different assumptions on the input jobs.
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1. Jobs with agreeable deadlines: for any two jobs ji and jk, we have di ≤ dk if
ri < rk.

2. Large jobs: for each job ji, pi ≥ (di − ri)/2.

For ease of presentation, we first show some definitions which are used for all
the cases throughout the paper.

Definition 1. We define a block to be the maximal interval containing only
active time. We say a job belongs to a block if this job is executed within the
block’s duration.

Definition 2. We define the latest starting time (LST ) for ji to be LSTi =
di − pi and ELST (J) = minji∈J{LSTi}.

Lemma 1. There exists an optimal schedule such that the starting time of each
block is ELST (Y), where Y is the set of jobs executed in this block.

Proof. First, the start time of the block cannot be later than ELST (Y) since it
will violate some job’s deadline. On the other hand, if the starting time of the
block is earlier than ELST (Y), then we can push the starting time of the block
to ELST (Y), moving every job’s starting time forward by the same amount.
This gives us a new block with the same length. However, moving every job’s
execution by the same amount may violate some job’s deadline. When that
happens, we just keep those jobs’ starting time at their LST s. Because all these
LST s are at least ELST (Y), this will give us a feasible schedule with active
time at most the length of the original block.

3 Special Jobs

3.1 Jobs with Agreeable Deadlines

If jobs have agreeable deadlines where di ≤ dk if ri < rk, we show that an optimal
schedule can be found by grouping the jobs into different blocks sequentially and
then picking the combination of blocks where the total length of the blocks is
minimized.

Lemma 2. For jobs with agreeable deadlines, there exists an optimal schedule
S such that the jobs are processed in the order of their release times and the
starting time of each block is ELST (Y), where Y is the set of jobs executed in
the same block in S.

Proof. Let J be the set of n jobs, where the jobs are sorted by release times such
that r1 ≤ r2 ≤ · · · ≤ rn. For jobs with the same release time, they are sorted
by increasing deadlines. Let S be an optimal schedule where the starting time
of each block is ELST (Y) which does not follow the processing order of release
times. In other words, there exists a pair of jobs, ji and jk, with ri < rk (or
ri = rk and di < dk) and jk is scheduled before ji. We have two cases to discuss,
which are pi ≤ pk and pi > pk.
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In the first case, since ri ≤ rk and pi ≤ pk, it is feasible to start job ji at sk
without exceeding its deadline di. Because pi ≤ pk, if both jobs start at the same
time point, the job execution of jk can cover up the whole execution of job ji.
Therefore, we can always set si to be sk without increasing the number of active
time slots which is illustrated in Fig. 1(a). In the second case, since pi > pk, the
execution of job ji can cover up the whole execution of job jk. Since di ≤ dk.
We can start job jk at si without exceeding its deadline dk. Therefore we can
schedule both jobs at the same time point si without increasing the number of
active time slots in an optimal schedule which is illustrated in Fig. 1(b).

Besides, as indicated by Lemma 1, we can push the starting time of the blocks
to ELST (Y) by moving every job’s starting time forward by the same amount.
Let je be the job with the earliest latest starting time in a block. After pushing
the jobs, the jobs jy with ry ≤ re can always be scheduled at the same time with
the job je at ELST (Y). Hence, the jobs remain processed in the order of their
release times.

Thus, we show that in any case, an optimal schedule can be obtained where
the jobs are processed in the order of release times and the starting time of each
block is ELST (Y).

Fig. 1. Schedule not following the processing order of release times.

Now, we propose Algorithm 1 to compute the optimal schedule for jobs with
agreeable deadlines.
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Algorithm 1. SolveAgreeableDeadlines(J)
Input: J = {J1, J2, · · · , Jn}, Ji = {ri, pi, di}, LSTi = di − pi where i ≥ 1
Output: The set of blocks {i, j} in an optimal schedule

1 Sort the jobs by release times in increasing order, where r1 ≤ r2 ≤ · · · ≤ rn
2 Let A[i][k] be the length of the block that executed jobs from ji to jk
3 Initialize A[i][k] = 0 for all i, k where 0 ≤ i, k ≤ n
4 for (i = 1 to n) do
5 for (k = 1 to n) do
6 if (i > k) then
7 A[i][k] = A[k][i]

8 else if (i < k) then
9 /* We now compute Be which is the finishing time of the block

Block(i, k − 1) */
10 Be = ELST ({ji, ..., jk}) + A[i][k − 1]
11 A[i][k] = A[i][k − 1] + pk − (Be − rk − max{0, Be − rk − pk})

12 else
13 A[i][k] = 0

14 return min{OPT (1, k − 1) + A[k, n], k ∈ [1, n − 1]}

Theorem 1. Algorithm1 can compute an optimal schedule with running time
of O(n3).

Proof. In the initialization step, the indices of jobs are sorted by release time in
non-decreasing order, breaking ties by increasing deadlines. Then we use dynamic
programming to calculate an optimal schedule. Define Block(i, k) to be the min-
imum total active time used to execute jobs from ji to jk without idle time in
between. We also use Block(i, k) to represent the block itself.

Let Y be a set of jobs that are executed in the block Block(i, k). By Lemma 1,
the starting time of the block is ELST (Y). Since we aim to minimize the length
of the block, it is always good to execute other jobs as early as possible without
being earlier than ELST (Y). Therefore, we can set sm to be max{rm, ELST (Y)}
for all i ≤ m ≤ k. If the resulting schedule consists of more than one blocks, then
we set Block(i, k) to be infinity. Otherwise we set Block(i, k) to be the length
of the generated schedule.

We use OPT (i, k) to represent the minimum total active time needed to exe-
cute jobs from ji to jk. Then OPT (1, n), the active time of an optimal schedule
for all the jobs can be calculated as follows.

OPT (1, n) = min

{
Block(1, n)
OPT (1, k) + Block(k + 1, n) for k = 1, 2, ..., n − 1

where OPT (1, 1) is the processing time of j1 which is p1.
The algorithm is conducted in two phases. In the first phase, the algorithm

computes Block(i, k) with different i and k in O(n3) time since each block needs
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O(n) time to calculate. In the second phase, the algorithm calculates OPT (1, k)
where each needs O(n) time to find the minimum. Therefore the overall running
time of the algorithm is O(n3).

3.2 Jobs with Large Sizes

For large jobs where for each job ji, pi ≥ (di − ri)/2, we denote the mid-point
of ji by mi where mi = (di + ri)/2.

Lemma 3. Let ji and jk with mi < mk be scheduled in the same block Blockj.
Then any job jx with mi < mx < mk should also be scheduled in Blockj.

Proof. Since pi ≥ (di−ri)/2, the execution of the jobs should always contain their
mid-points such that si ≤ mi ≤ fi for all possible starting time and finishing
time. Since mx is located in Blockj between mi and mk, and the execution of
the jobs should contain their mid-points, jx must have a portion of execution in
Blockj . Hence jx must be scheduled in Blockj .

As showed in Lemma 3, for this special case, the processing order in an
optimal schedule can be the mid-point order. As the ordering is similar to the
agreeable deadlines case, we can use Algorithm 1 to find out an optimal schedule.
Instead of using release times as the processing order, the algorithm uses the mid-
points as the processing order to group the jobs in different blocks and follows
the same principle to find out an optimal schedule.

4 Online Algorithm

In previous sections, we presented algorithms for the problem in the offline set-
ting where all the job information is known initially. However, in practice it may
not be possible to know all information about the jobs before they are released.
Therefore, we need online algorithms to schedule the real time jobs.

Similar to the offline setting, we are given n jobs, where each job ji has release
time ri, processing time pi and deadline di. In the online setting, the information
of ji is not available until ri. Therefore the algorithm is based on the available
jobs’ information to find the best schedule. The online algorithm maintains an
arrival list of jobs denoted as J ′. Whenever some job jk arrives, jk will be added
into the arrival list and jk will be removed from the list in the completion of its
execution.

In the online setting, since the jobs information is unknown before they are
released, the result schedule which is outputted by an online algorithm may not
be an optimal schedule. Therefore, it is necessary to measure the performance of
an online algorithm ALG and it can be measured by its competitive ratio which
is defined by max

J

ALG(J)
OPT (J) where OPT (J) is the optimal offline solution, ALG(J)

is the solution returned by an online algorithm and J is the set of input jobs.
Recently, a 2-approximation algorithm for the general setting is presented

in [9] which is easy to adapt to the online setting with the same performance.
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However, we found that there exists a counter example showing that the approx-
imation ratio is not 2, thanks to an anonymous reviewer.

In this section, we will first present the details of the greedy approximation
algorithm proposed in [9] and present the counter example. Then we present an
online algorithm with competitive ratio of 4.

4.1 Counter Example of Greedy Algorithm Analysis

In the greedy algorithm proposed by [9], the jobs are sorted by deadlines in
non-decreasing order in the initialization step. Then the algorithm extracts the
job jx with the earliest deadline and finds the jobs jy with ry < dx to create a
single block in order to execute jx together with all jy. After that jx and all jy
are removed from the input job set. The algorithm repeats the extraction step
and block creation step for the remaining jobs. The algorithm terminates when
the input job set becomes empty.

Consider an example with an interval of length k, there are a unit job with size
of 1, and a tiny job with size of ε released at each integer point. The parameters
of the jobs are illustrated in Fig. 2 below:

1. For job i ∈ {1, . . . , k} (tiny jobs), its release time and its deadline are respec-
tively i and i + ε.

2. For job i ∈ {k + 1, . . . , 2k} (unit jobs), its release time and its deadline are
respectively i − k and k + 1.

Fig. 2. Counter example.

In the greedy algorithm proposed by [9], since the algorithm extracts the
job jx with the earliest deadline and all jobs jy with ry < dx will be executed
together, the tiny job will be executed with the corresponding unit job together.
Therefore the length of the schedule is k.

However, in an optimal schedule, all the tiny jobs will be executed separately
and all the unit jobs will be executed together at the end. Therefore the length
of the schedule is ε(k − 1) + 1.

The approximation ratio in this example is ALG/OPT = k/(kε + 1) ≈ k.
This shows that the algorithm proposed by [9] cannot obtain the ratio of 2.
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4.2 Online Algorithm with Competitive Ratio of 4

By Lemma 1, we show that we can always find an optimal schedule with starting
time equal to some LST . Let J ′ be the set of available jobs. The algorithm
initially sorts the jobs in J ′ by LST in non-decreasing order. Therefore, the
algorithm can wait for more jobs to arrive and schedule the jobs when the current
time t reaches the ELST (J ′).

When t = ELST (J ′), we extract the job jx from J ′ with LSTx =
ELST (J ′). Then we find all other jobs jy with ry < dx where a portion of
job execution can be executed together with jx in [LSTx, dx]. We denote this
portion of the job execution as overlap portion.

For each jy, if the overlap portion with jx is at least r, then the algorithm
will schedule the job at max(LSTx, ry). Otherwise the job will be scheduled in
later iterations. The algorithm terminates when J ′ becomes empty.

Lemma 4. Algorithm2 is a 4-competitive algorithm

Proof. Recall in our algorithm, in each iteration, we first select the job jk with
earliest LST , and fix its execution window as [dk − pk, dk]. For all other jobs jj
with rj ≤ dk, we divide these jobs into two cases below:

1. if rj > LSTk, then we allocate its execution window as [rj , rj + pj ]
2. Otherwise, we allocate its execution window as [LSTk, LSTk + pj ]

Algorithm 2. Online algorithm of arbitrary jobs scheduling
Input: S = {S1, S2, · · · , Sn}, Si = {ri, pi, di} where i ≥ 1
Output: I, the set of jobs interval {si, fi} in the near-optimal schedule

1 Initialization: I = ∅, r = 0.5
2 Jobs arrival. When a new job jk arrives
3 jk is added to the set J ′.
4 Jobs execution. When current time t = ELST (J ′)
5 Sort the jobs in J ′ by LST in non-decreasing order.
6 while J ′ �= ∅ do
7 jx = 1st element in J ′

8 J ′ = J ′ \ jx
9 sx = dx − px

10 for jy ∈ J ′ with ry ≤ dx do
11 if ry < sx then
12 sy = sx

13 else
14 sy = ry

15 if (dx − sy)/py ≥ r then
16 J ′ = J ′ \ jy
17 I ∪ [sy, sy + py]
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Therefore, each job jj with rj ≤ dk must contain a portion of the job execution
which can be executed together with jk in [LSTk, dk]. We denote this portion of
the job execution as overlap portion. If the ratio between the length of overlap
portion and pj is greater than or equal to r (i.e. r = 0.5), the jobs will remain at
their current position in the final schedule. Otherwise, the jobs will be postponed
to be scheduled in later iterations.

Fig. 3. Blocks creation for the online algorithm.

Observe that in each iteration, we create a block which contains only active
time as illustrated in Fig. 3. For each block Blockk, the starting time of the block
is the ji ∈ Blockk with the earliest LST . Let the length of interval between di
and the finishing time of Blockk be Ei. As we fixed the execution window for
ji, the length of the block is equivalent to the sum of pi and Ei. Since r = 0.5,
we have Ei ≤ pi. Let ALG be the upper bound of the solution in our online
algorithm, and OPT be the lower bound in an optimal schedule. Then,

ALG ≤
m∑

i=1

(pi + Ei) ≤ 2
m∑

i=1

pi (1)

where m is the total number of blocks.
In the online algorithm, consider that in the kth iteration, ji with earliest

LST in Blockk is either

1. Not flexible to fit in Blockk−1 due to ri > finishing time of Blockk−1

2. Postponed from the (k − 1)th iteration due to the r threshold.

Observe that for any two consecutive jobs, ji and jk, if rk < di, then at most
pk/2 will overlap with ji. Therefore, we require at least pk/2 time to execute jk
and we have the following lower bound.

OPT ≥
m∑

i=1

pi ≥
m∑

i=1

pi
2

= 0.5
m∑

i=1

pi (2)

where m is the total number of blocks.

Then we have the competitive ratio = ALG/OPT ≤ 2
m∑

i=1

pi/0.5
m∑

i=1

pi = 4.
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Besides the upper bound above, we find an example to show our analysis is
tight. In this example, we have u intervals. In each interval, we are given m jobs
where their characteristics are illustrated in Fig. 4 below:

1. All jobs have the same release time such that r1 = r2 = · · · = rm
2. In each interval, the processing time of jobs are in the following patterns:

p1 = 1, p2 = 2 − ε, p3 = 2 + ε, p4 = 4 − ε, p5 = 4 + 3ε · · · pm−1 = 2m−1 +
(2m−1 − 1)ε, pm = 2m where ε is a small number.

3. In each interval, the deadlines of the first job ji is ri + 2pi, the last job is
till the end of the schedule, and the deadlines of all intermediate jobs jj
is equal to dj−1 + pj such that d1 = r1 + 2p1, d2 = d1 + p2, · · · , dm−1 =
dm−2 + pm−1, dm = dmax

Fig. 4. An example to show the competitive ratio is at least 4.

Consider that in our online algorithm, the algorithm first selects the job jk
with the earliest LST , then for all other jobs, we try to place the jobs as early as
dk − pk to maximize the overlapping interval between jobs. Observe that in this
example, for any two consecutive jobs ji and ji+1 they can be executed together
with the duration of 2pi since the overlapping interval require at least r (i.e.
r = 0.5). Therefore the length of the schedule can be computed by

(1 + 2 + ε + 4 + 3ε · · · + 2m−1 + (2m−1 − 1)ε) ∗ 2 ∗ u ≈ 2m ∗ 2u = 2m−1 ∗ 4u (3)

However, since dm = dmax in all u intervals, the last job in each interval can
be executed together in the execution window of [dmax − pm, dmax]. Besides the
last job, we only require 2m−1 + (2m−1 − 1)ε to cover all m − 1 jobs in each
interval. Hence we have

(2m−1 + (2m−1 − 1)ε) ∗ (u − 1) + 2m ≈ 2m−1 ∗ (u − 1) + 2m

= 2m−1 ∗ u + 2m−1 = 2m−1(u + 1) (4)

which is also illustrated in Fig. 5. Then we have the competitive ratio as follows.

ALG/OPT = 2m−1 ∗ 4u/2m−1(u + 1) = 4u/(u + 1) (5)

This shows that the competitive ratio of Algorithm 2 cannot be better than 4
which shows the tightness of our analysis in Lemma 4.
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Fig. 5. ALG vs OPT in this example.

5 Conclusion

In this paper, we investigated the active time minimization problem. We present
an O(n3) dynamic programming algorithm for the special case of the problem
where all jobs have agreeable deadlines or all jobs are big. In the general case,
we present a counter example to show that the algorithm proposed by [9] cannot
obtain the approximation ratio of 2. Moreover, we present an online algorithm
with competitive ratio of 4 and show that our analysis is tight.
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Abstract. We undertake the study of size-change analysis in the context
of Reverse Mathematics. In particular, we prove that the SCT criterion
[9, Theorem 4] is equivalent to IΣ0

2 over RCA0.

Keywords: Ramsey’s theorem for pairs · Size-change termination ·
Reverse Mathematics · Σ0

2 -induction

1 Introduction

Ramsey’s theorem for pairs (RT2) is one of the main characters in Reverse
Mathematics. It states that for any natural number k and for any edge coloring
of the complete graph with countably many nodes in k-many colors, there exists
an infinite homogeneous set, i.e. there exists an infinite subset of nodes whose
any two elements are connected with the same color [12].

As highlighted by Gasarch [4], Ramsey’s theorem for pairs can be used to
prove termination. For instance, Podelski and Rybalchenko characterized the
termination of transition based programs as a property of well-founded relations
by using Ramsey’s theorem for pairs [11]. In [15] we started investigating the
termination analysis from the point of view of Reverse Mathematics. We proved
the equivalence between the termination theorem of Podelski and Rybalchenko
and a corollary of Ramsey’s theorem for pairs, which is weaker than Ramsey’s
theorem for pairs itself.

The termination theorem is not the only result which characterizes the termi-
nation of some class of programs. In [9] Lee, Jones and Ben-Amram introduced
the notion of size-change termination (SCT) for first order functional programs.
Size-change analysis is a general method for automated termination proofs. In
fact, this method has been applied in the termination analysis of higher-order
programs [8], logic programs [2], and term rewrite systems [16].

Informally, a program is size-change terminating (SCT) if every infinite state
transition sequence would cause an infinite sequence of data values which is
weakly decreasing and strictly decreasing infinitely many times. If the domain of
c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 260–273, 2017.
DOI: 10.1007/978-3-319-55911-7 19
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data values is well-founded, such as the natural numbers, there cannot be such
a sequence, thus SCT is a sufficient condition for termination [9, Theorem 1].

Size-change termination is based on the notion of size-change graph (see
Subsect. 2.2). Given a first order functional program P we associate to every call
f → g a bipartite graph which describes the relation between source and target
parameter values. These graphs are called size-change graphs.

In this paper we start the investigation of size-change termination in the
framework of Reverse Mathematics. In particular, we analyse the following cri-
terion for testing SCT [9, Theorem 4]:

Theorem 1 (SCT criterion). Let G be a set of size-change graphs for a first
order functional program P . Then G is SCT iff every idempotent G ∈ cl(G) has

an arc x
↓−→ x.

The original proof of the SCT criterion is based on Ramsey’s theorem for
pairs. In this paper we show that this is far from optimal and pinpoint the exact
strength of the SCT criterion from the point of view of Reverse Mathematics.
For our analysis we consider the following version, where we consider size-change
graphs only.

Theorem 2 (SCT criterion for graphs). Let G be a set of size-change graphs.

Then G is SCT iff every idempotent G ∈ cl(G) has an arc x
↓−→ x.

To the aim of studying the strength of the SCT criterion we introduce and
study a corollary of Ramsey’s theorem for pairs, called Triangle Ramsey’s theo-
rem (Triang). It states that for any natural number k and for any edge coloring of
the complete graph with countably many nodes in k-many colors, there is some
node which is, for some color i ∈ k, the first node of infinitely many triangles
homogeneous in color i. As far as we know this corollary does not appear in the
literature.

We show that Triang implies the SCT criterion and that the SCT criterion
implies the Strong Pigeonhole Principle (SPP). From these (and some further)
results we are able to conclude that both SCT criterion and Triang are equivalent
to Σ0

2 -induction (IΣ0
2).

Theorem 3 (RCA0). The following are equivalent:

1. IΣ0
2

2. Triang
3. SCT criterion

1.1 Notation

Given a set X ⊆ N, let [X]2 denote the set of 2-element subsets of X. As usual,
we identify [X]2 with the set {(x, y) : x, y ∈ X ∧ x < y}. We also identify a
natural number k with the set {0, . . . , k − 1}. For k ∈ N, we call a function
c : [N]2 → k a coloring of [N]2 in k-many colors.
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For a set X ⊆ N, X<N denotes the set of finite sequences of elements in
X. Given a set X and a sequence σ ∈ X<N we denote by |σ| the length of the
sequence, by last(σ) the last element of the sequence and by σ(i) the i-th element
of the sequence, if it exists. Note that k<N is the set of finite sequences of natural
numbers less than k.

1.2 Reverse Mathematics

Reverse Mathematics is a program in mathematical logic introduced by Harvey
Friedman in [3], which stems from the following question. Given a theorem of
ordinary mathematics, what is the weakest subsystem of second order arithmetic
in which it is provable?

Amongst the several subsystems of second order arithmetic (see [13] for
a detailed description), in this paper we consider only few extensions of
RCA0 (Recursive Comprehension Axiom). RCA0 is the standard base system
of Reverse Mathematics. It consists of the usual axioms of first order arith-
metic for 0, 1,+,×, <, induction for Σ0

1 -formulas (IΣ0
1) and comprehension for

Δ0
1-formulas.

The infinite pigeonhole principle (RT1) and Ramsey’s theorem for pairs (RT2)
are defined as follows.

(RT1
k) For any c : N → k there exists i < k such that c(x) = i for infinitely many

x.
(RT1) ∀k ∈ N RT1

k.
(RT2

k) For any c : [N]2 → k there exists an infinite homogeneous set X ⊆ N, that
is c � [X]2 is constant.

(RT2) ∀k ∈ N RT2
k.

Let IΣ0
2 be induction for Σ0

2 -formulas. It is known that RT2 implies the
bounding principle for Σ0

3 -formulas (BΣ0
3) over RCA0 [7], and so in particular

IΣ0
2 . As a side result here we provide a different proof of the fact that RT2

implies IΣ0
2 . Indeed we introduce an immediate consequence of RT2, the Triangle

Ramsey’s theorem (Triang), which turns out to be equivalent to IΣ0
2 .

(Triangk) For any coloring c : [N]2 → k there exist i ∈ k and t ∈ N such that
c(t,m) = c(t, l) = c(m, l) = i for infinitely many pairs m < l.

(Triang) ∀k ∈ N Triangk

2 The SCT Framework

In this section we describe the size-change method for first order functional
programs as in [9]. All the definitions are made in RCA0 except for the semantic
notion of safety.
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2.1 Syntax

We consider the following basic first order functional language:

x ∈ Par parameter identifier
f ∈ Fun function identifier
o ∈ Op primitive operator

a ∈ AExp arithmetic expression
::= x | x + 1 | x − 1 | o(a, . . . , a) | f(a, . . . , a)

b ∈ BExp boolean expression
::= x = 0 | x = 1 | x < y | x ≤ y | b ∧ b | b ∨ b | ¬b

e ∈ Exp expression
::= a | if b then e else e

d ∈ Def function definition
::= f(x0, . . . , xn−1) = e

P ∈ Prog program
::= d0, . . . , dm−1

Remark 1. This language is Turing complete.

A program P is a list of finitely many defining equations f(x0, . . . , xn−1) =
ef , where f ∈ Fun and ef is an expression, called the body of f . Let x0, . . . , xn−1

be the parameters of f , denoted Par(f), and let n be the arity of f , denoted
ar(f).

By Fun(P ) we denote the set of functions of P . We also assume that a
program P specifies an initial function f ∈ Fun(P ). The idea is that P computes
the (partial) function f : Nar(f) → N.

In [9] the expression evaluation is based on a left-to-right call-by-value strat-
egy given by denotational semantics. RCA0 is not capable to formalize denota-
tional semantics, and hence we need to consider other approaches if we want to
study termination over RCA0 (for instance, by operational semantics). Anyway
we do not formally discuss semantics. For the sake of exposition, it is enough to
say that one evaluates a program function f given an assignment of values u to
its parameters (i.e. an element of N

ar(f)) by evaluating the body of f , that is
f(u) = ef (u).

Example 1 (Péter-Ackermann).

A(x, y) = if x = 0 then y + 1 else

if y = 0 then A(x − 1, 1)
else A(x − 1, A(x, y − 1))
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2.2 Size-Change Graphs

In order to express the notion of size-change termination, first of all we need the
definition of size-change graph (see [9, Definition 3]).

Definition 1 (size-change graph). Let P be a program and f, g ∈ Fun(P ).
A size-change graph G : f → g for P is a bipartite graph on (Par(f),Par(g)).
The set of edges is a subset of Par(f)×{↓,⇓}×Par(g) such that there is at most
one edge for any x ∈ Par(f) and y ∈ Par(g).

We say that f is the source function of G and g is the target function of G.
We call (x, ↓, y) the decreasing edge (strict arc), and we denote it by x

↓−→ y.
We call (x,⇓, y) the weakly-decreasing edge (non-strict arc), and we denote it by

x
⇓−→ y. We write x → y ∈ G as a shorthand for x

↓−→ y ∈ G ∨ x
⇓−→ y ∈ G.

Note that the absence of edges between two parameters x and y in the size-
change graph G indicates either an unknown or an increasing relation in the call
f → g.

Informally, a size-change graph is an approximation of the state transition
relation induced by the program. A size-change graph G : f → g for a call
τ : f → g is safe if it reflects the relationship between the parameter values in
the program call.

In more detail, a state of a program P is a pair (f,u), where f ∈ Fun(P )
and u is a tuple of length ar(f). If in the body of f ∈ Fun(P ) there is a call

. . . τ : g(e0, . . . , em−1)

we define a state transition (f,u) τ−→ (g,v) to be a pair of states such that v
is the sequence of values obtained by the expressions (e0, . . . , em−1) when f is
evaluated with values u.

Let Par(f) = {x0, . . . , xn−1} and Par(g) = {y0, . . . ym−1}. We say that a
size-change graph G : f → g is safe for τ if every edge is safe, where an edge
xi

r−→ yj is safe if for any u ∈ N
n and v ∈ N

m such that (f,u) τ−→ (g,v), r = ↓
implies that ui > vj and r = ⇓ implies that ui ≥ vj .

Note for instance that the size-change graph without edges is always safe.

Example 2 (Péter-Ackermann).

A(x, y) = if x = 0 then y + 1 else

if y = 0 then τ0 : A(x − 1, 1)
else τ1 : A(x − 1, τ2 : A(x, y − 1))

There are three calls τi (i < 3) safely described by the following size-change
graphs:
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x

y

x

y

↓

G0,1 : A → A

x

y

x

y

⇓

↓

G2 : A → A

The size-change graph G0,1 safely describes both calls τ0 : A(x − 1, 1) and
τ1 : A(x − 1, A(x, y − 1)). In particular, notice that in the call τ1 the parameter
value x decreases no matter what the value of the expression A(x, y − 1) is.
Finally, the size-change graph G2 safely describes the call τ2 : A(x, y − 1).

Note that we could have assumed that for any parameter in the target there is
at most one edge, since in every call of the programs we consider any parameter
value in the target depends at most from one parameter in the source. However
this restriction is not essential. Note also that the SCT framework has been
generalized in order to deal with other kinds of monotonicity constraints [1],
where SCT only deals with two constraints x > y (a strict arc) and x ≥ y (a
non-strict arc).

Nonetheless we want to emphasize that the notion of size-change graph is
clearly independent of that of a program and so we can define it directly. For
simplicity we may assume that every function f ∈ Fun comes with a set of
parameters Par(f) of size ar(f).

Definition 2 (size-change graph). Let f, g ∈ Fun. A size-change graph G :
f → g is a bipartite graph on (Par(f),Par(g)). The set of edges is a subset of
Par(f) × {↓,⇓} × Par(g) such there is at most one edge for any x ∈ Par(f) and
y ∈ Par(g).

2.3 SCT Criterion

Definition 3 (composition). As in [6], given two size-change graphs G0 : f →
g and G1 : g → h we define their composition G0;G1 : f → h. The composition
of two edges x

⇓−→ y and y
⇓−→ z is one edge x

⇓−→ z. In all other cases the
composition of two edges from x to y and from y to z is the edge x

↓−→ z. Formally,
G0;G1 is the size-change graph with the following set of edges:

E = {x
↓−→ z : ∃y ∈ Par(g) ∃r ∈ {↓,⇓} ((x

↓−→ y ∈ G0 ∧ y
r−→ z ∈ G1)

∨ (x r−→ y ∈ G0 ∧ y
↓−→ z ∈ G1))}

∪{x ⇓−→ z : ∃y ∈ Par(g)(x
⇓−→ y ∈ G0 ∧ y

⇓−→ z ∈ G1) ∧ ∀y ∈ Par(g)

∀r, r′ ∈ {↓,⇓} ((x r−→ y ∈ G0 ∧ y
r′
−→ z ∈ G1) =⇒ r = r′ = ⇓)}.
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Observe that the composition operator “;” is associative. Moreover we say
that the size-change graph G is idempotent if G;G = G.

Given a finite set of size-change graphs G, cl(G) is the smallest set which
contains G and is closed by composition. Formally cl(G) is the smallest set such
that

– G ⊆ cl(G);
– If G0 : f → g and G1 : g → h are in cl(G), then G0;G1 ∈ cl(G).

Definition 4 (multipath). A multipath M is a sequence G0, . . . , Gn, . . . of
graphs such that the target function of Gi is the source function of Gi+1 for all
i. A thread is a connected path of edges in M that starts at some Gt, where t ∈ N.
A multipath M has infinite descent if some thread in M contains infinitely many
decreasing edges.

Definition 5 (description). A description G of P is a finite set of size-change
graphs such that to every call τ : f → g of P corresponds exactly one Gτ ∈ G.

A description G of P is safe if each graph in G is safe. Note that there are
finitely many descriptions, and in particular finitely many safe descriptions.

Definition 6 (SCT description). We say that a description G of P is size-
change terminating (SCT) if every infinite multipath M = G0, . . . , Gn, . . . ,
where every graph Gn ∈ G, has an infinite descent.

It is clear that a program P with a safe SCT description does not have
infinite state transition sequences. Thus the existence of a safe SCT description
is a sufficient condition for termination.

We now can state the SCT criterion.

Theorem 4 (SCT criterion). Let G be a description of P . Then G is SCT iff

every idempotent G ∈ cl(G) has an arc x
↓−→ x.

To the aim of analysing in Reverse Mathematics it is convenient to state the
SCT criterion for arbitrary sets of size-change graphs.

Definition 7 (SCT criterion for graphs). Let G be a finite set of size-change

graphs. Then G is SCT iff every idempotent G ∈ cl(G) has an arc x
↓−→ x.

It is not difficult to see that the two formulations of the SCT criterion are
equivalent. In fact, given a finite set G of size-change graphs, it is straightforward
to define a program P such that G is a description of P . In more detail, let
f0, . . . , fm be the finite set of source and target functions of G. Without loss of
generality, we may assume that all functions have the same arity n ∈ N. For
any i, let fi0 , . . . , fik−1 be the functions (with repetition if there are more graphs
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with the same source and target functions) which correspond to the target of a
graph whose source is fi. Write the code:

fi(x0, . . . xn−1) = τ0 : fi0(e
0
0, . . . , e

0
n−1) if x0 = 0.

= . . .

= τk−1 : fik−1(e
k−1
0 , . . . , ek−1

n−1) if x0 = k − 1.

where the expression eh
j is determined by the source and the kind of the edge to

xj in the corresponding graph, if such an edge exists. Otherwise it is xj + 1.
The union of these codes is a program PG . Of course, G is a description of

PG . Therefore:

Proposition 1 (RCA0). The following are equivalent:
1. SCT criterion
2. SCT criterion for graphs

3 Proving the SCT Criterion

The classical proof of the SCT criterion [6] uses Ramsey’s theorem for pairs.
Actually, what we really need is that there exist infinitely many monochromatic
triangles which share a fixed vertex: we need the homogeneous cliques in order
to prove that the graph is idempotent and that there are infinitely many strictly
decreasing edges in the thread and we need that they share a fixed vertex in
order to guarantee the continuity of the path. This is why we introduce the
principle Triang.

(Triangk) For any coloring c : [N]2 → k there exist i ∈ k and t ∈ N such that
c(t,m) = c(t, l) = c(m, l) = i for infinitely many pairs {m, l}.

(Triang) ∀k ∈ N Triangk.

We also introduce the following strengthening of the infinite pigeonhole
principle:
(SPPk) For any coloring c : N → k there exists I ⊆ k such that i ∈ I iff i < k

and c(x) = i for infinitely many x.
(SPP) ∀k ∈ N SPPk.

For the reversal we use the fact that SPP is equivalent to Σ0
2 -induction.

Lemma 1 (RCA0). The following are equivalent:
1. IΣ0

2
2. SPP

Proof. It is well-known that IΣ0
2 is equivalent over RCA0 to bounded comprehen-

sion for Π0
2 -formulas, that is the axiom schema

∀k ∃X ∀i (i ∈ X ↔ i < k ∧ ϕ(i)),

where ϕ is Π0
2 . It immediately follows that IΣ0

2 implies SPP. Let us show that
SPP implies bounded Π0

2 -comprehension. Let ϕ(i) = ∀x∃y θ(i, x, y). We define
c : N → k + 1 by primitive recursion as follows:
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1. Let s = 0 and xi = 0 for all i < k;
2. Suppose we have defined c(x) for every x < s. For all i < k, if ∃y < s θ(i, xi, y),

let c(s + i) = i and xi = xi + 1. Otherwise let c(s + i) = k;
3. Let s = s + k. Return to step 2.

By SPP, the set I = {i ≤ k : ∃∞x c(x) = i} exists. One can check that I \ k =
{i < k : ∀x∃y θ(i, x, y)}.

The following shows that one direction of the SCT criterion is already prov-
able in RCA0.

Proposition 2 (RCA0). Let G be a finite set of size-change graphs. If every
multipath M = G0, . . . , Gn, . . . has an infinite descent, then every idempotent
G ∈ cl(G) has an arc x

↓−→ x.

Proof. Let G be idempotent. Then M = G,G, . . . , G, . . . is a multipath. By
hypothesis there exists an infinite descent. Since G is idempotent, one can define
an infinite sequence x0, x1, x2, . . . such that xi

↓−→ xi+1 ∈ G. As there are finitely
many parameters, by the finite pigeonhole principle, which is provable in RCA0,
there exist i < j such that x = xi = xj . By idempotence of G, x

↓−→ x ∈ G.

Theorem 5 (RCA0). Triang implies the SCT criterion.

Proof. We prove the SCT criterion for graphs. Let G be a finite set of size-change
graphs and assume that any idempotent graph in cl(G) has a strict arc x

↓−→ x
for some parameter x. Let

Mπ = G0, . . . , Gn, . . . .

We aim to prove that Mπ has an infinite descent. Define c : [N]2 → cl(G) as
follows:

c(i, j) = Gi; . . . ;Gj−1.

By applying Triang|cl(G)| to the coloring c, we have:

∃t∃G ∈ cl(G)∀n∃m, l(n < m < l ∧ t < m ∧ c(t,m) = c(t, l) = c(m, l) = G).

Then G is idempotent, indeed

G;G = c(t,m); c(m, l) = c(t, l) = G.

By hypothesis, we have that there exists x
↓−→ x ∈ G. By Σ0

0 -comprehension,
let f : N

3 → N be such that f(n,m, l) = 0 iff n < m < l and t < m and
c(t,m) = c(t, l) = c(m, l) = G. By minimization (see Simpson [13, Theorem
II.3.5]), there exists a function h : N → N

2 such that for all n we have that
f(n, h0(n), h1(n)) = 0, where h(n) = (h0(n), h1(n)). Now define by primitive
recursion a Triang witness function g : N → N by letting g(0) = h(0) and
g(n + 1) = h(g1(n)), where g(n) = (g0(n), g1(n)). Therefore, for all n
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– t < g0(n) < g1(n) < g0(n + 1) and
– c(t, g0(n)) = c(t, g1(n)) = c(g0(n), g1(n)) = G.

We claim that there exists an infinite descent starting from x in Gt. Since
x

↓−→ x ∈ c(t, g0(0)), it is sufficient to show that x
↓−→ x ∈ c(g0(n), g0(n + 1))

for any n. As x
↓−→ x ∈ c(t, g0(n + 1)), there exists y such that x → y ∈

c(t, g1(n)) and y → x ∈ c(g1(n), g0(n + 1)), and at least one of them is strict.
Now c(t, g1(n)) = c(g0(n), g1(n)), and so x → y ∈ c(g0(n), g1(n)). Therefore we

have x
↓−→ x ∈ c(g0(n), g0(n + 1)), as desired.

Theorem 6 (RCA0). The SCT criterion implies SPP.

Proof. We show that the SCT criterion for graphs implies SPP.
We first prove the thesis for k = 2. This serves as an illustration of the general

case. Note in fact that SPPk is provable in RCA0 for every standard k ∈ N.
Given c : N → 2, we want to show that there exists I ⊆ 2 such that i ∈ I iff

∃∞x c(x) = i. Let us define G as follows. The set G consists of three size-change
graphs G0, G1, G2 on parameters z0, z1, z2. For i < 3, the graph Gi has only
one strict arc zi

↓−→ zi and non-strict arcs zj
⇓−→ zj for j > i. Note that every

G ∈ cl(G) contains a strict arc z
↓−→ z. Therefore, by the SCT criterion, every

multipath of G has an infinite descent. Let

g(x) =

⎧
⎪⎨

⎪⎩

0 if c(x) = 0 ∧ c(x + 1) = 0
1 if c(x) = 1 ∧ c(x + 1) = 1
2 otherwise

Consider the multipath M = Gg(0), Gg(1), . . .. Hence there exists an infinite
descent in M. This implies that there exists a parameter zi that is strictly
decreasing infinitely many times, that is zi

↓−→ zi ∈ Gg(x), viz. g(x) = i, for
infinitely many x. If i < 2, it means that from some point on c(x) = i and so
I = {i}. If i = 2, then the color changes infinitely many times and so I = {0, 1}.

General case. Let c : N → k be a given coloring. We want to show that

I∞ = {i < k : ∃∞x c(x) = i}
exists.

Let I be the set of nonempty subset of k and Par(I) consist of parameters
zI for every I ∈ I. Define size-change graphs GA on (Par(I),Par(I)) for any
A ⊆ I as follows. Let m be the maximum size of an element of A. Then

– zI
↓−→ zI ∈ G iff I ∈ A and |I| = m;

– zI
⇓−→ zI ∈ G iff I /∈ A and |I| ≥ m.

Let G = {GA : A ⊆ I}.

Claim. Every idempotent graph G ∈ cl(G) has an arc zI
↓−→ zI for some I.
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Proof. We show that every graph G ∈ cl(G) has a strict arc zI
↓−→ zI for some

I. Let G = G0;G1; . . . ;Gl−1 with Gs ∈ G for all s < l. Let As be the A
corresponding to Gs. Choose I ∈ ⋃

s<l As of maximum size. We claim that

zI
↓−→ zI ∈ G. Let p < l be such that I ∈ Ap. By definition, zI

↓−→ zI ∈ Gp.
By using the maximality of I it is easy to show that for every s < l either
zI

↓−→ zI ∈ Gs or zI
⇓−→ zI ∈ Gs.

We now define a multipath M = G0, G1, . . . , Gx, . . . as follows.
Let ΓI be a marker for I ∈ I. At the beginning every marker ΓI points to the

first color of I (in the standard ordering of the natural numbers). At stage x, if
the marker ΓI points to the color i and c(x) is the color right after i in I (in the
standard ordering of the natural numbers), then move the marker to the color
c(x). If i is the last color of I and c(x) is the first color of I, move the marker
to the first color of I. It is not difficult to see within RCA0 that every color in
I appears infinitely often iff the marker points to the last color of I infinitely
often.

Call I a guess at stage x if at the beginning of stage x the marker ΓI points
to the last color of I and c(x) equals the first color of I. The idea is that at stage
x we are guessing that I = I∞. Note that we can have more guesses at the same
stage and that I is a guess at infinitely many stages iff I ⊆ I∞.

Now let Gx = GA where A is the set of guesses at stage x. By the SCT
criterion for graphs, we have an infinite descent in M for some parameter zI

starting at some point t. We aim to show that I is the right guess, that is
I = I∞. Now, there exist infinitely many x such that zI

↓−→ zI ∈ Gx, and in
particular I is a guess at stage x for infinitely many x. It follows that I ⊆ I∞.
It is sufficient to show that I is maximal. Suppose not and let J ⊃ I be such
that every color in J appears infinitely often. Therefore there exists x > t such
that J is a guess at stage x. By definition, in Gx there is no arc from zI to zI ,
a contradiction.

Therefore we can conclude that Triang ≥ SCT criterion ≥ IΣ0
2 . Actually we

can prove that they are all equivalent.

Theorem 7. Over RCA0 the following are equivalent:

1. IΣ0
2

2. Triang
3. SCT criterion
4. SCT criterion for graphs

Proof. We need only to show that IΣ0
2 implies Triang. As shown in [14] RT2

is Π1
1 -conservative over BΣ0

3 , the bounding principle for Σ0
3 -formulas. So, since

RT2 trivially implies Triang (which is a Π1
1 -statement), then also BΣ0

3 does. It
is known that BΣ0

3 is Π̃0
4 -conservative over IΣ0

2 , where a statement is Π̃0
4 if it is

of the form ∀Xϕ(X) and ϕ(X) ∈ Π0
4 . This follows as a particular case from the

analogue result in first order arithmetic that BΣn+1 is Πn+2-conservative over
IΣn for all n ≥ 0 (see [5, Chapter IV, Sect. 1(f)]). Finally, one can check that
Triang is Π̃0

4 , hence the thesis.
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Remark 2. One can directly show that the Péter-Ackermann function is SCT
in both senses. Indeed let G0,1, G2 be the size change graphs of the Péter-
Ackermann function as in Example 2. Let M = G′

0, . . . , G
′
n, . . . be an infinite

multipath. We have

∀n ∃m ≥ n G′
n = G0,1 ∨ ∃n ∀m ≥ n G′

n = G2.

In the first case we have an infinite descent for x starting in G′
0. The second

case yields an infinite descent for y starting in some Gn, since all graphs in the
multipath from n on are G2. Note that this proof is in classical logic, since it
requires the Law of Excluded Middle.

In general, if G has size k for some standard k ∈ ω, then RCA0 proves the
SCT criterion for G. This follows from the following:

Proposition 3. For any standard k ∈ ω,

RCA0 � Triangk.

Proof. Note that RCA0 � RT1
k for all standard k ∈ N. We prove Triangk by

(external) induction on k.
Given a coloring c : [N]2 → k, let c0 : N → k such that c0(x) = c(0, x)

and let X be the infinite homogeneous set given by RT1
k. Let {xn : n ∈ N} be

the increasing enumeration of X. Suppose i = c(0, x0). By the law of excluded
middle, we have:

∀n∃m, l(l > m > n ∧ c(xm, xl) = i) ∨ ∃n∀m, l(l > m > n =⇒ c(xm, xl) �= i).

In the first case we are done. In the second case let Y = {x ∈ X : x > xn}.
Then Y is an infinite homogeneous set in (k − 1)-many colors. By the induction
hypothesis (on d : [N]2 → k − 1 such that d(a, b) = c(xn+a, xn+d)) we are done
again.

4 Conclusion and Further Works

In this paper we addressed the study of size-change analysis in the context of
Reverse Mathematics. We determined the exact strength of the SCT criterion
by proving that it is equivalent to a weak version of Ramsey’s theorem for pairs,
which turns out to be equivalent to Σ0

2 -induction over RCA0. In particular the
proof of the SCT criterion does not require full Ramsey’s theorem for pairs.

One of the motivations for studying size-change termination in the framework
of Reverse Mathematics is that the Péter-Ackermann function is size-change-
terminating. Actually, this can be proved in RCA0, whereas it is well known that
the totality of the Péter-Ackermann function is not provable in RCA0. This arises
the question of what is needed in order to show the soundness of size-change
termination (SCT soundness), that is the statement that every SCT program
terminates.
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The classical proof is based on the fact that “if a program does not terminate
then there exists an infinite state transition sequence”. This statement seems
to require König’s lemma, which is equivalent to Arithmetical Comprehension
Axiom (ACA0) over the base system RCA0. Roughly, ACA0 asserts the existence
of the jump of every set of natural numbers.

We suspect that a direct proof of the SCT soundness does not require any
comprehension (set existence) axiom. In fact, it is known that SCT programs
compute exactly the multiply recursive functions [1]. On the other hand, the class
of multiply recursive functions coincides with the class M =

⋃
α<ωω Fα, where

(Fα)α is the fast growing hierarchy [10]. Since well-foundedness of ωωω

implies
the totality of every function in M, we thus conjecture that SCT soundness is
provable in RCA0 plus well-foundedness of ωωω

.
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Abstract. A well-known and well-investigated family of hard optimiza-
tion problems deals with nesting, i.e., the non-overlapping placing of
polygons to be cut from a rectangle or the plane whilst minimizing the
waste. Here we consider the in some sense inverse problem of a subse-
quent step in production technology: given a set of polygons in the plane
and an axis-aligned rectangle (modeling a gripping device), we seek the
minimum number of copies of the rectangle such that every polygon is
completely covered by at least one copy of the rectangle. As motions
of the given rectangle for obtaining the copies we investigate the cases
of translation in x-direction, of arbitrary translation and of arbitrary
translation combined with rotation. We give a generic algorithm for all
three cases which leads to a polynomial-time algorithm for the first case.
The other two cases are NP-hard so we introduce a rather straightfor-
ward algorithm for the second case and two different approaches to the
third one. Finally, we give experimental results and compare them to the
theoretical analysis done before.

1 Introduction

The cutting of given polygons out of a rectangle strip whilst minimizing the
waste of material is a well-known and long-standing problem class, see e.g. [8]
for a survey. In this paper we investigate the subsequent step in production
technology: once the pieces are cut out they will be picked off and transported
further by a suitable device. Here we use as such a device a rectangular gripper
and various degrees of its motion freedom: the easiest case (which admits an
efficient solution) is the one of a gripper which can be translated only along
the x-axis. Second, we investigate a gripper which can be translated both in x-
and in y-direction, and finally, we consider a gripper with an additional degree
of rotational freedom. The gripper can grasp only the cut pieces it covers com-
pletely. Now the goal is to pick up all cut pieces with as little gripper motions
as possible.

Basically, this task corresponds to covering a set of polygons by copies of
a rectangle such that every polygon is contained in at least one rectangle. Set
cover problems with geometric background can be divided in two classes: one
class as e.g. in [1,3] where the geometric objects from which the cover has to
be chosen are fixed, and another class as e.g. in [5,9,14] where the covering

c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 274–288, 2017.
DOI: 10.1007/978-3-319-55911-7 20
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objects arise from a given object by translation and/or rotation. Yet another
class form the problems investigated e.g. in [13,15]; in contrast to our task the
covering objects can have different shapes but are restricted to belong to a
certain family, e.g., they are required to be rectangles. A lot of this previous
work deals with covering points by disks or rectangles, and only a smaller part
with covering connected subsets of the R

n or polygons in particular. In contrast
to work e.g. in [4,12] a rectangle has to cover at least one polygon completely.
None of the cited work matches our problem exactly, although one can reduce
it to a geometric set cover problem which will be discussed in Sect. 8. We do
not propose an approximation algorithm but a family of exact algorithms which
works well on practical instances and continues and improves the work from [11].

The paper is organized as follows: Sect. 2 provides basic definitions and states
the problem family we consider. In Sect. 3 we collect some important geomet-
ric facts while Sect. 4 introduces a generic algorithm for our problem class. The
results of these two sections lead to concrete algorithms in Sects. 5, 6 and 7.
Finally, we evaluate the algorithms in Sect. 8 and give a conclusion and an out-
look to further work in Sect. 9.

2 Basic Definitions and Properties

To formalize our task, we introduce the concept of a packing: a packing P =
{P1, P2, . . . , Pn} is a set of n possibly overlapping simple polygons P1, P2, . . ., Pn

in the plane. We say that a packing P is covered by a set C = {R1, R2, . . . , Rm}
of rectangles if each polygon of P is completely contained in at least one rectangle
of C. If a rectangle R′ arises from a rectangle R by a translation along the x-
axis we call R′ a pushing of R, if R′ arises from R by a translation in possibly
both x- and y-direction we call R′ a translation of R, and if R′ arises from R
by a translation and a rotation we say that R′ is a general motion of R (this is
equivalent to the term “rigid motion” in [7]). With these namings we can define
the main theme of our investigations:

Definition 1. Let P be a packing and let R be an axis-aligned rectangle (the so-
called gripper). Then we call a set of rectangles C = {R1, R2, . . . , Rm} a pushing
(translational, general) cover of P by R if C covers P and all rectangles of C
are pushings (translations, general motions) of R.

Since we are interested in covering a packing with as few rectangles as possible
we call a cover of each kind optimal if it has minimum cardinality among all
covers of that kind. So we define the pushing (translational, general) polygon
cover problem or PPC (TPC, GPC) as follows: Given a packing P and a gripper
R, compute an optimal pushing (translational, general) cover of P by R. The
NP-hardness of TPC and GPC can be proved by reductions from 3-SAT along
the lines of the proof of the NP-hardness of the BOX-COVER problem given
in [9] if one replaces the points by suitable small polygons. However, we will
concentrate here more on the algorithmic aspects and hence omit the details.
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To ease wording we refer by the term cover to a pushing cover as well as to
a translational or a general cover. For a packing P and a rectangle R we denote
the set of polygons of P covered by R by cov(R,P). Two polygons P1 and P2

are called generally compatible wrt. to a rectangle R if there is a general motion
of R that covers both P1 and P2. For running time considerations we introduce
the notation ‖P‖ for the overall number of vertices in a packing P. We say that
p is a point of a packing P if there is a polygon P ∈ P that has p as a vertex.

3 Geometrical Considerations

In this section we state some simple but important observations that help us
setting up algorithms to tackle the various kinds of cover problems from Sect. 2.
The following three lemmata with proofs in the appendix form a kind of group
of “exchange lemmata” since they make similar claims about substitutability of
rectangles for each kind of cover. Its first one deals with pushing covers:

Lemma 1. Let P be a packing and let C = {R1, R2, . . . , Rm} be an optimal
pushing cover of P by a gripper R. Then there is a point p of P and an index j
together with a pushing R′

j of R with the following properties:

1. p has minimum x-coordinate among all points of P,
2. p lies on the left side of R′

j, and
3. C\{Rj} ∪ {R′

j} is an optimal pushing cover of P.

In the next lemma we see an analogous claim for translational covers:

Lemma 2. Let P be a packing and C = {R1, R2, . . . , Rm} an optimal transla-
tional cover of P by R. Then there are points p1 and p2 of P and an index j
together with an axis-aligned rectangle R′

j fulfilling the following properties:

1. p1 has minimum x-coordinate among all points of P,
2. p1 lies on the left side of R′

j,
3. p2 is a point of maximal y-coordinate for some P2 ∈ P and lies on the upper

side of R′
j,

4. there are polygons P1, P2 ∈ P such that for i ∈ {1, 2} pi is a vertex of Pi and
Pi is contained in R′

j, and
5. C\{Rj} ∪ {R′

j} is an optimal translational cover of P.

Note that we do not require that p1 and p2, P1 and P2 as well as Rj and R′
j are

distinct. Moreover, if p1 and p2 are equal then they coincide with the upper left
vertex of R′

j .
The normal case of the lemma above is depicted in the left part of Fig. 1:

the rectangle in full line has a point of minimal x-coordinate on its left side and
another point of a covered polygon on its upper side. Clearly, it can replace the
dotted rectangle in an optimal cover. A degenerate example where p1 and p2 as
well as P1 and P2 coincide can be seen in the right part of the same figure.
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Fig. 1. Translational alignments

Finally, the last lemma of this group concerns general covers:

Lemma 3. Let P be a packing and let C = {R1, R2, . . . , Rm} be an optimal
general cover of P by R. Then for every polygon Ppi ∈ P there are points p1, p2
and p3 of P and an index j together with a rectangle R′

j fulfilling the following
properties:

1. R′
j contains Ppi,

2. p1 and p2 are distinct and lie on different adjacent sides of R′
j

3. p1, p2 and p3 lie on sides of R′
j,

4. there are polygons P1, P2, P3 ∈ P such that for i ∈ {1, 2, 3} pi is a vertex of
Pi and Pi is contained in R′

j,
5. C\{Rj} ∪ {R′

j} is an optimal general cover of P.

Fig. 2. General motion alignments

In the left part of Fig. 2 we see that the dotted rectangle can be replaced
by the one drawn in full line which has three points of a packing on its sides,
two of them on adjacent sides. An extremal situation where points coincide with
vertices of R′

j is shown in the right part of the same figure.
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4 Generic Approach

The following elementary but useful observation will give rise to a family of
algorithms for all our cover problems:

Lemma 4. Let P be a packing, C an optimal cover of P, and Rj an arbitrary
rectangle of C. Then C\{Rj} is an optimal cover of P\cov(Rj ,P).

Proof. Assume there is a cover C′ of P\cov(Rj ,P) with |C′| < |C| − 1. Then
C′ ∪ {Rj} is a cover of P with a size of |C′| + 1 < |C|, which contradicts the
optimality of C.

Let us now assume we had an algorithm candidate rectangles(Q, R) which
determines for every packing Q a finite set of pushings, translations or gen-
eral motions of a gripper R such that for every optimal cover C of Q there
are an Rcov ∈ C and an Rcand ∈ candidate rectangles(Q) with the property
cov(Rcov,Q) ⊆ cov(Rcand,Q). Calling these rectangles candidate rectangles we
define for a packing P an edge-labeled graph Gsearch = ((V,E), r) as follows: the
nodes of V are subsets of P, and we define (P1,P2) ∈ E iff there is a candidate
rectangle R for P1 such that P2 = P1\cov(R,P1) holds. Moreover, we label
each edge (P1,P2) with an appropriate rectangle R = r(P1,P2) which fulfills
the equality P2 = P1\cov(R,P1). Clearly, an optimal cover of a packing P cor-
responds to a shortest path in Gsearch from P to ∅, so we simply perform a BFS
in Gsearch starting at P till we reach the node ∅. The rectangles of the optimal
cover can be recovered from the edge labels of a shortest path in Gsearch from
P to ∅. In practice we will of course not construct the entire graph Gsearch but
generate its nodes step by step on demand till the algorithm terminates. If we
denote the maximum number of candidate rectangles by d, the constructed part
of the graph consists of at most d|Copt| nodes, where Copt is an optimal cover.

The remaining problem is now the computation of the candidate rectangles.
In Sect. 5 we will see that this is an easy task for the PPC whereas in Sect. 6 we
show a rather straightforward solution for the TPC. For the GPC we introduce
two approaches, a vertex-oriented one in Subsect. 7.1 and a polygon-oriented one
in Subsect. 7.2.

5 The Pushing Case

In the case of the pushing cover problem, we can according to Lemma 1 always
find a set of candidate rectangles with cardinality at most one: we simply chose
the unique pushing of R such that a point of P with minimum x-coordinate
lies on its left side. Then the search graph is a simple path from P to ∅ of
length at most P − 1. Together with an initial sorting of P according to the
minimum x-coordinate of its polygons in ascending order it is straightforward
to see that this greedy algorithm can be implemented with an overall running
time in O (‖P‖ + |P| · log(|P|)).
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6 The Translational Case

Confronted with the TPC for a packing P, it is clear that it suffices to consider
only the axis-aligned minimal rectangular bounding boxes of each polygon of P.
Obviously, this transformation can be done in

∥
∥P‖ time and does not affect the

asymptotic running time.
Given now a gripper R and a packing P we can compute a set of candidate

rectangles for the translational case using Lemma 2 as follows: first we choose a
polygon P1 ∈ P containing a vertex with minimal x-coordinate xmin among all
points in P. Subsequently, we align R with its left side to xmin and push it in
negative y-direction, starting at a position where its bottom side has the minimal
y-value of all vertices of P1. We continue this pushing along the y-axis till the
top side of R is underneath the top side of P1. During this process, we register
all positions where the upper side contains a point of maximal y-coordinate or
its lower side with a point of minimal y-coordinate of some polygon of P. Every
such event removes or adds a polygon to the set of covered polygons, and the
candidate rectangles are exactly those where a polygon is added the last time
before removing one. The cases of simultaneous events are a little bit tedious
but not basically different to handle.

Since every polygon causes at most two events there is an overall number of
O (P) events during the described process and hence the number of candidate
rectangles is here in O (|P|). So the number of nodes in the search graph is in
O (|P||Copt|) and the overall running time of the algorithm is in O (|P||Copt|+1

)

(we need O (|P|) time for the construction of a node) if we sort the bound-
ing boxes in a suitable way before starting the algorithm (which takes negligible
O (|P| · log |P|) time). Note that in contrast to the following Sect. 7 we can main-
tain the set of candidate rectangles by a linked list where we append elements
at the end and remove them from the beginning.

7 The General Case

As a general precondition for the general case we assume w.l.o.g. that all polygons
of a packing are convex (a polygon can be covered by a rectangle R iff its convex
hull can be covered by R). Hence we replace every polygon of the packing by

its convex hull. The time required for this is in O
(

∑

P∈P

‖{P}‖ · log ‖{P}‖
)

(see

e.g. [6]) and will have no influence on the overall asymptotic running times.

7.1 A Vertex-Oriented Approach

Using Lemma 3 we can determine the set of candidate rectangles for a grip-
per R and a packing P in the general case as follows: first, we choose a pivot
polygon Ppi ∈ P. Then we perform a loop over all triples (p1, p2, p3) of points
from P and compute all general motions (if any) of R which fulfill the require-
ments of Lemma 3. Of course, we discard all triples with three identical points.
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The computation of the general motions can be done using elementary geome-
try. A special challenge is to keep only those rectangles which cover an inclusion-
maximal subset of P. We tackled this task by a data structure which maintains a
subset S of the power set of {1, 2, . . . , |P|} and supports the following operations:

• Given S ⊆ {1, 2, . . . , |P|}, determine whether S contains a superset of S.
• Given S ⊆ {1, 2, . . . , |P|}, remove all subsets of S from S.
• Given S ⊆ {1, 2, . . . , |P|}, add S to S.

Considering now the rectangles computed above as an input stream, we can
for each rectangle determine the polygons it covers, identify it with a subset of
{1, 2, . . . , |P|} and maintain a set of inclusion-maximal subsets of {1, 2, . . . , |P|},
each set associated with a suitable rectangle.

The described data structure was implemented as a linked list of bit vectors
corresponding to subsets of {1, 2, . . . , |P|} in a canonical way. As a solution for
the implementation of the bit vectors we used arrays of long integers and oper-
ated on them in a bitwise manner in the spirit of word RAM algorithms. In our
practical settings, |P| never exceeded a value of forty, so these arrays consisted
all of only one long integer. The worst case running time of the operations above
is in O

(
|S| · |P|

w

)
where w denotes the bit length of a long integer.

Per node, we have to iterate over ‖P‖3 triples, and per triple we need ‖P‖
time for computing the polygons covered by the rectangle R under considera-
tion by testing whether points of P are contained in R. So the overall time for
processing a node is in O

(
‖P‖4 · |S| · |P|

w

)
, and because the branching degree

of the search graph is also bounded by |S| we have an overall running time of
O

(
|S||Copt|+1 · ‖P‖4 · |P|

w

)
.

In order to estimate |S| we denote the maximal number of polygons gener-
ally compatible with Ppi except Ppi by npi. Then the maximal number of can-

didate rectangles is bounded by
√

2
π

2npi√
npi

; see A.4 for a proof. This means that

the overall running time can be bounded by O
(
(
√

2
π

2npi√
npi

)|Copt|+1 · ‖P‖4 · |P|
w

)
.

However, this is only a worst case scenario; in practice we will not need to test
every node of P whether it is contained in a rectangle R. In a lot of cases a point
and hence the polygon P it belongs to will lie outside of R so the remaining
points of P need not to be tested. So the running time will rather be cubic than
biquadratic in ‖P‖. We will see this also in the results of Sect. 8.

In our implementation we performed a preprocessing step which computes
for every polygon P of the initial packing P the list of polygons Q1, Q2, . . . , Qn

which are generally compatible with P (note that this list also contains P ).
Furthermore, it obviously suffices to run the outer loop from Q1 till Qn, the
second loop from the current index of the outer loop till Qn and the innermost
loop from the current index of the second loop till Qn. Finally, we iterate over
sets of two or three different points from the overall set of points of the three
(possibly identical) polygons. Unfortunately, this cannot guarantee a number of
iterations better than θ(‖P‖3) for the computation of the candidate rectangles.
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A special issue is the choice of the pivot polygon Ppi which influences the
number of candidate rectangles and hence the branching degree of the search
graph and eventually the running time. Our experiments showed that a good
choice is a polygon whose distance from a vertex of the minimal axis-aligned
bounding rectangle of P is minimal.

7.2 A Polygon-Oriented Approach

The idea of the subsequently described approach is to compute all inclusion-
maximal coverable subsets of P containing a pivot polygon Ppi ∈ P by a simple
backtracking algorithm which enumerates these sets.

If we have a function at our disposal which decides whether a set of poly-
gons (or equivalently, a convex polygon) can be covered by a general motion of
a gripper we can enumerate all inclusion-maximal coverable subsets containing
Ppi by a straightforward backtracking algorithm. Similar to the vertex-oriented
approach, we can use preprocessed lists of polygons in order to speed up the
computation. However, this will not reduce the worst case number of backtrack-
ing iterations below O (

2|P|) per computation of a set of candidate packings. As
we will see soon one backtracking iteration of the general case can be executed in
O (‖P‖) time (including the possible construction of a new node) so the overall

running time amounts here to O
((√

2
π

2npi√
npi

)|Copt|
· 2|P| · ‖P‖

)
.

Packing a Polygon into a Rectangle. The remaining problem is to determine
whether for a given gripper there is a general motion such that the gripper covers
a given convex polygon, and, if so, to compute such a general motion. Clearly,
this is equivalent to the issue of packing such a polygon into a rectangle of given
dimensions which is a little bit more intuitive to describe.

The task of packing a convex polygon P given by n vertices p1, p2, . . . , pn

into a rectangle can be solved by an algorithm described in [2]. However, this
algorithm is rather complicated to implement (and we are not aware of any
implementation), so we developed a special algorithm for our purposes. An algo-
rithm from [7] for maximizing the number of points in a general motion of a
convex polygon can be used to solve our problem, leading to a running time of
O (

n3 log(n)
)

in the worst case. Since it is an easy task to determine the trans-
lational part of a desired general motion once a suitable rotation angle is known
we will concentrate from now on only on the computation of the rotational part.

Our algorithm uses a variant of the rotating calipers (introduced in [18],
see also [16]) which were already applied to other problems like maximum or
minimum width of a polygon or computing minimal rectangular bounding boxes.
The key idea is to determine all pairs of antipodal points of a polygon (i.e.,
pairs of points which admit two infinite parallel lines through each point which
intersect the polygon only in the respective point, see again [16,18] for details)
and to compute the solution of the problem using these pairs of points. In our
algorithm, we do not only compute pairs of antipodal points but use them to
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ϑ

pi−1

qi−1

ri−1

Fig. 3. Height of a polygon for two angles

determine two piecewise defined functions which indicate the height and the
width of a rotated polygon depending on the rotation angle.

So for each pair (pi, qi) of antipodal points we have a validity interval [ϑl
i, ϑ

r
i ]

and constants ri and ϕi such that for ϑ ∈ [ϑl
i, ϑ

r
i ] the height h(ϑ) of the polygon

rotated by ϑ is given by h(ϑ) = ri · cos(ϑ + ϕi). Now we determine for each
such validity interval its subintervals where h(ϑ) is less than or equal to the
height of the given rectangle. The number of antipodal pairs and hence the
number of validity intervals is in O (n), and each validity interval has at most two
subintervals with the above property so we end up with a number of subintervals
in O (n). Since the computation of the pairs of antipodal points, of the validity
intervals, the ri’s, the ϕi’s and the subintervals can be done in constant time
per i, we have an overall time in O (n) for this part of the computation.

An illustration is given in Fig. 3: the rotation of the original gray polygon
around the angle ϑ yields the black polygon. The picture indicates the values
of ri−1 for the gray polygon and ri for the black polygon and their associated
pairs of antipodal points (pi−1, qi−1) and (pi, qi), resp., together with the heights
h(0) and h(ϑ). The values of the offsets are harder to illustrate, however, in this
figure, the value of ϕi equals −ϑ since the height at ϑ equals exactly ri.

An analogous computation is done for the width function w(ϑ) (to obtain the
width function it suffices to shift the height function by π

2 ). Finally, we compute
the values of ϑ where h(ϑ) and w(ϑ) are less or equal to the height respectively
the width of the given rectangle. By a simple sweep-line algorithm this can also
be done in O (n) time, and it yields all rotation angles for which the polygon
can be packed into the rectangle.
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8 Experimental Results

We tested our algorithms experimentally on instances which are motivated by
our practical needs. For the gripper we chose a rectangle of the dimensions 1500 ×
2500, and we placed randomly generated convex polygons of maximal diameters
between 100 and 500 on a rectangular field of length 3000 and height 2000.
The number of polygons runs between 5 and 40, and the number of vertices
per polygon between 5 and 55, both in steps of size five. As implementation
language we chose Java and executed the programs on an Intel i7-4770 CPU
with 3.4 GHz. Since we could solve all translational instances in times under one
second we concentrate in the sequel on the general case.

On instances with 40 polygons and more than 30 vertices the vertex-oriented
approach takes more than one hour per instance whereas the polygon-oriented
algorithm solves instances with 40 polygons and 55 vertices per polygon on
average in under nine minutes so we do not take instances with more than 35
polygons into account. For each instance size (i.e., pair of numbers of polygons
and numbers of vertices as described above) we generated 30 instances which
we processed by the two algorithms under consideration. In order to get rid of
statistical outliers we discarded the five fastest and slowest results.

10

100

1000

10000

t(s)

10 20 30 40 50 P
|P|

Fig. 4. Running times for 35 polygons

An approach mentioned already in the introduction is to reduce the problem
to a (geometric) set cover instance. To make this approach work, we have to
compute all inclusion-maximal coverable subsets of the given packing (note that
this had to be followed by the actual algorithm for the covering problem). Doing
so along the lines of Sects. 7.1 and 7.2 showed that for our test instances this
computation takes more time than the execution of our algorithm.



284 R. Glück

Despite the discouraging running time estimations, the test instances are
solvable in reasonable time with at least one of the proposed algorithms. As
one could expect, the vertex-oriented algorithm runs faster on instances with a
relatively high number of polygons and a low number of vertices per polygon
whereas the polygon-oriented version turns out to be favorable if the number of
vertices increases. This fact is illustrated in Fig. 4 where the running times of the
algorithms on instances with 35 polygons are shown (note the logarithmic scale
of the ordinate). The vertex-oriented algorithm, represented by full circles, is
faster on instances with five vertices per polygon whereas the polygon-oriented
algorithm, depicted in simple circles, is faster on the remaining instances. We
made analogous observations for other numbers of polygons, too.

Another phenomenon which can also be observed in Fig. 4 is that the polygon-
oriented algorithm is more sensitive against the structure of the input instance
and less sensitive against the number of vertices than the vertex-oriented variant.
This explains its slower growth rate and the little bulge at instances with 40
vertices per polygon. Moreover, the polygon-oriented algorithm shows a greater
variability of running times than the vertex-oriented one. This is not astonishing
since the vertex-oriented algorithm iterates rather tenaciously through a set of
vertices whose cardinality has a cubic influence on the running time. On the
other hand, due to the potentially exponential influence of npi on the running
time of the polygon-oriented algorithm small changes in the structure of an
instance can lead to significant changes of the running time. As a measure for
the variability we chose the variation coefficient, i.e., the ratio of the standard
deviation and the mean. Figure 5 show the means together with the variation
coefficients (denoted by μ and cv) of the running times in seconds for 25 polygons.
The last two columns of the part associated with the vertex-oriented algorithm
exhibit a running time nearly cubic in the number of vertices: the penultimate
column contains the cubes of the ratios of two consecutive numbers of vertices,
whereas the last one contains the ratios of two consecutive running times.

We executed additional test series in order to explore the running time of
the polygon-oriented algorithm with respect to the number of polygons. For
this purpose, we created instances with an overall number of 2000 vertices and a
number of polygons between 5 and 40 in the same way as above. Analogously, we
measured the running times of the vertex-oriented algorithm for instances with
an overall number of 500 vertices (due to the bad behavior of this algorithm for
a high number of vertices). The results of these series are shown in Fig. 6. As
one can see again, the polygon-oriented algorithm exhibits a strong growth in
the number of polygons whereas the vertex-based algorithm is rather indifferent
with respect to the number of polygons and shows only a modest growth rate
(for random reasons, the running times even decrease at some places).

Contrary to our expectations, we could not confirm a substantial dependency
of the running times on the size of an optimal cover (disregarding two outliers
in all test series). A possible explanation is that in instances with small optimal
covers a lot of polygons are located close to each other. This could lead to a
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|P| P
|P|

polygon-oriented vertex-oriented

μ cv μ cv
Pn

Pn−1

3
µn

µn−1

25 5 1.5 0.28 1.3 0.21 - -
25 10 1.3 0.34 9.0 0.2 8 6.9
25 15 1.1 0.28 32 0.15 3.4 3.6
25 20 1.8 0.44 78 0.21 2.4 2.4
25 25 2.0 0.49 160 0.16 2.0 2.1
25 30 1.3 0.17 290 0.13 1.7 1.8
25 35 1.4 0.34 540 0.26 1.6 1.9
25 40 1.6 0.21 760 0.21 1.5 1.4
25 45 2.5 0.40 960 0.22 1.4 1.3
25 50 3.2 0.60 1300 0.10 1.4 1.4
25 55 2.9 0.29 1700 0.27 1.3 1.3

Fig. 5. Statistical values for 25 polygons

polygon-oriented

P |P| μ µn
µn−1

2000 5 0.021 -
2000 10 0.064 3.0
2000 15 0.2 3.1
2000 20 1.0 5.0
2000 25 5.2 5.2
2000 30 15 2.9
2000 35 49 3.3
2000 40 400 8.2

vertex-oriented

P |P| μ µn
µn−1

500 5 61 -
500 10 52 0.9 (!)
500 15 48 0.9 (!)
500 20 70 1.5
500 25 75 1.1
500 30 84 1.1
500 35 110 1.3
500 40 120 1.1

Fig. 6. Running times for fixed overall numbers of vertices

greater number of candidate rectangles and hence increase the branching degree
of the search graph which has an effect opposing to the smaller search depth.

9 Further Work

Although we found satisfying solutions for our practical instances the presented
algorithms have plenty of room for optimization and further research. So we plan
to investigate various strategies for finding a suitable pivot polygon. Another
choice than the one described here could be a polygon with a minimum number
of polygons in its vicinity. Till now we ran the algorithms only on one single
core; an obvious improvement should be to develop a parallelized version of it
since parallelizing a breadth first search is a well-investigated topic (see [10,17]).

Theoretical questions concern on the one hand a more precise analysis of the
running time of the presented algorithms (the given ones are rather rough and
concern only the worst case) and the identification of parameters influencing the
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computational hardness of an instance. Candidates to investigate are beside the
number of polygons and vertices the size of the polygons and their spatial density
and distribution. Despite the fact of satisfying results on practical instances,
some kind of approximation scheme could be both useful for larger instances
and interesting from a theoretical point of view.

Acknowledgments. The author is grateful to Torben Hagerup, Christian Rähtz, Lev
Sorokin and the anonymous reviewers for valuable remarks.

A Deferred Proofs

A.1 Proof of Lemma 1

Proof. Let p be an arbitrary point of P with minimum x-coordinate. Then there
is a rectangle Rj ∈ C containing p. Translating this rectangle in positive x-
direction till p lies on its left side we obtain a rectangle R′

j with the required
properties.

A.2 Proof of Lemma 2

Proof. Let p1 be a point of P with minimum x-coordinate and P1 a polygon of P
which has p1 as a vertex. Then there is a rectangle Rj ∈ C containing P1. Now
we translate Rj in positive x-direction till p1 lies on the left side of the trans-
lated rectangle R̂j . Clearly, we have cov(R̂j ,P) ⊇ cov(Rj ,P). Subsequently, we
translate R̂j in negative y-direction till a point p2 with the following properties
lies on the upper side of the translated rectangle R′

j :

1. All polygons of P in R̂j with p2 as a vertex are contained in R′
j , and

2. p2 is a point with maximum y-coordinate fulfilling the above requirements.

Then we have cov(R′
j ,P) ⊇ cov(R̂j ,P) ⊇ cov(Rj ,P), so C\{Rj} ∪ {R′

j} is
indeed an optimal translational cover of P. Moreover, p1, p2 and P1 meet their
requirements by construction, and for P2 we can chose an arbitrary polygon that
has p2 as a vertex and is contained in R′

j .

In Fig. 1, Rj corresponds to the dotted rectangle, R̂j to the dashed one, and
the final rectangle R′

j is drawn with a full line.

A.3 Proof of Lemma 3

Proof. Let Rj ∈ C be a rectangle containing Ppi. We apply to Rj similar trans-
lations as in Lemma 2 but do not translate in x- and y-direction but in directions
parallel to adjacent sides of Rj . Doing so, we end up with a rectangle R̂j and
two (not necessarily distinct!) points p1 and p2 with the following properties:
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1. R̂j contains Ppi,
2. p1 and p2 lie on adjacent sides of R̂j ,
3. cov(R̂j ,P) ⊇ cov(Rj ,P), and
4. there are polygons P1, P2 ∈ P such that for i ∈ {1, 2}, pi is a vertex of Pi and

Pi is contained in R̂j .

Now we perform a general motion of R̂j combined of a clockwise rotation and
suitable translation which keeps p1 and p2 on their respective sides. There are
two cases:

1. p1 and p2 coincide. Then the described general motion is a simple rotation of
R̂j around p1. This rotation is continued until a point p3 lies on a side of the
resulting rectangle R′

j such that the following properties hold:
(a) R′

j contains Ppi,
(b) there are polygons P1, P3 ∈ P such that for i ∈ {1, 3} pi is a vertex of Pi

and Pi is contained in R′
j , and

(c) cov(R′
j ,P) ⊇ cov(R̂j ,P).

2. p1 and p2 are distinct. Here we continue the general motion till one of the
following two cases concerning the resulting rectangle R′

j occurs:
(a) p1 or p2 coincide with a vertex p3 of R′

j , or
(b) there is a point p3 on a side of R′

j such that
i R′

j contains Ppi,
ii there are polygons P1, P2, P3 ∈ P such that for i ∈ {1, 2, 3} pi is a

vertex of Pi and Pi is contained in R′
j , and

iii cov(R′
j ,P) ⊇ cov(R̂j ,P).

Now, after possibly necessary renamings, p1, p2 and p3 together with R′
j meet

the requirements of the lemma.

An example situation of the proof above is shown in the left part of Fig. 2:
the dotted rectangle corresponds to Rj , the dashed one to R̂j and the fully lined
to R′

j . Moreover, P1 is the left triangle while P2 and P3 coincide here in the
right triangle. p1 equals the point of the left triangle lying on the rectangle and
p2 and p3 are the points of the right triangle lying on the rectangle. An extreme
situation where p1 and p2 coincide with two opposite vertices of Rj is illustrated
by the right part of the same figure (note that two opposite vertices of a rectangle
lie on adjacent sides).

A.4 Upper Bound of the Branching Degree for the General Case

Let the candidate rectangles for the general case be computed as described in
Subsect. 7.1, and let us replace npi by n for better readability. According to
Sperner’s theorem, there are at most

(
n

�(n/2�
)

inclusion-maximal coverable sets
containing Ppi. Ignoring the asymptotically irrelevant Gaussian brackets and
expanding the binomial coefficient yields n!

(n/2)!2 which amounts in the asymp-

totically view to
√
2πn (n

e )n
(√

2πn/2 (n/2
e )n/2)2 by Stirling’s formula. Elementary calculus

leads now to the result from Subsect. 7.1.
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Abstract. Let H be a graph of order h and let G be a graph of order
n such that h | n. A perfect H-packing in G is a collection of vertex
disjoint copies of H in G that covers all vertices of G. Hell and Kirk-
patrick showed that the decision problem whether a graph G has a perfect
H-packing is NP-complete if and only if H has a component which con-
tains at least 3 vertices.

We consider the decision problem of containment of a perfect
H-packing in graphs G under the additional minimum degree condition.
Our main result shows that given any γ > 0 and any n-vertex graph
G with minimum degree at least (1 − 1/χcr(H) + γ)n, the problem of
determining whether G has a perfect H-packing can be solved in poly-
nomial time, where χcr(H) is the critical chromatic number of H. This
answers a question of Yuster negatively. Moreover, a hardness result of
Kühn and Osthus shows that our main result is essentially best possible
and closes a long-standing hardness gap for all complete multi-partite
graphs H whose second smallest color class has size at least 2.

Keywords: Perfect packing · Computational complexity · Absorbing
method

1 Introduction

1.1 Perfect H-packings

Given two graphs G and H, an H-packing (or H-tiling) in G is a collection
of vertex-disjoint copies of H in G. An H-packing in G is called perfect if it
covers all vertices of G. When H is a single edge, an H-packing is often called a
matching. Edmonds’ Algorithm [4] determines if a graph has a perfect matching
in polynomial time. However, in general, Hell and Kirkpatrick [7] showed that
the decision problem whether a graph G has a perfect H-packing is NP-complete
if and only if H has a component which contains at least 3 vertices.

Given a graph H, we write |H| for its order and χ(H) for its chromatic num-
ber. For approximating the size of a maximal H-packing, Hurkens and Schrijver
[8] gave an (|H|/2+ε)-approximation algorithm (where ε > 0 is arbitrary) which
runs in polynomial time. On the other hand, Kann [9] proved that the problem
c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 289–303, 2017.
DOI: 10.1007/978-3-319-55911-7 21
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is APX-hard if H has a component which contains at least three vertices. (In
other words, it is impossible to approximate the optimum solution within an
arbitrary factor unless P = NP). In contrast, the results in [7] imply that the
remaining cases of the problem can be solved in polynomial time. The follow-
ing theorem of Alon and Yuster [2] shows that the problem can be solved in
polynomial time for instances G which are sufficiently dense. Let M(n) be the
time needed to multiply two n by n matrices with 0, 1 entries over the integer.
Determining M(n) is a challenging problem in theoretic computer science, and
the up-to-date result M(n) = O(n2.3728639) is obtained by Le Gall [18].

Theorem 1 (Alon-Yuster, [2]). For every γ > 0 and each graph H there
exists an integer n0 = n0(γ,H) such that every graph G whose order n ≥ n0 is
divisible by |H| and whose minimum degree is at least (1−1/χ(H)+γ)n contains
a perfect H-packing. Moreover, there is an algorithm which finds this H-packing
in time O(M(n)).

Note that balanced complete χ(H)-partite graphs show that the minimum
degree condition in Theorem 1 is essentially best possible. In [2], they also con-
jectured that the error term γn in Theorem 1 can be replaced by a constant
C(H) > 0 depending only on H, which has been verified by Komlós, Sárközy
and Szemerédi [15].

Theorem 2 (Komlós-Sárközy-Szemerédi, [15]). For every graph H there
exist integers C < |H| and n0 = n0(H) such that every graph G whose order
n ≥ n0 is divisible by |H| and whose minimum degree is at least (1−1/χ(H))n+C
contains a perfect H-packing. Moreover, there is an algorithm which finds this
H-packing in time O(nM(n)).

As observed in [2], there are graphs H for which the constant C(H) can-
not be omitted completely. On the other hand, there are graphs H for which
the minimum degree condition in Theorem2 can be improved significantly
[3,11], by replacing the chromatic number with the critical chromatic num-
ber in Theorem 2. The critical chromatic number χcr(H) of a graph H is
defined as (χ(H) − 1)|H|/(|H| − σ(H)), where σ(H) denotes the minimum
size of the smallest color class in a coloring of H with χ(H) colors. Note that
χ(H) − 1 < χcr(H) ≤ χ(H) and the equality holds if and only if every χ(H)-
coloring of H has equal color class sizes. If χcr(H) = χ(H), then we call H bal-
anced, otherwise unbalanced. Unbalanced complete χ(H)-partite graphs1 show
that for any graph H, one cannot improve Theorem2 by replacing χ(H) with a
constant smaller than χcr(H) [1]. Komlós [14] proved that one can replace χ(H)
with χcr(H) in Theorem 2 at the price of obtaining an H-packing covering all
but εn vertices. He also conjectured that the error term εn can be replaced with
a constant that only depends on H [14], which was confirmed by Shokoufandeh
and Zhao [21] (here we state their result in a slightly weaker form).
1 More precisely, here one should take the complete χ(H)-partite graphs with

σ(H)n/|H| − 1 vertices in one color class, and other color classes of sizes as equal as
possible.
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Theorem 3 (Shokoufandeh-Zhao, [21]). For any H there is an n0 = n0(H)
so that if G is a graph on n ≥ n0 vertices and minimum degree at least (1 −
1/χcr(H))n, then G contains an H-packing that covers all but at most 5|H|2
vertices.

Then the question is, for which H can we replace χ(H) with χcr(H) in
Theorem 2? Kühn and Osthus [16,17] answered this question completely. To
state their result, we need some definitions. Write k := χ(H). Given a k-coloring
c, let x1 ≤ · · · ≤ xk denote the sizes of the color classes of c and put D(c) =
{xi+1 − xi | i ∈ [k − 1]}. Let D(H) be the union of all the sets D(c) taken over
all k-colorings c. Denote by hcfχ(H) the highest common factor of all integers in
D(H). (If D(H) = {0}, then set hcfχ(H) := ∞.) Write hcfc(H) for the highest
common factor of all the orders of components of H (for example hcfc(H) = |H|
if H is connected). If χ(H) �= 2, then define hcf(H) = 1 if hcfχ(H) = 1. If
χ(H) = 2, then define hcf(H) = 1 if both hcfc(H) = 1 and hcfχ(H) ≤ 2.
Then let

χ∗(H) =

{
χcr(H) if hcf(H) = 1,
χ(H) otherwise.

In particular we have χcr(H) ≤ χ∗(H).

Theorem 4 (Kühn-Osthus, [16,17]). There exist integers C = C(H) and
n0 = n0(H) such that every graph G whose order n ≥ n0 is divisible by |H|
and whose minimum degree is at least (1 − 1/χ∗(H))n + C contains a perfect
H-packing.

Theorem 4 is best possible in the sense that the degree condition cannot be
lowered up to the constant C (there are also graphs H such that the constant
cannot be omitted entirely). Moreover, this also implies that, one can replace
χ(H) with χcr(H) in Theorem 2 if and only if hcf(H) = 1.

1.2 The Algorithmic Aspect

Now let us turn to the algorithmic aspect of this problem. Let Pack(H, δ) be
the decision problem of determining whether a graph G whose minimum degree
is at least δ|G| contains a perfect H-packing. When H contains a component
of size at least 3, the result of Hell and Kirkpatrick [7] shows that Pack(H, 0)
is NP-complete. In contrast, Theorem 4 gives that Pack(H, δ) is (trivially) in P
for any δ ∈ (1 − 1/χ∗(H), 1]. In [16], Kühn and Osthus showed that Pack(H, δ)
is NP-complete for any δ ∈ [0, 1 − 1/χcr(H)) if H is a clique of size at least 3 or
a complete k-partite graph such that k ≥ 2 and the size of the second smallest
cluster is at least 2.

Due to lack of knowledge on the range δ ∈ [0, 1−1/χ∗(H)) for general H, we
still do not understand Pack(H, δ) well in general. Indeed, even for (unbalanced)
complete multi-partite graphs H with hcf(H) �= 1, there is a substantial hardness
gap for δ ∈ [1−1/χcr(H), 1−1/χ∗(H)]. In particular, Yuster asked the following
question in his survey [23].
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Problem 1 (Yuster, [23]). Is it true that Pack(H, δ) is NP-complete for all δ ∈
[0, 1 − 1/χ∗(H)) and any H which contains a component of size at least 3?

Our main result provides an algorithm showing that Pack(H, δ) is in P when
δ ∈ (1 − 1/χcr(H), 1], which confirms a recent conjecture of Treglown [22] and
gives a negative answer to Problem 1 (as seen for any H such that χcr(H) <
χ∗(H)). In fact, this gives the first nontrivial polynomial-time algorithm for the
decision problem Pack(H, δ). In particular, it eliminates the aforementioned
hardness gap for unbalanced complete multi-partite graphs H with hcf(H) �= 1
almost entirely.

Theorem 5. For any m-vertex k-chromatic graph H and δ ∈ (1−1/χcr(H), 1],
Pack(H, δ) is in P . That is, for every n-vertex graph G with minimum degree

at least δn, there is an algorithm with time O(nmax{2mk−1−1m+1, m(2m−1)m−m}),
which determines whether G contains a perfect H-packing.

In view of the aforementioned hardness result of [16], Theorem 5 is asymp-
totically best possible if H is a complete k-partite graph such that k ≥ 2 and the
size of the second smallest cluster is at least 2 (note that when H is balanced,
the result is included in Theorem1). On the other hand, Theorem5 complements
Theorem 3 in the sense that when the minimum degree condition guarantees an
H-packing that covers all but constant number of vertices, we can detect the
‘last obstructions’ efficiently. A similar phenomenon also appears in the decision
problem for perfect matchings in uniform hypergraphs [6,12].

The rest of the paper is organized as follows. In Sect. 2 we introduce the main
ideas of the proof of Theorem5. We introduce Lemma 1 and Theorem 6 in Sect. 3
and use them to prove Theorem5. We prove Theorem 6 in Sect. 4. We show the
rest of the proofs in the appendix.

Notation. For any graph G, we write |G| for its order, e(G) for its number of
edges, δ(G) for its minimum degree, χ(G) for its chromatic number and χcr(G)
for its critical chromatic number defined in Sect. 1. Given A ⊆ V (G), let G[A]
be the induced subgraph of G on A; given A,B ⊆ V (G) with A ∩ B = ∅, let
G[A,B] be the induced bipartite subgraph of G with parts A and B. Given
integers k ≥ 2 and a1, . . . , ak, let Ka1,...,ak

be the complete k-partite graph with
color class sizes a1, . . . , ak. Throughout this paper, x 
 y means that for any
y > 0, there exists x0 > 0 such that for any 0 < x ≤ x0 the following statement
holds. Hierarchies of other lengths are defined in the obvious way.

2 Ingredients of the Proof of Theorem5

Throughout the rest of the paper, we always assume that H is an m-vertex
k-chromatic graph. Recall that when H is balanced, the result of Theorem5 is
included in Theorem1. So we may assume that H is unbalanced, namely, there
exists a k-coloring of H, with color class sizes a1 ≤ a2 ≤ · · · ≤ ak, such that
a1 < ak.
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There are two main ingredients in our proof of Theorem5. One is the concepts
of lattices and solubility introduced by Keevash, Knox and Mycroft [12]; and the
other is the lattice-based absorbing method developed recently by the author [6].

2.1 Lattices and Solubility

To prove Theorem 5, we need to find a property of G which is both sufficient
and necessary for a graph G with appropriate minimum degree to contain a
perfect H-packing, and can be tested efficiently. This is done by Theorem 6, the
so-called structural theorem. However the property is not easy to state – we need
the following definitions, which essentially come from [12,13].

Let G be an n-vertex graph. We will work on a partition P = {V1, . . . , Vd} of
V (G) for some integer d ≥ 1. In this paper, every partition has an implicit order
on its parts. The index vector iP(S) ∈ Z

d of a subset S ⊆ V (G) with respect to
P is the vector whose coordinates are the sizes of the intersections of S with each
part of P, namely, iP(S)X = |S ∩ X| for X ∈ P. For any v = {v1, . . . , vd} ∈ Z

d,
let |v| =

∑d
i=1 vi. We say that v ∈ Z

d is an r-vector if it has non-negative
coordinates and |v| = r.

When Keevash and Mycroft [13] studied perfect matchings in k-uniform
hypergraphs, they observed a family of lattice-based constructions, which they
named as ‘divisibility barriers’. In fact, similar constructions appear in our prob-
lem, which we define formally now.

Let P = {V1, . . . , Vd} be a partition of V (G) for some integer d ≥ 1. Let
IP(G) denote the set of all i ∈ Z

d such that G contains at least one copy of H
with index vector i and let LP(G) denote the lattice in Z

d generated by IP(G). A
divisibility barrier is a graph G which admits a vertex partition P of V (G) such
that iP(V (G)) /∈ LP(G). To see that such a G contains no perfect H-packing,
let M be an H-packing in G. Then iP(V (M)) =

∑
F∈M iP(V (F )) ∈ LP(G). But

iP(V (G)) /∈ LP(G), so V (M) �= V (G), namely, M is not perfect.
Note that given a partition P of bounded number of parts (independent

of n), the property iP(V (G)) ∈ LP(G) can be tested efficiently (it takes time
O(nm) to determine IP(G), and it takes constant time to generate LP(G) and
check if iP(V (G)) ∈ LP(G)). Moreover, iP(V (G)) /∈ LP(G) implies that G
contains no perfect H-packing. Unfortunately, the converse is not true. In fact,
it is not hard to construct a graph with appropriate minimum degree such that
for some m-vector i, all copies of H with index vector i are intersecting (see
[12, Construction 1.6] for an example for matchings in hypergraphs) – but in
reality, when we compute LP(G), we are allowed to use any multiple of i. Thus,
it is natural to consider the following robust vectors and robust lattices.

Given μ > 0, let Iμ
P(G) denote the set of all i ∈ Z

d such that G contains at
least μnm copies of H with index vector i and let Lμ

P(G) denote the lattice in
Z

d generated by Iμ
P(G).

However, iP(V (G)) /∈ Lμ
P(G) does not imply that G contains no perfect H-

packing. So instead, we consider the following solubility and show that it is the
correct property we are looking for. A (possibly empty) H-packing M of size at
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most (2m − 1)d − 1 is a solution for (P, L) (in G) if iP(V (G) \ V (M)) ∈ L; we
say that (P, L) is soluble if it has a solution, otherwise insoluble.

2.2 Lattice-Based Absorbing Method

We will show that every n-vertex graph G with δ(G) ≥ (1 − 1/χcr(H) + γ)n
admits a partition P of V (G) (Lemma 1), such that G contains a perfect H-
packing if and only if (P, Lμ

P(G)) is soluble for some suitable choice of μ > 0
(Theorem 6). The major work is in the proof of the backward implication of
Theorem 6. In fact, in view of Theorem3, it suffices to show that (given that
(P, Lμ

P(G)) is soluble) we can finish the ‘last piece’ of the perfect H-packing.
The key ingredient of our proof is the so-called lattice-based absorbing method
developed recently by the author.

The absorbing technique initiated by Rödl, Ruciński and Szemerédi [20] has
been shown to be efficient on finding spanning structures in graphs and hyper-
graphs. For finding a perfect H-packing, roughly speaking, the goal is to build
the absorbing set A such that A is a small subset of vertices and for any (much
smaller) subset U with m | |U |, both G[A] and G[A ∪ U ] contain perfect H-
packings. Note that we must have the absorbing property work for arbitrary
leftover set U , because we cannot foresee the leftover set.

However, for our problem, such an absorbing set cannot be guaranteed in G
(because not all G contain perfect H-packings). Roughly speaking, the advance
of the lattice-based absorbing method is to utilize the reachability information
(will be defined formally later) to find a vertex partition P in polynomial time,
for which we can find an absorbing set (not in the usual sense) that works under
the lattice structure. If in addition (P, Lμ

P(G)) is soluble, then we can find a
perfect H-packing by some careful analysis. This method was first used in [6]
for solving a complexity problem of Karpiński, Ruciński and Szymańska [10].

Formally, let H be an m-vertex graph and let G be an n-vertex graph. We
say that two vertices u and v in V (G) are (H,β, i)-reachable in G if there are
at least βnim−1 (im − 1)-sets S such that both G[S ∪ {u}] and G[S ∪ {v}] have
perfect H-packings. We say a vertex set U ⊆ V (G) is (H,β, i)-closed in G if any
two vertices u, v ∈ U are (H,β, i)-reachable in G.

3 Proof of Theorem5

The following lemma provides a partition P such that we can utilize the reach-
ability argument and develop the absorbing lemma on P.

Lemma 1. Let H be an unbalanced m-vertex k-chromatic graph with k ≥ 2. For
any γ > 0, suppose that 1/n0 
 β 
 γ, 1/m. Then for each graph G on n ≥ n0

vertices with δ(G) ≥ (1 − 1/χcr(H) + γ)n, we find a partition P = {V1, . . . , Vd}
of V (G) with d ≤ m in time O(n2m

k−1−1m+1) such that for i ∈ [d], |Vi| ≥ n/m

and Vi is (H,β, 2mk−1−1)-closed.
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The proof of Lemma 1 is technical and we postpone it to the appendix. Now
we are ready to state our main structural theorem.

Theorem 6. Let H be an unbalanced m-vertex k-chromatic graph with k ≥ 2.
For any γ > 0, suppose that

1/n0 
 {β, μ} 
 γ, 1/m.

Let G be a graph on n ≥ n0 vertices such that δ(G) ≥ (1 − 1/χcr(H) + γ)n
with P found by Lemma1. Then G contains a perfect H-packing if and only if
(P, Lμ

P(G)) is soluble.

3.1 Proof of Theorem5

By Theorem 6, to determine the existence of an H-packing, it is straightforward
to check if (P, Lμ

P(G)) is soluble.

Proof (Proof of Theorem 5). Recall that in view of Theorem 1, it suffices to
consider only unbalanced H. Let G be an n-vertex graph with δ(G) ≥ (1 −
1/χcr(H) + γ)n. Note that it is trivial to determine the existence of a perfect
H-packing if n < n0 given by Theorem6. Now assume n ≥ n0, we find the
partition P and check if (P, Lμ

P(G)) is soluble. If the answer is ‘true’, then H
contains a perfect H-packing by Theorem 6.

By Lemma 1, we find P in time O(n2m
k−1−1m+1). To check the solubility,

we check if iP(V (G) \ V (M)) ∈ Lμ
P(G) for each H-packing M of size at most

(2m − 1)d − 1, which can be done in time O(nm((2m−1)d−1)). Since d ≤ m, the

overall running time is O(nmax{2mk−1−1m+1, m(2m−1)m−m}).

4 Proof of Theorem6

4.1 Proof of the Forward Implication of Theorem6

We write uj for the ‘unit’ 1-vector that is 1 in coordinate j and 0 in all other
coordinates. Given a partition P of d parts, we write Ld

max for the lattice gener-
ated by all m-vectors. So Ld

max = {v ∈ Z
d : m divides |v|}.

The following definitions [12] and result are crucial in our proof. Suppose
L ⊂ L

|P|
max is a lattice in Z

|P|, where P is a partition of a set V . The coset group
of (P, L) is Q = Q(P, L) = L

|P|
max/L. For any i ∈ L

|P|
max, the residue of i in Q is

RQ(i) = i + L. For any A ⊆ V of size divisible by m, the residue of A in Q is
RQ(A) = RQ(iP(A)).

Proposition 1. Let H be an unbalanced m-vertex k-chromatic graph with k ≥ 2.
For any γ > 0, suppose that

1/n0 
 {β, μ} 
 γ, 1/m.

Let G be a graph on n ≥ n0 vertices such that δ(G) ≥ (1 − 1/χcr(H) + γ)n with
P found by Lemma 1. Then |Q(P, Lμ

P(G))| ≤ (2m − 1)d.

We postpone the proof of Proposition 1 to the appendix.
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Proof (Proof of the forward implication of Theorem 6). If G contains a perfect
H-packing M , then iP(V (G) \ V (M)) = 0 ∈ Lμ

P(G). We will show that there
exists an H-packing M ′ ⊂ M of size at most (2m − 1)d − 1 such that iP(V (G) \
V (M ′)) ∈ Lμ

P(G) and thus (P, Lμ
P(G)) is soluble. Indeed, suppose M ′ ⊂ M is

a minimum H-packing such that iP(V (G) \ V (M ′)) ∈ Lμ
P(G) and |M ′| = m′ ≥

(2m − 1)d. Let M ′ = {e1, . . . , em′} and consider the m′ + 1 partial sums

j∑

i=1

iP(ei) + Lμ
P(G) =

j∑

i=1

RQ(P,Lµ
P(G))(ei),

for j = 0, 1, . . . ,m′. Since |Q(P, Lμ
P(G))| ≤ (2m − 1)d ≤ m′, two of the sums

must be equal. That is, there exists 0 ≤ j1 < j2 ≤ m′ such that

j2∑

i=j1+1

iP(ei) ∈ Lμ
P(G).

So the H-packing M ′′ := M ′ \{ej1+1, . . . , ej2} satisfies that iP(V (G)\V (M ′′)) ∈
Lμ

P(G) and |M ′′| < |M ′|, a contradiction.

4.2 Proof of the Backward Implication of Theorem6

Suppose I is a set of m-vectors of Zd and J is a (finite) set of vectors such that
any i ∈ J can be written as a linear combination of vectors in I, namely, there
exist av(i) ∈ Z for all v ∈ I, such that

i =
∑

v∈I

av(i)v.

We denote by C(d,m, I, J) as the maximum of |av(i)|,v ∈ I over all i ∈ J .
Fix an integer i > 0. For an m-vertex set S, we say a set T is an absorbing

i-set for S if |T | = i and both G[T ] and G[T ∪ S] contain perfect H-packings.
The proof of the following absorbing lemma consists of routine probabilistic
arguments and is omitted (a similar proof can be found in [6, Lemma 3.4]).

Lemma 2 (Absorbing Lemma). Suppose H is an m-vertex graph and

1/n 
 1/c 
 {β, μ} 
 {1/m, 1/t}
and G is a graph on n vertices. Suppose P = {V1, . . . , Vd} is a partition of V (G)
such that for i ∈ [d], Vi is (H,β, t)-closed. Then there is a family Fabs of disjoint
tm2-sets with size at most c log n such that for each F ∈ Fabs, G[V (F )] contains
a perfect H-packing and every m-vertex set S with iP(S) ∈ Iμ

P(G) has at least√
log n absorbing tm2-sets in Fabs.

We postpone the proof of the absorbing lemma to the appendix and prove
our main goal, the backward implication of Theorem6, first. Here is an outline
of the proof. The proof consists of a few steps. We first fix an H-packing M1, the
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solution of (P, Lμ
P(G)). We apply Lemma 2 on G and get a family Fabs of tm2-

sets of size at most c log n. Let F0 be the subfamily of Fabs that do not intersect
V (M1). Next we find a set M2 of copies of H, which includes (constantly) many
copies of H for each m-vector in Iμ

P(G). Now we are ready to apply Theorem3
on G[V \ (V (F0) ∪ V (M1 ∪ M2))] and find an H-packing M3 covering all but
a set U of at most 5 m2 vertices. The remaining job is to ‘absorb’ the vertices
in U . Roughly speaking, by the solubility condition, we can release some copies
of H in some members of F0 and M3, such that the set D ⊇ U of uncovered
vertices satisfies that iP(D) ∈ Lμ

P(G). Furthermore, by releasing some copies of
H in M2, we can partition the new set of uncovered vertices as a collection of
m-sets S such that iP(S) ∈ Iμ

P(G) for each S. Then we can finish the absorption
by the absorbing property of F0.

Proof (Proof of the backward implication of Theorem 6). Fix γ > 0. Suppose

1/n0 
 1/c 
 {β, μ} 
 γ, 1/m.

Let G be a graph on n ≥ n0 vertices such that δ(G) ≥ (1 − 1/χcr(H) + γ)n
with P = {V1, . . . , Vd} found by Lemma 1. Moreover, assume that (P, Lμ

P(G))
is soluble. Let t = 2mk−1−1. We first apply Lemma2 on G and get a family
Fabs of tm2-sets of size at most c log n such that every m-set S of vertices with
iP(S) ∈ Iμ

P(G) has at least
√

log n absorbing tm2-sets in Fabs.
Since (P, Lμ

P(G)) is soluble, there exists an H-packing M1 of size at most
(2m − 1)d − 1 such that iP(V (G) \ V (M1)) ∈ Lμ

P(G). Note that V (M1) may
intersect V (Fabs) in at most m(2m − 1)d absorbing sets of Fabs. Let F0 be the
subfamily of Fabs obtained from removing the tm2-sets that intersect V (M1).
Let M0 be the perfect H-packing on V (F0) that consists of perfect H-packings
on each member of F0. Note that every m-set S of vertices with iP(S) ∈ Iμ

P(G)
has at least

√
log n − m(2m − 1)d absorbing sets in F0.

Next we want to ‘store’ some copies of H for each m-vector in Iμ
P(G) for

future use. More precisely, let J be the set of all m′-vectors in Lμ
P(G) such that

0 ≤ m′ ≤ 5(2m − 1)d+1 and C = C(d,m, Iμ
P(G), J). We find an H-packing M2

in V (G) \ V (M0 ∪ M1) which contains C copies H ′ of H with iP(H ′) = i for
every i ∈ Iμ

P(G). So |M2| ≤ (
m+d−1

m

)
C and the process is possible because G

contains at least μnm copies of H for each i ∈ Iμ
P(G) and |V (M0 ∪ M1 ∪ M2)| ≤

tm2c log n + (2m − 1)dm +
(
m+d−1

m

)
Cm < μn.

Let G′ := G[V (G) \ V (M0 ∪ M1 ∪ M2)]. Note that |V (G′)| ≥ n − μn. So

δ(G′) ≥ δ(G) − μn ≥ (1 − 1/χcr(H))n ≥ (1 − 1/χcr(H))|G′|.
So we can apply Theorem 3 on G′ and find an H-packing M3 covering all but at
most 5 m2 vertices of G′. Let U be the set of uncovered vertices.

Let Q = Q(P, Lμ
P(G)). Recall that iP(V (G) \ V (M1)) ∈ Lμ

P(G). Note that
by definition, the index vectors of all copies in M2 are in Iμ

P(G). So we have
iP(V (G)\V (M1∪M2)) ∈ Lμ

P(G), namely, RQ(V (G)\V (M1∪M2)) = 0+Lμ
P(G).

Thus, ∑

H′∈M0∪M3

RQ(V (H ′)) + RQ(U) = 0 + Lμ
P(G).
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Suppose RQ(U) = v0 + Lμ
P(G) for some v0 ∈ Ld

max and we get
∑

H′∈M0∪M3

RQ(V (H ′)) = −v0 + Lμ
P(G).

Claim. There exist H1, . . . , H� ∈ M0 ∪ M3 for some � ≤ (2m − 1)d − 1 such that
∑

i∈[�]

RQ(V (Hi)) = −v0 + Lμ
P(G). (1)

Proof. Assume to the contrary that H1, . . . , H� ∈ M0 ∪ M3 is a minimum set of
copies of H such that (1) holds and � ≥ (2m−1)d. Consider the �+1 partial sums∑

i∈[j] RQ(V (Hi)) for j = 0, 1, . . . , �, where the sum equals 0+Lμ
P(H) when j =

0. By Proposition 1, |Q| ≤ (2m−1)d, then two of the partial sums must be equal,
that is, there exist 0 ≤ �1 < �2 ≤ � such that

∑
�1<i≤�2

RQ(V (Hi)) = 0+Lμ
P(G).

So we get a smaller set of copies of H such that (1) holds, a contradiction.

So we have
∑

i∈[�] iP(V (Hi)) + iP(U) ∈ Lμ
P(G). Let D :=

⋃
i∈[�] V (Hi) ∪ U

and thus |D| ≤ m� + 5m2 ≤ m((2m − 1)d − 1) + 5m2 ≤ 5(2m − 1)d+1. At last,
we finish the perfect H-packing by absorption. Since iP(D) ∈ Lμ

P(G), we have
the following equation

iP(D) =
∑

v∈Iµ
P(G)

avv,

where av ∈ Z for all v ∈ Iμ
P(G). Since |D| ≤ 5(2m − 1)d+1, by the definition of

C, we have |av| ≤ C for all v ∈ Iμ
P(G). Noticing that av may be negative, we

can assume av = bv − cv such that one of bv, cv is |av| and the other is zero for
all v ∈ Iμ

P(G). So, we have
∑

v∈Iµ
P(G)

cvv + iP(D) =
∑

v∈Iµ
P(G)

bvv.

This equation means that given any family F consisting of disjoint
∑

v cv m-
sets Wv

1 , . . . ,Wv
cv ⊆ V (G) \ D for v ∈ Iμ

P(G) such that iP(Wv
i ) = v for all

i ∈ [cv], we can regard V (F) ∪ D as the union of bv m-sets Sv
1 , . . . , Sv

bv
such

that iP(Sv
j ) = v, j ∈ [bv] for all v ∈ Iμ

P(G). Since cv ≤ C for all v and
V (M2) ∩ D = ∅, we can choose the family F as a subset of M2. In summary,
starting with the H-packing M0 ∪M1 ∪M2 ∪M3 leaving U uncovered, we delete
the copies H1, . . . , H� of H from M0 ∪ M3 given by Claim 4.2 and then leave
D =

⋃
i∈[�] V (Hi) ∪ U uncovered. Then we delete the family F of copies of H

from M2 and leave V (F)∪D uncovered. Finally, we regard V (F)∪D as the union
of at most

(
m+d−1

d

)
C + 5(2m − 1)d+1 ≤ √

log n/2 m-sets S with iP(S) ∈ Iμ
P(H).

Note that by definition, D may intersect at most 5(2m−1)d+1 absorbing sets
in F0, which cannot be used to absorb those sets we obtained above. Since each
m-set S has at least

√
log n −m(2m− 1)d >

√
log n/2+ 5(2m− 1)d+1 absorbing

tm2-sets in F0, we can greedily match each S with a distinct absorbing tm2-
set FS ∈ F0 for S. Replacing the H-packing on V (FS) in M0 by the perfect
H-packing on G[FS ∪ S] for each S gives a perfect H-packing of G.
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A Proof of Proposition 1

We need the following simple counting result, which, for example, follows from
the result of Erdős [5] on supersaturation.

Proposition 2. Given γ′ > 0, �1, . . . , �k ∈ N, there exists μ > 0 such that the
following holds for sufficiently large n. Let T be an n-vertex graph with a vertex
partition V1 ∪ · · · ∪ Vd. Suppose i1, . . . , ik ∈ [d] and T contains at least γ′nk

copies of Kk with vertex set {v1, . . . , vk} such that v1 ∈ Vi1 , . . . , vk ∈ Vik . Then
T contains at least μn�1+···+�k copies of K�1,...,�k whose jth part is contained in
Vij for all j ∈ [k].

Proof (Proof of Proposition 1). Write L = Lμ
P(G) and Q = Q(P, L). It suffices

to show that for any element v ∈ Ld
max, there exists v′ = (v′

1, . . . , v
′
d) such that

−(m − 1) ≤ v′
i ≤ m − 1 for all i ∈ [d] and v − v′ ∈ L – since the number of

such v′ is at most (2m − 1)d. Recall that since H is unbalanced, there exists a
k-coloring with color class sizes a1 ≤ · · · ≤ ak and a1 < ak. Let a = ak −a1 < m.

Define a graph P on the vertex set [d] such that (i, j) ∈ P if and only if
e(G[Vi, Vj ]) ≥ γn2. We claim that if i and j are connected in P , then a(ui−uj) ∈
L. Indeed, first assume that (i, j) ∈ P . For each edge uv in (Vi, Vj), by

δ(G) ≥ (1 − 1/χcr(H) + γ)n ≥
(

1 − m − 1
(k − 1)m

+ γ

)
n,

it is easy to see that uv is contained in at least 1
mk−2

(
n

k−2

)
copies of Kk. So there

are at least γn2 · 1
mk−2

(
n

k−2

)
/
(
k
2

)
copies of Kk in G intersecting both Vi and Vj .

By averaging, there exists a k-array (i1, . . . , ik), ij ∈ [d] where i1 = i and ik = j
such that G contains at least

1
dk−2

γn2 · 1
mk−2

(
n

k − 2

)
/

(
k

2

)
≥ γ

mk−2dk−2k!
nk

copies of Kk with vertex set {v1, . . . , vk} such that v1 ∈ Vi1 , . . . , vk ∈ Vik .
By applying Proposition 2 with �i = ai, i ∈ [k], we get that there are at least
μnm copies of Ka1,...,ak

in G whose jth part is contained in Vij for all j ∈ [k].
We apply Proposition 2 again, this time with �i = ai, for all 2 ≤ i ≤ k − 1
and �1 = ak, �k = a1 and thus conclude that there are at least μnm copies of
Kak,a2,...,ak−1,a1 (with a1 and ak exchanged) in G whose jth part is contained
in Vij for all j ∈ [k]. Taking subtraction of index vectors of these two types of
copies gives that a(ui −uj) ∈ L. Furthermore, note that if i and j are connected
by a path in P , we can apply the argument above to every edge in the path and
conclude that a(ui − uj) ∈ L, so the claim is proved.
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Now we separate two cases.

Case 1: k ≥ 3. In this case, we first show that P is connected. Indeed, we prove
that for any bipartition A ∪ B of [d], there exists i ∈ A and j ∈ B such that
(i, j) ∈ P . Let VA =

⋃
i∈A Vi and VB =

⋃
j∈B Vj . Without loss of generality,

assume that |VA| ≤ n/2. Since δ(G) ≥ 1+(k−2)m
(k−1)m n ≥ (1/2 + 1/(2m))n, the

number of edges in G that are incident to VA is at least

|VA| ·
(

1
2

+
1

2m

)
n −

(|VA|
2

)
≥

(|VA|
2

)
+

n

4m
|VA| ≥

(|VA|
2

)
+ γn2|A||B|,

where the last inequality follows from |A||B| ≤ d2/4 and |Vi| ≥ n/m, i ∈ [d]. By
averaging, there exists i ∈ A and j ∈ B such that e(G[Vi, Vj ]) ≥ γn2 and thus
(i, j) ∈ P .

Now let v = (v1, . . . , vd) ∈ Ld
max. We fix an arbitrary m-vector w ∈ L and

let v1 = v− (|v|/m)w and thus |v1| = 0. Since P is connected, the claim above
implies that for any i, j ∈ [d], a(ui −uj) ∈ L. Thus, we obtain the desired vector
v′ by making the difference of any two digits at most a. Since |v′| = |v1| = 0,
we know that −(m − 1) ≤ v′

i ≤ m − 1 for all i ∈ [d] and we are done.

Case 2: k = 2. In this case we cannot guarantee that P is connected (we may
even have some isolated vertices). First let i be an isolated vertex in P . By the
definition of P , we know that e(G[Vi, V \ Vi]) ≤ (d − 1)γn2. Since δ(G) ≥ n/m,

e(G[Vi]) ≥ 1
2
(|Vi|n/m − (d − 1)γn2) ≥ 1

4m
|Vi|2.

Applying Proposition 2 on Vi shows that there are at least μnm copies of Ka1,a2

in Vi, i.e., mui ∈ L. Second, if (i, j) ∈ P , then applying Proposition 2 on [Vi, Vj ]
gives that a1ui + a2uj ∈ L. So in both cases, for any component C in P , there
exists an m-vector w ∈ L such that w|[d]\C = 0.

Now let v = (v1, . . . , vd) ∈ Ld
max. Consider the connected components C1,

C2, . . . , Cq of P , for some 1 ≤ q ≤ d. By the conclusion in the last paragraph,
there exists v1 ∈ Z

d such that v − v1 ∈ L and for each component Ci, 0 ≤
|v1|Ci

| ≤ m − 1 (for each component C, we take out a multiple of the vector
w given by the last paragraph). Next, within each nontrivial component Ci, we
can use the claim to ‘balance’ the digits, as in Case 1. At last we obtain a vector
v′ with the desired property.

B Proof of Lemma 1

In this subsection we prove Lemma 1. We will build a partition P = {V1, . . . , Vd}
of V (G) for some d ≤ m such that every Vi is (H,β, t)-closed for some β > 0
and integer t ≥ 1 in polynomial time. For any v ∈ V (G), let ÑH,β,i(v) be the
set of vertices in V (G) that are (H,β, i)-reachable to v.

We need the following lemma [19, Lemma 4.2], which was originally stated for
k-uniform hypergraphs. We remark that the current form can be easily derived
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by defining a k-uniform hypergraph G′ where each k-set forms a hyperedge if
and only if it spans a Kk in G. For any vertex u ∈ V (G), let W (u) be the
collection of (k − 1)-cliques S ⊆ N(u).

Lemma 3 [19]. Given H and γ′ > 0, there exists α > 0 such that the following
holds for sufficiently large n. For any n-vertex graph G, two vertices x, y ∈ V (G)
are (H,α, 1)-reachable if the number of (k − 1)-sets S ∈ W (x) ∩ W (y) with
|N(S)| ≥ γ′n is at least γ′( n

k−1

)
, where N(S) =

⋂
v∈S N(v).

Proposition 3. Suppose 0 < 1/n 
 α 
 γ 
 1/m and let G be an n-vertex
graph with δ(G) ≥ (1 − 1/χcr(H) + γ)n. Then for any v ∈ V (G), |ÑH,α,1(v)| ≥
(1/m + γ)n.

Proof. First note that for each (k − 1)-clique S, we have |N(S)| ≥ (1/m + kγ)n.
Then by Lemma 3, for any distinct u, v ∈ V (G), u ∈ ÑH,α,1(v) if |W (u)∩W (v)| ≥
γ2

(
n

k−1

)
. By double counting, we have

∑

S∈W (v)

|N(S)| < |ÑH,α,1(v)| · |W (v)| + n · γ2

(
n

k − 1

)
.

Note that any S in the above inequality is a (k − 1)-clique, thus |N(S)| ≥
(1/m + kγ)n. On the other hand, it is easy to see that |W (v)| ≥ 1

mk−1

(
n

k−1

)
. By

γ 
 1/m, we have

|ÑH,α,1(v)| > (1/m + kγ)n − γ2nk

|W (v)| ≥ (1/m + γ)n.
��

The following lemma will be used to find the partition P in Lemma 1. Its
proof is almost identical to the one of [6, Lemma 3.8] and thus we omit it.

Lemma 4. Given 0 < α 
 {1/c, δ′}, there exists constant β > 0 such that the
following holds for all sufficiently large n. Assume an n-vertex graph T satisfies
that |ÑH,α,1(v)| ≥ δ′n for any v ∈ V (T ) and every set of c + 1 vertices in V (T )
contains two vertices that are (H,α, 1)-reachable. Then we can find a partition
P of V (T ) into V1, . . . , Vd with d ≤ min{c, 1/δ′} such that for any i ∈ [d],
|Vi| ≥ (δ′ − α)n and Vi is (H,β, 2c−1)-closed in T , in time O(n2c−1m+1).

Now we are ready to prove Lemma 1.

Proof (Proof of Lemma 1). Fix γ > 0. Without loss of generality, we may assume
that γ 
 1/m. We apply Lemma 4 with c = mk−1, δ′ = 1/m + γ and α 
 γ
and get β > 0. Suppose

1/n0 
 β 
 α 
 γ 
 δ′.

Let G be a graph on n ≥ n0 vertices satisfying δ(G) ≥ (1 − 1/χcr(H) + γ)n.
By Proposition 3, for any v ∈ V (G), |ÑH,α,1(v)| ≥ δ′n. By the degree condi-
tion and Lemma 3, for distinct u, v ∈ V (G), u and v are (H,α, 1)-reachable if
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|W (u)∩W (v)| ≥ γ2
(

n
k−1

)
. So any set of c+1 vertices in V (G) contains two ver-

tices that are (H,α, 1)-reachable because |W (u)| ≥ 1
c

(
n−1
k−1

)
for any u ∈ V (G),

and (c + 1)/c − 1 ≥ (
c+1
2

)
γ2. So we can apply Lemma 4 on G and get a partition

P = {V1, . . . , Vd} of V (G) in time O(n2c−1m+1). Note that |Vi| ≥ (δ′−α)n ≥ n/m
for all i ∈ [d]. Also d ≤ 1/δ′ ≤ m and each Vi is (H,β, 2c−1)-closed.
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Abstract. Given an undirected and connected graph G = (V,E) and
two vertices s, t ∈ V , a vertex subset S that separates s and t is called an
s-t separator, and an s-t separator is called minimal if no proper subset
of S separates s and t. In this paper, we consider finding a minimal s-t
separator with maximum weight on a vertex-weighted graph. We first
prove that this problem is NP-hard. Then, we propose an twO(tw)n-
time deterministic algorithm based on tree decompositions. Moreover, we
also propose an O∗(9tw · W 2)-time randomized algorithm to determine
whether there exists a minimal s-t separator where W is its weight and
tw is the treewidth of G.

Keywords: Parameterized algorithm · Minimal separator · Treewidth

1 Introduction

Given a connected graph G = (V,E) and two vertices s, t ∈ V , a set S ⊆ V
of vertices is called an s-t separator if s and t belong to different connected
components in G \ S, where G \ S = (V \ S,E). If a set S is an s-t separator
for some s and t, it is simply called a separator. If an s-t separator S is minimal
in terms of set inclusion, that is, no proper subset of S separates s and t, it is
called a minimal s-t separator. Similarly, if a separator is minimal in terms of
set inclusion, it is called a minimal separator.

Separators and minimal separators have been considered important in sev-
eral contexts and have been intensively studied indeed. For example, they are
obviously related to the connectivity of graphs, which is an important notion
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in many practical applications, such as network design, supply chain analysis
and so on. From a theoretical point of view, minimal separators are related to
treewidth or potential maximal cliques, which play key roles in designing fast
algorithms [4,6].

In this paper, we consider the problem of finding a maximum weight minimal
separator of a given weighted graph. More precisely, the problem is defined as
follows: Given a connected graph G = (V,E), vertices s, t ∈ V and a weight
function w : V → N

+, find a minimal s-t separator whose weight
∑

v∈S w(v)
is maximum. The decision version of the problem is to decide the existence
of minimal s-t separator with weight W . We name the problems Maximum

Weight Minimal s-t Separator.
This problem is motivated in the context of supply chain network analysis.

When a weighted network represents a supply chain where a vertex represents
an industry, s and t are virtual vertices respectively representing source and
sink, and the weight of a vertex represents its financial importance, the maxi-
mum weight minimal s-t separator is interpreted as the most important set of
industries that is influential or vulnerable in the supply chain network.

Unfortunately, the problem is shown to be NP-hard, and we then design
an FPT algorithm with respect to treewidth. It should be noted that since the
condition of s-t connectivity can be written in Monadic Second Order Logic,
it can be solved in f(tw) · n time by Courcelle’s meta-theorem, where f is a
computable function and tw is treewidth of the graph. However, the function
f forms a tower of exponentials; the existence of an FPT algorithm with better
running time is not obvious.

In this paper, we propose two parameterized algorithms with respect to
treewidth. One is a 2O(tw log tw)n-time deterministic algorithm and the other
is an O∗(ctw · W 2)-time randomized algorithm for the decision version, where
c is a constant and O∗ is the order notation omitting the polynomial factor.
The former algorithm is based on a standard dynamic programming approach,
whereas the latter utilizes two techniques recently developed. The first technique
is called Cut & Count, and by using this, the running time is bounded by a single
exponential of treewidth. Furthermore, by applying the second technique called
fast convolution, we improve the running time by reducing the base of the expo-
nent from c = 21 to c = 9; the total running time of the resulting algorithm is
O∗(9tw · W 2), which can be further improved when the graph is unweighted.

1.1 Related Work

The Number of Minimal Separators. Minimal separators have been inves-
tigated for a long time in many aspects. As mentioned above, they are related
to treewidth or potential maximal cliques, for example [4,6]. In general, a graph
has exponentially many minimal separators, and in fact there exists a graph
with Ω(3n/3) minimal separators [9]. Recently, this bound was improved to
Ω(1.4521n) [10]. On the other hand, some graph classes have only polynomi-
ally (even linearly) many minimal separators. For example, Bouchitté showed
that weakly triangulated (weakly chordal) graphs have a polynomial number of
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separators [5]. As examples of other graph classes with polynomial minimal sep-
arators, there are circular arc graphs [12], and polygon circle graphs, which is a
superclass of circle graphs [16,17].

On the other hand, Berry et al. presented an O(n3 ·Rsep)-time algorithm that
enumerates all the minimal separators where Rsep is the number of these [2].
By combining these results, we know that Maximum Weight Minimal s-t
Separator can be solved in polynomial time for the graph classes mentioned
above. That is, we just enumerate all the minimal separators and evaluate the
weights of these for such graphs.

Proposition 1. Maximum Weight Minimal s-t Separator can be solved in
polynomial time for a graph that has a polynomial number of minimal separators.

The Relationship Between Minimal Separators and Treewidth. Mini-
mal separators and treewidth are strongly related. As for the number of minimal
separators, if a graph has a polynomial minimal separators, we can compute
its treewidth in polynomial time [5,6]. Such graph classes include circular-arc
(O(n2) [11,12]), polygon circle (O(n2) [16]), weakly triangulated (O(n2) [5]) and
so on. On the other hand, computing treewidth is fixed parameter tractable
with respect to the maximum size of minimal separators [15]. This parameter
corresponds to the solution size of Maximum Weight Minimal s-t Separa-

tor on unweighted graphs. In this sense, this paper focuses on the converse
relation of two parameters: maximum size of minimal separators and treewidth.
For treewidth as the parameter, we consider the fixed parameter tractability of
Maximum Weight Minimal s-t Separator.

The remainder of this paper is organized as follows. In Sect. 2, we first give
basic terminology, basic notions of algorithm design and NP-hardness for the
problem. In Sect. 3, we design a standard dynamic programming algorithm based
on tree decompositions. In Sect. 4, we propose randomized algorithms based on
the Cut & Count technique.

2 Preliminaries

In this section, we give notations, definitions, and some basic concepts. Let
G = (V,E) be an undirected and vertex-weighted graph. We assume that G
does not have an edge (s, t), that is, (s, t) /∈ E because if not then there is no
s-t separator. For V ′ ⊆ V , let G[V ′] denote the subgraph of G induced by V ′.
Furthermore, we denote the set of neighbors of a vertex v by N(v). We define
the function [p] as follows: if p is true, then [p] = 1, otherwise [p] = 0.

2.1 Tree Decomposition

Our algorithms proposed in Sects. 3 and 4 are based on dynamic programming
on tree decompositions. In this subsection, we give the definition of tree decom-
position.
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Definition 1. A tree decomposition of a graph G = (V,E) is defined as a pair
〈X , T 〉, where X = {X1,X2, . . . , XN ⊆ V }, and T is a tree whose nodes are
labeled by I ∈ {1, 2, . . . , N}, such that

1.
⋃

i∈I Xi = V .
2. For all {u, v} ∈ E, there exists an Xi such that {u, v} ⊆ Xi.
3. For all i, j, k ∈ I, if j lies on the path from i to k in T , then Xi ∩ Xk ⊆ Xj.

In the following, we call T a decomposition tree, and we use term “nodes”
(not “vertices”) for the elements of T to avoid confusion. Moreover, we call a
subset of V corresponding to a node i ∈ I a bag and denote it by Xi. The width
of a tree decomposition 〈X , T 〉 is defined by maxi∈I |Xi| − 1, and the treewidth
of G, denoted by tw(G), is the minimum width over all tree decompositions of
G. We sometimes use the notation tw instead of tw(G) for simplicity.

In general, computing tw(G) of a given graph G is NP-hard [1], but fixed-
parameter tractable with respect to itself and there exists a linear time algorithm
if treewidth is fixed [3]. In the following, we assume that a decomposition tree
with the minimum treewidth is given.

Kloks introduced a very useful type of tree decomposition for some algo-
rithms, called nice tree decomposition [11]. More precisely, it is a special binary
tree decomposition which has four types of nodes, named leaf, introduce ver-
tex, forget and join. A variant of the notion, using a new type of node named
introduce edge, was introduced by Cygan et al. [7].

Definition 2. A tree decomposition 〈X , T 〉 is called nice tree decomposition if
it satisfies the following:

1. T is rooted at a designated node Xr ∈ X satisfying |Xr| = 0, called the root
node.

2. Every node of the tree T has at most two children.
3. Each node in T has one of the following five types:

– A leaf node i which has no children and its bag Xi satisfies |Xi| = 0.
– An introduce vertex node i has one child j with Xi = Xj ∪{v} for a vertex

v ∈ V .
– An introduce edge node i has one child j and labeled with an edge (u, v) ∈ E

where u, v ∈ Xi = Xj.
– A forget node i has one child j and satisfies Xi = Xj \ {v} for a vertex

v ∈ V .
– A join node i has two children nodes j1, j2 and satisfies Xi = Xj1 = Xj2 .

We can transform any tree decomposition to a nice tree decomposition with
O(n) bags in linear time [8]. Given a tree decomposition 〈X , T 〉, we define a
subgraph Gi = (Vi, Ei) for each node i where Vi is the union of all bags Xj with
j = i or j a descendant of i in T , and Ei ⊆ E is the set of edges with both
endpoints in Vi.
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2.2 NP-hardness

In this subsection, we mention NP-hardness for Maximum Weight Minimal

s-t Separator. The proof is omitted from this extended abstract.

Theorem 1. Maximum Weight Minimal s-t Separator is NP-hard even if
all the vertex weights are identical.

3 Dynamic Programming on Tree Decompositions

In this section, we give an FPT algorithm with respect to treewidth. It is a
standard dynamic programming algorithm based on tree decompositions, and
the running time is twO(tw). The running time twO(tw) appears in some con-
nectivity problems, for example Steiner Tree, Feedback Vertex Set and
Connected Vertex Cover [7,8].

We first discuss how Maximum Weight Minimal s-t Separator can be
viewed as a connectivity problem. To show this, we define connected partitions.

Definition 3. A connected partition of weight W is a partition (S,A,B,Q) of
V such that: (1) s ∈ A, t ∈ B, (2) G[A] is connected, (3) G[B] is connected, (4)∑

v∈S w(v) = W , (5) for ∀v ∈ S, there exist vertices a ∈ A, b ∈ B such that
(a, v) ∈ E, (v, b) ∈ E and (6) for sets A,B,Q, there does not exist an edge (u, v)
such that u and v are in different sets.

Note that a connected partition represents a structure of separators. In fact,
it corresponds to a minimal separator and we can show the following theorem,
which plays a key role of designing dynamic programming algorithms. The proof
is omitted from this extended abstract.

Theorem 2. There exists a minimal s-t separator of weight W if and only if
there exists a connected partition (S,A,B,Q) of weight W .

Using connected partitions, we design an twO(tw)-time algorithm for Maximum

Weight Minimal s-t Separator. First, we partition S into S∅, SA, SB and
SAB . (See Fig. 1). They are needed for the updating process in the dynamic
programming. Set S∅ consists of the vertices in S that have no neighbor in A
and B, but may have neighbors in SA, SB , SAB , Q. Set SA (resp., SB) consists of
the vertices in S that has at least one neighbor in A (resp., B), but no neighbor
of B (resp., A). They may have neighbors in SA, SB , SAB , Q. Set SAB consists
of the vertices in S that have neighbors in A and in B and may have neighbors
in SA, SB , SAB , Q. With these sets, we define a partial solution as follows.

Definition 4. Given a node i of the tree decomposition of G, a partial solution
for node i is a partition (S∅, SA, SB , SAB , A,B,Q), such that:

– S∅ ∪ SA ∪ SA ∪ SAB ∪ A ∪ B ∪ Q = Vi,
– ∀v ∈ S∅, N(v) ∩ (A ∪ B) = ∅,



On the Maximum Weight Minimal Separator 309

Fig. 1. Connection between vertex sets

– ∀v ∈ SA, N(v) ∩ B = ∅ and N(v) ∩ A �= ∅,
– ∀v ∈ SB, N(v) ∩ B �= ∅ and N(v) ∩ A = ∅,
– ∀v ∈ SAB, N(v) ∩ B �= ∅ and N(v) ∩ A �= ∅,
– s ∈ Vi ⇒ s ∈ A and
– t ∈ Vi ⇒ t ∈ B.

We prepare DP tables for each node. For a representation of the state of v,
we define the coloring function c : V → {s∅, sA, sB , sAB , a, b, q}. Each element of
{s∅, sA, sB , sAB , a, b, q} is called a state. For a coloring c, we denote the state of
the coloring of v by c(v). The states of a coloring c represent which set a vertex
is in, for example, v is in S∅ if c(v) = s∅.

To consider the connectivity of sets A and B, we use all partitions of these in
a bag. That is, we define two partitions PA = {PA

1 , PA
2 , . . . , PA

α } of Xi ∩ A and
PB = {PB

1 , PB
2 , . . . , PB

β } of Xi∩B, where α and β are the number of partitioned
sets of Xi ∩ A and Xi ∩ B, respectively, that is, α and β are at most |Xi ∩ A|
and |Xi ∩ B|. We call each element of a partition P� a block. They correspond
to connected components of G[A](resp., G[B]). Note that there are |Xi|O(|Xi|)

partitions for each node Xi. Intuitively, just one block {{v}} is added to P in
each introduce vertex v node; then blocks are merged in the updating process of
introduce edge nodes and join nodes. For forget nodes, we have to consider the
relationship between connectivity and partitions.

Suppose that introduce vertex nodes, introduce edge nodes and forget nodes
have one child node j respectively, and join nodes have two child nodes j1, j2.
We sometimes denote a coloring in parent node i by ci and in child node j by
cj to emphasize that we deal with two different nodes. Moreover, we denote the
coloring of vertex v by ci(v), cj(v), respectively.

Now, we transform a nice tree decomposition by adding {s, t} to all bags;
thus we can suppose that the root bag Xr contains only two vertices s, t. The
width of this tree decomposition is at most tw + 2. We can transform any tree
decomposition into such a tree decomposition in polynomial time.

We then define function fi(c,PA,PB) as the possible maximum weight of
vertices in S ∩ Vi under the following conditions: (1) c defines a partial solution
(S∅, SA, SB , SAB , A,B,Q) and (2) each block of PA and PB forms a connected
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component in Xi ∩ A and Xi ∩ B, respectively. If c,PA,PB do not satisfy the
conditions, let fi be −∞.

We now define recursive formulas for each node. In a root node, fr({a} ×
{b}, {{a}}, {{b}}) is an optimal value because Xr = {s, t}.

Leaf node: In a leaf node, we define fi({a} × {b}, {{a}}, {{b}}) := 0, otherwise
fi(c,PA,PB) := −∞ since there are only two vertices s, t in Xi.

Introduce vertex v node: In an introduce vertex node, we consider three cases for
colorings. If c(v) = s∅, we add w(v) to fj(c,PA,PB) because v is added in S. If
c(v) ∈ {a, b, q}, the value of fi does not change since v /∈ S. Moreover, we add
a block {{v}} to PA or PB depending on if c(v) = a or c(v) = b, respectively.
Finally, if c(v) ∈ {sA, sB , sAB}, a partial solution is invalid by the definition
because v has no incident edge and hence no neighbor in A and B. Therefore,
we define fi as follows:

fi(c,PA,PB) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

fj(c \ {c(v)},PA,PB) + w(v) if c(v) = s∅
fj(c \ {c(v)},PA \ {{v}},PB) if c(v) = a

fj(c \ {c(v)},PA,PB \ {{v}}) if c(v) = b

fj(c \ {c(v)},PA,PB) if c(v) = q

−∞ otherwise.

Introduce edge (u, v) node: In an introduce edge node, we define fi for the fol-
lowing cases of c(u), c(v).

– If c(u) = a and c(v) = a, the vertices u, v are in A. Because edge (u, v) is
added, u and v are in the same block of partition PA. Hence, if not, we set
fi(c,PA,PB) := −∞. Then, there are two cases: the partitions in A ∩ Xi

(parent) and A ∩ Xj (child) are same or not. In the former case, u and v is in
the same block in the partition of A ∩ Xj , and we then set fi(c,PA,PB) :=
fj(c,PA,PB). In the latter case, let P ′A be a partition of A ∩ Xj such that
PA �= P ′A but P ′A changes to PA by merging two blocks of P ′A including u
and v respectively with edge (u, v). Therefore, we take a P ′A that maximizes
fi(c,P ′A,PB). Then, we set fi as follows:

fi(c,PA,PB) := max{fj(c,PA,PB),max
P′A

fj(c,P ′A,PB)}.

– The case that c(u) = b and c(v) = b is almost the same as the case that
c(u) = a and c(v) = a. If u and v are not in the same block of partition PB ,
we then set fi(c,PA,PB) := −∞. Let P ′B be a partition of B ∩ Xj such that
PB �= P ′B but P ′B changes to PB by merging two blocks of P ′B including u
and v respectively with edge (u, v). Then, we define fi as follows:

fi(c,PA,PB) := max{fj(c,PA,PB),max
P′B

fj(c,PA,P ′B)}.
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– If c(u), c(v) ∈ {s∅, sA, sB , sAB , q}, we define fi as follows:

fi(c,PA,PB) = fj(c,PA,PB).

In this case, (u, v) is indifferent to the partitions and the value is not changed
because only one edge (u, v) is added.

– If (c(u), c(v)) = (sA, a), (a, sA), we consider two cases. One case is that u ∈ SA

and v ∈ A in a child node and the other case is that u ∈ S∅ and v ∈ A in a
child node. In the other case, u is moved from S∅ into SA by adding (u, v),
because u has a neighbor v in A. Thus, we define fi as follows:

fi(c × {sA} × {a},PA,PB) := max { fj(c × {sA} × {a},PA,PB),
fj(c × {s∅} × {a},PA,PB)}.

– If (c(u), c(v)) = (sB , b), (b, sB), we consider almost the same cases as above;
that is, u ∈ SB , v ∈ B and u ∈ S∅ and v ∈ B in a child node.

fi(c × {sB} × {b},PA,PB) := max { fj(c × {sB} × {b},PA,PB),
fj(c × {s∅} × {b},PA,PB)}.

– If (c(u), c(v)) = (sAB , a), (a, sAB), there are two cases: (1) u ∈ SAB and v ∈ A
in a child node and (2) u ∈ SB and v ∈ A in a child node. In the latter case,
u is moved from SB to SAB by adding (u, v), because u has a neighbor v in
B. Therefore, we define fi as follows:

fi(c × {sAB} × {a},PA,PB) := max { fj(c × {sAB} × {a},PA,PB),
fj(c × {sB} × {a},PA,PB)}.

– If (c(u), c(v)) = (sAB , b), (b, sAB), we consider almost the same cases as above;
that is, u ∈ SAB , v ∈ B and u ∈ SA and v ∈ B in a child node.

fi(c × {sAB} × {b},PA,PB) := max { fj(c × {sAB} × {b},PA,PB),
fj(c × {sA} × {b},PA,PB)}.

– Otherwise, we define fi(c,PA,PB)) := −∞ because the rest of cases is invalid.
Recall the definition of connected partition and the meaning of states.

Forget v node: In a forget v node, if cj(v) ∈ {s∅, sA, sB}, vertex v never has
neighbors both in A and in B and hence such case is invalid because of the
definition of connected partition. If cj(v) ∈ {sAB , q}, we need not consider the
connectivity of these. In the case that cj(v) = a, we only consider partitions
such that there exists at least one vertex u in A included the same block as v.
If not, the block including v is never merged. Consequently, G[A] would not be
connected in the root node. The case that cj(v) = b is almost the same. Let
P ′A,P ′B be a partition satisfying such conditions, then we define fi as follows:

fi(c,PA,PB)) := max { fj(c × {sAB},PA,PB)), fj(c × {q},PA,PB),
max
P′A

fj(c × {a},P ′A,PB)),max
P′B

fj(c × {b},PA,P ′B))}.
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Table 1. This table represents combinations of states of two children nodes j1, j2 for
each vertex in Xi = Xj1 = Xj2 . The row and column correspond to states of j1, j2
respectively and inner elements correspond to states of x. For example, if ci(v) = sA,
there are three combinations such that (cj1(v), cj2(v)) = (sA, s∅), (cj1(v), cj2(v)) =
(s∅, sA) and (cj1(v), cj2(v)) = (sA, sA).

s∅ sA sB sAB a b q

s∅ s∅ sA sB sAB

sA sA sA sAB sAB

sB sB sAB sB sAB

sAB sAB sAB sAB sAB

a a

b b

q q

Join node: For a parent node i and two children nodes j1, j2, we denote each
coloring by ci, cj1 , cj2 and each partition by PA

j1
,PB

j1
,PA

j2
,PB

j2
. We then define the

subset D of tuples of ((cj1 ,PA
j1

,PB
j1

), (cj2 ,PA
j2

,PB
j2

)) such that the combinations
of colorings for cj1 , cj2 satisfy the following conditions. (See Table 1):

– ∀v ∈ c−1
i ({s∅, a, b, q}), (cj1(v), cj2(v)) = (ci(v), ci(v)),

– ∀v ∈ c−1
i ({sA}, (cj1(v), cj2(v)) = (sA, s∅), (s∅, sA), (sA, sA),

– ∀v ∈ c−1
i ({sB}), cj1(v), cj2(v)) = (sB , s∅), (s∅, sB), (sB , sB), and

– ∀v ∈ c−1
i ({sAB}), (cj1(v), cj2(v)) = (sAB , s∅), (sAB , sA), (sAB , sB),

(sAB , sAB), (s∅, sAB), (sA, sAB), (sB , sAB), (sA, sB), (sB , sA),

and the partition caused by merging PA
j1

and PA
j2

equals to PA and the parti-
tion caused by merging PB

j1
,PB

j2
equals to PB . If D = ∅ for ci,PA,PB , we set

fi(ci,PA,PB) := −∞. Otherwise, we set S∗ := c−1
i ({s∅, sA, sB , sAB}). Then we

define fi as follows:

fi(ci,PA,PB) := max
((cj1 ,PA

j1
,PB

j1
),(cj2 ,PA

j2
,PB

j2
))∈D

{ fj1(cj1 ,PA
j1 ,PB

j1)

+ fj2(cj2 ,PA
j2 ,PB

j2) − w(S∗)}.

The subtraction in the right hand side of the equation above is because the
weight w(S∗) is counted twice; once in each child node.

We recursively calculate fi on the decomposition tree. Note that all bags
have |Xi| vertices and the number of combinations of colorings and partitions
(c,PA,PB) in each node is |Xi|O(|Xi|) = twO(tw). The running time to compute
all fi’s in Xi is dominated by join nodes and it is roughly (twO(tw))3 = twO(tw)

since we scan every coloring and partition in two children nodes Xj1 and Xj2

for each coloring ci and each partition PA,PB and then check all combinations.
Therefore, the total running time is twO(tw)n and we conclude with the following
theorem.
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Theorem 3. For graphs of treewidth at most tw, there exists an algorithm that
solves Maximum Weight Minimal s-t Separator in time twO(tw)n.

4 Algorithms Using Cut & Count

In this section, we give an algorithm that solves the decision version of Maxi-

mum Weight Minimal s-t Separator to decide the existence of minimal s-t
separator with weight W in time O∗(9tw · W 2) for graphs of treewidth at most
tw. This algorithm is based on the Cut & Count technique.

4.1 Isolation Lemma

In this subsection, we explain the Isolation Lemma introduced by Mulmuley et
al. [13]. The main idea of the Cut & Count technique is to obtain a single solution
with high probability; we count modulo 2, and the Isolation Lemma guarantees
the existence of such a single solution.

Definition 5 ([13]). A function w′ : U → Z isolates a set family F ⊆ 2U if there
is a unique S′ ∈ F with w′(S′) = minS∈F w′(S) where w′(X) =

∑
u∈X w′(u).

Lemma 1 (Isolation Lemma [13]). Let F ⊆ 2U be a set family over a universe
U with |F | > 0. For each u ∈ U , choose a weight w′(u) ∈ {1, 2, . . . N} uniformly
and independently at random. Then Pr[w′ isolate F ] ≥ 1 − |U |/N.

4.2 Cut & Count

The Cut & Count technique was introduced by Cygan et al. for solving con-
nectivity problems [7]. The concept of Cut & Count is counting the number of
relaxed solutions such that we do not consider whether they are connected or
disconnected. Then we compute the number of relaxed solutions modulo 2 and
we determine whether there exists a connected solution by cancellation tricks.
Now, we define a consistent cut to explain the detail of Cut & Count.

Definition 6 ([7]). A cut (V1, V2) of V ′ ⊆ V such that V1 ∪ V2 = V ′ and
V1 ∩ V2 = ∅ is consistent if v1 ∈ V1 and v2 ∈ V2 implies (v1, v2) /∈ E.

This means that a consistent cut (V1, V2) of V ′ has no edge between V1 and V2.
We fix an arbitrary vertex v in V1. Then, if G[V ] is connected, then there only
exists one consistent cut, that is, (V1, V2) = (V, ∅). Therefore, the number of
consistent cuts is odd. By this fact, we only compute the number of consistent
cuts modulo 2 on decomposition tree and return yes if the number of consistent
cuts is odd, otherwise no in a root node. The Isolation Lemma is useful for us as
it implies that when the number of solutions is odd, there is a unique solution
with high probability; and hence we can use the modulo 2 trick.
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Let S ⊆ 2U be a set of solutions. According to [7,8], the Cut & Count
technique is divided into two parts as follows.

– The Cut part: Relax the connectivity requirement by considering the set
R ⊇ S of possibly connected or disconnected candidate solutions. Moreover,
consider the set C of pairs (X;C) where X ∈ R and C is a consistent cut of X.

– The Count part: Isolate a single solution by sampling weights of all elements
in U with high probability by the Isolation Lemma. Then, compute |C| modulo
2 using a sub-procedure. Disconnected candidate solutions X ∈ R \ S cancel
since they are consistent with an even number of cuts. If the only connected
candidate x ∈ S exists, we obtain the odd number of cuts.

Given a set U and a tree decomposition 〈X , T 〉, the general scheme of Cut &
Count is as follows:

Step 1. Set the integer weight for every vertex uniformly and independently at
random by w′ : U → {1, . . . , 2|U |}.

Step 2. For each integer weight 0 ≤ W ′ ≤ 2|U |2, compute the number of relaxed
solutions of weight W ′ with consistent cuts modulo 2 on a decomposition tree.
Then return yes if it is odd, otherwise no in the root node.

We use the Cut & Count technique to determine whether there exists a
connected partition (S,A,B,Q) of weight W so that A and B are connected.
To apply the above scheme, we newly give the following definition of a partial
solution. Note that we have to consider two consistent cuts of A and B.

Definition 7. Given a node i of the tree decomposition of G, a partial solution
for that node is a tuple (S∅, SA, SB , SAB , Al, Ar, Bl, Br, Q,w), such that:

– Vi = S∅ ∪ SA ∪ SA ∪ SAB ∪ Al ∪ Ar ∪ Bl ∪ Br ∪ Q,
– (Al, Ar) is a consistent cut: there exists no edge (u, v) ∈ E such that u ∈ Al

and v ∈ Ar,
– (Bl, Br) is a consistent cut: there exists no edge (u, v) ∈ E such that u ∈ Bl

and v ∈ Br,
– w = Σv∈Sw(v),
– ∀v ∈ S∅, N(v) ∩ (Al ∪ Ar ∪ Bl ∪ Br) = ∅,
– ∀v ∈ SA, N(v) ∩ (Bl ∪ Br) = ∅ and N(v) ∩ (Al ∪ Ar) �= ∅,
– ∀v ∈ SB, N(v) ∩ (Bl ∪ Br) �= ∅ and N(v) ∩ (Al ∪ Ar) = ∅ and
– ∀v ∈ SAB, N(v) ∩ (Bl ∪ Br) �= ∅ and N(v) ∩ (Al ∪ Ar) �= ∅.
– s ∈ Vi ⇒ s ∈ Al

– t ∈ Vi ⇒ t ∈ Bl

For each vertex v, we set another weight w′(v) by choosing from {1, . . . , 2|V |}
and independently at random. We also set the coloring c : V → {s∅, sA, sB , sAB ,
al, ar, bl, br, q}. Now, we give a dynamic programming algorithm that com-
putes the number of partial solutions. To count the number of relaxed solu-
tions with consistent cuts, for each c, w and w′ we define the counting function
hi : {s∅, sA, sB , sAB , al, ar, bl, br, q}|Xi| × N × N → N in each node i on a nice
tree decomposition as follows.
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Leaf node: In a leaf node, we define hi(∅, 0, 0) = 1, if S∅ = SA = SB = SAB =
Al = Ar = Bl = Br = ∅ and w,w′ = 0. Otherwise, hi(c, w,w′) = 0.

Introduce vertex v node: The function hi has five cases in an introduce ver-
tex node. Note that we only add one vertex v without edges. Thus, if c(v) ∈
{sA, sB , sAB}, a partial solution is invalid by the definition because v has no
neighbor. If c(v) = s∅, vertex v is chosen as a vertex of S, and we hence add
each weight w(v), w′(v) to w, w′, respectively. Moreover, v must not be s, t
because s (resp., t) should be in Al (resp., Bl). If not, it is not a connected
partition. Similarly, if c(v) = al (resp., bl), we check whether v is not t (resp., s).
As for c(v) ∈ {ar, br, q}, we also check whether v is neither s nor t. Therefore,
we define hi in introduce vertex nodes as follows:

hi(c × {c(v)}, w, w′) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[v �= s, t]hj(c, w − w(v), w′ − w′(v)) if c(v) = s∅
[v �= t]hj(c, w,w′) if c(v) = al

[v �= s]hj(c, w,w′) if c(v) = bl

[v �= s, t]hj(c, w,w′) if c(v) ∈ {ar, br, q}
0 otherwise.

Introduce edge (u, v) node: In an introduce edge node, we check each state of
endpoints of the edge (u, v) and define fi for some cases.

– If c(u) = s∅, vertex u has no vertices in A,B. Hence, we define the function
hi in this case as follows:

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) /∈ {al, ar, bl, br}]
·hj(c × {s∅} × {c(v)}, w, w′).

– If c(u) = sA, vertex u has neighbors of A but no neighbor of B. In this
case, we have two cases. The other case is that u ∈ S∅ and v ∈ A in a child
node, because adding edge (u, v) in the introduce edge (u, v) node, vertex u
is moved from S∅ to SA. The other case is that u ∈ SA and v /∈ B in a child
node. If v ∈ B, vertex u is in SAB in the parent node. We define hi as follows.
Note that only if c(v) ∈ {al, ar}, we sum up two cases. If c(v) ∈ {bl, br},
hi(c × {c(u)} × {c(v)}, w, w′) := 0, otherwise hi(c × {c(u)} × {c(v)}, w, w′) :=
hj(c × {sA} × {c(v)}, w, w′).

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) ∈ {al, ar}]hj(c × {s∅} × {c(v)}, w, w′)

+ [c(v) /∈ {bl, br}]hj(c × {sA} × {c(v)}, w, w′).

– If c(u) = sB is almost the same as above case, that is, we replace A(resp., B)
to B(resp., A).

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) ∈ {bl, br}]hj(c × {s∅} × {c(v)}, w, w′)

+ [c(v) /∈ {al, ar}]hj(c × {sB} × {c(v)}, w, w′).
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– If c(u) = sAB , we consider three cases: u ∈ SA and v ∈ B, u ∈ SB and v ∈ A,
and u ∈ SAB and v is in arbitrary set in the children node. For first and second
cases, vertex u is moved from SA(resp., SB) into SAB by adding edge (u, v). If
u ∈ SAB , v is allowed to be in any set because a vertex in SAB could connect
to all sets. Therefore, we define fi as follows:

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) ∈ {bl, br}]hj(c × {sA} × {c(v)}, w, w′)

+ [c(v) ∈ {al, ar}]hj(c × {sB} × {c(v)}, w, w′)

+ hj(c × {sAB} × {c(v)}, w, w′).

– If c(u) ∈ {al, ar}, then c(v) /∈ {bl, br, q} since there is no edge between A,B
and Q by the definition of connected partition. There is also no edge between
Al and Ar because (Al, Ar) is a consistent cut. Therefore, if u is in Al or Ar,
then v are in the same set of u or separator sets SA, SAB . Note that because
u is in A, v is not in S∅, SB.

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) = c(u)]hj(c × {c(u)} × {c(v)}, w, w′)

+ [c(v) ∈ {sA, sAB}]hj(c × {c(u)} × {c(v)}, w, w′).

– The case that c(u) ∈ {bl, br} is almost the same as above case, that is, we
replace A by B.

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) = c(u)]hj(c × {c(u)} × {c(v)}, w, w′)

+ [c(v) ∈ {sB , sAB}]hj(c × {c(u)} × {c(v)}, w, w′).

– If c(u) = q, vertex u is in Q. Hence, v must be in S∅, SA, SB , SAB , or Q because
a vertex in Q has no neighbor of A and B by the definition of connected
partition.

hi(c × {c(u)} × {c(v)}, w, w′) := [c(v) ∈ {s∅, sA, sB , sAB , q}]
·hj(c × {c(u)} × {c(v)}, w, w′).

Forget v node: For a forget v node, the state of v would never change forward.
Thus, if cj(v) ∈ {s∅, sA, sB}, a partial solution does not satisfy the condition of
connected partition because any v ∈ S must have neighbors of both A and B.
For this reason, we only sum up for each state cj(v) ∈ {sAB , al, ar, bl, br, q}. The
function hi in forget nodes is defined as follows:

hi(c, w,w′) :=
∑

cj(v)∈{sAB ,al,ar,bl,br,q}
hj(c × {cj(v)}, w, w′).

Join node: We denote each coloring and weights of partial solutions in i, j1, j2
by ci, cj1 , cj2 and wi, wj1 , wj2 , w′

i, w′
j1

, w′
j2

, respectively. Moreover, for a state
subset L ⊆ {s∅, sA, sB , sAB , al, ar, bl, br, q}, we define c−1(L) as the vertex set
such that all vertices satisfy c(v) ∈ L. For a coloring ci, we also define the subset
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D of tuples of (cj1 , cj2) as the combinations of colorings of cj1 , cj2 like Sect. 3
such that:

– ∀v ∈ c−1
i ({s∅, al, ar, bl, br, q}), (cj1(v), cj2(v)) = (ci(v), ci(v)),

– ∀v ∈ c−1
i ({sA}, (cj1(v), cj2(v)) = (sA, s∅), (s∅, sA), (sA, sA),

– ∀v ∈ c−1
i ({sB}), cj1(v), cj2(v)) = (sB , s∅), (s∅, sB), (sB , sB), and

– ∀v ∈ c−1
i ({sAB}), (cj1(v), cj2(v)) = (sAB , s∅), (sAB , sA), (sAB , sB),

(sAB , sAB), (s∅, sAB), (sA, sAB), (sB , sAB), (sA, sB), (sB , sA).

Let S∗ be the vertex subset c−1
i ({s∅, sA, sB , sAB}). To sum up all combi-

nations of vertex states and weights for counting, we define the function hi. If
D = ∅, we define hi(ci, wi, w

′
i) := 0. Otherwise,

hi(ci, wi, w
′
i) :=

∑

wj1
+wj2

=wi+w(S∗)

∑

w′
j1

+w′
j2

=w′
i
+w′(S∗)

∑

(c∗
j1

,c∗
j2

)∈D

hj1(c
∗
j1 , wj1 , w

′
j1)hj2(c

∗
j2 , wj2 , w

′
j2).

From now, we analyze the running time of this algorithm. In each leaf, intro-
duce vertex, introduce edge, and forget node, we can compute fi for each coloring
c and weight w,w′ in O(1)-time because we only use O(1)-operations. Therefore,
the total running time in them is O∗(9tw · W · W ′). However, in a join node,
we sum up all weight combinations and coloring combinations satisfying some
conditions. There are 21 coloring’s combinations for each vertex and W · W ′

weight’s combinations. Therefore, we compute all fi’s in a join node in time
O∗(21tw · W 2). Note that by the definition, O(W ′2) is a polynomial factor.

Theorem 4. For graphs of treewidth at most tw, there exists a Monte-Carlo
algorithm that solves the decision version of Maximum Weight Minimal s-t
Separator in time O∗(21tw · W 2). It cannot give false positives and may give
false negatives with probability at most 1/2.

Using the convolution technique [14], we can obtain a faster Monte-Carlo
algorithm. The technique helps to speed up the computation for join nodes. The
details are omitted from this extended abstract.

Theorem 5. For graphs of treewidth at most tw, there exists a Monte-Carlo
algorithm that solves the decision version of Maximum Weight Minimal s-t
Separator in time O∗(9tw · W 2). It cannot give false positives and may give
false negatives with probability at most 1/2. If the input graph is unweighted, the
running time is 9tw · |V |O(1).

As usual for this type of algorithms, the probability of a false negative can
be made arbitrarily small by repeating the algorithm.

Acknowledgments. We are grateful to Dr. Jesper Nederlof for helpful discussions.
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Pebble Games over Ordered
Structural Abstractions
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Abstract. We introduce a new notion called structural abstractions,
which is particularly suitable for pebble games over finite ordered graphs.
In an example, we show how to apply structural expansions and abstrac-
tions in constructions and how to play pebble games over ordered struc-
tural abstractions. The proof includes several observations and insights
that are fundamental for any games over structural abstractions, which
can be used to obtain lower bounds for a number of graph problems with
order.

Keywords: Finite model theory · Pebble games · Structural abstraction

1 Introduction

The study of bounded variable fragments of first-order logic (FO, in short) may
be traced back to the 19th century [1]. Pebble games [2,4,5] are the main tool in
finite model theory for studying expressive power of bounded variable fragments
of FO, which are successful for unordered structures. However, taking (linear)
orders into account in the study is important since the definitions of many well-
known complexity classes depend on an order. It is well known that the presence
of orders makes pebble games notoriously difficult to use. The main purpose of
this paper is trying to provide a way or paradigm for such games over finite
ordered graphs, which is illustrated by an example in depth: defining a triangle
in first-order logic needs three variables. The example itself is of very limited
interest, which has another simpler proof.1 Our main contribution is a notion
called structural abstractions and a novel way that can be used to obtain lower
bounds for a number of important graph problems (with order), such as k-Clique,
k-Independent-Set, k-Dominating-Set (for fixed k) and subgraph isomorphism
(for fixed pattern).

2 Preliminaries

By convention, we use “�x�” to denote the floor functions floor(x), for any real
number x. For n ∈ N+, we let [n] be the set {0, . . . , n − 1} and let [1, n] be the
1 Thanks Stephan Kreutzer for reminding the author in a private communication. The
construction is a clever modification of a binary tree.

c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 319–332, 2017.
DOI: 10.1007/978-3-319-55911-7 23



320 Y. He

set {1, . . . , n}. For n0, n1 ∈ N+ we let [n0] × [n1] be the Cartesian product of
[n0] and [n1]. We use a pair of integers to denote a vertex in a two dimension
coordinate plane. For a fixed natural number k (greater than one), the coordinate
congruence number w.r.t. k (cc number, in short) of a vertex (x, y), denoted
cc(x, y), is defined by (x + y) mod k − 1. In the following sections, we fix k to
3. Hence we can also call cc number as coordinate parity or vertex parity.

Let σ = 〈R1, . . . , Rm, c1, . . . , cn〉 be a relational signature where Ri is a rela-
tion symbol and cj a constant symbol, a σ-structure A consists of a universe A
together with an interpretation of Ri and cj . A is finite if A is a finite set.

A linear order is a binary relation that is transitive, antisymmetric and total.
Note that totality implies reflexivity.

A graph G′ = 〈V ′, E′〉 is a subgraph of a graph G = 〈V,E〉 if V ′ ⊆ V and
E′ ⊆ E ∩ (V ′ × V ′); G′ is an induced subgraph of G, denoted by G[V ′], if G′ is
a subgraph of G and E′ = E ∩ (V ′ × V ′). An ordered graph is a graph whose
vertices are linearly ordered. Two ordered graphs G and G′ are isomorphic if
there is a bijective map from V to V ′ that preserves edge relation as well as
order relation, denoted G ∼= G′.

The quantifier rank of a formula φ ∈ FO is the maximum depth of nesting
of its quantifiers.

Let FOk be the fragment of FO whose formulae have at most k distinct
variables, free or bound.

A game board consists of a pair of structures, e.g. (A,B). An m-round (k−1)-
pebble game over the game board (A,B), denoted by �k−1

m (A,B), is defined as
follows. There are two players in the game, called Spoiler and Duplicator. There
are k−1 pairs of pebbles, say (e1, f1), · · · , (ek−1, fk−1), available for the players,
which are off the board at the beginning of the game. In each round, a pair
of pebbles, say (ei, fi), will be put on the structures wherein ei is put on an
element of A and fi is put on an element of B. Spoiler first selects a structure
and puts a pebble on one element of the selected structure; then Duplicator puts
the other pebble in the same pair (matching pebble, for short) on one element
of the other structure. If there is no pebble off the board, Spoiler can move
a pebble to a new element; then Duplicator should move the matching peb-
ble to some element in the other structure. In the �-th round of the game, let
cA = (a1, a2, . . . , an), where n ≤ k − 1, includes all the elements in A that have
pebbles on them and assume ai is pebbled before ai+1; let cB = (b1, b2, . . . , bn)
includes all the corresponding pebbled elements in B. Suppose that, for each
i, ai and bi are the positions of ej and fj for some j in this round. Some-
times we use ((A, cA), (B, cB)) to denote the game board in this round. Say that
((A, cA), (B, cB)) is in partial isomorphism if {(a1, b1), . . . , (an, bn)} defines an
isomorphism between A[cA] and B[cB ]. Spoiler wins the game if the board is
not in partial isomorphism in some round; otherwise, Duplicator wins the game.
If Duplicator can guarantee a win after m rounds of such (k − 1)-pebble game,
we say Duplicator has a winning strategy in the m-round (k − 1)-pebble game,
denoted by A ≡k−1

m B. Without loss of generality, when discussing Duplicator’s
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strategy, we assume at most k − 2 pairs of pebbles are on the game board at the
start of each round of a (k − 1)-pebble game.

It is well known that pebble games characterise the expressive power of finite
variable logics. That is, if for any m we can find a pair of structures, e.g. (A,B),
such that A satisfies some property while B doesn’t, and A ≡k−1

m B, then this
property is not expressible in FOk−1. To shorten description, usually we also say
that a player picks a vertex if the player puts a pebble on this vertex.

3 Structural Abstractions

In this section, we construct A3,m and B3,m for the game board, and use them
to prove that three variables are needed to define a triangle on finite ordered
graphs. We first construct B′

3,m in a two dimension coordinate plane, which has
some triangles; afterwards, we get B3,m, which is free of triangle, by forbidding
some edges in B′

3,m. Then, we plant a triangle into B3,m by adding an edge
roughly in its middle, and obtain A3,m. In this extended abstract, we shall hide
some tedious technical details to highlight the main ideas.

Before introducing the main constructions, we use a small graph B3 to illus-
trate a notion called “structural expansion”, which will be defined formally later.
B3 itself is not useful to the end. But it is small enough for illustration, mean-
while we can get some essence of the notion from studying it. Hopefully it can
help the readers understand related notions and intuitions. B3 is defined in a
two dimension coordinate plane. The structure B3 is an ordered graph over the
universe [2]× [3] and the linear order is defined by the lexicographic ordering on
[3] × [2], i.e. (xi, yi) ≤ (xj , yj) if yi < yj or yi = yj ∧ xi ≤ xj . A vertex (xi, yi) is
adjacent to (xj , yj) if and only if

yi = yj and cc(xi, yi) = cc(xj , yj). (1)

Note that B3 is isomorphic to the graph introduced by Dawar [3] (when
k = 3), which was used to prove that existential infinitary logic formulae require
k variables to define k-Clique on the class of finite ordered graphs.

In Fig. 1, the graph on the left side is B3. Here, the vertex c is (0, 0); b is
(0, 1); a is (0, 2); f is (1, 0); e is (1, 1) and d is (1, 2). The graph on the right
side of Fig. 1 is an expansion of B3. Here, the vertex “0” stand for (0, 0); “5” for
(1, 0); “10” for (2, 0); “1” for (0, 1), and so on. We call it an expansion because
every vertex of B3 is replaced by two vertices - for any vertex of B3, we insert a
new vertex on its right side and call it the associated vertex w.r.t. this expansion.
Note that, c of B3 corresponds to 0 of its expansion; the vertex a corresponds to
the vertex 2; d corresponds to 6, and so on. The adjacency of B3 is preserved in
the expansion, e.g. 0 is adjacent to 6 while 0 is not adjacent to 2. Moreover, we
also use (1) to determine whether a newly inserted vertex is adjacent to another
vertex. For instance, the vertex 3 is not adjacent to 5 because cc(1, 0) = cc(1, 2);
the vertex 4 is adjacent to 5 because their second coordinates are different and
cc(1, 0) = cc(1, 1); note that the vertex 6 is (2, 2), hence 6 is adjacent to 5
because their second coordinates are different and cc(1, 0) = cc(2, 2), and so on.
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Fig. 1. B3 (left) and its structural expansion (right).

In the expansion, we can assign a natural number to each vertex as the follows
and call this number vertex index : we assign “2” to all the vertices corresponding
to those of B3 (i.e. 0, 1, 2, 6, 10 and 11), and assign “1” to all the other vertices.
Moreover, we use a set X∗

2 to include all the vertices that have index 2, and use
X∗

1 to include all the vertices, i.e. the vertices of index 1 and 2. In short, X∗
i

includes all the vertices that have an index at least i. In other words, the index
of a vertex (x, y), denoted idx(x, y), is the maximum i such that (x, y) ∈ X∗

i ,
where i = 1 or 2. Note that, X∗

1 subsumes X∗
2.

We call B3 the skeleton of its expansion. If study the expansion carefully, we
can see that the subgraph induced by 1, 2 and their associated vertices 4 and 3
is isomorphic to the subgraph induced by 11, 6 and their associated vertices 8
and 7; likewise, the subgraph induced by 0, 2 and their associated vertices 5 and
3 is isomorphic to the subgraph induced by 10, 6 and their associated vertices
9 and 7. In general, the subgraph induced by two vertices of index 2 and their
associated vertices is completely determined by these two vertices of index 2. We
call such induced subgraphs “elementary bricks”. Each pair of these elementary
bricks are very similar except that the adjacency between the pair of vertices of
index 2 (i.e. those vertices in the skeleton) may be different. Note that, based
on the skeleton B3, we can built its expansion using the elementary bricks.

Observe that the width of B3 is 2 and the width of the expansion is 4.
We use “γ∗

0” to denote the width of B3 and “γ∗
1” to denote the width of the

expansion. Hence the width of the elementary bricks is γ∗
1

γ∗
0

= 2. Bigger bricks,
whose universes are isomorphic to [2]× [3], can be built from the elementary ones
and they are completely determined by the vertices of index 2. For example, the
brick formed by the vertices 0, 1, . . . , 5 is isomorphic to B3; whereas the brick
formed by 0, 1, 4, 5, 6 and 7 is akin to B3 except that the subgraph induced by a,
b and c in B3 is different from that induced by 0, 1 and 6 in the other. In short,
the bricks are bound in such a way that their first columns (formed by vertices
of index 2) respect the structure (or adjacency) of the graph B3. Hence, in some
sense we can also call B3 an “abstraction” of its expansion. Moreover, we can
call the expansion the first abstraction, and B3 the second abstraction. Then, the
value �x/

γ∗
1

γ∗
0
� tells us where (x, y) is in the y-th row of the second abstraction. For

example, the vertex 4 is “indistinguishable” from 1 in the second abstraction,
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therefore this vertex 4 is in the position (0, 1) of the second abstraction. Note
that, the universe of the first abstraction is X∗

1 and the universe of the second
abstraction is X∗

2. For i = 1, 2, we define “�x�i” to be �x/
γ∗
1

γ∗
2−i

� × γ∗
1

γ∗
2−i

so that

the following holds: for any (x, y) ∈ X∗
1 and (x′, y) ∈ X∗

2, if �x′/γ∗
1

γ∗
0
� = �x/

γ∗
1

γ∗
0
�,

then �x�2 = x′. We call (�x�i, y) the projection of the vertex (x, y) in the i-th
abstraction. For example, the vertex 2 is the projection of the vertex 3 in the
second abstraction; the vertex 11 is the projection of the vertex 8 in the second
abstraction; 1 is the projection of 4 in the second abstraction; and any vertex is
the projection of itself in the first abstraction. Note that, for any vertex (x, y) of
the expansion, (x, y) is in X∗

i if x = �x�i for i = 1, 2. By definition, (�x�i, y) is in
X∗

i , e.g. (�x�2, y) is a vertex of the second abstraction. Note that, for any vertex
(x, y) of index i and 1 ≤ j ≤ i ≤ 2, we have x = �x�j , because X∗

j subsumes X∗
i .

Note that idx(�x�i, y) ≥ i. For example, idx(�3�2, 1) = 2; idx(�2�1, 1) > 1.
We just give a simple example of structural expansion. Such expansion can

be performed for many times. Suppose we want to expand B3 twice. We insert
a new vertex on the right side of each vertex of the expansion of B3. That is,
we create an expansion of the expansion of B3. This time, we assign “3” to the
indices of the vertices before the expansions (i.e. those vertices of B3), and assign
“2” to the vertices inserted in the first expansion (the vertices 3, 4, 5 and 7, 8, 9
in Fig. 1). Finally, we assign “1” to the vertices inserted in the second expansion.
As before, for each i ∈ [1, 3], we use a set X∗

i to include all the vertices that have
index at least i. For example, X∗

2 includes all the vertices that have index 2 and
index 3. As before, in the second expansion, we also use (1) to determine whether
a newly inserted vertex is adjacent to another vertex. The adjacency between
the vertices in X∗

2 is preserved in this expansion, just as before.
As have been illustrated in the toy example, the following observations are

intuitive, whose proofs are simple. Suppose the structure is produced by m − 1
times of structural expansion of B3 (∴ X∗

m is the universe of B3). Suppose (x, y) ∈
X∗

1, i.e. it is in the universe of the structure. Let 1 ≤ i, j ≤ m.

– For any vertex (x, y) of index i and j ≤ i, we have x = �x�j .
– For any (x, y) ∈ X∗

1 and i ≤ j, we have
• ��x�i/

γ∗
m−1

γ∗
m−j

� = �x/
γ∗
m−1

γ∗
m−j

�.
• ��x�i�j = �x�j .

– idx(�x�i, y) ≥ i.

The structure B′
3,m can be built similarly. It is built from the following

structure by m − 1 times expansions (we reuse those notations): its universe is
X∗

m = [4m]× [3]; the order is defined by the lexicographic ordering on [3]× [4m];
the edges are defined by (1) as before. We still use γ∗

0 to denote its width, i.e.
4m. In general, we use X∗

m−i to denote the universe of the i-th expansion, and
use γ∗

i to denote its width. A definition of structural abstraction can be found
in Definition 3. We intend to use B′

3,m[X∗
i ] to denote the i-th abstraction of

B′
3,m and we just give the definition of B′

3,m[X∗
m] - the start point of the expan-

sions. As before, we can regard B′
3,m[X∗

i ] as an “abstraction” of B′
3,m[X∗

i−1].
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Hence B′
3,m[X∗

m] is the highest abstraction, the maximum element of a chain of
abstractions; whereas B′

3,m[X∗
1] is the lowest one, the minimum element of this

chain. The index of a vertex tells us at which stage it is created in the structural
expansions. For example, the vertices of the structure before expansions have
index m and the vertices inserted in the first expansion have index m − 1, and
so on. When i < j, we use βm−i

m−j , which equals γ∗
m−i

γ∗
m−j

, to tell us the width of
the “bricks” we will use to build the i-th abstraction based on the “skeleton”
(or the synonym “abstraction”) B′

3,m[X∗
j ], i.e. the number of vertices in X∗

i that
surround (and include) a vertex in X∗

j . It implies that we insert βm−j+1
m−j − 1

vertices of index j − 1 surrounding each of the vertices in X∗
j in the process of

the (m− j +1)-th expansion. For example, when j = m, it means that we insert
β1
0 − 1 vertices of index m − 1 in the process of the first expansion, i.e. each

vertex of index m is replaced by β1
0 vertices.

As before, we use “(�x�i, y)” to denote the projection of (x, y) in the i-th
abstraction. Recall that X∗

i is supposed to include all the vertices that have an
index at least i. Intuitively, X∗

i should include exactly those vertex (x, y) such
that x = �x�i (recall the example in Fig. 1). As before, the value �x/βm−1

m−i � tells
us where (x, y) is in the y-th row of the i-th abstraction.

In the following we define B′
3,m formally.

For any m, i ∈ N+, where m ≥ 3 and 0 < i < m, let

γ∗
0 := 4m; γ∗

i := 4(m − i)γ∗
i−1 (2)

According to (2), we have that, for any i where 0 ≤ i < m,

γ∗
i = 4i+1 m!

(m − i − 1)!
. (3)

For x ∈ [γ∗
m−1] and 1 ≤ i ≤ j ≤ m, let

βm−i
m−j :=

γ∗
m−i

γ∗
m−j

(4)

[x]i := �x/βm−1
m−i � (5)

�x�i := [x]iβm−1
m−i +

1
2

∑

1<�≤i

βm−1
m−� (6)

Let X∗
1 := [γ∗

m−1] × [3]. For 1 < i ≤ m, let

X∗
i := {(x, y) ∈ X∗

1 | x = �x�i}. (7)

According to (6) and (7), for any (x, y) ∈ X∗
1, and any i where 1 < i ≤ m,

(x, y) ∈ X∗
i iff x ≡ 1

2

∑

1<�≤i

βm−1
m−� (mod βm−1

m−i ). (8)

In the following we shall omit some proofs to avoid distracting the readers
with the technical details, which are tedious and simple.



Pebble Games over Ordered Structural Abstractions 325

Lemma 1. If 1 ≤ j < i and (x, y) ∈ X∗
i , then [x]j ≡ 0 (mod 2).

It implies that cc([x]j , y) = y mod 2, on condition that the premise holds.
We can prove the following lemma which says that X∗

i subsumes X∗
j if i ≤ j.

Lemma 2. For any i where 1 ≤ i ≤ m, if (x, y) ∈ X∗
i , then (x, y) ∈ X∗

j for any
1 ≤ j ≤ i.

Definition 1. The index of (x, y) ∈ X∗
1, written idx(x, y), is the maximum i in

[1,m] such that (x, y) ∈ X∗
i . �

For any (u, v), call cc([u]�, v) the cc number of (u, v) in X∗
� .

B′
3,m is an ordered graph over the universe X∗

1, wherein the linear order is
defined as the lexicographic ordering over [3] × [γ∗

m−1]. For any pair of vertices
(xi, yi) and (xj , yj), if idx(xi, yi) = � ≤ idx(xj , yj), then (xi, yi) is adjacent to
(xj , yj) iff yi = yj and cc([xi]�, yi) = cc([xj ]�, yj).

Imagine that we are looking at B′
3,m from far away. Assume that a vertex in

X∗
i is “bigger” (so is easier to be observed) than a vertex in X∗

j , if i > j. Suppose
at the beginning we could only see, or observe, the vertices in X∗

m clearly, and all
the other vertices are indistinguishable. Let us move forward to look a bit closer
at the graph, the vertices in X∗

m−1 might be observable now, but none of other
vertices could. Moving on in this way, we can observe more and more vertices,
and finally all the vertices of B′

3,m, i.e., the vertices in X∗
1. In other words, the

collection of B′
3,m[X∗

i ] stand for a sort of “multiresolution” hierarchical structure
of B′

3,m.

Definition 2. Suppose idx(x, 1) = � < m. Let Ωx := {(u, v) ∈ X∗
�+1 | (u, v) is

not adjacent to (�x��+1, 1)}. The main structure B3,m is constructed from B′
3,m

by removing a set of edges: for any vertex (x, 1) where idx(x, 1) = � < m and
[x]� is even, we delete any edge between (x, 1) and any vertex in Ωx. �

In Fig. 2, the black filled circles, except for (u, 2), are vertices in the first row
(the bottom row is the 0-th row). The skew dotted line segments indicate that
there are no edge between (u, 2) and the other endpoints. The vertex (x, 1) is
surrounded by βm−1

m−� −1 vertices of index up to �−1 (indicated by the rightmost
horizontal dashed line segment in the middle row that is delimited by two small-
est grey filled circles in Fig. 2). It is roughly in the middle of this interval, which
is indicated by the vertical dotted line. Assume that c is even, i.e. [x]� is even
(∵ (x�, 1) ∈ X∗

�+1, by Lemma 1, [x�]� is even). Then, by the definition of Ωx,
(x, 1) is not adjacent to (u, 2) since (x�, 1) is not adjacent to (u, 2). Similarly,
(x′, 1) is not adjacent to (u, 2) since (x, 1) is not adjacent to (u, 2) and d is even.
Hence, the missing of an edge in the higher abstraction (e.g. there is no edge
between (x�, 1) and (u, 2)) will propagate to the lower abstractions (e.g. there
is no edge between (x′, 1) and (u, 2)), due to the removing of edges according to
Ωx (cf. Definition 2).

Let mid := 2mβm−1
0 + 1

2

∑
1<j≤m βm−1

m−j . By definition, we know that mid =
�mid�m, thereby (mid, y) ∈ X∗

m for any y. Note that mid is roughly half of γ∗
m−1.

The structure A3,m is built from B3,m by adding an edge between (mid, 0) and
(mid, 2).
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(x�, 1)

cβm−1
m−�

βm−1
m−� βm−1

m−�

βm−1
m−�

(x, 1) (x′, 1)
dβm−1

m−�+1

(u, 2)

Fig. 2. From B′
3,m to B3,m: some edges are forbidden. Suppose idx(x, 1) = �,

idx(x′, 1) = � − 1, (u, 2), (x�, 1) ∈ X∗
�+1, and x� = �x��+1. Assume c and d are even.

Clearly, A3,m has triangles. In particular, it has a triangle formed by the set
of vertices {(mid, 0), (mid, 1), (mid, 2)}, because all the vertices have index m,
which implies that Ωmid = ∅, and cc([mid]m, i) = i mod 2, which implies that
both (mid, 0) and (mid, 2) are adjacent to (mid, 1). In contrast, we have the
following observation.

Lemma 3. B3,m has no triangle.

Proof. We prove it by contradiction. Assume that there are triangles in B3,m.
We can index these triangles such that the index of a triangle is the smallest
index of its vertices. Suppose C3 is such a triangle that has the maximum index,
say t. Note that t cannot be m, for otherwise there are two vertices that have
the same cc number in X∗

m, by the pigeonhole principle. Similarly, C3 must
contain both vertices in X∗

t − X∗
t+1 and vertices in X∗

t+1, due to the pigeonhole
principle. Let |C3| = {(a, 0), (b, 1), (c, 2)}, inasmuch as the second coordinates of
the vertices of C3 must be different. Let P = {(x, y) ∈ X∗

t −X∗
t+1 | (x, y) ∈ |C3|}.

Let Q = {(x, y) ∈ X∗
t+1 | (x, y) ∈ |C3|}. Note that P ∩ Q = ∅. By Lemma 2, the

set of vertices of Ck is exactly P ∪ Q.
Let cC3 := {cc([x]t, y) | (x, y) ∈ |C3|}. Since there are 3 elements in C3

and |cC3| ≤ 2, by pigeonhole principle, there are two vertices such that their
cc numbers in X∗

t are the same. If one of them is in P , then there is no edge
between them, by definition. Therefore, to have a triangle, both of them should
be in Q. Recall that, by Lemma 1, cc([x]t, y) = y mod 2 for any (x, y) ∈ X∗

t+1.
Therefore, their cc numbers in X∗

t should be 0. In other words, these two vertices
are (a, 0) and (c, 2). Note that (b, 1) ∈ P since P = ∅ and cc([b]t, 1) should be
1, for otherwise (b, 1) is not adjacent to both (a, 0) and (c, 2). In other words,
[b]t is even. Note that (�b�t+1, 1) is either not adjacent to (a, 0) or not adjacent
to (c, 2), for otherwise there is a triangle whose index is greater than t. That is,
either (a, 0) or (c, 2) is in Ωb. Therefore, either (a, 0) or (c, 2) is not adjacent to
(b, 1). A contradiction occurs.
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Now we formally define the notion of structural abstraction as well as its dual
concept structural expansion. Suppose G and H are two finite ordered graphs.
Let G, H be the vertex set of G, H respectively. Let EG be the edge set of G.

Definition 3. Say that G is a structural abstraction of H, denoted H �a G, if
there is a partition PV of H, a bijection f from G to PV , a set E of finite ordered
graphs, a partition PE of G × G, and a bijection g from PE to E s.t.

1. f preserves strict total order: c<H d if a<G b, for any c∈f(a) and d∈f(b);
2. for any a, b ∈ G, H[f(a) ∪ f(b)] ∼= E if (a, b) ∈ P ∈ PE and g(P) = E.
H is a structural expansion of G if G is a structural abstraction of H. �

Lemma 4. For any finite ordered graph G, G �a G.
Proof. G �a G because we can let (1) E = {E+, E−} where E+ is an edge and E−

is two isolated vertices; (2) PE = {EG , EG}; (3) g(EG) = E+ and g(EG) = E−;
(4) f(a) = {a} for ∀a ∈ G; (5) PV = {f(a) | a ∈ G}.

In the definition, if E is fixed, we can define another version of the notions
of structural abstraction and expansion with this set in the similar way. So
G is an abstraction of H under E if the expansions (under E) of isomorphic
subgraphs (w.r.t. PE) of G are isomorphic. Here, “isomorphic (w.r.t. PE)” refers
to the usual meaning when PE (which includes a set of binary relations) is taken
into account. For example, suppose PE = {EG , E−, E0} where E− ∪ E0 = EG .
Suppose (a, b) ∈ E−, (c, d) ∈ E0, and let h be a bijection s.t. h(a) = c, h(b) = d.
Although both (a, b), (c, d) /∈ EG , h doesn’t define an isomorphism from (a, b) to
(c, d) w.r.t. PE since E− ∩ E0 = ∅.

In general, the set of finite ordered graphs ordered by abstractions is not a
poset. For example, antisymmetry doesn’t hold. To see this, just note that a
clique is an abstraction of the corresponding independent set, and vice versa.2

Nevertheless, we can show that there is a finite chain in the set of subgraphs of
A3,m (B3,m resp.) ordered by abstractions, in which A3,m (B3,m resp.) is the
first element. The length of the chain is m, which coincides with the maximum
round of the game.

Definition 4. Suppose idx(x, y) > i. The set of vertices of index at least i that
surround (x, y) in the same row, written exi(x, y), is {(u, y)∈X∗

1 | i ≤ idx(u, y) <
idx(x, y) and �u�idx(x,y) = x} ∪ {(x, y)}. Say that (x′, y) is in the expansion of
(x, y) if (x′, y) ∈ exi(x, y) for some i. �

Note that �u�idx(x,y) = x if, and only if, [u]idx(x,y) = [x]idx(x,y).

2 To avoid it, we could also use an alternative definition of structural abstraction
wherein an expansion cannot map an edge to isolated vertices. Hence, by this defi-
nition, any graph is embeddable to its structural expansion.
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Lemma 5. For 1 ≤ j ≤ i ≤ m, A3,m[X∗
i ] �a A3,m[X∗

j ].

Proof. By Lemma 4, it holds when j = i. Henceforth, assume j < i. For con-
venience, we let the coordinates of vertices of A3,m[X∗

i ] coincide with those of
A3,m. Hence, the first vertex of A3,m[X∗

i ] is not (0, 0). Instead, let (c0, 0) be the
coordinates of its first vertex (the first vertex in the bottom row) and (c1, 0) be
the second vertex in the bottom row of A3,m[X∗

i ]. By definition, (c0, 0) is adja-
cent to (c0, 1) and (c0, 1) is not adjacent to (c1, 0). We can let E+

ij (E−
ij resp.)

be isomorphic to A3,m[Y +
ij ] (A3,m[Y −

ij ] resp.), where Y +
ij = exj(c0, 0) ∪ exj(c0, 1)

and Y −
ij = exj(c0, 1)∪exj(c1, 0). Note that |Y +

ij | = |Y −
ij |. Let E0

ij be a set of |Y +
ij |

isolated vertices, and let Gi = (Gi, E
Gi) = A3,m[X∗

i ].
Now, we let (1) Eij = {E+

ij , E−
ij , E0

ij}; (2) P i
E = {EGi , E−

i , E0
i } where E−

i

includes all the pairs in Gi×Gi that are not adjacent and not in the same row,
whereas E0

i includes all the pairs that are not adjacent and in the same row; (3)
gi(EGi) = E+

ij , gi(E−) = E−
ij and gi(E0) = E0

ij ; (4) fij(x, y) = exj(x, y) for any
(x, y) ∈ Gi; (5) P ij

V = {fij(x, y) | (x, y) ∈ Gi}.
It’s easy to verify that P i

E and P ij
V are partitions and that fij preserves strict

total order. To prove Lemma 5, it remains to show that every edge of A3,m[X∗
i ]

is replaced by an isomorphic copy of E+
ij ; every pair of vertices that are not

adjacent and not in the same row is replaced by an isomorphic copy of E−
ij ; and

every pair of vertices that are not adjacent and in the same row is replaced by
an isomorphic copy of E0

ij (this case is clear). To this end, we introduce a claim
in the following, which is not difficult to verify.

We can regard A3,m[X∗
m] be the starting point of m − 1 iterative expansions.

Then the vertices of index i is the outcome of the (m − i)-th expansion. They
are replaced by the same number of vertices of index i−1 in the next expansion,
where they are in the middle w.r.t. the order. Therefore, the vertices of different
indices in their expansions should be ordered in the same way after a number of
expansions. This intuition is formalized by the following claim.

Claim. For any 1 < ξ ≤ m and a, a′ ∈ [γ∗
m−1], if a − �a�ξ = a′ − �a′�ξ, then

(1) �a�ξ − �a�ξ−1 = �a′�ξ − �a′�ξ−1;
(2) a − �a�ξ−1 = a′ − �a′�ξ−1.

Suppose (x, y) is a vertex of index i. We can expect that the index of a vertex
(x′, y) in the expansion of (x, y) should be determined by their “distance”, i.e.
x − x′, which is implied by the Claim.

Let (x0, y0), (x1, y1), (x′
0, y0) and (x′

1, y1) be vertices of index i in A3,m[X∗
i ],

where y0 = y1. Suppose (x0, y0) is adjacent to (x1, y1) iff (x′
0, y0) is adja-

cent to (x′
1, y1). Let (a, y0) ∈ exj(x0, y0) and (a′, y0) ∈ exj(x′

0, y0). Assume
a − x0 = a′ − x′

0. By the Claim, index of a vertex (a, y0) is completely deter-
mined by a − x0. Hence (a, y0) and (a′, y0) have the same index, say �. Assume
� < i, i.e. a − x0 = 0. Note that cc([a]�, y0) is completely determined by a − x0,
because cc([�a��+1]�, y0) = y0 mod 2 (∵ Lemma 1), and a− �a��+1 is completely
determined by a − x0 (∵ the Claim). Similarly, cc([a′]�, y0) is completely deter-
mined by a′ − x′

0(= a − x0). Hence, cc([a]�, y0) = cc([a′]�, y0).
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Note that the adjacency between (a, y0) and (x1, y1) is completely determined
by two things (they are adjacent iff both hold, provided that y0 = y1):

(i�) whether (x1, y1) /∈ Ωa; (cf. Definition 2)
(ii�) whether cc([a]�, y0) = cc([x1]�, y1).

By Lemma 1, cc([x1]�, y1) = cc([x′
1]�, y1) = y1 mod 2. Therefore, (a, y0) is

adjacent to (x1, y1) iff (a′, y0) is adjacent to (x′
1, y1) if ignoring (i�). On the

other hand, we can also show that (x1, y1) /∈ Ωa iff (x′
1, y1) /∈ Ωa′ . Note that

(x1, y1), (x′
1, y1) ∈ X∗

�+1 because i > �; [a]� is even iff [a′]� is even since it has been
shown that cc([a]�, y0) = cc([a′]�, y0). Therefore, edges of A3,m[X∗

i ] are replaced
by graphs isomorphic to E+

ij . Similarly, the disconnected pairs (not in the same
row) in A3,m[X∗

i ] are also replaced by graphs isomorhpic to E−
ij . This concludes

the proof of Lemma 5.

Corollary 1. The set of graphs A3,m[X∗
i ] (1 ≤ i ≤ m) is a chain ordered by

structural abstractions.

We call the i-th element of this finite chain the i-th abstraction of the main
structures. In other words, A3,m[X∗

i ] is the i-th abstraction of the structure
A3,m. Note that A3,m[X∗

1] is just A3,m. Henceforth, we call A3,m[X∗
i ] a higher

abstraction relative to A3,m[X∗
i−1].

4 Games over Ordered Abstractions

In the following we show how to play pebble games over ordered abstractions.
The strategy introduced here can also be used to prove lower bounds for other
graph problems with order.

Lemma 6. For any m ≥ 3, A3,m ≡2
m B3,m.

From here on, we always assume that Spoiler picks (x, y) in some structure
and Duplicator responds with (x′, y) in the other structure in the current round.
Say that the board is in partial isomorphism over the i-th abstraction if the
projections of pebbled vertices in the i-th abstraction define a partial isomor-
phism between the structures. Say that the board is over the i-th abstraction, if
u − �u�i = u′ − �u′�i for any pair of pebbled vertices (u, v) and (u′, v), and the
board is in partial isomorphism over the i-th abstraction. We have the following
important observation: For any i ∈ [2,m], if the game board is over the i-th
abstraction, then it is also over the (i−1)-th abstraction. Therefore, in such case
the board is also over the first abstraction, i.e. a partial isomorphism is presented
over the original board. The argument is simple. By the Claim in page 10, we
have (1) �u�i − �u�i−1 = �u′�i − �u′�i−1 and (2) u − �u�i−1 = u′ − �u′�i−1, for
any pair of pebbled vertices (u, v) and (u′, v). Because the i-th abstraction of
the structures is a structural abstraction of the (i − 1)-th abstraction (under
Ei(i−1) = {E+

i(i−1), E−
i(i−1), E0

i(i−1)}, cf. the proof of Lemma 5, with j replaced
by i − 1), (1) implies that the projections of pebbled vertices in the (i − 1)-th
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abstraction define a partial isomorphism w.r.t. edge and order, since the expan-
sions (under Ei(i−1)) of isomorphic subgraphs of A3,m[X∗

i ] and B3,m[X∗
i ] are

isomorphic.
This observation is important because it allows Duplicator to resort to lower

abstractions for a good pick only when she cannot have a good pick over the
higher abstraction; and if Duplicator can ensure a win over the i-th abstraction
(i.e. she can ensure that the board is in partial isomorphism over the i-th abstrac-
tion), she can also ensure a win over the first abstraction, i.e. over the original
board. Let ξ be the maximum i such that the game board is over the i-th abstrac-
tion at the start of the current round. At the beginning of the game, ξ = m. In
each round Duplicator uses an auxiliary game over the ξ-th abstraction to help
her decide her pick in the original game. A game over the ξ-th abstraction is an
auxiliary game of the original game: it has the same game board as the original
game; in the current round, Spoiler picks (�x�ξ, y) and Duplicator replies by a
vertex (a, y) in this round for some a. If the board is over the ξ-th abstraction
at the end of this round, then Duplicator wins this round. Otherwise, Spoiler
wins. If Duplicator wins this round in the auxiliary game, she pickes (x′, y) in the
original game s.t. �x′�ξ = a and x′ − �x′�ξ = x− �x�ξ. It implies that the board is
over the ξ-th abstraction. By the previous observation, the original board is in
partial isomorphism. Soon we shall see that if Duplicator cannot win this round
in the auxiliary game over the ξ-th abstraction, she can always win this round
in the auxiliary game over the (ξ − 1)-th abstraction. We use θ to denote how
many rounds are left at the start of the current round. At the beginning, θ = m.

This concludes the outline of the proof. It remains to show that Duplicator
can ensure a win if she makes a pick in the (ξ − 1)-th abstraction.

Proof. This proof is by induction, wherein we show 1��4� are preserved at the
end of the current round.

1� x − �x�ξ = x′ − �x′�ξ.
2� The board is in partial isomorphism over the ξ-th abstraction w.r.t. the linear

order.
3� The board is in partial isomorphism over the ξ-th abstraction w.r.t. edges.
4� θ < ξ after the first round.
5� The game board is in partial isomorphism.

Note that, 1��3� altogether are equivalent to say that “the board is over
the ξ-th abstraction” (w.r.t. both the linear order and edges), which implies 5�

according to the “observation”. Moreover, although all of the conditions should
be ensured simultaneously, in the game Duplicator will first try to ensure 2�,
then 3�, and then 1� and 4�.

In any round, Duplicator will first try to pick (x′, y) such that 1��3� hold.
If she cannot find such a vertex, sheresorts to the (ξ − 1)-th abstraction for a
solution. That is, Duplicator tries to ensure 1��3�, wherein “ξ” is replaced by
“ξ−1” in these requirements; and ξ := ξ−1 at the end of this round. Recall that
in this case Duplicator plays the auxiliary game over the (ξ − 1)-th abstraction.
Suppose the current round is the �-th round.
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In the first round Duplicator is a copycat. It is straightforward to verify that
the board is over the m-th abstraction after this round. This forms the basis
of the proof. In the induction step, we first assume that Duplicator can win
the first � − 1 rounds where 1 < � ≤ m, and 1��4� hold, then we prove that
she can also win the �-th round. Recall that at the start of the �-th round, i.e.
the current round, the board is over the ξ-th abstraction. In the following we
show that Duplicator can ensure that the board is over the (ξ−1)-th abstraction
at the end of the �-th round, provided that the board cannot be over the ξ-th
abstraction. Suppose that (a, b), (a′, b) are a pair of pebbles on the board at
the start of the current round and that Duplicator resorts to the (ξ − 1)-th
abstraction. By definition, θ + � = m + 1. Hence ξ > θ = m − � + 1.

Firstly, to ensure 2�, Duplicator only need to preserve the following, which is
called “abstraction-order-condition”: (1) If [x]ξ ≤ m− � or γ∗

m−ξ − [x]ξ ≤ m− �,
then [x′]ξ = [x]ξ; (2) if m − � < [x]ξ < γ∗

m−ξ − m + �, then m − � < [x′]ξ <
γ∗

m−ξ − m + �. Roughly speaking, it means Duplicator will pick a vertex close to
the boundary of the ξ-th abstraction if and only if Spoiler does so. We can show
that the following claim holds: On condition that the abstraction-order-condition
and 4� hold at the start of the �-th round, the abstraction-order-condition can be
preserved after this round, at the price of decreasing ξ by at most one. To prove
it, it suffices to show that the abstraction-order-condition holds if x is substituted
with a and x′ is substituted with a′, and ξ is substituted by ξ −1. Here is a brief
argument. By induction hypothesis, a − �a�ξ = a′ − �a′�ξ. If [a]ξ = [a′]ξ, then
�a�ξ = �a′�ξ. Therefore, a = a′. It follows that [a]ξ−1 = [a′]ξ−1, which satisfies
the condition (with the substitution). Now, assume [a]ξ = [a′]ξ, which implies
that (�a�ξ, b) and (�a′�ξ, b) are not boundary vertices in the b-th row of the ξ-th
abstraction. Observe that (�a�ξ−1, b) and (�a′�ξ−1, b) satisfy (2) of the condition:
the number of vertices in the (ξ − 1)-th abstraction, which surround a vertex
of index ξ, is βm−ξ+1

m−ξ = 4(ξ − 1) > 4(m − �), with this vertex of index ξ in
the middle of them. Therefore, there are more than 2(m − �) vertices of index
ξ −1 that are on the left side (right side, resp.) of the leftmost (rightmost, resp.)
vertex of index ξ in any row of the structure. Therefore, (2) of the condition
(with the substitution) holds.

Moreover, the abstraction-order-condition implies that Duplicator can ensure
either (L1) [x]ξ ≤ [a]ξ ⇔ [x′]ξ ≤ [a′]ξ or (L2) [x]ξ−1 ≤ [a]ξ−1 ⇔ [x′]ξ−1 ≤ [a′]ξ−1.
Suppose y = b (the other case is trivial). On the one hand, Duplicator will mimic
Spoiler if (x, y) is close to the boundary of the ξ-th abstraction, which implies
(L1). On the other hand, if (x, y) is “far away” (i.e., more than m − � vertices
away) from both boundary vertices of the y-th row of the ξ-th abstraction, and
Duplicator cannot do it without violating 2�, then she resorts to the (ξ − 1)-th
abstraction such that (L2) holds - now intervals in the ξ-th abstraction will turn
into sufficiently large intervals in the (ξ − 1)-th abstraction.

Duplicator can also ensure 3�. Note that, we need to take care of 3� only when
two pebbles are in different rows. Observe that, any vertex in any abstraction
is neither isolated nor adjacent to all the other vertices in the same abstrac-
tion. In other words, Duplicator usually doesn’t have to resort to the (ξ − 1)-th
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abstraction to ensure 3�. She might have to resort to the (ξ − 1)-th abstraction
only when Spoiler picks a boundary vertex (i.e. the first or last vertex in a row)
in the ξ-th abstraction. The point is that Spoiler cannot distinguish the differ-
ence between the interval formed by the boundary in the first abstraction (i.e.
the boundary of the board) and the picked vertex in respective structures via
the linear order, even using all the remaining rounds: Duplicator has a winning
strategy if two linear orders are large enough.

So far, we assume Spoiler picks in the ξ-th abstraction. As explained in
the proof outline, if Spoiler tries to pick below the ξ-th abstraction, Duplicator
regards it as if (�x�ξ, y) were picked and responds by playing the auxiliary game.
Then she needs to ensure that the board is still over the ξ-th abstraction, i.e.
x′ − �x′�ξ = x − �x�ξ, or over the (ξ − 1)-th abstraction if she has to.

Recall that, Duplicator simply mimics in the first round. Hence ξ remains to
be m and θ be m−1 at the end of this round. In addition, ξ decreases by at most
one in each round. Consequently, 4� can be ensured. Finally, 1� can be ensured,
because Duplicator resorts to the auxiliary game over abstractions to determine
her picks. For example, in the case where Spoiler picks in the ξ-th abstraction
and Duplicator replies in the (ξ − 1)-th abstraction, 1� holds since both vertices
are in the (ξ − 1)-th abstraction, i.e. x′ − �x′�ξ−1 = x − �x�ξ−1 = 0.

By Lemma 6, it is easy to see that defining a triangle needs three variables
in FO on finite ordered graphs. Suppose there is a FOk′

formula, where k′ < 3,
to describe a triangle, and assume its quantifier rank is m. Suppose k′ < m. If
it is not true, we can define another logically equivalent formula by artificially
increasing the quantifier rank of the formula. Consequently, Spoiler has a winning
strategy in �2

m(A3,m,B3,m), a contradiction to Lemma 6.
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Abstract. A dominating set D in a graph is a subset of its vertex set
such that each vertex is either in D or has a neighbour in D. From [M.M.
Kanté, V. Limouzy, A. Mary and L. Nourine, On the Enumeration of
Minimal Dominating Sets and Related Notions, SIDMA 28(4):1916–1929
(2014)] we know that the counting (resp. enumeration) of (inclusions-
wise) minimal dominating sets is equivalent to the counting (resp. enu-
meration) of (inclusion-wise) minimal transversals in hypergraphs. The
existence of an output-polynomial time algorithm for the enumeration
of minimal dominating sets in graphs is open for a while, but by now
for several graph classes it was shown that there is indeed an output-
polynomial time algorithm. Since whenever we can count, we can enu-
merate in output-polynomial time, it is interesting to know for which
graph classes one can count the set of minimal dominating sets in poly-
nomial time (it is known that the problem is already #P -complete in
general graphs). In this manuscript we show that for many known graph
classes with an output-polynomial time algorithm for the enumeration
of minimal dominating sets, the counting version is #P -complete, and
for some of them a sub-exponential lower bound is also given (under
#ETH).

1 Introduction

Enumeration is a central area in algorithms, for instance in game theory, data-
base theory, artificial intelligence. An enumeration algorithm is an algorithm that
lists the element of a set without repetitions. As the set to be output is usually
exponential in the size of the input, for instance the input is a graph and the
goal is to output all matchings of the given graph, the time complexity is often
measured by taking into account the cumulated sizes of the input and of the
output. Therefore, we can consider an enumeration algorithm as “efficient” if its
time complexity is bounded by a polynomial on the cumulated sizes of its input
and output, and such enumeration algorithms are called output-polynomial algo-
rithms. Indeed, the enumeration of several vertex/edge subsets, satisfying some
given property, in (hyper)graphs have been considered and for many of them
output-polynomial algorithms have been proposed [9,17], and for others it was
proved that under P �= NP no output-polynomial algorithms exist [17].
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One of the central problems in enumeration area is the Hypergraph Dual-

isation problem due to its numerous applications in several areas such as game
theory, artificial intelligence, database theory and integer linear programming to
cite some (see the survey [9]). The Hypergraph Dualisation problem asks
for the listing of the (inclusion-wise) minimal hitting sets of a hypergraph, i.e.,
a collection of subsets of a ground set. However, despite the long interest on it
during the last fifty years, it is still open whether it admits an output-polynomial
algorithm, and the best known algorithm is the quasi-polynomial time one by
Fredman and Khachiyan [10].

The Minimum Dominating Set problem is a classic and well-studied graph
optimisation problem, and has applications in many areas such as networks and
graph theory [12]. A dominating set in a graph G is a subset D of its ver-
tex set such that each vertex outside D has a neighbour in D. Recently, the
enumeration of all (inclusion-wise) minimal dominating sets of a graph (Dom-

Enum for short) have been investigated and it’s shown in [13] that this problem
admits an output-polynomial algorithm if and only if the Hypergraph Dual-

isation problem admits one. This is interesting in this area because it brings
graph structural theory and one may explain the lack of success in settling the
Hypergraph Dualisation problem as somehow a lack of hypergraph struc-
tural theory. Indeed, the structure of graphs have been used to propose output-
polynomial algorithms for several graph classes, e.g., [11,14], cases that do not
fit under the already known tractable cases of hypergraph classes.

One of the natural ways to obtain an output-polynomial algorithm for
Hypergraph Dualisation is a branching algorithm coupled with a count-
ing algorithm. Let H := (V, E) be a hypergraph, and let tr(H) be the set of
minimal hitting sets of H. From [1] we know that for each x ∈ V , there is a min-
imal hitting set containing x. Now, take some vertex x, and compute #tr(H)
and #tr(H \ x) where H \ x := (V \ {x}, {E \ {x} | E ∈ E}). If the two
values are different, then branch on H \ x and H/x where H/x is the hyper-
graph where we have chosen x to be in all solutions, otherwise branch only on
H/x. If computing #tr(H) can be done in polynomial time for any hypergraph
H, then this algorithm is clearly output-polynomial. One can therefore expect
#Hypergraph Dualisation, the problem of computing #tr(H), to be #P -
complete, and this is indeed the case [8]. However, because the Hypergraph

Dualisation problem and its counting version are central in database theory
or artificial intelligence, many researchers have investigated the counting in sub-
classes of hypergraphs, e.g., those arising from conjunctive queries, and many
tractable cases as well as finer #P -completeness results are obtained, see for
instance [4,8].

Our Results. In this paper we investigate the counting of minimal dominating
sets in the following classes of graphs: split graphs, planar bipartite graphs, line
graphs, chordal bipartite graphs and unit-disk graphs (Sect. 3). It is worth notic-
ing that for all of them, except unit-disk graphs, Dom-Enum have been proved
to admit an output-polynomial algorithm. In all considered cases, we establish
#P -completeness results. While Dom-Enum is central due to its equivalence with



Counting Minimal Dominating Sets 335

the Hypergraph Dualisation problem, its counting version have been con-
sidered, to our knowledge, only in [3,11]. Observe however that the counting of
dominating sets have been considered in the past, e.g., [15,16].

Our reduction technique is the standard one of polynomial interpolation [21]
and uses Vandermonde matrices [18]. We use the following classic #P -complete
problems in our reductions: #Set-Cover, #Vertex-Cover, #Independent-Set

and #Perfect-Matching. A desirable property is that it rules out the existence
of sub-exponential time algorithms, unless #ETH fails. The hypothesis #ETH,
the analogue of ETH in counting problems, is the hypothesis ruling out a 2o(n)

time algorithm for counting the number of satisfiable assignments for a SAT
instance with n variables. While the non-existence of FPRAS algorithms for
counting problems are widely investigated, the non-existence of sub-exponential
time algorithms have been investigated only recently [5], and only few counting
problems are known to admit such sub-exponential lower bounds. We addition-
ally show that the Vandermonde reduction fit very well, modulo small changes,
in the framework introduced in [5] and obtain besides sub-exponential lower
bounds for all considered graph classes, except the unit-disk graphs (Sect. 4).

2 Preliminaries

The power set of a set V is denoted by 2V and we write A \ B to denote the set
difference of A and B. If A is a subset of a ground set V , we write A to denote
the complementary set V \ A of A. For a collection E of subsets of V , we denote
by min(E) the (inclusion-wise) minimal elements of E .

(Hyper)graph Terminology. Our graph terminology is standard, see for instance
[7]. The vertex set of a graph G is denoted by V (G) and its edge set by E(G).
An edge between x and y is denoted by xy (equivalently yx). For a vertex x, we
denote by N(x) the set of neighbours of x, and we let N [x] be N(x) ∪ {x}. For
X ⊆ V (G), N(X) := (

⋃
x∈X N [x]) \ X.

Let G be a graph. For a subset X of V (G) we denote by G[X] the subgraph
of G induced by X and write G \ X for G[V (G) \ X]. A subset I of V (G)
is an irredundant set if for every vertex x in I, there is a vertex y such that
N [y] ∩ I = {x} (such a vertex y is called a private neighbour of x). A subset
D of V (G) is a dominating set of G if every vertex of G is dominated, i.e., is
either in D or has a neighbour in D. It is well-known that every (inclusion-wise)
minimal dominating set is also an (inclusion-wise) maximal irredundant set, but
not all maximal irredundant sets are minimal dominating sets. For instance, if
G is the path a − b − c − d − e, then {b, c} is a maximal irredundant set, but not
a minimal dominating set as e is not dominated. The set of minimal dominating
sets of a graph G is denoted by D(G).

A hypergraph is a pair (V, E ⊆ 2V ) with V its vertex set and E its hyperedge
set. For a hypergraph H, we let min(H) be the hypergraph with hyperedge set
min(E) and vertex set

⋃
E∈min(E) E. A hypergraph H is said simple if min(H) =

H and it is common to denote a simple hypergraph H by its set of hyperedges.
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A transversal of H is a subset T of V that intersects every element of E . The set
of (inclusion-wise) minimal transversals of a simple hypergraph H is denoted by
tr(H), and since tr(tr(H)) = H we can consider tr as a function. It is straightfor-
ward to check that D(G) = tr(N (G)) for every graph G where N (G) is the simple
hypergraph (V (G), {N [x] | x ∈ V (G)}) called closed neighbourhood hypergraph.

Enumeration and Counting Problems. Let two alphabets Σ and Γ . Given a wit-
ness function w : Σ∗ → 2Γ ∗

, its associated enumeration problem is the problem
of listing w(x) for each given x ∈ Σ∗ and an enumeration algorithm for w lists
the elements of w(x) without repetitions. The running time of an enumeration
algorithm A is said to be output polynomial if there is a polynomial p(x, y) such
that all the elements of w(x) are listed in time bounded by p(|x|, |w(x)|) (this
set of problems is denoted by TotalP). The associated counting problem asks
for |w(x)|, and a counting algorithm is an algorithm that outputs |w(x)|, and if
it runs in time polynomial in |x|, then it is called a polynomial time algorithm.
The counting class #P is the set of counting problems with witness functions w
such that (1) whenever y ∈ w(x), then |y| is bounded by a polynomial on |x|,
and (2) given (x, y) we can check in time polynomial in |x| whether y ∈ w(x)
[22]. As for the complexity class NP , there is a set of counting problems known
to be complete for the class #P , under Turing reductions, and an example is the
computation of the permanent of a matrix [22]. We recall that the complexity
class FP is the class of binary relations P (x, y) for which there exist polynomial
time algorithms computing for each x some y such that P (x, y) holds. Observe
that the counting problems for which there exist polynomial time counting algo-
rithms are in FP . It was proved that the counting problems of several sets in
graphs are #P -complete [21]. Notice however that until now there is no known
similar notion of complete problems for TotalP as we still fail to define the right
notion of reduction between enumeration problems.

It is a fifty-year open problem whether, given a hypergraph H = (V, E),
the enumeration problem for tr(H) (known in the literature as Trans-Enum,
see for instance the survey [9]) is in TotalP. Recently, Kanté et al. proved in
[13] that this problem can be polynomially reduced to the enumeration problem
for D(G), given a graph G (a problem called Dom-Enum). Therefore, the two
problems are polynomially equivalent. It is easy to check that, if the following
counting problems can be solved in polynomial time, then the two problems
Dom-Enum and Trans-Enum can be solved by a backtracking algorithm.

Problem. #Dom-Enum

Input. A graph G.
Output. The cardinal of D(G).

Problem. #Trans-Enum

Input. A hypergraph H.
Output. The cardinal of tr(H).
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Nevertheless, as expected both problems are #P -complete.

Theorem 1 ([8]). #Trans-Enum is #P -complete.

From [13] one can derive the #P -completeness of #Dom-Enum. If C is a
class of graphs, we write #Dom-Enum(C) to denote the problem #Dom-Enum

restricted to graphs in C. (Similarly for other enumeration or counting problems
in hypergraphs.)

Theorem 2 (�). #Dom-Enum(co-bipartite graphs) is #P -complete.

It has been recently proved that for several graph classes C, Dom-Enum(C)
admits a positive answer [11,14]. In [11] the authors proved that #Dom-Enum

can be solved in polynomial time for several graph classes including interval
graphs, permutation graphs, circular-arc graphs, trapezoid graphs, etc., and for
fixed k, Dilworth-k graphs, complements of k-degenerate graphs, etc. In this
paper we exhibit several graph classes C for which the problem #Dom-Enum(C)
is #P -complete, and examples are split graphs, chordal bipartite graphs, planar
bipartite graphs and unit-disk graphs.

Main Tools. We introduce here the main known #P -complete problems from
which we will do our reductions. Let G be a graph. A subset S of V (G) is a
vertex-cover if each edge of G has at least one of its endpoints in S. A subset
F of E(G) is a perfect matching if F induces a spanning subgraph of G that is
1-regular.

Problem. #Vertex-Cover (or #Independent-Set)
Input. A graph G.
Output. The number of vertex-covers (or independent sets) in G.

Since whenever S is a vertex-cover, the set V (G) \ S is an independent set,
both problems #Vertex-Cover and #Independent-Set are equivalent.

Theorem 3 ([21]). #Vertex-Cover and #Independent-Set are #P -complete
even with instances restricted to planar bipartite graphs of maximum degree 4.

The following problem is the same as the computation of the permanent of
a matrix [22].

Problem. #Perfect-Matching

Input. A graph G.
Output. The number of perfect matchings in G.

Theorem 4 ([6]). #Perfect-Matching is #P -complete even with instances
restricted to k-regular bipartite graphs for any k ≥ 3.

For a given set V and a set family F ⊂ 2V , a set covering is a subset X of F
such that

⋃
S∈X S = V .
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Problem. #Set-Cover

Input. A set family F ⊂ 2V for some finite set V .
Output. The number of set covers of F .

Theorem 5 ([19]). #Set-Cover is #P -complete.

Our main reduction tool is the notion of Vandermonde matrix. An m × n-
matrix M is a Vandermonde matrix if it is of the following form

M :=

⎛

⎜
⎜
⎜
⎝

1 α1 α2
1 . . . αn−1

1

1 α2 α2
2 . . . αn−1

2

...
...

...
. . .

...
1 αm α2

m . . . αn−1
m

⎞

⎟
⎟
⎟
⎠

.

If all the αi’s are non-zero and m = n, then the determinant of M is non-
zero and is equal to Π1≤i≤j≤n(αj − αi) [18]. Vandermonde matrices are used
in the following setting. Consider that we want to prove that #Dom-Enum(C) is
#P -complete and assume that we dispose of a graph class C′ such that #Vertex-

Cover(C′) is #P -complete. For each G ∈ C′ and each 0 ≤ i ≤ m we construct
a graph Gi ∈ C such that |D(Gi)| =

∑
0≤j≤m f(i)jxj where xj is the number

of edge subsets of G with j edges that are not covered, m being the number of
edges of G. Now, if all the f(i)’s are distinct, then the matrix

M :=

⎛

⎜
⎜
⎜
⎝

1 f(0) f(0)2 · · · f(0)m

1 f(1) f(1)2 · · · f(1)m

...
...

...
. . .

...
1 f(m) f(m)2 · · · f(m)m

⎞

⎟
⎟
⎟
⎠

is a Vandermonde matrix, and so if we assume that we can count in polynomial
time the number of minimal dominating sets of any graph in C, then we could
resolve the following system of linear equations in polynomial time

M · (x0 x1 · · · xm

)t
=
(|D(G0)| |D(G1)| · · · |D(Gm)|)t

since the determinant of M is non null. Hence, we could solve in poly-
nomial time #Vertex-Cover(C′), contradicting its #P -completeness. Poly-
nomial interpolations using Vandermonde matrices allow to obtain sub-
exponential lower bounds. The Exponential Time Hypothesis (ETH for
short) says that given a SAT formula, with n variables, there is no algo-
rithm with running time 2o(n) checking whether it is satisfied. The count-
ing part #ETH says similarly that there is no 2o(n) counting algorithm for
the positive assignments. Recently [5], it has been proved that, under #ETH,
several counting problems in sparse graphs do not admit a 2o(n) count-
ing algorithm, e.g., #Perfect-Matching(sparse bipartite graphs), #Vertex-

Cover(sparse line graphs). We will explain in Sect. 4 how to apply the block
interpolation introduced in [5] to get sub-exponential lower bounds.
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3 #P -Completeness Results

The following is our set of #P -complete results. As in [21], if C is a class of
graphs, we write kΔ-C to denote the graphs in C of maximum degree k.

Theorem 6. There is a Turing reduction using Vandermonde matrices from

1. #Set-Cover to #Dom-Enum(split graphs). (�)
2. #Vertex-Cover(bipartite graphs) to #Dom-Enum(bipartite graphs).
3. #Perfect-Matching(sparse bipartite graphs) to #Dom-Enum(line graphs).
4. #Independent-Set(sparse graphs) to #Dom-Enum(chordal bipartite graphs).(�)
5. #Vertex-Cover(4Δ-planar bipartite graphs) to #Dom-Enum(unit-disk graphs).

We can derive the following lower bounds from [5], but we will improve them
in Sect. 4.

Corollary 1. Assuming #ETH, there is no 2o(
√

n) time algorithm for #Dom-

Enum even restricted to the following graph classes: line graphs, bipartite graphs,
chordal bipartite graphs and split graphs.

If S is a set, we denote by S′ := {s′ | s ∈ S} a disjoint copy of S. Whenever we
need to identify the two parts of a bipartite graph G, we denote it by (U1, U2, E)
where U1 and U2 are its two independent set parts and E is the edge set.

If S is a vertex cover of a graph G, we denote by uncovG(S) the number of
edges not covered by S. The length of a path is its number of edges. If v is a vertex
of a graph G and H is a graph with a distinguished vertex v′, called vertex-gadget,
then the graph obtained from G by attaching H to v is the graph obtained from
the disjoint union of G and H by identifying v and v′. And, similarly if H is
a graph with two distinguished vertices u′ and v′, called edge-gadget, then the
graph obtained from G by attaching H to uv is the graph obtained from the
disjoint union of G and H by identifying u with u′ and v with v′.

Proof (of Theorem 6(2)). Let H := (U,F ) be a (planar) graph. We construct the
bipartite graph G = (V,E) obtained from H by subdividing each edge once and
adding a pendant vertex to each vertex of H. In other words, V := U ∪ U ′ ∪ F
and E is the set {uu′ | u ∈ U}∪{fu, fv | f = uv ∈ F}. For each positive integer
i we denote by Gi the graph obtained from G by attaching i paths of length
three to each vertex f ∈ F . It is straightforward to check that Gi is planar if H
is planar.

Since for each vertex u ∈ U , the vertex u′ ∈ U ′ is a pendant vertex of u, then
any minimal dominating set of Gi includes exactly one of u and u′. Therefore, for
any minimal dominating set D of Gi, no vertex in U can be a private neighbour
of f ∈ F ∩ D.

Let S ⊆ U and let D be a minimal dominating set of Gi such that D∩U = S.
Let f ∈ F ∩ N [S]. Then for all paths f − x − y − z attached to f , D contains
either y or z, and if f ∈ D, then for at least one of the paths f − x − y − z
the vertex z is in D. So, for each f ∈ N [S] ∩ F , we can extend S into at least
2i + 2i − 1 minimal dominating sets. Let now f ∈ F \ N [S]. If f ∈ D, then for
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any path f − x − y − z attached to f , D contains exactly either y or z, and if
f /∈ D, then for each path f − x − y − z attached to f D contains either y or
(x and z), or D contains x and y for exactly one path f − x − y − z among the
paths attached to f . So, for each f ∈ F \ N [S] we can extend S into at least
2i+1 + 2i−1 + i − 1 minimal dominating sets.

Moreover, since each S ⊆ U is an irredundant set (each vertex has its copy as
a private neighbour) and can be extended to a minimal dominating set excluding
U \ S, the minimal dominating sets of Gi are characterised by their intersection
with U .

Let xj be the number of sets included in U such that uncovH(S) = j and
let bi be the number of minimal dominating sets of Gi. Observe that x0 is the
number of vertex covers of H. Then, from above

bi =
|F |∑

j=0

(

(2i+1 − 1)|F | ×
(

2i+1 + 2i−1 + i − 1
2i+1 − 1

)j
)

× xj

= (2i+1 − 1)|F | ×
⎛

⎝
|F |∑

j=0

(
2i+1 + 2i−1 + i − 1

2i+1 − 1

)j

× xj

⎞

⎠ .

So, we have the following equality by letting ai := 2i+1+2i−1+i−1
2i+1−1 , ci := (2i+1 −

1)|F |

⎛

⎜
⎜
⎜
⎜
⎝

1 a1 a2
1 · · · a

|F |
1

1 a2 a2
2 · · · a

|F |
2

...
...

...
. . .

...
1 a|F |+1 a2

|F |+1 · · · a
|F |
|F |+1

⎞

⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

x0

x1

...
x|F |

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

b1
c1
b2
c2
...

b|F |+1

c|F |+1

⎞

⎟
⎟
⎟
⎟
⎠

.

Since ai �= aj for any i �= j, we can conclude the proof.
��

Proof (of Theorem 6(3)). Since minimal dominating sets in line graphs and
minimal edge dominating sets in graphs coincide, we will reduce #Perfect-

Matching to the enumeration of minimal edge dominating sets.
Let H = (U,F ) be a (bipartite) graph. We let G = (V,E) be obtained from

H by subdividing each edge once. For a pair of positive integers i and j, we let
Gij be the graph obtained from G by attaching i edges to each f ∈ F , and j
edges to each u ∈ U . Of course, Gij can be constructed in polynomial time in
|U | + |F | + i + j.

Let S ⊆ F and let D be a minimal edge dominating set of Gi such that
D ∩ F = S. Then, D does not include any of the i edges attached to f ∈ F
whenever S includes an edge incident to f ; otherwise it contains exactly one
of the i edges attached to f . Similarly, D does not include any of the j edges
attached to u ∈ U if S includes an edge incident to u; otherwise it includes
exactly one the j edges attached to u. Let p(S) be the number of vertices in U
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incident to no edge of S, and q(S) be the number of vertices in F adjacent to
no edge of S. The number of such minimal edge dominating sets in Gij is then
iq(S) · jp(S).

Let xi,j be the number of irredundant sets S included in F such that q(S) = i
and p(S) = j, and let bij be the number of minimal edge dominating sets in Gij .
Then, we have the equation bij =

∑
0≤k≤|F |,0≤�≤|U | i

k · j� · xk,�.
When q(S) = 0 and p(S) = |F | − |U |/2, the vertices in S ∩F forms a perfect

matching of H, thus x0,(|F |−|U |/2) is the number of perfect matchings in H. We
now explain how to construct a solvable system of linear equations with variables
the xij ’s.

Let A and C be Vandermonde (|F | + 1) × (|F | + 1) and (|U | + 1) × (|U | + 1)-
matrices such that aij := ij−1 and cij := ij−1. We have the following equality
(for convenience n = |U | + 1 and m = |F | + 1)

⎛

⎜
⎜
⎜
⎝

c11A c12A · · · c1nA
c21A c22A · · · c2nA
...

...
. . .

...
cn1A cn2A · · · cnnA

⎞

⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

x0,0

...
x0,n−1

...
xm−1,n−1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

b11
...

b1n

...
bmn

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Because A and C are non-singular matrices, it is not hard to prove that the
matrix

⎛

⎜
⎜
⎜
⎝

c11A c12A · · · c1nA
c21A c22A · · · c2nA
...

...
. . .

...
cn1A cn2A · · · cnnA

⎞

⎟
⎟
⎟
⎠

is non-singular, and hence one can solve the above system of equations in poly-
nomial time, concluding the proof. ��

A planar grid embedding of a 4Δ-planar graph G is a planar embedding Q
of G on a grid such that the vertices of G are mapped to the points of the grid
and each edge uv of G is mapped into a path in the grid between Q(u) and
Q(v). Notice that in a planar grid embedding two edges do not intersect, except
possibly on their endpoints when they are adjacent. Before continuing let us
consider the number of minimal dominating sets in paths.

Let Pn := 1 − 2 − · · · − n be the path with n vertices. For positive integers
n and k, we let Pn,k be the graph obtained from the path Pn by replacing
the vertices 1 and n by cliques of size k, the vertices in each clique having the
same neighbours as the initial end-point. We let Fk(n) be the set of minimal
dominating sets of Pn,k, Gk(n) the set {D ⊆ V (Pn,k) | V (Pn,k) \ C(1) ⊆ N(D)
and each vertex of D has a private neighbour in V (Pn,k) \ C(1)}, and by Hk(n)
the set {D ⊆ V (Pn,k) | V (Pn,k) \ (C(1) ∪ C(n)) ⊆ N(D) and each vertex of D
has a private neighbour in V (Pn,k) \ (C(1) ∪ C(n))} where C(1) and C(n) are
the two cliques of size k. We also denote by fk(n), gk(n), hk(n) and ghk(n) the
sizes of respectively Fk(n), Gk(n), Hk(n) and Gk(n) ∩ Hk(n).
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Lemma 1 (�). For all n ≥ 14, all distinct k, � ≥ 0

fk(n)
ghk(n)

�= f�(n)
gh�(n)

.

We are now ready to prove the last statement of Theorem 6.

Proof (of Theorem 6(5)). Let H := (U,F ) be a planar bipartite graph of maxi-
mum degree 4. From [20] H admits a planar embedding on a grid of size O(n2)
and such a planar embedding can be found in polynomial time. Moreover, the
length of every edge is bounded by O(n). By stretching some sides of the grid we
can assume that all edges have the same euclidean length c = O(n). We remove
from H all the non-necessary vertices and edges, and let G be the plane graph
obtained from the planar grid embedding of H by adding a pendant edge to each
vertex v of H; each such pendant edge is mapped into one of the faces incident
with v, say the upper right one. We moreover assume that the euclidean distance
between u and its new pendant vertex u′ is 1. For each i, we let Gi be the graph
obtained from G by replacing each grid path representing an edge of H by a copy
of Pc,i. It is not hard to check that Gi is indeed a unit-disk: place in each point
Q(v) for v ∈ U a unit disk, and now we can turn around Q(v) and place a unit
disk representing each of its at most 5+ i neighbours; the paths representing the
edges of H can be replaced by paths of c unit disks. For convenience, for each
edge uv of H, we denote by Q(uv) the induced graph Pc,i of Gi corresponding
to the edge uv, excluding u and v.

First notice that a minimal dominating set of Gi cannot contain both u and
its copy u′, but because u′ is a pendant vertex either u or u′ should be included
in any minimal dominating set. Let S ⊆ U and let D be a minimal dominating
set of Gi such that D ∩ U = S. Let e be an edge of H. If none of the two end-
points of Q(e) are dominated by S, then the number of possible ways to extend
S into D is the number of minimal dominating sets of Q(e), i.e., fi(c). Assume
now that at least one of the end-points of Q(e) is dominated by S, then the
number of possible ways to extend S into D is the number of (inclusion-wise)
minimal sets that dominate Q(e), except possibly one or two of its end-points,
i.e., ghi(c). Similarly, any minimal dominating set D of Gi can be obtained in
this way from D ∩ U .

Now, let xj be the number of vertex sets S ⊆ U such that uncovH(S) = j
and let bi be the number of minimal dominating sets of Gi. Recall again that x0

is the number of vertex covers of H. Then the following equation is obtained

bi =

|F |∑

j=0

fi(c)
j · ghi(c)

m−j · xj = ghi(c)
m ×

⎛

⎝
|F |∑

j=0

(
fi(c)

ghi(c)

)j

· xj

⎞

⎠ .
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If we let b′
i := bi

ghi(c)m
and αi := fi(c)

ghi(c)
, we have the following Vandermonde

matrix
⎛

⎜
⎜
⎜
⎜
⎝

1 α1 α2
1 · · · α

|F |
1

1 α2 α2
2 · · · α

|F |
2

...
...

...
. . .

...

1 α|F |+1 α2
|F |+1 · · · α

|F |
|F |+1

⎞

⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜
⎝

x0

x1

...
x|F |

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

b′
1

b′
2

...
b′
|F |+1

⎞

⎟
⎟
⎟
⎠

.

By Lemma 1 αi �= αj for i �= j, and hence we can conclude the statement. ��

4 Sub-exponential Lower Bounds Under #ETH

We use the block interpolation technique introduced in [5] to provide sub-
exponential lower bounds for some of the considered graph classes. We will more
or less follow the same notations as in [5]. A graph polynomial is a function
p that maps a graph G to a polynomial p(G) ∈ Q[x] where x is some count-
able ordered set of indeterminates. If p ∈ Q[x] has only one variable, then it
is called univariate, otherwise it is called multivariate. For a graph polynomial
p, we define the following computational problems Coeff(p) and a family of
problems EvalS(p) for S ⊆ Q such that

Coeff(p). On input G, compute all coefficients of p(G),
EvalS(p). On input G and a ∈ Sd, evaluate p(G) on a, where d is the number

of indeterminates. If p is univariate and S = {a} is a singleton, we simply
write Evala(p) which asks for evaluating p(G) on a.

As in [5], if p is a multivariate polynomial, and G′ is a weighted graph (with
weights on vertices and/or edges) with vertices/edges ordered, then p(G′) denote
the evaluation of p on input G′, and with values of indeterminates the weights
on vertices and/or edges.

Let G be the set of all finite undirected graphs and let F := V ∪ E denote
the countable set of all vertices and edges of such graphs. For a sieve function
χ : G × 2F → Q and a weight function ω : G × 2F → 2F , we let pχ,ω, called
subset-admissible, be the univariate graph polynomial

pχ,ω(G;x) :=
∑

A⊆V (G)∪E(G)

χ(G, A) · x|ω(G,A)|.

The multivariate generalisation polynomial pχ,ω on indeterminates x := {xa |
x ∈ F} of pχ,ω is the multivariate polynomial given by

pχ,ω(G;x) :=
∑

A⊆V (G)∪E(G)

χ(G, A)
∏

x∈ω(G,x)

xa.

Definition 1 ([5]). A sub-exponential reduction family from problem A to
problem B is an algorithm T with oracle access to B. Its inputs are pairs (G, ε)
where G is an input graph for A, ε with 0 < ε ≤ 1 is a runtime parameter, such
that
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1. T computes A(G), and it does so in time f(ε) · 2ε·|V (G)| · |V (G)|O(1),
2. T invokes the oracle B on graphs G′ with at most g(ε).(|V (G)| + |E(G)|)

vertices.

The functions f and g are computable functions that depend only on ε, and we
write A ≤serf B. If T invokes the oracle on instances with O(g(ε).(|V (G)| +
|E(G)|)) edges, then we say that it preserves sparsity.

It is worth mentioning that R. Curticapean considered in [5] only sub-
exponential reduction families that preserve sparsity as he was mostly interested
in obtaining lower bounds for sparse graphs. However, the set of the following
lemmas proved in [5] can be straightforwardly adapted to those that do not pre-
serve sparsity as long as we are only interested in sub-exponential lower bounds
depending on the number of vertices.

Lemma 2 ([5]). If A ≤serf B and B can be solved in time 2o(n)nO(1) on graphs
with n vertices, then A can be solved in time 2o(n)nO(1) on graphs with n vertices.
If the reduction preserves sparsity, then if B can be solved in time 2o(n)nO(1) on
graphs with n vertices and O(n) edges, then so is A.

Lemma 3 ([5]). Let p be subset-admissible, with multivariate generalisation p,
and let W := (w0, w1, . . .) be an infinite countable ordered sequence of pairwise
distinct numbers in Q. Then Coeff(p) ≤serf EvalW (p) by a reduction that
preserves sparsity and satisfies the following for all inputs (G, ε): there is some d
depending only on ε such that all queries p(G′) are asked on graphs G′ obtained
from G by introducing edge-weights from Wd := {w0, . . . , wd}.

The following notion is a slight modification of a similar one in [5], where q
equals p.

Definition 2. Let p and q be subset-admissible, let a ∈ Q, and

1. let H := (H0,H1, . . .) be a countable sequence of vertex/edge-gadgets,
2. let W := (w0, w1, . . . , ) be a countable sequence of pairwise distinct values

in Q,
3. let F : G × Q → Q \ {0} be a polynomial computable function, called factor

function

Let G be an admissible weighted graph with weights from W , i.e., if a vertex has
weight wi, then Hi is a vertex-gadget, and if the edge uv has weight wj then Hj

is an edge-gadget. Let T (G) be obtained from G by attaching, for i, j ∈ N, each
vertex of weight wi a copy of Hi, and similarly attach to each edge uv of weight
wj a copy of Hj.

The pair (H,W ) allows to reduce EvalW (p) to Evala(q) if for each admis-
sible weighted graph with weights from W , p(G) = q(T (G),a)

F (G,a) .

The proof of the following is the same as [5, Theorem 3.10] and uses Lemma 3.
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Theorem 7 ([5]). Let p and q be subset-admissible, and let a ∈ Q be fixed.
Assuming #ETH, the problem Evala(q) admits no 2o(n) time algorithm on
unweighted graphs with n vertices, provided that the following two conditions
hold:

1. Assuming #ETH, the problem Coeff(p) admits no 2o(n) algorithm on graphs
with n vertices.

2. There is a countable sequence W := (w0, w1, . . .) of pairwise distinct weights,
a countable sequence of vertex/edge gadgets H := (H0,H1, . . .) and a factor
function F such that (H, F ) allows to reduce EvalW (p) to Evala(q).

Sparsity is preserved if we use sub-exponential reduction families that preserve
sparsity.

For a graph G, let dm(G) :=
∑

A⊆V (G)

[A ∈ D(G)] · x|A|. It is clear that dm is

subset admissible and Eval1(dm) computes the number of minimal dominating
sets of a graph.

Theorem 8 (�). Assuming #ETH, there is no 2o(n) time algorithm for #Dom-

Enum in graphs with n vertices even restricted to the following graph classes:
line graphs, bipartite graphs, chordal bipartite graphs, split graphs.

Proof (Sketch). The idea consists in exhibiting from the proofs of Theorem 6 that
there is a polynomial p such that Coeff(p) does not admit a sub-exponential
time algorithm, and that there is a pair (H,W ) that allows to reduce EvalW (p)
to Eval1(dm). We exhibit the case of line graphs as a proof concept.

Let Wv := (wv
t )t∈N with wv

t := t and Hv := (Hv
t )t∈N with Hv

t , a vertex-
gadget, a star with j leaves, its center being distinguished. Let We := (we

t )t∈N

with we
t := t and He := (He

t )t∈N with He
t , an edge-gadget, a path ut − zt − vt,

(ut, vt) the distinguished vertices, with t edges attached to zt. We let W :=
Wv ∪ We and H := Hv ∪ He.

Let H := (U,F ) be a bipartite graph. For an irredundant set S ⊆ F , i.e.,
each edge has an edge as a private neighbour, we let q(S) be the set of vertices
in U not incident with an edge of S, and let p(S) be the set of edges in F not
adjacent to an edge in S. We let

ppm(H) :=
∑

S⊆F

[S irredundant set] · x|q(S)| · y|p(S)|.

As observed in the proof of Theorem 6(3), the coefficient of x0y|F |−|U |/2 gives
the number of perfect matchings of H. Hence, from [5] Coeff(ppm) does not
admit a 2o(n) time algorithm on bipartite graphs with n vertices and O(n) edges
under #ETH.

While ppm is not univariate, its multivariate generalisation ppm is well-
defined, and the proof of Lemma 3 can be slightly modified so that Coeff(ppm)
≤serf EvalW (ppm). So, let H be a bipartite graph with vertex/edge-weights
from W . From the proof of Theorem 6(3), ppm(H) = dm(T (G), 1). Hence, with
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F (H, 1) = 1, (H, F ) allows to reduce EvalW (ppm) to Eval1(dm). Therefore,
we can deduce from Theorem 7 that #Dom-Enum(line graphs) does not admit
a 2o(n) time algorithm under #ETH on line graphs with n vertices and O(n)
edges. ��

5 Conclusion

We have proposed #P -completeness proofs for #Dom-Enum in some graph
classes and give sub-exponential lower bounds, under #ETH. While it seems
unlikely to have a dichotomy theorem between tractable and #P -complete
classes, it would be nice to consider graph classes for which such a dichotomy
can be obtained. We conjecture however that on chordal graphs a dichotomy
theorem can be obtained. A k-sun is a graph obtained from a cycle of length 2k
(k ≥ 3) by adding edges to make the even-indexed vertices pairwise adjacent.
Strongly chordal graphs are exactly chordal graphs without k-suns, for k ≥ 3.

Conjecture 1. Let C be a class of chordal graphs. If C does not contain a k-sun as
an induced subgraph, for k ≥ 4, then #Dom-Enum(C) is in FP. Otherwise, #Dom-

Enum(chordal graphs) can be reduced to #Dom-Enum(C) via Turing reductions.

The block interpolation used to obtain sub-exponential lower bounds fails
in face of planar graphs. The reduction in [21] from #Vertex-Cover showing
that #Vertex-Cover(planar bipartite graphs) is #P -complete uses a planari-
sation gadget that removes crossings. Since, even sparse graphs may have huge
number of crossings in any embedding on the plane, the block interpolation
technique fails. We ask whether sub-exponential time algorithms exist for #Dom-

Enum(planar bipartite graphs) and #Dom-Enum(unit-disk graphs). We observe
that fast exponential time algorithms for counting minimal dominating sets have
been investigated, see for instance [2].
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Abstract. Voter control problems model situations in which an exter-
nal agent tries to affect the result of an election by adding or deleting the
fewest number of voters. The goal of the agent is to make a specific can-
didate either win (constructive control) or lose (destructive control) the
election. We study the constructive and destructive voter control prob-
lems when adding and deleting voters have a combinatorial flavor : If we
add (resp. delete) a voter v, we also add (resp. delete) a bundle κ(v)
of voters that are associated with v. While the bundle κ(v) may have
more than one voter, a voter may also be associated with more than one
voter. We analyze the computational complexity of the four voter control
problems for the Plurality rule.

We obtain that, in general, making a candidate lose is computation-
ally easier than making her win. In particular, if the bundling relation is
symmetric (i.e. ∀w : w ∈ κ(v) ⇔ v ∈ κ(w)), and if each voter has at most
two voters associated with him, then destructive control is polynomial-
time solvable while the constructive variant remains NP-hard. Even if
the bundles are disjoint (i.e. ∀w : w ∈ κ(v) ⇔ κ(v) = κ(w)), the con-
structive problem variants remain intractable. Finally, the minimization
variant of constructive control by adding voters does not admit an effi-
cient approximation algorithm, unless P = NP.

1 Introduction

Since the seminal paper by Bartholdi III et al. [3] on controlling an election by
adding or deleting the fewest number of voters or candidates with the goal of
making a specific candidate to win (constructive control), a lot of research has
been devoted to the study of control for different voting rules [4,13,15,20,22,23],
on different control modes [16,17], or even on other controlling goals (e.g. aiming
at several candidates’ victory or a specific candidate’s defeat) [19,25]. Recently,
Bulteau et al. [8] introduced combinatorial structures to constructive control by
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adding voters: When a voter is added, a bundle of other voters is added as well.
A combinatorial structure of the voter set allows us to model situations where an
external agent hires speakers to convince whole groups of people to participate
in (or abstain from) an election. In such a scenario, convincing a whole group of
voters comes at the fixed cost of paying a speaker. Bulteau et al. [8] model this
by defining a bundle of associated voters for each voter which will be convinced
to vote “for free” when this voter is added or deleted. Moreover, the bundles of
different voters could overlap. For instance, convincing two bundles of two voters
each to participate in the election could result in adding a total of four, three or
even just two voters.

We extend the work of Bulteau et al. [8] and investigate the cases where the
agent wants to make a specific candidate win or lose by adding (resp. deleting)
the fewest number of bundles. We study one of the simplest voting rules, the
Plurality rule, where each voter gives one point to his favorite candidate, and the
candidate with most points becomes a winner. Accordingly, an election consists
of a set C of candidates and a set V of voters who each have a favorite candidate.
Since real world elections typically contain only a small number of candidates,
and a bundle of voters may correspond to a family with just a few members, we
are especially interested in situations where the election has only few candidates
and the bundle of each voter is small. Our goal is to ensure that a specific
candidate p becomes a winner (or a loser) of a given election, by convincing
as few voters from an unregistered voter set W as possible (or as few voters
from V as possible), together with the voters in their bundles, to participate
(or not to participate) in the election. We study the combinatorial voter control
problems from both the classical and the parameterized complexity point of
view. We confirm Bulteau et al.’s conjecture [8] that for the Plurality rule, the
three problem variants: combinatorial constructive control by deleting voters
and combinatorial destructive control by adding (resp. deleting) voters, behave
similarly in complexity to the results of combinatorial constructive control by
adding voters: They are NP-hard and intractable even for very restricted cases.
We can also identify several special cases, where the complexity of the four
problems behave differently. For instance, we find that constructive control tends
to be computationally harder than destructive control. We summarize our results
in Table 1.

Related Work. Bartholdi III et al. [3] introduced the complexity study of
election control problems and showed that for the Plurality rule, the non-
combinatorial variant of the voter control problems can be solved in linear time
by a using simple greedy strategy. We refer the readers to the work by Faliszewski
and Rothe [14], Rothe and Schend [26] for general expositions on election control
problems.

In the original election control setting, a unit modification of the election
concerns usually a single voter or candidate. The idea of adding combinatorial
structure to election voter control was initiated by Bulteau et al. [8]: Instead
of adding a voter at each time, one adds a “bundle” of voters to the elec-
tion, and the bundles added to the election could intersect with each other.
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They showed that combinatorial constructive control by adding the fewest num-
ber of bundles becomes notorious hard, even for the Plurality rule and for only
two candidates. Chen [9] mentioned that even if each bundle has only two voters
and the underlying bundling graph is acyclic, the problem still remains NP-hard.
Bulteau et al. [8] and Chan [9] conjectured that

“the combinatorial addition of voters for destructive control, and combina-
torial deletion of voters for either constructive or destructive control behave
similarly to combinatorial addition of voters for constructive control.”

The combinatorial structure notion for voter control has also been extended
to candidate control [10] and electoral shift bribery [7].

Paper Outline. In Sect. 2, we introduce the notation used throughout the
paper. In Sect. 3 we formally define the four problem variants, summarize our
contributions, present results in which the four problem variants (constructive
or destructive, adding voters or deleting voters) behave similarly, and provide
reductions between the problem variants. Sections 4, 5 and 6 present our main
results on three special cases

(1) when the bundles and the number of candidates are small,
(2) when the bundles are disjoint, and
(3) when the solution size could be unlimited.

We conclude in Sect. 7 with several future research directions. Due to space
restrictions, some proofs are deferred to our technical report [21].

2 Preliminaries

The notation we use in this paper is based on Bulteau et al. [8]. We assume
familiarity with standard notions regarding algorithms and complexity theory.
For each z ∈ N we denote by [z] the set {1, . . . , z}.

Elections. An election E = (C, V ) consists of a set C of m candidates and a
set V of voters. Each voter v ∈ V has a favorite candidate c and we call voter v
a c-voter. Note that since we focus on the Plurality rule, we simplify the notion
of the preferences of voters in an election to the favorite candidate of each voter.
For each candidate c ∈ C and each subset V ′ ⊆ V of voters, the (Plurality)
score sc(V ′) of candidate c with respect to the voter set V ′ is defined as the
number of voters from V ′ that have her as favorite candidate. We say that a
candidate c is a winner of election (C, V ) if c has the highest score sc(V ). For
the sake of convenience, for each C ′ ⊆ C, a C ′-voter denotes a voter whose
favorite candidate belongs to C ′.

Combinatorial Bundling Functions. Given a voter set X, a combinatorial
bundling function κ : X → 2X (abbreviated as bundling function) is a function
that assigns a set of voters to each voter; we require that x ∈ κ(x). For the sake
of convenience, for each subset X ′ ⊆ X, we define κ(X ′) =

⋃
x∈X′ κ(x). For a
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voter x ∈ X, κ(x) is named x’s bundle; x is called the leader of the bundle. We
let b denote the maximum bundle size of a given κ. Formally, b = maxx∈X |κ(x)|.
One can think of the bundling function as subsets of voters that can be added
at a unit cost (e.g. κ(x) is a group of voters influenced by x).

Bundling Graphs. The bundling graph of an election is a model of how the
voters’ bundles interact with each other. Let κ : X → 2X be a bundling function.
The bundling graph Gκ = (V (Gκ), E(Gκ)) of κ is a simple, directed graph, where
for each voter x ∈ X there is a vertex x ∈ V (Gκ) with the same name, and for
each two distinct voters y, z ∈ X with z ∈ κ(y), there is an arc (y, z) ∈ E(Gκ).

We consider three special cases of bundling functions/graphs which we think
are natural in real world. We say that a bundling function κ is symmetric if
for each two distinct voters x, y ∈ X, it holds that y ∈ κ(x) if and only if
x ∈ κ(y). The bundling graph for a symmetric bundling function always has two
directed arcs connecting each two vertices. Thus, we can assume the graph to
be undirected.

We say that κ is disjoint if for each two distinct voters x, y ∈ X, it holds that
either κ(x) = κ(y) or κ(x)∩κ(y) = ∅. It is an easy exercise to verify that disjoint
bundling functions are symmetric and the corresponding undirected bundling
graphs consist only of disjoint complete subgraphs.

We say that κ is anonymous if for each two distinct voters x and y with the
same favorite candidate, it holds that κ(x) = κ(y), and that for all other voters z
we have x ∈ κ(z) if and only if y ∈ κ(z).

Example 1. For an illustration, consider the following election E := (C =
{a, b, c}, V = {v1, v2, . . . , v5}) in which the favorite candidate of voters v1, v2, v3
is a, the favorite candidate of v4 is b, and the favorite candidate of v5 is c. The
bundling graph corresponding to the bundling function of this election could be
either the left or the right figure as depicted below. Note that the label above
or below the circle (which represents the vertex) denotes the name of the voter
and the label inside the circle indicates his favorite candidate. For instance, in
the left figure below, the leftmost circle corresponds to voter v1 and his favorite
candidate is a.

a

a

a

b c
v1

v2

v3

v4 v5

a

a

a

b c
v1

v2

v3

v4 v5

The bundling function corresponding to the left bundling graph is symmetric,
but neither disjoint nor anonymous. The bundling function corresponding to the
right bundling graph is symmetric, disjoint, and anonymous.

Parameterized Complexity. An instance (I, r) of a parameterized problem
consists of the actual instance I and of an integer r referred to as the para-
meter [12,18,24]. A parameterized problem is called fixed-parameter tractable
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(in FPT) if there is an algorithm that solves each instance (I, r) in f(r) · |I|O(1)

time, where f is a computable function depending only on the parameter r.
There is also a hierarchy of hardness classes for parameterized problems, of

which the most important ones are W[1] and W[2]. One can show that a para-
meterized problem L is (presumably) not in FPT by devising a parameterized
reduction from a W[1]-hard or a W[2]-hard problem to L. A parameterized reduc-
tion from a parameterized problem L to another parameterized problem L′ is a
function that acts as follows: For two computable functions f and g, given an
instance (I, r) of problem L, it computes in f(r) · |I|O(1) time an instance (I ′, r′)
of problem L′ so that r′ ≤ g(r) and that (I, r) ∈ L if and only if (I ′, r′) ∈ L′.
For a survey of research on parameterized complexity in computational social
choice, we refer to Betzler et al. [5] and Bredereck et al. [6].

3 Central Problem

We consider the problem of combinatorial voter control in four variants. The
variants differ in whether they are constructive or destructive, meaning that the
goal is to make one selected candidate win or lose the election. This goal can be
achieved by either adding voters to or deleting voters from the given election.
Due to space constraints, we only provide the definition of constructive control.
Destructive control is defined analogously.

COMBINATORIAL CONSTRUCTIVE CONTROL BY ADDING

(resp. DELETING) VOTERS [ (resp. C-CONS-DEL)]
Input: An election E = (C, V ), a set W of unregistered voters with

V ∩ W = ∅, a bundling function κ : W → 2W (resp. κ : V → 2V ),
a preferred winner p ∈ C, and an integer k ∈ N

Quest.: Is there a size-at-most k subset W ′ ⊆ W (resp. V ′ ⊆ V ) of voters such
that p wins the election (C, V ∪ κ(W ′)) (resp. (C, V \ κ(V ′)))?

It is straight-forward to see that all four problem variants are contained in NP
since we can check in polynomial time whether a given subset W ′ (or V ′) is a
desired solution of size at most k.

Throughout this work, when speaking of the “adding” or “deleting” variants,
we mean those variants in which voters are added or, respectively, deleted. In
similar fashion, we speak of the constructive and destructive (abbr. by “Cons”
and by “Des”, respectively) problem variants. Further, we refer to the set W ′

of voters as the solution for the “adding” variants (the set V ′ of voters for the
“deleting” variants, respectively) and denote k as the solution size.

Our Contributions. We study both the classical and the parameterized com-
plexity of the four voter control variants. We are particularly interested in the
real-world setting where the given election has a small number of candidates
and where only a few voters are associated to a voter. On the one hand, we
were able to confirm the conjecture given by Bulteau et al. [8] and Chan [9]
that when parameterized by the solution size, C-Cons-Del, C-Des-Add, and
C-Des-Del are all intractable even for just two candidates or for bundle sizes
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of at most three, and that when parameterized by the number of candidates,
they are fixed-parameter tractable for anonymous bundling functions. On the
other hand, we identify interesting special cases where the four problems differ
in their computational complexity. We conclude that in general, destructive con-
trol tends to be easier than constructive control: For symmetric bundles with at
most three voters, C-Cons-Add is known to be NP-hard, while both destructive
problem variants are polynomial-time solvable. For disjoint bundles, construc-
tive control is parameterized intractable (for the parameter “solution size k”),
while destructive control is polynomial-time solvable. Unlike for C-Cons-Del,
a polynomial-time approximation algorithm for C-Cons-Add does not exist,
unless P = NP. Our results are gathered in Table 1.

Table 1. Computational complexity of the four combinatorial voter control variants
with the Plurality rule. The parameters are “the solution size k”, “the number m of
candidates” and “the maximum bundle size b”. We refer to |I| as the instance size.
The rows distinguish between different maximum bundle sizes b and the number m
of candidates. All parameterized intractability results are for the parameter “solution
size k”. ILP-FPT means FPT based on a formulation as an integer linear program and
the result is for the parameter “number m of candidates”.

C-Cons-Add C-Cons-Del C-Des-Add C-Des-Del References

κ symmetric

b = 2 O(|I|) P O(m · |I|) O(m · |I|) Observation 2,

Theorem 3

Theorem 5

b = 3

m = 2 O(|I|5) O(|I|5) O(|I|5) O(|I|5) Theorem 2,

Corollaries 1+2

m unbounded NP-h NP-h O(m · |I|5) O(m · |I|5) Observation 1,

Proposition 2,

Corollary 2

b unbounded

m = 2 W[2]-h W[2]-h W[2]-h W[2]-h [8], Theorem 1

m unbounded

and κ disjoint

W[1]-h W[2]-h O(m · |I|) O(m · |I|) Theorems 4+5

κ anonymous ILP-FPT ILP-FPT ILP-FPT ILP-FPT Theorem 1

κ arbitrary

b = 3, m = 2 W[1]-h W[1]-h W[1]-h W[1]-h Theorem 1

The following theorem summarizes the conjecture given by Bulteau et al. [8]
and Chan [9]. The corresponding proof can be found in our technical report [21].

Theorem 1. All four combinatorial voter control problem variants are

(i) W[2]-hard with respect to the solution size k, even for only two candidates
and for symmetric bundling functions κ.

(ii) W[1]-hard with respect to the solution size k, even for only two candidates
and for bundle sizes of at most three.
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(iii) fixed-parameter tractable with respect to the number m of candidates if the
bundling function κ is anonymous.

Relations Between the Four Problem Variants. We provide some reduc-
tions between the problem variants. They are used in several sections of this
paper. The key idea for the reduction from destructive control to constructive
control is to guess the candidate that will defeat the distinguished candidate and
ask whether one can make this candidate win the election. The key idea for the
reduction from the “deleting” to the “adding” problem variants is to build the
“complement” of the registered voter set.

Proposition 1. For each X ∈ {Add, Del}, C-Des-X with m candidates is
Turing reducible to C-Cons-X with two candidates. For each Y ∈ {Cons,

Des}, C-Y -Del with two candidates is many-one reducible to C-Y -Add with
two candidates. All these reductions preserve the property of symmetry of the
bundling functions.

4 Controlling Voters with Symmetric and Small Bundles

In this section, we study combinatorial voter control when the voter bundles
are symmetric and small. This could be the case when a voter’s bundle models
his close friends (including himself), close relatives, or office mates. Typically,
this kind of relations is symmetric, and the number of friends, relatives, or office
mates is small. We show that for symmetric bundles and for bundles size at
most three, both destructive problem variants become polynomial-time solvable,
while both constructive variants remain NP-hard. However, if there are only two
candidates, then we can use dynamic programming to also solve the constructive
control variants in polynomial time. If we restrict the bundle size to be at most
two, then all four problem variants can be solved in polynomial time via simple
greedy algorithms.

As already observed in Sect. 2, we only need to consider the undirected version
of the bundling graph for symmetric bundles. Moreover, if the bundle size is at
most two, then the resulting bundling graph consists of only cycles and trees.
However, Bulteau et al. [8] already observed that C-Cons-Add is NP-hard even
if the resulting bundling graph solely consists of cycles, and Chan [9] observed
that C-Cons-Add remains NP-hard even if the resulting bundling graph consists
of only directed trees of depth at most three.

Observation 1. C-Cons-Add is NP-hard even for symmetric bundling func-
tions with maximum bundle size b = 3.

It turns out that the reduction used by Bulteau et al. [8] to show the adding
voters case (Observation 1) can be adapted to show NP-hardness for the deleting
voters case.

Proposition 2. C-Cons-Del is NP-hard even for symmetric bundling func-
tions with maximum bundle size b = 3.
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If, in addition to the bundles being symmetric and of size at most three, we
have only two candidates, then we can solve C-Cons-Add in polynomial time.
First of all, due to these constraints, we can assume that the bundling graph Gκ

is undirected and consists of only cycles and paths. Then, it is easy to verify
that we can consider each cycle and each path separately. Finally, we devise a
dynamic program for the case when the bundling graph is a path or a cycle,
maximizing the score difference between our preferred candidate p and the other
candidate. The crucial idea behind the dynamic program is that the bundles of
a minimum-size solution induce a subgraph where each connected component is
small.

Lemma 1. Let (E = (C, V ),W, κ, p, k) be a C-Cons-Add instance such that
C = {p, g}, and κ is symmetric with Gκ being a path. Then, finding a size-at-
most-k subset W ′ ⊆ W of voters such that the score difference between p and g
in κ(W ′) is maximum can be solved in O(|W |5) time, where |W | is the size of
the unregistered voter set W .

Proof. Since Gκ is a path, each bundle has at most three voters. We denote the
path in Gκ by (w1, w2, . . . , w|W |) and introduce some definitions for this proof.
The set W (s, t) := {wi ∈ W | s ≤ i ≤ t} contains all voters on a sequence from
ws to wt. For every subset W ′ ⊆ W we define gap(W ′) := sp(κ(W ′))−sg(κ(W ′))
as the score difference between p and g. One can observe that if W ′ is a solution
for (E = (C, V ),W, κ, p, k) then gap(W ′) ≥ sg(V ) − sp(V ); note that we only
have two candidates. An (s, t)-proper-subset W ′ is a subset of W (s, t) such that
κ(W ′) ⊆ W (s, t). A maximum (s, t)-proper-subset W ′ additionally requires that
each (s, t)-proper-subset W ′′ ⊆ W with |W ′′| = |W ′| has gap(W ′′) ≤ gap(W ′).

We provide a dynamic program in which a table entry T [r, s, t] contains a
maximum (s, t)-proper-subset W ′ of size r. We first initialize the table entries
for the case where t − s + 1 ≤ 9 and r ≤ 9 in linear time.

For t − s + 1 > 9, we compute the table entry T [r, s, t] by considering every
possible partition of W (s, t) into two disjoint parts.

T [r, s, t] := T [r − i, s, s + j] ∪ T [i, s + j + 1, t],
where i, j = arg max

0≤i≤r
0≤j≤t−s−2

gap(T [r − i, s, s + j]) + gap(T [i, s + j + 1, t]).

Note that a maximum (1, |W |)-proper-subset W ′ of size r−1 could have a higher
gap than a maximum (1, |W |)-proper-subset W ′′ of size r.

To show the correctness of our program, we define the maximization and
minimization function on a set of voters W ′, which return the largest and smallest
index of all voters on the path induced by W ′, respectively:

max(W ′) := arg max
i∈|W ′|

{wi ∈ (W ′)} and min(W ′) := arg min
i∈|W ′|

{wi ∈ (W ′)}.

First, we use the following claim to show that each maximum (s, t)-proper-subset
W ′ can be partitioned into two (s, t)-proper-subsets W1,W2 such that the two
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sets κ(W1) and κ(W2) are disjoint. The correctness proof of the following claim
can be found in our technical report [21].

Claim 1. Let W ′ be a maximum (s, t)-proper-subset such that (max κ(W ′) −
min κ(W ′) + 1) > 9. Then, there is a j with s < j < t such that there is an
(s, j)-proper-subset W1 and a (j+1, t)-proper-subset W2 with |W1|+ |W2| ≤ |W ′|
and κ(W1 ∪ W2) = κ(W ′).

Now, we show that the two subsets W1 and W2 from Claim 1 are indeed
optimal : There is a j such that W1 is a maximum (s, j)-proper-subset and W2

is a maximum (j + 1, t)-proper-subset.
Assume towards a contradiction that W2 is a (j + 1, t)-proper-subset but

not a maximum (j + 1, t)-proper-subset. Therefore, there exists a maximum
(j+1, t)-proper-subset W ′

2 where |W2| = |W ′
2|. This implies that gap(W1∪W ′

2) >
gap(W1∪W2). This is a contradiction to W ′ = W1∪W2 being a maximum (s, t)-
proper-subset. The case in which W1 is not a maximum (s, j)-proper-subset is
analogous.

Altogether, we have shown that we can compute T [k, s, t] in constant time if
t − s + 1 ≤ 9, and that otherwise there exist an i and a j such that T [k, s, t] =
T [k − i, s, t − j] ∪ T [i, t − j + 1, t]. The dynamic program considers all possible
i and j. The table entry T [i, 1, |W |] contains a subset W ′ ⊆ W of size i with
maximum gap such that κ(W ′) ⊆ W (1, |W |), which is identical to κ(W ′) ⊆ W .

This completes the correctness proof of our dynamic program. The table
has O(k · |W |2) entries. To compute one entry the dynamic program accesses
O(k · |W |) other table entries. Note that the value gap(T [i, s, t]) can be computed
and stored after the entry T [i, s, t] is computed. This takes at most O(|W |) steps.
Thus, the dynamic program runs in O(|W |5) time. 
�
The dynamic program can be adapted to solve the same problem on cycles:

Lemma 2. Let (E = (C, V ),W, κ, p, k) be a C-Cons-Add instance such that
C = {p, g}, and κ is symmetric with Gκ being a cycle. Then, finding a size-at-
most-k subset W ′ ⊆ W of voters such that the score difference between p and g
in κ(W ′) is maximum can be solved in O(|W |5) time, where |W | is the size of
the unregistered voter set W .

Altogether, we obtain the following.

Theorem 2. C-Cons-Add with a symmetric bundling function, maximum
bundle size of three, and for two candidates can be solved in O(|W |5) time,
where |W | is the size of the unregistered voter set.

Proof. Let (E = (C, V ),W, κ, p, k) be a C-Cons-Add instance, where the max-
imum bundle size b is three, κ is symmetric, and C = {p, g}. This means that
all connected components C1, . . . , C� of Gκ are path or cycles. Furthermore, all
bundles only contain voters from one connected component. We define a dynamic
program in which each table entry A[i, s, t] contains a solution W ′ ⊆ W of size
i, where κ(W ′) ⊆ V (Cs) ∪ · · · ∪ V (Ct) and 1 ≤ s ≤ t ≤ �:
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(i) If s = t = j, then A[i, s, t] = T [i, 1, |V (Cj)|], where T is the dynamic program
of Cj , depending on whether Cj is a path or cycle.

(ii) Otherwise, we build the table as follows:

A[d, s, t] = A[d − i, s, s + j] ∪ A[i, s + j + 1, t],where
i, j = arg max

0≤i≤d
1≤j≤t−s−1

gap(A[d − i, s, s + j]) + gap(A[i, s + j + 1, t]).

Each of the table entries A[i, j, j] can be computed in O(i2 · |V (Cj)|3) time (see
Lemmas 1 and 2) and each of the table entries A[i, s, t] for s < t can be computed
in O(k · �) time. Since we have k · �2 entries, the total running time is

∑�

i=1
O(k2 · |V (Cj)|3) = O(k2)

∑�

i=1
O(|V (Ci)|) = O(k2 · |W |3). 
�

From the polynomial-time solvability result of Theorem 2 and by
Proposition 1, we obtain the following:

Corollary 1. C-Cons-Del with a symmetric bundling function, maximum
bundle size of three, and two candidates can be solved in O(|V |5) time, where
|V | denotes the number of the voters.

Corollary 2. C-Des-Add and C-Des-Del with a symmetric bundling func-
tion and maximum bundle size three can be solved in time O(m · |W |5) and
O(m · |V |5), respectively, where m is the number of candidates, and |W | and |V |
are the numbers of unregistered and registered voters, respectively.

5 Controlling Voters with Disjoint Bundles

We have seen in Sect. 4 that the interaction between the bundles influences
the computational complexity of our combinatorial voter control problems. For
instance, adding a voter v to the election may lead to adding another voter v′

with v ∈ κ(v). This is crucial for the reductions used to prove Theorem 1
and Observation 1. Thus, it would be interesting to know whether the prob-
lem becomes tractable if it is not necessary to add two bundles that share some
voter(s). More specifically, we are interested in the case where the bundles are
disjoint, meaning that we do not need to consider every single voter, but only
the bundles as a whole, as it does not matter which voters of a bundle we select.

First, we consider disjoint bundles of size at most two. This is the case for
voters who have a partner. If a voter is convinced to participate in or leaves the
election, then the partner is convinced to do the same. Note that this is equivalent
to having symmetric bundles of size at most two. Bulteau et al. [8, Theorem 6]
constructed a linear-time algorithm for C-Cons-Add if the maximum bundle
size is two and κ is a full-d bundling function (which implies symmetry). We can
verify that their algorithm actually works for disjoint bundles of size at most
two. Thus, we obtain the following.
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Observation 2. C-Cons-Add with a symmetric bundling function and with
bundles of size at most two can be solved in O(|I|) time, where |I| is the input
size.

If we want to delete instead of add voter bundles, the problem reduces
to finding a special variant of the f -Factor problem, which is a generaliza-
tion of the well-known matching problem and can still be solved in polynomial
time [1,2].

Theorem 3. C-Cons-Del with a symmetric bundling function and with bun-
dles of size at most two can be solved in polynomial time.

If we drop the restriction on the bundle sizes but still require the bun-
dles to be disjoint, then C-Cons-Add and C-Cons-Del become parameterized
intractable with respect to the solution size.

Theorem 4. Parameterized by the solution size k, C-Cons-Add and C-Cons-

Del are W[1]-hard and W[2]-hard respectively, even for disjoint bundles.

Proof (with only the construction for the W[1]-hardness proof of C-Cons-Add).
We provide a parameterized reduction from the W[1]-complete problem Inde-

pendent Set (parameterized by the “solution size”) which, given an undirected
graph G = (V (G), E(G)) and a natural number h ∈ N, asks whether G admits
a size-h independent set U ⊆ V (G), that is, all vertices in U are pairwise non-
adjacent. Let (G,h) be an Independent Set instance with E(G) = {e1, . . . ,
em−1} and V (G) = {u1, . . . , un}. Without loss of generality, we assume that G
is connected and h ≥ 3. We construct an election E = (C, V ) with candidate
set C := {p} ∪ {gj | ej ∈ E(G)}. For each edge ej ∈ E, we construct h − 1
registered voters that all have gj as their favorite candidate. In total, V consists
of (h − 1) · (m − 1) voters.

The unregistered voter set W is constructed as follows: For each vertex ui ∈
V (G), add a p-voter pi, and for each edge ej incident with ui, add a gj-voter
a
(i)
j . The voters constructed for each vertex ui are bundled by the bundling

function κ. More formally, for each ui ∈ V (G) and each ej ∈ E(G) with ui ∈ ej ,
it holds that

κ(pi) = κ(a(i)
j ) := {pi} ∪ {a(i)

j′ | ui ∈ ej′ for some ej′ ∈ E(G)}.

To finalize the construction, we set k := h. The construction is both a polynomial-
time and a parameterized reduction, and all bundles are disjoint. To show the
correctness, we note that p can only win if only if her score can be increased
to at least h without giving any other candidate more than one more point.
The solution corresponds to exactly to a subset of h vertices that are pairwise
non-adjacent. The detailed correctness proof and the remaining proof for the
W[2]-hardness result can be found in the our technical report [21]. 
�

For destructive control, it is sufficient to guess a potential defeater d out of
m−1 possible candidates that will have a higher score than p in the final election
and use a greedy strategy similar to the one used for Observation 2 to obtain
the following result.
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Theorem 5. C-Des-Add and C-Des-Del with a symmetric bundling function
and disjoint bundles can be solved in O(m · |I|) time, where |I| is the input size
and m the number of candidates.

6 Controlling Voters with Unlimited Budget

To analyze election control, it is interesting to know whether a solution exist at
all, without bounding its size. Indeed, Bartholdi III et al. [3] already considered
the case of unlimited solution size for the constructive candidate control problem.
They showed that the problem is already NP-hard, even if the solution size is
not bounded. (The non-combinatorial destructive control by adding unlimited
amount of candidates is shown to be also NP-hard by Hemaspaandra et al.
[19].) In contrast, the non-combinatorial voter control variants are linear-time
solvable via simple greedy algorithms [3]. This leads to the question whether
the combinatorial structure increases the complexity. To this end, we relax the
four problem variants so that the solution can be of arbitrary size and call these
problems C-Cons-Add-Unlim, C-Des-Add-Unlim, C-Cons-Del-Unlim and
C-Des-Del-Unlim.

First of all, we observe that C-Cons-Del-Unlim becomes trivial if no unique
winner is required.

Lemma 3. Every C-Cons-Del-Unlim instance is a yes-instance.

If we consider a voting rule R that only returns unique winners, then C-

Des-Del-Unlim also becomes tractable since we only need to delete all voters.
For the constructive adding voters case, we obtain NP-hardness. The idea for

the reduction derives from the W[1]-hardness proof of C-Cons-Add shown by
Bulteau et al. [8].

Lemma 4. C-Cons-Add-Unlim is NP-hard.

Lemma 4 immediately implies the following inapproximability result for the
optimization variant of C-Cons-Add (denoted as Min-C-Cons-Add), aiming
at minimizing the solution size.

Theorem 6. There is no polynomial-time approximation algorithm for Min-

C-Cons-Add, unless P = NP.

7 Conclusion

We extend the study of combinatorial voter control problems introduced by
Bulteau et al. [8] and obtain that the destructive control variants tend to be
computationally easier than their constructive cousins.

Our research leads to several open questions and further research opportuni-
ties. First, we have shown hardness results for the adding candidate case: if the
bundling function consists of disjoint cliques, then parameterized by the solution
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size, C-Cons-Add is W[1]-hard and C-Des-Add is W[2]-hard. If one could also
determine the complexity upper bound, that is, under the given restrictions, if
C-Cons-Add would be contained in W[1], then this would yield another differ-
ence in complexity between the destructive and the constructive variants. This
also leads to the question whether the problem variants in their general setting
are not only W[2]-hard, but W[2]-complete.

Second, we have only shown that Min-C-Cons-Add is inapproximable and
Min-C-Des-Del is trivially polynomial-time solvable. For the other two prob-
lem variants, we do not know whether they can be approximated efficiently
or not.

Another open question is whether there are FPT-results for any natural com-
bined parameters. As a starting point, we conjecture that all problem variants
can be formulated as a monadic second-order logic formula with length of at
most f(k, b,m) (where k is the solution size, b is the maximum bundle size, m is
the number of candidates, and f is a computable function). Courcelle and Engel-
friet [11] showed that every graph problem expressible as a monadic second-order
logic formula ρ can be solved in g(|ρ|, ω) · |I| time, where ω is the treewidth of
the input graph and |I| is the input size. Our conjecture would provide us with
a fixed-parameter tractability result with respect to the solution size, the maxi-
mum bundle size, the number of candidates, and the treewidth of our bundling
graph Gκ.

We have studied the Plurality rule exclusively. Thus it is still open which
of our results also hold for other voting rules, especially for the Condorcet rule.
Since with two candidates, the Condorcet rule is equivalent to the strict majority
rule, we can easily adapt some of our results to work for the Condorcet rule as
well. Other results (i.e., the Turing reductions) cannot be easily adapted to work
for the Condorcet rule.
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Abstract. In this paper, we analyze 2CNF formulas from the perspec-
tives of Read-Once resolution (ROR) refutation schemes. We focus on
two types of ROR refutations, viz., variable-once refutation and clause-
once refutation. In the former, each variable may be used at most once
in the derivation of a refutation, while in the latter, each clause may
be used at most once. We show that the problem of checking whether
a given 2CNF formula has an ROR refutation under both schemes is
NP-complete. This is surprising in light of the fact that there exist
polynomial refutation schemes (tree-resolution and DAG-resolution) for
2CNF formulas.

Keywords: 2SAT · Resolution · Read-once

1 Introduction

Resolution is a refutation procedure that was introduced in [11] to establish the
unsatisfiability of clausal Boolean Formulas. Resolution is a sound and complete
procedure, although it is not efficient in general. Resolution is one among many
proof systems (refutation systems) that have been discussed in the literature
[14]; indeed it is among the weaker proof systems, in that there exist propo-
sitional formulas for which short proofs exist (in powerful proof systems) but
resolution proofs of unsatisfiability are exponentially long. Resolution remains
an attractive option for studying the complexity of constraint classes on account
of its simplicity and wide applicability; it is important to note that resolution is
the backbone of a range of automated theorem provers.

There are a number of different types of resolution refutation that have been
discussed in the literature [10,12]. The most important types of resolution refuta-
tion are tree-like, dag-like and read-once. One of the simplest types of resolution
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is Read-once Resolution (ROR). In an ROR refutation, each input clause and
each derived clause may be used at most once. Iwama [5] showed that even in
case of 3CNF formulas, the problem of checking ROR existence (henceforth,
ROR decidability) is NP-complete.

It is well-known that 2CNF satisfiability is decidable in polynomial time.
There are several algorithms for 2CNF satisfiability, most of which convert the
clausal formula into a directed graph and then exploit the connection between
the existence of labeled paths in the digraph and the satisfiability of the input
formula. A natural progression of this research is to establish the ROR com-
plexity of 2CNF formulas. We show that the problem of deciding whether an
arbitrary 2CNF formula has a read-once refutation is NP-complete. Although
ROR is an incomplete refutation technique, we may be able to find a refuta-
tion if clauses can be copied. We show that every 2CNF formula has an ROR
refutation, if every clause can be copied once.

The rest of this paper is organized as follows: In Sect. 2, we discuss problem
preliminaries and formally define the various types of refutations discussed in
this paper. The minimal unsatisfiable subset problems is detailed in Sect. 3. In
Sect. 4, the Variable Read Once Resolution (VAR-ROR) refutation problem is
detailed. We also establish the computational complexity of this problem in
2CNF. We show that ROR decidability for 2CNF formulas is NP-complete in
Sect. 5.

2 Preliminaries

In this section, we briefly discuss the terms used in this paper. We assume that
the reader is familiar with elementary propositional logic. A literal is a variable
x or its complement ¬x. x is termed a positive and ¬x is termed a negative
literal. A clause is a disjunction of literals. The empty clause, which is always
false, is denoted as �.

A Boolean formula Φ is in CNF, if the formula is a conjunction of clauses.
Note that a formula in CNF is a set of clauses and written as {α1, . . . , αn},
α1 ∧ . . . ∧ αn, or simply as Φ = α1, . . . , αn for clauses αi. A formula in CNF is
in k-CNF, if it is of the form α1 ∧ α2 ∧ . . . ∧ αm, where each αi is a clause of at
most k literals.

For a single resolution step with parent clauses (α ∨ x) and (¬x ∨ β) with
resolvent (α ∨ β), we write

(α ∨ x), (¬x ∨ β) | 1
RES (α ∨ β).

The variable x is termed a matching or resolution variable. If for initial clauses
α1, . . . , αn, a clause π can be generated by a sequence of resolution steps we
write

α1, . . . , αn | RES π.

We now formally define the types of resolution refutation discussed in this
paper.
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Definition 1. A formula is in Var-ROR (variable-read once resolution), if and
only if there is a resolution refutation for which every variable is used at most
once as a matching variable.

A resolution derivation Φ | RES π is a Var-ROR derivation, if the matching
variables are used at most once. We denote this as Φ | Var-RO-Res π.

Definition 2. A formula Φ is said to be minimally Var-ROR, if and only if
Φ ∈ Var-ROR and every proper sub-formula is not in Var-ROR.

Definition 3. A Read-Once resolution refutation is a refutation in which each
clause, π, can be used in only one resolution step. This applies to clauses present
in the original formula and those derived as a result of previous resolution steps.

ROR is the set of formulas in CNF, for which a read-once resolution refutation
exists (Φ ∈ ROR if and only if Φ | RO-Res �).

Definition 4. A formula, Φ, is minimally ROR if and only if the formula is
in ROR and every proper sub-formula is not in ROR.

It is important to note that both types of Read-Once resolution (Var-
ROR and ROR) are incomplete refutation procedures. Furthermore, ROR is a
strictly more powerful refutation procedure than VAR-ROR.

3 Minimal Unsatisfiability

In the characterization of various read-once classes and in the proofs, we make
use of minimal unsatisfiable formulas and the splittings of these formulas.

First, we recall some notions and results.

Definition 5. A formula in CNF is minimal unsatisfiable, if and only if the
formula is unsatisfiable and every proper sub-formula is satisfiable. The set of
minimal unsatisfiable formulas is denoted as MU.

Definition 6. The deficiency of a formula Φ, written as d(Φ), is the number
of clauses minus the number of variables. For fixed k, MU(k) is the set of MU-
formulas with deficiency k.

The problem of deciding whether a formula is minimal unsatisfiable is DP-
complete [8]. DP is the class of problems which can be represented as the
difference of two NP-problems. Every minimal unsatisfiable formula has a defi-
ciency greater or equal than 1 [1].

For fixed k, deciding if Φ ∈ MU(k) can be solved in polynomial time [3].
For formulas in 2CNF, there is no constant upper bound for the deficiency of
minimal unsatisfiable formulas.

The proofs in this paper make use of so-called splitting formulas for MU-
formulas.
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Definition 7. Let

Φ = (x ∨ π1), . . . , (x ∨ πr), σ1, . . . , σt, (¬x ∨ φ1), . . . , (¬x ∨ φq)

be a minimal unsatisfiable formula, where neither the literal x nor the literal ¬x
occur in the clauses σi. A pair of formulas (Fx, F¬x) with

Fx = π1, . . . , πr, σi1 , . . . , σis and F¬x = σj1 , . . . , σjk , φ1, . . . , φq

is called a splitting of Φ over x, if Fx and F¬x are minimal unsatisfiable.

Definition 8. A splitting (Fx, F¬x) is disjunctive, if

{σi1 , . . . , σis} ∩ {σj1 , . . . , σjk} = ∅
That is, Fx and F¬x have no clause σi in common. If additionally Fx and F¬x do
not share any variables, then we say that the splitting is variable-disjunctive.

We can continue to split both Fx and F¬x to obtain a splitting tree. Splitting
stops when the formula contains only one variable.

Definition 9. A splitting tree is complete if every leaf of the tree is a formula
that contains at most one variable.

Note that, after splitting on the variable x, neither Fx nor F¬x contains the
variable x. Thus, the splitting tree can have depth at most (n − 1).

In case of disjunctive splittings, we speak about disjunctive splitting trees.
It is known that formulas in MU(1) have variable-disjunctive splitting trees [2].
Moreover, every minimal unsatisfiable formula with a read-once resolution refu-
tation has a disjunctive splitting tree and vice versa [6].

Let Φ be a minimal unsatisfiable 2CNF formula. We will now prove several
properties of Φ.

Lemma 1. If Φ contains a unit clause, then Φ ∈ MU(1).

Proof. By induction on the number n of variables. Full proof in the journal
version of the paper.

Lemma 2. For every variable x, the splitting formulas Fx, F¬x are in MU(1).

Proof. We have that the splitting formulas Fx and F¬x contain a unit clause
and are minimal unsatisfiable. Thus, from Lemma 1, Fx, F¬x are in MU(1). ��
Lemma 3 [7]. If for a variable x, there is a disjunctive splitting, then the
splitting is unique.

Lemma 4. The problem of determining if Φ has a complete disjunctive splitting
is in P. Furthermore, if Φ has a disjunctive splitting for some variable x, then
there exists a complete splitting tree.

Proof. In the journal version of the paper.
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4 The Complexity of Var-ROR for 2CNF

In this section, we show that determining if a formula in 2CNF has a variable
read-once refutation is NP-complete.

Let Φ be a formula in 2CNF.

Theorem 1. Φ ∈ Var-ROR, if and only if there exists a sub-formula Φ′ ⊆ Φ
such that Φ′ ∈ MU(1).

Theorem 1 follows immediately from Lemma 5.

Lemma 5. Φ is minimally Var-ROR, if and only if Φ ∈ MU(1).

Proof. Let Φ be minimally Var-ROR. We will show that Φ ∈ MU(1) by induction
on the number of variables.

First, assume that Φ is a CNF formula over 1 variable. Thus, Φ has the form
(x) ∧ (¬x). Obviously, Φ ∈ MU(1).

Now assume that Φ is a CNF formula over (n + 1) variables. Let

(α ∨ x), (¬x ∨ β) | 1
RES (α ∨ β)

be the first resolution step in a Var-ROR refutation of Φ. Thus, the formula

Φ′ = (Φ \ {(α ∨ x), (¬x ∨ β)} ∪ {(α ∨ β)})

is minimally Var-ROR and contains no clause with x or ¬x. x has already been
used as a matching variable. Thus, if any other clauses of Φ, or Φ′, used x then
Φ would not be minimally Var-ROR.

Φ′ has n variables. Thus, by the induction hypothesis Φ′ ∈ MU(1). Since Φ′ is
minimal unsatisfiable and consists of (n + 1) clauses, Φ is minimal unsatisfiable
and consists of (n + 2) clauses. This means that Φ ∈ MU(1).

Now let Φ be a formula in MU(1). We will show that Φ is minimally Var-ROR
by induction on the number of variables.

For every formula in MU(1), there exists a variable-disjunctive splitting
tree [2]. Thus, we can easily construct a Var-ROR refutation for Φ.

First, assume that Φ is a CNF formula over 1 variable. Thus, Φ = (x) ∧ (¬x)
and is minimally Var-ROR.

Now assume that Φ is a CNF formula over (n + 1) variables. Let (Fx, F¬x)
be the first variable-disjunctive splitting in a variable-disjunctive splitting tree.
Without loss of generality we assume that neither Fx nor F¬x is the empty clause.
By the induction hypothesis, both formulas are minimally Var-ROR, because,
by Lemma 2, Fx, F¬x ∈ MU(1).

Thus, there is a Var-ROR derivation

F x
x | Var-RO-Res (x) and F¬x

¬x | Var-RO-Res (¬x),

where F x
x (F¬x

¬x ) is the formula we obtain by adding the removed literal x (¬x)
to the clauses in Fx (F¬x). The final step is to resolve (x) and (¬x). Note
that the variable x has not been used as a matching variable in the deriva-
tions F x

x | Var-RO-Res (x) and F¬x
¬x | Var-RO-Res (¬x). Hence, Φ is in Var-ROR and is

minimally Var-ROR. ��
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For a formula in MU(1), there always exists a complete variable-disjunctive
splitting. Furthermore, a complete variable-disjunctive splitting tree can be com-
puted in polynomial time. Thus, every formula in MU(1) has a Var-ROR refu-
tation that can be computed in polynomial time.

Corollary 1. Every formula in MU(1) has a Var-ROR refutation that can be
computed in polynomial time.

Next, we will show that determining if a 2CNF formula has a Var-ROR
refutation is NP-complete. It can easily be seen that this problem is in NP. If
the formula has n variables, then at most n resolution steps can be performed.
The NP-hardness will be shown by a reduction from the vertex-disjoint path
problem for directed graphs.

Definition 10. Given a directed graph G and pairwise distinct vertexes s1, t1,
s2, and t2, the vertex-disjoint path problem (2-DPP) consists of finding a
pair of vertex-disjoint paths in G, one from s1 to t1 and the other from s2 to t2.

The problem is known to be NP-complete [4]. Now we modify the problem
as follows.

Definition 11. Given a directed graph G and two distinct vertexes s and t, the
vertex-disjoint cycle problem (C-DPP) consists of finding a pair of vertex-
disjoint paths in G, one from s to t and the other from t to s.

Note that the paths are vertex-disjoint, if the inner vertexes of the path from
s to t are disjoint from the inner vertexes of the path from t to s.

Lemma 6. C-DPP is NP-complete.

Proof. Obviously, the problem is in NP. We will show NP-hardness by a
reduction from 2-DPP.

From G = (V,E), s1, t1, s2, and t2 we construct the new graph

G′ = (V ∪ {s, t}, E ∪ {(s, s1), (t2, s), (t1, t), (t, s2)}).

Assume that G has two vertex-disjoint paths, w1 from s1 to t1, and w2 from
s2 to t2. Thus, the paths (s, s1), w1, (t1, t) and (t, s2), w2, (t2, s) in G′ are vertex-
disjoint. Note that s1, s2, t1, t2 are pairwise distinct. Thus, G′ has the desired
vertex-disjoint cycle.

Now assume that G′ has two vertex-disjoint paths, w1 from s to t, and w2

from t to s. By construction, w1 must contain a path from s1 to t1. Similarly,
w2 must contain a path from s2 to t2. Since w1 and w2 are vertex-disjoint these
new paths must also be vertex-disjoint. Thus, G has the desired vertex-disjoint
paths. ��
Theorem 2. Determining if a 2CNF formula has a Var-ROR refutation is NP-
complete.
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Proof. As previously stated, we only need to show NP-hardness. That will be
done by a reduction from C-DPP.

From G = (V,E), s, and t we construct a formula Φ in 2CNF as follows:

1. For each vertex vi ∈ V − {s, t}, create the variable xi.
2. Create the variable x0.
3. Let vi, vj ∈ V − {s, t}.

(a) If (s, vi) ∈ E add the clause (x0 → xi) to Φ.
(b) If (t, vi) ∈ E add the clause (¬x0 → xi) to Φ.
(c) If (vi, s) ∈ E add the clause (xi → x0) to Φ.
(d) If (vi, t) ∈ E add the clause (xi → ¬x0) to Φ.
(e) If (vi, vj) ∈ E add the clause (xi → xj) to Φ.

Assume that G has two vertex-disjoint paths,

w1 = s, vi1 , . . . , vij , t and w2 = t, vij+1 , . . . , vik , s.

Thus, there exist 2CNF formulas Φ1 and Φ2 such that:

Φ1 = {(x0 → xi1), (xi1 → xi2), . . . , (xij → ¬x0)}
Φ2 = {(¬x0 → xij+1), (xij+1 → xij+2), . . . , (xik → x0)}.

Clearly, Φ1 | Var-RO-Res (¬x0) and Φ2 | Var-RO-Res (x0). Note that x0 has not been
used as a matching variable. Since w1 and w2 are vertex-disjoint, we have that

{xi1 , . . . , xij} ∩ {xij+1 , . . . , xik} = ∅.

Thus, Φ1 ∪ Φ2 | Var-RO-Res �. This means that Φ ⊇ Φ1 ∪ Φ2 is in Var-ROR.
Now assume that Φ is in Var-ROR. Let Φ′ ⊆ Φ be minimally Var-ROR. We

have that Φ′ contains clauses with x0 and ¬x0. Otherwise, the formula would be
satisfiable by setting each xi to true.

We proceed by induction on the number of clauses in Φ′.
The shortest formula is Φ′ = (x0 → ¬x0) ∧ (¬x0 → x0). This Φ′ is generated

when (s, t), (t, s) ∈ E. These edges form the desired vertex-disjoint paths.
Let y be the variable for which (y) ∧ (¬y) | 1

RES � is the last resolution step
in Φ′ | Var-RO-Res �. Thus, Φ′, can be divided into two variable-disjoint sets of
clauses, Φ′

1 and Φ′
2, such that Φ′

1 | Var-RO-Res (y) and Φ′
2 | Var-RO-Res (¬y). Other-

wise, a variable would be used twice in Φ′ | Var-RO-Res �.
Let (L ∨ xi) ∧ (¬xi ∨ K) | 1

RES (L ∨ K) a resolution step in Φ′
1 | Var-RO-Res (y)

such that (L ∨ xi) ∈ Φ′
1 and (¬xi ∨ K) ∈ Φ′

1. Thus, no clause with xi occurs in
Φ′
2 or Φ1 (except (L ∨ xi) and (¬xi ∨ K)). Moreover, we see that the formula

(Φ′ \ {(L ∨ ai), (¬ai ∨ K)}) ∪ {(L ∨ K)}
is in Var-ROR. This formula represents the reduced graph where the edges L →
ai and ai → K are replaced with the edge L → K. By the induction hypothesis,
there exists a vertex-disjoint cycle in this reduced graph. Thus, a vertex-disjoint
cycle exists in G. ��
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For arbitrary formulas in CNF, the problem of deciding whether a formula
Φ has a sub-formula Φ′ such that Φ′ ∈ MU(1) is known to be NP-complete.
But it was only known for arbitrary CNF. Based on the Theorems above, we
obtain as a corollary that the MU(1) sub-formula problem is NP-complete for
2CNF, too. It follows that the problem of deciding whether a formula in 2CNF
contains a minimal unsatisfiable formula with deficiency 1 is NP-complete.

5 The Complexity of ROR for 2CNF

In this section, we show that the ROR problem for 2CNF formulas is NP-
complete. It was established in [13] that the Var-ROR problem for 2CNF can
be reduced to the ROR problem for 2CNF. Unlike minimally Var-ROR formulas,
minimally ROR formulas are not necessarily minimal unsatisfiable. They also can
have deficiencies other than 1.

We now prove some properties of minimal unsatisfiable formulas in 2-CNF
with one or two unit clauses. It can easily be seen that such formulas contain at
most two unit clauses.

Lemma 7. Let Φ be a minimal unsatisfiable 2CNF formula.

1. If Φ contains two unit clauses, then Φ has the form

(L), (¬L ∨ L1), . . . , (¬Lt−1 ∨ Lt), (¬Lt ∨ ¬K), (K)

where L,L1, . . . , Lt,K are pairwise distinct.
2. If Φ contains exactly one unit clause, then Φ has the form

(L), (¬L ∨ L1), (¬L1 ∨ L2), . . . , (¬Lt ∨ K),
(¬K ∨ S1), (¬S1 ∨ S2), . . . , (¬Sq ∨ R),

(¬K ∨ P1), (¬P1 ∨ P2), . . . , (¬Pm ∨ ¬R)

where the literals are all pairwise distinct.
3. If Φ contains at least one unit clause, then Φ has a read-once resolution

refutation.
4. If Φ is in MU(1), then Φ has an ROR refutation.

Proof. We prove each part of the lemma separately.
The proofs of part 1 and 2 are straightforward because no minimal unsatis-

fiable 2CNF formula contains more than two unit clauses.

3. If the formula has two unit clauses, then structure of the formula leads imme-
diately to an ROR refutation.
If the formula has one unit clause, then we can perform the desired resolution
refutation as follows:
(a) First, we resolve (¬K ∨ S1), (¬S1 ∨ S2), . . . , (¬Sq ∨ R) to get (¬K ∨ R).
(b) Then, we resolve (¬K∨P1), (¬P1∨P2), . . . , (¬Pm∨¬R) to get (¬K∨¬R).
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(c) Next, we perform the resolution step

(¬K ∨ R) ∧ (¬K ∨ ¬R) | 1
RES (¬K).

(d) Finally, the unit clause (¬K) together with the chain

(L), (¬L ∨ L1), (¬L2 ∨ L3), . . . , (¬Lt ∨ K)

resolve to finish the ROR refutation.
4. Every 2CNF formula in MU(1) has a complete disjunctive splitting tree. This

guarantees the existence of an ROR refutation [6]. ��
Theorem 3. Let Φ be in 2CNF. Φ is in ROR, if and only if there exists a sub-
formula Φ′ ⊆ Φ for which there exists a variable x and a disjunctive splitting
(Fx, F¬x) over x, such that Fx, F¬x are in MU(1).

Proof. Suppose, there exists a sub-formula Φ′ ⊆ Φ with disjunctive splitting
(Fx, F¬x), where Fx, F¬x ∈ MU(1). We have that Fx and F¬x each contain at
least one unit clause. Now we reconstruct the clauses of Fx and F¬x by adding
the removed literal x (resp. ¬x) to the clauses in Fx (resp. F¬x). These new
formulas are denoted as F x

x and F¬x
¬x .

From Lemma 7, every formula in MU(1) with a unit-clause has a read-
once resolution refutation. We also have that (x) and (¬x) do not occur in
the splitting formulas. Thus, we get Fx | RO-Res �, F¬x | RO-Res �, F x

x | RO-Res (x),
and F¬x

¬x | RO-Res (¬x). Now we have to guarantee that there is a read-once res-
olution for Φ. (Fx, F¬x) is disjunctive splitting. Thus, no clause of Φ occurs
in both F x

x and in F¬x
¬x . We can combine the resolutions F x

x | RO-Res (x) and
F¬x

¬x | RO-Res (¬x), with the resolution step (x)∧(¬x) | 1
RES � to yield Φ | RO-Res �,

since F x
x , F¬x

¬x ⊆ Φ.
Now suppose that Φ ∈ ROR. Without loss of generality, we can also assume

that Φ is minimally ROR. We will show that Φ contains the desired splitting.
Let x∧¬x | RES � the last resolution step in the read-once resolution refutation.
Furthermore, let F x

x (F¬x
¬x respectively) be the set of original clauses from Φ used

in the derivation of x (¬x respectively). These sets have no clause in common
because together they form a read-once resolution refutation for Φ.

The formulas have the form

F x
x = (x ∨ L1) ∧ . . . ∧ (x ∨ Lt) ∧ σ1 and F¬x

¬x = (¬x ∨ K1) ∧ . . . ∧ (¬x ∨ Kr) ∧ σ2,

where σ1 ∩ σ2 = ∅.
Thus, we can construct the formulas

Fx = (L1) ∧ . . . ∧ (Lt) ∧ σ1 and F¬x = (K1) ∧ . . . ∧ (Kr) ∧ σ2,

where σ1 ∩ σ2 = ∅.
By construction, Fx | RO-Res � and F¬x | RO-Res �. Both Fx and F¬x are mini-

mal unsatisfiable. Otherwise, Φ would not be minimally ROR. This means that,
(Fx, F¬x) is a disjunctive splitting. Both Fx and F¬x contain unit clauses. Thus,
by Lemma 1, Fx and F¬x are MU(1). ��
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We will now prove the NP-completeness or the ROR problem for 2CNF
formulas. Instead of using the vertex-disjoint cycle problem, we will be reducing
from the edge-disjoint cycle problem for directed graphs.

Definition 12. Given a directed graph G and two distinct vertexes s and t,
the edge-disjoint cycle problem (C-DEP) consists of finding a pair of edge-
disjoint paths in G, one from s to t and the other from t to s.

The problem is NP-complete. For two pairs of vertexes, the edge-disjoint
path problem is NP-complete [9]. We can reduce the edge-disjoint path prob-
lem to C-DEP the same way we reduced 2-DPP to C-DPP.

Theorem 4. The ROR problem for 2CNF formulas is NP-complete.

Proof. ROR is in NP for arbitrary formulas in CNF [5]. Thus, we only need to
show NP-hardness. That will be done by a reduction from C-DEP.

From G = (V,E), s, and t we construct a formula Φ in 2CNF as follows:

1. For each vertex vi ∈ V − {s, t}, create the variable xi.
2. Create the variable x0.
3. Let vi, vj ∈ V − {s, t}.

(a) If (s, vi) ∈ E add the clause (x0 → xi) to Φ.
(b) If (t, vi) ∈ E add the clause (¬x0 → xi) to Φ.
(c) If (vi, s) ∈ E add the clause (xi → x0) to Φ.
(d) If (vi, t) ∈ E add the clause (xi → ¬x0) to Φ.
(e) If (vi, vj) ∈ E add the clause (xi → xj) to Φ.

Assume that G has two edge-disjoint paths,

w1 = s, vi1 , . . . , vij , t and w2 = t, vij+1 , . . . , vik , s.

Thus, there exist 2CNF formulas Φ1 and Φ2 such that:

Φ1 = {(x0 → xi1), (xi1 → xi2), . . . , (xij → ¬x0)}
Φ2 = {(¬x0 → xij+1), (xij+1 → xij+2), . . . , (xik → x0)}.

Obviously, Φ1 | RO-Res (¬x0) and Φ2 | RO-Res (x0). Note that x0 has not been
used as a matching variable. Since w1 and w2 are edge-disjoint, we have that
Φ1 ∩ Φ2 = ∅. Thus, Φ1 ∪ Φ2 | RO-Res �. This means that Φ ⊇ Φ1 ∪ Φ2 is in ROR.

Now assume that Φ is in ROR.
Let Φ′ ⊆ Φ be minimally ROR. We have that Φ′ contains clauses with x0 and
¬x0. Otherwise, the formula would be satisfiable by setting each xi to true.

We proceed by induction on the number of clauses in Φ′.
The shortest formula is Φ′ = (x0 → ¬x0) ∧ (¬x0 → x0). This Φ′ is generated

when (s, t), (t, s) ∈ E. These edges form the desired edge-disjoint paths.
Let (L → K) ∧ (K → R) | 1

RES (L ∨ R) be a resolution step such that (L →
K) ∈ Φ′ and (K → R) ∈ Φ′. Note that (L → R) ∈ Φ′. Otherwise, Φ′ would not
be minimally ROR.
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In a read-once refutation, we remove the parent clauses from Φ and add
the resolvent (L → R). This new formula has a read-once resolution refutation
and can be considered as obtained by a reduced graph without the edges L →
K,K → R but with the edge L → R. By the induction hypothesis, this new
graph contains the desired edge-disjoint cycle. If we replace the edge L → R in
this cycle with L → K and K → R, then we construct the desired edge-disjoint
cycle in G. ��

By Lemma 4, the problem of determining if an MU-formula in 2CNF has
a disjunctive splitting whose splitting formulas are in MU(1) can be decided in
polynomial time. Hence, based on Theorem 3, the ROR problem for minimal
unsatisfiable formulas is solvable in polynomial time.
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Abstract. We study the vector ambiguity problem and the vector free-
ness problem in SL(2,Z). Given a finitely generated n × n matrix semi-
group S and an n-dimensional vector x, the vector ambiguity problem
is to decide whether for every target vector y = Mx, where M ∈ S, M
is unique. We also consider the vector freeness problem which is to show
that every matrix M which is transforming x to Mx has a unique factor-
ization with respect to the generator of S. We show that both problems
are NP-complete in SL(2,Z), which is the set of 2 × 2 integer matrices
with determinant 1. Moreover, we generalize the vector ambiguity prob-
lem and extend to the finite and k-vector ambiguity problems where we
consider the degree of vector ambiguity of matrix semigroups.

Keywords: Matrix semigroup · SL(2,Z) · Vector ambiguity · Vector
freeness · Decidability · NP-completeness

1 Introduction

Many computational problems for matrix semigroups and groups are proven to
be undecidable starting from dimension three or four. On the other hand, a lot of
questions for matrix semigroups in dimension two are open including the mem-
bership, vector reachability, scalar reachability problems and various problems
on freeness. In this paper, we show decidaand reveal complexity of several ques-
tions for matrix semigroups in SL(2,Z), which is called the special linear group.
The special linear group SL(2,Z) has been extensively exploited in hyperbolic
geometry [10,13,30], dynamical systems [23], Lorenz/modular knots [20], braid
groups [24], high energy physics [28], M/string theories [14], music theory [22],
and so on.

Let S = 〈G〉 be a matrix semigroup finitely generated by a generating set G.
The membership problem is to decide whether or not a given matrix M belongs
to the matrix semigroup S. By restricting M to be the identity or zero matrix,
we call the problems the identity problem or mortality problem, respectively.
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The vector reachability problem, which is a parameterized version of the mem-
bership problem, can be defined as follows: Given a finitely generated matrix
semigroup S of n × n matrices and two vectors x,y in dimension n, the vector
reachability problem decides whether or not there exists a matrix M in S such
that Mx = y.

Due to its effective symbolic representation of matrices in SL(2,Z), many
decidability and complexity results have been established. For instance, it has
been shown that the mortality, identity and vector reachability problems were
at least NP-hard for SL(2,Z) in [2,6], but for the finitely generated subgroups
of the modular group, the membership was shown to be decidable in polyno-
mial time by Gurevich and Schupp [15]. Choffrut and Karhumäki proved that
the membership problem is decidable in SL(2,Z), and the identity problem is
decidable in Z

2×2 [12]. Moreover, Bell et al. [3] proved that the identity problem
in SL(2,Z) is NP-complete by developing a new effective technique to operate
with compressed word representations of matrices. The decidability of the mem-
bership problem for matrix semigroups in dimension two over integers, rationals
or complex numbers is an open question and the only known decidability result
that is beyond SL(2,Z) is the first algorithm for the membership problem for
non-singular 2 × 2 integer matrices shown in [26].

Another fundamental problem for matrix semigroups is the freeness problem,
where we want to know whether every matrix in the matrix semigroup has a
unique factorization over G. Mandel and Simon [21] showed that the freeness
problem is decidable in polynomial time for matrix semigroups with a single
generator for any dimension over rational numbers.1 Klarner et al. [16] proved
that the freeness problem in dimension three over natural numbers is undecid-
able. Along with the membership problem, the freeness problem in dimension
two is also an open problem for a long time [8,9] except certain special cases. For
example Charlier and Honkala [11] showed that the freeness problem is decidable
for upper-triangular matrices in dimension two over rationals when the products
are restricted to certain bounded languages. Bell and Potapov [5] showed that
the freeness problem is undecidable in dimension two for matrices over quater-
nions. Recently, the freeness problem in SL(2,Z) is proven to be NP-complete
where NP-hardness is shown in [17] by the reduction from the equal subset sum
problem (ESSP) [29] and the NP algorithm is given in [3].

In case of vector (scalar) reachability, the question about uniqueness of trans-
formations with respect to the given initial vector can be related to two different
interpretations: the vector (scalar) ambiguity and vector (scalar) freeness. Let
S be a matrix semigroup of n × n matrices and x be an n-dimensional vector.
Bell and Potapov [4] showed that the problem of deciding whether S and x
generate a non-repetitive set of vectors—the vector ambiguity problem—is unde-
cidable in dimension four over integers and in dimension three over rationals.
They used the fact that the problem of determining if a two-counter machine

1 The freeness problem for matrix semigroups with a single generator is the comple-
mentary problem of the matrix torsion problem which asks whether there exist two
integers p, q ≥ 1 such that Mp = Mq+p.
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has a periodic configuration is undecidable. Recently, the scalar ambiguity and
freeness problems have been introduced [1]. In the scalar ambiguity and freeness
problems, given a matrix semigroup S and two vectors x,y, we examine the
set {xT My | M ∈ S} of scalars and check whether there exists a unique matrix
or a unique factorizations of matrices for each scalar. In 2016, Bell et al. [1]
showed that both problems are undecidable over bounded languages.

In this paper, we study the vector ambiguity problem for matrix semigroups
in SL(2,Z) and show that the problem is decidable. Moreover, we prove that the
vector ambiguity problem in SL(2,Z) is NP-complete. We prove the NP-hardness
of the vector ambiguity problem in SL(2,Z) by the reduction from the subset
sum problem and the membership in NP by the recent result that the identity
problem in SL(2,Z) is in NP [3]. We also examine the vector freeness problem
in which we analyze the unique factorization of matrices leading to the same
vector and show that the problem is also NP-complete in SL(2,Z). Moreover, we
generalize the vector ambiguity problem and extend to the finite and k-vector
ambiguity problems where we consider the degree of vector ambiguity of matrix
semigroups. In the table below, we are summarizing the results of this paper
and position them in the context of currently known results in this area. Bold
entries represent new results and dash line ‘—’ means that ambiguity problems
for matrix semigroups cannot be defined.

Problem Domain Matrix reachability Vector reachability

Non-freeness SL(2,Z) NP-complete [17] NP-complete

N
3×3 Undecidable [16] Undecidable

k-non-freeness SL(2,Z) EXPSPACE [17]

N
3×3 Undecidable [16] Undecidable

Finite non-freeness SL(2,Z) EXPSPACE [17]

N
3×3 Undecidable

Ambiguity SL(2,Z) — NP-complete

Z
4×4 — Undecidable [4]

k-ambiguity SL(2,Z) — EXPSPACE

Z
4×4 — Undecidable [4]

Finite ambiguity SL(2,Z) — EXPSPACE

Z
4×4 — Undecidable [4]

2 Preliminaries

In this section we formulate several problems, provide important definitions and
notation as well as several technical lemmas used throughout the paper.

Basic definitions. A semigroup is a set equipped with an associative binary
operation. Let S be a semigroup and X be a subset of S. Then, X is a code if
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y

x

M1

M2

M3

Fig. 1. Geometric interpretation of the vector ambiguity problem. If M1,M2,M3 ∈ S,
then the matrix semigroup S is ambiguous with respect to the vector x as there are
already three matrices transforming x into y.

and only if every element of S has a unique factorization over X. A semigroup S
is free if there exists a subset X ⊆ S which is a code and S = X+.

Given an alphabet Σ, a word w is an element of Σ∗. For a letter a ∈ Σ, we
denote by a the inverse letter of a such that aa = ε where ε is the empty word.

A nondeterministic finite automaton (NFA) is a tuple A = (Σ,Q, δ, q0, F )
where Σ is the input alphabet, Q is the finite set of states, δ : Q×Σ → 2Q is the
multivalued transition function, q0 ∈ Q is the initial state and F ⊆ Q is the set
of final states. In the usual way δ is extended as a function Q×Σ∗ → 2Q and the
language accepted by A is L(A) = {w ∈ Σ∗ | δ(q0, w) ∩ F �= ∅}. The automaton
A is a deterministic finite automaton (DFA) if δ is a single valued function
Q × Σ → Q. It is well known that the deterministic and nondeterministic finite
automata recognize the class of regular languages [27].

Vector ambiguity problem and freeness problems. Let S be an n × n
matrix semigroup finitely generated by a set G = {M1,M2, . . . ,Mk} of matrices
(a generator) and x be an n-dimensional vector. Then, we assume that M ·x = y
for a matrix M in S. We can say that a vector y is reachable from x by S. If
there is a unique matrix M in S that transforms x into y, we say that y is
unambiguous with respect to S and x. Note that y is ambiguous with respect to
S and x otherwise. Denote the set of reachable vectors from x by multiplying
the elements of the matrix semigroup S on the left-hand side by V . Namely,
V = {y | y = Mx, M ∈ S}. If every vector in V is unambiguous with respect
to S and x, then we say that the matrix semigroup S is unambiguous with
respect to x. In other words, if there is a unique matrix Mx = y for every target
vector y, then we say that the matrix semigroup S is unambiguous with respect
to x (Fig. 1).

Similarly, we say that the matrix semigroup S is free with respect to x if
every matrix M which transforms x into Mx has a unique decomposition with
respect to the generator G. Otherwise, S is said to be non-free with respect to
x. The problem of deciding whether or not a given matrix semigroup S is free
(respectively, non-free) with respect to a given initial vector x is called the vector
freeness (respectively, non-freeness) problem.
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Here we consider the following problems for matrix semigroups in SL(2,Z):

– The vector ambiguity problem: given a matrix semigroup S of n × n matrices
and an n-dimensional vector x, is S ambiguous with respect to x?

– The vector non-freeness problem: given a semigroup S of n × n matrices and
an n-dimensional vector x, is S non-free with respect to x?

Before tackling the problems, we establish relationships between the proposed
problems and matrix semigroup freeness problem.

Lemma 1. Given a semigroup S of n × n matrices and an n-dimensional vec-
tor x, the following statements hold:

1. if S is free with respect to x, then S is unambiguous with respect to x,
2. if S is free with respect to x, then S is free, and
3. if S is free and unambiguous with respect to x, then S is free w.r.t. x.

(See the archive version for proof)

Group alphabet encodings. Let us introduce several technical lemmas that
will be used in encodings for NP-hardness results. Our original encodings require
the use of group alphabet and the following lemmas for showing the transforma-
tion from an arbitrary group alphabet into a binary group alphabet and later
into matrix form that is computable in polynomial time.

It is well-known that {cdic−1 | i ≥ 1} freely generates a free subgroup of the

free group 〈c, d〉 [7] and that the matrices
(

1 2
0 1

)
and

(
1 0
2 1

)
freely generates a

free subgroup of SL(2,Z) [19].
Let Σ = {z1, z2, . . . , zl} be a group alphabet and Σ2 = {c, d, c, d} be a binary

group alphabet. Define the mapping α : Σ → Σ∗
2 by: α(zi) = cidci, α(zi) = cidci,

where 1 ≤ i ≤ l. It is easy to see that α is a monomorphism. Note that α can
be extended to domain Σ∗ in the usual way. We also define a monomorphism
f : Σ∗

2 → Z
2×2 as follows:

f(c) =
(

1 2
0 1

)
, f(c) =

(
1 −2
0 1

)
, f(d) =

(
1 0
2 1

)
, f(d) =

(
1 0

−2 1

)
.

The composition of two monomorphisms α and f gives us the following
lemma that ensures that encoding the subset sum problem (SSP) and the equal
subset sum problem (ESSP) [29] instances into matrix semigroups can be done
in polynomial time.

Lemma 2 (Bell and Potapov [4]). Let zj ∈ Σ. For any i ∈ N, f(α(zi
j)) =

f((cjdcj)i) =
(

1 + 4ij −8ij2

2i 1 − 4ij

)
.

Lemma 3. Let w and w′ be any two distinct words in Σ∗. Then, for any non-

zero integer t: f(α(w)) ·
(

1 1
0 1

)t

�= f(α(w′)).
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Symbolic representation of matrices from SL(2,Z). It is known that

SL(2,Z) is generated by two matrices S =
(

0 −1
1 0

)
and R =

(
0 −1
1 1

)
, which

have respective orders 4 and 6. This implies that every matrix in SL(2,Z) is
a product of S and R. Since S2 = R3 = −I, every matrix in SL(2,Z) can be
uniquely brought to the following form:

(−I)i0Ri1SRi2S · · ·SRin−1SRin , (1)

where i0 ∈ {0, 1}, i1, in ∈ {0, 1, 2}, and ij �= 0 mod 3 for 1 < j < n.
Let Σ = {s, r} be a binary alphabet. We define a mapping ϕ : Σ → SL(2,Z)

as follows: ϕ(s) = S and ϕ(r) = R. Naturally, we can extend the mapping ϕ to
the morphism ϕ : Σ∗ → SL(2,Z). Let M ∈ SL(2,Z) be a matrix of the form
given in Eq. (1). Then, we say that the following word is the canonical word for
M :

(ss)i0ri1sri2s · · · srin−1srin .

It is easy to see that every matrix in SL(2,Z) has a unique canonical word.
We also call a word w ∈ Σ∗ reduced if there is no occurrence of substrings ss
or rrr in w. Then, we have the following fact. For every matrix M ∈ SL(2,Z),
there exists a unique reduced word w ∈ Σ∗ such that either M = ϕ(w) or
M = −ϕ(w) [19].

Next we consider a language which contains all (s, r)-representations of a
particular matrix in SL(2,Z).

Lemma 4. Let M be a matrix in SL(2,Z). Then, there exists a context-free
language over Σ = {s, r} which contains all unreduced representations w ∈ Σ∗

such that ϕ(w) = M . (See the archive version for proof)

3 Vector Ambiguity and Freeness Problems in SL(2,Z)

In this section, we prove that the vector ambiguity and freeness problems are
NP-complete. Note that the vector ambiguity problem is undecidable over Z4×4

and over Q3×3 [4]. We later show that the vector freeness problem is undecidable
over N

3×3.
It was shown in [25] that if there is a matrix M from SL(2,Z) satisfying

Mx = y, where x = [x1, x2]T and y = [y1, y2]T are vectors from Z × Z, then
this equation either does not have a solution or all its solutions are given by the
following formula

M = B

(
1 k
0 1

)t

C = B

(
1 1
0 1

)tk

C, (2)

where t ∈ Z and B,C are matrices from SL(2,Z). Let us denote the matrix
(

1 1
0 1

)

by T from now on Moreover, if M = BT ktC and Mx = y, then y = Cx = [d, 0]T

and v = T kty = [d, 0]T , where |d| = gcd(x1, x2) = gcd(y1, y2).
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First, we state the following property of matrices in SL(2,Z) and later exploit
the property to establish the main results of the paper.

Lemma 5. Let x = [x1, x2]T be a vector from Z
2 and C be a matrix from

SL(2,Z) such that Cx = [d, 0]T , where |d| = gcd(x1, x2). Then, a matrix semi-
group S of 2 × 2 integral matrices from SL(2,Z) is unambiguous with respect to
x if and only if for any matrix B in SL(2,Z), there is at most one matrix M in
S which is of the form of M = BT tC, where t ∈ Z.

Proof. First we prove that if S is unambiguous with respect to x, then there is
at most one matrix M ∈ S of the form M = BT tC for any B ∈ S, where t ∈ Z.

Assume that S is ambiguous with respect to x and we have two different
matrices M = BT tC and M ′ = BT t′

C, where t �= t′. Let us denote the vector
[d, 0]T by d for notational convenience. Since Cx = d, BT td should not be equal
to BT t′

d by the assumption. However, BT td = BT t′
d always holds because

Td = d. Therefore, this contradicts our assumption.
Let us consider the opposite direction. If there is a unique matrix M ∈ S

of form BT tC, then S is unambiguous with respect to x. Suppose that S is
ambiguous with respect to x. This implies that there are two matrices M and
M ′ in S such that Mx = M ′x. From Eq. (2), we see that both M and M ′ can
be represented in the form of BT tC for some integer t.

Since M �= M ′, M = BT tC and M ′ = BT t′
C such that t �= t′, which

contradicts our assumption. Therefore, we arrive at a contradiction and conclude
the proof. �
Theorem 6. The vector ambiguity problem for finitely generated matrix semi-
groups in SL(2,Z) is in NP.

Proof. Suppose that we are given n matrices M1,M2, . . . ,Mn ∈ SL(2,Z) as gen-
erators of the semigroup S. Namely, S = 〈M1,M2, . . . ,Mn〉. Let w1, w2, . . . , wn ∈
Σ∗ be words encoding the generators, such that ϕ(wi) = Mi for 1 ≤ i ≤ n.
Then, we can define a regular language L corresponding to S over Σ = {s, r} as
L = {w1, w2, . . . , wn}+.

Recall that every matrix M that transforms a vector x into a vector y can
be represented in the form of M = BT tC where t ∈ Z and B,C are matrices
from SL(2,Z). Moreover, we can compute two matrices B and C in polynomial
time [25]. From Lemma 5, we can check whether or not S is ambiguous with
respect to x by checking the existence of two different matrices in S which can
be represented as BT tC with different exponents for t.

We first compute a unique matrix C that transforms a given vector x =
[x1, x2]T into [gcd(x1, x2), 0]T . Then, take a inverse matrix C−1 of C and encode
the matrix with a word wC , namely, ϕ(wC) = C−1. Now we let L′ = L · {wC}.

Then, ϕ(L′) = {MC−1 | M ∈ S}. Moreover, we can obtain the following
statement for ϕ(L′): ϕ(L′) has two matrices M and M ′ such that M ′ = MT t

for some non-zero integer t if and only if ϕ(L) has two matrices of form BT tC
with different exponents t.
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Therefore, now it suffices to show that we can decide whether or not ϕ(L′)
has two different matrices M and M ′ such that M ′ = MT t. Because ϕ(s3r) = T
and ϕ(r5s) = T−1, the following inequivalence implies that there are no such
two matrices in S:

ϕ(L′) ∩ ϕ(L′ · ({s3r}+ ∪ {r5s}+)) �= ∅. (3)

Note that the unary operator + is called the Kleene plus, and for a set S, the
Kleene plus on S, S+, equals the concatenation of S with the Kleene plus on
S, namely S+ = SS∗. Since we know that there is an algorithm that decides
whether or not the intersection of two regular subsets of SL(2,Z) is empty [25],
the vector ambiguity problem is decidable.

Here we go one step further to show that the vector ambiguity problem is in
NP. We use the fact that the inequivalence given in Eq. (3) can be brought to
the following form of inequivalence:

(M1 + · · · + Mn)∗C−1 ∩ (M1 + · · · + Mn)∗C−1(T+ + (T−1)+) �= ∅.

This implies that the following regular subset of SL(2,Z) contains the identity
matrix: (M1 + · · · + Mn)∗C−1(T+ + (T−1)+)C(M−1

1 + · · · + M−1
n )∗ = I.

Now the vector ambiguity problem reduces to the problem of determining
whether the identity matrix is in a regular expression over matrices in SL(2,Z),
which is already proven to be in NP [3]. Therefore, we prove that the vector
ambiguity problem for matrix semigroups in SL(2,Z) is also in NP. �
Theorem 7. The vector ambiguity problem for finitely generated matrix semi-
groups in SL(2,Z) is NP-complete. (See the archive version for full proof)

Proof. The fact that the vector ambiguity problem in SL(2,Z) is in NP is shown
in Theorem 6. Now we show that it is NP-hard by using an encoding of the
subset sum problem (SSP) into a set of two-dimensional integral matrices. The
SSP is, given a set U = {s1, s2, . . . , sk} of k integers, to decide whether or not
there exists a subset U ′ ⊆ U whose elements sum up to the given integer x.
Namely,

∑
s∈U ′ s = x.

Define an alphabet Σ = {0, 1, . . . , k−1, . . . , 1, 2, . . . , k, a}. We define a set W
of words which encodes the SSP instance as follows:

W = {i · ai+1 · (i + 1), i · ε · (i + 1), 0 · ax · k · σ | 0 ≤ i ≤ k − 1} ⊆ {Σ ∪ {σ}}∗.

We define ‘border letters’ as letters from Σ \ {a, a} and the inner border
letters of a word as all border letters excluding the first and last. We call a word
a ‘partial cycle’ if all inner border letters in that word are inverse to a consecutive
inner border letter. Note that any partial cycle u ∈ W+ is of one of the following
forms (i) i · am · j or (ii) 0 · ax · k · σ, where i < j and m is any integer we can
get as a subset sum of integers from si+1 to sj .

We introduce an additional letter σ which actually encodes the word c2|Σ|,
namely, α(σ) = c2|Σ| and f(α(σ)) = T 4|Σ|. We note that the introduction of the
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additional letter σ preserves the injectivity of α. For example, any word w ∈ Σ∗

of length l has the following image under the mapping α:

α(w) = ci1d′ci2d′ci3d′ . . . d′cil−1d′cild′cil+1 ,

where −|Σ| + 1 ≤ ij ≤ |Σ| for 1 ≤ j ≤ l + 1 and d′ ∈ {d, d}. Now we consider a
word w′ ∈ {Σ ∪ {σ}}∗. Then, the image of the word under α is

α(w′) = ci1d′ci2d′ci3d′ . . . d′cil−1d′cild′cil+1 .

If any ij for 1 ≤ j ≤ l + 1 is in a different range, for example, [(2n − 1)|Σ| +
1, 2n|Σ|], then we can immediately see that the substring σn is used.

Then, we prove that there is a solution to the SSP instance if and only if the
matrix semigroup generated by a finite set of matrices corresponding to words
in W is ambiguous with respect to a vector x = [1, 0]T . The full proof can be
found in the archive version. �

Now we consider the vector non-freeness problem in SL(2,Z).

Theorem 8. The vector non-freeness problem for finitely generated matrix
semigroups in SL(2,Z) is in NP.

Proof. Let S = 〈M1,M2, . . . ,Mk〉 be a matrix semigroup and x be a vector. Let
V = {v | v = Mx,M ∈ S} be a set of target vectors transformed by a matrix
in S from x. Then, S is free with respect to x if there is a unique decomposition
of M ∈ S for every vector v such that Mx = v.

Therefore, we can check whether or not S is free with respect to x by checking
the existence of two factorizations of matrices that transform x into a vector
in V . In other words, S is not free with respect to x if we find the following
equivalence:

Ms1Ms2 . . . Msn
x = Mp1Mp2 . . . Mpm

x,

where si, pj ∈ [1, k] for 1 ≤ i ≤ n and 1 ≤ j ≤ m and si �= pi for some i. By
Eq. (2), we can represent these factorizations in the following way:

Ms1Ms2 . . . Msn
= BT iC and Mp1Mp2 . . . Mpm

= BT jC,

where i, j ∈ Z and B,C ∈ SL(2,Z). Since C is in SL(2,Z), we can multiply the
inverse of C to the right and obtain the following equation:

Ms1Ms2 . . . Msn
C−1 = Mp1Mp2 . . . Mpm

C−1T i−j .

Without loss of generality, we assume that Ms1 �= Mp1 . Now we take the
inverse of the right-hand side of the equation.

(Mp1Mp2 . . . Mpm
C−1T i−j)−1Ms1Ms2 . . . Msn

C−1 = I

T j−iCM−1
pm

. . .M−1
p2

M−1
p1

Ms1Ms2 . . . Msn
C−1 = I

(4)
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From the above equation, we see that there exists such a multiplication
sequence leading to the identity matrix if and only if the matrix semigroup
S is not free with respect to the given vector x.

Since the membership problem of a rational subset of matrices in SL(2,Z)
is known to be decidable [12], the vector freeness problem is also decidable, but
in exponential space due to translations of matrices in SL(2,Z) into words over
a binary alphabet {s, r}. Recently, Bell et al. proved that the identity problem
for matrix semigroups in SL(2,Z) is NP-complete [3]. They also showed that the
problem of deciding whether the identity matrix is in S, where S is an arbitrary
regular subset of SL(2,Z), is in NP. Since we decide whether a matrix semigroup
S in SL(2,Z) is non-free by checking whether the identity matrix exists in an
arbitrary subset of SL(2,Z) as presented in Eq. (4), we prove that the vector
non-freeness problem for matrix semigroups in SL(2,Z) is also in NP. �

Moreover, the vector non-freeness problem is in fact, NP-complete in SL(2,Z)
and undecidable over N

3×3.

Theorem 9. The vector non-freeness problem for finitely generated matrix
semigroups in SL(2,Z) is NP-complete. (See the archive version for proof)

Lastly, we establish the following undecidability as a trivial corollary of
Theorem 2 of [1].

Corollary 10. The vector freeness problem for finitely generated matrix semi-
groups over N

3×3 is undecidable. (See the archive version for proof)

4 On the Degree of Vector Ambiguity

Given a matrix semigroup S of n × n matrices and an n-dimensional vector x,
let V be a set of target vectors such that V = {y | y = Mx, M ∈ S}. Now
we consider the problem of determining if there exists a vector y ∈ V such that
there exists an infinite number of different matrices M ∈ S such that Mx = y.
We call this problem the finite vector ambiguity problem.

First remark that if we restrict our attention to the specific target vector y
and consider matrices transforming x into y, then we can decide whether or not
the number of such matrices is infinite.

Theorem 11. Given two vectors x,y and a finitely generated matrix semi-
group S in SL(2,Z), we can decide whether or not y is finitely ambiguous with
respect to S and x.

Proof. We use a similar approach to the proof of Theorem 6. Recall that every
matrix M that transforms x into y can be represented in the form of BT tC
where t ∈ Z and B,C are matrices from SL(2,Z). We can also compute B and
C in polynomial time [25]. Thus, it only remains to count the number of matrices
in the form of BT tC from the matrix semigroup S.
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Suppose that we are given n matrices M1,M2, . . . ,Mn from SL(2,Z) as gener-
ators of the semigroup S. Namely, S = 〈M1,M2, . . . ,Mn〉. Let w1, w2, . . . , wn ∈
Σ∗ be words encoding the generators, such that ϕ(wi) = Mi for 1 ≤ i ≤ n.
Then, we can define a regular language L corresponding to S over Σ = {s, r}
as L = {w1, w2, . . . , wn}+. Let wB and wC be words over {s, r} such that
ϕ(wB) = B−1 and ϕ(wC) = C−1. Let L′ = {wB} · L · {wC}. It is easy to
see that ϕ(L′) = {B−1MC−1 | M ∈ S}.

We also define a regular language LT corresponding to the set of matrices
which are the powers of a matrix T or T−1 as follows: LT = {s3r}∗ ∪ {r5s}∗.
In other words, ϕ(LT ) = {Tm, T−m | m ≥ 0}. It is important to see that there
exists only one word w ∈ LT which corresponds to the matrix Tm for any integer
m and the word w is always reduced. For instance, ε is the only word in LT for
the matrix T 0 = I which is the identity matrix.

It remains to construct two signed automata A′ and AT for L′ and LT which
recognize the set of words in L′ and LT , respectively, also with the set of reduced
words corresponding to words in L′ and LT , respectively.2 Then, we can see that
the cardinality of the following set L′ ∩ LT implies the number of matrices in S
of the form BT tC with different exponents t.

Since we can decide the finiteness of any regular set of matrices, the problem
of deciding whether there exists an infinite number of matrices in S transforming
x into y is also decidable. �
Theorem 12. The finite vector ambiguity problem for finitely generated matrix
semigroups in SL(2,Z) is decidable. (See the archive version for proof)

In the context of semigroup freeness problem, we can also define the finite
vector non-freeness problem as the problem of determining the existence of a
target vector v ∈ V which is reachable from the initial vector x by an infinite
number of different factorizations of matrices.

As in the finite vector ambiguity problem, we prove the case when the target
vector y is fixed.

Theorem 13. Given two vectors x,y and a matrix semigroup S in SL(2,Z),
we can decide whether or not y is finitely non-free with respect to S and x. (See
the archive version for full proof)

Proof. First we mention that the problem is very similar to the problem of count-
ing the number of matrices that transforms x into y considered in Theorem 11.
The only difference is that we count the number of matrix factorizations instead
of matrices from SL(2,Z). Since a matrix M ∈ S = 〈M1,M2, . . . ,Mn〉 can have
multiple factorizations over the generating set {M1,M2, . . . ,Mn}, we cannot
count the number of different factorizations of the form BT tC by constructing
singed automata and counting the number of matrices.

Since we are considering the number of factorizations of matrices, we need to
keep the unreduced representations of matrices over {s, r} instead of considering
reduced representations.
2 See the archive version for the formal definition of the signed automaton.
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Let S be the matrix semigroup generated by the set {M1,M2, . . . ,Mn}. We
compute the unique canonical word wi for each matrix Mi for 1 ≤ i ≤ n and
define LS = {w1, . . . wn}+ be the regular language. We also compute two matri-
ces B and C, and let wB and wC be the unique canonical words such that
ϕ(wB) = B and ϕ(wC) = C.

Recall that ϕ(s3r) = T and ϕ(r5s) = T−1. Based on Lemma 4, we define a
context-free language LBT ∗C which is the set of all words corresponding to the
set of matrices of the form BTmC where m is any integer. Then, we compute
the intersection between LS and LBT ∗C and check whether the cardinality is
the context-free language is finite. Since we can decide whether or not a given
context-free language is finite, we show that the problem is decidable. �

We leave open the decidability of the finite vector non-freeness problem. We
believe that the problem is also decidable but a little bit more complicated
than the finite vector ambiguity problem because there is a possibility of losing
some information about factorizations of matrices if we use signed automata
in which we consider accepting computations on reduced words over {s, r} for
corresponding matrices.

Since we have considered the problem of determining finiteness of vector
ambiguity of matrix semigroups, it is natural to compute the exact threshold
of finitely vector ambiguous matrix semigroups. Given a matrix semigroup S, a
vector x, and a non-negative integer k (in unary representation), for every target
vector y, does there exist at most k different matrices in S which transform x
into y. We call the problem the k-vector ambiguity problem.

Interestingly, the k-vector ambiguity problem is PSPACE-hard by the reduc-
tion from the DFA intersection emptiness problem [18]. First we start with show-
ing the decidability of the case when we are given both initial and target vectors
as follows:

Corollary 14. Given two vectors x,y, a finitely generated matrix semigroup S
in SL(2,Z), and a positive integer k ∈ N, we can decide whether or not y is
k-ambiguous with respect to S and x.

Proof. We use a similar approach to the proof of Theorem 11. The only difference
is that here we need to count the number of matrices of the form BT tC from the
matrix semigroup S instead of deciding the finiteness of the set of such matrices.
Since the L′ ∩ LT is a regular set and we can simply enumerate every elements
of the finite regular set, we can decide whether or not there exist at most k
different matrices M ∈ S such that Mx = y. �

Now we are ready to show that the k-vector ambiguity problem is decidable
and PSPACE-hard.

Theorem 15. The k-vector ambiguity problem for finitely generated matrix
semigroups in SL(2,Z) is decidable and PSPACE-hard.
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Proof. Recall that BT tCx = BT t′
Cx = y always holds from Lemma 5. There-

fore, the finite vector ambiguity problem is equivalent to the problem of decid-
ing whether or not there exists a finite number of different matrices M of the
form M = BT tC in the matrix semigroup S such that Mx = y for every target
vector y. Remind that we can compute the matrix C in polynomial time based
on the given vector x = [x1, x2]T such that Cx = [d, 0]T where d = gcd(x1, x2).
In other words, the matrix semigroup S is k-ambiguous with respect to x if and
only if the following condition holds:

max{xB | B ∈ SL(2,Z), xB = |{t | BT tC ∈ S}|} ≤ k,

where Cx = [d, 0]T and d = gcd(x1, x2).
Simply speaking, while enumerating all possible state subsets Q′ satisfying⋂

q∈Q′{w | q ∈ δ(I, w)} �= ∅, we check the following condition: |(LQ′ · {wC−1}) ∩
LT | ≤ k. If there exists a state subset where the above inequality does not hold,
we decide that S is not k-ambiguous with respect to x since there exist more
than k matrices in S of the form BT tC so that the matrices transform x into
the same target vector. Otherwise, S is k-ambiguous with respect to x.

For the PSPACE-hardness of the problem, we reduce the DFA intersection
problem [18] to the k-vector ambiguity problem. The DFA intersection problem
is, given k + 1 DFAs Ai, 1 ≤ i ≤ k + 1, to decide whether or not the intersection
of k + 1 DFAs is empty.

Let Ai = (Qi, ΣA, δi, si, Fi) be the ith DFA, where Qi = {q0, q1, . . . , qn} is a
finite set of states, ΣA is an alphabet, δi is the transition function, si ∈ Qi is
the start state, and Fi ⊆ Qi is a finite set of final state. And let us define an
alphabet

Σ = ΣA ∪ {s} ∪
k+1⋃

i=1

(Qi ∪ Qi),

where Qi = ∪q∈Qi
{q}. We also define a set W of words which encodes the

instance of the DFA intersection problem as follows. For each transition p ∈
δi(q, a) of Ai, we add a word q · a · p to the set W . For each start state si of Ai,
we add s ·si. Then, it is very easy to see that s ·w ·fi ∈ W+, where fi ∈ Fi, if and
only if w ∈ L(Ai). Let us define an additional letter σ which encodes the word
c2|Σ|, namely, α(σ) = c2|Σ| and f(α(σ)) = T 4|Σ|. Now we additionally add the
following words to the set W . For each final state fi of Ai, {fi ·σi | fi ∈ Fi} ⊆ W.
Then, we have s · w · σi ∈ W+ if and only if w ∈ L(Ai).

We claim that SW is k-free with respect to the vector [1, 0]T if and only if
the intersection of k + 1 DFAs is empty. We first prove that if SW is k-free with
respect to the vector [1, 0]T , then the intersection of DFAs is empty. Assume
that the intersection of k + 1 DFAs is not empty to prove by contradiction.
This implies that there is a word that can be accepted by DFAs A1, . . . Ak+1.
Therefore, there are k+1 words in W+ as follows: s·w·σi ∈ W+ for 1 ≤ i ≤ k+1.

Since f(α(σ)) = T 4|Σ| and we have k + 1 matrices in SW which can be
represented as follows: BT 4|Σ|i ∈ SW for 1 ≤ i ≤ k + 1, where B is a matrix
from SL(2,Z). By Lemma 5, we have a contradiction since SW is not k-free with
respect to [1, 0]T .
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Now we prove the opposite direction. Assume that SW is not k-free
with respect to [1, 0]T . This implies that there are at least k + 1 matrices
M1, . . . ,Mk+1 ∈ SW where each matrix can be decomposed into the form of
BT t. Since Mi ∈ SW , 1 ≤ i ≤ k + 1, we have a corresponding word wi ∈
W+, 1 ≤ i ≤ k + 1 such that f(α(wi)) = Mi. By Lemma 3, each word wi should
be ending with a distinct number of special symbols σ. Moreover, since k + 1
DFAs are not connected to each other, wi should start with s which is an imag-
inary state connected to every state state of k + 1 DFAs by ε-transitions. Since
the symbol σ only appears after canceling a final state, the word wi should be
of the form s · w · σi, where w ∈ L(Ai).

We reach the contradiction since there exists a word w that can be spelled
out by all k+1 DFAs and thus, the intersection of DFAs is not empty. Note that
the reduction process can be done in polynomial time. Hence, we prove that the
k-vector ambiguity problem in SL(2,Z) is PSPACE-hard. �

Remark that the k-vector ambiguity problem is in fact, in EXPSPACE as the
size of signed automata can be exponentially large in the size of representation
of matrix semigroup S. Therefore, we have an EXPSPACE upper bound and
PSPACE-hard lower bound for the k-vector ambiguity problem. However, the
PSPACE-hardness still applies even if we are given all numeric values of the input
in unary representation. Moreover, the size of signed automata stays polynomial
if we assume that the input is given in unary representation. Hence, we have the
following interesting corollary:

Corollary 16. The k-vector ambiguity problem for finitely generated matrix
semigroups in SL(2,Z) is PSPACE-complete if we are given all numeric val-
ues of the input in unary representation.

Lastly, we consider the k-vector non-freeness problem in which we consider
the finite number of different factorizations transforming the given vector x
into any target vector. As in the k-vector ambiguity case, the k-vector freeness
problem is decidable if we are given a target vector y as follows:

Theorem 17. Given two vectors x,y, a finitely generated matrix semigroup S
in SL(2,Z), and a positive integer k ∈ N, we can decide whether or not y is
k-non-free with respect to S and x. (See the archive version for full proof)
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Abstract. Dynamic Voltage Scaling techniques allow the processor to
set its speed dynamically in order to reduce energy consumption. In the
continuous model, the processor can run at any speed, while in the dis-
crete model, the processor can only run at finite number of speeds given
as input. The current best algorithm for computing the optimal sched-
ules for the continuous model runs at O(n2 log n) time for scheduling n
jobs. In this paper, we improve the running time to O(n2) by speeding
up the calculation of s-schedules using a more refined data structure. For
the discrete model, we improve the computation of the optimal schedule
from the current best O(dn logn) to O(n log max{d, n}) where d is the
number of allowed speeds.

1 Introduction

Energy efficiency is always a primary concern for chip designers not only for the
sake of prolonging the lifetime of batteries which are the major power supply
of portable electronic devices but also for the environmental protection pur-
pose when large facilities like data centers are involved. Currently, processors
capable of operating at a range of frequencies are already available, such as
Intel’s SpeedStep technology and AMD’s PowerNow technology. The capabil-
ity of the processor to change voltages is often referred to in the literature as
DVS (Dynamic Voltage Scaling) techniques. For DVS processors, since energy
consumption is at least a quadratic function of the supply voltage (which is
proportional to CPU speed), it saves energy to let the processor run at the
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lowest possible speed while still satisfying all the timing constraints, rather than
running at full speed and then switching to idle.

One of the earliest theoretical models for DVS was introduced by Yao, Demers
and Shenker [26] in 1995. They assumed that the processor can run at any speed
and each job has an arrival time and a deadline. They gave a characterization of
the minimum-energy schedule (MES) and an O(n3) algorithm for computing it
which is later improved to O(n2 log n) by [21]. No special assumption was made
on the power consumption function except convexity. Several online heuristics
were also considered including the Average Rate Heuristic (AVR) and Optimal
Available Heuristic (OPA). Under the common assumption of power function
P (s) = sα, they showed that AVR has a competitive ratio of 2α−1αα for all
job sets. Thus its energy consumption is at most a constant times the mini-
mum required. Later on, under various related models and assumptions, more
algorithms for energy-efficient scheduling have been proposed.

Bansal et al. [7] further investigated the online heuristics for the model pro-
posed by [26] and proved that the heuristic OPA has a tight competitive ratio
of αα for all job sets. For the temperature model where the temperature of the
processor is not allowed to exceed a certain thermal threshold, they showed how
to solve it within any error bound in polynomial time. Recently, Bansal et al. [5]
showed that the competitive analysis of AVR heuristic given in [26] is essentially
tight.

Pruhs et al. [23] studied the problem of minimizing the average flow time of a
sequence of jobs when a fixed amount of energy is available and gave a polynomial
time offline algorithm for unit-size jobs. Bunde [9] extended this problem to the
multiprocessor scenario and gave some nice results for unit-size jobs. Chan et al.
[10] investigated a slightly more realistic model where the maximum speed is
bounded. They proposed an online algorithm which is O(1)-competitive in both
energy consumption and throughput. More work on the speed bounded model
can be found in [6,11,18].

Ishihara and Yasuura [16] initiated the research on discrete DVS problem
where a CPU can only run at a set of given speeds. They solved the case when
the processor is only allowed to run at two different speeds. Kwon and Kim [17]
extended it to the general discrete DVS model where the processor is allowed
to run at speeds chosen from a finite speed set. They gave an O(n3) algorithm
for this problem based on the MES algorithm in [26], which is later improved in
[19] to O(dn log n) where d is the allowed number of speeds.

When the CPU can only change speed gradually instead of instantly, [13]
discussed about some special cases that can be solved optimally in polynomial
time. Later, Wu et al. [25] extended the polynomial solvability to jobs with
agreeable deadlines. Irani et al. [14] investigated an extended scenario where the
processor can be put into a low-power sleep state when idle. A certain amount
of energy is needed when the processor changes from the sleep state to the
active state. The technique of switching processors from idle to sleep and back
to idle is called Dynamic Power Management (DPM) which is the other major
technique for energy efficiency. They gave an offline algorithm that achieves
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2-approximation and online algorithms with constant competitive ratios.
Recently, Albers and Antoniadis [3] proved the NP-hardness of the above prob-
lem and also showed some lower bounds of the approximation ratio. Pruhs et al.
[22] introduced profit into DVS scheduling. They assume that the profit obtained
from a job is a function on its finishing time and on the other hand money needs
to be paid to buy energy to execute jobs. They give a lower bound on how good
an online algorithm can be and also give a constant competitive ratio online
algorithm in the resource augmentation setting. A survey on algorithmic prob-
lems in power management for DVS by Irani and Pruhs can be found in [15].
Most recent surveys by Albers can be found in [1,2].

In [20], the authors showed that the optimal schedule for tree structured jobs
can be computed in O(n2) time. In this paper, we prove that the optimal sched-
ule for general jobs can also be computed in O(n2) time, improving upon the
previously best known O(n2 log n) result [21]. The remaining paper is organized
as follows. Section 2 will give the problem formulation. Section 3 will discuss the
linear implementation of an important tool — the s-schedule used in the algo-
rithm in [21]. Then we use the linear implementation to improve the calculation
of the optimal schedule in Sect. 4. In Sect. 5, we give improvements in the com-
putation complexity of the optimal schedule for the discrete model. Finally, we
conclude the paper in Sect. 6.

2 Models and Preliminaries

We consider the single processor setting. A job set J = {j1, j2, . . . , jn} over [0, 1]
is given where each job jk is characterized by three parameters: arrival time
ak, deadline bk, and workload Rk. Here workload means the required number of
CPU cycles. We also refer to [ak, bk] ⊆ [0, 1] as the interval of jk. A schedule S
for J is a pair of functions (s(t), job(t)) which defines the processor speed and
the job being executed at time t respectively. Both functions are assumed to
be piecewise continuous with finitely many discontinuities. A feasible schedule
must give each job its required workload between its arrival time and deadline
with perhaps intermittent execution. We assume that the power P , or energy
consumed per unit time, is P (s) = sα (α ≥ 2) where s is the processor speed.
The total energy consumed by a schedule S is E(S) =

∫ 1

0
P (s(t))dt. The goal

of the min-energy feasibility scheduling problem is to find a feasible schedule
that minimizes E(S) for any given job set J . We refer to this problem as the
continuous DVS scheduling problem. If the speed that can be chosen must come
from a set {s1, s2, . . . , sd}, then the problem is referred to as the discrete DVS
scheduling problem.

For the continuous DVS scheduling problem, the optimal schedule Sopt is
characterized by using the notion of a critical interval for J , which is an interval
I in which a group of jobs must be scheduled at maximum constant speed g(I) in
any optimal schedule for J . The algorithm MES in [26] proceeds by identifying
such a critical interval I, scheduling those ‘critical’ jobs at speed g(I) over I,
then constructing a subproblem for the remaining jobs and solving it recursively.
The details are given below.
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Definition 1. For any interval I ⊆ [0, 1], we use JI to denote the subset of jobs
in J whose intervals are completely contained in I. The intensity of an interval
I is defined to be g(I) = (

∑
jk∈JI

Rk)/|I|.
An interval I∗ achieving maximum g(I) over all possible intervals I defines

a critical interval for the current job set. It is known that the subset of jobs JI∗

can be feasibly scheduled at speed g(I∗) over I∗ by the earliest deadline first
(EDF) principle. That is, at any time t, a job which is waiting to be executed
and having earliest deadline will be executed during [t, t + ε]. The interval I∗ is
then removed from [0, 1]; all the remaining job intervals [ak, bk] are updated to
reflect the removal, and the algorithm recurses. We denote the optimal schedule
which guarantees feasibility and consumes minimum energy in the continuous
DVS model as OPT.

The authors in [21] later observed that in fact the critical intervals do not
need to be located one after another. Instead, one can use a concept called s-
schedule defined below to do bipartition on jobs which gradually approaches the
optimal speed curve.

Definition 2. For any constant s, the s-schedule for J is an EDF schedule
which uses a constant speed s in executing any jobs of J . It will give up a job
when the deadline of the job has passed. In general, s-schedules may have idle
periods or unfinished jobs.

Definition 3. In a schedule S, a maximal subinterval of [0, 1] devoted to exe-
cuting the same job jk is called an execution interval for jk (with respect to
S). Denote by Ik(S) the union of all execution intervals for jk with respect to
S. Execution intervals with respect to the s-schedule will be called s-execution
intervals.

It is easy to see that the s-schedule for n jobs contains at most 2n s-execution
intervals, since the end of each execution interval (including an idle interval)
corresponds to the moment when either a job is finished or a new job arrives.
Also, the s-schedule can be computed in O(n log n) time by using a priority
queue to keep all jobs currently available, prioritized by their deadlines. In the
next section, we will show that the s-schedule can be computed in linear time.

By using s-schedule, one can divide the whole job set J into two subsets
J≥s and J<s where jobs in J≥s will run at a speed at least s in the optimal
schedule while jobs in J<s will run at a speed less than s in the optimal schedule
[21]. For the continuous model, the algorithm proposed by [21] uses g([0, 1]) as
the speed s to do the first bipartition and then uses the intensity of the two
subsets to do bipartition recursively. They showed that at most 2n bipartitions
are needed since every bipartition will either split the jobs into two non-empty
sets or finalize the optimal schedule within the concerned job set, therefore giving
an algorithm with running time O(nf(n)) where f(n) is the running time for
carrying out one s-schedule.
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3 Computing an s-Schedule in Linear Time

In this work, we assume that the underlying computational model is the unit-
cost RAM model with word size Θ(log n). This model is assumed only for the
purpose of using a special union-find algorithm by Gabow and Tarjan [12].

Theorem 1. If for each k, the rank of ak in {a1, a2, . . . , an} and the rank of
bk in {b1, b2, . . . , bn} are pre-computed, then the s-schedule can be computed in
linear time in the unit-cost RAM model.

We make the following two assumptions:

– the jobs are already sorted according to their deadlines;
– for each job jk, we know the rank of ak in the arrival time set {a1, a2, . . . , an}.

Because of the first assumption and without loss of generality, we assume that
b1 ≤ b2 ≤ . . . ≤ bn. Algorithm 1 schedules the jobs in the order of their deadlines.
When scheduling job k, the algorithm tries to search for an earliest available
time interval and schedule the job in it, and then repeat the process until all the
workload of the job is scheduled or unable to find such a time interval before the
deadline. A more detailed discussion of the algorithm is given below.

Let T be {a1, a2, . . . , an, 1, 1+ε}. Note that the times “1” and “1+ε” (where
ε is any fixed positive constant) are included in T for simplifying the presentation

1 Initialize ei ← ti for 1 ≤ i < m. ;
2 for k=1 to n do
3 Let i be the rank of ak in T , i.e., ti = ak. ;
4 Initialize r ← Rk, where r denotes the remaining workload to be scheduled.

;
5 while r > 0 do
6 Search for an earliest non-empty canonical time interval [ep, tp+1) such

that ep ≥ ti. ;
7 if ep ≥ bk then
8 Break the while loop because the job cannot be finished.
9 end

10 Set u ← min{bk, tp+1}.
11 if r > s · (u − ep) then
12 Schedule job k at [ep, u). ;
13 Update ep ← u. ;
14 Update r ← r − s · (u − ep). ;

15 else
16 Schedule job k at [ep, ep + r/s). ;
17 Update ep ← ep + r/s. ;
18 Update r ← 0.

19 end

20 end

21 end
Algorithm 1. Algorithm for Computing an s-Schedule
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of the algorithm. Denote the size of T by m. Denote ti to be the i-th smallest
element in T . Note that the rank of any ak in T is known. During the running
of the algorithm, we will maintain the following data structure:

Definition 4. For each 1 ≤ i < m, the algorithm maintains a value ei, whose
value is in the range [ti, ti+1]. The meaning of ei is that: the time interval [ti, ei)
is fully occupied by some jobs, and the time interval [ei, ti+1) is idle.

If [ti, ti+1) is fully occupied, then ei is ti+1. Note that such a time ei always
exists during the running of the algorithm, which will be shown later when we
discuss how to maintain ei. At the beginning of the algorithm, we assume that
the processor is idle for the whole time period. That means ei = ti for 1 ≤ i < m
(see line 1 of Algorithm 1).

Example 1. An example for demonstrating the usage of the ei data structure
is given below: Assume that T = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1 + ε}.
At some point during the execution of the algorithm, if some jobs have been
scheduled to run at time intervals [0.2, 0.35), [0.6, 0.86), [0.9, 0.92), then we will
have e1 = 0.1, e2 = 0.3, e3 = 0.35, e4 = 0.4, e5 = 0.5, e6 = 0.7, e7 = 0.8,
e8 = 0.86, e9 = 0.92, and e10 = 1.

Before we analyze the algorithm, we need to define an important concept
called canonical time interval.

Definition 5. During the running of the algorithm, a canonical time interval
is a time interval of the form [ep, tp+1), where 1 ≤ p < m. When ep = tp+1, we
call it an empty canonical time interval.

Note that a non-empty canonical time interval is always idle based on the defi-
nition of ep. Any arrival time ak will not lie inside any canonical time interval
but it is possible that ak will touch any of the two ending points, i.e., for any
1 ≤ p < m, we have either ak ≤ ep or ak ≥ tp+1. Therefore, if we want to search
for a time interval to run a job at or after time ak, then we should always look
for the earliest non-empty canonical time interval [ep, tp+1) where ep ≥ ak.

In Algorithm 1, a variable r is used to track the workload to be scheduled.
Lines 5–20 try to schedule jk as early as possible if r > 0. Line 6 tries to search
for an earliest non-empty canonical time interval [ep, tp+1) no earlier than the
arrival time of jk (i.e., ep ≥ ak). Such a p always exists because there is always
a non-empty canonical time interval [1, 1 + ε). Lines 7–9 mean that, if ep is not
earlier than the deadline of jk, then the job cannot be finished. Line 10 sets a
value of u, whose meaning is that [ep, u) can be used to schedule the job. The
value of u is no later than the deadline of jk. Lines 12–14 process the case when
the remaining workload of jk cannot be finished in the time interval [ep, u). Lines
16–18 process the case when the remaining workload of jk can be finished in the
time interval [ep, u). In the first case, line 13 updates ep to u because the time
interval [tp, u) is occupied and [u, tp+1) is idle. In the second case, a time of r/s
is occupied by jk after the time ep, so ep is increased by r/s.
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0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1 + ε
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Fig. 1. An illustration for Example 2.

Example 2. Following the example provided in the previous example, assume
that the speed is s = 1, if we are to schedule a job jk, where ak = 0.3, bk =
0.96, Rk = 0.35, the algorithm will proceed as follows: At the beginning, r will
be initialized to 0.35, and i = 3 (because ak = 0.3 = t3; see line 3). Line 6 will
then get the interval [e3, t4) = [0.35, 0.4) as an earliest non-empty canonical time
interval, and a workload of (0.4−0.35)s = 0.05 is scheduled at that time interval.
The values of e3 will be updated to 0.4 accordingly. Now, r becomes 0.35−0.05 =
0.3, and line 6 will get the time interval [e4, t5) = [0.4, 0.5) to schedule the job.
After that r becomes 0.3 − (0.5 − 0.4)s = 0.2, and e4 = 0.5. Line 6 then gets the
time interval [e5, t6) = [0.5, 0.6) to schedule the job, and r will be further reduced
to 0.1. The values of e5 will be updated to 0.6. The next time interval found
will be [e8, t9) = [0.86, 0.9), and r will become 0.1 − (0.9 − 0.86)s = 0.06. The
values of e8 will be updated to 0.9. The remaining earliest non-empty canonical
time interval is [e9, t10) = [0.92, 1), but the deadline of the job is 0.96, so only
[0.92, 0.96) will be used to schedule the job, and r will be 0.02. The value of
e9 is then updated to 0.96. Finally, [e9, t10) = [0.96, 1) is the remaining earliest
non-empty canonical time interval, but e9 ≥ bk, so line 7–9 will break the loop,
and jk will be an unfinished job. A graphical illustration is provided in Fig. 1.
The solid rectangles represent the time intervals occupied by some jobs before
scheduling jk. The cross-hatched rectangles represent the time intervals that are
used to schedule jk. The q-th cross-hatched rectangle (where 1 ≤ q ≤ 5) is the
q-th time interval scheduled according to this example. Note that all the cross-
hatched rectangles except the 5-th one are canonical time intervals right before
scheduling jk.

The most critical part of the algorithm is Line 6, which can be implemented
efficiently by the following folklore method using a special union-find algorithm
developed by Gabow and Tarjan [12] (see also the discussion of the decremental
marked ancestor problem [4]). At the beginning, there is a set {i} for each
1 ≤ i < m. The name of a set is the largest element of the set. Whenever ep

is updated to tp+1 (i.e., there is not any idle time in the interval [tp, tp+1)), we
make a union of the set containing p and the set containing p + 1, and set the
name of this set to be the name of the set containing p + 1. After the union, the
two old sets are destroyed. In this way, a set is always an interval of integers.
For a set whose elements are {q, q + 1, . . . , p}, the semantic meaning is that,
[tq, ep) is fully scheduled but [ep, tp+1) is idle. Therefore, to search for an earliest
non-empty canonical time interval beginning at or after time ti, we can find the
set containing i, and let p be the name of the set, then [ep, tp+1) is the required
time interval.
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Example 3. An example of the above union-find process for scheduling jk in the
previous example is given below: Before scheduling jk, we have the sets {1},
{2, 3}, {4}, {5}, {6, 7, 8}, {9}, {10}. The execution of line 6 will always try to
search for a set that contains the element i = 3. Therefore, the first execution will
find the set {2, 3}, so p will be 3. After that, e3 becomes t4 = 0.4, so the algorithm
needs to make a union of the sets {2, 3} and {4} to get {2, 3, 4}. Similarly, the
next execution will find the set {2, 3, 4}, so p = 4. The algorithm will then
make a union of {2, 3, 4} and {5} to get {2, 3, 4, 5}. For the next execution,
the set {2, 3, 4, 5} will be found, and it will be merged with {6, 7, 8} to get
{2, 3, 4, 5, 6, 7, 8}. In this case, p = 8, and the earliest non-empty canonical time
interval is [ep, tp+1) = [0.86, 0.9). After e8 is updated to t9 = 0.9, the algorithm
will merge {2, 3, 4, 5, 6, 7, 8} with {9} and obtain {2, 3, 4, 5, 6, 7, 8, 9}. Therefore,
the next execution of line 6 will get p = 9. After the time interval [0.92, 0.96)
is scheduled and e9 is updated to 0.96, so the algorithm will not do any union.
The last execution finds p = 9 again, and a loop break is performed.

Now, we analyze the time complexity of the algorithm.

Lemma 1. Each set always contains continuous integers.

Proof. It can be proved by induction. At the beginning, each skeleton set is a
continuous integer set. During the running of the algorithm, the union operation
always merges two nearby continuous integer sets to form a larger continuous
integer set.

Lemma 2. There are at most m − 2 unions.

Proof. It is because there are only m − 1 sets.

Lemma 3. There are at most 2(m − 2) + n finds.

Proof. Some m − 2 finds are from finding the set containing p + 1 during each
union. Note that there is no need to perform a find operation to find the set
containing p for union, because p is just the name of such a set, where the set
contains continuous integers with p as the largest element. The other (m−2)+n
finds are from searching for earliest canonical time intervals beginning at or after
time ti. This can be analyzed in the following way: Let zk be the number of times
to search for an earliest non-empty canonical time interval when processing job
jk. Let wk be the number of unions that are performed when processing job jk.
We have zk ≤ wk + 1, because each of the first zk − 1 finds must accompany a
union. Therefore,

∑

1≤k≤n

zk ≤
∑

1≤k≤n

(wk + 1) =
∑

1≤k≤n

wk + n ≤ (m − 2) + n.

Since these unions and finds are operated on the sets of integer intervals, such
an interval union-find problem can be solved in O(m + n) time in the unit-cost
RAM model using Gabow and Tarjan’s algorithm [12]. Note that m = O(n), so
the total time complexity is O(n). Theorem 1 holds.
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If the union-find algorithm is implemented in the pointer machine model [8]
using the classical algorithm of Tarjan [24], the complexity of our s-schedule algo-
rithm will become O(nα(n)) where α(n) is the one-parameter inverse Ackermann
function.

Note that, the number of finds can be further reduced with a more careful
implementation of the algorithm as follows (but the asymptotic complexity will
not change):

– Whenever the algorithm schedules a job jk to run at a time interval [ep, bk),
the algorithm no longer needs to proceed to line 6 for the same job, because
there will not be any idle time interval available before the deadline.

– For each job jk, the first time to find a non-empty canonical time interval
requires one find operation. In any of the later times to search for earliest
non-empty canonical time intervals for the same job, there must be a union
operation just performed. The p that determines the earliest non-empty canon-
ical time interval [ep, tp+1) is just the name of that new set after that union,
so a find operation is not necessary in this case. Note that the find operations
that accompany the unions are still required.

Using the above implementation, the number of finds to search for earliest non-
empty canonical time intervals can be reduced to n. Along with the m − 2 finds
for unions, the total number of finds of this improved implementation is at most
(m − 2) + n.

4 An O(n2) Continuous DVS Algorithm

We will first take a brief look at the previous best known DVS algorithm of Li,
Yao and Yao [21]. As in [21], Define the “support” U of J to be the union of all
job intervals in J . Define avr(J), the “average rate” of J to be the total workload
of J divided by |U |. According to Lemma 9 in [21], using s = avr(J) to do an
s-schedule will generate two nonempty subsets of jobs requiring speed at least s
or less than s respectively in the optimal schedule unless the optimal speed for
J is a constant s. The algorithm will recursively do the scheduling based on the
two subsets of jobs. Therefore, at most n calls of s-schedules on a job set with
at most n jobs are needed before we obtain the optimal schedule for the whole
job set. The most time-consuming part of their algorithm is the s-schedules.

To apply our improved s-schedule algorithm for solving the continuous DVS
scheduling problem, we need to make sure that the ranks of the deadlines and
arrival times are known before each s-schedule call. It can be done in the following
way: Before the first call, sort the deadlines and arrival times and obtain the
ranks. In each of the subsequent calls, in order to get the new ranks within
the two subsets of jobs, a counting sort algorithm can be used to sort the old
ranks in linear time. Therefore, the time to obtain the ranks is at most O(n2)
for the whole algorithm. Based on the improved computation of s-schedules, the
total time complexity of the DVS problem is now O(n2), improving the previous
O(n2 log n) algorithm of [21] by a factor of O(log n). We have the following
theorem.
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Theorem 2. The continuous DVS scheduling problem can be solved in O(n2)
time for n jobs in the unit-cost RAM model.

5 Further Improvements

For the discrete DVS scheduling problem, we design an O(n log max{d, n}) algo-
rithm to calculate the optimal schedule by doing binary testing on the given d
speed levels, improving upon the previously best known O(dn log n) [19]. To be
specific, given the input job set with size n and a set of speeds {s1, s2, . . . , sd},
we first choose the speed sd/2 to bi-partition the job set into two subsets. Then
within each subset, we again choose the middle speed level to do the bi-partition.
We recursively do the bi-partition until all the speed levels are handled. In the
recursion tree thus built, we claim that the re-sorting for subproblems on the
same level can be done in O(n) time which implies that the total time needed
is O(n log d + n log n) = O(n log max{d, n}). The claim can be shown in the
following way. Based on the initial sorting, we can assign a new label to each
job specifying which subgroup it belongs to when doing bi-partitioning. Then a
linear scan can produce the sorted list for each subgroup.

Hence we have

Theorem 3. The discrete DVS scheduling problem can be solved in
O(n log max{d, n}) time for n jobs and d speeds in the unit-cost RAM model.

6 Conclusion

In this paper, we improve the time for computing the optimal continuous DVS
schedule from O(n2 log n) to O(n2). The major improvement happens in the
computation of s-schedules. Originally, the s-schedule computation is done in an
online fashion where the execution time is allocated from the beginning to the
end sequentially and the time assigned to a certain job can be gradually decided.
While in this work, we allocate execution time to jobs in an offline fashion. When
jobs are sorted by deadlines, job ji’s execution time is totally decided before we
go on to consider ji+1. Then by using a suitable data structure and conducting a
careful analysis, the computation time for s-schedules improves from O(n log n)
to O(n). We also design an algorithm to improve the computation of the optimal
schedule for the discrete model from O(dn log n) to O(n log max{d, n}).
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Abstract. We study the monotone circuit complexity of the so called
semi-disjoint bilinear forms over the Boolean semi-ring, in particular the
n-dimensional Boolean vector convolution. Besides the size of a monotone
Boolean circuit, we consider also the and-depth of the circuit, i.e., the
maximum number of and-gates on a path to an output gate, and the
monom number of the circuit which is the number of distinct subsets of
input variables induced by monoms at the output gates. We show that
any monotone Boolean circuit of ε log n-bounded and-depth computing
a Boolean semi-disjoint form with 2n input variables and q prime impli-
cants has Ω(q/n2ε) size. As a corollary, we obtain the Ω(n2−2ε) lower
bound on the size of any monotone Boolean circuit of so bounded and-
depth computing the n-dimensional Boolean vector convolution. Fur-
thermore, we show that any monotone Boolean circuit of 2nε

-bounded
monom number, computing a Boolean semi-disjoint form on 2n variables,
where each variable occurs in p prime implicants, has Ω(n1−2εp) size.
As a corollary, we obtain the Ω(n2−2ε) lower bound on the size of any
monotone Boolean circuit of 2nε

-bounded monom number computing the
n-dimensional Boolean vector convolution. Finally, we demonstrate that
in any monotone Boolean circuit for a semi-disjoint bilinear form with q
prime implicants that has size substantially smaller than q, the major-
ity of the terms at the output gates representing prime implicants have
to have very large length (i.e., the number of variable occurrences). In
particular, in any monotone circuit for the n-dimensional Boolean vec-
tor convolution of size o(n2−4ε/ log n) almost all prime implicants of the
convolution have to be represented by terms at the circuit output gates
of length at least nε.

Keywords: Semi-disjoint bilinear form · Boolean vector convolution ·
Monotone Boolean circuit complexity

1 Introduction

A set f of quadratic polynomials over a semi-ring, defined on the set of variables
X ∪ Y is a semi-disjoint bilinear form if the following properties hold.
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1. For each polynomial Q in f and each variable z ∈ X ∪ Y , there is at most
one monomial (in the Boolean case, called a prime implicant [16]) of Q con-
taining z.

2. The sets of monomials of polynomials in f are pairwise disjoint.
3. Each monomial of a polynomial in f consists of exactly one variable in X and

one variable in Y .

The n-dimensional vector convolution and the n × n matrix product are
important and popular examples of semi-disjoint bilinear forms (for the con-
volution, |X| = |Y | = n and |f | = 2n − 1 while for the matrix product,
|X| = |Y | = |f | = n2). Both semi-disjoint bilinear forms in the arithmetic
and Boolean case have a wide range of fundamental applications, for instance,
in stringology (see, e.g., [5]) and graph algorithms (see, e.g., [20]).

Two n × n integer matrices can be arithmetically multiplied using O(n3)
additions and multiplications following the definition of matrix product. This is
optimal if neither other operations nor negative constants are allowed [8,11,14]. If
additionally subtraction or negative constants are allowed then the so called fast
matrix multiplication algorithms can be implemented using O(nω) operations
[7,15,19], where ω < 3. They rely on algebraic equations following from the
possibility of term cancellation. Le Gall and Vassilevska Williams have recently
shown the exponent ω of fast matrix multiplication to be smaller than 2.373
in [7,19]. The fast arithmetic algorithms run on 0 − 1 matrices yield the same
asymptotic upper time bounds for n × n Boolean matrix multiplication. On the
other hand, Raz proved that if only addition, multiplication and products with
constants of absolute value not exceeding one are allowed then n × n matrix
multiplication requires Ω(n2 log n) operations [12].

Similarly, the arithmetic convolution of two n-dimensional vectors can be
computed using O(n2) additions and multiplications. Next, the convolution of
two n-dimensional vectors over a commutative ring with the so called principal
n-th root of unity can be computed via Fast Fourier Transform using O(n log n)
operations of the ring. The n-dimensional Boolean vector convolution also admits
an O(n log n) algorithm by reduction to fast integer multiplication algorithm in
turn relying on Fast Fourier Transform [5].

It is well known that for uniform problems, their Boolean circuit complexity
corresponds up to logarithmic terms to their Turing complexity [16]. Unfortu-
nately, up to today no super-linear lower bounds on the size of circuits using
binary and unary Boolean operations forming a complete Boolean basis are
known for natural problems [16]. On the other hand, such lower bounds are
known in case of monotone Boolean circuits that use only the “or” and “and”
binary operations [1,2,4,6,8–11,13,16–18]. There exist interesting connections
between the general Boolean circuit complexity and the monotone one which
motivate studying the latter for monotone functions [3].

In this paper, we study the complexity of monotone (i.e., using only and-
gates and or-gates besides the input gates) Boolean circuits for Boolean semi-
disjoint bilinear forms. In case of n × n Boolean matrix product, almost tight
or even tight lower bounds of the form Ω(n3) were presented in a series of



Towards an Almost Quadratic Lower Bound 403

Table 1. Lower bounds on the monotone Boolean circuit complexity for n-dimensional
Boolean vector convolution in a historical perspective.

Author Year Lower bound

N. Pippinger and L.G. Valiant [10] 1976 Ω(n log n)

E.A. Lamagna [6] 1979 Ω(n log n)

N. Blum [4] 1980 n4/3

R. Weiss [18] 1981 n3/2

papers [8,9,11] for more than three decades ago. As for the n-dimensional
Boolean vector convolution, solely substantially sub-quadratic lower bounds on
monotone Boolean circuit complexity are known in the literature in spite of the
fact that one widely believes that n2 and-gates and n2 − 2n + 1 or-gates are
required [3]. The best known lower bound on monotone Boolean circuit com-
plexity for n-dimensional Boolean vector convolution is n3/2 due to Weiss [18].
It improves on the previously best n4/3 lower bound due to Blum [4], see also
Table 1. Blum conjectures in [3] that one can derive an Ω((n/ log n)2) lower
bound for this problem mixing known techniques.

Besides the size of a monotone Boolean circuit, we shall also consider the
and-depth of the circuit, i.e., the maximum number of and-gates on a path to
an output gate, and the monom number of the circuit which is the number of
distinct subsets of input variables induced by monoms at the output gates. First,
we show that any monotone Boolean circuit of and-depth d (i.e., in which any
directed path includes at most d and-gates) computing a Boolean semi-disjoint
form with q prime implicants has to have at least q/22d size (i.e., the num-
ber of non-input gates). As a corollary, we obtain the Ω(n2−2ε) lower bound
on the size of any monotone Boolean circuit of ε log n and-depth computing
the n-dimensional Boolean vector convolution. Our main result states that any
monotone Boolean circuit of 2nε

-bounded monom number, computing a Boolean
semi-disjoint form on 2n variables, where each variable occurs in p prime impli-
cants, has Ω(n1−2εp) size. As a corollary, we obtain the Ω(n2−2ε) lower bound on
the size of any monotone Boolean circuit of 2nε

-bounded monom number com-
puting the n-dimensional Boolean vector convolution. Finally, we demonstrate
that in any monotone Boolean circuit for a semi-disjoint bilinear form with q
prime implicants that has size substantially smaller than q, the majority of the
terms at the output gates representing prime implicants have to have very large
length (i.e., the number of variable occurrences). In particular, in any monotone
circuit for the n-dimensional Boolean vector convolution of size o(n2−4ε/ log n),
almost all prime implicants of the convolution have to be represented by terms
at the circuit output gates of length at least nε.
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2 Preliminaries

For two Boolean n-dimensional vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1)
their convolution is a vector c = (c0, ..., c2n−2), where ci =

∨min{i,n−1}
l=max{i−n+1,0} al ∧

bi−l for i = 0, ..., 2n − 2.
A monotone (Boolean) circuit is a finite directed acyclic graph with the fol-

lowing properties:

1. The indegree of each vertex (termed gate) is either 0 or 2.
2. The source vertices (i.e., vertices with indegree 0 called input gates) are

labeled by elements in some set of variables and the Boolean constants 0, 1.
3. The vertices of indegree 2 are labeled by elements of the set {and, or} and

termed and-gates and or-gates, respectively.

The size of a monotone Boolean circuit is the total number of gates of indegree
two in the circuit, i.e., and-gates and or-gates. A monotone Boolean circuit is of
and-depth d if the number of and-gates on any directed path in the circuit does
no exceed d.

With each gate g of a monotone Boolean circuit, we associate a set T (g) of
terms in a natural way. Thus, with each input gate, we associate the singleton set
consisting of the corresponding variable or constant. Next, with an or-gate, we
associate the union of the sets associated with its direct predecessors. Finally,
with an and-gate g, we associate the set of concatenations t1t2 of all pairs of
terms t1, t2, where ti ∈ T (gi) and gi stands for the i-th direct predecessor of g
for i = 1, 2. The function computed at the gate is the disjunction of the functions
(called monoms) represented by the terms in T (g). A term in T (g) is a zero-term
if it contains the Boolean constant 0. Clearly, a zero-term represents the Boolean
constant 0.

The monom number of a monotone circuit is the number of distinct subsets
of variables induced by terms in T (o) over all output gates o of the circuit. Note
that the monom number never exceeds 2m, where m is the number of input
variables.

A Boolean bilinear form composed of k functions is computed by a monotone
Boolean circuit if there are k distinguished gates (called output gates) computing
the k functions.

An implicant of a set f of Boolean functions is the conjunction of some
variables of f (monom) such that there is a function belonging to f which is
true whenever the conjunction is true. An implicant of f that is minimal with
respect to included variables is a prime implicant of f .
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3 The Monotone Boolean Circuit Complexity

The following upper bound is straight-forward.

Lemma 1. Each Boolean semi-disjoint bilinear form composed of k functions
on x0, ..., xn−1 and y0, ..., yn−1 with q prime implicants in total can be computed
by a monotone circuit of and-depth 1 and monom number q, with q ≤ n2 and-
gates and q − k or-gates.

Proof. First, we use q and-gates to compute each prime implicant xiyj separately.
Then, we form k disjoint or-unions of the prime implicants corresponding to the
k functions of the bilinear form using q − k or-gates. ��

3.1 Warming up

In this subsection, we show how a restriction on the length (i.e., the number
of variable occurrences in) of terms in T (o) for output gates o of a monotone
Boolean circuit computing a Boolean semi-disjoint form can be used to derive a
non-trivial lower bound on the number of and-gates in the circuit.

Lemma 2. Let S be a monotone circuit computing a semi-disjoint bilinear form
f on the variables x0, ..., xn−1 and y0, ..., yn−1. Suppose that for each output gate
o in S, each non-zero term in T (o) contains at most k variables. Let h be a gate
connected by directed paths with some output gates in S such that the function
computed at h has prime implicants zq1 , ..., zql(h) which are single variables and
possibly some other non-single-variable prime implicants. The inequality l(h) ≤ k
holds or h can be replaced by the Boolean constant 1.

Proof. Consider a directed path P connecting h with some output gate o in S. At
the output gate o, each zqr

, 1 ≤ r ≤ l(h), has to appear in terms t1zqr
t2 in the

associated set T (o) (see Preliminaries) such that t1t2 is a concatenation (i.e.,
conjunction) of some terms added by consecutive and-gates on P and t1zqr

t2
represents an implicant of the function fo computed at o.

Suppose that there is such a t1t2 that does not represent an implicant of f0.
It follows from the definition of t1t2 that for any z ∈ {zqr

|1 ≤ r ≤ l(h)}, the
term t1zt2 also appears in the set T (o) of terms associated with the output gate
o and consequently it has to represent an implicant of fo as well. Therefore, for
each such a z, t1t2 has to contain the unique variable z′ for which zz′ is a prime
implicant of fo. Note that if z is an x-variable then z′ is an y-variable and vice
versa. Since for different z the z′ have to be different, t1t2 has to contain at least
l(h) variables. We infer that l(h) ≤ k.

On the contrary, if each such a term t = t1t2 for each path P connecting h
with any output gate o, represents an implicant of fo then on each P we could
connect the successor of the start vertex h with the Boolean constant 1 instead of
h and the output gate o still would output fo. To see this observe that then each
u ∈ T (h) is a part of the terms of the form t1ut2 in T (o), where t1t2 represents
an implicant of the function fo. ��
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We shall a call a class K of monotone Boolean circuits k-nice if (i) for each
circuit U ∈ K, for each output gate o in U , each non-zero term in T (o) contains
at most k variables, and (ii) K is closed under the replacement of a gate in U
by a Boolean constant.

Lemma 3. Let S be a monotone circuit computing a semi-disjoint bilinear form
f on the variables x0, ..., xn−1 and y0, ..., yn−1. Suppose that S belongs to a k-
nice class K and achieves a minimum size among monotone circuits in K that
compute f . Let g be an and-gate in S. Next, let Sg be the set of prime implicants
s of f such that s is a prime implicant of the function computed at g, s is not a
prime implicant of the function computed at any of the two direct predecessors
of g, and there is a directed path connecting g with the output gate computing
the function whose prime implicant is s. The inequality |Sg| ≤ k2 holds.

Proof. We may assume w.l.o.g. |Sg| ≥ 1. It follows that at least for one of the
direct predecessor gates h of g, the function computed at h has at least

√|Sg|
single variable prime implicants. By Lemma 2, we infer that either

√|Sg| ≤ k or
the gate h can be replaced by the constant 1. The latter possibility contradicts
the minimality of S which yields the lemma. ��
Theorem 1. Let S be a monotone circuit that computes a semi-disjoint bilinear
form f on the variables x0, ..., xn−1 and y0, ..., yn−1, having q prime implicants
in total. Suppose that S belongs to a k-nice class K and achieves a minimum size
among monotone circuits in K that compute f . S has at least q/k2 and-gates.

Proof. For each prime implicant s of f there is at least one and-gate g having
the properties described in the statement of Lemma 3, i.e., where s ∈ Sg. (To
find such a gate g start from the output gate computing the function of f for
which s is a prime implicant and iterate the following steps: check if the current
gate g satisfies s ∈ Sg, if not go to the direct predecessor of g that computes a
function having s as a prime implicant.) By the latter lemma, the same and-gate
can have these properties for at most k2 prime implicants of f . ��
Corollary 1. Let S be a minimum-size monotone circuit of d-bounded and-
depth that computes a semi-disjoint bilinear form f on the variables x0, ..., xn−1

and y0, ..., yn−1, having q prime implicants in total. S has at least q/22d and-
gates.

Proof. By induction on the maximum number d of and-gates on a path from
an input gate to a gate g in S, any term in T (g) includes at most 2d distinct
variables. Hence, Theorem 1 yields the corollary. ��
Corollary 2. Any minimum-size monotone circuit of ε log n-bounded and-
depth that computes the n-dimensional Boolean vector convolution has at least
Ω(n2−2ε) and-gates.
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3.2 Large Monom Number

In this subsection, we combine an idea of elimination of long relevant terms in
T (o) for output gates o of a monotone Boolean circuit computing a Boolean
semi-disjoint form with those from the preceding subsection in order to derive
our lower bound on the monom number. The elimination idea consists in setting
a specially chosen subset of input variables to the Boolean 0 using a probabilistic
argument.

Theorem 2. Let f be a semi-disjoint bilinear form on the variables x0, ..., xn−1

and y0, ..., yn−1, such that for each of the variables there are p prime implicants
of f containing it. Any minimum-size monotone circuit S of 2nε

-bounded monom
number that computes f has to include Ω(pn1−2ε) and-gates.

Proof. Let H be the set of all non-input gates h in S connected by directed
paths with some output gates in S such that the function computed at h has
prime implicants zq1 , ..., zql(h) which are single variables and possibly some other
non-single variable prime implicants. We let Zh = {zqr

|1 ≤ r ≤ l(h)}. Note that
by the optimality of S and Lemma 1, |H| ≤ 2n2 holds.

Let h ∈ H. Consider a directed path P connecting h with some output gate o
in S. At the output gate o, each zqr

, 1 ≤ r ≤ l(h), has to appear in terms t1zqr
t2

in the associated set T (o) such that t1t2 is a concatenation (i.e., conjunction)
of some terms added by consecutive and-gates on P and t1zqr

t2 represents an
implicant of the function fo computed at o. Let T (h, o) denote the set of all such
terms t = t1t2 for all possible directed paths P connecting h with o. Next, let
Tim(h, o) stand for the subset of all terms in T (h, o) that represent implicants
of fo (in particular terms including the Boolean 0 are trivial implicants of fo).

Suppose that T (h, o) \ Tim(h, o) 	= ∅, i.e., there are t1t2 ∈ T (h, o) that do
not represent any implicant of fo. It follows from the definition of T (h, o) that
for any z ∈ {zqr

|1 ≤ r ≤ l(h)}, the terms t1zt2 also appear in the set T (o) of
terms associated with the output gate o and consequently they have to represent
implicants of fo as well. Therefore, for each z ∈ {zqr

|1 ≤ r ≤ l(h)}, each t1t2 ∈
T (h, o) \ Tim(h, o) has to contain the unique variable z′ for which zz′ is a prime
implicant of f0. That is, if z = xi then z′ = yj , where yj is the unique y-variable
for which xiyj is a prime implicant of fo and vice versa. Since for different z the
z′ have to be different, each t1t2 ∈ T (h, o) \ Tim(h, o) has to contain all the l(h)
variables in the set {z′

qr
|1 ≤ r ≤ l(h)}. We shall denote the latter set by Z ′

h,o.
Pick uniformly at random a subset of n/2 variables from the set of the 2n

input variables and set each variable in the subset to the Boolean 0. Note that
each of the 2n input variables is set to Boolean 0 with probability 1/4 and
consequently it survives with probability 3/4.

Let O stand for the set of output gates, and let T =
⋃

o∈O T (o). Then, for any
t ∈ T containing at least (nε + 2)/ log2

4
3 distinct variables, the probability that

t becomes a zero-term representing trivial implicants of fo, where t ∈ T (o), is at
least 1−(3/4)(n

ε+2)/ log2
4
3 = 1− 1

42−nε

. Since the monom number of S is bounded
by 2nε

, the probability that all terms t ∈ T having at least (nε+2)/ log2
4
3 distinct

variables become trivial implicants is at least 1
2 . Hence, there is a setting of n/2
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input variables to Boolean 0 which turns the aforementioned terms to trivial
implicants.

Observe that after the setting the resulting circuit S′ computes a semi-disjoint
bilinear form f ′ with at least np − n

2 p = np/2 prime implicants. Consider any
h ∈ H in S′ connected by directed paths with output gates o, where l(h) ≥
(nε + 2)/ log2

4
3 after the zero-setting. Let z be any variable in the current Zh.

Suppose that there is a t ∈ T (h, o) \ Tim(h, o) after the zero setting. Then, z
jointly with t forms a term in the original T (o) containing at least (nε+2)/ log2

4
3

distinct variables complementing those in Zh. By the choice of the zero setting,
the aforementioned term has to include the Boolean 0. It follows that t is a trivial
implicant of fo, we obtain a contradiction. Thus, for all h ∈ H in S′ connected
by directed paths with output gates o, where l(h) ≥ (nε + 2)/ log2

4
3 after the

zero-setting, we have t ∈ T (h, o) = Tim(h, o). Consequently, we can eliminate
any such a gate h by replacing with the Boolean 1 (cf. the last paragraph in the
proof of Lemma 2).

In order to eliminate all such gates from the current circuit, while there is
a gate h ∈ H with l(h) ≥ (nε + 2)/ log2

4
3 in the current circuit, we replace h

with the Boolean 1. By our assumption on the size of S, the process has to stop
latest after 2n2 iterations.

The proof that the resulting circuit still computes f ′ is by induction on
the number of iterations, i.e., replacements of gates h by 1. By the preceding
discussion, the current circuit computes f ′ after the first replacement. So suppose
that the current circuit computes f ′ after i replacements of such gates with 1,
and consider a candidate gate h with l(h) ≥ (nε+2)/ log2

4
3 in the current circuit

for the i+1st replacement. Similarly, as in the case of first replacement, consider
z ∈ Zh and any t ∈ T (h, o)\Tim(h, o) for any output gate o reachable from h. The
variable z jointly with t forms a term in the current T (o) that originates from
some term u in T (o) in the circuit S′ before the replacements by 1. Consequently,
by the definition of the zero setting, u and also t have to contain a Boolean 0.
We conclude again that T (h, o) = Tim(h, o), so we can replace h with 1.

We infer that the circuit S′′ resulting from all the replacements of gates h
with l(h) ≥ (nε + 2)/ log2

4
3 by 1 in the current circuit fulfills the following

conditions:

1. the size of S′′ does not exceed that of S′;
2. S′′ computes a semi-disjoint bilinear form f ′ on the same set of variables with

at least pn/2 prime implicants in total;
3. for any gate h of S′′, the cardinality of the set Zh of single-variable implicants

of the function fh computed at h does not exceed (nε + 2)/ log2
4
3 .

Let g be an arbitrary and-gate in S′′. Next, let Sg be the set of prime impli-
cants s of f ′ such that s is a prime implicant of the function fg computed at
g, s is not a prime implicant of the function computed at any of the two direct
predecessors of g, and there is a directed path connecting g with the output gate
computing the function belonging to f ′ whose prime implicant s is.

Suppose |Sg| ≥ 1. It follows that at least for one of the direct predecessor
gates h of g in S′′, the function computed at h has at least

√|Sg| single-variable
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prime implicants. We infer from the construction of S′′ that
√|Sg| ≤ (nε +

2)/ log2
4
3 . The inequality |Sg| ≤ (nε +2)2/(log2

4
3 )2 follows. Since for each prime

implicant s of f ′ there must be at least one such a gate g where s ∈ Sg (see the
proof of Theorem1 for how to find such a gate g), we conclude that S′′ (and
consequently S′ and S) has at least pn/(2 × (nε + 2)2/(log2

4
3 )2) and-gates. ��

Corollary 3. Any minimum-size monotone Boolean circuit of 2nε

-bounded
monom number that computes the n-dimensional Boolean vector convolution has
Ω(n2−2ε) and-gates.

4 Prime Implicant Terms of Large Length

Recall that for a term t ∈ T (g), where g is a gate of a monotone Boolean circuit,
by the length of t, we mean the total number of occurrences of variables in t.
By using arguments from the preceding sections, we shall prove the following
theorem.

Theorem 3. Let S be a monotone circuit computing a semi-disjoint bilinear
form f with 2n variables and q prime implicants. Suppose that an α fraction of
the prime implicants of f is represented by terms in T (o), where o ranges over
output gates of S, having length smaller than r. Then, the size of the circuit S
is Ω(αq/(r4 log r)).

Proof. To begin with, we shall transform the circuit S into a monotone circuit
S′ such that each non-input gate g in S is represented by gates gi, i = 1, ..., r,
where for i = 1, ..., r − 1, T (gi) consists of all terms in T (g) of length i, while
T (gr) consists of all terms in T (g) of length at least r. Such a transformation is
folklore in arithmetic circuits.

One starts from input gates g, for which only g1 is non-trivial, and then one
proceeds bottom up. For an or-gate g in S, one needs solely to compute the
disjunction of the outcomes of pairs of the gates in S′ associated with the direct
predecessors of g that correspond to the same length index. For an and-gate g in
S, one creates auxiliary gates computing the and-product of pairs of outcomes of
the gates associated with the direct descendants of g in S. Next, for i = 1, ..., r−1,
gi computes the disjunction of the outcomes of the auxiliary gates corresponding
to the length i. This requires an introduction of O(r2 log r) intermediate gates.
Additionally, for each output gate o of S, one creates a corresponding output
gate computing the disjunction of the outcomes of the gates o1 through or−1,
using O(r log r) intermediate gates. Note that in this way the terms in T (o) of
length at least r are disregarded.

Observe that in the worst case, one needs to introduce O(r2 log r) gates
in S′ in order to simulate a single gate of S. Hence, the size of S′ is at most
O(r2 log r) times larger than that of S. Also, it follows from our assumptions that
S computes a semi-disjoint bilinear form f ′ with at least αq prime implicants.

Consider a gate h in S′, where the function fh computed at h has at least r
single-variable implicants. Let o be any output gate in S′ reachable from h, and
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let t ∈ T (h, o) \ Tim(h, o). We know from the preceding sections, that t has to
contain at least r distinct variables complementing those being implicants of fh

(see the proof of Lemma 2 or Theorem 2). This is however impossible, since we
have disregarded all terms of length at least r constructing S′. It follows that we
can eliminate h by replacing it with the Boolean 1 without affecting the bilinear
form f ′ computed by S′ (similarly as in the proof of Lemma2 or Theorem 2).
We keep replacing all such h with fh currently having at least r single variable
implicants, with Boolean 1, by using the aforementioned argument. The replace-
ments may cause new gates h to get the number of single variable implicants
over the r − 1 threshold. Nevertheless, the process has to stop because of the
finiteness of S′.

Let S′′ stand for the resulting circuit. S′′ still computes f ′ and for each
its gate h, fh has at most r − 1 single variable implicants. Consequently, by
considering and-gates g in S′′ and the subsets Sg of prime implicants of f ′ that
are prime implicants of fg but not prime implicants of the functions computed
at the direct predecessors of g, we infer that |Sg| < r2 (similarly as in the proof
of Theorems 1 or 2). Hence, S′′ has to have at least αq/r2 and-gates. Since the
size of S′′ is O(r2 log r) times larger than that of S, we conclude that the size of
S is Ω(αq/(r4 log r)). ��
Corollary 4. If the n-dimensional Boolean vector convolution can be computed
by a monotone circuit of size o(n2−4ε/ log n) then almost all (i.e., the fraction
tends to 1 as n grows) prime implicants of the convolution have to be represented
by terms at the circuit output gates of length at least nε.
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Abstract. We study the complexity of the so called semi-disjoint bilin-
ear forms over different semi-rings, in particular the n-dimensional vector
convolution and n×n matrix product. We consider a powerful unit-cost
computational model over the ring of integers allowing for several addi-
tional operations and generation of large integers. We show the following
dichotomy for such a powerful model: while almost all arithmetic semi-
disjoint bilinear forms have the same asymptotic time complexity as that
yielded by naive algorithms, matrix multiplication, the so called distance
matrix product, and vector convolution can be solved in a linear number
of steps. It follows in particular that in order to obtain a non-trivial lower
bounds for these three basic problems one has to assume restrictions on
the set of allowed operations and/or the size of used integers.

Keywords: Semi-disjoint bilinear form · Semi-ring · Vector convolu-
tion · Matrix multiplication · Distance product · Circuit complexity ·
Unit-cost ram · Time complexity

1 Introduction

A set F of quadratic polynomials over a semi-ring, defined on the set of variables
X ∪ Y is a semi-disjoint bilinear form if the following properties hold.

1. For each polynomial P in F and each variable z ∈ X ∪ Y , there is at most
one monomial (in the Boolean case, called a prime implicant [17]) of P con-
taining z.

2. The sets of monomials of polynomials in F are pairwise disjoint.
3. Each monomial of a polynomial in F consists of exactly one variable in X

and one variable in Y.

The n-dimensional vector convolution and the n × n matrix product are
important and popular examples of semi-disjoint bilinear forms (for the con-
volution, |X| = |Y | = n and |F | = 2n − 1 while for the matrix product,
c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 412–424, 2017.
DOI: 10.1007/978-3-319-55911-7 30



Bounds for Semi-disjoint Bilinear Forms 413

|X| = |Y | = |F | = n2). Both semi-disjoint bilinear forms in the arithmetic
and Boolean case have a wide range of fundamental applications, for instance,
in stringology (see, e.g., [5]) and graph algorithms (see, e.g., [21]).

Two n×n integer matrices can be arithmetically multiplied using O(n3) addi-
tions and multiplications following the definition of matrix product. Similarly,
the arithmetic convolution of two n-dimensional vectors can be computed using
O(n2) additions and multiplications. Both are optimal if neither other opera-
tions nor negative constants are allowed [10,11,14]. If additionally subtraction
or negative constants are allowed then the so called fast matrix multiplication
algorithms can be implemented using O(nω) operations [4,9,16,20], where ω < 3.
They rely on algebraic equations following from the possibility of term cancel-
lation. Le Gall and Vassilevska Williams have recently shown the exponent ω of
fast matrix multiplication to be smaller than 2.373 in [9,20]. Next, the convo-
lution of two n-dimensional vectors over a commutative ring with the so called
principal n-th root of unity can be computed via Fast Fourier Transform using
O(n log n) operations of the ring (Sect. 7 in [1]). On the other hand, Raz proved
that if only addition, multiplication and products with constants of absolute
value not exceeding one are allowed then n × n matrix multiplication requires
Ω(n2 log n) operations [12].

Yuval was first to describe a reduction of the distance matrix product (equiv-
alently, the (min,+) matrix product) of two n × n matrices to matrix multipli-
cation of two n × n matrices over a ring, using O(n2) operations [19] (cf. [13]).
If A = (ai,j) and B = (bi,j) are two n × n matrices then their distance prod-
uct (equivalently, their (min,+) matrix product) C = AB is an n × n matrix
C = (ci,j) such that cij = min{ai,k + bk,j |1 ≤ k ≤ n} for 1 ≤ i, j ≤ n.

The idea of the reduction is relatively simple [2,21]. Two input n×n matrices
A = (ai,j) and B = (bi,j) with integer entries in [−M,M ] are transformed to two
n×n matrices A′ = ((n+1)M−ai,j ) and B′ = ((n+1)M−bi,j ). It is not too difficult
to see that if C = (ci,j) is the distance product of A and B and C ′ = (c′

i,j) is the
arithmetic matrix product of A′ and B′, then ci,j = 2M − �logn+1 c′

i,j�. Note
that the reduction uses the exponentiation, logarithm and floor functions besides
the arithmetic ring operations.

By combining the reduction with fast matrix multiplication, one obtains an
algorithm for the distance matrix product, using O(nω) multiplications, addi-
tions and subtractions, and O(n2) exponentiation, logarithm and floor operations
[13,19].

Since the entries in the transformed matrices A′, B′ are huge numbers that
require O(M) computer words of log n bits each, the matrix multiplication of A′

and B′ requires O(Mnω) algebraic operations on O(log n) bit numbers [2,21]. For
this reason, the described algorithm for distance matrix product is interesting
solely for smaller values of M and approximation purposes [21].

Recently, also a nondeterministic algorithm for n × n matrix multiplication
using O(n2) arithmetic operations has been presented by Korec and Wiedermann
in [8]. It results from a derandomization of Freivalds’ randomized algorithm for
matrix product verification [6]. Simply, the algorithm first guesses the product
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matrix and then verifies its correctness. Again, the derandomization involves
huge numbers requiring O(n) times more bits than the input numbers [8]. (Very
recently, Wiedermann has presented two further, slightly slower nondeterminis-
tic algorithms for matrix multiplication, both running in O(n2 log n) time and
relying on the derandomization of Freivalds’ algorithm. The first runs on a real
RAM, the second on a unit-cost RAM using only integers of size proportional
to that of the largest entry in the input matrices [18]).

In this paper, first, we consider the computational model of arithmetic cir-
cuits with non-input gates labeled by elements of a finite set of binary or unary
arithmetic operations and input gates labeled by variables ranging over inte-
gers, and the arithmetic constants 0, 1. We observe that for the arithmetic semi-
disjoint bilinear forms the so called Shannon effect [17] holds in this computa-
tional model. In particular, we show that almost all such forms on 2n variables,
where each variable occurs in n monomials like in the n-dimensional Boolean
vector convolution, have Ω(n2) arithmetic circuit complexity. Analogously, we
show that almost all arithmetic semi-disjoint bilinear forms on 2n2 variables,
where each variable occurs in n monomials like in the arithmetic matrix prod-
uct, have Ω(n3) arithmetic circuit complexity. Our results contrast with the
aforementioned fast algorithms for the arithmetic vector convolution and matrix
multiplication.

Next, we observe that if we allow for the use of division and the floor func-
tion (or exponentiation, logarithm and the floor function) besides multiplication,
addition and subtraction in the unit-cost RAM model then we can compute the
arithmetic convolution of two n-dimensional integer vectors in O(n) steps and
perform the arithmetic matrix multiplication of two integer n × n matrices in
O(n2) steps. Similarly, as in the case of the reduction of distance matrix product
to the arithmetic one, the idea is to use numbers requiring about n log n times
more bits than any entry in the input matrices. If we combine the reduction with
our algorithm for matrix multiplication, we obtain an algorithm for the distance
matrix product using solely O(n2) operations on huge numbers requiring about
Mn log n words of log n bits each. Analogously, we obtain an O(n) algorithm
for the (min,+) convolution of two n-dimensional integer vectors involving very
large numbers.

Our deterministic method for matrix products in a way subsumes the afore-
mentioned nondeterministic quadratic algorithm for matrix multiplication from
[8] and the nω algorithms for distance product from [13,19]. The power of large
integers and the floor function in the case of computing matrix products appears
even greater than that reported in the literature. Our upper time bounds yield
analogous upper bounds on the size of the arithmetic circuit with an appro-
priate finite set of arithmetic operations for the aforementioned problems. It
follows that any method for proving superlinear (in the input size) lower bounds
for these problems has to assume a more restricted set of arithmetic operations
and/or an upper bound on the size of allowed integers.

Finally, we show that the (min,+) integer vector convolution admits an arbi-
trarily close and fast approximation, e.g., in the logarithmic-cost RAM model,
similar to that known for the distance matrix product [21].



Bounds for Semi-disjoint Bilinear Forms 415

2 Preliminaries

For two n-dimensional vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1) over
a semi-ring (U,⊕,�), their convolution over the semi-ring is a vector c =
(c0, ..., c2n−2), where ci =

⊕min{i,n−1}
l=max{i−n+1,0} al�bi−l for i = 0, ..., 2n−2. Similarly,

for a p×q matrix A and a q×r matrix B over the semi-ring, their matrix product
over the semi-ring is a p×r matrix C such that C[i, j] =

⊕q
m=1 A[i,m]�B[m, j]

for 1 ≤ i ≤ p and 1 ≤ j ≤ r. In particular, for the semi-rings (Z,+,×),
(Z,min,+), (Z,max,+), and ({0, 1},∨,∧), we obtain the arithmetic, (min,+),
(max,+), and the Boolean convolutions or matrix products, or semi-disjoint
bilinear forms (see Introduction), respectively.

For two n-dimensional vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1) over a
semi-ring (U,⊕,�), their dot product

⊕n−1
i=0 ai �bi is denoted by a◦b. Note that

the (n − 1)-th coordinate cn−1 of the convolution of a and b is equal to a ◦ bR,
where bR = (bn−1, ..., b0).

3 Lower Bounds on the Arithmetic Circuit Complexity

In this section, we show that for arithmetic semi-disjoint bilinear forms, where
each variable occurs in the same given number p of monomials, the so called
Shannon effect [17] holds. This means that the number of the aforementioned
forms is large enough compared with the number of different arithmetic circuits
of bounded size to yield a tight lower bound on the arithmetic circuit complexity
for almost all of them. To start with, we need the following definition.

Suppose that we are given a priori a finite set (i.e., of size O(1)) of binary
arithmetic operations, including multiplication and addition, and unary arith-
metic operations (e.g., logarithm, exponentiation or the floor function). An arith-
metic circuit is a finite directed acyclic graph with the following properties:

1. The indegree of each vertex (termed gate) is either 0, 1 or 2.
2. The source vertices (i.e., vertices with indegree 0 called input gates) are

labeled by input variables, ranging over a subset of reals including 0, 1 (e.g.,
integers), and the arithmetic constants 0, 1.

3. The vertices of indegree 2 are labeled by elements in the aforementioned set
of binary arithmetic operations.

4. The vertices of indegree 1 are labeled by elements in the aforementioned set
of unary arithmetic operations.

Observe that all results in this section implicitly assume the O(1)-size of the
aforementioned fixed set of binary and unary arithmetic operations that can be
used in an arithmetic circuit.

The arithmetic functions computed at the gates of an arithmetic circuit are
naturally defined by induction on the structure of the circuit starting from its
input gates and constants. An arithmetic bilinear form composed of k functions
is computed by an arithmetic circuit if there are k distinguished gates (called
output gates) computing the k functions. The following upper bound is straight-
forward.



416 A. Lingas et al.

Lemma 1. Each arithmetic semi-disjoint bilinear form composed of k functions
on x0, ..., xn−1 and y0, ..., yn−1 with q monomials in total can be computed by an
arithmetic circuit with q ≤ n2 multiplication gates and q − k addition gates.

Proof. First, we use q multiplication gates to compute each monomial xiyj sep-
arately. Then, we form k disjoint sums of the monomials corresponding to the k
functions of the bilinear form using q − k addition gates. �

The next lemma presents an upper bound on the number of different arith-
metic bilinear forms composed of k functions on 2n variables that can be com-
puted by arithmetic circuits of bounded size.

Lemma 2. At most (s+2n+1)2sO(1)ss(
∑k

l=1

(
2n+2+s

l

)
)/s! arithmetic bilinear

forms composed of at most k functions on 2n variables can be computed by
arithmetic circuits with s non-input gates.

Proof. We estimate the number of arithmetic circuits specified in the theorem
as follows. For each non-input gate there are at most 2n + s − 1 + 2 possibilities
to choose each of its at most two predecessors among the 2n input gates, s − 1
remaining gates and the two constants. Each of the gates may be labeled by one
of the O(1) arithmetic operations and functions. The at most k output gates
can be chosen in

∑k
l=1

(
2n+2+s

l

)
ways. On the other hand, each circuit can be

counted s! times since there are so many possible numberings of its gates. �
Let SBF (n, k, P, p) stand for the family of arithmetic semi-disjoint bilin-

ear forms composed of at most k functions on the variables x0, ..., xn−1 and
y0, ..., yn−1 with monomials in P such that each variable is contained in exactly
p monomials in P . Note that the inequalities |P | ≤ n2 and p ≤ n hold.

The following lemma presents a lower bound on the cardinality of
SBF (n, k, P, p).

Lemma 3. For k = Ω(n), and p ≥ 8, the inequality |SBF (n, k, P, p)| ≥
pΩ(np)/k! holds.

Proof. Form the regular bipartite graph G = (X ∪ Y,E), where X =
{x0, ..., xn−1} and Y = {y0, ..., yn−1}, and {xi, yj} is an edge of G iff xiyj is
a monomial in P. G is regular since each vertex in G has degree p.

Observe that F ∈ SBF (n, k, P, p) are in one-to-one correspondence with
partial colorings of the edges of G with at most k colors. The edges of the same
color in a partial edge coloring of G form a matching.

Set G∗ to G, and iterate the following steps Ω(n) times:
Pick a set U of �p/2� vertices in G∗ of smallest numbers that have degree at
least p/2, and color �p/8� edges of G∗ with a new color as follows. Pick a vertex
u in U of smallest number that is not yet incident to a colored edge, pick an edge
e incident to u whose other endpoint is not incident to a colored edge and color
e. Note that there are at least p/2 − 2(p/8) possible choices of e. After coloring
�p/8� edges remove the edges from G∗ (they define a new function of a bilinear
form).
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In each iteration, we have at least (p/4)�p/8� possibilities for different sets
of edges to be colored and the total degree of G∗ drops solely at most by p/4.
Hence, we can perform Ω(n) iterations, which leads to the pΩ(np)/k! lower bound
for k = Ω(n). �

If all forms in S(n, k, P, p), where k = Θ(n), p = nΩ(1), admit arithmetic
circuits of size s then the upper bound in terms of s from Lemma 2 should be
at least as large as the lower bound on the number of such forms in Lemma 3.
Hence, by straightforward calculations we infer that there are arithmetic bilinear
forms in SBF (n, k, P, p) whose circuit complexity is at least Ω(np) as long as
k = Θ(n), p = nΩ(1). Following the standard proof of the Shannon effect [17]
for Boolean functions, we can strengthen this lower bound to include almost all
members in SBF (n, k, P, p).

Consider the subfamily SBF ∗(n, k, P, p) of SBF (n, k, P, p) consisting of
|SBF (n, k, P, p)|/n forms of smallest arithmetic circuit complexity. Analogously,
we obtain that for k = Θ(n), p = nΩ(1), there are forms in SBF ∗(n, k, P, p) of
circuit complexity Ω(np). On the other hand, Lemma 1 with q = np provides
the matching upper bound O(np). Hence, we obtain:

Theorem 1. For k = Θ(n) and p = nΩ(1), the arithmetic circuit complexity of
almost all bilinear forms in SBF (n, k, P, p) is Θ(np).

Note that the n-dimensional arithmetic convolution is in SBF (2n, 2n −
1, P, n) while the n × n Boolean matrix product is in SBF (2n2, n2, Q, n), for
appropriate P, Q. By Theorem 1, almost all forms in SBF (2n, 2n − 1, P, n) or
SBF (2n2, n2, Q, n) require arithmetic circuits of size Θ(n2) or Θ(n3), respec-
tively.

4 The Arithmetic Algorithms

For an n-dimensional vector a = (a0, ..., an−1) with integer coordinates let a(x)
denote the polynomial

∑n−1
k=0 akxk. The following lemma is folklore (see Sect. 7.4

in [1]).

Lemma 4. For k = 0, ..., 2n − 2, the k-th coordinate ck of the convolution of
the vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1) is the coefficient at xk in the
polynomial a(x)b(x). Consequently, the coefficient at xn−1 is the dot product of
a and the reversed vector bR = (bn−1, ..., b0), i.e.,

∑n−1
i=0 aibn−1−i.

By Lemma 4, we obtain a linear algorithm for the convolution of integer
vectors, see Fig. 1.

Theorem 2. Let n, M, d be natural numbers such that d ≥ 2nM2 + 1. For
k = 0, ..., 2n − 2, the k-th coordinate ck of the convolution c = (c0, ..., c2n−2)
of two integer vectors a = (a0, ..., an−1) and b = (b0, ..., bn−1), each with n
coordinates in [−M,M ], is equal to �a(d)b(d)d−k + 1

2� − d�a(d)b(d)d−k−1 + 1
2�.

Consequently, the convolution c of the n-dimensional vectors a and b can be
computed using O(n) additions, subtractions, multiplications, divisions and floor
operations.
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Fig. 1. A linear algorithm for computing the convolution c of two n-dimensional integer
vectors a and b.

Proof. By Lemma 4, we have a(d)b(d) =
∑2n−2

l=0 cld
l. Hence, �a(d)b(d)d−k+ 1

2� =
∑2n−2

l=k cld
l−k + �∑k−1

l=0 cld
l−k + 1

2�. On the other hand, for l = 0, ..., 2n − 2,
|cl| ≤ nM2 and d ≥ 2nM2 + 1 hold. Let p = d − 1. For k ≥ 1, we obtain

|
k−1∑

l=0

cld
l| ≤ p

2

k−1∑

l=0

(p + 1)l =
1
2
p
(p + 1)k − 1
(p + 1) − 1

=
1
2
(p + 1)k−1

2
<

1
2
(p + 1)k ≤ 1

2
dk.

It follows that �∑k−1
l=0 cld

l−k + 1
2� = 0 and consequently �a(d)b(d)d−k + 1

2� =
∑2n−2

l=k cld
l−k. Analogously, we have �a(d)b(d)d−k−1 + 1

2� =
∑2n−2

l=k+1 cld
l−k−1.

This and the previous inequality yield the equality ck = �a(d)b(d)d−k + 1
2� −

d�a(d)b(d)d−k−1+ 1
2�. Hence, we obtain the algorithm for the convolution vector

c depicted in Fig. 1. It uses a linear number of additions, subtractions, multi-
plications, divisions and floor operations. If M is not given as an input to the
algorithm, we can upper bound M2 by the sum of squares of the coordinates in
the vectors a and b. �

Assuming the notation of Theorem 2, we obtain the following corollary.

Corollary 1. The dot product of two integer vectors a = (a0, ..., an−1) and b =
(b0, ..., bn−1), each with n coordinates in [−M,M ], is equal to �a(d)bR(d)d−n+1+
1
2� − d�a(d)bR(d)d−n + 1

2�, where bR = (bn−1, ..., b0).

Corollary 1 yields in turn a quadratic algorithm for the matrix product of
two n × n integer matrices, see Fig. 2.

Theorem 3. The matrix product C of two n × n integer matrices A and B can
be computed using O(n2) additions, subtractions, multiplications, divisions and
floor operations.

Proof. Our algorithm depicted in Fig. 2 is as follows. We set the constant d to
2nM2 + 1.
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Fig. 2. A quadratic algorithm for computing the matrix product C of two integer n×n
matrices A and B.

For i = 1, ..., n, for the i-th row (ai,1, ..., ai,n) of the matrix A, we consider
the polynomial Ai,∗(x) =

∑n
k=1 ai,kxk−1 and compute Ai,∗(d).

Symmetrically, for j = 1, ..., n, for the j-th column (b1,j , ..., bn,j) of the matrix
B, we consider the polynomial B∗,j(x) =

∑n
k=1 bk,jx

n−k and compute B∗,j(d).
The computation of Ai,∗(d) and B∗,j(d), for 1 ≤ i, j ≤ n, requires O(n2)

multiplications and additions.
Finally, for 1 ≤ i, j ≤ n, we compute the products Ai,∗(d)B∗,j(d), and then

�Ai,∗(d)B∗,j(d)/dn−1�−d�Ai,∗(d)B∗,j(d)/dn�. It requires O(n2) multiplications,
divisions, floor operations and subtractions.

By Corollary 1, in this way, we obtain the correct values of the entries ci,j of
the product matrix C. �

By combining the reduction of the distance matrix product to the arithmetic
one outlined in the introduction [2,13,19,21] with Theorem 3, we obtain also
the following corollary.

Corollary 2. The matrix product C of two n × n matrices over the semi-ring
(Z,min,+) can be computed using O(n2) additions, subtractions, multiplications,
divisions, and exponentiation, logarithm and floor operations.

5 (min,+) Convolution

Recently, Bremner et al. have revived the interest in the problem of computing
the convolution of two n-dimensional vectors over the semi-ring (Z,min,+) [3].
They also provided the first slightly subquadratic algorithm for the (min,+)
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vector convolution by using O(
√

n) (min,+) matrix products (in a reasonable
computational model).

The aforementioned reduction of the distance (i.e., (min,+)) matrix product
to the arithmetic matrix product can be adapted to yield also an analogous
reduction of the (min,+) vector convolution to the arithmetic one, see Fig. 3.
Hence, we obtain the following corollary by Theorem 2.

Corollary 3. The convolution of two n-dimensional vectors over the semi-ring
(Z,min,+) can be computed using O(n) additions, subtractions, multiplications,
divisions, and exponentiation, logarithm and floor operations.

Further, we shall observe that the method of arbitrarily close approximation
of the distance product due to Zwick [21] that is based on the reduction to
the arithmetic matrix multiplication from [13,19] can be easily adopted to the
(min,+) convolution.

Lemma 5. The algorithm depicted in Fig. 3 computes the (min,+) convolution
of two n-dimensional integer vectors whose coordinates are all of absolute value
at most M or just +∞ using Õ(Mn) bit operations, where the Õ() notation
suppresses factors polylogarithmic in M + n.

Proof. For i = 0, ..., 2n − 2, we have c′
i =

∑min{i,n−1}
l=max{i−n+1,0}(n + 1)2M−(al+bi−l)

(note that if not all vector coordinates have their absolute value at most M
then the terms al + bi−l, where |al| > M or |bi−l| > M are excluded from the
summation). Since the number of the terms (n+1)2M−(al+bi−l) on the right-hand

Fig. 3. A linear reduction of the (min,+) convolution of two n-dimensional integer
vectors with coordinates in [−M,M ] to an arithmetic one.
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side of the equality is at most n, we obtain ci = minmin{i,n−1}
l=max{i−n+1,0} al + bi−l =

2M − �logn+1 c′
i�.

A fast arithmetic convolution algorithm can be obtained for example by
embedding the problem of computing the arithmetic vector convolution in a
single large integer multiplication and using the classic Schönhage-Strassen inte-
ger multiplication algorithm [5]. For n-dimensional vectors with O(M log n) bit
coordinates, the fast convolution algorithm will use Õ(Mn) bit operations.

The computation of logarithms in the algorithm given in Fig. 3 can be easily
implemented by binary search. �

Lemma 6. Let c̃ be the (min,+) convolution of the n-dimensional vectors
obtained from a and b, respectively, by replacing each coordinate greater than M
by +∞. Let M and ε−1 be powers of two. Let c be the vector convolution returned
by the algorithm depicted in Fig. 4. For i = 0, . . . , 2n − 2, c̃i ≤ ci ≤ (1 + ε)c̃i

holds.

Proof (sketch). The proof is analogous to that of Lemma 8.1 on an approximation
algorithm for distance matrix product in [21].

The inequality c̃i ≤ ci follows from the fact the elements are always rounded
up in the algorithm depicted in Fig. 4. Suppose that c̃i = ak + bi−k. We may

Fig. 4. A fast approximation algorithm for the convolution c of two n-dimensional
integer vectors a and b with coordinates in [0,M ].
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assume w.l.o.g. that ak ≤ bi−k and 2s−1 < bi−k ≤ 2s, where 1 ≤ s ≤ log2 M.
If s ≤ log2 4ε−1 then the first iteration of the algorithm from Fig. 3 returns
ci = c̃i. Otherwise, in the r = s iteration, we have 2rε

4 a′
k ≤ ak + 2rε

4 and
2rε
4 b′

i−k ≤ bi−k + 2rε
4 . Hence, after that iteration, we have ci ≤ 2rε

4 a′
k + 2rε

4 b′
i−k

≤ ak + bi−k + 2r+1ε
4 ≤ (1 + ε)c̃i. �

By Lemmas 5 and 6 we obtain our main result in this section.

Theorem 4. The algorithm depicted in Fig. 4 computes 1+ε approximations of
the coordinates of the (min,+) convolution of two n-dimensional integer vectors
whose coordinates are all of absolute value at most M using Õ(ε−1n log M) bit
operations, where the Õ() notation suppresses factors polylogarithmic in ε−1 +
n + log M .

6 Upper Bounds on the Arithmetic Circuit Complexity

In the exact arithmetic algorithms presented in the previous sections, we do not
need to know the range M of the integer input variables. Instead, we can com-
pute the sum of squares of the values of the input variables plus, say, 1. The
computation of the sum requires a linear (in the number of input variables) num-
ber of multiplication and additions. When we fix the number of input variables,
the aforementioned algorithms become oblivious, i.e., the type of operation per-
formed in a given step does not depend on the input. Hence, they can be imple-
mented by appropriate arithmetic circuits of sizes corresponding to their time
performances in the unit-cost RAM model. We obtain the following theorem by
Theorems 2, 3 and Corollaries 2, 3.

Theorem 5. The convolution of two n-dimensional vectors over the semi-rings
(Z,+,×) and (Z,min,+) can be computed by arithmetic circuits using O(n) addi-
tion, subtraction, multiplication, division, exponentiation, logarithm and floor
operation gates. Similarly, the matrix product C of two n × n matrices over the
semi-rings (Z,+,×) and (Z,min,+) can be computed by arithmetic circuits using
O(n2) addition, subtraction, multiplication, division, exponentiation, logarithm
and floor operation gates.

7 Final Remarks

For the majority of algorithmic community interested in matrix products and
vector convolution, the main motivation is the design of faster algorithms for
the aforementioned problems in a reasonable complexity model. However, in the
case of this paper, our motivations, even for our exact algorithms, have been
different.

The unrealistic power of unit-cost Random Access Machine using besides
addition and subtraction also multiplication, division, and some additional oper-
ations (e.g., the floor function or/and bitwise operations) allowing for encoding
long vectors or strings in huge numbers has been known since the 1970s [7,15].
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In Sect. 4, we confirm the power of such a unrealistic, computational complexity
model for the central problems of matrix multiplication, vector convolution, and
the distance matrix product. Our study has been inspired by the known reduc-
tions of the distance matrix product to matrix multiplication in the aforemen-
tioned model [13,19]. It follows that in order to derive non-trivial lower bounds
on the complexity of matrix multiplication or vector convolution one has to have
some restriction on the size of used integers or the set of unit-cost operations.
On the other hand, our lower bounds of Sect. 3 indicate that for almost all semi-
disjoint bilinear forms even the use of the aforementioned unrealistically powerful
model cannot asymptotically improve naive algorithms.

Acknowledgments. The authors are grateful to Christos Levcopoulos for valuable
comments. This research has been supported in part by Swedish Research Council
grant 621-2011-6179.
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Abstract. We use Kolmogorov complexity methods to give a lower
bound on the effective Hausdorff dimension of the point (x, ax + b),
given real numbers a, b, and x. We apply our main theorem to a problem
in fractal geometry, giving an improved lower bound on the (classical)
Hausdorff dimension of generalized sets of Furstenberg type.

1 Introduction

In this paper we exploit fundamental connections between fractal geometry and
information theory to derive both algorithmic and classical dimension bounds in
the Euclidean plane.

Effective fractal dimensions, originally conceived by J. Lutz to analyze com-
putational complexity classes [11,12], quantify the density of algorithmic infor-
mation in individual infinite data objects. Although these dimensions were
initially defined—and have primarily been studied—in Cantor space [4], they
have been shown to be geometrically meaningful in Euclidean spaces and gen-
eral metric spaces, and their behavior in these settings has been an active area
of research (e.g., [3,7,20]).

This paper focuses on the effective Hausdorff dimension, dim(x), of individ-
ual points x ∈ R

n, which is a potentially non-zero value that depends on the
Kolmogorov complexity of increasingly precise approximations of x [18]. Given
the pointwise nature of this quantity, it is natural to investigate the dimension
spectrum of a set E ⊆ R

n, i.e., the set {dim(x) : x ∈ E}. Even for apparently
simple sets, the structure of the dimension spectrum may not be obvious, as
exemplified by a longstanding open question originally posed by J. Lutz [21]: Is
there a straight line L ⊆ R

2 such that every point on L has effective Hausdorff
dimension 1?

J. Lutz and Weihrauch [16] have shown that the set of points in R
n with

dimension less than 1 is totally disconnected, as is the set of points with dimen-
sion greater than n − 1. Turetsky has shown that the set of points in R

n of
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dimension exactly 1 is connected [25], which implies that every line in R
2 con-

tains a point of dimension 1. J. Lutz and N. Lutz have shown that almost every
point on any line with random slope has dimension 2 [14], despite the surprising
fact that there are lines in every direction that contain no random points [13].
These results give insight into the dimension spectra of lines, but they also leave
open the question of whether or not a line in R

2 can have a singleton dimension
spectrum.

We resolve this question in the negative with our main theorem, a general
lower bound on the dimension of points on lines in R

2. Our bound depends only
on the dimension of the description (a, b) of the line (i.e., the ordered pair giving
the line’s slope and vertical intercept) and the dimension of the coordinate x
relative to (a, b).

Theorem 1. For all a, b, x ∈ R,

dim(x, ax + b) ≥ dima,b(x) + min
{

dim(a, b), dima,b(x)
}

.

In particular, for almost every x ∈ R, dim(x, ax + b) = 1 + min{dim(a, b), 1}.
Since dim(0, b) ≤ min{dim(a, b), 1}, the second statement implies that every line
contains two points whose dimensions differ by at least 1, and therefore that the
dimension spectrum cannot be a singleton.

This theorem also implies a new result in classical geometric measure theory.
It has been known for more than a decade [8] that for certain classes of sets,

sup
x∈E

dim(x) = dimH(E) , (1)

where dimH(E) is the (classical) Hausdorff dimension of E, i.e., the most stan-
dard notion of fractal dimension. Although (1) does not hold in general, this cor-
respondence suggested that effective dimensions might provide new techniques
for dimension bounds in classical fractal geometry.

A recent point-to-set principle of J. Lutz and N. Lutz [14] reinforces that
prospect by characterizing the Hausdorff dimension of arbitrary sets in terms
of effective dimension. This principle shows that for every set E ⊆ R

n there
is an oracle relative to which (1) holds. In the same work, that principle is
applied to give a new proof of an old result in fractal geometry. Namely, it gives
an algorithmic information theoretic proof of Davies’s 1971 theorem [2] stating
that every Kakeya set in R

2—i.e., every plane set that contains a unit segment
in every direction— has Hausdorff dimension 2.

In this work, we apply the same point-to-set principle to derive a new result
in classical fractal geometry from our main theorem. Furstenberg sets generalize
Kakeya sets in R

2; instead of containing segments in every direction, they contain
α-(Hausdorff)-dimensional subsets of lines in every direction, for some parameter
α ∈ (0, 1]. While the theorem of Davies gives the minimum Hausdorff dimension
of Kakeya sets in R

2, the minimum Hausdorff dimension of Furstenberg sets is
an important open question; the best known lower bound is α + max{1/2, α}.1

1 According to Wolff [27], this result is due, “in all probability,” to Furstenberg and
Katznelson. See [24] for a survey.
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Molter and Rela [22] generalized this notion further by requiring α-dimensional
subsets of lines in only a β-dimensional set of directions, for some second para-
meter β ∈ (0, 1]. They showed that any such set has Hausdorff dimension at least
α+max{β/2, α+β−1}. In Theorem 12, we give a lower bound of α+min{β, α},
which constitutes an improvement whenever α, β < 1 and β/2 < α.

For the sake of self-containment, we begin in Sect. 2 with a short review
of Kolmogorov complexity and effective Hausdorff dimension, along with some
necessary technical lemmas. We discuss and prove our main theorem in Sect. 3,
and we apply it to generalized Furstenberg sets in Sect. 4. We conclude with a
brief comment on future directions.

2 Algorithmic Information Preliminaries

2.1 Kolmogorov Complexity in Discrete Domains

The conditional Kolmogorov complexity of σ ∈ {0, 1}∗ given τ ∈ {0, 1}∗ is

K(σ|τ) = min
π∈{0,1}∗

{�(π) : U(π, τ) = σ} ,

where U is a fixed universal prefix-free Turing machine and �(π) is the length
of π. Any π that achieves this minimum is said to testify to, or be a witness to,
the value K(σ|τ). The Kolmogorov complexity of σ is K(σ) = K(σ|λ), where
λ is the empty string. K(σ) may also be called the algorithmic information
content of σ. An important property of Kolmogorov complexity is the symmetry
of information (attributed to Levin in [6]):

K(σ|τ,K(τ)) + K(τ) = K(τ |σ,K(σ)) + K(σ) + O(1) .

These definitions and this symmetry extend naturally to other discrete domains
(e.g., integers, rationals, and tuples thereof) via standard binary encodings. See
[4,10,23] for detailed discussion of these topics.

2.2 Kolmogorov Complexity in Euclidean Spaces

The above definitions may also be lifted to Euclidean spaces by introducing
variable precision parameters [14,15]. Let x ∈ R

m, and let r, s ∈ N.2 For ε > 0,
Bε(x) denotes the open ball of radius ε centered on x.

The Kolmogorov complexity of x at precision r is

Kr(x) = min {K(p) : p ∈ B2−r (x) ∩ Q
m} .

The conditional Kolmogorov complexity of x at precision r given q ∈ Q
m is

K̂r(x|q) = min {K(p|q) : p ∈ B2−r (x) ∩ Q
m} .

2 As a matter of notational convenience, if we are given a nonintegral positive real as
a precision parameter, we will always round up to the next integer. For example,
Kr(x) denotes K�r�(x) whenever r ∈ (0,∞).
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The conditional Kolmogorov complexity of x atprecision r given y ∈ R
n at

precision s is

Kr,s(x|y) = max
{
K̂r(x|q) : q ∈ B2−s(y) ∩ Q

n
}

.

We abbreviate Kr,r(x|y) by Kr(x|y).
Although definitions based on K-minimizing rationals are better suited to

computable analysis [26], it is sometimes useful to work instead with initial
segments of infinite binary sequences. It has been informally observed that
Kr(x) = K(x�r) + o(r), where x�r denotes the truncation of the binary expan-
sion of each coordinate of x to r bits to the right of the binary point.

The following pair of lemmas show that the above definitions are only linearly
sensitive to their precision parameters. Intuitively, making an estimate of a point
slightly more precise only requires a small amount of information.

Lemma 2 (Case and J. Lutz [1]). There is a constant c ∈ N such that for all
n, r, s ∈ N and x ∈ R

n,

Kr(x) ≤ Kr+s(x) ≤ Kr(x) + K(r) + ns + as + c ,

where as = K(s) + 2 log(� 1
2 log n� + s + 3) + (� 1

2 log n� + 3)n + K(n) + 2 log n.

Lemma 3 (J. Lutz and N. Lutz [14]). For each m,n ∈ N, there is a constant
c ∈ N such that, for all x ∈ R

m, y ∈ R
n, q ∈ Q

n, and r, s, t ∈ N,

(i) K̂r(x|q) ≤ K̂r+s(x|q) ≤ K̂r(x|q) + ms + 2 log(1 + s) + K(r, s) + c .
(ii) Kr,t(x|y) ≥ Kr,t+s(x|y) ≥ Kr,t(x|y) − ns − 2 log(1 + s) + K(t, s) + c .

In Euclidean spaces, we have a weaker version of symmetry of information,
which we will use in the proof of Lemma 7.3

Lemma 4 For every m,n ∈ N, x ∈ R
m, y ∈ R

n, and r, s ∈ N with r ≥ s,

(i) |Kr(x|y) + Kr(y) − Kr(x, y)| ≤ O(log r) + O(log log ‖y‖) .
(ii) |Kr,s(x|x) + Ks(x) − Kr(x)| ≤ O(log r) + O(log log ‖x‖) .

Statement (i) is a minor refinement of Theorem 3 of [14], which treats x and y
as constant and states that Kr(x, y) = Kr(x|y)+Kr(y)+ o(r). In fact, a precise
sublinear term is implicit in earlier work by tracing back through several proofs
in [1,14]. Our approach is more direct and is omitted here.

2.3 Effective Hausdorff Dimension

If Kr(x) is the algorithmic information content of x ∈ R
n at precision r, then we

may call Kr(x)/r the algorithmic information density of x at precision r. This
quantity need not converge as r → ∞, but it does have finite asymptotes between
3 Regarding asymptotic notation, we will treat dimensions of Euclidean spaces (i.e.,
m and n) as constant throughout this work but make other dependencies explicit,
either as subscripts or in the text.
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0 and n, inclusive [15]. Although effective Hausdorff dimension was initially
developed by J. Lutz using generalized martingales [12], it was later shown by
Mayordomo [18] that it may be equivalently defined as the lower asymptote of
the density of algorithmic information. That is the characterization we use here.
For more details on the history of connections between Hausdorff dimension and
Kolmogorov complexity, see [4,19].

The (effective Hausdorff) dimension of x ∈ R
n is

dim(x) = lim inf
r→∞

Kr(x)
r

.

This formulation has led to the development of other information theoretic appa-
ratus for effective dimensions, namely mutual and conditional dimensions [1,14].
We use the latter in this work, including in the restatement of our main theorem
in Sect. 3. The conditional dimension of x ∈ R

m given y ∈ R
n is

dim(x|y) = lim inf
r→∞

Kr(x|y)
r

.

2.4 Algorithmic Information Relative to an Oracle

The above algorithmic information quantities may be defined relative to any
oracle set A ⊆ N. The conditional Kolmogorov complexity relative to A of σ ∈
{0, 1}∗ given τ ∈ {0, 1}∗ is

KA(σ|τ) = min
π∈{0,1}∗

{|π| : UA(π, τ) = σ} ,

where U is now a universal prefix-free oracle machine and the computation
UA(π, τ) is performed with oracle access to A. This change to the underly-
ing Turing machine also induces a relativized version of each other algorithmic
information theoretic quantity we have defined.

Multiple oracle sets may be combined by simply interleaving them: given
A1, . . . , Ak ⊆ N, let A =

⋃
i{kj − i + 1 : j ∈ Ai}. Then KA1,...,Ak(x) denotes

KA(x). We will also consider algorithmic information relative to points in
Euclidean spaces. For y ∈ R

n, let Ay ⊆ N encode the interleaved binary expan-
sions of y’s coordinates in some standard way. Then Ky

r (x) denotes K
Ay
r (x).

We will make repeated use of the following relationship between conditional and
relative Kolmogorov complexity and dimension.

Lemma 5 (J. Lutz and N. Lutz [14]). For each m,n ∈ N, there is a constant
c ∈ N such that, for all x ∈ R

m, y ∈ R
n, and r, t ∈ N,

Ky
r (x) ≤ Kr,t(x|y) + K(t) + c .

In particular, dimy(x) ≤ dim(x|y).

In pursuing a dimensional lower bound, we will use the fact that high-
dimensional points are very common. Relative to any oracle A ⊆ N, it fol-
lows from standard counting arguments that almost every point x ∈ R

n has
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dimA(x) = n and is furthermore Martin-Löf random relative to A, meaning
there is some constant c such that, for all r ∈ N, KA

r (x) ≥ nr − c [4].
Finally, we note that all results in this paper hold, with unmodified proofs,

relative to any given oracle. We present the unrelativized versions only to avoid
notational clutter.

3 Bounding the Dimension of (x , ax + b)

In this section we prove Theorem 1, our main theorem. We first restate it in the
form we will prove, which is slightly stronger than its statement in Sect. 1. The
dimension of x in the first term is conditioned on—instead of relative to—(a, b),
and even when working relative to an arbitrary oracle A, the last term dima,b(x)
remains unchanged.

Theorem 1 (Restated). For every a, b, x ∈ R and A ⊆ N,

dimA(x, ax + b) ≥ dimA(x|a, b) + min
{

dimA(a, b), dima,b(x)
}

.

In particular, for almost every x ∈ R, dim(x, ax + b) = 1 + min{dim(a, b), 1}.
To prove this theorem, we proceed in three major steps, which we first sketch

at a very high level here. In Sect. 3.1, we give sufficient conditions, at a given
precision r, for a point (x, ax + b) to have information content Kr(x, ax + b)
approaching Kr(a, b, x). Notice that this is essentially the maximum possible
value for Kr(x, ax + b), since an estimate for (a, b, x) has enough information to
estimate (x, ax + b) to similar precision. Informally, the conditions are

(i) Kr(a, b) is small.
(ii) If ux + v = ax + b, then either Kr(u, v) is large or (u, v) is close to (a, b).

We show in Lemma 6 that when these conditions hold, we can algorithmically
estimate (a, b, x) given an estimate for (x, ax + b). In Sect. 3.2, we give a lower
bound, Lemma7, on Kr(u, v) in terms of ‖(u, v) − (a, b)‖, essentially showing
that condition (ii) holds. Finally, we prove Theorem1 in Sect. 3.3 by showing that
there is an oracle which allows (a, b) to satisfy condition (i) without disrupting
condition (ii) or too severely lowering Kr(x, a, b).

3.1 Sufficient Conditions for a High-Complexity Point

Suppose that x, a, and b satisfy conditions (i) and (ii) above. Then, given an
estimate q for the point (x, ax + b), a machine can estimate (a, b) by simply
running all short programs until some output approximates a pair (u, v) such that
the line Lu,v = {(x, ux+v) : x ∈ R} passes near q. Since (u, v) was approximated
by a short program, it has low information density and is therefore close to (a, b)
by condition (ii). We formalize this intuition in the following lemma.

Lemma 6. Suppose that a, b, x ∈ R, r ∈ N, δ ∈ R+, and ε, η ∈ Q+ satisfy
r ≥ log(2|a| + |x| + 5) + 1 and the following conditions.
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(i) Kr(a, b) ≤ (η + ε) r.
(ii) For every (u, v) ∈ B1(a, b) such that ux + v = ax + b,

Kr(u, v) ≥ (η − ε) r + δ · (r − t) ,

whenever t = − log ‖(a, b) − (u, v)‖ ∈ (0, r].

Then for every oracle set A ⊆ N,

KA
r (x, ax + b) ≥ KA

r (a, b, x) − 4ε

δ
r − K(ε) − K(η) − Oa,b,x(log r) .

Proof. Let a, b, x, r, δ, ε, η, and A be as described in the lemma statement.
Define an oracle Turing machine M that does the following given oracle A

and input π = π1π2π3π4π5 such that UA(π1) = (q1, q2) ∈ Q
2, U(π2) = h ∈ Q

2,
U(π3) = s ∈ N, U(π4) = ζ ∈ Q, and U(π5) = ι ∈ Q.

For every program σ ∈ {0, 1}∗ with �(σ) ≤ (ι + ζ)s, in parallel, M simulates
U(σ). If one of the simulations halts with some output (p1, p2) ∈ Q

2 ∩ B2−1(h)
such that |p1q1 + p2 − q2| < 2−s(|p1| + |q1| + 3), then M halts with output
(p1, p2, q1). Let cM be a constant for the description of M .

Now let π1, π2, π3, π4, and π5 testify to KA
r (x, ax+ b), K1(a, b), K(r), K(ε),

and K(η), respectively, and let π = π1π2π3π4π5.
By condition (i), there is some (p̂1, p̂2) ∈ B2−r (a, b) such that K(p̂1, p̂2) ≤

(η + ε)r, meaning that there is some σ̂ ∈ {0, 1}∗ with �(σ̂) ≤ (η + ε)r and
U(σ̂) = (p̂1, p̂2). A routine calculation shows that

|p̂1q1 + p̂2 − q2| < 2−r(|p̂1| + |q1| + 3) ,

for every (q1, q2) ∈ B2−r (x, ax+b), so M is guaranteed to halt on input π. Hence,
let (p1, p2, q1) = M(π). Another routine calculation shows that there is some

(u, v) ∈ B2γ−r (p1, p2) ⊆ B2−1(p1, p2) ⊆ B20(a, b)

such that ux + v = ax + b, where γ = log(2|a| + |x| + 5).
We have ‖(p1, p2) − (u, v)‖ < 2γ−r and |q1 − x| < 2−r, so

(p1, p2, q1) ∈ B2γ+1−r (u, v, x) .

It follows that

KA
r−γ−1(u, v, x) ≤ �(π1π2π3π4π5) + cM

≤ KA
r (x, ax + b) + K1(a, b) + K(r) + K(ε) + K(η) + cM

= KA
r (x, ax + b) + K(ε) + K(η) + Oa,b(log r) .

Rearranging and applying Lemma2,

KA
r (x, ax + b) ≥ KA

r (u, v, x) − K(ε) − K(η) − Oa,b,x(log r) . (2)
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By the definition of t, if t > r then B2−r (u, v, x) ⊆ B21−r(a, b, x), which implies
KA

r (u, v, x) ≥ KA
r−1(a, b, x). Applying Lemma 2 gives

KA
r (u, v, x) ≥ KA

r (a, b, x) − Oa,x(log r) .

Otherwise, when t ≤ r, we have B2−r (u, v, x) ⊆ B21−t(a, b, x), which implies
KA

r (u, v, x) ≥ Kt−1(a, b, x), so by Lemma 2,

KA
r (u, v, x) ≥ KA

r (a, b, x) − 2(r − t) − Oa,x(log r) . (3)

We now bound r − t. By our construction of M and Lemma 2,

(η + ε)r ≥ K(p1, p2)
≥ Kr−γ(u, v)
≥ Kr(u, v) − Oa,x(log r) .

Combining this with condition (ii) in the lemma statement and simplifying yields

r − t ≤ 2ε

δ
r + Oa,x(log r) ,

which, together with (2) and (3), gives the desired result. �

3.2 Bounding the Complexity of Lines Through a Point

In this section we bound the information content of any pair (u, v) such that the
line Lu,v intersects La,b at x. Intuitively, an estimate for (u, v) gives significant
information about (a, b) whenever Lu,v and La,b are nearly coincident. On the
other hand, estimates for (a, b) and (u, v) passing through x together give an
estimate of x whose precision is greatest when La,b and Lu,v are nearly orthogo-
nal. We make this dependence on ‖(a, b)−(u, v)‖ precise in the following lemma.

Lemma 7. Let a, b, x ∈ R. For all u, v ∈ B1(a, b) such that ux + v = ax + b,
and for all r ≥ t:= − log ‖(a, b) − (u, v)‖,

Kr(u, v) ≥ Kt(a, b) + Kr−t,r(x|a, b) − Oa,b,x(log r) .

Proof. Fix a, b, x ∈ R. By Lemma 4(i), for all (u, v) ∈ B1(a, b) and every r ∈ N,

Kr(u, v) ≥ Kr(u, v|a, b) + Kr(a, b) − Kr(a, b|u, v) − Oa,b(log r) . (4)

We bound Kr(a, b) − Kr(a, b|u, v) first. Since (u, v) ∈ B2−t(a, b), for every
r ≥ t we have Br(u, v) ⊆ B21−t(a, b), so

Kr(a, b|u, v) ≤ Kr,t−1(a, b|a, b) .

By Lemma 4(ii), then,

Kr(a, b) − Kr(a, b|u, v) ≥ Kr(a, b) − Kr,t−1(a, b|a, b)
≥ Kt−1(a, b) − Oa,b(log r) .
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Lemma 2 tells us that

Kt−1(a, b) ≥ Kt(a, b) − O(log t) .

Therefore we have, for every u, v ∈ B1(a, b) and every r ≥ t,

Kr(a, b) − Kr(a, b|u, v) ≥ Kt(a, b) − Oa,b(log r) . (5)

We now bound the term Kr(u, v|a, b). Let (u, v) ∈ R
2 be such that ux +

v = ax + b. If t ≤ r < t + |x| + 2, then r − t = Ox(1), so by Lemma 3(ii),
Kr−t,r(x|a, b) = Ox(1). In this case, Kr(u, v|a, b) ≥ Kr−t,r(x|a, b) − Oa,b,x(log r)
holds trivially. Hence, assume r ≥ t + |x| + 2.

Let M be a Turing machine such that, whenever q = (q1, q2) ∈ Q
2 and

U(π, q) = p = (p1, p2) ∈ Q
2, with p1 �= q1,

M(π, q) =
p2 − q2
p1 − q1

.

For each q ∈ B2−r (a, b) ∩ Q
2, let πq testify to K̂r(u, v|q).Then

U(πq, q) ∈ B2−r (u, v) ∩ Q
2 .

It follows by a routine calculation that

|M(πq, q) − x| =
∣
∣
∣
∣
p2 − q2
p1 − q1

− b − v

a − u

∣
∣
∣
∣ < 24+2|x|+t−r .

Thus, M(πq, q) ∈ B24+2|x|+t−r(x) ∩ Q
2. For some constant cM , then,

K̂r−4−2|x|−t(x|q) ≤ �(πq) + cM

= K̂r(u, v|q) + cM .

Taking the maximum of each side over q ∈ B2−r (a, b) ∩ Q
2 and rearranging,

Kr(u, v|a, b) ≥ Kr−4−2|x|−t,r(x|a, b) − cM .

Then since Lemma 3(ii) implies that

Kr−4−2|x|−t,r(x|a, b) ≥ Kr−t,r(x|a, b) − Ox(log r) ,

we have shown, for every (u, v) satisfying ux + v = ax + b and every r ≥ t,

Kr(u, v|a, b) ≥ Kr−t,r(x|a, b) − Oa,b,x(log r) . (6)

The lemma follows immediately from (4), (5), and (6). �
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3.3 Proof of Main Theorem

To prove Theorem 1, we will show at every precision r that there is an oracle
relative to which the hypotheses of Lemma 6 hold and Kr(a, b, x) is still relatively
large. These oracles will be based on the following lemma.

Lemma 8. Let n, r ∈ N, z ∈ R
n, and η ∈ Q ∩ [0,dim(z)]. Then there is an

oracle D = D(n, r, z, η) satisfying

(i) For every t ≤ r, KD
t (z) = min{ηr,Kt(z)} + O(log r).

(ii) For every m, t ∈ N and y ∈ R
m, KD

t,r(y|z) = Kt,r(y|z) + O(log r) and
Kz,D

t (y) = Kz
t (y) + O(log r).

The proof of this lemma, which uses standard methods, is omitted here. Infor-
mally, for some s ≤ r such that Ks(z) is near ηr, the oracle D encodes r bits of
z conditioned on s bits of z. Unsurprisingly, access to this oracle lowers Kt(z)
to Ks(z) whenever t ≥ s and has only a negligible effect when t ≤ s, or when r
bits of z are already known.

Theorem 1. For every a, b, x ∈ R and A ⊆ N,

dimA(x, ax + b) ≥ dimA(x|a, b) + min
{

dimA(a, b), dima,b(x)
}

.

In particular, for almost every x ∈ R, dim(x, ax + b) = 1 + min{dim(a, b), 1}.
Proof. Let a, b, x ∈ R, and treat them as constant for the purposes of asymptotic
notation here. Let A ⊆ N,

H = Q ∩ [
0,dimA(a, b)

] ∩ [
0,dima,b(x)

)
,

and η ∈ H. Let δ = dima,b(x) − η > 0 and ε ∈ Q+. For each r ∈ N, let
Dr = D(2, r, (a, b), η), as defined in Lemma 8. We claim that for every sufficiently
large r, the conditions of Lemma 6, relativized to oracle Dr, are satisfied by these
choices of a, b, x, r, δ, ε, η.

Property (i) of Lemma8 guarantees that KDr
r (a, b) ≤ ηr + O(log r), so con-

dition (i) of Lemma 6 is satisfied for every sufficiently large r.
To see that condition (ii) of Lemma 6 is also satisfied, let (u, v) ∈ B1(a, b)

such that ax + b = ux + v and t = − log ‖(a, b) − (u, v)‖ ≤ r. Then by Lemma 7,
relativized to Dr, we have

KDr
r (u, v) ≥ KDr

t (a, b) + KDr
r−t,r(x|a, b) − O(log r) .

Therefore, by Lemmas 5 and 8,

KDr
r (u, v) ≥ min{ηr,Kt(a, b)} + Kr−t,r(x|a, b) − O(log r)

≥ min{ηr,Kt(a, b)} + Ka,b
r−t(x) − O(log r)

≥ min{ηr,dim(a, b)t − o(t)} + dima,b(x)(r − t) − o(r)
≥ min{ηr, ηt − o(t)} + (η + δ)(r − t) − o(r)
= ηt − o(t) + (η + δ)(r − t) − o(r)
= ηr + δ · (r − t) − o(r)
≥ (η − ε)r + δ · (r − t) ,

whenever r is large enough.
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For every sufficiently large r, then, the conclusion of Lemma 6 applies here.
Thus, for constant a, b, ε, and η,

KA
r (x, ax + b) ≥ KA,Dr

r (x, ax + b) − O(1)

≥ KA,Dr
r (a, b, x) − 4εr/δ − O(log r)

= KA,Dr
r (x|a, b) + KA,Dr

r (a, b) − 4εr/δ − O(log r)

= KA
r (x|a, b) + ηr − 4εr/δ − O(log r) ,

where the last equality is due to the properties of Dr guaranteed by Lemma 8.
Dividing by r and taking limits inferior,

dimA(x, ax + b) ≥ lim inf
r→∞

KA
r (x|a, b) + ηr − 4εr/δ − O(log r)

r

= dimA(x|a, b) + η − 4ε

δ
.

Since this holds for every η ∈ H and ε ∈ Q+, we have

dimA(x, ax + b) ≥ dimA(x|a, b) + min
{

dimA(a, b), dima,b(x)
}

.

The second part of the theorem statement follows easily, as relative to any
given oracle for (a, b), almost every x ∈ R is Martin-Löf random and therefore
has dimension 1. Applying Lemma5, then, almost every x ∈ R has dim(x|a, b) ≥
dima,b(x) = 1. �

We can now easily answer the motivating question of whether or not there
is a line in R

2 on which every point has effective Hausdorff dimension 1.

Corollary 9. For every a, b ∈ R, there exist x, y ∈ R such that

dim(x, ax + b) − dim(y, ay + b) ≥ 1 .

In particular, there is no line in R
2 on which every point has dimension 1.

Proof. Theorem 1 tells us that dim(x, ax + b) ≥ 1 + min{dim(a, b), 1} for almost
every x ∈ R. For y = 0, we have dim(y, ay + b) = dim(b) ≤ min{dim(a, b), 1}. �

There are lines for which the inequality in Corollary 9 is strict. Consider, for
example, a line through the origin whose slope a is random. For every x that is
random relative to a, the point (a, ax) has dimension dim(x) + dim(a) = 2, but
the origin itself has dimension 0.

4 An Application to Classical Fractal Geometry

4.1 Hausdorff Dimension

As the name indicates, effective Hausdorff dimension was originally conceived
as a constructive analogue to Hausdorff dimension, which is the most standard
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notion of dimension in fractal geometry. The properties and classical definition of
Hausdorff dimension are beyond the scope of this paper; see [5,17] for discussion
of those topics. Instead, we characterize it here according to a recent point-to-set
principle:

Theorem 10 (J. Lutz and N. Lutz [14]). For every n ∈ N and E ⊆ R
n, the

Hausdorff dimension of E is given by

dimH(E) = min
A⊆N

sup
x∈E

dimA(x) .

4.2 Generalized Sets of Furstenberg Type

A set of Furstenberg type with parameter α is a set E ⊆ R
2 such that, for every

e ∈ S1 (the unit circle in R
2), there is a line �e in the direction e satisfying

dimH(E ∩ �e) ≥ α. Finding the minimum possible dimension of such a set is an
important open problem with connections to Falconer’s distance set conjecture
and to Kakeya sets [9,27].4

Molter and Rela [22] introduced a natural generalization of Furstenberg sets,
in which the set of directions may itself have fractal dimension. Formally, a set
E ⊆ R

2 is in the class Fαβ if there is some set J ⊆ S1 such that dimH(J) ≥ β and
for every e ∈ J , there is a line �e in the direction e satisfying dimH(E ∩ �e) ≥ α.
They proved the following lower bound on the dimension of such sets.

Theorem 11 (Molter and Rela [22]). For all α, β ∈ (0, 1] and every set E ∈ Fαβ,

dimH(E) ≥ α + max
{

β

2
, α + β − 1

}
.

We now show that Theorem 1 yields an improvement on this bound whenever
α, β < 1 and β/2 < α.

Theorem 12. For all α, β ∈ (0, 1] and every set E ∈ Fαβ,

dimH(E) ≥ α + min{β, α} .

Proof. Let α, β ∈ (0, 1], ε ∈ (0, β), and E ∈ Fαβ . Using Theorem 10, let A satisfy

sup
z∈E

dimA(z) = dimH(E) .

and e ∈ S1 satisfy dimA(e) = β − ε > 0. Let �e be a line in direction e such that
dimH(�e ∩ E) ≥ α. Since dim(e) > 0, we know e �∈ {(0, 1), (0,−1)}, so we may
let a, b ∈ R be such that La,b = �e. Notice that dimA(a) = dimA(e) because the

4 Our main theorem also provides yet another alternative proof that every Kakeya
set E ⊆ R

2 has dimH(E) = 2. Briefly, let A be the minimizing oracle for E
from Theorem 10, and let a, b, x ∈ R satisfy dimA(a) = 1, dimA,a,b(x) = 1, and
(x, ax+ b) ∈ E. Then Theorem 1 gives dimH(E) ≥ dimA(x, ax+ b) ≥ dimA(x|a, b)+
min{dimA(a, b), dimA,a,b(x)} ≥ 2.
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mapping e → a is computable and bi-Lipschitz in some neighborhood of e. Let
S = {x : (x, ax + b) ∈ E}, which is similar to �e ∩ E, so dimH(S) ≥ α also. We
now have

dimH(E) = sup
z∈E

dimA(z)

≥ sup
z∈�e∩E

dimA(z)

= sup
x∈S

dimA(x, ax + b) .

By Theorem 1 and Lemma 5, both relativized to A,

sup
x∈S

dimA(x, ax + b) ≥ sup
x∈S

{
dimA,a,b(x) + min{dimA(a, b),dimA(x|a, b)}

}

≥ sup
x∈S

{
dimA,a,b(x) + min{dimA(a, b),dimA,a,b(x)}

}

≥ sup
x∈S

dimA,a,b(x) + min
{

dimA(a), sup
x∈S

dimA,a,b(x)
}

.

Theorem 10 gives
sup
x∈S

dimA,a,b(x) ≥ dimH(S) ≥ α ,

so we have shown, for every ε ∈ (0, β), that dimH(E) ≥ α + min{β − ε, α}. �

5 Conclusion

With Theorem 1, we have taken a significant step in understanding the structure
of algorithmic information in Euclidean spaces. Progress in that direction is espe-
cially consequential in light of Theorem12, which, aside from its direct value as
a mathematical result, demonstrates conclusively that algorithmic dimensional
methods can provide new insights into classical fractal geometry. This motivates
further investigation of algorithmic fractal geometry in general and of effective
Hausdorff dimension on lines in particular; improvements on our lower bound or
extensions to higher dimensions would have implications for important questions
about Furstenberg or Kakeya sets. Our results also motivate a broader search for
potential applications of algorithmic dimension to problems in classical fractal
geometry.
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Abstract. This work considers encodings of non-negative reals in a fixed
base, and their encoding by weak deterministic Büchi automata. A Real
Number Automaton is an automaton which recognizes all encodings of
elements of a set of reals. We explain in this paper how to decide in linear
time whether a set of reals recognized by a given minimal weak determin-
istic RNA is FO[IR; +, <, 1]-definable. Furthermore, it is explained how
to compute in quasi-quadratic (respectively, quasi-linear) time an exis-
tential (respectively, existential-universal) FO[IR; +, <, 1]-formula which
defines the set of reals recognized by the automaton.

As an additional contribution, the techniques used for obtaining our
main result lead to a characterization of minimal deterministic Büchi
automata accepting FO[IR; +, <, 1]-definable set.

1 Introduction

This paper deals with logically defined sets of numbers encoded by weak deter-
ministic Büchi automata. The sets of tuples of integers whose encodings in base
b are recognized by a finite automaton are called the b-recognizable sets. By
[5], the b-recognizable sets of vectors of integers are exactly the sets which are
FO [IN;+, <, Vb]-definable, where Vb(n) is the greatest power of b dividing n. It
was proven in [6,15] that the FO [IN;+, <]-definable sets are exactly the sets
which are b- and b′-recognizable for every b ≥ 2.

Those results naturally led to the following problem: deciding whether a
finite automaton recognizes a FO [IN;+, <]-definable set of d-tuples of integers
for some dimension d ∈ IN>0. In the case of dimension d = 1, decidability was
proven in [9]. For d > 1, decidability was proven in [14]. Another algorithm was
given in [11], which solves this problem in polynomial time. For d = 1, a quasi
linear time algorithm was given in [13].

The above-mentioned results about sets of tuples of natural numbers and
finite automata have then been extended to sets of tuples of reals recognized
by a Büchi automaton. The notion of Büchi automata is a formalism which
describes languages of infinite words, also called ω-words. The Büchi automata
are similar to the finite automata. The main difference is that finite automata
accept finite words which admit runs ending on accepting state, while Büchi
c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 440–454, 2017.
DOI: 10.1007/978-3-319-55911-7 32
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automata accept infinite words which admit runs in which an accepting state
appears infinitely often.

One of the main differences between finite automata and Büchi automata is
that finite automata can be determinized while deterministic Büchi automata
are less expressive than Büchi automata. For example, the language Lfin(a) of
words containing a finite number of times the letter a is recognized by a Büchi
automaton, but is not recognized by any deterministic Büchi automaton. This
statement implies, for example, that no deterministic Büchi automaton recog-
nizes the set of reals of the form nbp with n ∈ IN and p ∈ ZZ, that is, the set of
reals whose encoding ends with 0 or (b − 1) repeated infinitely many times.

A main difference between the two classes of deterministic automata is that
the class of languages recognized by deterministic finite automata is closed under
complement while the class of languages recognized by deterministic Büchi
automata is not. For example, Lfin(a)

is not recognized by any deterministic
Büchi automaton while its complements Linf(a) is recognized by a deterministic
Büchi automaton.

However, the set of weak deterministic Büchi automata is closed under
complement. A weak deterministic Büchi automaton is a deterministic Büchi
automaton whose set of accepting states is a union of strongly connected compo-
nents. Handling weak Büchi automata is similar to manipulating finite automata.
A set is said to be weakly b-recognizable if it is recognized by a weak automaton
in base b. The class of weak deterministic Büchi automata is less expressive than
the class of deterministic Büchi automata. For example, as mentionned above,
the language Linf(a) is recognized by a deterministic Büchi automaton, but this
language is not recognized by any weak deterministic Büchi automaton. This
implies that, for example, no weak deterministic Büchi automaton recognizes
the set of reals which are not of the form nbp with n ∈ IN and p ∈ ZZ, since
those reals are the ones whose encoding in base b contains an infinite number of
non-0 digits. Furthermore, by [12], weak deterministic Büchi automata can be
efficiently minimized.

A Real Vector Automaton (RVA, See e.g. [4]) of dimension d is a Büchi
automaton A over alphabet {0, . . . , b − 1}d ∪ {�}, which recognizes the set of
encodings in base b of the elements of a set of vectors of reals. Equivalently, for
w an infinite word encoding a vector of dimension d of real (r0, . . . , rd−1), if w
is accepted by A, then all encodings w′ of (r0, . . . , rd−1) are accepted by A. In
the case where the dimension d is 1, those automata are called Real Number
Automata (RNA, See e.g. [3]).

The sets of tuples of reals whose encoding in base b is recognized by a RVA are
called the b-recognizable sets. By [18], they are exactly the FO [IR, IN;+, <,Xb, 1]-
definable sets. The logic FO [IR, IN;+, <,Xb, 1] is the first-order logic over reals
with a unary predicate which holds over integers, addition, order, the constant
one, and the function Xb(x, u, k). The function Xb(x, u, k) holds if and only if
u is equal to some bn with n ∈ ZZ and there exists an encoding in base b of x
whose digit in position n is k. That is, u and x are of one of the two following
forms:
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u = 0 . . . 0 � 0 . . . 0 1 0 . . .
x = . . . � . . . k . . .

or
u = 0 . . . 0 1 0 . . . 0 � 0 . . .
x = . . . k . . . � . . .

.

By [4], a set is FO [IR, IN;+, <]-definable if and only if its set of encodings is
weakly b-recognizable for all b ≥ 2.

By [7], the logic FO [IR;+, <, 1] admits quantifier elimination. By [17, Sect. 6],
the set of reals which are FO [IR;+, <, 1]-definable are finite unions of intervals
with rational bounds. Those sets are called the simple sets.

Standard definitions are recalled in Sect. 2. Sets of states of automata reading
reals are studied in Sect. 3. Furthermore, a method to efficiently solve automa-
ton problem is introduced. In Sect. 4, given a simple set, an automaton accepting
it is constructed. A characterization of minimal deterministic Büchi automata
accepting a FO [IR;+, <, 1]-definable set is given in Sect. 5. This characterization
is similar to the insight given in [2] and leads to a linear time algorithm deciding
whether a minimal RNA recognizes a FO [IR;+, <, 1]-definable set. This algo-
rithm does not return any false positive on weak deterministic Büchi automata
which are not RNA. A false negative is exhibited at the end of Sect. 5. Given a
minimal weak RNA automaton accepting a simple set, it is shown in Sect. 6 that
an existential (respectively, existential-universal) FO [IR;+, <, 1]-formula which
defines R is computable in quasi-quadratic (respectively quasi-linear) time.

2 Definitions

The definitions used in this paper are given in this section. Some basic lemmas
are also given. Most definitions are standard.

Let IN, ZZ, Q and IR denote the set of non-negative integers, integers, ratio-
nals and reals, respectively. For R ⊆ IR, let R≥0 and R>0 denote the set of
non-negative and of positive elements of R, respectively. For n ∈ IN, let [n] rep-
resent {0, . . . , n}. For a, b ∈ IR with a ≤ b, let [a, b] denote the closed interval
{r ∈ IR | a ≤ r ≤ b}, and let (a, b) denote the open interval {r ∈ IR | a < r < b}.
Similarly, let (a, b] (respectively, [a, b)) be the half-open interval equals to the
union of (a, b) and of {b} (respectively, {a}). For r ∈ IR let �r� be the greatest
integer less than or equal to r.

2.1 Finite and Infinite Words

An alphabet is a finite set, its elements are called letters. A finite (respectively
ω-) word over alphabet A is a finite (respectively infinite) sequence of letters of
A. That is, a function from [n] to A for some n ∈ IN (respectively from IN to
A). A set of finite (respectively ω-) words over alphabet A is called a language
(respectively, an ω-language) over alphabet A. The empty word is denoted ε.

Let w be a word, its length is denoted |w|, it is either a non-negative integer
or the cardinality of IN. For n < |w|, let w[n] denote the n-th letter of w. For v a
finite word, let u = vw be the concatenation of v and of w, that is, the word of
length |v| + |w| such that u[i] = v[i] for i < |v| and u[|v| + i] = w[i] for i < |w|.
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Let w [< n] denote the prefix of w of length n, that is, the word u of length n
such that w[i] = u[i] for all i ∈ [n − 1]. Similarly, let w [≥ n] denote the suffix of
w without its n-th first letters, that is, the word u of length |w| − n such that
u[i] = w[i + n] for all i ∈ [|w| − n]. Note that w = w [< i] w [≥ i] for all i < |w|.

Let L be a language of finite words and let L′ be either a ω-language or
a language of finite words. Let LL′ be the set of concatenations of the words
of L and of L′. For i ∈ IN, let Li be the concatenations of i words of L. Let
L∗ =

⋃
i∈IN Li and L+ =

⋃
i∈IN>0 Li. If L is a language which does not contain

the empty word, let Lω be the set of infinite sequences of elements of L.

Encoding of Real Numbers. Let us now consider the encoding of numbers
in an integer base b ≥ 2. Let Σb be equal to [b − 1]; it is the set of digits. The
base b is fixed for the rest of this paper.

The function sending words to the number they encode are now introduced.
Let w be an ω-word with exactly one �. It is of the form w = wI � wF , with
wI ∈ Σ∗

b and wF ∈ Σω
b . The word wI is called the natural part of w and the

ω-word wF is called its fractional part. Let [wI ]
I
b =

∑|w|−1
i=0 b|w|−1−iwI [i], let

[wF ]Fb =
∑

i∈IN b−i−1wF [i] and finally, let [wI � wF ]Rb = [wI ]
I
b + [wF ]Fb . Some

properties of concatenation and of encoding of reals are now stated.

Lemma 1. Let v ∈ Σ∗
b , v′ ∈ Σ+

b , w ∈ Σω
b and a ∈ Σb. Then:

[w]Fb = [0 � w]Rb , [aw]Fb =
(
a + [w]Fb

)
/b,

[va]Ib = b [v]Ib + a and [vω]Fb = [v]Ib /
(
b|v| − 1

)
.

Some basic facts about rationals are recalled (see e.g. [8]). The rationals are
exactly the numbers which admit encodings in base b of the form u � vwω with
u, v ∈ Σ∗

b and w ∈ Σ+
b . Rationals of the form nbp, with n ∈ IN and p ∈ ZZ,

admit exactly two encodings in base b without leading 0 in the natural part. If
p < 0, the two encodings are of the form u � va(b − 1)ω and u � v(a + 1)0ω, with
u, v ∈ Σ∗

b and a ∈ [b − 2]. Otherwise, if p ≥ 0, the two encodings are of the form
ua(b − 1)q � (b − 1)ω and u(a + 1)0q � 0ω with u ∈ Σ∗

b , a ∈ [b − 2] and q ∈ IN.
The rationals which are not of the form nbp admit exactly one encoding in base
b without leading 0 in the natural part.

Encoding of Sets of Reals. Relations between languages and sets of reals are
now recalled. Given a language L which is a subset of Σ∗

b � Σω
b , let [L]Rb be the

set of reals admitting an encoding in base b in L. The language L is said to be an
encoding in base b of the set of reals [L]Rb . Reciprocally, given a set R ⊆ IR≥0 of
reals, Lb(R) is the set of all encodings in base b of elements of R. For L a subset
of Σω

b , [L]Fb is the set of d-tuples of reals, belonging to [0, 1]d, which admits an
encoding in base b in L.

Following [11], a language L is said to be saturated if for any number r which
admits an encoding in base b in L, all encodings in base b of r belong to L. The
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saturated languages are of the form Lb(R) for R ⊆ IR≥0. Note that [Lb(R)]Rb = R

for all sets R ⊆ IR≥0. Note also that L ⊆ Lb([L]Rb ), and the subset relation is an
equality if and only if L is saturated.

All non-empty sets of reals have infinitely many encodings in base b. For
example, for I ⊆ IN an arbitrary set, 0∗ � {0, 1}ω \ {

0i1ω | i ∈ I
}

is an encoding
in base 2 of the simple set [0, 1]. This language is saturated if and only if I = ∅.

2.2 Deterministic Büchi Automata

This paper deals with deterministic Büchi automata. This notion is now defined.
A Deterministic Büchi automaton A is a 5-tuple (Q,A, δ, q0, F ), where Q is

a finite set of states, A is an alphabet, δ : Q × A → Q is the transition function,
q0 ∈ Q is the initial states and F ⊆ Q is the set of accepting states. A state
belonging to Q \ F is said to be a rejecting state.

From now on in this paper, all automata are assumed to be deterministic.
The function δ is implicitly extended on Q × A∗ by δ(q, ε) = q and δ(q, wa) =
δ(δ(q, w), a) for a ∈ A and w ∈ A∗.

Let A be an automaton and w be an infinite word. A run π of A on w is
a mapping π : IN �→ Q such that π(0) = q0 and δ(π(i), w[i]) = π(i + 1) for all
i < |w|. The run is accepting if there exists a state q ∈ F such that there is an
infinite number of i ∈ IN such that π(i) = q. Let A be a finite automaton. Let
Lω (A) be the set of infinite words w such that a run of A on w is accepting.

Accessibility and Recurrent States. Some definitions related to the under-
lying labelled graph of Büchi automata are introduced in this section. A state
q is said to be accessible from a state q′ if there exists a finite non-empty word
w such that δ(q′, w) = q. Following [12], a state q is said to be recurrent if it is
accessible from itself and transient otherwise. Transient states are called trivial
in [2]. The strongly connected component of a recurrent state q is the set of states
q′ such that q′ is accessible from q and q is accessible from q′. A strongly con-
nected component C is said to be a leaf if for all a ∈ A, for all q ∈ C, δ(q, a) ∈ C.
Let C be a strongly connected component. It is said to be a cycle if for each
q ∈ C, there exists a unique sq ∈ A such that δ(q, sq) ∈ C.

The transient states of the automaton pictured in Fig. 2 are q1, q10, q11, q10�

and q11�. All other states are recurrent. The cycles are {q0}, {q0�, q0�0}, {q10�0},
{q10�1, q10�10}, {q11�0} and {q11�1, q11�10}. The strongly connected components
which are not cycles are

{
q∅,A

}
, {q∞,A} and

{
q[0,1],A

}
.

For q ∈ Q, let Aq be (Qq, A, δ, q, Fq), where Qq is the set of states of Q
accessible from q, and Fq = F ∩ Qq. Note that, if there is no finite word w such
that δ(q0, w) = q0, then Qq � Q for all q = q0.

Quotients, Morphisms and Weak Büchi Automata. The Büchi automa-
ton A = (Q,A, δ, q0, F ) is said to be minimal if, for each distinct states q and
q′ of A, Lω (Aq) = Lω (Aq′). Let A = (Q,A, δ, q0, F ) be a Büchi automaton
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and A′ = (Q′, A, δ′, q′
0, F

′) be a minimal Büchi automaton. A surjective function
μ : Q → Q′ is a morphism of Büchi automata if and only if μ(q0) = q′

0 and, for
all q ∈ Q, Lω (Aq) = Lω

(
A′

μ(q)

)
.

The Büchi automaton A is said to be weak if for each recurrent accepting
state q of A, all states of the strongly connected components of q are accepting.
An ω-language is said to be (weakly) recognizable if it is a set of word accepted by
a (weak) Büchi automaton. An example of weak deterministic Büchi automaton
is now given. This example is used through this paper to illustrate properties of
Büchi automaton reading set of real numbers.

Example 1. Let R =
(
1
3 , 2

] ∪ (
8
3 , 3

] ∪ (
11
3 ,∞]

. The set of encodings in base 2 of
reals of R is (weakly) recognized by the automaton pictured in Fig. 1. The run of
A on the ω-word 011 � (10)ω is (q0, q0, q1, q3, q11�, q11�1, q11�10, . . . ), with the two
last states repeated infinitely often. The Büchi automaton A does not accept
011 � (10)ω since this run does not contain any accepting state. The run of A on
ω-word �1ω is

(
q0, q0�, q[0,1],A, . . .

)
with the last state repeated infinitely often.

The Büchi automaton A accepts �1ω since the accepting state q[0,1],A appears
infinitely often in the run.

The main theorem concerning quotient of weak Büchi automata is now recalled.

q0 q1 q10 q11 q∞,A

q11�

q11�1 q11�10

q11�0q10�

q10�1 q10�10

q10�0q0�

q0�0 q[0,1],A

0

1

�

0

1 0,1

�

0,1

�

0,1

�

0 1

0

1

0

0

1

1

0

0

0

1

0,1

�

11

1

Fig. 1. Automaton AR of Example 1

Theorem 1 ([12]). Let A = (Q,A, δ, q0, F ) be a weak Büchi automaton with n
states such that all states of A are accessible from its initial state. Let c be the
cardinality of A. There exists a minimal weak Büchi automaton A′ such that
there exists a morphism of automaton μ from A to A′. The automaton A′ and
the morphism μ are computable in time O (n log(n)c) and space O (nc).
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q0 q10 q∞,R q1

q10� q10�0q0�q0�0 Q[0,1],R

0
1

�

0,1

�

0,1

�

0,1

�

0 1

1

1
0

0

0,1

Fig. 2. Minimal quotient of automaton AR of Fig. 1

The Büchi automaton AR pictured in Fig. 1 is weak and is not minimal.
Its minimal quotient is pictured in Fig. 2. The following lemma states that each
strongly connected component of a quotient by a morphism μ from an automaton
A is the image of a strongly connected component of A. It allows to prove that
some properties, such as being a cycle, is closed under taking quotient.

Lemma 2. Let A = (Q,A, δ, q0, F ) and A′ = (Q′, Σb, δ
′, q′

0, F
′) be two Büchi

automata. Let μ be a morphism from A to A′. Let C ′ be a strongly connected
component of A′. There exists a strongly connected component C ⊆ Q such that
μ(C) = C ′ and such that, for all q ∈ Q \ C accessible from C, μ(q) ∈ C ′.

Real Number Automata. For A a Büchi automaton over alphabet Σb ∪ {�},
let [A]Rb denote [Lω (A)]Rb . It is said that A recognizes [A]Rb . Following [3], a Büchi
automaton over alphabet Σb∪{�} is said to be a Real Number Automaton (RNA)
if it recognizes a subset of Σ∗

b �Σω
b and if the language Lω (A) is saturated. The

Büchi automata pictured in 1 and 2 are RNA. Clearly, the RNAs are the Büchi
automata which recognize saturated languages.

2.3 Logic

The logic FO [IR;+, <, 1] used in this paper is introduced in this section. FO
stands for first-order. The first parameter IR means that the (free or quantified)
variables are interpreted by non-negative real numbers. The + and < symbols
mean that the addition function and the binary order relation over reals can
be used in formulas. Finally, the last term, 1, means that the only constant
is 1. The logic FO [IR;+, <, 1] is denoted by L in [7], where it is proven that
this logic admits quantifier elimination. In this paper, all results deal with the
quantifier-free, the existential fragment and the existential-universal fragment
of FO [IR;+, <, 1] denoted by Σ0 [IR;+, <, 1], Σ1 [IR;+, <, 1] and Σ2 [IR;+, <, 1]
respectively.
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In the rest of the paper, rationals are also used in the formulas. Admit-
ting rationals does not change the expressivity since all rational constants are
Σ0 [IR;+, 1]-definable. The length of a formula φ is denoted by |φ|. It is such
that each symbol takes one bit of space, apart from integers n and rationals
n/m which take log(1 + |n|) and log(1 + |n| + |m|) bits of space respectively.

First-Order Definable Sets of Reals. In this section, notations are intro-
duced for the kind of sets studied in this paper: the FO [IR;+, <, 1]-definable
sets. Following [17, Sect. 6], the FO [IR;+, <, 1]-definable sets are called the sim-
ple sets. By [17, Sect. 6], those sets are the finite unions of intervals with rational
bounds. It implies that there exists an integer tR such that for all x, y ≥ tR, x
belongs to R if and only if y belongs to R. The least such integer tR is called
the threshold of R.

Note that every closed and half-closed intervals is the union of an open inter-
val and of singletons, hence it can be assumed that any simple set R is of the form
R =

⋃I−1
i=0 (ρi,L, ρi,R) ∪ ⋃J−1

i=0 {ρi,S}, with ρi,L, ρi,S ∈ Q and ρi,R ∈ Q ∪ {∞}.
The ρi,L’s are the left bounds, the ρi,R’s are the right bounds and the ρi,S’s are
the singletons.

For example, let R =
(
1
3 , 2

] ∪ (
8
3 , 3

] ∪ (
11
3 ,∞]

as in Example 1. Then tR is 4,
I = 3, J = 2, ρ1,L = 1

3 , ρ2,R = 2, ρ2,L = 8
3 , ρ2,R = 3, ρ3,L = 11/3, ρ3,R = ∞,

ρ1,S = 2 and ρ2,S = 3.

3 Some Sets of States of Automata Reading Reals

We now introduce five sets of states used in the algorithms of this paper.

Definition 1 (Q∅,A, Q[0,1],A, Q∞,A, QI,A and QF,A). Let A = (Q,A, δ, q0, F ).

– Let Q∅,A be the set of states q such that Aq recognizes the empty language.
– Let Q[0,1],A be the set of states q such that Aq recognizes Σω

b .
– Let Q∞,A be the set of states q such that Aq recognizes the language Σ∗

b � Σω
b .

– Let QI,A be the set of states q such that Aq recognizes a subset of Σ∗
b � Σω

b .
– Let QF,A be the set of states q such that Aq recognizes a subset of Σω

b .

In [2], the strongly connected components included in Q∅,A are called empty and
the ones included in Q[0,1],A are called universal.

Intuitively the states belonging to QI,A and to QF,A are the states which can
be visited while the automaton read the natural and the fractional part of the
number respectively.

Let A be the automaton pictured in Fig. 2. Let q∅,A be the state δ(q10�0, 1),
which is not pictured in Fig. 2. Then Q[0,1],A =

{
q[0,1],R

}
, Q∞,A = {q∞,R} and

Q∅,A =
{
q∅,A

}
. Furthermore, the states of QI,A are pictured in the top row of

Fig. 2, they are q0, q1, q10, q∞,R and q∅,R. Finally, the states of QF,A are pictured
in the second row of Fig. 2, they are q10�, q10�0, q0�, q0�0, Q[0,1],R and q∅,R.
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In a minimal weak Büchi automaton A, let q∅,A, q[0,1],A and q∞,A denote the
only state q such that Aq recognizes the languages ∅, Σω

b and Σ∗
b �Σω

b respectively.
The following lemma states that the five sets introduced in Definition 1 are linear
time computable.

Lemma 3. Let A be a weak Büchi automaton with n states. Then the sets Q∅,A,
Q[0,1],A, q∞,A, QI,A and QF,A are computable in time O (nb).

It is explained how to compute Q∅,A. The other sets are computed similarly.

Proof. Tarjan’s algorithm [16] can be used to compute the set of strongly con-
nected component in time O (nb), and therefore the set of recurrent states. By
definition, q ∈ Q∅,A if and only if Aq accept no ω-word. It is equivalent to the
fact that no recurrent state accessible from q are accepting. Equivalently, Q∅,A
is the greatest set of states q such that, q is not a recurrent accepting state, and
furthermore, for all a ∈ Σb ∪ {�}, δ(q, a) ∈ Q∅,A. This naturally leads to the
following greatest fixed-point algorithm.

Two sets PotentiallyEmpty and ToProcess are used by the algorithm.
The algorithm initializes the set PotentiallyEmpty to Q and initializes the

set ToProcess to the empty set. The algorithm runs on each recurrent state q.
For each state q, if q is accepting, then q is removed from PotentiallyEmpty and
added to ToProcess. The algorithm then runs on each element q of ToProcess.
For each state q, the algorithms removes q from ToProcess and runs on each
predecessors q′ of q. For each q′, if q′ is in PotentiallyEmpty, then q′ is removed
from PotentiallyEmpty and added to ToProcess. Finally, when ToProcess is
empty, the algorithm halts and Q∅,A is the value of PotentiallyEmpty.

4 From Simple Sets to Automata

Let us fix a simple non-empty set R � R≥0. In this section a weak RNA AR

which recognize Lω (R) is constructed. Since R is a simple set, there exists an
integer tR ∈ N≥0 such that [tR,∞) is either a subset of R or is disjoint from R.
Without loss of generality, it is assumed that tR ≥ b. As seen in Sect. 2.3, R can
be expressed as

⋃I−1
i=0 (ρi,L, ρi,R) ∪ ⋃J−1

i=0 {ρi,S} with ρi,j ∈ Q ∩ [0, tR]. Without
loss of generality, it can be assumed that all integers n belonging to [0, tR] are of
the form ρi,j for some i, j. It suffices either to assume that there is some i ∈ IN
such that n is of the form ρi,S if n ∈ R and of the form ρi,L and ρi,R otherwise.

Since the ρi,j are rationals, their encodings in base b are of the form ui,j,kvω
i,j,k

with ui,j,k ∈ Σ∗
b � Σ∗

b such that ui,j,k[0] = 0 and vi,j,k ∈ Σ+
b . Since there are

at most two encodings, a third index, k, is also required. Up to replacing the
words ui,j,k by ui,j,kvn

i,j,k, it can be assumed without loss of generality that, for all
i, j, k, i′, j′, k′, the word ui,j,k is not a strict prefix of ui′,j′,k′ and if ui,j,k = ui′,j′,k′

then vi,j,k = vi′,j′,k′ . The formal definition of AR is now given.

Definition 2 (AR). Let R � [0,∞) be a simple non-empty set. Note that
tR > 0. Let AR be the automaton (Q,Σb ∪ {�} , δ, q0, F ) where:
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– Q contains the states q∅,A, q[0,1],A, q∞,A, and a state qw for each strict prefix
w of a word ui,j,kvi,j,k.

– F contains q[0,1],A, and the qw’s, for w ∈ Σ∗
b � Σω

b some non-empty prefix of
some ui,S,kvi,S,k.

– and the transition function is such that, for each word w and for each letter a:
• δ(qε, 0) = qε.
• For wa a strict prefix of some ui,j,kvi,j,k, δ(qw, a) = qwa.
• For wa of the form ui,j,kvi,j,k, δ(qw, a) = qui,j,k

.
It is now assumed that wa is not a prefix of or equal to any ui,j,kvi,j,k.

• If wa ∈ Σ∗
b , then δ(qw, a) is q∞,A if [tR,∞) ⊆ R and q∅,A otherwise.

• For wa ∈ Σ∗
b � Σ∗

b , δ(qw, a) is q∅,R if [wa0ω]Rb ∈ R and q[0,1],A otherwise.
• For q being q[0,1],R, q∞,R or q∅,R, δ(q, a) = q.
• δ(q∞,R, �) = q[0,1],R.
• For q being q[0,1],A or q∅,A or qw for w ∈ Σ∗

b � Σ∗
b , δ(q, �) = q∅,A.

It can be shown that AR recognizes R. Let R =
(
1
3 , 2

] ∪ (
8
3 , 3

] ∪ (
11
3 ,∞]

as in
Example 1. The automaton AR is pictured in Fig. 1, without the non accepting
state q∅,A. Its minimal quotient is pictured in Fig. 2.

A second example is now given, which shows that the minimal number of
intervals of a simple set may be exponential in the number of state of the minimal
Büchi automaton accepting this set. For every non-negative integer n, let Rn be{
m2−(n−1) | m ∈ [2n−1]

}
. It is the set of reals which admit an encoding w in

base 2 whose suffixes w [≥ n] are either equal to 0ω or to 1ω. This set can not be
described with less than 2n−2 intervals and is recognized by the automaton An:

An =
({qi | i ∈ [n]} ∪ {

qn+1,0, qn+1,1, q∅,A
}

, Σb, δ, q0, {qn+1,0, qn+1,1}
)
,

where the transition function is such that, for a ∈ Σ2, and i ∈ [n − 1] \ {0},
δ(q0, �) = q1, δ(qi, a) = qi+1, δ(qn, a) = qn+1,a, δ(qn+1,a, a) = qn+1,a. For each
state q and letter a such that δ(q, a) is not defined above, δ(q, a) = q∅,A.

5 Deciding Whether an Automaton Recognizes a Simple
Set

It is explained in this section how to decide whether a minimal weak RNA accepts
a simple set. The first main theorem of this paper is now given.

Theorem 2. It is decidable in time O (nb) and space O (n) whether a minimal
weak Büchi RNA with n states recognizes a simple set.

In order to prove this theorem, a proposition is is now given. This property is a
general method used to efficiently decide properties of automata. This method
is similar to the method used in [11] and in [13].

Proposition 1. Let A′ be a class of weak Büchi automata and let L′ be the class
of languages {Lω (A) | A ∈ A′}. Let L be a class of languages over an alphabet
such that there exists a class A of weak Büchi automata such that:
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1. there exists an algorithm α which decides in time t(n, b) and space s(n, b)
whether a Büchi automaton belongs to A, for n the number of states and b
the number of letters,

2. for each L ∈ L ∩ L′, there exists an automaton A ∈ A which recognizes L,
3. the minimal quotient of any automaton of A belongs to A and
4. every language recognized by an automaton belonging to A belongs to L.

The algorithm α decides in time t(n, b) and space s(n, b) whether a minimal
automaton of A′ recognizes a language of L. Furthermore, the algorithm α applied
to an automaton belonging to A′ \ A may not return a false positive.

Proof. Let A be an automaton which recognizes a language L. Let us assume
that α accepts A, by Proposition (1), A ∈ A, hence by Proposition (4), L ∈ L.

Let us now assume that A ∈ A′ and that L ∈ L. By definition of L′, L ∈ L′,
hence L ∈ L ∩ L′, thus by Proposition 2, there exists A′ ∈ A which recognizes
L. Since A′ and A recognize the same language, they have the same minimal
quotient, which is A. By Proposition 3, A ∈ A. Thus, by Proposition (1), α
accepts A.

In this paper, A′ is the set of RNAs, hence L′ is the class of saturated recognizable
languages. The class of languages L is the class of base b encoding of non-empty
sets R � R≥0. The cases of R = R≥0 and of R = ∅ being special cases. The class
A of automata is now introduced.

Definition 3 (A). Let A be the set of weak Büchi automata A, of the form
(Q,Σb ∪ {�} , δ, q0, F ), such that, for each strongly connected component C ⊆
QF,A\(Q[0,1],A∪Q∅,A), there exists β<,C and β>,C , two states of Q[0,1],A∪Q∅,A,
such that, for all q ∈ C:

1. C is a cycle. Recall that sq is the only letter such that δ(q, sq) ∈ C.
2. For all a > sq, δ(q, a) is β>,C .
3. For all a < sq, δ(q, a) is β<,C .
4. There exists an accepting and a rejecting strongly connected component,

accessible from the initial state, belonging to QF,A.
5. The set Q∅,A contains exactly one recurrent state, denoted q∅,A.
6. The set Q∞,A contains at most one recurrent state, denoted q∞,A.
7. δ(q0, 0) = q0.
8. δ(q0, a) = q0 for all 0 < a < b.
9. If q∞,A exists, then δ(q, a) = q∅,A for all q ∈ QI,A \ {

q∅,A
}
and a ∈ Σb.

10. The recurrent states of QI,A are q∅,A, q0 and potentially q∞,A.

The automata of A admits the following property.

Lemma 4. Let A ∈ A be an automaton with n states recognizing a set R. If
A contains a state q∞,A, as in Definition 3, then (bn−1,∞) ⊆ R, otherwise
(bn−1,∞) ∩ R = ∅.
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Proof (Sketch of proof of Theorem 2). Using Lemma 3, the algorithms checks
whether A accepts a subset L of Σ∗

b � Σω
b , if it is not the case, the algorithm

rejects. The algorithms also checks whether L is ∅ or Σ∗
b � Σω

b . If it is the case,
the algorithm accepts. It is now assumed that A accepts a non-empty language
L � Σ∗

b � Σω
b . Let L′ be the set of saturated languages and A′ be the set of

RNAs. Let L be the set of encoding of simple non-empty sets R � IR≥0. In order
to prove this theorem, it suffices to show that A admits the four properties of
Proposition 1.

Each property of Definition 3 is testable in time O (nb) and space O (n).
Therefore, it is decidable in time O (nb) and space O (n) whether a weak Büchi
automaton A with n states belongs to A. Hence Property (1) of Proposition 1
holds.

For R � R≥0 a non-empty simple set, the automaton AR of Definition 2
belongs to A. Therefore Property (2) of Proposition 1 holds.

Let A ∈ A be a RNA. Let A′ be its minimal quotient. It can be proven that
A′ satisfies the properties of Definition 3, hence A′ ∈ A. Therefore Property (3)
of Proposition 1 holds.

Property (4) of Proposition 1 is now considered. Automata satisfying
Properties (1), (2) and (3) of Definition 3 are studied in [2]. It is shown that
automata satisfying those properties accepts a set R such that R ∩ [i, i + 1] is
a finite union of intervals with rationals boundaries for all i ∈ IN. Lemma 4
ensures that furthermore, there is some t ∈ IN such that [t,∞) is either a subset
of R or is disjoint from R. Thus, an automaton of A recognize a finite union
of interval with rational boundaries, i.e. a simple set. Therefore Property (4) of
Proposition 1 holds. ��

The algorithm of Theorem 2 takes as input a minimal weak RNA and runs
in time O (nb). It should be noted that it is not known whether it is decidable
in time O (nb) whether a minimal Büchi automaton is a RNA. However, if the
algorithm of Theorem 2 is applied to a weak Büchi automaton which is not a Real
Number Automaton, the algorithm returns no false positive. An example of false
negative is now given. The not-saturated language L = (00)∗ (01 + 2)Σ∗

3 � Σω
3

encode the simple set of reals R>0. However, the minimal automaton recognizing
L it is not accepted by the algorithm of Theorem 2.

6 From Automata to Simple Set

It is explained in this section how to compute a first-order formula which defines
the simple set accepted by a weak RNA. The exact theorem is now stated.

Theorem 3. Let A = (Q,Σb∪{�} , δ, q0, F ) be a be a minimal weak RNA with n
states which recognizes a simple set. There exists a Σ1 [IR;+, <, 1]-formula com-
putable in time O

(
n2b log(nb)

)
which defines [A]Rb . There exists a Σ2 [IR;+, <, 1]-

formula computable in time O (nb log(nb)) which defines [A]Rb .
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The proof of Theorem 3 consists mostly in encoding in a first-order formula φ(x)
the run of A over an encoding w of x. The following lemma allows to consider
two distinct part of the run on the fractional part of w. The first part of the run
is of length at most n. The second part on the run begins on a state belonging
to a restricted set of states.

Lemma 5. Let A ∈ A be minimal with n states and q ∈ QF,A. Let wI ∈ Σ∗
b and

wF ∈ Σω
b . Let Q ⊆ QF,A be a set containing exactly one state of each strongly

connected component. Then, there exists s ∈ [n] such that δ(q, wI �wF [< s]) ∈ Q.

The following lemma allows to reduce the size of a formula by adding quantifi-
cations.

Lemma 6. Let ψ(x, x′) be a formula of length l and (xi)i∈[n−1] be n vari-
ables. Then

∧
i∈[n−2] ψ(xi, xi+1) is equivalent to the following formula of length

O (n + l):

∀y, y′.

⎧
⎨

⎩

∨

i∈[n−2]

[y .= xi ∧ y′ .= xi+1]

⎫
⎬

⎭
=⇒ ψ(y, y′).

A sketch of the proof of Theorem 3 can now be given.

Proof (Proof of Theorem 3). Let R = [A]Rb . As shown in Sect. 5, it can be assumed
that A belongs to A. By Lemma 4, in order to construct a formula which defines
R it suffices to construct a formula φ(x) which defines R∩ [0, bn−1). The formula
φ(x) is the conjunction of four subformulas of size O

(
n2b log(nb)

)
. Let x ∈

[0, bn−1) and let w be an encoding of x without leading 0 in the natural part.
The first formula, ψ(x, xI , xF ), states that x = xI + xF and that xI ∈ IN.

Since xI < bn−1, in order to state that xI ∈ IN, it suffices to state that xI is of
the form

∑n−2
i=0 aib

i for ai ∈ [b − 1]. More precisely, it suffices to state that xI

is of the form (cn + b(cn−1 + b(· · · + b(c0) . . . ))) with the ci belonging to [b − 1].
This can be stated by existentially quantifying the 2n partial sums and products
and taking disjunctions over each ci. This can be done by a formula ψ(xI) of
size O (nb log(b)).

Let q be the state δ(q0, wI). The second formula, φI(xI , q), states that the
state δ(q0, wI�) is equal to q. This formula existentially quantifies 2n variables.
Those variables encode the n first steps of the runs and the values of wI [< i] for
i < n. Each step of the computation can be encoded by a Σ0 [IR;+, <, 1]-formula
of length O (nb log(b)), using the equalities of Lemma1. Since xI < bn−1, |wI | <
n, the formula φI(xI , q) have to consider at most n steps of the computation.
The formula φI(xI , q) is a conjunction of n formulas of size O

(
n2b log(b)

)
and

thus the size of φI(xI , q) is O
(
n2b log(b)

)
.

Let Q be a set of states as in Lemma 5 and let q′ be the first state of Q in
the run of A on w. The third formula, φF (q, xF , q′, x′

F ) states that there exists
i ∈ [n] such that δ(q, wF [< i]) = q′, that q′ ∈ Q and that x′

F = [wF [≥ i]]Fb . By
Lemma 5, i is at most n. Hence, similarly to φI(xI , q), the size of the formula
φF (q, xF , q′, x′

F ) is O
(
n2b log(b)

)
.
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Finally, the fourth formula φ′
F (q′, x′

F ), states that Aq′ accepts wF [≥ i]. Let
c be the number of strongly connected components in A. For C a strongly con-
nected components, let nC be its number of state and qC the only state of
C ∩ Q. Let us assume that, for each strongly connected component C, there
exists a formula φ′

C(q′, x′
F ) of length O (nCb log(nCb)) which states that Aq′

accepts wF [≥ i]. Then the formula φ′
F (q′, x′

F ) is a disjunction of c formulas
q′ .= qC ∧ φ′

C(q′, x′
F ) and its length is O (

∑
C nCb log(nCb)) = O (nb log(nb)).

It is now explained how to construct φ′
C(q′, x′

F ). Since A ∈ A, by
Proposition 1 of Definition 3, strongly connected components of automata
included in QF,A are either

{
q∅,A

}
,
{
q[0,1],A

}
, or a cycle. In the first two cases,

φ′
C(q′, x′

F ) is the formula False or True respectively. Let us consider the third
cases. Let vq′ be the word of size nC such that δ(q′, vq′) = q′. Since C is cycle, this
word exists and is a unique. Then let y =

[
vω

q′
]F

b
= [vq′ ]Ib / (bnC − 1). Recall that

the notations β<,C and β>,C are introduced in Definition 3. Then the formula
φ′

C(q′, x′
F ) states that q′ ∈ C ′ and that either (x′

F < y and β<,C ∈ Q[0,1],A),
either (x′

F = y and q′ ∈ F ), or (x′
F > y and β>,C ∈ Q[0,1],A). It is indeed a

formula of length O (nCb log(nCb)).
Finally, in order to reduce the size of the formula to O (nb log(nb)), it suffices

to replace the conjunctions of φI(xI , q) and of φF (q, xF , q′x′
F ) by a universal

quantifications, as explained in Lemma6. ��

7 Conclusion

In this paper, we proved that it is decidable in linear time whether a minimal
weak Büchi Real Number Automaton A reading a set of real number R recog-
nizes a finite union of intervals. It is proven that a quasi-linear sized existential-
universal formula defining R exists. And that a quasi-quadratic sized existential
formula defining R also exists.

The theorems of this paper lead us to consider two natural generalization.
We intend to adapt the algorithm of this paper to similar problems for automata
reading vectors of reals instead of automata reading reals. We also intend to solve
the similar problem of deciding whether an RNA accepts a FO [IR, IN;+, <]-
definable set of reals. Solving this problem requires to solve the problem of
deciding whether an automaton reading natural number, beginning by the most-
significant digit, recognizes an ultimately-periodic set. Similar problems has
already been studied, see e.g. [1,10] and seems to be difficult. Finally, we also
intend to consider how to efficiently decide whether an automaton is a Real
Number Automaton or a Real Vector Automaton.

The author thanks Bernard Boigelot, for a discussion about the algorithm of
Theorem 3, which led to a decrease of the computation time. He also thanks the
anonymous referees of for their remarks and suggestion to improve the paper.
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Abstract. We propose qPCF, a functional language able to define and
manipulate quantum circuits in an easy and intuitive way. qPCF follows
the tradition of “quantum data & classical control” languages, inspired
to the QRAM model. Ideally, qPCF computes finite circuit descriptions
which are offloaded to a quantum co-processor (i.e. a quantum device)
for the execution. qPCF extends PCF with a new kind of datatype:
quantum circuits. The typing of qPCF is quite different from the main-
stream of “quantum data & classical control” languages that involves lin-
ear/exponential modalities. qPCF uses a simple form of dependent types
to manage circuits and an implicit form of monad to manage quantum
states via a destructive-measurement operator.

1 Introduction

In the last fifteen years, the definition and the development of quantum pro-
gramming languages catalyzed the attention of a part of the computer science
research community. Quantum computers are a long term but concrete reality.
Even if physicists and engineers have to continuously face tricky problems in
the realization of quantum devices, the advance of these innovative technologies
promises a noticeable speedup.

A calculus for quantum computable functions should present two different
facets. On the first hand there is the unitary aspect of the calculus, that cap-
tures the essence of quantum computing as algebraic transformations of state
vectors by means of unitary operators. On the other hand, it should be pos-
sible to control the quantum steps by means of classical computational steps,
“embedding” the pure quantum evolution in a classical computation. Behind
this second perspective we have the usual idea of computation as a sequence of
discrete steps on (the mathematical description of) an abstract machine. The
relationship between these different aspects gives rise to different approaches to
quantum functional calculi (as observed in [1]). If we divide the two features, i.e.
we separate data from control, we adopt the so called quantum data & classical
control (qd&cc) approach. This means that classical computation is hierarchical
dependent from the quantum part: a classical program (ideally in execution on
a classical machine) computes some “directives”: these directives are sent to a
c© Springer International Publishing AG 2017
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hypothetical device which apply them to quantum data. Therefore classical pro-
gram controls quantum data or, in other words, classical computational steps
control the unitary part of the calculus. In general, the classical control acts on
the quantum side of the computation in two way: by means of the selection of
unitary transformations to be applied and by means of data observations, i.e.
by means of measurements. A different approach based on the quantum con-
trol is the superposition-of-programs paradigm. See [34], Part III, for details.
This idea is inspired to an architectural model called Quantum Random Access
Machine (QRAM). The QRAM has been defined in [10] and can be viewed as a
classically controlled machine enriched with a quantum device. On the grounds
of the QRAM model, Selinger defined the first functional language based on
the quantum data-classical control paradigm [28]. This work represents a mile-
stone in the development of quantum functional calculi and inspired a number
of different investigations. A key research line tried to retrace, in the quantum
setting, foundational results about computability. In this direction, calculi for
quantum computable functions have been defined, and equivalence results with
other computational models, such as Quantum Turing Machine and Quantum
Circuit Families, have been proved [4,11,12,35]. Moreover, interesting proposals
to provide satisfactory denotational semantics for qd&cc functional calculi have
been proposed in [8,19,29]. Many quantum programming languages [7,28,29]
implementing the (qd&cc) approach have been proposed in literature. A recent
and interesting proposal is Quipper which is an embedded, scalable functional
programming language for quantum computing proposed in [28]. Quipper is essen-
tially a high-level circuit description language: circuits can be created, manipu-
lated, evaluated in a mixture of procedural and declarative programming styles.
The most important quantum algorithms can be easily encoded thanks to a
number of programming tools, macros, and extensive libraries of quantum func-
tions. The idea of the separation between control and data is definitely reformu-
lated in terms of quantum-coprocessor [31]. Quipper has been mainly developed
as a concrete language. Authors are not interested in the foundational study
of it. Quipper is based on the lambda calculus with classical control proposed
in [28], and this relationship is discussed in [26], by means of a suitable calculus
named Proto-quipper. In [14], the semantics of Proto-Quipper is further formal-
ized by means of the linear specification logic SL. The type system is based on a
linear logic approach that ensures the correct interaction of classical and quan-
tum types. The “qd&cc” philosophy, in particular the circuit generation oriented
approach, has been also adopted in the purely linear core-language QWire, intro-
duced in [22]: a low-level quantum language developed to be a “quantum plugin”
for a hosting classical language like Haskell. QWire and qPCF are based on some
similar ideas. Differently from qPCF, QWire retains the focus on quantum states
which is typical of the qd&cc tradition. In qPCF quantum states are not more
atomic data, they are replaced by quantum circuits. In this paper we advance
in the research on the languages for qd&cc paradigm by formalizing a flexible
quantum language. We propose qPCF, a simple extension of PCF. We quickly
list the main features of qPCF.
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– Absence of explicit linear constraints: the management of linear resources is
radically different from the ones proposed in languages inspired to Linear Logic
such as [4,11,12,14,26,28,35]; so, we do not use linear/exponential modalities.

– Use of dependent types : we decouple the classic control from the quantum
computation by adopting a simplified form of dependent types that provide a
sort of linear interface.

– Emphasis of the Standardization Theorem: the Standardization Theorem,
proved in [4,35], and largely used in circuit description languages such as Quip-
per, decomposes computations in different phases, according to the quantum
circuit construction by classical instructions and the successive, independent,
evaluation phase involving quantum operations.

– Unique measurement at the end of the computation: following the “principle
of deferred measurement” which states that any quantum circuit is equivalent
to one where all measurements are performed as the very last operations (see,
e.g., [17]), we add an explicit measurement operator to qPCF syntax that
models the (von Neumann) Total Measurement [17], a kind of measurement
that reduces a quantum state to a classical one (a sequence of classical bit).
Essentially we are using a monad-style programming, and we “embed” both,
quantum evaluation and measurement into the operator dmeas (see Sect. 3 for
dmeas operational behavior).

– Implicit representation of quantum states: differently from other proposals
(e.g. [4,28,35]), we hide quantum states we are working on. This can be
achieved thanks to the monadic-style approach we mentioned above.

– Turing Completeness: qPCF retains PCF expressive power. So, a qPCF term
can represent an infinite class of circuits.

Synopsis: Section 2 introduces syntax and typing system of qPCF; the opera-
tional semantics of qPCF is in Sect. 3; Sect. 4 sketches some properties of qPCF;
Sect. 5 contains some examples of qPCF circuit encodings; Sect. 6 is devoted to
discuss conclusions and future work.

2 qPCF

In this section we describe qPCF, a programming language that pursue seri-
ously the application of the standardization theorem of [4,35]: it states that, in
the “quantum-data & classic control languages”, the quantum evaluation can
always be postponed after the classical execution. On the other hand, the classi-
cal evaluation designs a quantum circuit that can be evaluated in a second time.
Ideally, qPCF computes a finite circuit description which is offloaded to a quan-
tum co-processor for the execution. qPCF is definitively more flexible than the
languages presented in [4,19,27–29]. It extends PCF with quantum circuits, viz.
a new kind of classical data. Indeed, as observed in [22], quantum circuits can
be freely duplicated and erased. We realized that the linearity of mainstream
typing systems of “quantum-data & classic control” languages has been used
to impose constraints on both the management of quantum-data and the man-
agement of classic control. qPCF neatly splits these linear facets by using two
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different solutions. On the one hand, qPCF shows that linearity for quantum
control can be completely confined to atomic datatypes by using a simplified
form of dependent types [23]. A dependent type picks up a family of types that
bring in the type auxiliary information (just circuit arity in our case). On the
other hand, the linearity needed to manage quantum state is hidden in a destruc-
tive measure operator (by means of an implicit form of monad) that model von
Neumann Measurement [17] and allows us to avoid the explicit management of
intermediate quantum states.

In the rest of the paper, we assume some familiarity with notions as quantum
bits (the quantum equivalent of classical data), quantum states [15,16,32,33]
(systems of n quantum bits), quantum circuit and quantum circuit families [18].
A quantum circuit generalizes the idea of classical circuit, replacing the ele-
mentary classical gates (AND, OR, NOT...) by elementary quantum gates [17],
that enjoy matemathical descriptions in terms of unitary operators on suitable
Hilbert spaces. A quantum circuit family can be (quite informally) considered
as a function K : N → K (denotable as (Ki)i<ω), where K is the set of circuit
descriptions; K(n) returns Kn, i.e. the circuit of ariety n. See [35] for a friendly
introduction to quantum computing. We remand to [17] for a complete overview
about the topic. See also [9,18] for details about quantum circuit families and
some crucial discussions about the universality of sets of quantum gates. Finally,
see [25] for a rigorous algebraic characterisation of quantum computing.

2.1 Syntax

Dependent types have been widely used in strongly normalizing settings (usually,
with logic goals) where the evaluation of expressions is always terminating. But
in programming settings the strong normalization [21] is not realistic. Unfortu-
nately, to allow types that embeds undefined terms (viz. not strongly normaliz-
ing ones) requires the management of “undefined types” [3]. We circumvent this
issue by identifying a subclass of terms (always normalizing) that we use in our
dependent types. qPCF extends PCF [5,6,24] to manage some additional atomic
data structures: indexes (always normalizing number expressions) and circuits.

The row syntax of qPCF follows.

M, N ....= x | λx.M | MN | n | pred | succ | if | Yσ | set | get
| �EE′ | s | append | iter | reverse | size | dMeas .

In the first row we extended PCF with syntactic sugar to facilitate the bitwise
access to digit: get allows us to read the i-th digit of the binary representation
of a numeral, i.e. its i-th bit; set allows us to modify the i-th bit of a numeral.

Index expressions (ranged over by E) are completely formalized via the typing
(cf. Table 1). They include numerals and some total operations on expressions:
� ∈ {+, ∗} (viz. sum, product).

We assume U to range on a given set of selected gates (i.e. unitary operator,
see [17]): if U is a fixed set of computable unitary operators then, we associate
to each computable operator U ∈ U a symbol U. We represent circuits by means
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of strings, viz. the Kleene-closure of the following symbols: the parallel compo-
sition of circuits denoted ‖ (i.e. side-by-side placing of circuits), the sequential
composition of circuits ⦂ and gate-names U. append sequentializes two circuits
of the same arity. iter produces the parallel composition of a first circuit with a
given numbers of a second one. The goal of the operator reverse is to transform
a circuit in its adjoint one (in case the gate-base has been chosen closed under
adjunction, otherwise it will be meaningless).

size is an operator that applied to a circuit returns its arity: an index infor-
mation. It is worth to notice that size do not add any expressivity to qPCF,
because the programmer can explicitly manage pairs of “circuit together with
arity”: so that, a projection provides the arity of the circuit. We added size
to qPCF to emphasize the gain that dependent type can provide in a concrete
context, although this makes the proofs of the language properties more complex.

Last, but not least, we use dMeas (a.k.a. destructive measure) to evaluate
circuits initialized via a numeral (representing a binary classical state): dMeas
returns the classic state (encoded in the binary representation of a numeral)
obtained measuring the final quantum state of the considered circuit. Tradition-
ally qd&cc languages focus on quantum states, while qPCF focuses on circuits
(hiding states in an monadic measure).

Typically, U will include a universal base for quantum circuits (see [9]). We
like to remark that we can instance U to interesting family of gate as reversible
ones: in these cases we are not properly building a quantum programming lan-
guage. If k ∈ N then we denote U(k) the gates in U having arity k + 1, so
U =

⋃ω
0 U(k). Notice that we do not introduced explicit permutations, because

they can be provided by means of a convenient choice of quantum gates (see,
e.g. [30]). Thus, the choice U determines whose permutations our circuits can
use. We also notice that the gate identity is a particular permutation.

2.2 Typing System

Standard PCF types are extended to manage circuits and their dependencies.
We use types decorated by numerals to define a denumerable family of circuits.
Our approach is closely inspired to that mentioned in [23, Sect. 30.5] to manage
types of vectors (with dependencies): the decoration carry around some arity
information. We avoided general dependent types systems (see [3] for a survey)
because their great expressiveness is exceeding our need, we preferred to maintain
the qPCFtype system as simple as possible by aiming to show the feasibility of
the approach and its concrete benefits. Our approach to dependent types is based
on a special kind of numeric expressions that can be managed in a limited way:
index. Summing up, types of PCF (i.e. integers and arrows) are flanked by two
new types: circuits (viz. strings typed with dependent types that carry around
numeric information about arities) and indexes (that grasp a subset of numeric
expressions that express only terminating expressions).

Types of qPCF are formalized by the following grammar:

σ, τ ....= Nat | Idx | σ → τ | circ(E) | Πx.τ



460 L. Paolini and M. Zorzi

where E is an index expressions (morally, a strongly normalizing numeric expres-
sion). As in standard dependent type system, we replace arrows involving depen-
dencies by quantified types, namely an arrow σ → τ is replaced by Πxσ.τ when-
ever xσ occurs in τ in order to emphasize that τ depends from x.

Index. Idx aims to pick up a subset of expressions on natural numbers being
strongly normalizing, i.e. we want to cut out undefined PCF-expressions as
YNat(λxNat.x) (viz. a looping forever term). The leading use of Idx is to type
terms M embodied in dependent types (i.e. used in types via circ(M)). The goal
is to select numeric expressions that made the equivalence decidable (when such
expressions are closed). We focus on a restricted, but revealing, syntax of index
expressions is E ....= xIdx | n | � E E′ where � ∈ {+, ∗} viz. operators denoting
addition and multiplication. We are considering a very basic set of binary oper-
ators that can be conveniently extended in a concrete case, e.g. by adding the
(positive subtraction) −̇, or the %, or a selection ifx and so on.

Above expressions are typed Idx by the following rules:

B[x : Idx] � xIdx : Idx
(i1)

B � n : Idx
(i2)

B � E0 : Idx B � E1 : Idx
B � � E0 E1 : Idx

(i3)

where B denotes a standard typing base, i.e. sets of pairs (variable and type).
Index expression are closed when they do not contain any free variable. As

usual for PCF, the evaluation is focused on closed expressions, and formalized
by the following rules:

n ⇓⇓⇓ n
(n)

E0 ⇓⇓⇓ m E1 ⇓⇓⇓ n

� E0 E1 ⇓⇓⇓ m � n
(op)

where we use the � to denote both its name and its straighforward semantics.
We remark that we are considering a strict subset of the index expressions of
qPCF in order to increase some intuition (e.g. by neglecting size).

It is immediate that the above index expressions are normalizing with the
proposed evaluation strategy, when we focus on closed terms. Moreover, we
can informally claim that they are strongly normalizing in the straightforward
lambda-calculus behind our semantics, that can be obtained as usual by includ-
ing some δ-rules for constants.

The most basic property of paradigmatic typing system is that well-typed
terms do not “go wrong”, i.e. types are preserved by the evaluation and, if the
evaluation stops then the result is a value.

Theorem 1 (Preservation & Progress). (i) If � E : Idx and E ⇓⇓⇓ E′ then
� E′ : Idx. (ii) If � E : Idx and E ⇓⇓⇓ E′ then E′ is a numeral.

Remaining typing. We can now extend the typing to the whole qPCF: the typing
system is given in Table 1 (be careful to implicit assumption remarked in the
caption).
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Table 1. Typing Rules. Each typing rule contains implicit premises: (i) all occurrences
of circuits types (also those in bases) embody a term typed Idx with the given base;
(ii) all free variables (occurring in terms and types) are typed in the base.

Finite sets of pairs variable, type are called bases whenever variable-names
are disjoint: we use B to range on them. We write B[x : σ] to denote the set
where the pair x : σ is added (possibly replacing an pair involving x. As usual,
dependent type systems include a typing rule making explicit some type inter-
convertibility. We consider types up to a congruence 	. We define 	 as the
smaller equivalence that includes: (i) the α-conversion of bound variables and β-
conversion, (ii) sum and product are associative and commutative; (iii) product
distributes over the sum, i.e. (∗ E (+ E0 E1)) 	 (+ (∗ E E0)(∗ E E1)); (iv) 0 is the
neuter element for the sum; and, (v) 1 is the neuter element for the product. We
use the type equivalence often implicitly. In particular in the typing system (cf.
Table 1) types (containing dependencies) are considered up to equivalence.

Rules (p1), (p2), (p3), (p4), (p5), (p6), (p7), (p8) are directly inherited from
PCF and do not require special care. We also note that (p1) can be instan-
tiated to (i1) (which has not been included in the system). Rules (p6), (p8)
are restricted to excludes undefined index expressions. This restriction avoid
types containing terms (i.e. index expressions) being not normalizing. The cases
excluded by (p3), (p4) are managed by rules (x1), (x2). Rules (x1), (x2) reflect
the usual approach of dependent types.

Rule (b1), (b2) type get and set that use the second numeral to select a bit
in the binary representation of the first argument: get extract such bit, set
modify it. The rule (x3) allows us to transform an index in a numeral typed Nat.
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The rule (x4) is typing an operator that allows us to recover in the computation
the index information carried around by the circuit type.

Rules (c1), (c′
1), (c′′

1),(c2), (c3), (c4), (c5) conclude our type-equipment. (c1),
(c′

1), (c′′
1) type strings representing circuits. (c2) allows to parallel compose cir-

cuits: a base circuit M and some copies of a circuit N. (c3) allows to sequentialize
circuits of the same arity. (c4) transforms a circuit in its adjoint one.

Example 1. An interesting example of typed term that provides evidence of
the circularity arising from dependent types is: x : ΠzIdx. circ(z) � x size (M) :
circ(size (M)) where M can be any term of qPCF typed by a circuit.

The above example shows that in types can occur undefined terms, maybe
containing open variables not typed Idx. In particular, size can contain any
term (that can be typed as a circuit of a given arity). Luckily, the evaluation
of size does not need the normalization of its argument: it just requires the
normalization of its type.

3 Operational Semantics

As standard for PCF, the evaluation focuses on closed terms of ground types,
viz. Nat, Idx, circ(E). Because the inclusion of dependent types and the presence
of the operator size, we assume that an evaluated terms brings implicitly in it,
its whole typing information. We denote V the closed values of ground types,
namely numerals (typed either Nat or Idx), and strings (typed as circuits of a
given arity). The operational evaluation is formalized by means of the evaluation
predicate M ⇓⇓⇓ V: it holds whenever it is the conclusion of a derivation built
on the rules presented in Table 2 (we included also the rule for the evaluation
of index expressions). Table 2 includes the standard call-by-name semantics of
PCF, namely the first two lines of rules. Since they are well-known, we do not
insist further on them. The rules (sz), (op) compute some index expressions. In
particular, (sz) recovers the numeral decorating the type circuit of a closed term.
Since the involved expressions do not contain open variables, the evaluation does
not pose any problem.

Let 
m�n be notation for ((m / 2) . . . / 2
︸ ︷︷ ︸

n

)%2 where / is the integer division and

% is the modulo. Thus, 
m�0 is the rightmost bit of the binary representation of m.
Moreover, if k is the logarithm (base 10) of m then 
m�k−1 = 1 and, for all h greater
than k, 
m�h = 0. The rule (gt) and (st) get/set a bit of the first argument (the
one selected by the second argument). Notice that set, get are syntactic sugar
managing classical input states. In particular, the numeral set 0 n + 1 represents
the state 1 0 . . . 0︸ ︷︷ ︸

n

.

The rules (u), (u′), (u′′), (r0), (r1), (r2), (a), (d) build circuits, i.e. strings on
⦂, ‖ and the gate-names U. The semantics of append is simply the sequential post-
position of circuits. The semantics of iter is the parallel composition of circuits,
driven by an argument of type Idx: thus the arity of the generated circuit is well
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Table 2. Operational Semantics.

defined. The semantics of reverse is build to produce the adjoint circuits when
a suitable endo-function ‡ is provided by the co-processor. If the co-processor
do not provide it (for instance, because the set U of unitary gate is not closed
under adjunction) then we let ‡ be the identity, so that reverse is well-defined
but uninteresting.

Let m�k to denote the numeral k such that the binary representation of n is
the restriction of the binary representation of m on the first k bits. It is worth
to recall that, conventionally, each classic state is represented via an integer
having (implicitly) a number of relevant bits as the arity of the circuit. The
rule (m) evaluates the dMeas arguments and uses the results of these evaluations
to feed an external evaluation: morally, a quantum co-processor [31]. The co-
processor call is done by using the auxiliary evaluation circuitEval. It executes
the quantum circuits on the provided classical initialization, then it returns the
measure of the whole final state. The rule explicitly restricts the evaluation of
the first argument to the relevant number of bits (i.e. the arity of the circuit).

In order to define our co-processor we need two ingredients. The first one is
the semantic for the evaluation of the circuit. We denote Circ the valid strings
of circuits, and O the set of unitary operators on finite dimensional Hilbert
spaces (informally, we are mapping circuit descriptions into their mathematical
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denotation, i.e. into corresponding algebraic operators). So that we can define
the circuit semantic by using the function Hilb : Circ → O defined as follows:
Hilb(U) ....= U; Hilb(C0 ‖ C1) ....= Hilb(C0) ⊗ Hilb(C1); Hilb(C0 ⦂ C1) ....= Hilb(C0) ◦
Hilb(C1). The second one is the semantic of the measure that rest on the von
Neumann Measurement [9], here dubbed vMeas. We define circuitEval(n, C) to be
the measure of the application of the circuit to our initial state (in the assumed
base), namely circuitEval(n, C) ....= vMeas(Hilb(C), n).

Equivalence. The operational equivalence can be defined by just considering
closed terms of type Nat because the operational differences in the other types
can be traced back to Nat (the reverse can be easily proved be false).

For many reasons, we are remarking the relevance of the notion of program
of PCF, i.e. a closed term of type Nat. First, the result of a circuit-measure
is a list of bits, viz. a natural number. Second, the circuits are represented
by using strings on a finite alphabet, that still (in a Turing-complete setting)
can be straightforwardly represented by numbers (at worst, paying some code-
obfuscation). These remarks should make clear why the evaluation of qPCF is
focused on natural numbers and the standard notion of program, as any PCF-like
programming language.

4 Properties of qPCF

qPCF is, morally, a PCF-like language endowed with a quantum co-processor.
This co-processor allows us to execute a quantum circuits that has been designed
by executing a classical control. The co-processor returns a measure (total, in
the sense that we measure the whole quantum state) of a run of the given circuit
on a given input, to our classical processor.

A first property of a paradigmatic programming language as qPCF is some
form of subject reduction. Moreover, we prove preservation, i.e. if a well-typed
term takes a step of evaluation then the resulting term is also well typed. A
second property expected for a programming language is progress [23]: well-
typed terms evaluation do not stuck. Roughly, a term P is stuck whenever the
evaluation of P ends in a normal form, which is not a ground value.

The main complexity in this proof comes from the fact that we have infinite
(two plus a family) ground types (viz. Nat, Idx, circ(E)). Example 1 shows that
each term can occurs in a type (in an index expression using size). To prove
preservation and progress we must unravel the mutual relationship that holds
between them.

Lemma 1. If B, x : τ � M : σ and B � N : τ then B � M[N/x] : σ[N/x] and,
moreover, if σ = Πzτ .σ′ then B � MN : σ′[N/x].

Proof. The proof follows by induction on the derivation B, x : τ � M : σ.

Theorem 2 (Idx-safety). If � M : Idx then M ⇓⇓⇓ n.
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Proof. The proof is quite complex but it can be done by defining a suitable
predicate of computability à la Tait.

Remark that Theorem 2 is stronger than both preservation and progress, in
fact it immediately implies both: (i) if M is closed, � M : Idx and M ⇓⇓⇓ N then N
is closed and � N : Idx, and (ii) if M is closed, � M : Idx and M ⇓⇓⇓ N then N is a
numeral.

Theorem 3 (Preservation). If M is a closed term such that � M : σ and M ⇓⇓⇓ N
then N is a closed term such that � N : σ.

Proof. The evaluation is applied only to terms typed by ground types, viz. Nat,
Idx, circ(E). Indeed, the rule in Table 2 are applied to them. The proof follows
by proving by mutual induction on the following statements: (i) if M is closed,
� M : Nat and M ⇓⇓⇓ N then N is closed and � N : Nat; and, (ii) if M is closed,
� M : circ(E) and M ⇓⇓⇓ N then N is closed and � N : circ(E). The fact that we
are restricting our attention on closed terms typed by ground types simplify our
proof by conveniently restricting the possible cases. The proof of (i) involves only
the rules (n), (s), (p), (β), (if l), (ifr), (Y), (gt), (st), (m), because the others are
excluded by hypothesis. The proof of (ii) involves only the rules (β), (if l), (ifr),
(Y), (u), (u′), (u′′), (r0), (r1), (r2), (a), (it), because the others are excluded by
hypothesis.

Likewise, a form of progress can be proved.

Theorem 4 (Progress)

– If M is a closed term such that � M : Nat and M ⇓⇓⇓ N then N is a numeral.
– If M is a closed term such that � M : circ(E) and M ⇓⇓⇓ N then there is a numeral

k such that E ⇓⇓⇓ k and N is a circuit of arity k.

Proof. The proof is similar to the that of the Preservation Theorem.

Progress and preservation together tell us that a well-typed term can never
reach a stuck state during evaluation.

We conclude this section with some preliminary comments about confluence.
It is well-known that quantum-measures break the deterministic evolution of a
quantum system. As a consequence, in presence of a measurement operator in a
quantum language (equipped with an universal basis of quantum gates), one nec-
essarily lost confluence. This loose of standard properties is typical in presence
of “non classical” operators (this holds for examples also in languages including
non deterministic or probabilistic choices [2,13]). Given an evaluation of a pro-
gram P, a second evaluation can ends with a different result; in particular, the
results of two evaluations of a same program can be different natural numbers.
Clearly, the “measurement-free” fragment of qPCF, i.e. the whole calculus minus
dMeas is patently deterministic. Finally, one can observe that the presence of the
measure does not imply the loss of the determinism, if we limits the use of qPCF
to deterministic circuits (by a suitable choice of unitary operators included in
U , e.g. only swaps).
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5 Examples

In this section we propose some higher-order encoding of quantum circuit fam-
ilies. In the following examples, we exploit the full expressive power of the lan-
guage. A qPCF term can be parametric, viz. it can represent an entire (infinite)
quantum circuit family. In general, given an input numeral n we define a term
that generates the description of the n-dimensional circuit of the family. Notice
that, in some sense, circuits can be parameterized both in “horizontal” and in
“vertical”, that correspond to the two basic ways to built greater circuits from
smaller ones, i.e. by sequential and parallel composition.

Example 2. The following term, applied to a circuit C : circ(k) and a numeral n,
concatenates n + 1 copies of C.

Mseq = λucirc(k).λkNat.Y Wuk : circ(k) → Nat → circ(k), where
W = λwσ.λucirc(k).λkNat.if x (u)

(
append (u) ((λycirc(k).λzNat.wyz) u pred(x))

)

has type σ → σ, with σ = circ(k) → Nat → circ(k). It is easy to show that MseqC0
generates the circuit built upon a single copy of the circuit C and so on.

It is straightforward to parameterize the above term in order to transform it
in a template for a circuit-builder that can be used for any arity. It suffices to
replace k with the variable kIdx and to abstract it; so that, the resulting term is
typed ΠkIdx. circ(k) → Nat → circ(k).

Example 3. The following term, applied to a numeral n and two unitary gates
U1 and U2 of arity k and h respectively, generates a simple circuit built upon a
copy of gate U1 in parallel with n copies of gate U2:

Mpar = λxIdx.λucirc(k)λwcirc(h). iter x u w : ΠxIdx. circ(k) → circ(h) → circ(x ∗ h + k)

It is straighforward to parameterize the above example. It suffices to replace
numerals k and h in the above example by variables and to abstract, by obtaining
a term typed ΠkIdx.ΠhIdx.ΠxIdx. circ(k) → circ(h) → circ(x ∗ h + h).

Example 4 (Deutsch-Jozsa). We provide the qPCF encoding of the circuit that
implements the generalised version of the Deutsch’s problem [17].

The “simple case” of Deutsch’s problem can be formulated as follows. Given a
block box Bf implementing some function f : {0, 1} → {0, 1}, determine whether
f is constant or balanced. The classical computation to determine whether f is
constant or balanced is very simple: one computes f(0) and f(1), and then check
if f(0) = f(1). This requires two different calls to Bf (i.e. one to compute f(0)
and one to compute f(1)) in the classical computing model. By means of the
“quantum superpower”, Deutsch showed how to achieve this result with a single
call of Bf in the quantum case.

The problem can be generalised considering a function f : {0, 1}n → {0, 1}
which acts on many input bits. This yields the n-bit generalization of Deutsch’s
algorithm, known as the Deutsch-Josza algorithm. The following picture repre-
sents the circuit, up to the last,measurementphase, for theDeutsch-Joszaproblem.
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When fed with a classical input state of the form |0 . . . 01〉, the outputmeasurement
of the first n−1 bits reveals if the function f is constant or not. If all n−1 measure-
ment results are 0, we can conclude that the function was constant. Otherwise, if
at least one of the measurement outcomes is 1, we conclude that the function was
balanced. See [17] for details about Deutsch and Deutsch-Josza algorithm.

Consider now the following qPCF terms. They easily show how to encode dif-
ferent levels of the measurement-free parametric circuit for the Deutsch’s prob-
lem. The last, evaluation-measurement phase, will be performed by our evalua-
tion dMeas, suitably fed with the representation of the classical input state (i.e.
set 0 0). Let H : circ(0) and I : circ(0) be the (unary) Hadamard and Identity
gates respectively (so the index is 0). Suppose MBf : circ(n) is given for some n
such that MBf ⇓⇓⇓ Uf where Uf : circ(n) is the qPCF§-circuit that represents the
function f .

Observe that λxIdx. iter xHH : ΠxIdx. circ(x) clearly generates x + 1 parallel
copies of unary Hadamard gates H, and λxIdx. iter xIH : ΠxIdx. circ(x) concate-
nates in parallel x copies of unary Hadamard gates H and one copy of the unary
identity gate I.

Thus the generator term of the parametric measurement-free Deutsch-Jozsa
circuit, here dubbed DJ− can be defined as
DJ− = λxIdx.λycirc(x). append(append(iter x H H)y)(iter x I H) : σ where
σ = ΠxIdx. circ(x) → circ(x).

We finally evaluate DJ− by means of dMeas, providing the encoding
MBf circ(n) of the black-box function f having arity n+1. Let us assume that

the term dMeas(set00,DJ−nMBf ) evaluated by means of ⇓⇓⇓, yields the numeral
m: the rightmost n digit of the binary representation of m are the result. Notice
that DJ−0MBf returns the circuit description of Deutsch algorithm.

6 Conclusions and Future Work

We introduced qPCF, an extension of PCF for quantum circuit generation and
evaluation. In this seminal work, we introduced qPCF syntax, typing rules and
evaluation semantics. We started to study its properties and we provided some
examples of parametric circuit families encoding. The presented research is the
first step of some works in progress and for several short time investigations.
First, we are further investigating qPCF properties sketched in Sect. 4. Second,
we aim to deepen qPCF flexibility, e.g. studying specialization of qPCF: for exam-
ple, we aim to focus on the (still “silent”) reverse operator (of the calculus), also
in different settings w.r.t quantum computing. We like to remark that gates
can range on different interesting sets. Since reversibility is nowadays one of the
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most interesting trend in computer science [20], a reversible specialization of
qPCF seems to be intriguing. Even if the use of total measurement does not rep-
resent a theoretical limitation, a partial measurement operator can represent an
useful programming tool. Therefore, another interesting task will be to integrate
in qPCF the possibility to perform partial measures of computation results.
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normalization. In: Aceto, L., Ingólfsdóttir, A. (eds.) FoSSaCS 2006. LNCS, vol.
3921, pp. 367–381. Springer, Heidelberg (2006). doi:10.1007/11690634 25

22. Payikin, J., Rand, R., Zdancewic: QWire: A Core Language for Quantum Circuits.
University of Pennsylvania, USA (2016)

23. Pierce, B.C.: Types and Programming Languages. The MIT Press, Cambridge
(2002)

24. Plotkin, G.D.: LCF considered as a programming language. Theor. Comput. Sci.
5, 223–255 (1977)

25. Roman, S.: Advanced Linear Algebra. Graduate Texts in Mathematics, vol. 135,
3rd edn. Springer, New York (2008)

26. Ross, N.: Algebraic and Logical Methods in Quantum Computation. Ph.D. thesis,
Dalhousie University Halifax, Nova Scotia (2015)

27. Selinger, P.: Towards a quantum programming language. Math. Struct. Comput.
Sci. 14(4), 527–586 (2004)

28. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical
control. Math. Struct. Comput. Sci. 16, 527–552 (2006)

29. Selinger, P., Valiron, B.: Quantum lambda calculus. In: Semantic Techniques in
Quantum Computation, pp. 135–172. Cambridge University Press (2009)

30. Shende, V.V., Prasad, A.K., Markov, I.L., Hayes, J.P.: Synthesis of reversible logic
circuits. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 22(6), 710–722 (2003)

31. Valiron, B., Ross, N.J., Selinger, P., Alexander, D.S., Smith, J.M.: Programming
the quantum future. Commun. ACM 58(8), 52–61 (2015)
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Abstract. Let d and k be two given integers, and let G be a graph.
Can we reduce the independence number of G by at least d via at most
k graph operations from some fixed set S? This problem belongs to a
class of so-called blocker problems. It is known to be co-NP-hard even if
S consists of either an edge contraction or a vertex deletion. We further
investigate its computational complexity under these two settings:
– we give a sufficient condition on a graph class for the vertex deletion

variant to be co-NP-hard even if d = k = 1;
– in addition we prove that the vertex deletion variant is co-NP-hard

for triangle-free graphs even if d = k = 1;
– we prove that the edge contraction variant is NP-hard for bipartite

graphs but linear-time solvable for trees.
By combining our new results with known ones we are able to give full
complexity classifications for both variants restricted to H-free graphs.

1 Introduction

A graph modification problem aims to modify a graph G, via a small number of
operations, into some other graph H that has a certain desired property, which
usually describes a certain graph class to which H must belong. In this way a
variety of classical graph-theoretic problems is captured. For instance, if only k
vertex deletions are allowed and H must be an independent set or a clique, one
obtains the Independent Set or Clique problem, respectively.

Instead of specifying a graph class we can specify a graph parameter. That
is, given a graph G, a set S of one or more graph operations and an integer k, we
ask whether G can be transformed into a graph G′ by using at most k operations
from S such that π(G′) ≤ π(G) − d for some threshold d ≥ 0. Such problems are
called blocker problems. This is because the set of vertices or edges involved can
be viewed as “blocking” π. Identifying such sets may gives us some important
information on the structure of the graph.
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Blocker problems have been well studied in the recent literature [1–3,5,7,13,
14,16,18]; in particular, in [7,14] several relations to other graph problems were
identified, such as Hadwiger Number, Club Contraction and a number of
graph transversal problems. So far, the graph parameters considered were the
chromatic number, the independence number, the clique number, the matching
number and the vertex cover number, whereas the set S consisted of a single
graph operation, which was either the vertex deletion, edge contraction, edge
deletion or the edge addition operation. In this paper we keep the restriction on
the size of S, and we let S consist of either a single vertex deletion or a single
edge contraction. We mainly consider the independence number α, but for the
deletion variant we will also take the clique number ω into account (for reasons
we explain later).

Before we can define our problems formally we first need to give some ter-
minology. The contraction of an edge uv of a graph G removes the vertices u
and v from G, and replaces them by a new vertex made adjacent to precisely
those vertices that were adjacent to u or v in G (neither introducing self-loops
nor multiple edges). We say that G can be k-contracted or k-vertex-deleted into
a graph G′ if G can be modified into G′ by a sequence of at most k edge con-
tractions or vertex deletions, respectively. We let π denote the (fixed) graph
parameter; as mentioned, in this paper π belongs to {α, ω}.

Contraction Blocker(π)

Instance: a graph G and two integers d, k ≥ 0
Question: can G be k-contracted into a graph G′ with π(G′) ≤ π(G)−d?

Deletion Blocker(π)

Instance: a graph G and two integers d, k ≥ 0
Question: can G be k-vertex-deleted in a graph G′ with π(G′) ≤ π(G)−d?

If we remove d from the input and fix it instead, we call the resulting
problems d-Contraction Blocker(π) and d-Deletion Blocker(π), respec-
tively. Note that 1-Deletion Blocker(α) is equivalent to testing whether the
input graph contains a set of S of size at most k that intersects every maximum
independent set. If k = 1, this is equivalent to testing whether the input graph
contains a vertex that is in every maximum independent set. The intersection
of all maximum independent sets is known as the core of a graph. Properties of
the core have been well studied (see for example [10–12]). In particular, Boros,
Golumbic and Levit [4] proved that computing if the core of a graph has size at
least � is co-NP-hard for every fixed � ≥ 1. Taking � = 1 gives co-NP-hardness
of 1-Deletion Blocker(α), whereas 1-Contraction Blocker(α) is known
to be NP-hard [7].

Due to the above hardness results, it is natural to restrict the input to some
special graph class. In a previous paper [7] we considered π ∈ {α, ω, χ}, where
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χ denotes the chromatic number of a graph, and we restricted the input to
perfect graphs and subclasses of perfect graphs. We showed both new hardness
results (e.g., for the class of perfect graphs itself) and tractable results (e.g., for
cographs). In a follow-up paper [14] we extended the results of [7] by considering
some more subclasses of perfect graphs for π ∈ {ω, χ}. Moreover, for every
connected graph H and π ∈ {ω, χ}, we determined the computational complexity
of Contraction Blocker(π) and Deletion Blocker(π) for H-free graphs,
that is, graphs that do not contain an induced subgraph isomorphic to H.

Our Results

We settle the computational complexity of Contraction Blocker(α) and
Deletion Blocker(α)restricted to H-free graphs for all graphs H (including
those that are disconnected). We observe that Deletion Blocker(α) restricted
to H-free graphs is equivalent to Deletion Blocker(ω) for H-free graphs,
where H denotes the complement of H. Hence, as a corollary, we obtain an
extension of the aforementioned classification of [14] for Deletion Blocker(ω)
for H-free graphs from connected graphs H to all graphs H.

To prove the above results we first show that Contraction Blocker(α)
is NP-hard for bipartite graphs in Sect. 3. In the same section we complement
this result by showing that Contraction Blocker(α) can be solved in linear
time for trees. Then, in Sect. 4, we prove that Deletion Blocker(α) is co-
NP-hard for triangle-free graphs even if d = k = 1 (in contrast the problem
is polynomial-time solvable for bipartite graphs [2,5]). In Sect. 5 we extend our
result for triangle-free graphs to other graph classes for which Independent Set

is NP-complete. That is, we give a sufficient condition on such a graph class G,
such that Deletion Blocker(α) is co-NP-hard for G even if d = k = 1. This
condition is similar to a previous condition when π ∈ {χ, ω} [14]. In Sect. 6
we combine our new results from Sects. 4 and 5 with known ones to obtain the
classifications for H-free graphs. In Sect. 7 we compare our new results with the
results of our previous paper [14] and list some open problems.

Recall that the deletion variant for k = d = 1 is equivalent to asking whether
a graph has a vertex that is in every maximum independent set. As such, our
hardness results in Sects. 4 and 5 strengthen the aforementioned result of Boros,
Golumbic and Levit [4], who proved co-NP-hardness of the latter problem for
general graphs. Note that for graph classes, for which Independent Set is NP-
complete, membership of our problems in NP is unknown. Contrary to those
graph classes, for which Independent Set is polynomial-time solvable and
which are closed under the graph operation under consideration, a certificate
consisting of a sequence of edge contractions or vertex deletions no longer suffices.

2 Preliminaries

We only consider finite, undirected graphs that have no self-loops and no multiple
edges (we recall that when we contract an edge no self-loops or multiple edges
are created). See [6] for undefined terminology and notation.
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Let G = (V,E) be a graph. For a family {H1, . . . ,Hp} of graphs, G is said
to be (H1, . . . , Hp)-free if G has no induced subgraph isomorphic to a graph in
{H1, . . . , Hp}; if p = 1 we may write H1-free instead of (H1)-free. The com-
plement of G is the graph G = (V,E) with vertex set V and an edge between
two vertices u and v if and only if uv /∈ E. For a subset S ⊆ V , we let G[S]
denote the subgraph of G induced by S, which has vertex set S and edge set
{uv ∈ E | u, v ∈ S}. We write H ⊆i G if a graph H is an induced subgraph
of G.

Let G be a graph. For a vertex v ∈ V , we write G − v = G[V \ {v}] and for
a subset V ′ ⊆ V we write G − V ′ = G[V \ V ′]. Recall that the contraction of an
edge uv ∈ E removes the vertices u and v from G and replaces them by a new
vertex that is made adjacent to precisely those vertices that were adjacent to u
or v in G. In that case we may also say that u is contracted onto v, and we use
v to denote the new vertex resulting from the edge contraction. The subdivision
of an edge uv ∈ E removes the edge uv from G and replaces it by a new vertex
w and two edges uw and wv.

Let G1 and G2 be two vertex-disjoint graphs. The disjoint union G1 + G2

has vertex set V (G1) ∪ V (G2) and edge set E(G1) ∪ E(G2). The disjoint union
of k copies of a graph G is denoted by kG. The join G1 ⊗ G2 adds an edge
between every vertex of G1 and every vertex of G2. For r ≥ 1, the path, cycle
and complete graph on r vertices are denoted by Pr, Cr and Kr respectively.
The graph C3 is also called the triangle. The claw K1,3 is the 4-vertex star (that
is, the graph with vertices u, v1, v2, v3 and edges uv1, uv2, uv3).

Let G = (V,E) be a graph. A subset K ⊆ V is called a clique of G if any two
vertices in K are adjacent to each other. The clique number ω(G) is the number
of vertices in a maximum clique of G. A subset I ⊆ V is called an independent
set of G if any two vertices in I are non-adjacent to each other. The independence
number α(G) is the number of vertices in a maximum independent set of G. A
subset of edges M ⊆ E is called a matching if no two edges of M share a common
end-vertex. The matching number μ(G) is the number of edges in a maximum
matching of a graph G. A vertex v such that M contains an edge incident with v
is saturated by M ; otherwise v is unsaturated by M . A subset S ⊆ V is a vertex
cover of G if every edge of G is incident with at least one vertex of S.

The problems Clique and Independent Set are those of testing if a graph
has a clique or independent set, respectively, of size at least k. The Vertex

Cover problem is that of testing if a graph has a vertex cover of size at most k.
A graph is cobipartite if it is the complement of a bipartite graph, that is, a

graph whose vertex set can be partitioned into two sets that each form a (possibly
empty) independent set. A graph is a split graph if it has a split partition, which
is a partition of its vertex set into a clique K and an independent set I. Split
graphs coincide with (2P2, C4, C5)-free graphs [8]. A P4-free graph is also called
a cograph.
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3 Bipartite Graphs and Trees

Our first lemma below follows directly from a result of Golovach, Heggernes,
van’t Hof and Paul [9] on the so-called s- Club Contraction problem; see [7]
for further details.

Lemma 1 ([7]). 1-Contraction Blocker(α) is NP-complete for cobipartite
graphs.

If π ∈ {χ, ω}, Contraction Blocker(π) is trivial in bipartite graphs.
To the contrary, for π = α, we will show that Contraction Blocker(π) is
NP-hard for bipartite graphs. The complexity of d-Contraction Blocker(α)
remains open for bipartite graphs. Bipartite graphs are not closed under edge
contraction. Therefore membership to NP cannot be established by taking a
sequence of edge contractions as the certificate, even though due to König’s
Theorem (see, for example, [6]), Independent Set is polynomial-time solvable
for bipartite graphs.

Theorem 1. Contraction Blocker(α) is NP-hard on bipartite graphs.

Proof. We know from Lemma 1 that 1-Contraction Blocker(α) is NP-
complete on cobipartite graphs, which have independence number 2. Consider
a cobipartite graph G with m edges and an integer k, which together form an
instance of 1-Contraction Blocker(α). Subdivide each of the m edges of G
in order to obtain a bipartite graph G′. We claim that (G, k) is a yes-instance
of 1-Contraction Blocker(α) if and only if (G′, α(G′) − 1, k + m) is a yes-
instance of Contraction Blocker(α).

First suppose that (G, k) is a yes-instance of 1-Contraction Blocker(α).
In G′ we first perform m edge contractions to get G back. We then perform k edge
contractions to get independence number α(G) − 1 = 1 = α(G′) − (α(G′) − 1).
Hence, (G′, α(G′) − 1, k + m) is a yes-instance of Contraction Blocker(α).

Now suppose that (G′, α(G′) − 1, k + m) is a yes-instance of Contraction

Blocker(α). Then there exists a sequence of k + m edge contractions that
transform G′ into a complete graph K. We may assume that K has size at
least 4 (as we could have added without loss of generality three dominating
vertices to G without increasing k). As K has size at least 4, each subdivided
edge must be contracted back to the original edge again. This operation costs
m edge contractions, so we contract G to K using at most k edge operations.
Hence, (G, k) is a yes-instance of 1-Contraction Blocker(α). This proves
the claim and hence the theorem. �	

We complement Theorem 1 by showing that Contraction Blocker(α) is
linear-time solvable on trees. In order to prove this result we make a connection
to the matching number μ.
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Theorem 2. Contraction Blocker(α) is linear-time solvable on trees.

Proof. Let (T, d, k) be an instance of Contraction Blocker(α), where T is
a tree on n vertices. We first describe our algorithm and prove its correctness.
Afterwards, we analyze its running time. Throughout the proof let M denote a
maximum matching of T .

As α(T ) + μ(T ) = n by König’s Theorem (see, for example, [6]), we find
that (T, d, k) is a no-instance if d > n − μ(T ). Assume that d ≤ n − μ(T ).
We observe that trees are closed under edge contraction. Hence, contracting an
edge of T results in a new tree T ′. Moreover, T ′ has n − 1 vertices and the
edge contraction neither increased the independence number nor the matching
number. As α(T ) + μ(T ) = n and similarly α(T ′) + μ(T ′) = n − 1, this means
that either α(T ′) = α(T ) − 1 or μ(T ′) = μ(T ) − 1.

First suppose that d ≤ n−2μ(T ). There are exactly σ(T ) = n−2μ(T ) vertices
that are unsaturated by M . Let uv be an edge, such that u is unsaturated. As
M is maximum, v must be saturated. Then, by contracting uv, we obtain a tree
T ′ such that μ(T ′) = μ(T ). It follows from the above that α(T ′) = α(T ) − 1.
Say that we contracted u onto v. Then in T ′ we have that v is saturated by M ,
which is a maximum matching of T ′ as well. Thus, if d ≤ n− 2μ(T ), contracting
d edges, one of the end-vertices of which is unsaturated by M , yields a tree T ′

with μ(T ′) = μ(T ) and α(T ′) = α(T ) − d. Since an edge contraction reduces
the independence number by at most 1, it follows that this is optimal. Hence, as
d ≤ n−2μ(T ), we find that (G,T, k) is a yes-instance if k ≥ d and a no-instance
if k < d.

Now suppose that d > n−2μ(T ). Suppose that we first contract the n−2μ(T )
edges that have exactly one end-vertex that is unsaturated by M . It follows
from the above that this yields a tree T ′ with μ(T ′) = μ(T ) and α(T ′) =
α(T ) − (n − 2μ(T )). Since T ′ does not contain any unsaturated vertex, M is a
perfect matching of T ′. Then, contracting any edge in T ′ results in a tree T ′′ with
μ(T ′′) = μ(T ′)−1 and thus, α(T ′′) = α(T ′). If we contract an edge uv ∈ M , the
resulting vertex uv is unsaturated by M ′ = M \{uv} in T ′′. Hence, as explained
above, if in addition we contract now an edge (uv)w, we obtain a tree T ′′′ with
α(T ′′′) = α(T ′′) − 1 and μ(T ′′′) = μ(T ′′). Repeating this procedure, we may
reduce the independence number of T by d with n− 2μ(T )+2(d−n+2μ(T )) =
2(d + μ(T )) − n edge contractions. Below we show that this is optimal.

Suppose that we contract p edges in T . Let T ′ be the resulting tree. We have
α(T ′) + μ(T ′) = n − p. As μ(T ′) ≤ 1

2 (n − p), this means that α(T ′) ≥ 1
2 (n − p).

If p < 2(d + μ(T )) − n we have −p
2 > −(d + μ(T )) + n

2 , and thus

α(T ′) ≥ 1
2 (n − p)

> n
2 − d − μ(T ) + n

2

= α(T ) − d.

So at least 2(d + μ(T )) − n edge contractions are necessary to decrease the
independence number by d. It remains to check if k is sufficiently high for us to
allow this number of edge contractions.
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As we can find a maximum matching of tree T (and thus compute μ(T )) in
O(n) time by using the algorithm of Savage [17], our algorithm runs in O(n)
time. �

Remark 1. By König’s Theorem, we have that α(G) + μ(G) = |V (G)| for any
bipartite graph G, but we can only use the proof of Theorem2 to obtain a result
for trees for the following reason: trees form the largest subclass of (connected)
bipartite graphs that are closed under edge contraction, and this property plays
a crucial role in our proof.

4 Triangle-Free Graphs

In this section we show that Deletion Blocker(α) is co-NP-hard for triangle-
free graphs even if d = k = 1. We call a vertex forced if it is in every maximum
independent set of a graph [5]. Recall that the set of all forced vertices is called
the core of a graph and that Boros, Golumbic and Levit [4] proved that comput-
ing whether the core of a graph has size at least k is co-NP-hard for every fixed
k ≥ 1. As a special case of their result, the problem of testing the existence of
a forced vertex is co-NP-hard. In this section we prove that the latter problem,
or equivalently, Deletion Blocker(α) with d = k = 1, stays co-NP-hard even
for triangle-free graphs.

We need some terminology and a well-known observation that follows from
a construction of Poljak [15]. We say that we 2-subdivide an edge e of a graph G
if we apply two consecutive edge subdivisions on e. It is readily seen that a
graph G with m edges has an independent set of size k if and only if the graph
obtained by 2-subdividing each edge of G has an independent set of size k + m
(see also [15]). Let G be a graph class. Then we let G2 be the graph class obtained
from G after 2-subdividing each edge in every graph in G.

Lemma 2. ([15]). If Independent Set is NP-complete for a graph class G,
then it is also NP-complete for G2.

Two vertices in a graph G are true twins if they are adjacent to each other
and apart from this have the same neighbours in G. The graph G∗ obtained
from a graph G by adding a new vertex u′ for each vertex u of G that is a true
twin of u is called the twin graph of G; see Fig. 1 for an example. We call u′ the
copy of u. Let G∗ be the graph class obtained from a graph class G by replacing
each graph in G by its twin graph. Note that α(G∗) = α(G) for every graph G.
Hence the following lemma holds.

Lemma 3. If Independent Set is NP-complete for a graph class G, then it is
also NP-complete for G∗.

Theorem 3. Deletion Blocker(α) is co-NP-hard for triangle-free graphs
even if d = k = 1.
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Fig. 1. An example of a graph G′ constructed from a graph G via the graph G∗.

Proof. We prove that the equivalent problem of testing whether a triangle-free
graph has a forced vertex is co-NP-hard via a reduction from Independent

Set. Let G be a graph with at least two vertices. From G we construct its
twin graph G∗. We now subdivide each edge of G∗ twice. We call the resulting
graph G′. For an edge e = uv in G∗ (where v = u′ is possible), we call the two
newly introduced vertices ue and ve, where ue is the vertex adjacent to u and ve
the one adjacent to v. See Fig. 1 for an example of a graph G′.

We now show the following claim.
Claim. G′ has no forced vertices.
We prove this claim as follows. For contradiction, suppose x is a forced vertex

of G′, that is, x belongs to every maximum independent set of G′. First suppose
x = u or x = u′ for some vertex u of G, say x = u. Then, by symmetry, its
copy u′ is also a forced vertex of G′. Let I be a maximum independent set of G′.
Since u, u′ are forced, we have u, u′ ∈ I and therefore uuu′ , u′

uu′ 
∈ I. But then
(I \ {u}) ∪ {uuu′} is another maximum independent set of G′ not containing u,
a contradiction.

Now suppose x = uuu′ for some vertex u of G. Then, by symmetry, u′
uu′ is a

forced vertex as well. This is a contradiction, since uuu′ and u′
uu′ are adjacent.

Finally suppose x = uuv for some vertices u, v of G∗ with v 
= u′. Let I be a
maximum independent set of G′. Since uuv is a forced vertex, we have uuv ∈ I
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and therefore vuv 
∈ I. From the above we know that v cannot be forced. Hence,
we may assume without loss of generality that I is chosen in such a way that
v 
∈ I. But then (I \ {uuv}) ∪ {vuv} is another maximum independent set of G′

not containing uuv, a contradiction. This completes the proof of the claim.
We continue as follows. By Lemmas 2 and 3, Independent Set is NP-

complete even for the class of graphs G′ constructed above. Let � be an integer
that together with G′ forms an instance of Independent Set. In particular
note that G′ is triangle-free. Let m be the number of edges of G∗. Then we may
assume without loss of generality that � ≥ m (as a trivial lower bound for the
size of a maximum independent set in G′ is m: we can construct an independent
set of size m by taking for each edge uv of G∗, one of the two vertices uuv, vuv).

We construct a graph F from G′ by taking an independent set J on �+1−m
vertices and by making each vertex of J adjacent to every vertex u of G and to
its copy u′. Note that we do not make vertices of J adjacent to any vertices in
G′ obtained from 2-subdividing the edges of G∗. Hence, as G′ is triangle-free, J
is independent, and no vertex u of G is adjacent to its copy u′ in G′, we find
that F is triangle-free.

In order to complete our proof we are left to show that α(G′) ≤ � if and only
if F contains a forced vertex y, or equivalently, α(F − y) ≤ α(F ) − 1.

First suppose that α(G′) ≤ �. We claim that every vertex in J is forced. In
order to see this let y ∈ J . First note that α(F ) ≥ � + 1, as the set of vertices
that consists of all vertices of J and, for each edge uv in G∗, exactly one of the
two vertices uuv, vuv is an independent set of size � + 1 − m + m = � + 1. Now
let I be a maximum independent set of F −y. If I contains a vertex y′ of J , then
I must have size � (since I cannot contain a vertex u of G or its copy u′, as y′ is
adjacent to such vertices). If I does not contain a vertex of J , then I must be an
independent set of G′. Then I has size at most α(G′) ≤ � by our assumption on
α(G′). In fact, as � is a lower bound on the size of I (recall that α(F ) ≥ � + 1),
we have that I has size � in this case as well. Hence, in both cases we find that
α(F − y) = � ≤ α(F ) − 1 implying that y is a forced vertex of F .

Now suppose that F contains a forced vertex y, so α(F − y) ≤ α(F ) − 1. In
fact we must have α(F − y) = α(F ) − 1. We distinguish three cases.

First assume that y belongs to J . Let I be a maximum independent set of F .
Then y must be in I, as y is forced. This means that I must have size � + 1,
thus α(F ) = � + 1, as I cannot contain a vertex u of G or its copy u′ (because
y ∈ I) and I can contain, besides all vertices of J , exactly one of uuv, vuv for
every edge uv of G∗. As y is forced, this implies that α(F − y) = �. As G′ is an
induced subgraph of F − y, this means that α(G′) ≤ �.

Now assume that y = u or y = u′ for some u in G. Let I be a maximum
independent set of F . As y is forced, y belongs to I. As y is adjacent to every
vertex in J , we find that no vertex of J belongs to I. Then I is a maximum
independent set of G′. However, in that case we can replace I by another max-
imum independent set of G′, and thus of F , that does not contain y (by the
above Claim). So we conclude that y is not a forced vertex of F , which is a
contradiction.
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Finally assume that y = uuv for some edge uv of G∗ (where v = u′ is
possible). If I shares no vertices with J , then we repeat the arguments of the
previous case. Suppose I intersects with J . Then I does not contain v. Hence
we may replace y by vuv to get a maximum independent set of F that does not
contain y. This implies that y is not forced, a contradiction. This completes the
proof of Theorem3. �	

5 A Sufficient Condition for Hardness

In this section we give a sufficient condition for computational hardness of Dele-

tion Blocker(α). Let G be a graph class with the following property: if G ∈ G,
then so are G ⊗ G and G ⊗ sP1 for any integer s ≥ 1. We call such a graph
class stable-proof. We show that determining the existence of a forced vertex
is co-NP-hard on any stable-proof graph class, for which Independent Set is
NP-complete (note that we can only show co-NP-hardness for reasons discussed
before).

Theorem 4. If Independent Set is NP-complete for a stable-proof graph
class G, then Deletion Blocker(α) is co-NP-hard for G, even if d = k = 1.

Proof. Let G be a graph class that is stable-proof. From a given graph G ∈ G and
integer � ≥ 1 we construct the graph G′ = G ⊗ G ⊗ (� + 1)P1. Note that G′ ∈ G
by definition and that α(G′) = max{α(G), �+1}. We claim that α(G) ≤ � if and
only if G′ can be 1-vertex-deleted into a graph G∗ with α(G∗) ≤ α(G′) − 1.

First suppose that α(G) ≤ �. Then α(G′) = � + 1. In G′ we delete a vertex v
of the (�+1)P1. This yields the graph G∗ = G⊗G⊗ �P1. We have that α(G∗) =
max{α(G), �} = �. As α(G′) = � + 1, this means that α(G∗) ≤ α(G′) − 1.

Now suppose that G′ can be 1-vertex-deleted into a graph G∗ with α(G∗) ≤
α(G′) − 1. As deleting a vertex in one of the two copies of G does not lower the
independence number of G′, the deleted vertex must belong to the (� + 1)P1.
This means that G∗ = G ⊗ G ⊗ �P1. As α(G∗) = max{α(G), �} ≤ α(G′) − 1 =
max{α(G), � + 1} − 1, we conclude that α(G) ≤ �.�	
Remark 2. We cannot apply Theorem 4 on triangle-free graphs, as the class of
triangle-free graphs is not stable-proof.

6 The Two Classifications

In this section we combine Theorems 3 and 4 with a number of known results for
obtaining dichotomy results for our two blocker problems restricted to H-free
graphs. Before we present these dichotomies we first state some known results
that we need for their proofs.

Lemma 4. ([15]). Independent Set is NP-complete for C5-free graphs.
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Lemma 5. ([15]). Vertex Cover is NP-complete for C3-free graphs.

We also need two of our previous results.

Lemma 6. ([14]). Let G be a triangle-free graph containing at least one edge
and let k ≥ 1 be an integer. Then (G, k) is a yes-instance of 1-Deletion

Blocker(ω) if and only if (G, k) is a yes-instance of Vertex Cover.

Lemma 7. ([7]). The problems Contraction Blocker(α) and Deletion

Blocker(α) are polynomial-time solvable for cographs but NP-complete on split
graphs.

We also use the following observation.

Lemma 8. If H is a (3P1, 2P2)-free forest, then H ⊆i P4.

Proof. As H is 3P1-free, H contains at most two connected components. Suppose
H contains exactly two connected components. Then, as H is 2P2-free, at least
one of these components must be a P1. As H is 3P1-free, this means that H is
an induced subgraph of P2 + P1, so H ⊆i P4. Suppose H is connected. As H
is 3P1-free, H contains no claw and no path on more than five vertices. Hence,
H ⊆i P4. �	

We are now ready to present our first classification.

Theorem 5. Let H be a graph. If H ⊆i P4, then Contraction Blocker(α)
is polynomial-time solvable for H-free graphs, otherwise it is NP-hard for H-free
graphs.

Proof. Let H be a graph. Recall that a cograph is a P4-free graph. Hence, if H
is an induced subgraph of P4, then we use Lemma 7 to obtain polynomial-time
solvability.

Now suppose that H is not an induced subgraph of P4. If H contains an
induced cycle that is odd, then we use Theorem 1 to obtain NP-hardness. If H
contains an induced cycle that is even, then H either contains an induced C4

or, if the even cycle has at least six vertices, an induced 2P2. This means that
we can use Lemma 7 to obtain NP-hardness after recalling that split graphs are
(2P2, C4)-free. Assume H contains no cycle. Then H is a forest. If H contains
an induced 3P1, then we use Lemma 1 to obtain NP-hardness, after observing
that cobipartite graphs are 3P1-free. Assume H is 3P1-free. Then 2P2 ⊆i H by
Lemma 8, which means we can use Lemma 7 again to obtain NP-hardness. �	
Remark 3. In some cases of Theorem 5, such as when H = C5, we could have
applied Theorem 4 to obtain co-NP-hardness even if d = k = 1.

We now consider the vertex deletion variant and present our second classifi-
cation.

Theorem 6. Let H be a graph. If H ⊆i P4, then Deletion Blocker(α) is
polynomial-time solvable for H-free graphs, otherwise it is NP-hard or co-NP-
hard for H-free graphs.
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Proof. Let H be a graph. If H ⊆i P4, then we use Lemma 7 to obtain polynomial-
time solvability. Suppose H is not an induced subgraph of P4. First suppose H
contains an induced cycle Cr. If r = 3, then we use Theorem 3 to find that the
problem is co-NP-hard even if d = k = 1. If r = 4, then we use Lemma 7 (after
recalling that split graphs are C4-free) to find that the problem is NP-hard. If
r = 5, then we combine Lemma 4 with Theorem 4 after observing that the class
of C5-free graphs is stable-proof. We then find that the problem is co-NP-hard
even if d = k = 1. Note that we could have applied Lemma 7 to obtain NP-
hardness, as split graphs are C5-free, If r ≥ 6, then H contains an induced 2P2

and we apply Lemma 7 (as split graphs are 2P2-free) to find that the problem is
NP-hard.

Now assume that H is forest. By Lemma 8, either 2P2 ⊆i H or 3P1 ⊆i H. If
2P2 ⊆i H, then we apply Lemma 7 again to obtain NP-hardness. If 3P1 ⊆i H,
then we apply Lemmas 5 and 6 to obtain NP-hardness after observing that a
graph is a yes-instance for 1-Deletion Blocker(α) if and only if its comple-
ment is a yes-instance for 1-Deletion Blocker(ω). �	

We are left to state our result for Deletion Blocker(ω), which follows
immediately from Theorem 6 after making two observations. First, Deletion

Blocker(ω) for H-free graphs is equivalent to Deletion Blocker(α) for H-
free graphs. Second, the graph P4 is self-complementary, that is, P4 = P4.

Theorem 7. Let H be a graph. If H ⊆i P4, then Deletion Blocker(ω) is
polynomial-time solvable for H-free graphs; otherwise it is co-NP-hard or NP-
hard for H-free graphs.

7 Conclusions

For every graph H we determined the computational complexities of Contrac-

tion Blocker(α) and Deletion Blocker(π) (π ∈ {α, ω}) restricted to H-
free graphs, and it would be interesting to generalize these results to families
of more than one forbidden induced subgraph. In our previous paper [14] we
obtained dichotomies for π ∈ {ω, χ} but for three of the four classifications we
needed to assume that H is connected. For comparing our new results with pre-
vious results we therefore need to restrict ourselves to connected graphs H. This
leads to the following summary:
For a connected graph H, the following holds:

(i) If H ⊆i P4 or H ⊆i P1 + P3 then Contraction Blocker(ω) is polyno-
mial time solvable for H-free graphs; otherwise it is co-NP-hard for H-free
graphs.

(ii) For π ∈ {α, χ}, if H ⊆i P4 then Contraction Blocker(π) is polynomial
time solvable for H-free graphs; otherwise it is co-NP-hard for H-free graphs.

(iii) For π ∈ {α, ω, χ}, if H ⊆i P4then Deletion Blocker(π) is polynomial
time solvable for H-free graphs; otherwise it is co-NP-hard for H-free graphs.
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It is an open problem to generalize the results of the above summary from
connected graphs H to arbitrary graphs H. For part (i) we need to settle one
remaining case, namely H = C3 + P1 [14]. Part (ii) has been generalized to
arbitrary graphs already; see [14] for the case when π = χ and see Sect. 6 for the
case when π ∈ {α, ω}. Part (iii) has been settled for all graphs H already for
π ∈ {α, ω} (Sect. 6), whereas the situation for π = χ is less clear with a number
of cases still being open; in particular polynomial-time results for disconnected
graphs H exist incomparable to the case when H ⊆i P4, e.g., if H = 3P1 [14].

It is possible to construct graph classes for which a blocker problem is
tractable, but the original problem is NP-complete. Take for instance the class
of graphs G′ from the proof of Theorem3. The Independent Set problem is
NP-complete for this graph class, but its members are all no-instances of Con-

traction Blocker(α) when d = k = 1. However, this class is not a hereditary
graph class, that is, it is not closed under vertex deletion. In fact we do not know
of such examples of hereditary graph classes. Hence, it would be interesting to
prove for π ∈ {α, ω, χ} whether Contraction Blocker(π) and Deletion

Blocker(π) are computationally hard on every hereditary graph class G, for
which Independent Set, Clique or Coloring, respectively, is NP-complete.

Finally, we have shown that Contraction Blocker(α) is NP-hard for
bipartite graphs. We pose the question of determining the computational com-
plexity of d-Contraction Blocker(α) (d ≥ 1) restricted to bipartite graphs
as an open problem.
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Abstract. In this paper, we show, almost constructively, a density the-
orem for hierarchies of limit spaces over separable metric spaces. Our
proof is not fully constructive, since it relies on the constructively not
acceptable fact that the limit relation induced by a metric space satis-
fies Urysohn’s axiom for limit spaces. By adding the condition of strict
positivity to Normann’s notion of probabilistic projection we establish
a relation between strictly positive general probabilistic selections on a
sequential space and general approximation functions on a limit space.
Showing that Normann’s result, that a (general and strictly positive)
probabilistic selection is definable on a separable metric space, admits a
constructive proof, and based on the constructively shown in [18] carte-
sian closure property of the category of limit spaces with general approx-
imations, our quite effective density theorem follows. This work, which
is a continuation of [18], is within computability theory at higher types
and Normann’s Program of Internal Computability.

1 Introduction

Normann introduced the distinction between internal and external computabil-
ity over a mathematical structure already in [11] and initiated, what can be
called, a “Program of Internal Computability” (PIC) in [12–16] (see also [10]).
As he mentions in [14], p. 300, “the internal concepts must grow out of the
structure at hand, while external concepts may be inherited from computability
over superstructures via, for example, enumerations, domain representations, or
in other ways”. Within PIC the characterization of functionals, like the Kleene-
Kreisel functionals, is done without reference to any realizing objects, but via
limit spaces. As Longley and Normann mention in [10], p. 374, the framework
of limit spaces leads “in some cases to sharper results than other approaches;
moreover, the limit space approach generalizes well to type structures over other
base types such as R”.

Limit spaces were introduced in computability theory at higher types by
Scarpellini in [19], while Hyland in [7] showed that Scarpellini’s hierarchy is
identical to Kleene’s hierarchy of countable functionals over N. In [12] Normann
presented this hierarchy using limit spaces, and the corresponding density theo-
rem using the notion of the nth approximation of a functional, for every n ∈ N.
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In [18] we generalized Normann’s presentation by defining two new subcate-
gories of limit spaces, the limit spaces with general approximations and the limit
spaces with approximations. The constructively shown cartesian closure prop-
erty for these subcategories enabled us to prove a constructive density theorem
for hierarchies of limit spaces over N and the Cantor space C. The corresponding
density theorem for hierarchies of limit spaces over a compact metric space had
an essentially classical proof.

In this paper we prove, almost constructively, a density theorem for hierar-
chies of limit spaces over an arbitrary separable metric space, generalizing and, in
our view, computationally advancing the result of [18]. All main proofs included
in this paper are within Bishop’s informal system of constructive mathematics
BISH (see [1–3]). Since the fact that the limit relation on R induced by its met-
ric satisfies Urysohn’s axiom of a limit space implies1 the limited principle of
omniscience (LPO), we cannot say now that our results are fully constructive.
We discuss a constructive way out in the last section of this paper.

Nevertheless, our proof seems quite effective, since all the other parts of it
are completely constructive. It uses again the cartesian closure property of the
category of limit spaces with general approximations, and Normann’s result on
the existence of a probabilistic selection on a separable metric space. Adding
the condition of strict positivity to Normann’s notion of probabilistic selection a
connection between strictly positive probabilistic selections and general approx-
imation functions is established. This density theorem (Theorem 4) shows that
limit spaces with general approximations provide a framework for characteriz-
ing hierarchies of functionals over base types maybe even more efficiently than
general limit spaces.

2 Basic Notions and Facts

In order to be self-contained we include some basic definitions and facts necessary
to the rest of the paper. For a classical treatment of limit spaces see [8,9], while
for all general topological notions mentioned here see [6]. If X,Y are sets, F(X,Y )
denotes the set of all functions from X to Y . The third condition of the definition
of a limit space is known as Urysohn’s axiom.

Definition 1. A limit space is a structure L = (X, limX), where X is a set, and
limX ⊆ X × F(N,X) is a relation satisfying the following conditions:

(L1) If x ∈ X and (x) denotes the constant sequence x, then limX(x, (x)).
(L2) If S denotes the set of all strictly monotone elements of the Baire space
F(N,N), then2 ∀α∈S(limX(x, xn) → limX(x, xα(n))).
(L3) If x ∈ X and (xn)n∈N ∈ F(N,X), then ∀α∈S∃β∈S(limX(x, xα(β(n)))) →
limX(x, xn).

1 This is a result of Hannes Diener (personal communication).
2 If (xn)n∈N ⊆ X, for simplicity we write limX(x, xn) instead of limX(x, (xn)n∈N), and

limX(x, x) instead of limX(x, (x)).
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If ∀x,y∈X∀(xn)n∈N∈F(N,X)(lim(x, xn) → lim(y, xn) → x = y), then the limit
space has the uniqueness property. A subset D of X is called limX-dense, if
∀x∈X∃(dn)n∈N∈F(N,D)(limX(x, dn)), and L is called limX-separable, if there is
a countable limX-dense subset of X. If (X, limX), (Y, limY ) are limit spaces,
f : X → Y is called lim-continuous, if ∀x∈X∀(xn)n∈N∈F(N,X)(limX(x, xn) →
limY (f(x), f(xn))). The subset O of X is in the Birkhoff-Baer topology TlimX

on
X, or is limX-open, if ∀x∈O∀(xn)n∈N∈F(N,X)(limX(x, xn) → ev(xn,O)), where, if
A ⊆ X, ev(xn, A) :↔ ∃n0∀n≥n0(xn ∈ A). A topological space (X, T ) induces

a limit space (X, limT ), where limT (x, xn) :↔ (xn)n
T−→ x, and the symbol

(xn)n
T−→ x denotes the convergence of (xn)n∈N to x with respect to T . If (X, d)

is a metric space, limd denotes the limit relation on X induced by d. A limit
space (X, limX) is called topological, if limX = limTlimX

, and a topological space
(X, T ) is called sequential, if T = TlimT .

It is easy to show constructively that D is dense in (X, TlimX
), if D is lim-

dense in (X, limX). Moreover, classically a metric space is a sequential space.
The following proposition is folklore in the classical literature, but one can show
that it holds constructively (see [17]).

Proposition 1. Let L = (X, limX), M = (Y, limY ) be limit spaces, and A ⊆ X.
The relative limit space LA := (A, limA) is defined by limA = (limX)|A×F(N,A),
and the product limit space L × M := (X × Y, limX×Y ) is defined by the
condition limX×Y ((x, y), (xn, yn)) :↔ limX(x, xn) ∧ limY (y, yn), for every
x ∈ X, y ∈ Y , (xn)n∈N ∈ F(N,X) and (yn)n∈N ∈ F(N, Y ). The exponential
limit space L → M := (X → Y, limX→Y ), where X → Y is the set of all lim-
continuous functions from L to M, is defined by the condition limX→Y (f, fn) :↔
∀x∈X∀(xn)n∈N∈F(N,X)(limX(x, xn) → limY (f(x), fn(xn))),

Definition 2. A limit space with general approximations is a structure A =
(X, limX , (XApprn)n∈N) such that (X, limX) is a limit space, and, for every
n ∈ N the approximation functions XApprn : X → X satisfy the following
properties:
(A1) If x ∈ X, then XApprn(XApprn(x)) = XApprn(x).
(A2) XApprn(X) = {XApprn(x) | x ∈ X} is an inhabited finite set.
(A3) If x ∈ X and (xn)n∈N ∈ F(N,X), then

lim
X

(x, xn) → lim
X

(x,XApprn(xn)).

A limit space with general approximations is a limit spaces with approximations,
if the following conditions are satisfied:
(A1

′) If x ∈ X, then XApprn(XApprm(x)) = XApprmin(n,m)(x).
(A4) XApprn is lim-continuous.
A limit space (X, limX) admits (general) approximations, if there are functions
(XApprn)n∈N such that (X, limX , (XApprn)n∈N)) is a limit space with (general)
approximations

The following two results were proved in [18] constructively.
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Proposition 2. If A = (X, limX , (XApprn)n∈N) is a limit space with general
approximations and x ∈ X, then limX(x,XApprn(x)). Moreover, the set A =⋃

n∈N
XApprn(X) is a countable limX-dense subset of X, and therefore dense in

(X, TlimX
).

Theorem 1. If A = (X, limX , (XApprn)n∈N), B = (Y, limY , (YApprn)n∈N) are
limit spaces with (general) approximations, n ∈ N, x ∈ X, y ∈ Y , and f ∈
X → Y , we define

(X × Y)Apprn(x, y) := (XApprn(x),YApprn(y)),

f 	→ (X → Y)Apprn(f),

(X → Y)Apprn(f)(x) := YApprn(f(XApprn(x))).

The structures A × B = (X × Y, limX×Y , ((X × Y)Apprn)n∈N) and A → B =
(X → Y, limX→Y , ((X → Y)Apprn)n∈N) are limit spaces with (general) approxi-
mations.

From the last two results the following density theorem for a hierarchy of
limit spaces over a compact metric space was shown in [18] classically.

Theorem 2. Let (X, d) be a compact metric space. If ι = X | ρ → σ is an
inductively defined type system T over the base type X, then in the T-typed
hierarchy of limit spaces over X, defined by

X (ι) := (X(ι), lim
ι

) := (X, lim
d

),

X (ρ → σ) := (X(ρ) → X(σ), lim
ρ→σ

),

the limit space X (τ) admits general approximations (τApprn)n∈N, for every type
τ in T. Moreover, there is a countable subset Dτ of X(τ), which is dense in
(X(τ), Tlimτ

), for every type τ in T.

A similar density theorem was shown constructively for ι = N and ι = C,
where C denotes the Cantor space. In Sect. 4 we show a density theorem for a
hierarchy of limit spaces over an arbitrary separable space (Theorem4), based
again on Proposition 2 and Theorem 1. In this case though we use appropriately
Normann’s notion of a probabilistic selection on a sequential space to define
general approximation functions on a separable metric space.

3 Positive and Strictly Positive Probabilistic Projections

The use of probability distributions in the study of hierarchies of functionals
over R appeared first in Normann’s work [12], following the work of DeJaeger
in [5]. The next definition includes a slight variation3 of Normann’s definition of
3 Namely, the continuity condition used by Normann is different from the condition

(P3) used here, but one can show that they are equivalent. Since no continuity
condition affects the main density theorem, we do not include here the proof of their
equivalence.
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a probabilistic projection found in [14]. Moreover, the notions of general, positive
and strictly positive probabilistic projections are introduced. Note that in the
following definition we use Normann’s starting point of a sequential space X,
but what we only need for the proof of Theorem 4, and this is how one should
read Definition 3 constructively, is that X is a metric space (recall that we need
classical reasoning to show that a metric space is sequential).

Definition 3. A structure P = (X, T , Y, (An)n∈N, (μn)n∈N) is called a sequen-
tial space with a general probabilistic projection from X to Y , if (X, T ) is a
sequential topological space, (An)n∈N is a sequence of inhabited finite subsets of
X, which is called the support of P, Y is a subset of X such that

A :=
⋃

n∈N

An ⊆ Y,

and (μn)n∈N is a sequence of functions of type

μn : X → F(An, [0, 1])

x 	→ μn(x),

that satisfies the following properties:
(P1) For every n ∈ N the function μn(x) : An → [0, 1] is a probability distribution
on An i.e., it satisfies the condition

∑

a∈An

μn(x)(a) = 1.

(P2) If y ∈ Y , (yn)n∈N ⊆ Y such that limT|Y (y, yn), where limT|Y is the limit
relation on Y induced by the limit relation limT on X, and if (an)n∈N ⊆ A such
that an ∈ An, for every n ∈ N, the following implication holds:

∀n∈N(μn(yn)(an) > 0) → lim
T|Y

(y, an).

The sequence of functions (μn)n∈N is called a general probabilistic projection
from X to Y . A sequential space (X, T ) admits a general probabilistic projection
from X to Y , if there is a general probabilistic projection from X to Y . A struc-
ture P = (X, T , Y, (An)n∈N, (μn)n∈N) is a sequential space with a probabilistic
projection from X to Y , if (μn)n∈N satisfies also the following condition:
(P3) If a ∈ An, for some n ∈ N, the function â : X → [0, 1], defined by

x 	→ μn(x)(a),

for every x ∈ X, is continuous.
A general probabilistic projection (μn)n∈N from X to Y is called positive, if the
following conditions are satisfied:
(P4) If a ∈ An, for some n ∈ N, then

μn(a)(a) > 0,
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∀b∈An
(b 
= a → μn(a)(b) < μn(a)(a)).

A positive probabilistic projection from X to Y is called strictly positive, if the
following condition is satisfied:
(P5) If a ∈ An, for some n ∈ N, then

μn(a)(a) = 1.

A (general) probabilistic projection (μn)n∈N from X to X is called a (general)
probabilistic selection on X, and the structure S = (X, T ,X, (An)n∈N, (μn)n∈N),
or simpler S = (X, T , (An)n∈N, (μn)n∈N), is a sequential space with a (general)
probabilistic selection.

By condition (P1), if (μn)n∈N is a strictly positive probabilistic projection
from X to Y , then

∀b∈An
(b 
= a → μn(a)(b) = 0),

since, if μn(a)(b) > 0, for some b ∈ An such that b 
= a, then
∑

b∈An
μn(a)(b) > 1,

which is a contradiction. Hence, μn(a)(b) ≤ 0, which together with the assumed
condition μn(a)(b) ≥ 0 gives μn(a)(b) = 0. A first constructive reading of con-
dition (P1) gives that ¬¬[∃a∈An

(μn(x)(a) > 0)]; if ¬[∃a∈An
(μn(x)(a) > 0)],

then ∀a∈An
(μn(x)(a) ≤ 0), since if a ∈ An such that μn(x)(a) > 0, then we

get a contradiction, hence μn(x)(a) ≤ 0. Since ∀a∈An
(μn(x)(a) ≥ 0), we get

∀a∈An
(μn(x)(a) = 0), hence

∑
a∈An

μn(x)(a) = 0 = 1. Next we show construc-
tively how to shift double negation.

Proposition 3. If n ∈ N, a1, . . . , an ≥ 0, and l > 0, then

n∑

i=1

ai = l → ∃j∈{1,...,n}(aj > 0).

Proof. We show ∀n∈NP (n), where

P (n) := ∀a1,...,an≥0∀l>0

(
n∑

i=1

ai = l → ∃j∈{1,...,n}(aj > 0)

)

.

If n = 1, then j = 1. To show P (n + 1) from P (n) let a1, . . . , an+1 ≥ 0, and
l > 0 such that

∑n+1
i=1 ai = l. If b :=

∑n
i=1 ai ≥ 0, then b + an+1 = l. By the

constructive version of trichotomy of reals (see [2], p. 26) we have that an+1 > 0
or an+1 < l

2 . In the first case we get that the required j = n + 1. If an+1 < l
2 ,

then b = l −an+1 > l − l
2 = l

2 . Consequently,
∑n

i=1 ai = b > 0, and by condition
P (n) on a1, . . . , an and b we get some j ∈ {1, . . . , n} such that aj > 0.

Hence, if (μn)n∈N is a general probabilistic projection from X to Y , the set

In(x) := {a ∈ An|μn(x)(a) > 0}
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is inhabited. The intuition behind the notion of a probabilistic projection from
X to Y can be described as follows. The fact μn(x)(a) > 0 expresses that a is
“close” to x, and moreover, the closer to 1 the positive value μn(x)(a) is, the
closer to x a is. The fact μn(x)(a) = 0 expresses that a is “not close” to x.
With this interpretation conditions (P2) and (P4) are quite natural. Note that
the notion of a general probabilistic projection from X to Y corresponds to
the notion of a limit space with general approximations, since in both cases a
continuity condition is not necessarily satisfied. As in the case of limit spaces
with (general) approximations, a dense subset is (classically) generated from a
general probability projection.

Proposition 4. (i) If P = (X, T , Y, (An)n∈N, (μn)n∈N) is a sequential space
with a general probability projection from X to Y , and Y is a closed, or open,
subspace of X, then A is dense in Y .
(ii) If P = (X, T , (An)n∈N, (μn)n∈N) is a sequential space with a general proba-
bility selection, then A is dense in X.

Proof. We show (i), and (ii) follows immediately from (i). If y ∈ Y , let (an)n∈N ⊆
A such that an ∈ An and μn(y)(an) > 0. The existence of such an element an

of An follows from condition (P1). Since limT (y, y), by condition (P2) we get
limT|Y (y, an) i.e., A is limT|Y -dense in X. Since a closed, or open, subspace of
a sequential space is sequential, and since a limS -dense subset of a sequential
space (Z,S) is also dense in Z, we conclude that A is dense in Y .

Since A is countable, the relative space Y is separable. Consequently, if Y
is not a separable subspace of X, there can be no probabilistic projection from
X to Y . As in the density theorem for limit spaces with general approximations
the continuity condition (P3) plays no role in the above proof. Next follows the
lim-version of Definition 3.

Definition 4. A structure N = (X, limX , Y, (An)n∈N, (μn)n∈N) is a limit space
with a general lim-probabilistic projection from X to Y , if (X, limX) is a limit
space and Y, (An)n∈N, (μn)n∈N are as in Definition 3, though the limit relation
in (P2) is the limit relation on Y inherited from limX . A limit space with a
lim-probabilistic projection from X to Y is a limit space with a general lim-
probabilistic projection from X to Y such that the following condition is satisfied:
(P3

′) If a ∈ An, for some n ∈ N, the function â : X → [0, 1], defined by
x 	→ μn(x)(a), for every x ∈ X, is lim-continuous i.e.,

lim
X

(x, xm) → lim
[0,1]

(μn(x)(a), μn(xm)(a)),

for every x ∈ X and (xm)m∈N ⊆ X, where lim[0,1] is the limit relation on [0, 1]
generated by its Euclidean metric. A limit space with a (general) lim-probabilistic
selection, and the notions of a (strictly) positive (general) lim-probabilistic pro-
jection (selection) are defined as in Definition 3.
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In the next classically shown proposition the hypothesis of positivity is used.

Proposition 5. If (X, limX , (An)n∈N, (μn)n∈N) is a limit space with a posi-
tive, general lim-probabilistic selection, then there are approximation functions
(XApprn)n∈N on X such that (X, limX , (XApprn)n∈N) is a limit space with gen-
eral approximations, and XApprn(X) = An, for every n ∈ N.

Proof. If n ∈ N, suppose that An = {a
(n)
1 , . . . , a

(n)
m(n)}. If x ∈ X, let

i0,n(x) :=
{

i ∈ {1, . . . , m(n)} | μn(x)(a(n)
i ) > 0, and

∀j∈{1,...,m(n)}(μn(x)(a(n)
j ) ≤ μn(x)(a(n)

i ))
}

.

By the properties of the order on classical real numbers i0,n(x) is well-defined.
For every x ∈ X and every n ∈ N we define

XApprn(x) := a
(n)
i0,n(x).

Since (μn)n∈N is positive, if i ∈ {1, . . . , m(n)}, then

i0,n(a(n)
i ) = {i},

and XApprn(a(n)
i ) = a

(n)

i0,n(a
(n)
i )

= a
(n)
i . The conditions XApprn(XApprn(x)) =

XApprn(x) and XApprn(X) = An are then immediately satisfied. By the defin-
ition of i0,n(x) we have that

μn(x)(XApprn(x)) > 0.

If (xn)n∈N ⊆ X such that limX(x, xn), then since μn(xn)(XApprn(xn)) > 0, for
every n ∈ N, by condition (P2) of Definition 4 we get limX(x,XApprn(xn)).

Note that constructively we can’t find an algorithm providing an element of
i0,n(x). We overcome this difficulty in Proposition 7, where the hypothesis of
a strictly positive probabilistic selection is used. The next proposition is also
shown classically.

Proposition 6. (i) A limit space (X, limX , (XApprn)n∈N) with general approx-
imations admits a strictly positive, general lim-probabilistic selection. (ii) A limit
space (X, limX , (XApprn)n∈N) with approximations, where (X, limX) has the
uniqueness property, admits a strictly positive general lim-probabilistic selection.

Proof. (i) We define An = XApprn(X), and for every x ∈ X the function x 	→
μn(x) is defined by

μn(x)(a) =
{

1 , if a = XApprn(x)
0 , ow.
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Clearly, μn(x) is a probability distribution on An. Since μn(xn)(an) > 0 ↔
an = XApprn(xn), we get limX(x, xn) → limX(x, an). If a ∈ XApprn(X), there
is some x ∈ X such that a = XApprn(x), hence

μn(a)(a) = μn(XApprn(x))(XApprn(x)) = 1 > 0,

since XApprn(x) = XApprn(XApprn(x)).
(ii) Suppose that limX(x, xm) and that μn(x)(a) = 1 ↔ a = XApprn(x).
By the classical proof of Proposition 21(i) in [18], pp. 749–750, the sequence
(XApprn(xm))m∈N is eventually constant with value a. Thus, (μn(xm)(a))m∈N

is eventually constant 1. The case a 
= XApprn(x) is treated similarly.

The above proof corroborates the aforementioned intuition behind the exis-
tence of a probabilistic projection, that is μn(x)(a) > 0 expresses a proximity
of a to x, while μn(x)(a) = 0 expresses a non-proximity of a to x. Regarding
the proof of Proposition 6(ii), the lim-continuity of the approximation functions
XApprn entails the lim-continuity of the function â, where a ∈ A. Next fol-
lows the constructive version of Proposition 5, which is essential to the proof of
Theorem 4. One needs to replace the condition of positivity by the condition of
strict positivity.

Proposition 7. If (X, limX , (An)n∈N, (μn)n∈N) is a limit space with a strictly
positive, general lim-probabilistic selection, then there are approximation func-
tions (XApprn)n∈N on X such that (X, limX , (XApprn)n∈N) is a limit space with
general approximations, and XApprn(X) = An, for every n ∈ N.

Proof. If n ∈ N, suppose that An = {a
(n)
1 , . . . , a

(n)
m(n)}. If x ∈ X, the set

I0,n(x) := {i ∈ {1, . . . , m(n)} | μn(x)(a(n)
i ) > 0}

is inhabited, i.e., for every n ∈ N there exists i ∈ I0,n(x). If Sx ⊆ N×⋃∞
n=1 I0,n(x)

is defined by Sx(n, i) := i ∈ I0,n(x), then by the principle of countable choice4

there is a function fx : N → ⋃∞
n=1 I0,n(x) such that fx(n) ∈ I0,n(x), for every

n ∈ N. We define

XApprn(x) := a
(n)
fx(n)

,

for every x ∈ X and every n ∈ N. Since (μn)n∈N is a strictly positive probabilistic
selection on X, if i ∈ {1, . . . , m(n)}, then I0,n(a(n)

i ) = {i}, hence

f
a
(n)
i

(n) = i,

and XApprn(a(n)
i ) = a

(n)
f

a
(n)
i

(n) = a
(n)
i . The conditions XApprn(XApprn(x)) =

XApprn(x) and XApprn(X) = An are then immediately satisfied. By the defin-
ition of I0,n(x) we have that

μn(x)(XApprn(x)) > 0.

If (xn)n∈N ⊆ X such that limX(x, xn), then since μn(xn)(XApprn(xn)) > 0, for
every n ∈ N, by condition (P2) of Definition 4 we get limX(x,XApprn(xn)).
4 This principle is generally accepted within BISH (see [3], p. 12).
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4 The Density Theorem

In [14] Normann proved that a complete and separable metric space X admits
a probabilistic projection from X to a closed subspace Y of X of the form
Y =

⋃
n An, where An ⊆ An+1 ⊆ X, for every n ∈ N. In [13] Normann defined a

probabilistic selection on a separable metric space. The proof is not given in [13],
although it is actually in [14], which appeared later, but was written before [13].
In between Normann realized that completeness played no role in his original
proof.

Here we show that the probabilistic selections defined by Normann differ in
a crucial way. The one given in [14] is shown here to be positive, while the one
given in [13] is shown to be strictly positive, a property crucial to the proof
of Theorem 4. Next we give a new constructive treatment of Normann’s result
adding the properties of positivity and strict positivity, respectively. Note that
Normann included his equivalent to (P3) continuity condition to his results, but
since the proof of continuity requires classical reasoning and does not play a role
in our proof of Theorem 4, it is avoided here. The only non-effective element in
the formulation of the following theorem (and not in its proof) is that (X, limd)
is a limit space, hence that limd satisfies Urysohn’s axiom.

Theorem 3 (Normann (BISH)). Suppose that (X, d) is a separable metric
space and A = {an | n ∈ N} is a countable dense subset of X, where d(an, am) >
0, if n 
= m. If An = {a1, . . . , an}, for every n ∈ N and, for every 1 ≤ j ≤ n, we
define5

μn(x)(aj) :=
Nn,x(aj)

Dn,x
,

Nn,x(aj) := (d(x,An) + 2−n) −· d(x, aj),

Dn,x :=
n∑

i=1

[(d(x,An) + 2−n) −· d(x, ai)],

μ′
n(x)(aj) :=

N ′
n,x(aj)
D′

n,x
,

N ′
n,x(aj) := (d(x,An) + δn) −· d(x, aj),

D′
n,x :=

n∑

i=1

[(d(x,An) + δn) −· d(x, ai)],

where
d(x,An) := min{d(x, ai) | 1 ≤ i ≤ n},

δn := min{2−n, d(ai, aj) | i 
= j, i, j ∈ {1, . . . , n}},
a −· b := (a − b) ∨ 0.

5 If c, d ∈ R, we use the notations c ∨ d := max{c, d}, and c ∧ d := min{c, d}.
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(i) The structure (X, limd, (An)n∈N, (μn)n∈N) is a limit space with a positive,
general lim-probabilistic selection on X.
(ii) The structure (X, limd, (An)n∈N, (μ′

n)n∈N) is a limit space with a strictly
positive, general lim-probabilistic selection on X.

Proof. (i) The fact that Dn,x > 0 and conditions (P1) and (P2) are shown as in
case (ii). For the positivity condition we have first that

μn(aj)(aj) =
2−n

Dn,aj

> 0,

for every j ∈ {1, . . . , n}. If i 
= j, then Nn,aj
(ai) = 2−n −· d(aj , ai) = (2−n −

d(aj , ai))∨0. Since 2−n −d(aj , ai) < 2−n and 0 < 2−n, we get (2−n −d(aj , ai))∨
0 < 2−n (here we used the following property of real numbers: a∨ b < c ↔ a < c
and b < c, see [4], p. 57, Ex. 3). Hence, μn(aj)(ai) < μn(aj)(aj).
(ii) If c1, . . . , cn > 0, then one shows6 that their minimum

∧n
i=1 ci > 0, hence,

since there are no repetitions in the sequence of A, we have that δn > 0. Next
we show7 that D′

n,x > 0. The subspace An is totally bounded, since for every
ε > 0 it is an ε-approximation of itself, and since the distance dx at x, defined by
aj 	→ d(x, aj), is uniformly continuous on An, there exists inf dx(An) (see [2], p.
94). It is immediate to see that inf dx(An) = d(x,An) is the greatest lower bound
of {d(x, aj) | j ∈ {1, . . . , n}}, and hence equal to

∧n
i=1 d(x, ai), since

∧n
i=1 d(x, ai)

can be shown8 to be the greatest lower bound of {d(x, aj) | j ∈ {1, . . . , n}} too.
By the definition of the infimum of a bounded below set of real numbers for
δn

2 > 0 we get that the existence of some j ∈ {1, . . . , n} such that

d(x, aj) < d(x,An) +
δn

2
→ −δn

2
< d(x,An) − d(x, aj) →

0 < δn − δn

2
< d(x,An) + δn − d(x, aj) →

0 <
δn

2
< (d(x,An) + δn) −· d(x, aj) →

0 < D′
n,x.

Condition (P1) is immediately satisfied. For the proof of condition (P2) we fix
x ∈ X, (xn)n∈N ⊆ X, such that limd(x, xn), and (an)n∈N such that an ∈ An

and μ′
n(xn)(an) > 0, for every n ∈ N. We need to show that limd(x, an) ↔

∀ε>0∃n0∀n≥n0(d(x, an) ≤ ε). Let ε > 0. By the hypothesis limd(x, xn) there

6 The argument for the case of two positive numbers is the one used in the inductive
step of the induction on n. If c1, c2 > 0, there are rationals q1, q2 such that 0 < q1 < c1
and 0 < q2 < c2 (see [2], p. 25). Since q1∧q2 is either q1 or q2, we get that q1∧q2 < c1
and q1 ∧ q2 < c2, hence 0 < q1 ∧ q2 ≤ c1 ∧ c2.

7 Classically, this is trivial, since there is some j ∈ {1, . . . , n} such that d(x, An) =
d(x, aj), hence D′

n,x ≥ (d(x, An) + δn) −· d(x, ai) = δn ∨ 0 = δn > 0.
8 The proof is based on the fact that if c ≤ a and c ≤ b, then c ≤ a ∧ b, since if

c > a ∧ b, then c > a or c > b (this is the dual of a property of the maximum of real
numbers included in [4], p. 57, Ex. 3).
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is n1 ∈ N such that ∀n≥n1(d(x, xn) ≤ ε
4 ). By the density of A in X there

exists a ∈ A such that d(x, a) ≤ ε
4 . If a = an2 , for some n2 ∈ N, we get that

∃a∈An2
(d(x, a) ≤ ε

4 ). Clearly, there exists n3 ∈ N such that 2−n3 ≤ ε
4 . If we

define n0 := max(n1, n2, n3), for every n ∈ N such that n ≥ n0 we get An ⊇ An0

and d(x,An) ≤ d(x, a) ≤ ε
4 . Moreover, if n ≥ n0, then

d(xn, An) ≤ d(xn, x) + d(x,An) ≤ ε

4
+

ε

4
=

ε

2
.

The first inequality above is shown as follows: If b ∈ An, then using some basic
properties of ≤ on R (see [2], p. 23) we get

d(xn, An) ≤ d(xn, b) ≤ d(xn, x) + d(x, b) →
d(xn, An) − d(xn, x) ≤ d(x, b) →
d(xn, An) − d(xn, x) ≤ min{d(x, b) | b ∈ An} = d(x,An) →
d(xn, An) ≤ d(xn, x) + d(x,An).

Moreover, if n ≥ n0, then

μ′
n(xn)(an) > 0 → d(xn, an) ≤ 3ε

4
,

since, using the property9 ∀c∈R(c ∨ 0 > 0 → c ∨ 0 = c) we have that

μ′
n(xn)(an) > 0 → N ′

n,xn
(an) > 0

↔ (d(xn, An) + δn) −· d(xn, an) > 0
→ (d(xn, An) + δn) − d(xn, an) > 0

→ d(xn, an) < d(xn, An) + δn ≤ ε

2
+ 2−n ≤ ε

2
+

ε

4
=

3ε

4
.

Hence, if n ≥ n0, we get

d(x, an) ≤ d(x, xn) + d(xn, an) ≤ ε

4
+

3ε

4
= ε.

Next we show the strict positivity of (μ′
n)n∈N. If n ∈ N and j ∈ {1, . . . , n},

then N ′
n,aj

(aj) = δn, since d(aj , An) = d(aj , aj) = 0. Moreover, D′
n,aj

(aj) =∑n
i=1[(d(aj , An) + δn) −· d(aj , ai)] =

∑n
i=1(δn −· d(aj , ai)) = δn −· d(aj , aj) = δn,

since for every i 
= j, we have that δn −· d(aj , ai) = 0, since δn ≤ d(aj , ai) ↔
δn − d(aj , ai) ≤ 0. Consequently, μ′

n(aj)(aj) = 1. Similarly, if i 
= j, we have
that N ′

n,aj
(ai) = δn −· d(aj , ai) = 0 i.e., μ′

n(aj)(ai) = 0.

A “geometric” interpretation of the probabilistic selection (μn)n∈N of
Theorem 3 goes as follows. By its definition Nn,x(aj) ≥ 0, while μn(x)(aj) =
0 ↔ Nn,x(aj) = 0 ↔ d(x, aj) ≥ d(x,An) + 2−n. If x /∈ An that can
happen if aj is sufficiently far from the point of An at which x attains its

9 If c ∨ 0 > 0, then c > 0 ∨ 0 > 0 (see [4], p. 57). Hence, c > 0 is the case, and then we
get immediately that c ∨ 0 = c.
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minimum distance from An, or if x ∈ An and d(x, aj) ≥ 2−n. Moreover,
μn(x)(aj) > 0 ↔ Nn,x(aj) > 0 ↔ d(x, aj) < d(x,An) + 2−n i.e., either x
attains its minimum distance from An at aj or, otherwise, the distance d(x, aj)
is less than 2−n-close to the minimum distance d(x,An) i.e., aj is very close to
the point of An at which x attains its minimum distance from An. A similar
interpretation can be given for Normann’s probabilistic selection (μ′

n)n∈N. Note
that a simpler definition, like

νn(x)(aj) =
d(x, aj)∑n
i=1 d(x, ai)

gives rise to a probability distribution on An, which trivially satisfies the con-
tinuity condition, but it is not positive, and the hypothesis νn(xn)(an) > 0 is
equivalent to xn 
= an, which is far from satisfying condition (P2) of a proba-
bilistic selection.

Note that the constructive proof of Theorem 3 works for dense subsets A
of X with a decidable equality, like Q in R. Next follows a density theorem
for hierarchies of limit spaces over separable metric spaces, the countable dense
subsets of which are appropriately enumerated, or have a decidable equality.

Theorem 4 (density theorem). Let (X, d) be a separable metric space, and
let A = {an | n ∈ N} be a dense subset of X, where d(an, am) > 0, if n 
= m.
If ι = X | ρ → σ is an inductively defined type system T over the base type X,
then in the T-typed hierarchy of limit spaces over X, defined by

X (ι) := (X(ι), lim
ι

) := (X, lim
d

),

X (ρ → σ) := (X(ρ) → X(σ), lim
ρ→σ

),

the limit space X (τ) admits general approximations (τApprn)n∈N, for every type
τ in T. Moreover, there is a countable subset Dτ of X(τ), which is limτ -dense
in Xτ , therefore dense in (X(τ), Tlimτ ), for every type τ in T.

Proof. If τ = ι, then by Theorem 3(ii) (X, limd, (An)n∈N, (μ′
n)n∈N) is a limit

space with a strictly positive, general lim-probabilistic selection on X. By Propo-
sition 7 there exist approximation functions (XApprn)n∈N on X such that the
structure (X, limd, (XApprn)n∈N) is a limit space with general approximations,
and XApprn(X) = An, for every n ∈ N. We define ιApprn := XApprn, for every
n ∈ N. By Theorem 1, if f ∈ X(ρ) → X(σ), and n ∈ N, then the function
(ρ → σ)Apprn, defined by

[(ρ → σ)Apprn](f)(x) = σApprn(f(ρApprn(x))),

for every x ∈ X(ρ), is the n-th approximation function that the limit space
X (ρ → σ) admits. The existence of the countable subset Dτ of X(τ) that is
limτ -dense in Xτ , therefore dense in (X(τ), Tlimτ ), for every type τ in T, follows
from Proposition 2.
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Note that constructively we only have that Td ⊆ Tlimd
, where Td is the topol-

ogy on X induced by its metric. Thus, what we determine through Theorem 4
are countable limτ -dense subsets of each limit space Xτ . Of course, classically,
these are exactly the subsets one needs to find. Clearly, a density theorem for
a hierarchy of limit spaces over more than one separable metric spaces can be
shown similarly.

5 Concluding Remarks

The proof of the main density theorem presented in this paper reveals, in our
view, the merits of the generalization of Normann’s notion of the nth approxima-
tion of a functional in the typed hierarchy over N through the notion of a limit
space with general approximations. The quite effective character of its proof is
also worth noticing. As Normann writes in [14], p. 305,

[We would like to claim that an internal approach to computability in
analysis will result in easy-to-use, high level, programming languages for
computing in analysis, but the development cannot support this claim yet.
The possibility of finding support for such a claim, together with basic
curiosity, is nevertheless the motivation behind trying to find out what
internally based algorithms might look like.]

The application of limit spaces with approximations to the (classical) study of
limit spaces over other base types looks also promising. Moreover, it is interesting
to see if the general idea behind the theory of limit spaces with approximations
can be extended to other notions of space. Namely, to find a cartesian closed
category A, such that if X is an object of A, general approximation functions
XApprn of type X → X can be defined10, for every n ∈ N, such that the objects
of A with general approximations form a cartesian closed subcategory of A.

A plan to provide a fully constructive proof of Theorem 4 is the following. We
expect that abstracting from the constructive properties of limd we can define a
notion of a constructive limit space (X, climX) that preserves the cartesian clo-
sure property of limit spaces (with the same definition of the limit relation on the
function space). In this case the proof of Theorem 4 goes through completely con-
structively, since the proof of Theorem 1 does not depend on Urysohn’s axiom.
We hope to realize this plan in future work.

Acknowledgments. We would like to thank Ulrich Berger for his insightful comments
on an early draft of this paper and Hannes Diener for informing us on his result that
relates Urysohn’s axiom to LPO. We also thank the reviewers for their useful comments
and suggestions and the Excellence Initiative of the LMU Munich for supporting our
research.

10 Where the notion of approximation, as it is expressed in condition (A3) of Defini-
tion 2, will depend on the structure of X.
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On the Conjecture of the Smallest
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Abstract. In the game of Cops and Robbers on a graph G = (V, E),
k cops try to catch a robber. The minimum number of cops required to
win is called the cop number, denoted by c(G). For a planar graph G, it
is known that c(G) ≤ 3. It is a conjecture that the regular dodecahedral
graph of order 20 is the smallest planar graph whose cop number is three.
As the very first attack on this conjecture, we provide the following
evidences in this paper: (1) any planar graph of order at most 19 has
the winning vertex at which two cops can capture the robber, and (2) a
special planar graph of order 19 that is constructed from the regular
dodecahedral graph has the cop number of two.

Keywords: Cops and Robbers game · Cop number · Capture strategy ·
Winning vertices

1 Introduction

In the pursuit-evasion games, the “evader” controlled by one player tries to
avoid being captured by “pursuers” controlled by another player. The games
have many versions, varied through many means such as whether the domain is
discrete [7] or continuous [4], what information each player has [2], or how each
player moves. The pursuers win the game if they can capture the evader, and
the evader wins if he can avoid being captured indefinitely.

In a variant called Cops and Robbers game ([7,8,10]), both players have
full knowledge of the terrain and other player’s locations. Previous researches
focused on how many cops it takes to successfully capture a robber on a given
graph, or shortly, the cop number [1]. The minimum number of cops required to
win on a graph G is denoted by c(G). A graph G is said to be k-cop-win if and
only if c(G) = k. When k = 1, it is simply called cop-win. Aigner and Fromme
[1] proved that for any planar graph, c(G) ≤ 3. A strategy using three cops
for planar graphs was given in [9]. Although whether a planar graph is cop-win
can be determined in polynomial time [5], there is still no known method of
determining whether a planar graph is 2-cop-win or 3-cop-win.
c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 499–514, 2017.
DOI: 10.1007/978-3-319-55911-7 36
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From previous research, the smallest 3-cop-win graph is the Petersen graph,
and thus any connected graph of order at most nine is 2-cop-win [3]. However,
for planar graphs, the smallest 3-cop-win graph has not yet been studied.

It is a conjecture that the regular dodecahedral graph of order 20 is the
smallest planar graph, whose cop number is three. In an attempt to prove this
conjecture, we provide the following evidences: (1) any planar graph of order
at most 19 has the winning vertices at which two cops can capture the robber,
and (2) a special planar graph of order 19 that is constructed from the regular
dodecahedral graph is 2-cop-win.

2 Basic Definitions

This paper refers to a standard graph theory notation written in [6]. For con-
venience, we introduce only new denotations and those which are heavily used
in this paper. For a planar graph G = (V (G), E(G)), F (G) is defined as a set of
faces, which are also called the cycles of G. The number of faces is denoted by
|F (G)|. For a face f ∈ F (G), the number of its sides is denoted as S(f), and
also called the length of cycle f . The graph’s girth, denoted by g(G), is the size
of its smallest cycle.

Let N(v) denote the set of all neighbors of vertex v, and N̄(v) = N(v) + {v}
the closed neighbors set of v. For any vertex v, if there exists a vertex u ∈ N(v)
such that N̄(v) ⊆ N̄(u), then v is called a dominated vertex. For a vertex v, the
degree of v, denoted by d(v), is the number of the neighbors of v. The minimum
degree of a graph G, denoted by δ(G), is the smallest degree of all vertices v
in G.

In a graph G, when contraction of an edge e ∈ E(G) with endpoints u, v is
performed on G, the edge e is replaced by a single vertex such that the edges
incident to the new vertex are those, other than e, which were incident to u or
v (see Fig. 6). The contraction of e on G results in a graph with one edge and
one vertex fewer than G. This graph operation is called an edge contraction. We
called the resulting graph the edge-contracted version of the original graph, e.g.,
the edge-contracted regular dodecahedral graph is the result of performing an
edge contraction on the regular dodecahedral graph.

In this paper, the game of Cops and Robbers is played by two players on
a simple, undirected, connected planar graph G. The minimum number of cops
required to win on a graph G is denoted by c(G). A graph G is said to be k-
cop-win if and only if c(G) = k. Denote by r the robber as well as the vertex
he occupies, C = {c1, c2, . . . , ck} the set of cops as well as the vertices they
occupy. The set of vertices adjacent to or occupied by the cops is denoted by
N̄(C) = N̄(c1) ∪ N̄(c2) ∪ · · · ∪ N̄(ck).

Let us consider the robber’s final location on G before being captured by two
cops. If the robber does not surrender, then the cops must trap him by restricting
his movement just before he is captured [3]. The trapping condition using two
cops against the robber r requires that N̄(r) ⊆ N̄(C).
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Definition 1. For an vertex v, the vertices a and b are called the winning posi-
tions against v if d(b, v) = 1, d(a, v) ≤ 2 and N̄(v) ⊆ N̄(a)∪N̄(b). If the winning
positions a and b against v exist, then v is called a winning vertex.

3 Previous Results

We first review some known results on the cop numbers. Nowakowski and Win-
kler [7], and independently, Quilliot [10] provided the method of determining
whether a graph is cop-win.

Theorem 1 ([7], Theorem 1, and [10]). Graph G is a cop-win if and only if by
successively removing dominated vertices, G can be reduced to a single vertex.

Aigner and Fromme have shown that any planar graph requires no more than
three cops, and the regular dodecahedral graph is 3-cop-win.

Theorem 2 ([1], Theorem 3). If a graph G has g(G) > 4 then c(G) ≥ δ(G).

Theorem 3 ([1], Theorem 6). For any planar graph G, the cop number of G is
at most three.

Baird et al. [3] use the results provided by Aigner and Fromme to prove that
the Petersen graph is the smallest 3-cop-win. Since the Petersen graph is not
planar, we conjecture that the regular dodecahedral graph is the smallest 3-cop-
win planar graph. The regular dodecahedral graph is a planar graph of order 20,
whose all vertices are of degree three and all faces are 5-cycles, as shown in Fig. 1.
(It is easy to see that there are no wining vertices for two cops on the regular
dodecahedral graph.) By Theorem2, the following observation can be made.

Observation 1. The regular dodecahedral graph is 3-cop-win.

Fig. 1. The regular dodecahedral graph.
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4 The Existence of Winning Vertices in Planar Graphs
of Order at Most 19

A winning strategy using two cops requires two important parts: (1) a goal, and
(2) a method to move each piece to its individual goal. In other words, two cops
must force the robber to be at a winning vertex, and at the same time, two cops
occupy the winning positions against that vertex. In this section, we prove that
the winning vertices exist for any planar graph of order at most 19.

Baird et al. proved that the Petersen graph is the smallest 3-cop-win graph [3].
Since the Petersen graph is not planar, the next observation can also be made.

Observation 2. For any planar graph of order 10 or smaller, the cop number
is at most two.

With Observation 2, we can focus on proving that a winning vertex exists for
any planar graph of order between 11 and 19. Our proof consists of a series of
lemmas, mainly on the relationships between δ(G) and the number of cycles of
length at least five. For a graph G, denote by S(F (G)) the summation of sides
of all faces in F (G).

Lemma 1. Suppose G is a planar graph with 11 ≤ |V (G)| ≤ 19. If δ(G) = 3,
then g(G) ≤ 4.

Proof. It follows from Euler’s Formula that |V (G)|− |E(G)|+ |F (G)| = 2. Since
δ(G) = 3, we have this condition: (1) |E(G)| ≥ 3|V (G)|

2 . Since an edge is shared
by two faces, we have S(F (G)) = 2|E(G)|. Suppose (by contradiction) that
g(G) ≥ 5. Then, we have the second condition: (2) S(F ((G)))| ≥ 5|F (G)|. Let
G∗ be a planar graph with the minimum number of edges satisfying condition
(1) for a given order n (11 ≤ n ≤ 19). To be precise, G∗ = (V (G∗), E(G∗))
where |V (G∗)| = n and |E(G∗)| = � 3n

2 �. We consider all of planar graphs G∗ of
order n and get the following results.

From Table 1, we know that for a given order n (11 ≤ n ≤ 19), the graph
G∗ has g(G∗) ≤ 4. This result can simply be extended to any graph of order
n, because adding i edges to G∗ increases the term |E(G)| by i, and the term
|F (G)| by i (as the term |V (G)| = n is not changed). In other words, the term
5|F (G)| in Table 1 is increased by 5i and the term S(F (G)) is increased by 2i.
Hence, the lemma follows. 	

Lemma 2. Suppose G is a planar graph with 11 ≤ |V (G)| ≤ 19. If δ(G) = 4,
then there are at most six cycles of length at least five in G.

Proof. Similar to the proof of Lemma1, for G with δ(G) = 4, we have this
condition: (1) |E(G)| ≥ 2|V (G)|. Suppose there are seven cycles of length at
least five in G. Even in the case where all the remaining faces are 3-cycles, we
have the second condition: (2) S(F ((G)))| ≥ 35 + 3(|F (G)| − 7) = 3|F (G)| + 14.
Again, let G∗ be a planar graph with the minimum number of edges satisfying
condition (1) for a given order n (11 ≤ n ≤ 19). That is, |V (G∗)| = n and
|E(G∗)| = 2n. We have the following results.
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Table 1. Planar graphs G∗ of order from 11 to 19 with δ(G∗) = 3 do not have
g(G∗) ≥ 5.

n |E(G∗)| |F (G∗)| S(F (G∗)) 5|F (G∗)| Is S(F (G∗)) ≥ 5|F (G∗)| (2)

11 17 8 34 40 False

12 18 8 36 40 False

13 20 9 40 45 False

14 21 9 42 45 False

15 23 10 46 50 False

16 24 10 48 50 False

17 26 11 52 55 False

18 27 11 54 55 False

19 29 12 58 60 False

Table 2. Planar graphs G of order 11 to 19 with δ(G) = 4 do not have seven cycles of
length at least five.

n |E(G∗)| |F (G∗)| S(F (G∗)) 3|F (G∗)| + 14 (2)

11 22 13 44 53 False

12 24 14 48 56 False

13 26 15 52 59 False

14 28 16 56 62 False

15 30 17 60 65 False

16 32 18 64 68 False

17 34 19 68 71 False

18 36 20 72 74 False

19 38 21 76 77 False

From Table 2, we know that for a given order n (11 ≤ n ≤ 19), the graph G∗

has at most six cycles of length at least five. Similar to the proof of Lemma1,
it is sufficient to consider condition (2) on G∗ (whose number of edges is the
smallest to satisfy condition (1)), as for every i edges added to G∗, the term
S(F (G)) is increased by 2i and the term 3|F (G)| + 14 is increased by at least 3i
(as |V (G)| = n is not changed). So, the lemma follows. 	

Lemma 3. Suppose G is a planar graph with 11 ≤ |V (G)| ≤ 19. If δ(G) = 5,
then there are at most one cycle of length at least five in G.1

Proof. Similar to the proof of Lemma 1, for G with δ(G) = 5, we have this
condition: (1) |E(G)| ≥ 5|V (G)|

2 . Suppose there are two cycles of length at least
five in G. Even in the case where all the remaining faces are 3-cycles, we have the
1 Probably, the cycle of length at least five does not exist at all when δ(G) = 5.
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second condition: (2) S(F ((G)))| ≥ 10+ 3(|F (G)| − 2) = 3|F (G)|+ 4. Again, let
G∗ be a planar graph with the minimum number of edges satisfying condition
(1) for a given order n (11 ≤ n ≤ 19). That is, |V (G∗)| = n and |E(G∗)| = � 5n

2 �.
Also, we have the following results.

Table 3. Planar graphs G of order 11 to 19 with δ(G) = 5 do not have two cycles of
length at least five.

n |E(G∗)| |F (G∗)| S(F (G∗)) 3|F (G∗)| + 4 (2)

11 28 19 56 61 False

12 30 20 60 64 False

13 33 22 66 70 False

14 35 23 70 73 False

15 38 25 76 79 False

16 40 26 80 82 False

17 43 28 86 88 False

18 45 29 90 91 False

19 48 31 96 97 False

From Table 3, we know that for a given order n (11 ≤ n ≤ 19), the graph G∗

has at most one cycle of length at least five. Similar to the proof of Lemma1,
it is sufficient to consider condition (2) on G∗ (whose number of edges is the
smallest to satisfy condition (1)). Hence, the lemma follows. 	

Lemma 4. Suppose that G is a planar graph of order between 11 and 19, with
δ(G) = 4. Then, there exists a vertex v of degree four such that v is the common
vertex of either two 3-cycles or a 3-cycle and a 4-cycle.

Proof. We claim that there are no graphs G of order at most 19, with δ(G) = 4,
such that every vertex of degree four belongs to four cycles of length at least
four. We prove it by first constructing a graph of the smallest order such that
there is only one vertex of degree four that belongs to four 4-cycles in the graph
and all other vertices are of degree at least 5. Let us start a graph with vertex
u of degree four at the center of a 3 × 3 grid, see Fig. 2(a). We then construct a
graph such that all vertices, except for u, are of degree at least five, by adding
the minimum number of vertices required to make the existing vertices be of
degree five. This construction is shown step-by-step in Fig. 2, until our desired
graph, shown in Fig. 2(d), is obtained. But, its order is 25 (this number cannot be
further decreased), contradicting |V (G)| ≤ 19. Furthermore, when the number of
vertices of degree four is increased, the order of the resulting graph is increased.
Hence, our claim holds.

By Lemma 2, there are at most six cycles of length at least five in G, and the
remaining faces of G are 3- or 4-cycles. Since δ(G) = 4, there are at most three
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uuu

u

k1-cyclek2-cycle

k3-cycle

k4-cycle

k5-cycle

k6-cycle

(e)

Fig. 2. From (a) to (d), an illustration of the proof of Lemma 4. In (e), an illustration
of G, δ(G) = 4, with six ki-cycles, ki ≥ 5 for all 1 ≤ i ≤ 6.

vertices of degree four, which are not the common vertices of either two 3-cycles
or a 3-cycle and a 4-cycle, see Fig. 2(e). The lemma then follows from our claim
and the inequalities 11 ≤ |V (G)| ≤ 19. 	

Lemma 5. Suppose that G is a planar graph of order between 11 and 19. If
δ(G) = 3, then (i) there exists a vertex v of degree three such that v belongs to
a 3- or 4-cycle, or (ii) there exists a vertex v of degree four such that v belongs
to either two 3-cycles or a 3-cycle and a 4-cycle.

Proof. This lemma has two statements: (i) there exists a vertex v of degree three
such that v belongs to a 3- or 4-cycle, or (ii) there exists a vertex v of degree
four such that v belongs to either two 3-cycles or a 3-cycle and a 4-cycle. For
any G of order between 11 and 19 with δ(G) = 3, at least one 3- or 4-cycle exists
(Lemma 1). In the case that (i) is true, the lemma follows.

In the following, we prove that if (i) is false, then (ii) is true. First, we show
that the vertices of degree three in G cannot form a cycle of length at least
five. Note that the vertices of degree three do not belong to any 3- or 4-cycle
(otherwise, (i) is true), and all other vertices are of degree at least four. Assume
by contradiction that there are at least five vertices of degree three, which form
a cycle of length, say, five. As can be seen in Fig. 3(a), six ki-cycles (ki ≥ 5 for
all 1 ≤ i ≤ 6) are required to form this 5-cycle, and they use at least 15 vertices.
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(a)

k2-cycle

k1-cycle

k3-cycle

k4-cycle

k5-cycle

k6-cycle

(b) (c)

k2-cycle

k1-cycle

k3-cycle

k1-cycle

k2-cycle k3-cycle

k4-cycle

Fig. 3. In (a), an illustration of G, δ(G) = 3, whose vertices of degree three form a
cycle. In (b) and (c), an illustration of G, δ(G) = 3, whose all vertices of degree three
form a tree.

To make other ten vertices (whose degrees are not three) be of degree at least
four, at least five more vertices have to be added. Thus, at least 20 vertices are
needed to form the required planar graph (Fig. 3(a)). Therefore, the vertices of
degree three cannot form a cycle of length at least five.

Suppose by contradiction that (ii) is false, even in the case that (i) is false.
There are two situations in which (ii) is false, regarding the vertices whose
degrees are at least four: (a) there exists at least one vertex of degree four
and each vertex of degree four belongs to four cycles of length at least four, or
(b) all the vertices, except for those of degree three, are of degree at least five.

We have shown in Lemma 4 that there are no graph G of order at most 19,
with δ(G) = 4, such that every vertex of degree four belongs to four cycles of
length at least four. Since every vertex of degree three cannot belong to any 3-
or 4-cycle (otherwise (a) is true), the argument given in the proof of Lemma 4
can also be made here. So, if there are the vertices of degree four, at least one of
them belongs to either two 3-cycles or a 3-cycle and a 4-cycle. Hence, situation
(a) never occurs.

Consider now the situation (b). From the discussion made above, the vertices
of degree three cannot form a cycle. So, if the number of vertices of degree
three is i, then there exist at least i + 2 cycles of length at least five (as can
be observed from Fig. 3(b) and (c)). Since in G, all other vertices, except for
those of degree three, are of degree at least five, we have this condition: (1)∑

d(v) ≥ (3×i)+5(|V (G)|−i). Since
∑

d(v) = 2|E(G)|, we can modify condition
(1) to |E(G)| ≥ 5|V (G)|−2i

2 . By considering all other faces as 3-cycles, we have the
second condition: (2) S(F (G)) ≥ 5(i+2)+3(|F (G)|−(i+2)) = 3|F (G)|+2i+4.
Again, let G∗ be a planar graph with the minimum number of edges satisfying
condition (1) for a given order n (11 ≤ n ≤ 19). That is, |V (G∗)| = n and
|E(G∗)| = � 5n−2i

2 �. We have the following results, for i = 1.
From Table 4, a planar graph G with δ(G) = 3 and one vertex of degree

three, which is common to three cycles of length at least five, cannot have all
the remaining vertices of degree at least five. As discussed above, it is suffi-
cient to consider condition (2) on G∗ (whose number of edges is the smallest to
satisfy condition (1)). Also, it is sufficient to consider the case of i = 1, since
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Table 4. Planar graphs G of order 11 to 19 with δ(G) = 3 and one vertex of degree
three, which is common to three cycles of length at least five, cannot have all the
remaining vertices of degree at least five.

n 5n − 2i |E(G∗)| |F (G∗)| S(F (G∗)) 3|F (G∗| + 6 (2)

11 53 27 18 54 60 False

12 58 29 19 58 63 False

13 63 32 21 64 69 False

14 68 34 22 68 72 False

15 73 37 24 74 78 False

16 78 39 25 78 81 False

17 83 42 27 84 87 False

18 88 44 28 88 90 False

19 93 47 30 94 96 False

when the term i is increased by j (without changing |V (G∗)| = n), the term
5n−2i

2 is decreased by j. Thus, the term |E(G∗)| is decreased by j (follows from
|E(G∗)| = � 5n−2i

2 �) and so is the term |F (G∗)| (Euler’s Formula). That is, the
term S(F (G∗)) is decreased by 2j and the term 3|F (G∗)| + 2i + 4 is decreased
by j. Hence, situation (b) never occurs either. The proof is complete. 	

Theorem 4. There exist winning vertices for any planar graph of order at
most 19.

Proof. Recall first that for any planar graph, δ(G) ≤ 5 [6], and if G contains a
dominated vertex v, then c(G−{v}) = c(G) [3]. Hence, we only need to consider
the four different situations in which δ(G) = 2, 3, 4, or 5.

For the situation where δ(G) = 2, any vertex v of degree 2 is a winning
vertex, because two cops at two neighbors of v can trap the robber at v.

For the situation where δ(G) = 3, by Lemma 5, there exist either vertices
v of degree 3 belonging to a 3- or 4-cycle, or vertices v of degree 4, which are
common to either two 3-cycles or a 3-cycle and a 4-cycle. In Fig. 4(a) and (b)
(resp. Fig. 4(c) and (d)), we show the positions in which two cops can occupy to
trap the robber at v of degree 3 (resp. degree 4).

For the situation where δ(G) = 4, by Lemma 4, there exists a vertex v of
degree 4, which is common to either two 3-cycles or a 3-cycle and a 4-cycle.
From the discussion made for the case of δ(G) = 3, the vertex v is the winning
one.

Finally, consider the situation in which δ(G) = 5. It follows from Lemma 3
that there exists a vertex v of degree 5 that does not belong to the k-cycle
(k ≥ 5), and is thus common to five 3- and/or 4-cycles. We show in Fig. 4(e)–(j)
all the winning positions against v. Again, the winning vertex exists. The proof
is complete. 	
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Fig. 4. Some instances of the winning vertex v in which N̄(v) ⊆ N̄(a) ∪ N̄(b), and the
cops’ winning positions a and b.
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Fig. 5. The labeling of vertices in the edge-contracted dodecahedral graph (a), and the
initial positions of two cops c1 and c2 in our strategy (b).

5 Two-Cops Strategy on the Edge-Contracted Regular
Dodecahedral Graph

In this section, we show that the edge-contracted regular dodecahedral graph,
which might be considered as the worst case of the planar graphs of order at most
19, has the cop number of two. Studying on the edge-contracted regular dodeca-
hedral graph may give some insights on the proof that the regular dodecahedral
graph is the smallest 3-cop-win planar graph and even on giving a method for
determining whether a graph is 2-cop-win or 3-cop-win.

Note that since the regular dodecahedral graph is vertex-symmetry, perform-
ing an edge contraction on any edge results in the same graph with difference
embeddings. As can be seen that a graph in Fig. 6(b) can be relabeled into a
graph in Fig. 5(a). For simplicity, we will use the embedding shown in Fig. 5(a)
to represent the edge-contracted regular dodecahedral graph.

Let the triple (a, b, v) denote the two winning positions a and b against v.
For the instance shown in Fig. 5(b), we have the following triples: (v5, v18, v2),
(v6, v19, v3), (v1, v10, v4), (v2, v8, v5), (v3, v9, v6), and (v1, v13, v7). The main part
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Fig. 6. Any graph resulted from performing an edge contraction on the regular dodec-
ahedral graph is the same graph of different embeddings.

of a winning strategy is how to enforce the robber into such a vertex v, and at the
same time two cops occupy the winning positions against v before the robber
escapes. Since the edge-contracted regular dodecahedral graph is specific, we
provide below a full strategy for it.

Initial placement of two cops and the robber: In our strategy, two cops
c1 and c2 occupy v13 and v15 in the labeling shown in Fig. 5(b). If the robber
initially occupies a vertex in N̄(C) = N̄(v13) ∪ N̄(v15), he will be captured by
the cops in the very first round. So, the robber can initially occupy one of the
following eleven vertices: v1, v2, v3, v4, v5, v6, v8, v9, v11, v14, and v19.

In the strategy below, we provide the movements of the cops, as well as
the choices of location the robber can move to without being caught. We use
c1(v → u) to denote the movement of c1 from v to u, and the robber’s choices of
movements after the cops’ turn (in the same round) are written after a semicolon.
Note that our goal is to show the existence of a capture strategy, but not the
attempt for giving an optimal strategy. We separate the vertices into three group;
(1) the vertices whose distances to both v13 and v15 are two, (2) the vertices
whose distances to v13 and v15 are two or three, and (3) the vertices whose
distances to both v13 and v15 are at least three. We will give the strategy till the
robber is trapped, since the robber can then be captured with one more round.

Let us first describe the scenarios in which the robber initially occupies a
vertex in group (1). The vertices in group (1) are v14 and v19.

Scenario R19: the robber initially occupies v19.

Round 1 c1(v13 → v13), c2(v15 → v18); r(v19 → v3).
Round 2 c1(v13 → v7), c2(v18 → v18); r(v3 → v1).
Round 3 c1(v7 → v7), c2(v18 → v2); r(v1 → v5).
Round 4 c1(v7 → v6), c2(v2 → v4); r(v5 → v8).
Round 5 c1(v6 → v9), c2(v4 → v10); r(v8 → v5).
Round 6 c1(v9 → v6), c2(v10 → v11); (a) r(v5 → v5) or (b) r(v5 → v4).
Case (a): r(v5 → v5) at the end of Round 6.

Round 7 c1(v6 → v1), c2(v11 → v11); r(v5 → v4).
Round 8 c1(v1 → v1), c2(v11 → v10); the robber r is trapped. (Round
9 one cop moves to r.)
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Case (b): r(v5 → v4) at the end of Round 6.
Round 7 c1(v6 → v1), c2(v11 → v10); the robber r is trapped.

Scenario R19 ends within nine rounds (the longest route is Case (a)).

Scenario R14: the robber initially occupies v14.

Round 1 c1(v13 → v12), c2(v15 → v15); r(v14 → v11).
Round 2 c1(v12 → v12), c2(v15 → v10); r(v11 → v8).
Round 3 c1(v12 → v9), c2(v10 → v10); r(v8 → v5).
Round 4 c1(v9 → v6), c2(v10 → v11); the same as the robber’s turn at Round
6 in Scenario R19.

Scenario R14 ends within seven rounds (it uses the final three rounds from
Scenario R19).

Next, we describe the scenarios in which the robber initially occupies a vertex
in group (2). The vertices in group (2) are v2, v3, v4, v6, v9, and v11.

Scenario R2: the robber initially occupies v2.

Round 1 c1(v13 → v7), c2(v15 → v18); (a) r(v2 → v1), or (b) r(v2 → v4).
Case (a): r(v2 → v1) at the end of Round 1.

Round 2 the same as Round 3 in Scenario R19.
Case (b): r(v2 → v4) at the end of Round 1.

Round 2 c1(v7 → v6), c2(v18 → v15); (b.1) r(v4 → v2), (b.2) r(v4 → v4),
or (b.3) r(v4 → v5)
Case (b.1): r(v4 → v2) at the end of Round 2 in Case (b).

Round 3 c1(v6 → v1), c2(v15 → v15); r(v2 → v4).
Round 4 c1(v1 → v1), c2(v15 → v10); the robber is trapped.

Case (b.2): r(v4 → v4) at the end of Round 2 in Case (b).
Round 3 c1(v6 → v1), c2(v15 → v10); the robber is trapped.

Case (b.3): r(v4 → v5) at the end of Round 2 in Case (b).
Round 3 c1(v6 → v1), c2(v15 → v10); r(v5 → v8).
Round 4 c1(v1 → v6), c2(v10 → v11); r(v8 → v5).
Round 5 the same as Round 7 in Case (a) of Scenario R19.

In Scenario R2, the robber is captured within seven rounds (the longest route
is Case (b.3), which uses final three rounds from Scenario R19).

Scenario R3: The robber initially occupies v3.

Round 1 c1(v13 → v7), c2(v15 → v18); r(v3 → v1).
Round 2 the same as Round 3 in Scenario R19.

Scenario R3 ends within eight rounds (one fewer round than Scenario R19).

Scenario R4: The robber initially occupies v4.

Round 1 c1(v13 → v7), c2(v15 → v15); (a) r(v4 → v2), (b) r(v4 → v4), or (c)
r(v4 → v5).
Case (a): r(v4 → v2) at the end of Round 1.
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Round 2 c1(v7 → v3), c2(v15 → v18); r(v2 → v4).
Round 3 c1(v3 → v1), c2(v18 → v15); the robber is trapped.

Case (b): r(v4 → v4) at the end of Round 1.
Round 2 c1(v7 → v6), c2(v15 → v15); the same as the robber’s turn at
Round 2 in Case (b) of Scenario R2.

Case (c): r(v4 → v5) at the end of Round 1.
Round 2 c1(v7 → v6), c2(v15 → v10); (c.1) r(v5 → v5), or (c.2) r(v5 → v8).
Case (c.1): r(v5 → v5) at the end of Round 2 in Case (c).

Round 3 c1(v6 → v1), c2(v10 → v11); r(v5 → v4).
Round 4 c1(v1 → v1), c2(v11 → v10); the robber is trapped.

Case (c.2): r(v5 → v8) at the end of Round 2 in Case (c).
Round 3 c1(v6 → v6), c2(v10 → v11); r(v8 → v5).
Round 4 the same as Case (a) at the end of Round 6 in Scenario
R19.

Scenario R4 ends in at most seven rounds (the longest route is Case (b)).

Scenario R6: The robber initially occupies v6.

Round 1 c1(v13 → v13), c2(v15 → v18); (a) r(v6 → v1), (b) r(v6 → v6) or (c)
r(v6 → v9).
Case (a): r(v6 → v1) at the end of Round 1.

Round 2 c1(v13 → v7), c2(v18 → v2); r(v1 → v5).
Round 3 c1(v7 → v6), c2(v2 → v4); r(v5 → v8).
Round 4 c1(v6 → v9), c2(v4 → v10); r(v8 → v5).
Round 5 the same as Round 4 in Scenario R14.

Case (b): r(v6 → v6) at the end of Round 1.
Round 2 c1(v13 → v12), c2(v18 → v2); (b.1) r(v6 → v6), or (b.2)
r(v6 → v7).
Case (b.1): r(v6 → v6) at the end of Round 2 in Case (b).

Round 3 c1(v12 → v12), c2(v2 → v1); r(v6 → v7).
Round 4 c1(v12 → v13), c2(v1 → v1); the robber is trapped.

Case (b.2): r(v6 → v7) at the end of Round 2 in Case (b).
Round 3 c1(v12 → v13), c2(v2 → v1); the robber is trapped.

Case (c): r(v6 → v9) at the end of Round 1.
Round 2 c1(v13 → v12), c2(v18 → v2); (c.1) r(v9 → v6), or (c.2)
r(v9 → v8).
Case (c.1): r(v9 → v6) at the end of Round 2 in Case (c).

Round 3 the same as Round 3 in Case (b.1) of Scenario R6.
Case (c.2): r(v9 → v8) at the end of Round 2 in Case (c).

Round 3 c1(v12 → v9), c2(v2 → v4); r(v8 → v11).
Round 4 c1(v9 → v12), c2(v4 → v10); r(v11 → v8).
Round 5 the same as Round 3 in Scenario R14.

Scenario R6 ends within eight rounds (the longest route is Case (c.2)).
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Scenario R9: The robber initially occupies v9.

Round 1 c1(v13 → v12), c2(v15 → v18); (a) r(v9 → v6) or (b) r(v9 → v8).
Case (a): r(v9 → v6) at the end of Round 1.

Round 2 c1(v12 → v12), c2(v18 → v2); (a.1) r(v6 → v6), or (a.2)
r(v6 → v7).
Case (a.1): r(v6 → v6) at the end of Round 2 in Case (a).

Round 3 c1(v12 → v12), c2(v2 → v1); r(v6 → v7).
Round 4 c1(v12 → v13), c2(v1 → v1); the robber is trapped.

Case (a.2): r(v6 → v7) at the end of Round 2 in Case (a).
Round 3 c1(v12 → v13), c2(v2 → v1); the robber is trapped.

Case (b): r(v9 → v8) at the end of Round 1.
Round 2 c1(v12 → v9), c2(v18 → v15); (b.1) r(v8 → v5), or (b.2)
r(v8 → v11).
Case (b.1): r(v8 → v5) at the end of Round 2 in Case (b).

Round 3 c1(v9 → v6), c2(v15 → v10); the same as the robber’s turn
at Round 2 in Case (c) of Scenario R4.

Case (b.2): r(v8 → v11) at the end of Round 2 in Case (b).
Round 3 c1(v9 → v12), c2(v15 → v10); r(v11 → v8).
Round 4 the same as Round 3 in Scenario R14.

Scenario R9 ends within eight rounds (the longest route is Case (b.1)).

Scenario R11: The robber initially occupies v11.

Round 1 c1(v13 → v12), c2(v15 → v10); r(v11 → v8).
Round 2 the same as Round 3 in Scenario R14.

Scenario R11 ends within six rounds.
Lastly, we describe the scenarios in group (3), which consists of v1, v5, and v8.

Scenario R1: The robber initially occupies v1.

Round 1 c1(v13 → v7), c2(v15 → v18); r(v1 → v5).
Round 2 c1(v7 → v6), c2(v18 → v2); (a) r(v5 → v5), or (b) r(v5 → v8).
Case (a): r(v5 → v5) at the end of Round 2.

Round 3 c1(v6 → v9), c2(v2 → v2); r(v5 → v5).
Round 4 c1(v9 → v8), c2(v2 → v2); the robber is trapped.

Case (b): r(v5 → v8) at the end of Round 2.
Round 3 c1(v6 → v9), c2(v2 → v4); r(v8 → v11).
Round 4 c1(v9 → v12), c2(v4 → v10); r(v11 → v8).
Round 5 the same as Round 4 in Case (b.2) of Scenario R9.

Scenario R1 ends within seven rounds (the longest route is Case (b)).

Scenario R5: The robber initially occupies v5.

Round 1 c1(v13 → v12), c2(v15 → v10); (a) r(v5 → v1), (b) r(v5 → v5), or
(c) r(v5 → v8).
Case (a): r(v5 → v1) at the end of Round 1.

Round 2 c1(v12 → v9), c2(v10 → v4); (a.1) r(v1 → v1), or (a.2) r(v1 → v3).
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Case (a.1): r(v1 → v1) at the end of Round 2 in Case (a).
Round 3 c1(v9 → v6), c2(v4 → v4); r(v1 → v3).
Round 4 c1(v6 → v7), c2(v4 → v2); r(v3 → v19).
Round 5 c1(v7 → v13), c2(v2 → v18); r(v19 → v3).
Round 6 the same as Round 2 in Scenario R19.

Case (a.2): r(v1 → v3) at the end of Round 2 in Case (a).
Round 3 c1(v9 → v6), c2(v4 → v2); (a.2.1) r(v3 → v3), or (a.2.2)
r(v3 → v19).
Case (a.2.1): r(v3 → v3) at the end of Round 3 in Case (a.2).

Round 4 c1(v6 → v6), c2(v2 → v18); r(v3 → v3).
Round 5 c1(v6 → v6), c2(v18 → v19); the robber is trapped.

Case (a.2.2): r(v3 → v19) at the end of Round 3 in Case (a.2).
Round 4 c1(v6 → v7), c2(v2 → v18); r(v19 → v17).
Round 5 c1(v7 → v13), c2(v18 → v15); r(v17 → v19).
Round 6 the same as Round 1 in Scenario R19.

Case (b): r(v5 → v5) at the end of Round 1.
Round 2 c1(v12 → v9), c2(v10 → v4); r(v5 → v1).
Round 3 the same as Round 3 in Case (a.1).

Case (c): r(v5 → v8) at the end of Round 1.
Round 2 the same as Round 3 in Scenario R14.

Scenario R5 ends within fourteen rounds (the longest route is Case (a.1)).

Scenario R8: The robber initially occupies v8.

Round 1 c1(v13 → v12), c2(v15 → v10); (a) r(v8 → v5) or (b) r(v8 → v8).
Case (a): r(v8 → v5) at the end of Round 1.

Round 2 the same as Round 2 in Case (b) of Scenario R5.
Case (b): r(v8 → v8) at the end of Round 1.

Round 2 the same as Round 3 in Scenario R14.

Scenario R8 ends within seven rounds.

Theorem 5. The edge-contracted dodecahedral graph of order 19 is 2-cop-win.

Proof. The full capture strategy using two cops for the edge-contracted regular
dodecahedral graph has been provided. As described above, the robber can be
captured within fourteen rounds. 	


Finally, it is interesting to note that the distance between two cops is always
kept to be at most three in our capture strategy.

6 Conclusions

We have proved in this paper that a winning vertex, at which two cops can
trap and capture the robber, exists in any planar graph of order at most 19,
and the planar graph resulted from performing a single edge contraction on the
regular dodecahedral graph is 2-cop-win. Although the proof for the latter is very
elementary, we hope a clever strategy can be developed in the future, not only for
the edge-contracted regular dodecahedral graph, but also for any planar graph
of order at most 19, so as to prove the conjecture that the regular dodecahedral
graph is the smallest 3-cop-win planar graph.
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Abstract. A total vertex cover is a vertex cover whose induced subgraph
consists of a set of connected components, each of which contains at
least two vertices. A t-total vertex cover is a total vertex cover where
each component of its induced subgraph contains at least t vertices. The
total vertex cover (TVC) problem and the t-total vertex cover (t-TVC)
problem ask for the corresponding cover set with minimum cardinality,
respectively. In this paper, we first show that the t-TVC problem is NP-
complete for connected subcubic grid graphs of arbitrarily large girth.
Next, we show that the t-TVC problem is NP-complete for 3-connected
cubic planar graphs. Moreover, we show that the t-TVC problem is APX-
complete for connected subcubic graphs of arbitrarily large girth.

1 Introduction

A vertex cover C is a subset of vertices of a graph such that every edge of
the graph is incident to at least one vertex in C. A vertex cover C is called
total, if it is a vertex cover of a graph such that, each vertex is adjacent to
at least one other vertex in C. In this paper, we consider t-total vertex cover,
which is a total vertex cover where each component of its induced subgraph
contains at least t vertices. By the definition of t-total vertex cover, a 2-total
vertex cover is a total vertex cover, and a 1-total vertex cover is a vertex cover.
The vertex cover (VC) problem, the total vertex cover (TVC) problem, and the
t-total vertex cover (t-TVC) problem, each asks for a corresponding set with
minimum cardinality, respectively. These formulated problems appear in various
applications. For instance, in a real scenario that someone needs to place the
security cameras at the cross junctions of streets so that the minimum number
of cameras is required to monitor all streets, the problem can be formulated as
the VC problem. Suppose that we make one further restriction that each camera
has also be monitored by another camera. Then such a restricted scenario can be
formulated as the TVC problem. If the security level is further increased up to
c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 515–528, 2017.
DOI: 10.1007/978-3-319-55911-7 37
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the level that each camera is connected to at least t other cameras through
the monitoring relationship, then such a high security level scenario may be
formulated as a t-TVC problem. As another example, the VC problem variants
can also model another scenario that some workers have the duty to locate the
optimal positions for placing ATMs at street corners of a city, such that every
street needs to have at least one ATM, and the minimum number of ATMs are
required.

Next, we define several technical terms used in this paper. A cubic graph
(also called a 3-regular graph) is a graph where every vertex has degree three. A
subcubic graph is a graph where every vertex has degree at most three. A grid
graph is an induced subgraph of a set of vertices from two dimensional grid. A
k-connected graph is a graph which does not contain a set of k−1 vertices whose
removal disconnects the graph. A ρ-path is a path of ρ vertices. A ρ-cycle is a
cycle of ρ vertices. The girth of a graph is the shortest cycle length in the graph.
The girth is considered to be infinity if the graph has no cycle. A connected
component of a graph is a maximal connected subgraph of the graph. A family
{ai}i∈I is a set of elements, such that an element ai in the family is associated
with an index i ∈ I.

The VC problem is an important classical graph optimization problem.
König’s theorem [7,10] indicates that the VC problem on bipartite graphs is
equivalent to the maximum matching problem on bipartite graphs, and there-
fore is solvable within polynomial time [8]. Karp [9] showed that the VC problem
is NP-complete for general graphs. Garey and Johnson [5] showed that the VC
problem is NP-complete for planar subcubic graphs. Murphy [11] showed that
the VC problem is NP-complete for planar subcubic graphs of arbitrarily large
girth. Uehara [12] later improved the result by showing that the VC problem is
NP-complete for 3-connected cubic planar graphs. In this paper, we show that
the t-TVC problem is also NP-complete for 3-connected cubic planar graphs.

The t-TVC problem is a close variation of the VC problem, and is investigated
in depth in this paper. First, we present the related work on NP-completeness
results for the TVC problem and the t-TVC problem. Both problems were first
introduced by Fernau and Manlove [4]. They showed that the t-TVC problem for
t ≥ 2 is NP-complete for planar subcubic graphs. In this paper, we make a step
forward to show that t-TVC problem for t ≥ 2 is NP-complete for connected
planar subcubic grid graphs of arbitrarily large girth.

There are also some existing work on approximability results for the t-TVC
problem. Fernau [4] showed that the t-TVC problem for t ≥ 1 is approximable
within two for general graphs. This implies that the t-TVC problem is in APX
for general graphs. In this paper, we further show that the t-TVC problem for
t ≥ 2 is APX-complete for subcubic graphs of arbitrarily large girth.

Outline. The rest of our paper is organized as follows. In Sect. 2, we first show
that the t-TVC problem for t ≥ 2 is NP-complete for connected subcubic grid
graphs of arbitrarily large girth. Next, in Sect. 3, we show that the t-TVC prob-
lem for t ≥ 2 is NP-complete for 3-connected cubic planar graphs. Furthermore,
in Sect. 4, we show that the t-TVC problem for t ≥ 2 is APX-complete for
connected subcubic graphs of arbitrarily large girth.
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2 NP-Completeness for Subcubic Grid Graphs
of Arbitrarily Girth

This section starts by showing that the TVC problem is NP-complete for con-
nected subcubic grid graphs of arbitrarily large girth in Subsect. 2.1. The NP-
hardness proof is via reduction from the rectilinear planar monotone 3-SAT
problem, which is known to be NP-complete [3], and uses very intricate gadgets
in the reduction. Then in Subsect. 2.2, we extend our proof strategy to show
that for any t ≥ 2, the t-TVC problem for connected subcubic grid graphs of
arbitrarily large girth is also NP-complete.

2.1 TVC Problem

Theorem 1. The TVC problem is NP-complete for connected subcubic grid
graphs of arbitrarily large girth.

Proof. We first show that the TVC problem is in NP. The decision version of
the TVC problem asks if there exists a total vertex cover of size of at most k,
for a given fixed number k. We solve the decision problem through a polynomial
number of guessing of the total vertex cover of size of at most k. In each guessing,
each vertex set in the total vertex cover has its incident edges removed. After
the edge removal, if there is no edge left, output “yes”; otherwise, output “no”.
Thus, the TVC problem is in NP. To show that the TVC problem is NP-hard,
we reduce from the rectilinear planar monotone 3-SAT problem [3].

The input instance of the rectilinear planar monotone 3-SAT problem is a
rectillinear representation drawing of a Boolean formula Φ. The Boolean formula
Φ = c0∧· · ·∧cm−1 is a conjunction of m clauses. Each clause ch = l′α,h∨l′β,h∨l′γ,h

of the Boolean formula Φ is a disjunction of three literals. The three literals of a
clause are either any three variables in the family {xi}n−1

i=0 , called positive literals,
or the negation of the three variables, called negative literals. The rectilinear
representation drawing consists of:

(a) A variable gadget X ′
i for each variable xi, represented by horizontal segments

lying on the x-axis.
(b) A clause gadget D′

h for each clause ch, represented by horizontal segments
lying on the upper side the x-axis if it consists of only positive true literals,
or lying on the lower side of the x-axis if it consists of only negative literals.

(c) A literal gadget L′
α,h, L′

β,h, or L′
γ,h for each of the three literals of clause ch,

represented by the vertical segment which links the clause gadget D′
h and

the variable gadget X ′
j together.

The outcome of the rectilinear planar monotone 3-SAT is “yes” if the Boolean
formula is satisfiable, and “no” otherwise. In the following, we proceed to con-
struct the TVC problem.

The input instance of the TVC problem is a connected subcubic grid graph
G of arbitrarily large girth g. The graph G is constructed according to the
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X1

Lα,1

D(α∨β),1

D(α∨β∨γ),1

Lβ,1 Lγ,1

v1,1 v1,2 v1,3 v1,4

Fig. 1. A constructed graph G for the Boolean expression Φ = (x1∨x2∨x3)∧(x1∨x2∨
x4) with a truth assignment x1 = True, x2 = False, x3 = False, and x4 = True.
We let p = 2 here; thus, the girth of the graph is 6(m+p) = 24. Solid bullets represent
the 138 vertices in a minimum total vertex cover of G.

rectilinear representation drawing of the Boolean formula Φ. We modify the
Boolean formula Φ, so that each of its clause c = l′α,h ∨ l′β,h ∨ l′γ,h = ¬(lα,h ∧
lβ,h∧lγ,h), where lα,h = ¬l′α,h, lβ,h = ¬l′β,h, lγ,h = ¬l′γ,h. However, the rectilinear
representation drawing of the Boolean formula Φ remains the same. Graph G
contains the following families of gadgets:

(1) The family of variable gadgets {Xi}n−1
i=0 : For any variable gadget Xi, its

vertex set is {vj,i}6(m+p)
j=1 ∪ {d3j−1,i}m

j=1 ∪ {d3j−1,i}2m+p
j=m+p+1, for a specified

number p ∈ N\{1}. (the second index of vj,i and d3j+2,i might be ignored for
brevity). These vertices induce a 6(m+p)-cycle v1 . . . v6(m+p)v1 and two fam-
ilies of edges {{v3j−1, d3j−1}}m

j=1 and {{v3j−1, d3j−1}}2m+p
j=m+p+1. Two sub-

graphs of the gadget, v6(m+p)v1 . . . v3mv3m+1 and v3(m+p) . . . v3(2m+p)+1, are
(3m+2)-paths parallel to the x-axis; the other two subgraphs of the gadget,
v3m+1 . . . v3(m+p) and v3(2m+p)+1 . . . v6(m+p), are 3p-paths parallel to the y-
axis. For a pair of variable gadgets in the family {(Xi,Xi+1)}n−2

i=0 , they have
the horizontal distance 2.

(2) The literal gadgets:
– The literal gadget Lα,h for the first literal lα,h of clause ch: The vertex set

of Lα,h is {uj,α,h}3(2h+1)
j=1 ∪ {d3j−1,α,h}2h+1

j=1 (the second and third indices
of uj,β,h and d3j−1,α,h might be ignored for brevity). These vertices induce
a (3(2h+1))-path u1 . . . u3(2h+1) parallel to y-axis and the family of edges
{{v3j−1, d3j−1}}2h+1

j=1 .
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– The literal gadget Lβ,h for the second literal lβ,h of clause ch: The ver-
tex set of Lβ,h is {uj,β,h}3(2h+1+(β−α)(m+1))

j=1 ∪{d3j−1,β,h}2h+1+(β−α)(m+1)
j=1

(the second and third indices of uj,β,h and d3j−1,β,h might be
ignored for brevity). These vertices induce a (3(2h + 1 + (β −
α)(m + 1)))-path u1 . . . u(3(2h+1+(β−α)(m+1))) and the family of edges
{{v3j−1, d3j−1}}2h+1+(β−α)(m+1)

j=1 . Its subgraph u1 . . . u3(2h+1)+1 is a
(3(2h + 1) + 1)-path parallel to the y-axis. The other subgraph
u3(2h+1)+1 . . . u3(2h+1+(β−α)(m+1)) is a (3(β − α)(m + 1))-path parallel to
the x-axis.

– The literal gadget Lγ,h for the third literal lγ,h of clause ch: The ver-
tex set of Lγ,h is {uj,γ,h}3(2h+2+(γ−α)(m+1))

j=1 ∪ {d3j−1,γ,h}2h+2+(γ−α)(m+1)
j=1

(the second and third indices of uj,γ,h and d3j−1,γ,h might be
ignored for brevity). These vertices induce a (3(2h + 2 + (γ −
α)(m + 1)))-path u1 . . . u3(2h+2+(γ−α)(m+1)) and the family of edges
{{v3j−1, d3j−1}}2h+2+(γ−α)(m+1)

j=1 . Its subgraph u1 . . . u3(2h+2)+1 is a
(3(2h + 2) + 1)-path parallel to the y-axis. The other subgraph
u3(2h+2)+1 . . . u3(2h+2+(γ−α)(m+1)) is a (3(γ − α)(m + 1))-path parallel to
the x-axis.

(3) The clause gadgets:
– The clause gadget D(α∨β),h for the clause c(α∨β),h = lα,h ∨ lβ,h: The vertex

set of D(α∨β),h is {uj,(α∨β),h}3j=1 ∪ {d(α∨β),h}. (the last two indices of
uj,(α∨β),h and d(α∨β),h might be ignored for brevity). These vertices induce
a 3-path u1u2u3 parallel to the y-axis and the edge {u2, d}.

– The clause gadget D(α∨β∨γ),h for the clause c(α∨β∨γ),h = c(α∨β),h ∨ lγ,h =
lα,h∨lβ,h∨lγ,h: The vertex set of D(α∨β∨γ),h is the family {uj,(α∨β∨γ),h}2j=1

of vertices (the second and third indices of uj,(α∨β∨γ),h might be ignored
for brevity). These vertices induce an edge {u1, u2} parallel to the y-axis.

The gadgets are linked together as specified in the following. D(α∨β∨γ),h

links to D(α∨β),h and Lγ,h through the edges {u1,(α∨β∨γ),h, u3,(α∨β),h} and
{u1,(α∨β∨γ),h, u3(2h+2+(γ−α)(m+1)),γ,h}. D(α∨β),h links to Lα,h and Lβ,h through
the edges {u1,(α∨β),h, u3(2h+1),α,h} and {u1,(α∨β),h, u3(2h+1+(β−α)(m+1)),β,h}. If
literal lα,h = xα, then L1,α,h links to Xα through the edge {u1,α,h, v(1+3h),α};
otherwise, if literal lα,h = xα, then L1,α,h links to Xα through the edge
{u1,α,h, v(3(2m+p)−3h),α}. In similar manners, Lβ,h links to Xβ , and Lγ,h links
to Xγ .

The girth g of the constructed connected subcubic grid graph G is 6(m+ p),
for a specified number p ∈ N \ {1}.

The outcome of the TVC problem is a minimum total vertex cover C, which
is reduced from a truth assignment on the variables of Boolean formula Φ.

(i) We first consider the minimum total vertex cover C of graph G on variable
gadgets. Every variable gadget Xi = (Vi, Ei) has two alternative choices of
C ∩ Vi of 4(m + p) vertices: One that is adjacent to the vertices of literal
gadgets, consisting of the family of vertices {{v3j−k}2k=1}2(m+p)

j=1 , chosen by
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us when variable xi = True. The other that is not adjacent to the vertices
of literal gadgets, consisting of the family of vertices {{v3j−k}1k=0}2(m+p)

j=1 ,
chosen by us when variable xi = False.

(ii) We then consider the minimum total vertex cover C of graph G on literal
gadgets.
– Every literal gadget Lα,h = (Vα,h, Eα,h) for the first literal lα,h

of clause ch has two alternative categories of choices of C ∩ Vα,h

of 2(2h + 1) = 2qα vertices. One that is adjacent to a ver-
tex of variable gadget, consisting of either the family of ver-
tices {{v3j−s}1s=0}qα

j=1, or {{{v3k−s}1s=0}j
k=1, {{v3k′−s′}2s′=1}qα

k′=j+1}qα−1
j=1 ,

or {{v3j−s}1s=0, v3qα−1, d3qα−1}qα−1
j=1 , or {{{v3k−s}1s=0}j

k=1, v3(j+1)−1,

d3(j+1)−1, {{v3k′−s′}}2s′=1}qα

k′=j+2}qα−2
j=1 , chosen by us when either the lit-

eral lα,h = xα = True, or lα,h = xα = True. The other that is adja-
cent to a vertex of variable gadget, consisting of the family of vertices
{{v3j−s}2s=1}qα

j=1, chosen by us when either the literal lα,h = xα = False,
or lα,h = xα = False.

– Every literal gadget Lβ,h = (Vβ,h, Eβ,h) for the second literal lβ,h

of clause ch has two alternative categories of choices of C ∩ Vβ,h of
2(2h + 1 + (β − α)(m + 1)) = 2qβ vertices. One that is adjacent
to a vertex of variable gadget, consisting of either the family of ver-
tices {{v3j−s}1s=0}qβ

j=1, or {{{v3k−s}1s=0}j
k=1, {{v3k′−s′}2s′=1}qβ

k′=j+1}qβ−1
j=1 ,

or {{v3j−s}1s=0, v3qβ−1, d3qβ−1}qβ−1
j=1 , or {{{v3k−s}1s=0}j

k=1, v3(j+1)−1,
d3(j+1)−1{{v3k′−s′}2s′=1}qβ

k′=j+2}qβ−2
j=1 , chosen by us when either the lit-

eral lβ,h = xβ = True, or lβ,h = xβ = True. The other that is adja-
cent to a vertex of variable gadget, consisting of the family of vertices
{{v3j−s}2s=1}qβ

j=1, chosen by us when either the literal lβ,h = xβ = False,
or lβ,h = xβ = False.

– Every literal gadget Lγ,h = (Vγ,h, Eγ,h) for the third literal lγ,h of clause
ch has two alternative categories of choices of C ∩ Vγ,h of 2(2h+ 2+ (γ −
α)(m + 1)) = 2qγ vertices, similar to that of Lβ,h.

(iii) We then consider the minimum total vertex cover C of graph G on clause
gadgets.
– Every clause gadget D(α∨β),h = (V(α∨β),h, E(α∨β),h) for the clause c(α∨β),h

has two alternative categories of choices of C ∩ D(α∨β),h of 2 vertices.
One that is adjacent to the vertices of literal gadgets, consisting of either
the set of vertices {u1, u3}, or {u2, u3}, chosen by us when the clause
c(α∨β),h = True. The other that is not adjacent to the vertices of literal
gadgets, consisting of the set of vertices {u1, u2}, chosen by us when the
clause c(α∨β),h = False.

– Every clause gadget D(α∨β∨γ),h = (V(α∨β∨γ),h, E(α∨β∨γ),h) for the clause
c(α∨β∨γ),h has two alternative categories of choices of C ∩D(α∨β∨γ),h. One
that consists of one vertex u1, chosen by us when the clause c(α∨β∨γ),h =
True. The other that consists of u1 and one more vertex u2, chosen by
us when the clause c(α∨β∨γ),h = False, i.e. the Boolean formula Φ is not
satisfied.
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Thus, the Boolean formula Φ is satisfied by a truth assignment if and only if the
constructed graph G has a total vertex cover C of size at most n · 4(m + p) +∑m−1

h=0 (2(h+1)+2(2h+1+(β−α)(m+1))+2(2h+2+(γ−α)(m+1))+2+1) =
4n(m + p) +

∑m−1
h=0 (2(5h + 4 + (β + γ − 2α)(m + 1)) + 3). This completes the

proof. �	

2.2 t-TVC Problem

We use the similar proof strategy as in Theorem 1, but with more involved
gadgets, to prove the following theorem, whose proof is omitted here.

Theorem 2. For any t ≥ 2, the t-TVC problem is NP-complete for connected
subcubic grid graphs of arbitrarily large girth.

3 NP-Completeness for 3-Connected Cubic Planar
Graphs

This section starts by showing that the TVC problem is NP-complete for 3-
connected cubic planar graphs in Subsect. 3.1. The NP-hardness proof is via
reduction from VC problem for any cubic planar graph, which is known to be
NP-complete [6], and uses very intricate gadgets in the reduction. Then in Sub-
sect. 3.2, we extend our proof strategy to show that for any t ≥ 2, t-TVC problem
for 3-connected cubic planar graphs is also NP-complete.

Lemma 1. [12] A cubic graph is 3-connected if and only if it is 3-edge-
connected.

To prove the NP-completeness for 3-connected cubic planar graphs, due to
Lemma 1, we only need to prove the NP-completeness for 3-edge-connected cubic
planar graphs, where a k-edge-connected graph is a graph that does not contain
a set of k − 1 edges whose removal disconnects the graph.

3.1 TVC Problem

Theorem 3. The TVC problem is NP-complete for 3-connected cubic planar
graphs.

Proof. Clearly, this problem is in NP. To show that this problem is NP-hard,
we show a polynomial-time reduction from a known NP-complete problem, the
VC problem for any cubic planar graph G1 [6]. The reduction has three steps.
First, the VC problem for any cubic planar graph G1 is reduced to the first TVC
problem for a 2-edge-connected cubic planar graph G2. Second, the first TVC
problem for a 2-edge-connected cubic planar graph G2 is reduced to the second
TVC problem for a 3-edge-connected cubic planar graph G3. Third, we use the
lemma given by Uehara [12] to show that G3 is a 3-edge-connected cubic planar
graph if and only if G3 is a 3-connected cubic planar graph.
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We show the first step of the reduction.
We formulate the VC problem in the following. The input instance of the

VC problem is a cubic planar graph G1. The outcome of the VC problem is the
minimum vertex cover C1 of graph G1.

We formulate the first TVC problem in the following.
The input instance of the first TVC problem is a 2-edge-connected cubic

planar graph G2. G2 is reduced from cubic planar graph G1. For each edge
e1 = {u, v} of G1, we add a parallel edge e′

1 = {u, v} to G1. Hence, each vertex
of G1 becomes a vertex of degree 6. Then we map each vertex of degree 6 to the
gadget H in graph G2 shown in Fig. 2(a). We also map each of the 6 incident
edges of the degree-6 vertex to an incident edge of each of the vertices t1 to t6,
respectively.

The outcome of the first TVC problem is a minimum total vertex cover C2

of graph G2, which is reduced from the minimum vertex cover C1 of graph G1.
For every vertex of G1 set in C1, it corresponds to the minimum total vertex
cover of the gadget H shown in Fig. 2(b), which has size of 10; for every vertex
of G1 set not in C1, it corresponds to the total vertex cover of size of 11 on the
gadget H shown in Fig. 2(c).

(a) (b)

t4

t1

t6

t2

t5

t3
t1

t6

t2

t5

t3
t1

t6

t2

t5

t3
(c)

t4 t4

Fig. 2. (a) The gadget H for the TVC problem, which is reduced from a degree-6
vertex v, and has the six neighbors of vertex v adjacent to the vertices t1 to t6. (b) The
minimum total vertex cover of the gadget H consisting of the 10 black vertices. (c) A
total vertex cover of size of 11 on the gadget H represented by the black vertices.

We now show that cubic planar graph G1 has a vertex cover C1 of size k1
if and only if 2-connected cubic planar graph G2 has a total vertex cover C2 of
size k1 + 10n1, where n1 is the number of vertices of graph G1. The “only if”
direction is straightforward. Now we prove the “if” direction. The 2-connected
cubic planar graph G2 has a number of n1 gadgets H. If a gadget H has more
than 11 vertices set in the minimum total vertex cover C2 of graph G2, then we
can construct a new minimum total vertex cover C ′

2 of graph G2, which includes
both the 11 black vertices of gadget H shown in Fig. 2(c) and the vertices of C2

which are not in gadget H. The size of C ′
2 is smaller than size of C2; hence, C2 is

not the minimum total vertex cover of graph G2. This results in a contradiction.
Hence, for each gadget H = (VH , EH) of graph G2, 10 ≤ |VH ∩ C2| ≤ 11. Those
gadgets H of graph G2 where |VH ∩ C2| = 11 can be mapped to vertices set
in the vertex cover C1 of graph G1. Let x be the number of gadgets H where
|VH ∩ C2| = 11. 10(n1 − x) + 11x = |C2| = k1 + 10n1. Thus, x = k1. Hence, the
graph G1 has k1 vertices set in C1. This completes the first step of the reduction.



On Complexity of Total Vertex Cover on Subcubic Graphs 523

We show the second step of the reduction. The first TVC problem has been
formulated in the first step. Now we formulate the second TVC problem in the
following.

The input instance of the second TVC problem is a 3-edge-connected cubic
planar graph G3. G3 is reduced from 2-connected cubic planar graph G2. For
each edge e2 = {u, v} of G2, we add a parallel edge e′

2 = {u, v} to G2. Hence,
each vertex of G2 becomes a vertex of degree 6. Then we map each vertex of
degree 6 to the gadget H in graph G3 shown in Fig. 2(a). We also map each of
the 6 incident edges of the degree-6 vertex to an incident edge of each of the
vertices t1 to t6, respectively.

The outcome of the second TVC problem is a minimum total vertex cover
C3 of graph G3, which is reduced from the minimum vertex cover C2 of graph
G2. For every vertex of G2 set in C2, it corresponds to the minimum total vertex
cover of the gadget H shown in Fig. 2(b), which has size of 10; for every vertex
of G2 set not in C2, it corresponds to the total vertex cover of size of 11 on the
gadget H shown in Fig. 2(c).

Then using similar arguments as in our first step of reduction, we can show
that 2-connected cubic planar graph G2 has a vertex cover C2 of size k2 if and
only if 3-connected cubic planar graph G3 has a total vertex cover C3 of size
k2 + 10n2, where n2 is the number of vertices of graph G2. This completes the
second step of the reduction.

Lemma 1 says that G3 is a 3-edge-connected cubic planar graph if and only
if G3 is a 3-connected cubic planar graph. Using this lemma, we complete the
proof. �	

3.2 t-TVC Problem

We use the similar proof strategy as in Theorem 3, but with more involved
gadgets, to prove the following theorem, whose proof is omitted here.

Theorem 4. For any t ≥ 2, the t-TVC problem is NP-complete for 3-connected
cubic planar graphs.

4 Approximation Hardness for Connected Subcubic
Graphs of Arbitrarily Girth

Fernau and Manlove [4] showed that the t-TVC problem for general graphs is
approximable within two. Thus, the t-TVC problem for general graphs, including
subcubic graphs, is in APX. In this section, we further prove that the t-TVC
problem for subcubic graphs is in fact APX-complete.

To prove the APX-completeness of a problem, we present an approximation-
preserving reduction, called L-reduction (“linear reduction”) [2], from the other
APX-complete problem to this problem. An L-reduction preserves the approx-
imability and the relative errors.

Next, we define the L-reduction formally. Let A be an optimization problem,
so that given any instance x of problem A, we can find a solution through an
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approximation algorithm in polynomial time. The solutions of problem A are
evaluated by the cost function cA of problem A. We want to reduce optimization
problem A to another optimization problem. Let B be another optimization
problem, and cB is the cost function of problem B. An L-reduction from problem
A to problem B is a pair of polynomial-time-computable functions f and h. Thus,
from an instance x of problem A, we derive the instance f(x) of problem B in
polynomial time; from the instance f(x) of problem B, we derive the solution
y′ of problem B through an approximation algorithm in polynomial time; from
the solution y′ of problem B, we derive the solution h(y′) of problem A in
polynomial time. L-reduction linearly preserves the relative error through two
positive constant factors α and β, so that

1. OPTB(f(x)) ≤ αOPTA(x), and
2. |OPTA(x) − cA(h(y′))| ≤ β|OPTB(f(x)) − cB(y′)|.

4.1 TVC Problem

In this subsection, we prove that the TVC problem for connected graphs of
subcubic graphs of arbitrarily large girth is APX-complete.

We show an L-reduction from the VC problem for connected subcubic graphs,
which is known to be APX-complete [1], to the TVC problem for connected sub-
cubic graphs of arbitrarily large girth g. The instance of the VC problem is
a connected subcubic graph G1 = (V1, E1). The instance of the TVC prob-
lem is a connected subcubic graph G2 = (V2, E2) of arbitrarily large girth g.
The function f of the L-reduction is from the set of every G1 to the set of
every G2. We then describe the function f in detail. We are given a graph
G1 = (V1, E1). The function f then map each vertex v ∈ V1 to a gadget H =
(VH , EH), where VH = {vi}k(g+1)

i=0 ∪{{{d3(j+1)+s+i(g+1)}1s=0}k−1
j=0}k−1

i=0 , and EH =
{{vi(g+1)v1+i(g+1), v(j mod g)+1+i(g+1)v(j+1 mod g)+1+i(g+1), v−2+(i+1)(g+1)

v(i+1)(g+1), {v3(j+1)+s+i(g+1)d3(j+1)+s+i(g+1)}1s=0}k−1
j=0}k−1

i=0 , g = 3k + 1, k ∈ N.
Moreover, for each vertex v ∈ V1, the function f maps the set of its existing inci-
dent edges {αv, βv, γv |N(v) = {α, β, γ}} to the set of incident edges of some
vertices of gadget H: {αv0, βv0, γvk(g+1) |v0, vk(g+1) ∈ VH}. See Fig. 3 for an
example. The resulting graph is G2.

γ

β

α

β

γ
v0 v1 v2 v6 v8 v15

v11v12

v13v14 v16
−→v

H

v9

v3 v4

v5 v7 v10

α

d3 d4 d11d12

Fig. 3. The function f of the L-reduction replaces each vertex v of graph G by the
gadget H in graph G2 of girth g = 3k + 1 = 7, when we let k = 2.

For the gadget H, the following lemma holds.
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Lemma 2. A total vertex cover of gadget H has size 2k2 + k, k ∈ N, if and
only if it does not include the vertex set {v0, vk(g+1)}. Moreover, a total vertex
cover of gadget H has size of 2k2 + k +1 if and only if it includes the vertex set
{v0, vk(g+1)}.
Proof. First, we find the size of the minimum total vertex cover of gadget
H. Hence, we need to find the size of the minimum total vertex cover of
each g-cycle in gadget H. Each g-cycle in gadget H has g = 3k + 1 ver-
tices, at least 2k + 1 of them are placed in the minimum total vertex cover
of gadget H. Since there are a number of k vertex-disjoint g-cycles in gad-
get H, the minimum total vertex cover of gadget H has size of 2k2 + k.
Furthermore, we can let the minimum total vertex cover of gadget H to be
{v1+i(g+1), {v3j+1+s+i(g+1)}1s=0, vg−1+i(g+1), vg+i(g+1)}k−1

j=0}k−1
i=0 , which includes

none of the vertices v0 and vk(g+1).
We then obtain a total vertex cover of gadget H of size equals to 2k2 +

k+1: {{vi(g+1), v1+i(g+1), {v3j+1+s+i(g+1)}1s=0, vg−1+i(g+1), vg+1+i(g+1)}k−1
j=0}k−1

i=0 ,
which includes both of the vertices v0 and vk(g+1). �	

The solution of the TVC problem is a total vertex cover D on a connected
subcubic graph G2 = (V2, E2) of arbitrarily large girth g. The solution of the
VC problem is a vertex cover C on a connected subcubic graph G1 = (V1, E1) of
arbitrarily large girth g. From the reduction, we have the function h from the set
of every D to the set of every C. We define function h in detail in the following
lemma.

Lemma 3. There is a polynomial-time reduction h such that for each total ver-
tex cover D in G2, if |D∩VH | = 2k2+k+1, then we replace D∩VH by a vertex
in h(D); otherwise, if |D ∩ VH | = 2k2 + k, then we replace D ∩ VH by a vertex
in (V1 \ h(D)). Moreover, h(D) is a vertex cover in G1.

Proof. To determine the function h, we have to confirm that its output is a vertex
cover h(D). By assumption, D is a total vertex cover of graph G2 = (V2, E2).
Hence, for each edge (u, v) ∈ E2, either u ∈ D ∧ v ∈ D, u ∈ D ∧ v /∈ D, or
u /∈ D ∧ v ∈ D. Thus, for each edge (s2, t2) and two gadgets H ′ = (VH′ , EH′),
H ′′ = (VH′′ , EH′′), so that (s2, t2) ∈ E2 \ (EH′ ∪EH′′), s2 ∈ {v′

1, v
′
k(g+1)} ⊂ VH′ ,

t2 ∈ {v′′
1 , v′′

k(g+1)} ⊂ VH′′ , we have three cases:

(i) s2 ∈ D ∧ t2 ∈ D. Thus, |D ∩ VH′ | = 2k2 + k + 1, |D ∩ VH′′ | = 2k2 + k + 1.
Then function h maps D ∩ VH′ to vertex s1 ∈ h(D), and maps D ∩ VH′′ to
vertex t1 ∈ h(D). Hence, vertex cover h(D) covers edge (s1, t1).

(ii) s2 /∈ D ∧ t2 ∈ D. Thus, |D ∩ VH′ | = 2k2 + k, |D ∩ VH′′ | = 2k2 + k+1. Then
function h maps D ∩ VH′ to vertex s1 ∈ (V1 \ h(D)), and maps D ∩ VH′′ to
vertex t1 ∈ h(D). Hence, vertex cover h(D) covers edge (s1, t1).

(iii) s2 ∈ D ∧ t2 /∈ D. Thus, |D ∩ VH′ | = 2k2 + k+1, |D ∩ VH′′ | = 2k2 + k. Then
function h maps D ∩VH′ to vertex s1 ∈ h(D), and maps D ∩VH′′ to vertex
t1 ∈ (V1 \ h(D)). Hence, vertex cover h(D) covers edge (s1, t1).

Therefore, h(D) is the vertex cover of graph G1. �	
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We also introduce the inverse function of the function h, that is the function
h−1 from the set of every C to the set of every D. We describe function h−1 in
detail in the following lemma.

Lemma 4. The inverse h−1 of the polynomial-time reduction h satisfies the
following condition. For each vertex cover C in G1, if v is in C, then we replace
v by (h−1(C) ∩ VH) of size 2k2 + k + 1; otherwise, if v is in (V1 \ C), then we
replace v by (h−1(C) ∩ VH) of size 2k2 + k Moreover, h−1(C) is a total vertex
cover in G2.

Proof. At the end, we need to confirm that h−1(C) for vertex cover C is a total
vertex cover. By assumption, C is a vertex cover of graph G1 = (V1, E1). Hence,
for each edge (s1, t1) ∈ E1, we have three cases:

(i) s1 ∈ C ∧ t1 ∈ C. Then function h−1 maps vertex s1 ∈ C and t1 ∈ C to
h−1(C)∩ VH′ and h−1(C)∩ VH′′ , so that |h−1(C)∩ VH′ | = 2k2 + k +1 and
|h−1(C)∩ VH′′ | = 2k2 + k +1. Thus, for each edge (s2, t2) and two gadgets
H ′ = (VH′ , EH′), H ′′ = (VH′′ , EH′′), so that (s2, t2) ∈ E2\(EH′∪EH′′), s2 ∈
{v′

1, v
′
k(g+1)} ⊂ VH′ , t2 ∈ {v′′

1 , v′′
k(g+1)} ⊂ VH′′ , we can conclude that s2 ∈

h−1(C) and t2 ∈ h−1(C). Therefore, h−1(C) covers edge (s2, t2). Moreover,
s2 and t2 are adjacent to vertices in h−1(C) ∩ VH′ and h−1(C) ∩ VH′′ .

(ii) s1 /∈ C ∧ t1 ∈ C. Then function h−1 maps vertex s1 /∈ C and t1 ∈ C to
h−1(C) ∩ VH′ and h−1(C) ∩ VH′′ , so that |h−1(C) ∩ VH′ | = 2k2 + k and
|h−1(C)∩ VH′′ | = 2k2 + k +1. Thus, for each edge (s2, t2) and two gadgets
H ′ = (VH′ , EH′), H ′′ = (VH′′ , EH′′), so that (s2, t2) ∈ E2\(EH′∪EH′′), s2 ∈
{v′

1, v
′
k(g+1)} ⊂ VH′ , t2 ∈ {v′′

1 , v′′
k(g+1)} ⊂ VH′′ , we can conclude that s2 /∈

h−1(C) and t2 ∈ h−1(C). Therefore, h−1(C) covers edge (s2, t2). Moreover,
s2 and t2 are adjacent to vertices in h−1(C) ∩ VH′ and h−1(C) ∩ VH′′ .

(iii) s1 ∈ C ∧ t1 /∈ C. Then function h−1 maps vertex s1 ∈ C and t1 ∈ C to
h−1(C) ∩ VH′ and h−1(C) ∩ VH′′ , so that |h−1(C) ∩ VH′ | = 2k2 + k + 1
and |h−1(C)∩VH′′ | = 2k2+ k. Thus, for each edge (s2, t2) and two gadgets
H ′ = (VH′ , EH′), H ′′ = (VH′′ , EH′′), so that (s2, t2) ∈ E2\(EH′∪EH′′), s2 ∈
{v′

1, v
′
k(g+1)} ⊂ VH′ , t2 ∈ {v′′

1 , v′′
k(g+1)} ⊂ VH′′ , we can conclude that s2 /∈

h−1(C) and t2 ∈ h−1(C). Therefore, h−1(C) covers edge (s2, t2). Moreover,
s2 and t2 are adjacent to vertices in h−1(C) ∩ VH′ and h−1(C) ∩ VH′′ .

Therefore, h−1(C) is the total vertex cover of graph G2. �	
By Lemma 3, for a total vertex cover D of G2, we know that |D| = |h(D)| +
(2k2 + k) · |V1|. And by Lemma 4, for a vertex cover C of G1, we know that
|C| = |h−1(C)| − (2k2 + k) · |V1|. Thus we have the following Lemma.

Lemma 5. Let h be the polynomial-time reduction from G2 to G1.

(i) For a total vertex cover D of G2, we have |h(D)| = |D| − (2k2 + k) · |V1|.
(ii) For a vertex cover C of G1, we have |C| = |h−1(C)| − (2k2 + k) · |V1|.
Using Lemma 5, we can derive the following lemma by performing simple calcu-
lations.
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Lemma 6. Let D∗ be the minimum total vertex cover of a connected subcubic
graph G2 = (V2, E2) of arbitrarily girth g, and C∗ be the minimum vertex cover
of a connected subcubic graph G1 = (V1, E1). Then |C∗| = |D∗|− (2k2+k) · |V1|.
Proof. By Lemma 5, we have that |C∗| ≤ |h(D∗)| = |D∗| − (2k2 + k) · |V1|, and
|D∗| ≤ |h−1(C∗)| = |C∗|+ (2k2 + k) · |V1|. Thus |C∗| = |D∗| − (2k2 + k) · |V1|. �	

We first determine the positive factor β of the L-reduction. From Lemmas 5
and 6, we see that |C| − |C∗| = |D| − |D∗|. Thus, β = 1.

Next, we determine the positive factor α of the L-reduction. Recall that
graph G1 = (V1, E1) is a connected subcubic graph. Thus, |V1| ≤ |E1| + 1 ≤∑

x∈C∗(deg(x)) + 1 ≤ ∑
x∈C∗(deg(x) + 1) = 4 · |C∗|. Hence, we can modify

Lemma 6 as follows: |D∗| = |C∗| + (2k2 + k) · |V1| ≤ |C∗| + 4(2k2 + k) · |C∗| =
(8k2+4k+1) · |C∗|. Therefore, α = 8k2+4k+1. Thus we obtain the L-reduction.

Hence, we have the following theorem.

Theorem 5. The TVC problem is APX-complete for connected subcubic graphs
of arbitrarily large girth g.

4.2 t-TVC Problem

We use the similar proof strategy as in Theorem 5, but with more involved
gadgets, to prove the following theorem, whose proof is omitted here.

Theorem 6. For any t ≥ 2, the t-TVC problem is APX-complete for connected
subcubic graphs of arbitrarily large girth g.
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Abstract. We study nondeterministic communication complexity and
related concepts (fooling sets, fractional covering number) of random
functions f : X ×Y → {0, 1} where each value is chosen to be 1 indepen-
dently with probability p = p(n), n := |X| = |Y |.

Keywords: Communication complexity · Random structures

1 Introduction

Communication Complexity lower bounds have found applications in areas as
diverse as sublinear algorithms, space-time trade-offs in data structures, com-
pressive sensing, and combinatorial optimization (cf., e.g., [11,27]). In combina-
torial optimization especially, there is a need to lower bound nondeterministic
communication complexity [18,30].

Let X,Y be sets and f : X × Y → {0, 1} a function. In nondeterministic
communication, Alice gets an x ∈ X, Bob gets a y ∈ Y , and they both have
access to a bit string supplied by a prover. In a protocol, Alice sends one bit
to Bob; the decision whether to send 0 or 1 is based on her input x and the
bit string z given by the prover. Then Bob decides based on his input y, the
bit string z given by the prover, and the bit sent by Alice, whether to accept
(output 1) or reject (output 0). The protocol is successful, if, (1) regardless of
what the prover says, Bob never accepts if f(x, y) = 0, but (2) for every (x, y)
with f(x, y) = 1, there is a proof z with which Bob accepts. The nondeterministic
communication complexity is the smallest number � of bits for which there is a
successful protocol with �-bit proofs.

Formally, the following basic definitions are common:

– The support is the set of all 1-entries: supp f := {(x, y) | f(x, y) = 1};
– a 1-rectangle is a cartesian product of sets of inputs R = A × B ⊆ X × Y all

of which are 1-entries: A × B ⊆ supp f ;
– a cover (or 1-cover) is a set of 1-rectangles {R1 = A1×B1, . . . , Rk = Ak ×Bk}

which together cover all 1-entries of f , i.e.,
⋃k

j=1 Rj = supp f ;
– the cover number C(f) of f is the smallest size of a 1-cover.
c© Springer International Publishing AG 2017
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DOI: 10.1007/978-3-319-55911-7 38
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One can then define the nondeterministic communication complexity simply as
N(f) := log2C(f) [21].

In combinatorial optimization, one wants to lower bound the nondeterminis-
tic communication complexity of functions which are defined based on relations
between feasible points and inequality constraints of the optimization problem
at hand: Alice has an inequality constraint, Bob has a feasible point, and they
should reject (answer 0) if the point satisfies the inequality with equality.

Consider, the following example (it describes the so-called permuthahedron).
Let k ≥ 3 be a positive integer.

– Let Y denote the permutations π of [k]—the feasible points.
– Let X denote the set of non-empty subsets U � [k]; such an U corresponds to

an inequality constraint
∑

u∈U π(u) ≥ |U |(|U | + 1)/2.

Goemans [13] gave an Ω(log k) lower bound for the nondeterministic communi-
cation complexity of the corresponding function:

f(π,U) =

{
0, if

∑
u∈U π(u) = |U |(|U | + 1)/2;

1, otherwise, i.e.,
∑

u∈U π(u) > |U |(|U | + 1)/2.

For k = 3, see the following table. The rows are indexed by the set X, the
columns by the set Y .

123 132 213 231 312 321
{1} 0 0 1 1 1 1
{2} 1 1 0 1 0 1
{3} 1 1 1 0 1 0

{1, 2} 0 1 0 1 1 1
{1, 3} 1 0 1 0 1 1
{2, 3} 1 1 1 1 0 0

In this situation, the nondeterministic communication complexity lower
bounds the logarithm of the so-called extension complexity: the smallest number
of linear inequalities which is needed to formulate the optimization problem.
This relationship goes back to Yannakakis’ 1991 paper [30], and has recently
been the focus of renewed attention [2,20] and a source of some breakthrough
results [9,10]. Other questions remain infamously open, e.g., the nondeterministic
communication complexity of the minimum-spanning-tree function: For a fixed
number k, Bob has a tree with vertex set [k], Alice has one of a set of inequality
constraints (see [28] for the details), and they are supposed to answer 1, if the
tree does not satisfy the inequality constraint with equality.

In this paper, we focus on random functions, and we give tight upper and
lower bounds for the nondeterministic communication complexity and its most
important lower bounds: the fooling set bound; the ratio number of 1-entries
over largest 1-rectangle; the fractional cover number. For that, we fix |X| =
|Y | = n, and, we take f(x, y), (x, y) ∈ X × Y , to be independent Bernoulli
random variables with parameter p = p(n), i.e., f(x, y) = 1 with probability p
and f(x, y) = 0 with probability 1 − p.
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In Communication Complexity, it is customary to determine these parame-
ters up to within a constant factor of the number of bits, but in applications, this
is often not accurate enough. E.g., the above question about the extension com-
plexity of the minimum-spanning-tree polytope asks where in the range between
(1 + o(1))2log n bits and (1 + o(1))3log n bits the nondeterministic communica-
tion complexity lies. (Here n should taken as |Y | = 2k − 2). In our analyses, we
focus on the constant factors in our communication complexity bounds.

1.1 Relationship to Related Work

In core (Communication) Complexity Theory, random functions are usually used
for establishing that hard functions exist in the given model of computation.
In this spirit, some easy results about the (nondeterministic) communication
complexity of random functions and related parameters exist, with p a constant,
mostly p = 1/2 (e.g., the fooling set bound is determined in this setting in [8]).

In contrast to this, in applications, the density of the matrices is typically
close to 1, e.g., in combinatorial optimization, the number of 0 s in a “row”
{y ∈ Y | f(x, y) = 0}, is very often polylog of n. This makes necessary to look at
these parameters in the spirit of the study of properties of random graph where
p = p(n) → 1 with n → ∞. In an analogy to the fields of random graphs, the
results become both considerably more interesting and also more difficult that
way.

The random parameters we analyze have been studied in other fields beside
Communication Complexity. Recently, Izhakian, Janson, and Rhodes [16] have
determined asymptotically the triangular rank of random Boolean matrices with
independent Bernoulli entries. (The triangular rank is itself important in Com-
munication Complexity, and is a lower bound to the size of a fooling set). In
that paper, determining the behavior for p → 0, 1 is posed as an open problem.

The size of the largest monochromatic rectangle in a random Bernoulli matrix
was determined in [26] when p is bounded away from 0 and 1, but their technique
fails for p → 1.

The nondeterministic communication complexity of a the clique-vs-stable set
problem on random graphs was studied in [4].

The parameters we study in this paper are of importance beyond Communi-
cation Complexity and its direct applications. In combinatorics, e.g., the cover
number coincides with strong isometric dimension of graphs [12], and has con-
nections to extremal set theory and Coding Theory [14,15].

The size of the largest monochromatic rectangle is of interest in the analysis
of gene expression data [26], and formal concept analysis [6].

Via a construction of Lovász and Saks [24], the 1-rectangles, covers, and
fooling sets of a function f correspond to stable sets, colorings, and cliques,
resp., in a graph constructed from the function. Consequently, determining these
parameters could be thought of as analyzing a certain type of random graphs.
This approach does not seem to be fruitful, as the probability distribution on the
set of graphs seems to have little in common with those studied in random graph
theory. Here is an important example for that. In the usual random graph models
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(Erdős-Renyi, uniform regular), the chromatic number is within a constant factor
of the independence ratio (i.e., the quotient independence number over number
of vertices), and, in particular, of the fractional chromatic number (which lies
between the two). The corresponding statement (replace “chromatic number”
by “cover number”; “independence ratio” by “Hamming weight of f divided by
the size of the largest 1-rectangle”; “fractional chromatic number” by “fractional
cover number”) is false for random Boolean functions, see Sect. 4.

This paper is organized as follows. We determine the size of the largest mono-
chromatic rectangle in Sect. 2. Section 3 is dedicated to fooling sets: we give tight
upper and lower bounds. Finally, in Sect. 4 we give bounds for both the covering
number and the fractional covering number.

1.2 Definitions

A Boolean function f : X × Y → {0, 1} can be viewed as a matrix whose rows
are indexed by X and the columns are indexed by Y . We will use the two
concepts interchangeably. In particular, for convenience, we speak of “row” x
and “column” y. We always take n = |X| = |Y | without mentioning it. A random
Boolean function f : X × Y → {0, 1} with parameter p is the same thing as a
random n × n matrix with independent Bernoulli entries with parameter p.

We use the usual conventions for asymptotics: g � h and g = o(h) is the
same thing. As usual, g = Ω(1) means that g is bounded away from 0. We
are interested in asymptotic statements, usually for n → ∞. A statement (i.e.,
a family of events En, n ∈ N) holds asymptotically almost surely, a.a.s., if its
probability tends to 1 as n → ∞ (more precisely, lim

n→∞P(En) = 1).

2 Largest 1-Rectangle

As mentioned in the introduction, driven by applications in bioinformatics,
the size of the largest monochromatic rectangle in a matrix with indepen-
dent (Bernoulli) entries, has been studied longer than one might expect. Ana-
lyzing computational data, Lonardi, Szpankowski, and Yang [22,23] conjec-
tured the shape of the 1-rectangles. The conjecture was proven by Park and
Szpankowski [26]. Their proof can be formulated as follows: Let f : X × Y →
{0, 1} be a random Boolean function with parameter p.

– If Ω(1) = p ≤ 1/e, then, a.a.s., the largest 1-rectangle consists of the 1-entries
in a single row or column, and R1(f) = (1 + o(1))pn.

– If p ≥ 1/e but bounded away from 1, then with a := argmaxb∈{1,2,3,... }bp
b,

a.a.s. the largest 1-rectangle has a rows and pan columns, or vice-versa.

The existence of these rectangles is fairly obvious. Proving that no larger
ones exist requires some work. The problem with the union-bound based proof
in [26] is that it breaks down if p tends to 1 moderately quickly. In our proofs,
we work with strong tail bounds instead.
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Our result extends the theorem in [26] for the case that p tends to 0 or 1
quickly.

For K ⊆ X, the 1-rectangle of f generated by K is R := K × L with

L :=
{

y ∈ Y | ∀ x ∈ K : f(x, y) = 1
}

.

The 1-rectangle generated by a subset L of Y is defined similarly.

Theorem 2.1. Let f : X ×Y → {0, 1} be a random Boolean function with para-
meter p = p(n).

(a) If 5/n ≤ p ≤ 1/e, then a.a.s., the largest 1-rectangle is generated by a single
row or column, and if p 
 (ln n)/n, its size is (1 + o(1))pn.

(b) Define
a− := �log1/pe�,
a+ := log1/pe�, and

a := argmaxb∈{a−,a+}bp
b = argmaxb∈{1,2,3,... }bp

b.

(1)

There exists a constant λ0, such that if 1/e ≤ p ≤ 1 − λ0/n, then, a.a.s., a
largest 1-rectangle is generated by a rows or columns and its size is (1 +
o(1))apan.

The proof requires us to upper bound the sizes of square 1-rectangles, i.e.,
R = K × L with |K| = |L|. Sizes of square 1-rectangles have been studied,
too. Building on work in [6,7,26], it was settled in [29], for constant p. We need
results for p → 0, 1, but, fortunately, for our theorem, we only require weak
upper bounds.

For the proof of (a), we say that a 1-rectangle is bulky, if it extends over at
least 2 rows and also over at least 2 columns. We then proceed by considering
three types of rectangles:

1. those consisting of exactly one row or column (they give the bound in the
theorem);

2. square bulky rectangles;
3. bulky rectangles which are not square.

For the proof of (b), we also require an appropriate notion of “bulky”: here,
we say that a rectangle of dimensions k×� is bulky if k ≤ �. By again considering
square rectangles, we prove that a bulky rectangle must have k < n/λ2/3. (We
always define λ through p = 1 − λ/n). By exchanging the roles of rows and
columns, and multiplying the final probability estimate by 2, we only need to
consider 1-rectangles with at least as many columns as rows (i.e., bulky ones).
Following that strategy yields the statement of the theorem.

The complete proof will be in the full version of the paper.

Remark 1.(a) If p ≥ 1/e, then

1/e2 ≤ p

e
≤ p · plog1/pe ≤ pa ≤ 1

p
· plog1/pe ≤ 1

pe
≤ 1/e, (2)

i.e., pa ≈ 1/e, more accurately pa = (1 − op→1(1))/e.
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(b) With p = 1 − p̄ = 1 − λ/n, the following makes the range of R1(f) clearer:
Since p̄ ≤ ln(1/(1−p̄)) ≤ p̄ + p̄2 holds when p̄ ≤ 1 − 1/e, we have

1
ep̄

=
n

eλ
≤ p

n

λ
=

p

p̄
≤ 1

1 + p̄
· 1
p̄

≤ log1/pe ≤ 1
p̄

=
n

λ
(3)

Corollary 1. For p = 1 − λ
n with λ0 ≤ λ = o(n), we have R1(f) =

n2

eλ
+ O(n).

See the full version of the paper for the proof.

3 Fooling Sets

A fooling set is a subset F ⊆ X ×Y with the following two properties: (1) for all
(x, y) ∈ F , f(x, y) = 1; and (2) and for all (x, y), (x′, y′) ∈ F , if (x, y) �= (x′, y′)
then f(x, y′)f(x′, y) = 0. When f is viewed as a matrix, this means that, after
permuting rows and columns, F identifies the diagonal entries of a submatrix
which is 1 on the diagonal, and in every pair of opposite off-diagonal entries, at
least one is 0. We denote by F(f) the size of the largest fooling set of f . The
maximum size of a fooling set of a random Boolean function with p = 1/2 is easy
to determine (e.g., [8]).

An obvious lower bound to the fooling set size is the triangular rank, i.e.,
the size of the largest triangular submatrix (again after permuting rows and
columns). In a recent Proc. AMS paper, Izhakian, Janson, and Rhodes [16]
determined the triangular rank of a random matrix with independent Bernoulli
entries with constant parameter p. They left as an open problem to determine
the triangular rank in the case when p → 0 or 1, which is our setting.

Our constructions of fooling sets of random Boolean functions make use of
ingredients from random graph theory. First of all, consider the bipartite Hf

whose vertex set is the disjoint union of X and Y , and with E(Hf ) = supp f ⊆
X. For random f , this graph is an Erdős-Renyi random bipartite graph: each edge
is picked independently with probability p. Based on the following obvious fact,
we will use results about matchings in Erdős-Renyi random bipartite graphs:

Remark 2. Let F ⊆ X × Y . The following are equivalent.

(a) F is a fooling set.
(b) F satisfies the following two conditions:

– F is a matching, i.e., F ⊆ E(H);
– F is cross-free, i.e., for all (x, y), (x′, y′) ∈ F , if (x, y) �= (x′, y′) then

(x, y′) /∈ E or (x′, y) /∈ E.

Secondly, fooling sets can be obtained from stable sets in an auxiliary graph:
For a random Boolean function f , this graph is an Erdős-Renyi random graphs,
for which results are available yielding good lower bounds.

Figure 1 summarizes our upper and lower bounds: Upper bounds are above
the dotted lines; lower bounds are below the dotted lines; the range for p is
between the dotted lines. All upper bounds are by the 1st moment method.
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Fig. 1. Upper and lower bounds on fooling set sizes. (δ := 1 − p2)

We emphasize that the upper and lower bounds differ by at most a constant
factor. If p → 1 quickly enough, i.e., p̄ = 1 − p = n−a for a constant a, then the
upper bounds and lower bounds are even the same except for rounding.

3.1 Statement of the Theorem, and a Glimpse of the Proof

Denote by ν(H) the size of the largest matching in a bipartite graph H. For
q = q(m), denote by Gm,q the graph with vertex set {1, . . . , m} in which each of
the

(
m
2

)
possible edges is chosen (independently) with probability q. Let a(q) =

am(q) be a function with the property that, a.a.s., every Erdős-Renyi random
graph on m vertices with edge-probability q has an independent set of size at
least am(q).

Theorem 3.1. Let f : X ×Y → {0, 1} be a random Boolean function with para-
meter p = p(n). Define p̄ := 1 − p and δ := 1 − p2.

(a) For n−3/2 ≤ p = o(1/
√

n), a.a.s., we have

F(f) = (1 − o(1))ν(Hf ).

(b) If pn − ln n → ∞, then, a.a.s., F(f) ≥ a(p2).
(c) If p 
 √

(ln n)/n and p̄ ≥ n−o(1), then, a.a.s.,

F(f) ≤ 2log1/δ(pn2).

(d) If a ∈ ]0, 4[ is a constant and p̄ = n−a, then F(f) ≤ 4/a + 1. If, in addition,
a < 1, then F(f) = �4/a� + 1

The proof is omitted due to space constraints (see full version).
To obtain the bounds in Fig. 1, the following facts from random graph theory

are needed.

Theorem 3.2 (Matchings in Erdős-Renyi random bipartite graphs, cf.,
e.g., [17]). Let H = (X,Y,E) be a random bipartite graph with |X| = |Y | = n,
and edge probability p.
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(a) If p 
 1/n, then, a.a.s., H has a matching of size (1 − o(1))n.
(b) If p = (ω(n) + lnn)/n for an ω which tends to ∞ arbitrarily slowly, then,

a.a.s, H has a matching of size n.

Theorem 3.3 (Stable sets in Erdős-Renyi random graphs). Let G =
([m], E) be a random graph with {u, v} ∈ E with edge probability q = q(m).

(a) E.g., [17]: Let ω = ω(m) tend to ∞ arbitrarily slowly. If ω/m ≤ q = 1−Ω(1),
then a.a.s., G has a stable set of size at least

2
ln(qm) − ln ln(qm)

ln(1 − q)
.

(b) Greedy stable set: If q = Ω(1), then, a.a.s., G has a stable set of size at least

ln(m)
ln(1 − q)

.

For the region p = Θ(1/
√

n), there is a corresponding theorem (e.g., [5]). We
give here an argument about the expectation based on Turán’s theorem. Turán’s
theorem in the version for stable sets [1] states that in a graph with vertex set V ,
there exists a stable set of size at least

∑

v∈V

1
deg(v) + 1

,

where deg(v) denotes the degree of vertex v. For random graphs on vertex
set V = [m] with edge probability q = c/m for a constant c, using Jensen’s
inequality, we find that there expected size of the largest stable set is at least

E

(
∑

v∈V

1
deg(v) + 1

)

=
∑

v∈V

E
(

1
deg(v) + 1

)

≥
∑

v∈V

1
Edeg(v) + 1

=
2m

q(m − 1) + 1
≥ 2m

c + 1
= Θ(m).

4 Fractional Cover Number and Cover Number

Armed with the fooling set and 1-rectangle-size lower bounds, we can now bound
the cover number and the fractional cover number. We start with the easy case
p ≤ 1/2.

Let f be a random Boolean function X × Y → {0, 1} with parameter p, as
usual. If 1/n � p ≤ 1/2, we have C(f) = (1 − o(1))n. Indeed, for p = o(1/

√
n),

Theorem 3.1(a) gives the lower bound based on the fooling set lower bound.
For 1/e ≥ p 
 (ln n)/n), Theorem 2.1(a) yields R1(f) = (1 + o(1))pn, a.a.s.,
and for 1/e ≤ p ≤ 1/2, the value of a in Eq. (1) of Theorem 2.1(b) is 1, so that
R1(f) = (1 + o(1))pn there, too. We conclude that, a.a.s.,

C(f) ≥ |supp f |
R1(f)

=
(1 − o(1))pn2

(1 − o(1))pn
= (1 − o(1))n.
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As indicated in the introduction, the case p > 1/2 is more interesting, both from
the application point of view and from the point of view of the proof techniques.

For the remainder of this section, we assume that p > 1/2. Define p̄ := 1 − p,
and λ := p̄n.

4.1 The Fractional Cover Number

We briefly review the definition of the fractional cover number. Let f be a fixed
Boolean function, and let R be a random 1-rectangle of f , drawn according to
a distribution π. Define

γ(π) := min
{

P
R∼π

(
(x, y) ∈ R

) | (x, y) ∈ supp f
}

.

The fractional cover number is C∗(f) := minπ 1/γ(π), where the minimum is
taken over all distributions π on the set of 1-rectangles of f .

The following inequalities are well-known [21].

|supp f |
R1(f)

F(f)

⎫
⎬

⎭
≤ C∗(f) ≤ C(f) ≤

(∗)

(
1 + lnR1(f)

)
C∗(f). (5)

Lower Bound. Theorem 2.1(b) allows us to lower bound C∗(f). Let f be a
random Boolean function X × Y → {0, 1} with parameter p > 1/2. With λ/n =
p̄ = 1 − p, we have a.a.s.,

|supp f |
R1(f)

≥ (1 + o(1))pn2

(1 + o(1))n/e ln(1/p)
= (1 + o(1)) ep ln(1/p)n ≥ (1 − o(1)) epλ(6)

where the last inequality follows from p̄ ≤ p̄ + p̄2/2 + p̄3/3 + · · · = ln(1/(1 − p̄)).
For p̄ = o(1), this is asymptotic to eλ. It is worth noting that the first inequality
in (6) becomes an asymptotic equality if p̄ = o(1).

Upper Bound. We now give upper bounds on C∗(f). To prove an upper
bound b on the fractional cover number for a fixed function f , we have to give a
distribution π on the 1-rectangles of f such that, if R is sampled according to π,
we have, for all (x, y) with f(x, y) = 1,

P((x, y) ∈ R) ≥ 1/b.

To prove an “a.a.s.” upper bound for a random f , we have to show that

P
(

∃(x, y) : P
(
(x, y) ∈ R | f & f(x, y) = 1

)
< 1/b

)
= o(1). (7)

Our random 1-rectangle R within the random Boolean function f is sampled
as follows. Let K be a random subset of X, by taking each x into K indepen-
dently, with probability q. Then let R := K × L be the 1-rectangle generated
(see p. 5) by the row-set K, i.e., L := {y | ∀x ∈ K : f(x, y) = 1}.
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For y ∈ Y , let the random variable Zy count the number of x ∈ X with
f(x, y) = 0—in other words, the number of zeros in column y—and set Z :=
maxy∈Y Z. For (x, y) ∈ X ×Y , conditioned on f and f(x, y) = 1, the probability
that (x, y) ∈ R equals

q(1 − q)Zy ≥ q(1 − q)Z ,

so that for every positive integer z, using 1/b = q(1 − q)z in (7),

P
(

∃(x, y) : P
(
(x, y) ∈ R | f & f(x, y) = 1

)
< q(1 − q)z

)
= P(Z > z). (8)

To obtain upper bounds on the fractional cover number, we give a.a.s. upper
bounds on Z, and choose q accordingly.

Theorem 4.1. Let 1/2 > p = 1 − p̄ = 1 − λ/n.

(a) If ln n � λ < n/2, then, a.a.s., (1 − o(1)) peλ ≤ C∗(f) ≤ (1 + o(1)) eλ
(b) If λ = Θ(ln n), then, a.a.s., C∗(f) = Θ(ln n).
(c) If 1 � λ = o(ln n), then, a.a.s.,

(1 − o(1)) λ ≤ C∗(f) ≤ (1 + o(1)) emax
(
2λ,

ln n

ln((lnn)/λ)

)

To summarize, we can determine the fractional cover number accurately in the
region ln n � λ � n. For λ = Θ(ln n) and for λ = Θ(n), we can determine
C∗(f) up to a constant. However, for λ = o(ln n), there is a large gap between
our upper and lower bounds.

Proof. The lower bounds follow from the discussion above.
Proof of the upper bound in (a). For every constant t > 0, let

ψ(t) := 1/
(
(1 + t) ln(1 + t) − t

)
.

With

h(t) = h(t, n) :=
λ

ψ(t) ln n
,

using the a standard Chernoff estimate (Theorem 2.1, Eq. (2.5) in [17]) we find
that

P
(
Z1 ≥ (1 + t)λ

) ≤ e−λ/ψ(t) ≤ e−h(t)n,

so that, by the union bound,

P
(
Z ≥ (1 + t)λ

) ≤ e−h(t). (10)

For every fixed t > 0, h(t) tends to infinity with n, so that the RHS in (10)
is o(1). Using that in (8), we obtain

P

(
∃(x, y) : P

(
(x, y) ∈ R | f & f(x, y) = 1

)
< q(1 − q)(1+t)λ

)
= P(Z > (1 + t)λ) = o(1),
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and, taking q := 1
(1+t)λ , we obtain, a.a.s.,

C∗(f) ≤ 1
q(1 − q)(1+t)λ

≤ 1 + t

1 + 1
(1+t)λ

eλ,

where we used (1−ε)k ≥ (1−kε2)e−kε for ε < 1. Since this is true for every t > 0,
we conclude that, a.a.s., C∗(f) ≤ (1 − o(1))eλ.

Proof of the upper bounds in (b), (c). Here we use a slightly different Chernoff
bound: it is almost exactly Theorem 5.4 in [25], except that we allow λ → ∞
slowly:

Lemma 1. Let p̄ = λ/n with 1 < λ = o(n), and 2λ ≤ α ≤ n/2. The probability
that a Bin(n, p̄) random variable is at least α is at most

O
(
1/

√
α
) · e−λ

(eλ

α

)α

. (11)

No we can proceed with the main proof. For (b), suppose that λ ≤ C ln n for
a constant C > 1. Using Lemma 1 with α = e2C ln n, we obtain

P
(
Z1 ≥ e2C ln n

)
= O

(
1/

√
lnn

)
e−λ

( eC ln n

e2C ln n

)α

= O
(
1/

√
lnn

)
e− lnn.

and thus

P
(
Z ≥ e2C ln n

)
= o(1).

We conclude similarly as above: with q := 1
e2C lnn we obtain, a.a.s., C∗(f) ≤

e3C ln n.
Finally, for (c), if λ = o(ln n), let ε > 0 be a constant, and use Lemma 1

again, with

α := max
(

2λ,
(1 + ε) ln n

ln
(
lnn
eλ

)
)

.

We find that

P
(
Z1 ≥ α

)
= o

(
e−α ln(α/eλ)

)
,

and the usual calculation shows that α ln(α/eλ) ≥ ln n, which implies

P
(
Z ≥ α

)
= o(1).

Conclude similarly as above, with q := 1
α , we obtain, a.a.s.,

C∗(f) ≤ eα = emax

(

2λ, (1 + ε)
ln n

ln
(
lnn
eλ

)

)

.

One obtains the statement in the theorem by letting ε tend to 0; the e-factor in
the denominator of the ln of the denominator in α is irrelevant as n → ∞.
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The Cover Number. Inequality (∗) in (5) gives us corresponding upper bounds
on the cover number.

Corollary 2. We have (1 − o(1))λ ≤ C(f), and:

(a) if ln n � λ = O(n/ ln n), then, a.a.s., C(f) = O(λ ln n);
(b) if λ = Θ(ln n), then, a.a.s., C(f) = O(ln2 n);

(c) if 1 � λ = o(ln n), then, a.a.s., C(f) = O
(
max

(
λ ln n,

ln2 n

ln((ln n)/λ)

))
. ��

4.2 Binary-Logarithm of the Number of Distinct Rows, and the
Ratio C/C∗

When we view f as a matrix, the binary logarithm of the number of distinct
rows is a lower bound on the cover number of f [21]. We have the following.

Proposition 1

(a) If 1/2 ≥ p̄ = Ω(1/n), then, a.a.s., the 2-Log lower bound on C(f) is (1 −
o(1))log2n.

(b) If p̄ = n−γ for 1 < γ ≤ 3/2, then a.a.s., the 2-Log lower bound on C(f) is
(1 − o(1))(2 − γ)log2n.

Proof. Directly from the following Lemma 2 about the number of distinct rows,
with λ = n1−γ .

Lemma 2

(a) If 1/2 ≥ p̄ = Ω(1/n), then, a.a.s., f has Θ(n) distinct non-zero rows.
(b) With p̄ = λ/n, if n−1/2 ≤ λ ≤ 1/2, then, a.a.s., f has Ω(λn) distinct non-zero

rows.

(The constants in the big-Omegas are absolute)

Erdős-Renyi random graphs have the property that the chromatic number is
within a small constant factor from the lower bound one obtains from the inde-
pendence ratio. For the cover number of Boolean functions, this is not the case.
Indeed, Theorem 4.1(c), together with Proposition 1, shows that, a.a.s.,

C(f)
C∗(f)

≥ (1 + o(1))
log2n
lnn

ln
(

ln n
λ

)
= Ω

(
ln

( ln n

λ

))
,

which is Ω(ln lnn) if λ = lno(1) n.
This gap is more pronounced in the (not quite as interesting) situation when

λ = o(1). Consider, e.g., λ = n−ε, for some ε = ε(n) = o(1/ ln lnn), say. Simi-
larly to the proofs of Theorem4.1, we obtain that C∗(f) ≤ emax(10, 2/ε). (The
max-term comes from the somewhat arbitrary upper bound Z ≤ max(10, 2/ε)).
For the Log-2 lower bound on the cover number, we have (1 − ε)log2n, by
Proposition 1, and thus

C(f)
C∗(f)

= Ω(ε ln n).
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Abstract. Pareto-optimal solutions are one of the most important and
well-studied solution concepts in multi-objective optimization. Often the
enumeration of all Pareto-optimal solutions is used to filter out unrea-
sonable trade-offs between different criteria. While in practice, often only
few Pareto-optimal solutions are observed, for almost every problem with
at least two objectives there exist instances with an exponential number
of Pareto-optimal solutions. To reconcile theory and practice, the num-
ber of Pareto-optimal solutions has been analyzed in the framework of
smoothed analysis, and it has been shown that the expected value of this
number is polynomially bounded for linear integer optimization prob-
lems. In this paper we make the first step towards extending the existing
results to non-integer optimization problems. Furthermore, we improve
the previously known analysis of the smoothed number of Pareto-optimal
solutions in bicriteria integer optimization slightly to match its known
lower bound.

1 Introduction

Optimization problems that arise from real-world applications often come with
multiple objective functions. Since there is usually no solution that optimizes all
objectives simultaneously, trade-offs have to be made. One of the most important
solution concept in multi-objective optimization is that of Pareto-optimal solu-
tions, where a solution is called Pareto-optimal if there does not exist another
solution that is simultaneously better in all objectives. Intuitively Pareto-optimal
solutions represent the reasonable trade-offs between the different objectives, and
it is a common approach to compute the set of Pareto-optimal solutions to filter
out all unreasonable trade-offs.

For many multi-objective optimization problems there exist algorithms that
compute the set of Pareto-optimal solutions in polynomial time with respect to
the input size and the number of Pareto-optimal solutions. These algorithms are
not efficient in the worst case because for almost every problem with two or more
objectives there exist instances with an exponential number of Pareto-optimal
solutions. Since this does not reflect experimental results, where the number of
Pareto-optimal solutions is usually small, there has been a significant interest in
probabilistic analyses of multi-objective optimization problems in the last decade.

This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

c© Springer International Publishing AG 2017
T.V. Gopal et al. (Eds.): TAMC 2017, LNCS 10185, pp. 543–555, 2017.
DOI: 10.1007/978-3-319-55911-7 39
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The analyses in the literature are restricted to linear integer optimization
problems, in which the solutions can be encoded as integer vectors and there
is a constant number of linear objective functions to be optimized. To be more
precise, an instance of a linear integer optimization problem is given by a set
S ⊆ {−k,−k + 1, . . . , k}n of feasible solutions for some k ∈ N and d linear
objective functions c1, . . . , cd for some constant d. The function ci : S → R is of
the form ci(x) = ci

1x1 + . . . + ci
nxn for x = (x1, . . . , xn). Many well-known opti-

mization problems can be formulated as a linear integer optimization problem.
Consider, for example, the bicriteria shortest path problem in which one has to
find a path in a graph G = (V,E) from some source node s to some target node t
and every edge has a certain length and induces certain costs. Then every s-t-
path has a total length and total costs, and ideally one would like to minimize
both simultaneously. A given instance of the bicriteria shortest path problem
can easily be formulated as an instance of a linear bicriteria integer optimization
problem by choosing S ⊆ {0, 1}|E| as the set of incidence vectors of s-t-paths.
Then the coefficients in the two linear objective functions coincide with the edge
lengths and costs.

A particular well-studied case are linear integer optimization problems with
two objective functions. In the worst case it is very easy to come up with instances
that have an exponential number of Pareto-optimal solutions. On the contrary,
it has been proven that the expected number of Pareto-optimal solutions is
polynomially bounded if the coefficients of one of the two objective functions
are chosen at random, regardless of the choice of S ⊆ {−k,−k + 1, . . . , k}n.
This is not only true if the coefficients are chosen uniformly at random but also
for more sophisticated probabilistic models like smoothed analysis, in which the
coefficients can roughly be determined by an adversary and are only slightly
perturbed at random. Furthermore, it suffices if only the coefficients of one of
the objective functions are chosen at random; the other objective function can be
adversarial and does not even have to be linear. This can be seen as a theoretical
explanation for why in experiments usually only few Pareto-optimal solutions
exist because already a small amount of random noise in the coefficients suffices
to render it very unlikely to encounter an instance with many Pareto-optimal
solutions.

The analyses in the literature are restricted to the case that the set of solu-
tions is a subset of a discrete set {−k,−k+1, . . . , k}n. Consider, for example, the
binary case S ⊆ {0, 1}n, and assume that we allow a little bit more flexibility in
choosing the set of feasible solutions as follows: every solution x ∈ S ⊆ {0, 1}n

may be replaced by a solution x̄ with |xi − x̄i| ≤ ε for every component i for a
small ε. This way a new set of feasible solutions S̄ ⊆ [−ε, 1+ε]n is obtained. Intu-
itively, if ε is very small, then the expected number of Pareto-optimal solutions
with respect to S and with respect to S̄ should be roughly the same. However,
this is not covered by the previous analyses and indeed analyzing the expected
number of Pareto-optimal solutions with respect to S̄ seems to be a much harder
problem.
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In this paper we initiate the study of more general sets of feasible solutions.
We do not solve the problem in full generality but we will make the first step
towards understanding non-discrete sets of feasible solutions. The idea we use
to obtain bounds for the expected number of Pareto-optimal solutions for the
more general setting allows us also to improve slightly the best known bound
for the bicriteria integer case, matching a known lower bound. In the following,
we will first give a motivating example and then we will discuss our results and
the previous work in more detail.

1.1 Knapsack Problem with Substitutes

In the knapsack problem, a set of n items with profits p1, . . . , pn and weights
w1, . . . , wn is given. The goal is to find a vector x ∈ {0, 1}n such that the total
profit p(x) = p1x1 + . . . + pnxn is maximized under the constraint that the
total weight w(x) = w1x1 + . . . + wnxn does not exceed a given capacity B. If
one disregards the capacity, one can view the knapsack problem as a bicriteria
optimization problem in which one seeks a solution from the set S = {0, 1}n with
large profit and small weight. The assumption that profit and weight are linear
functions is not always justified. If some items are substitute or complementary
goods, then their joint profit can be smaller or larger than the sum of their single
profits. Also if the weights represent costs and one gets a volume discount, the
weight function is not linear.

In order to take this into account, we consider a more general version of the
knapsack problem. We allow an arbitrary weight function w : {0, 1}n → R that
assigns a weight to every subset of items. Furthermore, we assume that some
function α : {0, 1}n → [0, 1]n is given and that the profit of a solution x ∈ {0, 1}n

is given as p(x) = α(x)1p1 + . . .+α(x)npn. Hence, the function α determines for
each item and each solution the fraction of the item’s value that it contributes.
One could, for example, encode rules like “if the second item is present, the first
item counts only half, and if the second and third item are present, then the first
item counts only a third”.

The question we study in this paper is how many solutions from {0, 1}n

are Pareto-optimal with respect to the objective functions p and w. Formally,
a solution x ∈ {0, 1}n is Pareto-optimal if there does not exist a solution y ∈
{0, 1}n that dominates x in the sense that y is at least as good as x in all
criteria and strictly better than x in at least one criterion. Observe that we can
reformulate the model in the following way so that it fits to our discussion above:
We define S̄ = {α(x) | x ∈ {0, 1}n} ⊆ [0, 1]n, w̄ : S̄ → R by w̄(x) = w(α−1(x))
for x ∈ S̄, assuming that α is injective, and p̄(x) = p1x1 + . . . + pnxn. Now
the goal is to minimize the arbitrary objective function w̄ and to maximize the
linear objective function p̄ over the set S̄ ⊆ [0, 1]n.

As even for the simple linear case one can easily find instances in which
every solution from {0, 1}n is Pareto-optimal, it does not make sense to study
this question in a classical worst-case analysis. We will instead assume that the
profits p1, . . . , pn are chosen at random and we will prove polynomial bounds
for this case under the assumption that α(x)i = 0 for xi = 0 and α(x)i ≥ δ
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for xi = 1 for some δ > 0 for every x ∈ {0, 1}n and every i (i.e., any item that is
not part of a solution does not contribute any of its profit and any item that is
part of a solution contributes at least some small fraction δ of its profit). In the
literature only the case that α is the identity has been studied.

Since, we are only interested in the expected number of Pareto-optimal solu-
tions, we do not care how the functions w and α are encoded. Our results are
true for all functions, regardless of whether or not they can be encoded and
evaluated efficiently.

1.2 Smoothed Analysis

Smoothed analysis has been introduced by Spielman and Teng [15] to explain
why the simplex algorithm is efficient in practice despite its exponential worst-
case behavior. We use the framework of smoothed analysis to study the number of
Pareto-optimal solutions, and we will use the following model, which has already
been used in the literature for the analysis of multi-objective linear optimization
problems.

In our model, we assume that an arbitrary set S ⊆ [0, 1]n of feasible solutions
that satisfies a certain property, which we define below, can be chosen by an
adversary. Furthermore, the adversary can also choose an arbitrary objective
function w : S → R, which is to be minimized. Finally a second linear objective
function p : S → R is given, which is to be maximized. This function is of
the form p(x) = p1x1 + . . . + pnxn and in contrast to a worst-case analysis we
do not allow the adversary to choose the coefficients p1, . . . , pn exactly but we
assume that they are chosen at random. For this, let φ ≥ 1 be some parameter
and assume that the adversary can choose, for each coefficient pi, a probability
density function fi : [0, 1] → [0, φ] according to which pi is chosen independently
of the other profits.

The smoothing parameter φ can be seen as a measure specifying how close
the analysis is to a worst-case analysis. The larger φ, the more concentrated
the probability mass can be: the adversary could for example define for each
coefficient a uniform distribution on an interval of length 1

φ from which it is
chosen uniformly at random. This shows that for φ → ∞ our analysis approaches
a worst-case analysis.

In the following, we will even allow a different parameter φi for each coeffi-
cient ci, i.e., the density fi is bounded from above by φi. Then φ = maxi∈[n] φi,
where [n] denotes the set {1, . . . , n}. We define the smoothed number of Pareto-
optimal solutions as the largest expected number of Pareto-optimal solutions
that the adversary can achieve by choosing the set S, the objective function w,
and the densities f1, . . . , fn.

1.3 Previous Results

Multi-objective optimization is a well studied research area. There exist several
algorithms to generate Pareto sets of various optimization problems like, e.g.,
the (bounded) knapsack problem [8,12], the bicriteria shortest path problem
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[5,14], and the bicriteria network flow problem [6,11]. The running time of these
algorithms depends crucially on the number of Pareto-optimal solutions and,
hence, none of them runs in polynomial time in the worst case. In practice,
however, generating the Pareto set is tractable in many situations [7,10].

Beier and Vöcking initiated the study of the expected number of Pareto-
optimal solutions for binary optimization problems [2]. They consider the model
described in Sect. 1.2 with S ⊆ {0, 1}n and show that the expected num-
ber of Pareto-optimal solutions is bounded from above by O(n4φ) and from
below by Ω(n2) even for φ = 1. In [1] Beier, Röglin, and Vöcking analyze the
smoothed complexity of bicriteria integer optimization problems. They show
that the smoothed number of Pareto-optimal solutions is bounded from above
by O(n2k2 log(k)φ) if S ⊆ {0, . . . , k − 1}n. This improved the upper bound for
the binary case to O(n2φ). They also present a lower bound of Ω(n2k2) on the
expected number of Pareto-optimal solutions for profits that are chosen uni-
formly from the interval [−1, 1].

Röglin and Teng generalized the binary setting S ⊆ {0, 1}n to an arbi-
trary constant number d ≥ 1 of linear objective functions with random
coefficients plus one arbitrary objective function [13]. They showed that the
smoothed number of Pareto-optimal solutions is in O((n2φ)f(d)), for a function
f that is roughly f(d) = 2dd!. In [9] this bound was significantly improved
to O(n2dφd(d+1)/2) by Moitra and O’Donnel. Brunsch et al. proved in [3] a
lower bound of Ω(nd−1.5φd) for the same setting. Instead of binary optimization
problems Brunsch and Röglin analyze the smoothed number of Pareto-optimal
solutions for multi-objective integer optimization problems [4]. They consider
S ⊆ {0, . . . , k}n and show that the expected number of Pareto-optimal solutions
is in k2(d+1)2 · O(n2dφd(d+1)).

None of these analyses applies to the case that the set S of feasible solutions
is a non-integral subset of [0, 1]n.

1.4 Our Results

We study bicriteria optimization problems in which the set S of feasible solutions
is a finite subset of [0, 1]n and one wants to optimize one arbitrary objective
function w : S → R and one linear objective function p : S → R. We call
w weight and p profit. We do not care about the exact values of w and will
therefore assume that w is given as a ranking on S where solutions with a lower
weight have a higher ranking. In order to obtain interesting results about the
number of Pareto-optimal solutions, it is necessary to restrict the set S. We
define the (k, δ)- property as follows.

Definition 1. For given k ∈ N and δ ∈ (0, 1], a set of solutions S ⊆ [0, 1]n

satisfies the (k, δ)-property if there exist finite sets Ki ⊆ [0, 1] with |Ki| ≤ k for
i ∈ [n], such that for each pair of solutions s �= s′ ∈ S either |{i ∈ [n] | si ∈
Ki}| �= |{i ∈ [n] | s′

i ∈ Ki}| or there exist indices i, j ∈ [n] such that si ∈ Ki,
|si − s′

i| ≥ δ, and s′
j ∈ Kj, |sj − s′

j | ≥ δ.
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Let S ⊆ [0, 1]n be an instance of the Knapsack Problem with Substitutes,
as described in Sect. 1.1. Recall that different solutions s �= s′ ∈ S differ in the
coordinates with a value of 0, i.e., there exists i ∈ [n] such that either si = 0 �= s′

i

or si �= 0 = s′
i. Since the value of each coordinate has to be 0 or at least δ we

can set Ki = {0} for every i ∈ [n] and see that S has the (1, δ)-property.
For finite bicriteria integer optimization problems we have S ⊆ {−k,−k +

1, . . . , k−1, k}n for some k ∈ N. For such sets the definition of the (k, δ)-property
does not apply immediately. Instead we can first shift and then scale S to obtain
Ŝ ⊆ {0 = 0

2k , 1
2k , . . . , 2k

2k = 1}n ⊆ [0, 1]n (First add k to every coordinate of every
solution and then divide the result by 2k). This shifting and scaling does not
change the profit order and with the same ranking as before the shift, Ŝ and S
have the same number of Pareto-optimal solutions. With Ki = {0, 1

2k , . . . , 1} it
is easy to see that Ŝ has the (2k + 1, 1

2k )-property.
In this paper, we present an approach for bounding the smoothed number of

Pareto-optimal solutions for bicriteria optimization problems that have a finite
set S ⊆ [0, 1]n of feasible solutions with the (k, δ)-property. The general idea
underlying our analysis is similar to the one used by Beier, Röglin, and Vöcking
[1] to analyze integer problems. The basic idea is to partition the Pareto-optimal
solutions into different classes and to analyze the expected number in each class
separately. Roughly the class of a Pareto-optimal solution x is determined by the
indices in which it differs from the next Pareto-optimal solution, i.e., the Pareto-
optimal solution with smallest weight among all Pareto-optimal solutions with
larger profit than x.

To analyze the expected number of Pareto-optimal solutions in one class, we
first partition the interval [0, n] of possible profits of solutions from S uniformly
into small subintervals. Then, by linearity of expectation, it suffices to bound for
each subinterval I the expected number of Pareto-optimal solutions with a profit
in I. Let I = [t−ε, t) for some t and ε > 0 be such a subinterval. If ε is very small,
then with high probability I contains either none or exactly one Pareto-optimal
solution. Hence, the expected number of Pareto-optimal solutions in I equals
almost exactly the probability that there exists a Pareto-optimal solution whose
profit lies in I. In order to bound this probability, we use the principle of deferred
decisions as follows. First we uncover all profits except for the profit pi for one
of the positions i in which x differs from its next Pareto-optimal solution. This
information suffices to identify a set of candidates for a Pareto-optimal solution
in I. That is, if there exists a Pareto-optimal solution in I, then it must come
from this set of candidate solutions. Beier, Röglin and Vöcking [1] treated each
of these candidates separately and used linearity of expectation to bound the
probability that any of them becomes a Pareto-optimal solution with profit in I.
This is not possible anymore in our more general setting because there could be
an exponential number of candidates. We instead use a new method, in which
we exploit dependencies between the different candidates. This allows us to treat
the set of candidates as a whole and to obtain a better bound on the probability
that one of them becomes a Pareto-optimal solution with profit in I.
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Theorem 2. Let k ∈ N, δ ∈ (0, 1], and let S ⊆ [0, 1]n be a set of feasible
solutions with the (k, δ)-property and some arbitrary ranking w. Assume that
each profit pi is a random variable with density function fi : [0, 1] → [0, φi] and
let φ = maxi∈[n] φi. Let q denote the number of Pareto-optimal solutions in S.
Then

E[q] = O

(
n2

δ

n∑

i=1

kiφi

)

= O

(
n3kφ

δ

)
.

We will show that every set of solutions S ⊆ {0, . . . , k − 1}n can be scaled
into a set of solutions S ′ ∈ [0, 1]n with the (k, 1

k )-property. For bicriteria integer
optimization problems we then further improve our analysis to improve the best
previous result [1] and match the known lower bound Ω(n2k2) [1] for constant φ.

Theorem 3. Let S ⊆ Dn be a set feasible solutions with a finite domain D =
{0, . . . , k − 1} ⊆ Z and an arbitrary ranking w. Assume that each profit pi is a
random variable with density function fi : [0, 1] → [0, φi] and let φ = maxi∈[n] φi.
Let q denote the number of Pareto-optimal solutions in S. Then

E[q] = O

(

nk2
n∑

i=1

φi

)

= O
(
n2k2φ

)
.

We also show a lower bound of Ω(min{(1δ )log3(2), 2n}) for the expected num-
ber of Pareto-optimal solutions in an instance with the (1, δ)-property, where all
profits are drawn according to a uniform distribution on the interval [12 , 1]. This
shows that the dependence on δ in Theorem 2 is necessary.

2 Upper Bound on the Expected Number
of Pareto-Optimal Solutions

As discussed above, the methods and ideas we use in this chapter are inspired
by the analysis of Beier, Röglin and Vöcking [1]. We adapt their approach to the
non-integer setting and also improve their analysis of the integer case.

Lemma 4. Let k ∈ N, � ∈ [n], δ ∈ (0, 1], and let S ⊆ [0, 1]n be a set of solutions
with the (k, δ)-property. Assume Ki ⊆ [0, 1] with |Ki| = ki ≤ k for i ∈ [n] to be
corresponding sets for the (k, δ)-property of S. Also let |{i ∈ [n] | si ∈ Ki}| = �
for every solution s ∈ S. Assume that each profit pi is a random variable with
density function fi : [0, 1] → [0, φi] and let φ = maxi∈[n] φi. Let q denote the
number of Pareto-optimal solutions in S. Then

E[q] ≤
(

n∑

i=1

4nkiφi

δ

)

+ 1 ≤ 4n2kφ

δ
+ 1.
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Proof. The idea of the proof is to partition the set of Pareto-optimal solutions
into different classes and to compute the expected number of Pareto-optimal
solutions in each of these classes separately. Let P ⊆ S denote the set of all
Pareto-optimal solutions. For each Pareto-optimal solution s ∈ P, except for
the one with largest profit, let next(s):=argmin{p(s′) | s′ ∈ P and p(s′) > p(s)}
denote the Pareto-optimal solution with the next larger profit than s. Now let
s ∈ P be an arbitrary Pareto-optimal solution that is not the one with the
largest profit. By definition of the set S, there has to be an i ∈ [n] such that
next(s)i = v for some v ∈ Ki and |si −next(s)i| ≥ δ. We then say that s belongs
to the class (i, v). With the Pareto-optimal solution with the largest profit being
a separate class by itself, every Pareto-optimal solutions is part of at least one of
the classes. Note that a Pareto-optimal solution can belong to several different
classes.

Let i ∈ [n] and v ∈ Ki. We will now analyze the expected number of Pareto-
optimal solutions in class (i, v). For this we consider the set

Si,v := {s′ ∈ [−1, 1]n | ∃s ∈ S such that s′
i = si − v and ∀j ∈ [n] \ {i} : sj =s′

j}.

For each solution s ∈ S the set Si,v contains a corresponding solution s′, which
is identical to s except for the i-th coordinate, where it is smaller by v. This does
not change the profit order of the solutions because the profit of each solution in
Si,v is smaller by exactly v · pi than the profit of its corresponding solution in S.
Given the same ranking (i.e., the same weight function) on Si,v as on S, there is
a one-to-one correspondence between the Pareto-optimal solutions in S and Si,v.
Hence, instead of analyzing the number of class (i, v) Pareto-optimal solution
in S, we can also analyze the number of class (i, 0) Pareto-optimal solutions in
Si,v. Instead of class (i, 0) Pareto-optimal solutions, we will use the term class i
Pareto-optimal solutions in the following. The following lemma concludes the
proof by summing over the

∑n
i=1 ki different choices for the pair (i, v). Note

that the term +1 in the lemma accounts for the Pareto-optimal solution with
the largest profit. ��
Lemma 5. Consider the setting described in Lemma 4 and let i ∈ [n] and v ∈ Ki

be arbitrary. Let q′ denote the number of class i Pareto-optimal solutions in Si,v.
Then

E[q′] ≤ 4nφi

δ
.

Proof. The key idea is to prove an upper bound on the probability that there
exists a class i Pareto-optimal solution in Si,v, whose profit falls into a small
interval [t − ε, t), for arbitrary t and ε > 0. We use the principle of deferred
decisions and will assume in the following that all profits pj for j �= i are already
fixed arbitrarily. We will only exploit the randomness of pi.

We want to bound the probability that there exists a class i Pareto optimal
solution, whose profit lies in the interval [t−ε, t). Let Sxi=0 := {s ∈ Si,v | si = 0}.
Define x∗

1 to be the highest ranked solution x ∈ Sxi=0 satisfying p(x) ≥ t and
define X∗ := {x∗

1, x
∗
2, . . . , x

∗
mt,ε

} to be the set containing x∗
1 and all solutions
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pTx

t

t − ε

Rank
(in decreasing order)

x∗
1

x∗
2x∗

3

x∗
4

Fig. 1. Example of Sxi=0, with solutions in X∗ = {x∗
1, x

∗
2, x

∗
3, x

∗
4} marked as such.

x ∈ Sxi=0 that are Pareto-optimal with respect to the set Sxi=0 and that satisfy
t− ε ≤ p(x) < t. We assume X∗ to be ordered such that for all x∗

j ∈ X∗ we have
p(x∗

j ) < p(x∗
j−1) (see Fig. 1).

Note that the solutions in X∗ do not have to be Pareto-optimal in Si,v (they
could be dominated by solutions outside of Sxi=0) and that X∗ does not have
to contain any solutions. If Si,v contains a class i Pareto-optimal solution x,
whose profit falls into the interval [t − ε, t), we have next(x) ∈ Sxi=0. Since
next(x) is Pareto-optimal in Si,v, it has to be Pareto-optimal in Sxi=0 as well.
We claim next(x) ∈ X∗. Assume next(x) /∈ X∗, then p(next(x)) must be at least
t and therefore next(x) must have a lower rank than x∗

1. Since next(x) is Pareto-
optimal we must have p(next(x)) > p(x∗

1). By the definition of next(x) there can
be no Pareto-optimal solution x′ in Si,v with p(x) < p(x′) < p(next(x)), which
means that there can be no Pareto-optimal solution in Si,v that dominates x∗

1

but not next(x), which is a contradiction. Analogously it follows that next(x)
is the solution with the highest rank among all x∗

j ∈ X∗ with p(x∗
j ) > p(x). If

next(x) = x∗
j for some j < mt,ε, then p(x) ∈ [p(x∗

j+1), p(x∗
j )), and if next(x) =

x∗
mt,ε

, then p(x) ∈ [t − ε, p(x∗
m,ε)).

In order to analyze the probability that there exists a class i Pareto-optimal
solution, whose profit lies in the interval [t − ε, t), we look at each x∗

j ∈ X∗.
Let r1 = t, rmt,ε+1 = t − ε and rj = p(x∗

j ) for j ∈ {2, . . . , mt,ε}. We will, for
each j ∈ [mt,ε], bound the probability that Si,v contains a class i Pareto-optimal
solution, whose profit lies in the interval [rj+1, rj).

Let j ∈ [mt,ε] and let x̂j denote the solution that has the largest profit
among all solutions x with |xi| ≥ δ that are higher ranked than x∗

j . Assume
that there exists a class i solution x with profit in the interval [rj+1, rj). Then
x∗

j has to be a Pareto-optimal solution and x has to be higher ranked than x∗
j ,

because otherwise x∗
j would dominate x. Let y denote the solution, among all

solutions that are higher ranked than x∗
j , that has the largest profit. Since x∗

j is
Pareto-optimal, y is Pareto-optimal as well and has less profit than x∗

j . Since we
assume x to be a class i solution with profit in the interval [rj+1, rj) we know
next(x) = x∗

j and therefore x = y and x = x̂j .
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We now aim to bound the probability that x̂j is a class i Pareto-optimal
solution and falls into the interval [rj+1, rj). Define

Λ(t, j) =

{
rj − p(x̂j) if x̂j exists
⊥ otherwise.

Let P denote the set of class i Pareto-optimal solutions and εj = rj −rj+1 for all
j ∈ [mt,ε]. Whenever there exists a class i solution x ∈ P with p(x) ∈ [rj+1, rj),
the choice of x̂j implies that x = x̂j and hence Λ(t, j) ∈ (0, εj ].

Then
Pr[∃x ∈ P : p(x) ∈ [rj+1, rj)] ≤ Pr[Λ(t, j) ∈ (0, εj ]].

Since the expected number of class i Pareto-optimal solutions can be written
as

∫ ∞

−∞
lim
ε→0

Pr[∃x ∈ P : p(x) ∈ [t − ε, t)]
ε

dt

≤
∫ ∞

−∞
lim
ε→0

∑mt,ε

j=1 Pr[∃x ∈ P : p(x) ∈ [rj+1, rj)]
ε

dt

≤
∫ ∞

−∞
lim
ε→0

∑mt,ε

j=1 Pr[Λ(t, j) ∈ (0, εj ]]
ε

dt

=
∫ n

−n

lim
ε→0

∑mt,ε

j=1 Pr[Λ(t, j) ∈ (0, εj ]]
ε

dt,

where the last equality comes from the fact that all solutions have a profit in
[−n, n], it remains to analyze the terms Pr[Λ(t, j) ∈ (0, εj ]].

Let S |xi|≥δ = {x ∈ Si,v | |xi| ≥ δ} and Sxi=u = {x ∈ Si,v | xi = u}. For
all j ∈ [mt,ε] let Lj consist of all solutions from S |xi|≥δ that have a higher rank
than x∗

j and let Lu
j consist of all solutions from Sxi=u that have a higher rank

than x∗
j . Let x̂u

j denote the lowest ranked Pareto-optimal solution from the set
Lu

j , i.e., x̂u
j has the largest profit among all solutions in Lu

j .
The identity of x∗

j is completely determined by the profits p�, � �= i. For
all u ∈ [−1, 1] the set Lu

j and therefore the existence and identity of x̂u
j are

completely determined by those profits as well. Hence, if we fix all profits except
for pi, then x̂u

j is fixed and its profit is cu+upi for some constant cu that depends
only on the profits already fixed. The identity of x̂j still depends on the exact
value of pi, but independent of pi it has to be equal to x̂u

j for some u ∈ [−1, 1] with
|u| ≥ δ. More specifically we have x̂j = argmax{p(x̂u

j ) | x̂u
j exists and |u| ≥ δ},

which depends on the exact value of pi. We can view {x̂u
j | x̂u

j exists and |u| ≥ δ}
as the set of candidates, which could be a a class i Pareto-optimal solution with
profit in the interval [rj+1, rj).

This means that x̂u
j takes a profit in the interval [rj+1, rj) if and only if pi

lies in the interval [bu, bu + εj

u ) := [ rj+1−cu

u ,
rj−cu

u ) in case u > 0 and (bu, bu +
εj

−u ]:=( rj−cu

u ,
rj+1−cu

u ] in case u < 0.
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Let b = min{bu | u ∈ [δ, 1] and x̂u
j exists} and let u′ = argmin{bu | u ∈

[δ, 1] and x̂u
j exists}. Then for pi < b and all u ∈ [δ, 1] we have p(x̂u

j ) <

rj+1 and for pi ≥ b + εj

u′ we have p(x̂u′
j ) ≥ rj . Let b′ = max{bu | u ∈

[−1,−δ] and x̂u
j exists} and let u′′ = argmax{bu | u ∈ [−1,−δ]andx̂u

j exists}.
Then for p′

i ≤ b′ we have p(x̂u′′
j ) ≥ rj and for pi > b′ + εj

−u′′ and all u ∈ [−1,−δ]
we have p(x̂u

j ) < rj+1. This implies that for all pi /∈ [b, b + εj

u′ ) ∪ (b′, b′ + εj

−u′′ ] we

have p(x̂j) /∈ [rj+1, rj). Hence we obtain Pr[Λ(t, j) ∈ (0, εj ]] ≤ εj

(
φi

u′ + φi

−u′′

)
≤

εj
2φi

δ .
Now we can bound the expected number of Pareto-optimal solutions:

E[q′] ≤
∫ n

−n

lim
ε→0

∑mt,ε

j=1 εj
2φi

δ

ε
dt =

∫ n

−n

lim
ε→0

ε 2φi

δ

ε
dt =

∫ n

−n

lim
ε→0

2φi

δ
dt =

4nφi

δ
.

��
We now show Theorem 2.

Proof (Proof (Theorem 2)). For � ∈ [n] let S� = {s ∈ S | |{i ∈ [n] | si ∈
Ki}| = �}, where the Ki ⊆ [0, 1] with |Ki| = ki ≤ k for i ∈ [n] denote the
corresponding sets for the (k, δ)-property of S. Let P� denote the set of Pareto-
optimal solutions in S� and let P be the set of Pareto-optimal solutions in S.
Let s ∈ P be a Pareto-optimal solution in S. Then there exists no solution
s′ ∈ S that dominates s. For some � ∈ [n] we have s ∈ S�. S� ⊆ S implies that
no solution s′ ∈ S� dominates s. Therefore s is also Pareto-optimal in S�, i.e.,
s ∈ P�. This implies P ⊆ ⋃

�∈[n] P�. Let q� denote the number of Pareto-optimal
solutions in S�, i.e., q� = |P�|. Lemma 4 and linearity of expectation yield

E[q] ≤
∑

�∈[n]

E[q�] + 1 ≤
∑

�∈[n]

(
4n

δ

n∑

i=1

kiφi + 1

)

+ 1

=
4n2

δ

n∑

i=1

kiφi + n + 1 ≤ 4n3kφ

δ
+ n + 1.

Here the additional 1 comes from a possible solution s ∈ S with |{i ∈ [n] | si ∈
Ki}| = 0. The (k, δ)-property ensures that there can exist at most one such
solution. This concludes the proof. ��

We now prove Theorem 3.

Proof (Proof (Theorem 3)). We take a look at the scaled version S ′ = { 1
ks |

s ∈ S}, where 1
ks denotes the solution s′ with s′

i = 1
ksi for all i ∈ [n]. Since

this scaling operation changes the profit of every solution by a factor of 1
k , the

two sets S ′ and S have the same number of Pareto-optimal solutions. Setting
K = { i

k | i ∈ {0, . . . , k − 1}} and δ = 1
k we can apply Lemma 4 to obtain

E[q] ≤
n∑

i=1

4nkiφi

1/k
+ 1 ≤ 4nk2

n∑

i=1

φi + 1 = O

(

nk2
n∑

i=1

φi

)

��
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3 A Lower Bound

In this section we will show a simple lower bound for the expected number of
Pareto-optimal solutions. For a given δ ∈ (0, 1] we will show how to find a set
of solutions S ⊆ ({0} ∪ [δ, 1])n with the (1, δ)-property such that the number
of Pareto-optimal solutions in S is Ω(min{2n, ( 1δ )log3(2)}), assuming that all
profits are drawn uniformly at random from the interval [12 , 1]. Furthermore, the
coordinates of the solutions in S will take at most n+1 different values, showing
that a bound on the number of different values alone is not sufficient to obtain
a polynomial bound on the number of Pareto-optimal solutions.

Theorem 6. Suppose profits are drawn according to a uniform distribution from
the interval [12 , 1]. Then for every δ ∈ (0, 1] there exists a set S ⊆ ({0} ∪ [δ, 1])n

with the (1, δ)-property and a ranking on S such that the number of Pareto-
optimal solutions in S is Ω(min{(1δ )log3(2), 2n}).

Proof. For i ∈ [n], let xi = 1
3i−1 and let S ′ = {0, x1}×{0, x2}× . . .×{0, xn}. The

choice of xi guarantees that for all i ∈ [n] we get xi

2 ≥ ∑n
j=i+1 xj . This implies

that regardless of how the values of the profits pi for i ∈ [n] are chosen, the
lexicographical order of the solutions is equal to their profit order. When we use
the lexicographical order as our ranking as well, this implies that all solutions
are Pareto-optimal. We will define S = {s ∈ S ′ | ∀i : si ∈ {0} ∪ [δ, 1]} to be the
subset of S ′ that contains only the solutions, whose coordinates have values of 0
or at least δ. We get S = {0, x1}×{0, x2}× . . .×{0, x�log3

1
δ �+1}×{0}× . . .×{0}

for the case
⌊
log3

1
δ

⌋
+1 < n and S = S ′ otherwise. With Ki = {0} for all i ∈ [n]

we can see that S has the (1, δ)-property. The set S contains min{2n, 2�log3
1
δ �+1}

different solutions, and as we have seen, all solutions are Pareto-optimal. The
observation that (1δ )log3(2) = 2log3( 1

δ ) concludes the proof. ��

4 Conclusion and Open Problems

We defined for bicriteria optimization problems with a finite set of solutions
S ⊆ [0, 1]n the (k, δ)-property and showed how to obtain an upper bound for
the smoothed number of Pareto-optimal solutions in instances with the (k, δ)-
property. It is easy to see that the (k, δ)-property can be applied to any finite
set of solutions. However, in general δ can be arbitrarily small.

Lemma 7. Let S ⊆ [0, 1]n be a finite set of solutions. There exist k ∈ N and
δ ∈ (0, 1], such that S has the (k, δ)-property.

Proof. Let ES = {x ∈ [0, 1] | ∃s ∈ S, i ∈ [n] : si = x} denote the set of
values that the coordinates of the solutions in S take. Let k = |ES | and δ =
minx	=y∈ES |x − y|. Since S is a finite set, this is well defined and we get k ∈ N

and δ ∈ (0, 1]. We choose Ki = ES for all i ∈ [n]. Let s �= s′ ∈ S be two different
solutions then there must exist i ∈ [n] such that si �= s′

i. By definition of Ki

and δ we have si ∈ Ki, s′
i ∈ Ki and |si − s′

i| ≥ δ, which yields that S has the
(k, δ)-property. ��



Smoothed Number of Pareto-Optimal Solutions in Bicriteria Optimization 555

As our upper bound on the expected number of Pareto-optimal solutions
depends on both k and δ, one can ask if there exists an upper bound that
depends only on k or only on δ. Theorem 6 shows there can be no polynomial
upper bound only in n, φ, and k. On the other hand, we conjecture that there
exists an upper bound for the smoothed number of Pareto-optimal solutions
that depends polynomially on n, φ and the inverse of the minimum distance
mins 	=s′∈S‖s − s′‖ between solutions.
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Abstract. As suggested by the title, it has recently become clear that
theorems of Nonstandard Analysis (NSA) give rise to theorems in com-
putability theory (no longer involving NSA). Now, the aforementioned
discipline divides into classical and higher-order computability theory,
where the former (resp. the latter) sub-discipline deals with objects of
type zero and one (resp. of all types). The aforementioned results regard-
ing NSA deal exclusively with the higher-order case; we show in this
paper that theorems of NSA also give rise to theorems in classical com-
putability theory by considering so-called textbook proofs.

1 Introduction

Computability theory naturally1 includes two sub-disciplines: classical and
higher-order computability theory. The former deals with the computability of
objects of types zero and one (natural numbers and sets thereof) and the lat-
ter deals with the computability of higher-order objects, i.e. including objects
of type higher than zero and one. Friedman’s closely related foundational pro-
gram Reverse Mathematics (RM for short; see [22,23] for an overview) makes
use of second-order arithmetic which is also limited to type zero and one objects;
Kohlenbach has introduced higher-order RM in which all finite types are avail-
able [13].

As developed in [17,18,20,21], one can extract higher-order computability
results from theorems in Nonstandard Analysis. These results [18,20,21] involve
the ‘Big Five’ of RM and also the associated ‘RM zoo’ from [7], but all results
are part of higher-order RM. The following question thus naturally emerges:

(Q) Is it possible to obtain classical computability theoretic results, includ-
ing second-order Reverse Mathematics, from NSA?
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tions on the reals may be represented by type one objects (See e.g. [23, II.6.1]).
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We will provide a positive answer to the question (Q) in this paper by studying an
example based on the monotone convergence theorem in Sect. 3, after introducing
Nonstandard Analysis and an essential fragment in Sect. 2. The notion textbook
proof plays an important role. We also argue that our example generalises to
many results in Nonstandard Analysis, as will be explored in [19].

Finally, we stress that our final results in (classical) computability theory
are extracted directly from existing theorems of Nonstandard Analysis without
modifications (involving computability theory or otherwise). In particular, no
modification is made to the proofs or theorems in Nonstandard Analysis. We
do consider special proofs in Nonstandard Analysis, which we christen textbook
proofs due to their format. One could obtain the same results by mixing Non-
standard Analysis and computability theory, but one of the conceptual goals of
our paper is to show that classical computability theory is already implicit in
Nonstandard Analysis pur sang.

2 Internal Set Theory and Its Fragments

We discuss Nelson’s axiomatic Nonstandard Analysis from [15], and the fragment
P from [1]. The fragment P is essential to our enterprise due to Corollary 2.6.

2.1 Internal Set Theory 101

In Nelson’s syntactic (or axiomatic) approach to Nonstandard Analysis [15], as
opposed to Robinson’s semantic one [16], a new predicate ‘st(x)’, read as ‘x
is standard’ is added to the language of ZFC, the usual foundation of math-
ematics. The notations (∀stx) and (∃sty) are short for (∀x)(st(x) → . . . ) and
(∃y)(st(y) ∧ . . . ). A formula is called internal if it does not involve ‘st’, and
external otherwise. The three external axioms Idealisation, Standard Part, and
Transfer govern the new predicate ‘st’; They are respectively defined2 as:

(I) (∀st finx)(∃y)(∀z ∈ x)ϕ(z, y) → (∃y)(∀stx)ϕ(x, y), for any internal ϕ.
(S) (∀stx)(∃sty)(∀stz)

(
(z ∈ x ∧ ϕ(z)) ↔ z ∈ y

)
, for any ϕ.

(T) (∀stt)
[
(∀stx)ϕ(x, t) → (∀x)ϕ(x, t)

]
, where ϕ(x, t) is internal, and only has

free variables t, x.

The system IST is (the internal system) ZFC extended with the aforemen-
tioned external axioms; The former is a conservative extension of ZFC for the
internal language, as proved in [15].

In [1], the authors study fragments of IST based on Peano and Heyting arith-
metic. In particular, they consider the systems H and P, introduced in the next
section, which are conservative extensions of the (internal) logical systems E-HAω

and E-PAω, respectively Heyting and Peano arithmetic in all finite types and the
axiom of extensionality. We refer to [12, Sect. 3.3] for the exact definitions of the

2 The superscript ‘fin’ in (I) means that x is finite, i.e. its number of elements are
bounded by a natural number.
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(mainstream in mathematical logic) systems E-HAω and E-PAω. Furthermore, E-
PAω∗ and E-HAω∗ are the definitional extensions of E-PAω and E-HAω with types
for finite sequences, as in [1, Sect. 2]. For the former, we require some notation.

Notation 2.1 (Finite sequences). The systems E-PAω∗ and E-HAω∗ have a
dedicated type for ‘finite sequences of objects of type ρ’, namely ρ∗. Since the
usual coding of pairs of numbers goes through in both, we shall not always
distinguish between 0 and 0∗. Similarly, we do not always distinguish between
‘sρ’ and ‘〈sρ〉’, where the former is ‘the object s of type ρ’, and the latter is ‘the
sequence of type ρ∗ with only element sρ’. The empty sequence for the type ρ∗

is denoted by ‘〈〉ρ’, usually with the typing omitted.
Furthermore, we denote by ‘|s| = n’ the length of the finite sequence sρ∗

=
〈sρ

0, s
ρ
1, . . . , s

ρ
n−1〉, where |〈〉| = 0, i.e. the empty sequence has length zero. For

sequences sρ∗
, tρ

∗
, we denote by ‘s∗t’ the concatenation of s and t, i.e. (s∗t)(i) =

s(i) for i < |s| and (s ∗ t)(j) = t(|s| − j) for |s| ≤ j < |s| + |t|. For a sequence
sρ∗

, we define sN := 〈s(0), s(1), . . . , s(N)〉 for N0 < |s|. For α0→ρ, we also
write αN = 〈α(0), α(1), . . . , α(N)〉 for any N0. By way of shorthand, qρ ∈ Qρ∗

abbreviates (∃i < |Q|)(Q(i) =ρ q). Finally, we shall use x, y, t, . . . as short for
tuples xσ0

0 , . . . xσk

k of possibly different type σi.

2.2 The Classical System P

In this section, we introduce P, a conservative extension of E-PAω with fragments
of Nelson’s IST. We first introduce the system E-PAω∗

st using the definition from [1,
Definition 6.1]. Recall thatE-PAω∗ is the definitional extension of E-PAω with types
for finite sequences as in [1, Sect. 2] and Notation 2.1. The language of E-PAω∗

st is
that of E-PAω∗ extended with new symbols stσ for any finite type σ in E-PAω∗.

Notation 2.2. We write (∀stxτ )Φ(xτ ) and (∃stxσ)Ψ(xσ) for (∀xτ )
[
st(xτ ) →

Φ(xτ )
]

and (∃xσ)
[
st(xσ)∧Ψ(xσ)

]
. A formula A is ‘internal’ if it does not involve

‘st’, and external otherwise. The formula Ast is defined from internal A by
appending ‘st’ to all quantifiers (except bounded number quantifiers).

The set T ∗ is defined as the collection of all the terms in the language of
E-PAω∗.

Definition 2.3. The system E-PAω∗
st is defined as E-PAω∗ +T ∗

st + IAst, where T ∗
st

consists of the following axiom schemas.

1. The schema3 st(x) ∧ x = y → st(y),
2. The schema providing for each closed4 term t ∈ T ∗ the axiom st(t).
3. The schema st(f) ∧ st(x) → st(f(x)).

3 The language of E-PAω∗
st contains a symbol stσ for each finite type σ, but the subscript

is essentially always omitted. Hence T ∗
st is an axiom schema and not an axiom.

4 A term is called closed in [1] (and in this paper) if all variables are bound via lambda
abstraction. Thus, if x, y are the only variables occurring in the term t, the term
(λx)(λy)t(x, y) is closed while (λx)t(x, y) is not. The second axiom in Definition 2.3

thus expresses that stτ

(
(λx)(λy)t(x, y)

)
if (λx)(λy)t(x, y) is of type τ .
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The external induction axiom IAst states that for any (possibly external) Φ:

Φ(0) ∧ (∀stn0)(Φ(n) → Φ(n + 1)) → (∀stn0)Φ(n). (IAst)

Secondly, we introduce some essential fragments of IST studied in [1].

Definition 2.4 (External axioms of P)

1. HACint: For any internal formula ϕ, we have

(∀stxρ)(∃styτ )ϕ(x, y) → (∃stF ρ→τ∗)
(∀stxρ)(∃yτ ∈ F (x))ϕ(x, y), (2.1)

2. I: For any internal formula ϕ, we have

(∀stxσ∗
)(∃yτ )(∀zσ ∈ x)ϕ(z, y) → (∃yτ )(∀stxσ)ϕ(x, y),

3. The system P is E-PAω∗
st + I + HACint.

Note that I and HACint are fragments of Nelson’s axioms Idealisation and Stan-
dard part. By definition, F in (2.1) only provides a finite sequence of witnesses
to (∃sty), explaining its name Herbrandized Axiom of Choice.

The system P is connected to E-PAω by the following theorem. Here, the
superscript ‘Sst’ is the syntactic translation defined in [1, Definition 7.1].

Theorem 2.5. Let Φ(a) be a formula in the language of E-PAω∗
st and suppose

Φ(a)Sst ≡ ∀stx ∃sty ϕ(x, y, a). If Δint is a collection of internal formulas and

P + Δint  Φ(a), (2.2)

then one can extract from the proof a sequence of closed5 terms t in T ∗ such
that

E-PAω∗ + Δint  ∀x∃y ∈ t(x) ϕ(x, y, a). (2.3)

Proof. Immediate by [1, Theorem 7.7].

The proofs of the soundness theorems in [1, Sects. 5, 6 and 7] provide an algo-
rithm A to obtain the term t from the theorem. In particular, these terms can
be ‘read off’ from the nonstandard proofs.

In light of [18], the following corollary (which is not present in [1]) is essential
to our results. Indeed, the following corollary expresses that we may obtain
effective results as in (2.5) from any theorem of Nonstandard Analysis which
has the same form as in (2.4). It was shown in [18,20,21] that the scope of this
corollary includes the Big Five systems of RM and the RM ‘zoo’ [7].

Corollary 2.6. If Δint is a collection of internal formulas and ψ is internal,
and

P + Δint  (∀stx)(∃sty)ψ(x, y, a), (2.4)

then one can extract from the proof a sequence of closed (See footnote 5) terms
t in T ∗ such that

E-PAω∗ + QF-AC1,0 + Δint  (∀x)(∃y ∈ t(x))ψ(x, y, a). (2.5)

5 Recall the definition of closed terms from [1] as sketched in Footnote 4.
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Proof. Clearly, if for internal ψ and Φ(a) ≡ (∀stx)(∃sty)ψ(x, y, a), we have
[Φ(a)]Sst ≡ Φ(a), then the corollary follows immediately from the theorem. A
tedious but straightforward verification using the clauses (i)–(v) in [1, Defini-
tion 7.1] establishes that indeed Φ(a)Sst ≡ Φ(a).

For the rest of this paper, the notion ‘normal form’ shall refer to a formula as in
(2.4), i.e. of the form (∀stx)(∃sty)ϕ(x, y) for ϕ internal.

Finally, we will use the usual notations for natural, rational and real numbers
and functions as introduced in [13, p. 288–289]. (and [23, I.8.1] for the former).
We only list the definition of real number and related notions in P.

Definition 2.7 (Real numbers and related notions in P)

1. A (standard) real number x is a (standard) fast-converging Cauchy sequence
q1(·), i.e. (∀n0, i0)(|qn − qn+i)| <0

1
2n ). We use Kohlenbach’s ‘hat function’

from [13, p. 289] to guarantee that every sequence f1 is a real.
2. We write [x](k) := qk for the k-th approximation of a real x1 = (q1(·)).
3. Two reals x, y represented by q(·) and r(·) are equal, denoted x =R y, if

(∀n)(|qn − rn| ≤ 1
2n ). Inequality <R is defined similarly.

4. We write x ≈ y if (∀stn)(|qn − rn| ≤ 1
2n ) and x � y if x > y ∧ x �≈ y.

5. A function F : R → R mapping reals to reals is represented by Φ1→1 mapping
equal reals to equal reals as in (∀x, y)(x =R y → Φ(x) =R Φ(y)).

6. We write ‘N ∈ Ω’ as a symbolic abbreviation for ¬st(N0).

3 Main Results

In this section, we provide an answer to the question (Q) from Sect. 1 by study-
ing the monotone convergence theorem. We first obtain the associated result in
higher-order computability theory from NSA in Sect. 3.1. We then establish in
Sect. 3.2 that the same proof in NSA also gives rise to classical computability
theory.

3.1 An Example of the Computational Content of NSA

In this section, we provide an example of the higher-order computational content
of NSA, involving the monotone convergence theorem, MCT for short, which
is the statement every monotone sequence in the unit interval converges. In
particular, we consider the equivalence between a nonstandard version of MCT
and a fragment of Nelson’s axiom Transfer from Sect. 2. From this nonstandard
equivalence, an explicit RM equivalence involving higher-order versions of MCT
and arithmetical comprehension is extracted as in (3.1).

Firstly, nonstandard MCT (involving nonstandard convergence) is:

(∀stc0→1
(·) )

[
(∀n0)(cn ≤ cn+1 ≤ 1) → (∀N,M ∈ Ω)[cM ≈ cN ]

]
. (MCTns)

while the effective (or ‘uniform’) version of MCT, abbreviated MCTef(t), is:

(∀c0→1
(·) , k0)

[
(∀n0)(cn ≤ cn+1 ≤ 1) → (∀N,M ≥ t(c(·))(k))[|cM − cN | ≤ 1

k ]
]
.
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We require two equivalent [13, Proposition 3.9] versions of arithmetical compre-
hension, respectively the Turing jump functional and Feferman’s mu-operator,
as follows

(∃ϕ2)
[
(∀f1)((∃n0)f(n) = 0 ↔ ϕ(f) = 0

]
, (∃2)

(∃μ2)
[
(∀f1)((∃n0)f(n) = 0 → f(μ(f)) = 0)

]
, (μ2)

and also the restriction of Nelson’s axiom Transfer as follows:

(∀stf1)
[
(∀stn0)f(n) �= 0 → (∀m)f(m) �= 0

]
. (Π0

1 -TRANS)

Denote by MU(μ) the formula in square brackets in (μ2). We have the following
nonstandard equivalence.

Theorem 3.1. The system P proves that Π0
1 -TRANS ↔ MCTns.

Proof. For the forward implication, assume Π0
1 -TRANS and suppose MCTns is

false, i.e. there is a standard monotone sequence c(·) such that cN0 �≈ cM0 for
fixed nonstandard N0,M0. The latter is by definition |cN0 −cM0 | ≥ 1

k0
, where k0

0

is a fixed standard number. Since N0,M0 are nonstandard in the latter, we have
(∀stn)(∃N,M ≥ n)(|cN − cM | ≥ 1

k0
). Fix standard n0 in the latter and note that

the resulting Σ0
1 -formula only involves standard parameters. Hence, applying the

contraposition of Π0
1 -TRANS, we obtain (∀stn)(∃stN,M ≥ n)(|cN − cM | ≥ 1

k0
).

Applying6 the previous formula k0 + 1 times would make c(·) escape the unit
interval, a contradiction; MCTns follows and the forward implication holds.

For the reverse implication, assume MCTns, fix standard f1 such that
(∀stn0)(f(n) �= 0) and define c1(·) as follows: ck is 0 if (∀n ≤ k)(f(n) �= 0)

and
∑k

i=1
1
2i otherwise. Note that c(·) is standard (as f1 is) and weakly increas-

ing. Hence, cN ≈ cM for nonstandard N,M by MCTns. Now suppose m0 is such
that f(m0) = 0 and also the least such number. By the definition of c(·), we
have that 0 = cm0−1 �≈ cm0 =

∑m0
i=1

1
2i ≈ 1. This contradiction implies that

(∀n0)(f(n) �= 0), and Π0
1 -TRANS thus follows. ��

We refer to the previous proof as the ‘textbook proof’ of MCTns ↔ Π0
1 -TRANS.

The reverse implication is indeed very similar to the proof of MCT → ACA0

in Simpson’s textbook on RM, as found in [23, I.8.4]. This ‘textbook proof’ is
special in a specific sense, as will become clear in the next section. Nonetheless,
any nonstandard proof will yield higher-order computability results as in (3.1).

Theorem 3.2. From any proof of MCTns ↔ Π0
1 -TRANS in P, two terms s, u

can be extracted such that E-PAω∗ proves:

(∀μ2)
[
MU(μ) → MCTef(s(μ))

] ∧ (∀t1→1)
[
MCTef(t) → MU(u(t))

]
. (3.1)

6 To ‘apply this formula k0+1 times’, apply HACint to (∀stn)(∃stN, M ≥ n)(|cN −cM | ≥
1

k0
) to obtain standard F 0→0∗

and define G(n) as the maximum of F (n)(i) for

i < |F (n)|. Then (∀stn)(∃N, M ≥ n)(N, M ≤ G(n) ∧ |cN − cM | ≥ 1
k0

) and iterate
the functional G at least k0 + 1 times to obtain the desired contradiction.
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Proof. We prove the second conjunct and leave the first one to the reader. Corol-
lary 2.6 only applies to normal forms and we now bring MCTns → Π0

1 -TRANS
into a suitable normal form to apply this corollary and obtain the second con-
junct of (3.1). Clearly, Π0

1 -TRANS implies the following normal form:

(∀stf1)(∃stn0)
[
(∃m)f(m) = 0) → f(n) = 0

]
. (3.2)

The nonstandard convergence of c(·), namely (∀N,M ∈ Ω)[cM ≈ cN ], implies

(∀N,M)[(∀stn0)(M,N ≥ n) → (∀stk)|cM − cN | < 1
k ],

in which we pull the standard quantifiers to the front as follows:

(∀stk0)(∀N,M)(∃stn0)[M,N ≥ n → |cM − cN | < 1
k ],

The contraposition of idealisation I applies to the underlined. We obtain:

(∀stk0)(∃stz0
∗
)(∀N,M)(∃n0 ∈ z)[M,N ≥ n → |cM − cN | < 1

k ],

and define K0 as the maximum of z(i) for i < |z|. We finally obtain:

(∀stk0)(∃stK0)(∀N,M)[M,N ≥ K → |cM − cN | < 1
k ]. (3.3)

and (3.3) is a normal form for nonstandard convergence. Hence, MCTns implies:

(∀stc0→1
(·) , k0)(∃stK0)

[
(∀n0)(cn ≤ cn+1 ≤ 1) → (∀N,M ≥ K)[|cM − cN | ≤ 1

k ]
]
,

and let the formula in square brackets be D(c(·), k,K), while the formula in
square brackets in (3.2) is E(f, n). Then MCTns → Π0

1 -TRANS implies that

(∀stc0→1
(·) , k0)(∃stK0)D(c(·), k,K) → (∀stf1)(∃stn0)E(f, n). (3.4)

By the basic axioms in Definition 2.3, any standard functional Ψ produces stan-
dard output on standard input, which yields

(∀stΨ)
[
(∀stc0→1

(·) , k0)D(c(·), k, Ψ(k, c(·))) → (∀stf1)(∃stn0)E(f, n)
]
. (3.5)

We may drop the remaining ‘st’ in the antecedent of (3.5) to obtain:

(∀stΨ)
[
(∀c0→1

(·) , k0)D(c(·), k, Ψ(k, c(·))) → (∀stf1)(∃stn0)E(f, n)
]
,

and bringing all standard quantifiers to the front, we obtain a normal form:

(∀stΨ, f1)(∃stn0)
[
(∀c0→1

(·) , k0)D(c(·), k, Ψ(k, c(·))) → E(f, n)
]
. (3.6)

Applying Corollary 2.6 to ‘P  (3.6)’, we obtain a term t such that

(∀Ψ, f1)(∃n0 ∈ t(Ψ, f))
[
(∀c0→1

(·) , k0)D(c(·), k, Ψ(k, c(·))) → E(f, n)
]
. (3.7)

Define s(f, Ψ) as the maximum of t(Ψ, f)(i) for i < |t(Ψ, f)|. Then (3.6) implies

(∀Ψ)
[
(∀c0→1

(·) , k0)D(c(·), k, Ψ(k, c(·))) → (∀f1)(∃n ≤ s(f, Ψ))E(f, n)
]
, (3.8)

and we recognise the antecedent as the effective version of MCT; the consequent
is (essentially) MU(s(f, Ψ)). Hence, the second conjunct of (3.1) follows. ��
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Note that the normal form (3.3) of nonstandard convergence is the ‘epsilon-delta’
definition of convergence with the ‘epsilon’ and ‘delta’ quantifiers enriched with
‘st’. While the previous proof may seem somewhat magical upon first reading,
one readily jumps from the nonstandard implication MCTns → Π0

1 -TRANS to
(3.8) with some experience.

In conclusion, any proof of Π0
1 -TRANS ↔ MCTns gives rise to the higher-

order computability result (3.1). We may thus conclude the latter from the
proof of Theorem 3.1. In the next section, we show that the latter theorem’s
‘textbook proof’ is special in that it also gives rise to classical computability-
theoretic results. The latter is non-trivial since both Π0

1 -TRANS and MCTns

have a normal form starting with ‘(∀sth1)(∃stl0)’ (up to coding). As a result, to
convert the implication MCTns → Π0

1 -TRANS into a normal form, one has to
introduce a higher-order functional like Ψ to go from (3.4) to (3.5). Note that
replacing the sequence of reals c0→1

(·) in MCTns by a sequence of rationals q1(·)
does not lower Ψ below type two. In a nutshell, the procedure in the previous
proof (and hence most proofs in Nonstandard Analysis) always seems to produce
higher-order computability results.

3.2 An Example of the Classical-Computational Content of NSA

In the previous section, we showed that any proof of Π0
1 -TRANS ↔ MCTns

gives rise to the higher-order equivalence (3.1). In this section, we show that the
particular ‘textbook proof’ of Π0

1 -TRANS ↔ MCTns in Theorem 3.1 gives rise
to classical computability theoretic results as in (3.13) and (3.14).

First of all, we show that the ‘textbook proof’ of Theorem 3.1 is actually
more uniform than the latter theorem suggests. To this end, let Π0

1 -TRANS(f)
and MCTns(c(·)) be respectively Π0

1 -TRANS and MCTns from Sect. 3.1 restricted
to the function f1 and sequence c(·), i.e. the former principles are the latter with
the quantifiers (∀f1) and (∀c0→1

(·) ) stripped off.

Theorem 3.3. There are terms s, t such that the system P proves

(∀stf1)
[
MCTns(t(f)) → Π0

1 -TRANS(f)
]
, (3.9)

(∀stc0→1
(·) )

[
(∀stn0)Π0

1 -TRANS(s(c(·), n)) → MCTns(c(·))]. (3.10)

All proofs are implicit in the ‘textbook proof’ of Theorem 3.1.

Proof. To establish (3.9), define the term t1→1 as follows for f1, k0:

t(f)(k) :=

{
0 (∀i ≤ k)(f(i) �= 0)
∑k

i=0
1
2i otherwise

. (3.11)

The proof of Theorem 3.1 now yields (3.9). Indeed, fix a standard function f1

such that (∀stk0)(f(k) �= 0)∧(∃n)(f(n) = 0) and MCTns(t(f)). By the latter, the
sequence t(f) nonstandard convergences, while 0 = t(f)(n0 − 1) �≈ t(f)(n0) ≈ 1
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for n0 the least (necessarily nonstandard) n such that f(n) = 0. From this
contradiction, Π0

1 -TRANS(f) follows, and thus also (3.9).
The remaining implication (3.10) is proved in exactly the same way. Indeed,

the intuition behind the previous part of the proof is as follows: In the proof of the
reverse implication of Theorem 3.1, to establish Π0

1 -TRANS(f) for fixed standard
f1, we only used MCTns for one particular sequence, namely t(f). Hence, we
only need MCTns(t(f)), and not ‘all of’ MCTns, thus establishing (3.9). Similarly,
in the proof of the forward implication of Theorem 3.1, to derive MCTns(c(·))
for fixed c(·), we only applied Π0

1 -TRANS to one specific Σ0
1 formula with a

standard parameters n0 and c(·). ��
We are now ready to reveal the intended ‘deeper’ meaning of the term ‘textbook
proof’: The latter refers to a proof (which may not exist) of an implication
(∀stf)A(f) → (∀stg)B(g) which also establishes (∀stg)[A(t(g)) → B(g)], and in
which the formula in square brackets is a formula in which all standard quantifiers
involve variables of type zero. By Theorem 3.4, such a ‘textbook proof’ gives rise
to results in classical computability theory.

We choose the term ‘textbook proof’ because proofs in Nonstandard Analysis
(especially in textbooks) are quite explicit in nature, i.e. one often establishes
(∀stg)[A(t(g)) → B(g)] in order to prove (∀stf)A(f) → (∀stg)B(g).

Before we can apply Corollary 2.6 to Theorem 3.3, we need some definitions,
as follows. First, consider the following ‘second-order’ version of (μ2):

(∀e0, n0)
[
(∃m, s)(ϕA

e,s(n) = m) → (∃m, s ≤ ν(e, n))(ϕA
e,s(n) = m)

]
. (MUA(ν))

where ‘ϕA
e,s(m) = n’ is the usual (primitive recursive) predicate expressing that

the e-th Turing machine with input n and oracle A halts after s steps with
output m; sets A,B,C, . . . are denoted by binary sequences. One easily defines
the (second-order) Turing jump of A from ν1 as in MUA(ν) and vice versa.

Next, we introduce the ‘computability-theoretic’ version of MCTef(t). To this
end, let TOT(e,A) be the formula ‘(∀n0)(∃m0, s0)(ϕA

e,s(n) = m)’, i.e. the formula
expressing that the Turing machine with index e and oracle A halts for all inputs,
also written ‘(∀n0)ϕA

e (n) ↓’. Assuming the latter formula to hold for e0, A1,
the function ϕA

e is clearly well-defined, and will be used in P in the usual7

sense of computability theory. We assume ϕA
e (n) to code a rational number

without mentioning the coding. We now introduce the ‘second-order’ version of
MCTef(t):

(∀e0)
[
TOT(e,A)∧(∀n0)(0 ≤ ϕA

e (n) ≤ ϕA
e (n + 1) ≤ 1) (MCTA

ef(t))

→ (∀k0)(∀N,M ≥ t(e, k))[|ϕA
e (N) − ϕA

e (M)| ≤ 1
k ]

]
.

7 For instance, written out in full ‘0 ≤ ϕA
e (n) ≤ ϕA

e (n + 1) ≤ 1’ from MCTA
ef (t) is:

(∀s0, q0, r0)
[
(ϕA

e,s(n) = q ∧ ϕA
e,s(n + 1) = r) → 0 ≤0 q ≤0 r ≤0 1

]
, (3.12)

where we also omitted the coding of rationals.
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Here, t has type (0× 0) → 0 or 0 → 1, and we will usually treat the former as a
type one object. Finally, let MCTA

ef(t, e) and MUA(ν, e, n) be the corresponding
principles with the quantifiers outside the outermost square brackets removed.

Theorem 3.4. From the textbook proof of MCTns → Π0
1 -TRANS, three terms

s1→1, u1, v1→1 can be extracted such that E-PAω∗ proves:

(∀A1, ψ0→1)
[
MCTA

ef(ψ) → MUA(s(ψ,A))
]
. (3.13)

(∀e0, n0, A1, φ1)
[
MCTA

ef(φ, u(e, n)) → MUA(v(φ,A, e, n), e, n)
]
. (3.14)

Proof. Similar to the proof of Theorem 3.2, a normal form for Π0
1 -TRANS(f) is:

(∃stn0)
[
(∃m)(f(m) = 0) → (∃i ≤ n)(f(i) = 0)], (3.15)

while, for t as in (3.11), a normal from for MCTns(t(f)) is:

(∀stk0)(∃stK0)
[
(∀n0)(0 ≤ t(f)(n) ≤ t(f)(n + 1) ≤ 1) (3.16)

→ (∀N0,M0 ≥ K)(|t(f)(N) − t(f)(M)| ≤ 1
k )

]
,

Let C(n, f) (resp. B(k,K, f)) be the formula in (outermost) square brackets in
(3.15) (resp. (3.16)). Then (3.9) is the formula

(∀stf1)[(∀stk)(∃stK)B(k,K, f) → (∃stn0)C(n, f)],

which (following the proof of Theorem 3.2) readily implies the normal form:

(∀stf1, ψ1)(∃stn0)[(∀k)B(k, ψ(k), f) → C(n, f)]. (3.17)

Applying Corollary 2.6 to ‘P0  (3.17)’ yields a term z2 such that

(∀f1, ψ1)(∃n ∈ z(f, ψ))
[
(∀k)B(k, ψ(k), f) → C(n, f)

]

is provable in E-PAω∗. Define the term s(f, ψ) as the maximum of all z(f, ψ)(i)
for i < |z(f, ψ)| and note that (by the monotonicity of C):

(∀f1, ψ1)
[
(∀k)B(k, ψ(k), f) → C(s(f, ψ), f)

]
. (3.18)

Now define f2
0 as follows: f0(e, n,A, k) = 0 if (∃m, s ≤ k)(ϕA

e,s(n) = m), and 1
otherwise. For this choice of function, namely taking f1 =1 λk.f0, the sentence
(3.18) implies for all A1, ψ1, e0, n0 that

(∀k′)B(k′, ψ(k′), λk.f0) → C(s(λk.f0, ψ), λk.f0), (3.19)

where we used the familiar lambda notation with some variables of f0 sup-
pressed to reduce notational complexity. Consider the term t from (3.11) and
note that there are (primitive recursive) terms x1, y1 such that for all m we have
t(λk.f0(e, n,A, k))(m) = ϕA

x(e,n),y(e,n)(m); the definition of x1, y1 is implicit in
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the definition of t and f0. Hence, with these terms, the antecedent and conse-
quent of (3.19) are as required to yield (3.14).

To prove (3.13) from (3.19), suppose we have (∀k′)B(k′, ξ(e, n)(k′), λk.f0) for
all e0, n0 and some ξ0→1 and A1, where ξ(e, n) has type 1. By (3.19) we obtain

(∀e0, n0)C(s(λk.f0, ξ(e, n)), λk.f0).

Putting the previous together, we obtain the sentence:

(∀A1, ξ0→1)
[
(∀e0, n0, k′)B(k′, ξ(e, n)(k′), λk.f0) (3.20)

→ (∀e0, n0)C(s(λk.f0, ξ(e, n)), λk.f0)
]
.

Clearly, the consequent of (3.20) implies that s(λk.f0, ξ(e, n)) provides the
Turing jump of A as in MUA(λeλn.s(λk.f0, ξ(e, n))). On the other hand, the
antecedent of (3.20) expresses that the sequence t(λk.f0(e, n,A, k)) converges
for all e, n as witnessed by the modulus ξ(e, n). In light of the definitions of f0
and t, the sequence t(λk.f0) (considered as a type one object) is definitely com-
putable from the oracle A (in the usual sense of Turing computability). Thus, the
antecedent of (3.20) also follows from MCTA

ef(ξ). In other words, (3.20) yields

(∀A1, ξ0→1)
[
MCTA

ef(ξ) → MUA(λeλn.s(λk.f0, ξ(e, n)))
]
, (3.21)

which is as required for the theorem, with minor modifications to the term s. ��
Note that (3.14) expresses that in order to decide if the e-th Turing machine
with oracle A and input n halts, it suffices to have the term s and a modulus
of convergence for the sequence of rationals given by ϕA

u(e,n). We do not claim
these to be ground-breaking results in computability theory, but we do point out
the surprising ease and elegance with which they fall out of textbook proofs in
Nonstandard Analysis. Taking into account the claims8 by Bishop and Connes
that Nonstandard Analysis be devoid of computational/constructive content, we
believe that the word ‘surprise’ is perhaps not misplaced to describe our results.

In a nutshell, to obtain the previous theorem, one first establishes the ‘non-
standard uniform’ version (3.9) of MCTns → Π0

1 -TRANS, which yields the ‘super-
pointwise’ version (3.18). The latter is then weakened into (3.14) and then weak-
ened into (3.13); this modification should be almost identical for other simi-
lar implications. In particular, it should be straightforward, but unfortunately
beyond the page limit, to obtain versions of Theorems 3.3 and 3.4 for König’s
lemma and Ramsey’s theorem [23, III.7], or any theorem equivalent to ACA0 in
RM for that matter.

Furthermore, results related to weak König’s lemma, the third Big Five sys-
tem of RM [23, IV] and the RM zoo [7], can be obtained in the same way as

8 Bishop (See [4, p. 513], [2, p. 1], and [3], which is the review of [11]) and Connes
(See [6, p. 6207] and [5, p. 26]) have made rather strong claims regarding the non-
constructive nature of Nonstandard Analysis. Their arguments have been investi-
gated in remarkable detail and were mostly refuted (See e.g. [8–10]).
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above. For instance, one can easily obtain Π0
1 -TRANS → WKLns where the lat-

ter is the nonstandard modification of WKL stating the existence of a standard
path for every standard infinite binary tree. However, the existence of a ‘text-
book proof’ (as discussed right below Theorem 3.3) for this implication (or the
reverse implication) leads to a contradiction.

In conclusion, higher-order computability results can be obtained from arbi-
trary proofs of MCTns → Π0

1 -TRANS, while the textbook proof as in the proof of
Theorem 3.1 yields classical computability theory as in Theorem 3.4.

3.3 The Connection Between Higher-Order and Classical
Computability Theory

This paper would not be complete without a discussion of the ECF-translation,
which connects higher-order and second-order mathematics. In particular, we
show that applying the ECF-translation to e.g. (3.1) does not yield e.g. (3.14).

We first define the central ECF-notion of ‘associate’ which some will know in
an equivalent guise: Kohlenbach shows in [14, Proposition 4.4] that the existence
of a ‘RM code’ for a continuous functional Φ2 as in [23, II.6.1], is equivalent to
the existence of an associate for Φ, and equivalent to the existence of a modulus
of continuity for Φ, Simpson’s claims from [23, I.8.9.5] notwithstanding.

Definition 3.5. The function α1 is an associate of the continuous Φ2 if:

(i) (∀β1)(∃k0)α(βk) > 0,
(ii) (∀β1, k0)(α(βk) > 0 → Φ(β) + 1 =0 α(βk)).

With regard to notation, it is common to write α(β), to be understood as α(βk)−
1 for large enough k0 (See also Definition 3.8 below). Furthermore, we assume
that every associate is a neighbourhood function as in [14], i.e. α also satisfies

(∀σ0∗
, τ0∗

)
[
α(σ) > 0 ∧ |σ| ≤ |τ | ∧ (∀i < |σ|)(σ(i) = τ(i)) → α(σ) = α(τ)

]
.

We now sketch the ECF-translation; Note that RCAω
0 is Kohlenbach’s base theory

for higher-order RM [13]; this system is essentially E-PAω weakened to one-
quantifier-induction and with a fragment of the axiom of choice.

Remark 3.6 (ECF-translation). The translation ‘[·]ECF’ is introduced in [24,
Sect. 2.6.5] and we refer to the latter for the exact definition. Intuitively, applying
the ECF-translation to a formula amounts to nothing more than replacing all
objects of type two or higher by associates. Furthermore, Kohlenbach observes
in [13, Sect. 2] that if RCAω

0  A then RCA2
0  [A]ECF, i.e. [·]ECF provides a

translation from RCAω
0 to (a system which is essentially) RCA0, the base theory

of RM.

Thus, we observe that the ECF-translation connects higher-order and second-
order mathematics. We now show that the ECF-translation is not a ‘magic bullet’
in that [A]ECF may not always be very meaningful, as discussed next.
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Example 3.7 (The ECF-translation of (μ2)). The ECF-translation will inter-
pret the discontinuous9 functional μ2 as in MU(μ) as a continuous object sat-
isfying the latter formula, which is of course impossible10, and the same holds
for theorems equivalent to (μ2) as they involve discontinuous functionals as well.
Hence, the ECF-translation reduces the implications in (3.1) to (correct) trivial-
ities of the form ‘0 = 1 → 0 = 1’.

By the previous example, we observe that the answer to question (Q) is not
just ‘apply ECF’ in the case of theorems involving (μ2). Nonetheless, we could
apply the ECF-translation to (3.13) and (3.14) to replace the terms s, u, v by
associates. To this end, we require definition of partial function application (See
e.g. [24, 1.9.12] or [12, Definition 3.58]) for the final corollary.

Definition 3.8 (Partial function application). For α1, β1, ‘α(β)’ is defined
as

α(β) :=

{
α(βk) − 1 If k0 is the least n with α(βn) > 0
undefined otherwise

,

and α|β := (λn0)α(〈n〉 ∗ β). We write α(β) ↓ to denote that α(β) is defined,
and α|β ↓ to denote that (α|β)(n) is defined for all n0. For β1, γ1, we define the
paired sequence β ⊕γ by putting (β ⊕γ)(2k) = β(k) and (β ⊕γ)(2k+1) = γ(k).

We now consider the following corollary to Theorem 3.4.

Corollary 3.9. From the textbook proof of MCTns → Π0
1 -TRANS, a term z1 can

be extracted such that E-PAω∗ proves:

(∀ψ1, A1)
[
MCTA

ef(ψ) → [z|(ψ ⊕ A) ↓ ∧ MUA(z|(ψ ⊕ A))]. (3.22)

Proof. Immediate from applying the ECF-translation to (3.13). ��
Note that (3.22) is part of second-order arithmetic.

Acknowledgement. The author would like to thank Richard Shore, Anil Nerode,
and Vasco Brattka for their valuable advice and encouragement.
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Abstract. We study the problem of routing in directed graphs with
superlinear polynomial costs, which is significant for improving the
energy efficiency of networks. In this problem, we are given a directed
graph G(V, E) and a set of traffic demands. Routing δe units of demands
along an edge e will incur a cost of fe(δe) = μe(δe)

α with μe > 0 and
α > 1. The objective is to find integral routing paths for minimizing∑

e fe(δe). Through developing a new labeling technique and applying

it to a randomized reduction, we prove an Ω
(( log |E|

log log |E|
)α · |E|− 1

4

)
-

hardness factor for this problem under the assumption that NP �

ZPTIME(npolylog(n)).

Keywords: Hardness of approximation · Superlinear polynomial cost ·
Directed graphs · Network energy efficiency

1 Introduction

We investigate a routing problem whose objective is to minimize a superlinear
polynomial cost of degree α > 1 in directed graphs (abbrv. DirSPC). In this
problem, we are given a directed graph G(V,E) and a set of traffic demands,
each of which specifies a source-target pair (si, ti). Each directed edge e ∈ E is
associated with a superlinear polynomial cost function fe(x) = μe · xα, where
μe ≥ 0. Let δe be the traffic load on e, the objective is to find an integral path
for each traffic demand to minimize the overall cost

∑
e fe(δe) =

∑
e μe(δe)α. A

simplified version of this problem which sets all μe to 1 will be referred to as the
homogeneous DirSPC problem (abbrv. Homo-DirSPC).
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Theorem 1. The general DirSPC problem is Ω(β′)-hard to approximate if the
Homo-DirSPC problem has no O(β′)-approximation.

Our study on the DirSPC problem is motivated by the growing concern on
the energy efficiency of networks. Related research works show that the modern
communication infrastructures and network devices are responsible for consid-
erable and increasing percentage of world wide electricity usage [10]. In such
case, the energy conservation problem in communication networks is attract-
ing more and more attention. Since the superlinear polynomial cost function of
degree α can appropriately model the electric power consumption of the network
devices employing the speed scaling mechanism [12,15], studies on DirSPC will
be significant for improving the energy efficiency of networks globally [3,11].

Until now, many approximation algorithms have been developed for DirSPC
(e.g., [6,13]), owing to the significance of this problem in the perspectives of both
theory and economy. However, to the best of our knowledge, the hardness of this
problem is still unknown. In this paper, we will bound the hardness of DirSPC
through reducing from a hard-to-approximate general Constraint Sanctification
Problem (CSP) [2,8] in a randomized manner. With this technique we prove
that the DirSPC problem has no Ω

(( log |E|
log log |E|

)α · |E|− 1
4

)
-approximation unless

NP ⊆ ZPTIME(npolylog(n)). Note that here n is not the size of the DirSPC
problem instance but an abstract parameter for defining the complexity class [2].

1.1 Related Works

In order to improve the energy efficiency of networks, some approximation algo-
rithms have been proposed for the DirSPC problem and its variations. In [6],
Bampis et al. propose an O(B̃α)-approximation randomized routing algorithm
for Homo-DirSPC, where B̃α refers to the generalized Bell number for α. B̃α

follows Dobiński’s formula [9]: B̃α =
+∞∑

k=1

kα exp(−1)
k! .

The best known result for the DirSPC problem is given by Makarychev and
Sviridenko’s randomized routing algorithm [13], whose approximation ratio is
bounded by (1+ ε)B̃α. Note that this approximation ratio does not conflict with
our hardness result, since for any fixed α,

( log |E|
log log |E|

)α|E|− 1
4 can be bounded by

a constant only depending on α when |E| takes proper values.
Some research works (e.g., [1,7]) focus on a variation of the DirSPC problem,

where the cost function fe(x) includes a start-up cost σe used to model the static
power consumption of network devices. In such case, fe(x) = σe + μex

α when
x > 0, while fe(x) = 0 when x = 0. [7] proves that this variation admits no
polylogarithmic approximation ratio unless NP ⊆ ZPTIME(npolylog(n)). How-
ever, their hardness results depend highly on the existence of a large enough
start-up cost σe for some edge e, since the DirSPCwS problem instance in [7]
admits a constant approximation ratio when σe/μe = o(1) [1,3].

In [14], Shi et al. prove that for a routing problem on an undirected graph
where each edge is associated with a cost function fe(x) = xα, no integral routing
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algorithm that is traffic-oblivious can guarantee an O
(|E|α−1

α+1
)
-competitive ratio.

Nevertheless, this result only holds for the traffic-oblivious routing algorithms,
but does not apply to the traffic-adaptive ones.

1.2 Overview

To analyze the inapproximability of the DirSPC problem, our reduction starts
from a hard-to-approximate Constant Satisfaction Problem (CSP). An instance
of CSP consists of a collection of constraints on k-combinations of a set of vari-
ables. We say a CSP instance is a Yes-instance if there exists some assignment to
the variables such that all the constraints are satisfied, while a CSP instance is
referred to as a No-instance if every assignment to the variables can only satisfy
a tiny fraction satn of the constraints.

In our reduction, for a CSP instance Ψ we construct a directed graph DΨ

and a set of traffic demands as the input of the DirSPC problem. The con-
struction of DΨ guarantees that when Ψ is a Yes-instance, the demands can
be routed with a low cost CL, while if Ψ is a No-instance, any routings of the
demands will incur a high cost CH . It implies that if DirSPC problem has an
o
(

CH−ε
CL

)
-approximation algorithm, it can be distinguished that whether Ψ is a

Yes-instance or No-instance, which will conflict with complexity theories.
To obtain a well-bounded hardness factor, the key point is to establish a large

enough lower bound on CH . Owing to the superadditivity of fe(x), aggregating
a large quantity of traffic into some edge e can incur a high cost. However, a
large congestion does not imply a high overall cost directly. Consider the two
directed graphs D1 and D2 in Fig. 1. In D1, the vertices s and t is connected by a
directed edge from s to t and d paths with length dα from t to s. The graph D2

is obtained by changing the direction of every edge in D1. In each of these two
graphs, d traffic demands need to be routed from s to t. Although the demands
in D2 can be routed on edge-disjoint paths with congestion 1 while routing in
D1 will cause a congestion of d, it’s easy to verify that the cost of any routings
in D2 is d = Θ(|E|1/α) times larger than the routing cost in D1.

(a) Graph D1 (b) Graph D2

Fig. 1. Relationship between congestion and overall cost
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The example above indicates that a high congestion c cannot guarantee a
large enough overall cost if only a tiny fraction of edges have congestion c. To
deduce a well-bounded inapproximability result, the construction of DΨ needs to
make trade-off between the number of the heavy-loaded edges and the possible
load on these edges. Specifically, we assign a collection of special paths called
canonical paths [2,8] to each source-target pair. When Ψ is a No-instance, it
is proved that any routings on the canonical paths will create high congestion
c = Θ (log |E|/ log log |E|) on Ω(|E|3/4) edges with a high probability.

However, the traffic demands may be routed along the paths which deviate
from the canonical paths to avoid the corresponding high cost. To eliminate
such kind of routings, we adapt the labeling technique [8] into the construction
of DΨ . With this technique, we can guarantee that any paths deviating from the
canonical paths cannot connect s to corresponding t. It implies that every traffic
demand will be forced to go through one of its canonical paths. This completes
our proof and establishes a hardness factor of Ω

(( log |E|
log log |E|

)α|E|− 1
4

)
.

2 Reduction and Graph Construction

Our reduction starts from the Constraint Satisfaction Problem. An instance of
CSP consists of a collection of N variables x1, x2, · · · , xN over a non-boolean
domain D = {1, 2, · · · , p} and a set C of M constraints, each of which is defined
on a specific k-tuple of the variables. Each constraint Cj is satisfied by at most J
local assignments to its variables. The objective of CSP is to distinguish between
the following two cases:

– Yes-instance: There exists some assignments to the variables such that all the
constraints can be satisfied.

– No-instance: Any assignments to the variables can satisfy at most a fraction
satn of constraints.

We can characterize an instance of CSP with these parameters
(M,N, J, p, k, satn).

Theorem 2 ([8]). There exists an absolute constant ε0 ∈ (0, 1) such that for all
large enough functions p : N �→ N, no polynomial-time algorithm can decide a
CSP instance characterized by the parameters

(
nlog p, nlog p, p, p, 2, 1/pε0

)
unless

NP ⊆ DTIME
(
nlog p

)
. (Similar to [8], here we use the shorthand p = p(n).)

Now we define a set of notations that will be used in the following reduction.

– [I]: For an integer I ≥ 1, we use [I] to represent the set {1, 2, · · · , I}.
– i, j, q: Typically, we use i ∈ [N ], j ∈ [M ] and q ∈ [p] to respectively represent

the variable index, the constraint index and the values in the domain D.
– Bi: For each xi, we use Bi to represent the number of constraints containing

xi. Since there are k variables in each constraint,
∑

i∈[N ] Bi = kM [2,8].
– ζ: It represents a local assignment that satisfies a constraint Cj . We say ζ is

local for it only specifies the values of the variables in Cj .
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– Γijq: For each xi, each Cj containing xi and each q, we use Γijq to represent
the set of local assignments that satisfies Cj and assigns q to xi.

– Γiq: It represents every pair (Cj , ζ) such that xi is in Cj and ζ ∈ Γijq.

Based on a CSP instance Ψ characterized by
(
nlog p, nlog p, p, p, 2, 1/pε0

)
, next

we will construct a directed graph DΨ in a randomized manner. The construc-
tion process is similar to [2]. The major difference between our graph DΨ and
the graph constructed in [2] is that we adopt the 2-dimensional (2D) label-
ing techniques proposed in [8] to avoid the traffic demands deviating from the
canonical paths. We use this technique to ensure that any routings of the traffic
requests in the graph reduced from a No-instance will create a high congestion
c = c(n) = log n on a large fraction of edges. Formally, a 2D label �μ(τ) : N �→ N2

is a function that maps an integer τ to a 2-dimensional vector (τ, τ2).
Before identifying the set L of labels, we need to declare two parameters

Y,Z (their values will be specified later) and define acceptance iteration [2,8].
An acceptance iteration is a tuple (Cj , ζ, y) where ζ is a local assignment that
satisfies Cj and y ∈ [Y ]. It’s easy to see that the number of acceptance iterations
can be bounded by MJY . Consider a acceptance function τ = τ(Cj , ζ, y) that
maps each acceptance iteration to a distinct integer in [MJY ] arbitrarily. For
every acceptance iteration (Cj , ζ, y) and every z ∈ [2Z], there will be a label
�l(τ(Cj , ζ, y), z) = �μ(τ(Cj , ζ, y))·z in L. Therefore, the size of L will be (MJY )3·
(2Z)2. Two operators, ‘+’ and ‘×’, are defined over the set L as follows:

Definition 1 (Addition Operator [8]). For any two vector (a1, a2) ∈ L and
(b1, b2) ∈ L, (a1, a2) + (b1, b2) is defined to be

(
(a1 + b1) mod (2MJY Z), (a2 +

b2) mod (2(MJY )2Z)
)
.

Definition 2 (Multiplication Operator). For any vector (a1, a2) ∈ L and
any integer λ ∈ N+, (a1, a2) × λ is defined to be

(
a1 · λ mod (2MJY Z), a2 ·

λ mod (2(MJY )2Z)
)
.

The construction of DΨ starts from building certain variable gadgets. For each
variable xi, we will construct a gadget Gi in a randomized manner. Specifically,
each Gi contains Z layers. For each z ∈ [Z], there exists a matching M i

z which
consists of Xi = Y JBi|L| special edges ei,z

s,�l
=

(
ui,z

s,�l
, vi,z

s,�l

)
for s ∈ [Y JBi] and

�l ∈ L. The vertices ui,z

s,�l
and vi,z

s,�l
will be called the tail and head of ei,z

s,�l
respectively.

We partition every matching M i
z into |L| labeled matchings M̃

�l
i,z, each of which

consists of the special edges in M i
z with the same label �l.

After constructing the special edges, the next step is to add Z + 1 layers of
connector vertices into DΨ . For each z ∈ [Z + 1], each q ∈ [p] and each �l ∈ L, we
construct a set W i,z

q,�l
of Y |Γiq| connector vertices, each of which is corresponding

to a tuple (Cj , ζ, y) where the pair (Cj , ζ) ∈ Γiq and y ∈ [Y ]. Such a vertex in
W i,z

q,�l
will be represented by ωi,z

Cj ,ζ,y,�l
. Recall that the acceptance function τ will

map each acceptance iteration (Cj , ζ, y) to a distinct integer. Therefore, we will
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use the shorthand ωi,z

τ,�l
to represent a connector vertex when the tuple (Cj , ζ, y)

is obvious from the context. According to [2], for any W i,z

q,�l
:

W i,z

q,�l
≤

∑

q∈[p]

|W i,z

q,�l
| ≤ Y JBi (1)

The crucial part of the construction is to link the connector vertices to the
special edges in a randomized manner. For each W i,z

q,�l
, a subset Si,z

q,�l
of spe-

cial edges of size
∣
∣
∣W i,z

q,�l

∣
∣
∣ are independently and uniformly chosen from the

group M̃
�l
i,z at random. According to formulation (1), such a sub-matching

always exists. Each ωi,z

Cj ,ζ,y,�l
will be connected to the tail of a special edge

in Si,z

q,�l
via a random matching. This special edge will be also called ξi,z

Cj ,ζ,y,�l
.

Then a directed edge will connect the head of ξi,z

Cj ,ζ,y,�l
to the connector vertex

ωi,z+1

Cj ,ζ,y,�l+�μ(τ(Cj ,ζ,y))
.

Consider two connector vertex ω1 and ω2. When ω1 ∈ W i,z

q1,�l
and ω2 ∈ W i,z

q2,�l

such that q1 �= q2, they may be connected to the same special edge. Hence, the
in-degree and out-degree of a special edge may be larger than 1. Let ωi,z+1

τ,�l′
be

an arbitrary connector vertex adjacent to the head of a special edge ei,z

s,�l
, then:

Lemma 1. There exists an integer τ ′ such that �l′ = �l + �μ(τ ′).

Proof. Corresponding to each connector vertex adjacent to the head of ei,z

s,�l
, there

will be an ωi,z

τ,�l
connected to tail of ei,z

s,�l
such that �l′ = �l + �μ(τ). 	


We now add source-target pairs into DΨ and linking together the gadgets.
Specifically, for each Cj ∈ C, each y ∈ [Y ] and each �l ∈ L, there will be a source-

target pair
(
s
�l
j,y, t

�l
j,y

)
. For each Cj ∈ C, let xi1 , xi2 , · · · , xik

be the k variables
contained in Cj . We refer to i1, i2, · · · , ik as the local indexes of the variables.
For two variables xi′ and xi′′ contained in Cj , iff i′ < i′′ they will be given local
indexes iλ1 and iλ2 such that λ1 < λ2. For every local assignment ζ that satisfies
Cj , we construct a path that connects s

�l
j,y in the following way:

1. Connect the source s
�l
j,y to ωi1,1

Cj ,ζ,y,�l
, and connect ωik,Z+1

Cj ,ζ,y,�l+�μ(τ(Cj ,ζ,y))×Z
to the

target t
�l
j,y.

2. For each λ ∈ [k − 1], connect ωiλ,Z+1

Cj ,ζ,y,�l+�μ(τ(Cj ,ζ,y))×Z
to ω

iλ+1,1

Cj ,ζ,y,�l
.

Since DΨ will be used as the input of the DirSPC problem, we assign a
superlinear cost function f(x) = xα to each edge to complete the construction.
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Theorem 3. The number of edges in DΨ can be bounded by Θ
(
k(MY J)4Z3

)
.

Proof. First, the number of the special edges can be bounded by
∑

i∈[N ]

∑

z∈[Z]

|M i
z| = Z ·

∑

i∈[N ]

Xi = ZY J |L| ·
∑

i∈[N ]

Bi = kMJY Z|L|

Then we consider the bound on the number of the connector vertices:
∑

z∈[Z+1]

∑

�l∈L

∑

i∈[N ]

∑

q∈[p]

∣
∣
∣W i,z

q,�l

∣
∣
∣ ≤ (Z + 1)|L|Y J

∑

i∈[N ]

Bi ≤ 2kMJY Z|L|

Since the in-degree and out-degree of each connector vertices are at most 1, we
can claim that the number of edges can be bounded by Θ(kMJY Z|L|). 	

Corollary 1. The time needed to construct DΨ can be bounded by
O

(
k(MJY )4Z3

)
.

2.1 Parameters

Now we specify the values of the parameters related to the construction of DΨ .

c = c(n) = log n p = p(n) = (2c)k/ε0 r =
(
ck · satn

)−1

ρ = 2pkJr Y =
⌈
64ρc

J

⌉
Ai = 2Xi/ρ

Z = 128c · ρc

Note that the parameter ε0 in the specification of p is the exponent of the
reciprocal of satn.

Lemma 2

1. ρ = Θ(p2).
2. nlog p = Θ(ρc/2).
3. Y J = Θ(ρc).
4. |L| = Θ(c2ρ13c/2).
5. The number of edges in DΨ can be bounded by Θ(c3M4ρ7c).

Proof. The first three equalities are proved as follows:

1. According to Theorem 2, J = p, k = 2, r = ( ck

pε0 )−1 = 4. Thus, ρ = 16p2.
2. Since log(ρc) = c log ρ = 2 log n · log(4p) while log(nlog p) = log n · log p, the

second formulation follows.
3. Since 64ρc

J = 64ρc

p > 1, 64ρc

J ≤ Y ≤ 2 · 64ρc

J , which implies that Y J = Θ(ρc).

According to Theorem 3, the last two equalities holds. 	
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3 Inapproximability Analysis

3.1 Canonical Path

To analyze the routing cost, we start by investigating a set of special paths,
which will be called canonical paths [5,8]. Before giving the formal definition of
the canonical paths, first we need to consider the connectivity of the connector
vertices. For any two connector vertices ω and ω′, we say ω is directed to ω′ if
there exists at least one path connecting ω to ω′.

Lemma 3. Consider a variable xi and an acceptance iteration (Cj , ζ, y) such
that Cj contains xi and ζ satisfies Cj. For any �l ∈ L and any z ∈ [Z], the connec-
tor vertex ωi,1

Cj ,ζ,y,�l
is directed to ωi,z+1

Cj ,ζ,y,�l+�μ(τ)×z
, where τ represents τ(Cj , ζ, y).

Proof. When z = 1, ωi,1

τ,�l
will be connected to the tail of ξi,1

τ,�l
, whose head is

connected to ωi,2

τ,�l+�μ(τ)
. Therefore the proposition follows in such case. Suppose

it holds for any z ∈ [z0] where z0 ∈ [Z − 1]. In such case, ωi,1

τ,�l
is directed

to ωi,z0+1

τ,�l+�μ(τ)×z0
and ωi,z0+1

τ,�l+�μ(τ)×z0
is connected to ωi,z0+2

τ,�l+�μ(τ)×(z0+1)
via the special

edge ξi,z0+1

τ,�l+�μ(τ)×z0
. Thus this proposition follows when z = z0 + 1. 	


This lemma implies that there exists a path connecting ωi,1

Cj ,ζ,y,�l
to

ωi,Z+1

Cj ,ζ,y,�l+�μ(τ)×Z
. Such a path will be denoted by P [i, j, ζ, y,�l]. Recall that we

denote the k variables in a constraint Cj by xi1 , xi2 , · · · , xik
. For any λ ∈ [k−1],

the path P [iλ, j, ζ, y,�l] is connected to P [iλ+1, j, ζ, y,�l] via the directed edge(
ωiλ,Z+1

τ,�l+�μ(τ)×Z
, ω

iλ+1,1

τ,�l

)
. Thus, we have a path connecting ωi1,1

τ,�l
to ωik,Z+1

τ,�l+�μ(τ)×Z

which consists of every P [iλ, j, ζ, y,�l]. Such a path will be referred to as a canon-
ical path P [j, ζ, y,�l]. The construction of DΨ ensures that each source-target
pair

(
s
�l
j,y, t

�l
j,y

)
is connected by at most J canonical paths corresponding to dis-

tinct local assignment ζ that satisfies Cj . We will prove that the traffic demand

between
(
s
�l
j,y, t

�l
j,y

)
must go through one of these canonical paths.

We first consider a graph D̃Ψ formed by shrinking every gadget Gi ∈ DΨ to
a single node gi, which will be called a gadget vertex.

Lemma 4. The graph D̃Ψ is acyclic.

Proof. Here we construct an ordered sequence Q of vertices in D̃Ψ as follows:
first, add all the source vertices in DΨ into Q arbitrarily. The next step is to
sequentially add the gadget vertices g1, g2, · · · , gN into Q and finally we add the
target vertices into it. Obviously, Q is a topological sort of D̃Ψ . 	

Remark 1. This lemma indicates that once a path P goes from a gadget Gi ∈ DΨ

to a vertex out of Gi, it can never go back.
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Lemma 5. Let (Cj , ζ, y) and (C ′
j , ζ

′, y′) be two different acceptance iterations.
For any z ∈ [Z + 1], let �l′ = �l + �μ(τ(Cj , ζ, y)) × (z − 1). Then there will be no
path that connects ωi,z

C′
j ,ζ′,y′,�l′

to ωi,Z+1

Cj ,ζ,y,�l+�μ(τ)×Z
, where τ represents τ(Cj , ζ, y).

Proof. Suppose that there exists P ′ that connects ωi,z

C′
j ,ζ′,y′,�l′

to ωi,Z+1

Cj ,ζ,y,�l+�μ(τ)×Z
.

Lemma 4 indicates that here we only need to consider the paths inside the gadget
Gi. According to the construction procedure, the layer indexes of the connec-
tor vertices going through by any path inside Gi will increase monotonically.
Therefore, the path P ′ exists only when z < Z + 1. In such case, it will contain
exactly (Z + 1) − z + 1 = Z − z + 2 connector vertices. Let the sequence of the
connector vertices going through by P ′ be ωi,z1

τ1,�l1
, ωi,z2

τ2,�l2
, · · · , ωi,Z+1

Cj ,ζ,y,�lZ+1
, where

ωi,z1

τ1,�l1
represents ωi,z

C′
j ,ζ′,y′,�l′

and �lZ+1 = �l + �μ(τ) × Z. According to Lemma 1, for

any z′ ∈ [Z − z + 1], there exists τz′ ∈ Z such that �lz′+1 = �lz′ + �μ(τz′). Since:

�lZ+1 −�l1 = �l + �μ(τ) × Z −�l′

= �l + �μ(τ) × Z −
[
�l + �μ(τ) × (z − 1)

]

= �μ(τ) × (Z − z + 1)

then we have

Z−z+1∑

z′=1

�μ(τz′) = �lZ+1 −�lz = �μ(τ) × (Z − z) (2)

According to [8], the 2-dimensional labels are convexly independent, which
implies that the formulation (2) does not hold unless τ1 = τ2 = · · · = τ . Note
that the acceptance function maps different acceptance iterations to different
integers in an injective manner. It indicates the equation τz = τ conflicts with
the assumption that (Cj , ζ, y) �= (C ′

j , ζ
′, y′). Thus, this proposition follows. 	


Lemma 6. For an arbitrary integer z ∈ [Z + 1] and an arbitrary acceptance
iteration (Cj , ζ, y), let �l and �l′ be two labels such that �l′ �= �l + �μ(τ(Cj , ζ, y)) ×
(z − 1). Then there will be no path connecting ωi,z

τ,�l′
to ωi,Z

τ,�l+�μ(τ)×Z+1
.

Proof. Suppose that ωi,z

Cj ,ζ,y,�l′
is directed to ωi,Z+1

Cj ,ζ,y,�l+�μ(τ)×Z
via a path P ′.

According to Lemma 5, any connector vertices in P ′ is corresponding to (Cj , ζ, y).
It implies that:

�l′ + �μ(τ(Cj , ζ, y)) × (Z + 1 − z) = �l + �μ(τ(Cj , ζ, y)) × Z

It means �l′ = �l + �μ(τ(Cj , ζ, y)) × (z − 1), which conflicts with the assumption. 	
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Theorem 4. Every traffic demand will be routed along a canonical path.

Proof. Let’s consider an arbitrary source-target pair (s�l
j,y, t

�l
j,y). Suppose it is

routed along a path P. According to the construction of DΨ , P must traverse
a connector vertex ωik,Z+1

Cj ,ζ0,�l+�μ(τ)×Z
to reach the target t

�l
j,y, where ζ0 is a local

assignment that satisfies Cj . Next, we will show that P = P [j, ζ0, y,�l].
First, let Gik

be the gadget corresponding to xik
. Any path that enters Gik

must go though the first layers of connector vertices. According to Lemmas 5
and 6, we can infer that the vertex traversed by P in the first layer will be
ωik,1

Cj ,ζ0,y,�l
. Suppose that there exists a path P ′ �= P [ik, j, ζ0, y,�l] that connects

ωik,1

Cj ,ζ0,y,�l
to ωik,Z+1

Cj ,ζ0,�l+�μ(τ)×Z
. Recall that the out-degree of any connector ver-

tex and the tail of any special edge is 1, which implies that P ′ deviates from
P [ik, j, ζ0, y,�l] at the head of some special edge. However, since the connec-
tor vertices adjacent to the head of the same special edge are corresponding
to different acceptance iterations, Lemma 5 indicates that P ′ can never reach
ωik,Z+1

Cj ,ζ0,�l+�μ(τ)×Z
. Therefore, we can claim that P ⋂

Gik
= P [ik, j, ζ0, y,�l].

Note that the construction of DΨ ensures that the in-degree of ωik,1

Cj ,ζ0,y,�l
is 1.

Therefore, to reach the target, P should traverse the edge from ω
ik−1,Z+1

Cj ,ζ0,y,�l+�μ(τ)×Z

to ωik,1

Cj ,ζ0,y,�l
, which indicates that ω

ik−1,Z+1

Cj ,ζ0,y,�l+�μ(τ)×Z
∈ P. With the techniques

given in the last paragraph, now we can inductively prove that when λ = k −
1, k − 2, · · · , 1, P ⋂

Giλ
= P [iλ, j, ζ0,�l ]. Thus, this proposition follows. 	


3.2 Routing Cost Corresponding to Yes-instance

Theorem 5. Suppose there is an assignment η to the whole set of the N vari-
ables in Ψ such that all the M constraints are satisfied. In such case, the traffic
demands can be routed along edge-disjoint paths.

Proof. For each Cj ∈ C, let ζj be the projection of η on Cj , i.e., for each variable
xi in Cj , ζj assigns q ∈ [p] to xi iff η assigns q to xi. We will prove that the
canonical paths P [j, ζj , y,�l] are edge-disjoint.

Consider two canonical path P1 = P [j1, ζj1 , y1,
�l1] and P2 = P [j2, ζj2 , y2,

�l2].
Here we assume that the constraints Cj1 and Cj2 have a common variable xi

and there exists some z ∈ [Z + 1] such that �l1 + �μ(τ(Cj1 , ζ1, y1)) × (z − 1) =
�l2+�μ(τ(Cj2 , ζ2, y2))×(z−1), otherwise P1 and P2 will be trivially edge-disjoint.
Now let �l′ = �l1+�μ(τ(Cj1 , ζ1, y1))×(z−1). Since both ζj1 and ζj2 are projections
of η, they will assign a same value q to xi. Therefore, they will traverse the
connector vertices belonging to the same W i,z

q,�l′
. The construction of DΨ ensures

that P1 and P2 will go to distinct edges in the labeled matching M̃
�l′
i,z. 	
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Since every canonical path has a length of Θ(kZ), Theorem 5 implies:

Corollary 2. Under the case that Ψ is a Yes-instance, we can route all the
traffic demands in DΨ with the cost bounded by O(MY |L| · kZ).

3.3 Routing Cost Corresponding to No-instance

Definition 3 (Highlight Tuple). For any i ∈ [N ], q ∈ [p] and �l ∈ L, we say
a labeled variable-value tuple (xi, q,�l) is highlighted by a source-target pair if it
is routed along P [j, ζ, y,�l] such that (Cj , ζ) ∈ Γiq.

Definition 4 (Heavy and Light). For any i ∈ [N ], q ∈ [p] and �l ∈ L, a
tuple (xi, q,�l) is said to be heavy if it is highlighted by more than Ai source-target
pairs. A source-target pair

(
s
�l
j,y, t

�l
j,y

)
is heavy if it is routed along a canonical path

P [j, ζ, y,�l] such that for every xi ∈ Cj, (xi, q,�l) is heavy, where q is the value
assigned to xi by ζ. A source-target pair is said to be light if it is not heavy.

Definition 5 (Over-ambiguous). We say a label �l is over-ambiguous if there
exists an xi such that more than c tuples (xi, q,�l) corresponding to different
q ∈ [p] are heavy. A label which is not over-ambiguous is said to be unambiguous.

Lemma 7. For every label �l ∈ L, the number of light source-target pairs corre-
sponding to �l is at most p

∑
i Ai.

Proof. This proposition can be proved similarly to [2]. For a label �l, there will be
at most Ai light source-target pairs corresponding to each tuple (xi, q,�l). Thus,
the number of light source-target pairs corresponding to �l is at most p

∑
i Ai. 	


Lemma 8. For an unambiguous label �l, there will be at most cksatnMY heavy
source-target pairs corresponding to �l.

Proof. Suppose that there are U heavy source-target pairs corresponding to �l
are heavy. Here we construct a set Ĉ of distinct constraints Cj corresponding
to the heavy source-target pairs. It’s easy to see that |Ĉ| ≥ U/Y . Denote the
canonical path along which the source-target pair corresponding to Cj ∈ Ĉ is
routed by Pj = P [j, ζj , yj ,�l]. Note that each ζj assigns a value qj to a variable
xi that participates Cj . Then every variable xi will be assigned at most c values
by the canonical paths Pj , otherwise �l will be over-ambiguous. For each variable
xi which participates a constraint Cj ∈ Ĉ, we can pick a value q′ from the at
most c possible values randomly and uniformly. In such case, each constraint
Cj ∈ Ĉ will be satisfied with probability at least 1/ck. Then the expectation of
the constraints satisfied by this random assignment will be at least U

ck·Y . When
Ψ is a No-instance, we have U

ck·Y ≤ satn · M . 	
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Theorem 6. When Ψ is a No-instance, every label �l will be over-ambiguous.

Proof. Suppose that there exists an unambiguous label �l. According to Lemmas 7
and 8, the number of source-target pairs corresponding to �l is at most:

p
∑

i

Ai + cksatnMY =
2pY J

∑
i Bi

ρ
+ cksatnMY

=
2pY JkM

2pkJr
+ cksatnMY

= 2ck · 1
[
(2c)k/γ

]γ MY < MY

which conflicts with the fact that there are MY source-target pair corresponding
to each �l. 	


Given a variable xi, let q1, q2, · · · , qc be c distinct possible values of xi. For
c′ ∈ [c], we use Ic′ to represent a set of Ai = 2Xi/ρ acceptance iterations
(Cj , ζ, y) such that (Cj , ζ) ∈ Γiqc′ . Given z ∈ [Z] and �l ∈ L, there will be Ai

connector vertices in W i,z

qc′ ,�l
corresponding to the acceptance iterations in Ic′ . A

special edge e in M̃
�l
i,z is said to be used by an acceptance (Cj , ζ, y) from Ic′ if

the corresponding connector vertex ωi,z

(Cj ,ζ,y),�l
∈ W i,z

qc′ ,�l
is mapped to e.

Definition 6 (Blobs and High Congestion). Given a label �l ∈ L and an
integer z ∈ [Z], a blob H

�l
z is formed by aggregating every labeled matching

M̃
�l
i,z corresponding to each i ∈ [N ]. A series of c sets of acceptance iterations

{I1, I2, · · · , Ic} is said to be highly congesting in a labeled sub-matching M̃
�l
i,z if

at least (Ai/2Xi)cXi edges in M̃
�l
i,z are used by an acceptance iteration from each

I1, I2, · · · , Ic. We say I1, I2, · · · , Ic is highly congesting in a blob H
�l
z if they are

highly congesting in a labeled sub-matching M̃
�l
i,z ∈ H

�l
z.

Here we use Ev
(
q1, · · · , qc, I1, · · · , Ic, z,�l

)
to represent the bad event that

I1, · · · , Ic are not highly congesting in H
�l
z. Since we map the connector vertices

in each W i,z

qc′ ,�l
to M̂

�l
i,z randomly and uniformly, the relationship between the

sets I1, · · · , Ic and M̃
�l
i,z can be modeled by a Balls-and-Bins game [2], where c

kinds of Ai balls are randomly thrown into Xi distinct bins. The results on the
Balls-and-Bins games in [2] implies that:

Lemma 9. Pr
[
Ev

(
q1, q2, · · · , qc, I1, I2, · · · , Ic, z,�l

)]
≤ 2 exp

(
− (Ai)

c

16(2Xi)c−1

)
.

We use Ev
(
q1, · · · , qc, I1, · · · , Ic,�l

)
to represent the event that the bad event

defined above happens at no less than Z
2 blobs H

�l
z corresponding to the same
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label �l and different layers z ∈ [Z], and Ev
(
q1, · · · , qc,�l

)
to represent there exist

sets I1, · · · , Ic such that Ev
(
q1, · · · , qc, I1, · · · , Ic,�l

)
happens. According to [2]:

Pr
[
Ev

(
q1, · · · , qc,�l

)]
≤ exp

(
cAi(log Xi + 1 − log Ai) + Z ln 2 − ZXi

16
(

Ai

2Xi
)c

)

≤ exp
(
−Xi

( Z

16ρc
− 2c(log ρ + 1)

ρ

)
+ Z ln 2

)
(3)

According to Sect. 2.1, we can bound the exponent of formulation (3) by:

−Xi

(
Z

16ρc + 2c(log ρ+1)
ρ

)
− Z ln 2 = −Xi

(
128cρc

16ρc − 2c(log ρ+1)
ρ

)
+ Z ln 2

≤ −4c · Y JBi + Z ln 2
≤ −64cρc

Thus, the probability can be bounded by exp(−Ω(ρc)).
Let Ev

(
�l
)

be the event that there exists a variable xi and c values
q1, q2, · · · , qc such that Ev

(
q1, q2, · · · , qc,�l

)
happens. Then its probability will

be:

Pr
[
Ev

(
�l
)] ≤ Npc · Pr

[
Ev

(
q1, q2, · · · , qc,�l

)]
= nlog p · pc · exp(−64cρc)

The last equality follows from Theorem2. According to Sect. 2.1, we have nlog p =
exp(log n · log p) < exp(cρ). Thus, Pr

[
Ev

(
�l
)] ≤ exp(−60cρc).

Denote the event that there exists at least |L|/2 labels �l such that Ev
(
�l
)

happens by E . According to Lemma 2, we have:

Pr[E ] ≤
( |L|

|L|/2

)
·
(
Pr

[
Ev

(
�l
)])|L|/2

≤ 2|L| ·
(
e−60cρc

)|L|/2
∈ o

( 1
exp(|E|)

)

Theorem 7. When Ψ is a No-instance, routing in DΨ will incur an
Ω(cα Y J

ρc Z|L|)-cost with probability 1 − o(1/exp(|E|)).

Proof. Suppose the event E does not happen.According toTheorem 6, every label�l
is over-ambiguous. For each label�l , letxi be the variable such that there are cheavy
tuples (xi, q,�l ) corresponding to c values q1, q2, · · · , qc. For each c′ ∈ [c], let Ic′ be
the set of Ai source-target pairs corresponding to the heavy tuple (xi, qc′ ,�l ). When
the event Ev(�l ) does not happen, at least ( A

2X )cX edges in at least Z
2 blobs cor-

responding to �l will be used by c source-target pairs in Iq1

⋃
Iq2

⋃ · · · ⋃ Iqc
, which

will incur a cost at least cα · ( A
2X

)c XZ
2 = cα ZY JBi

2ρc ≥ cα Y JZ
2ρc . When E does not

happen, there will be at least |L|
2 labels �l such that Ev(�l ) does not happen. Then

the overall cost will be at least cα Y JZ|L|
4ρc . 	
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3.4 Hardness Factors

Theorem 8. The Homo-DirSPC problem cannot be approximated within a fac-
tor of o

(( log |E|
log log |E|

)α|E|− 1
4

)
unless NP ⊆ ZPTIME(nO(log log n)).

Proof. DΨ is a feasible input of the Homo-DirSPC problem since every edge e
has the same cost function. According to Corollary 2 and Theorem 7, the gap
between the routing costs is Ω

(
cαY JZ|L|/ρc

kMY Z|L|
)

⊆ Ω
(

cα

Mρc

)
. Lemma 2 implies

that Mρc = O(|E|1/4). Thus, we can bound the gap by Ω
((

log |E|
log log |E|

)α

· 1
|E|1/4

)
.

According to Corollary 1 and Lemma 2, the time needed to construct the
graph DΨ can be bounded by ρO(c) = nO(log p) = nO(log c) = nO(log log n). There-
fore, the Homo-DirSPC problem cannot be approximated by o

(( log |E|
log log |E|

)α

|E|− 1
4

)
unless NP ⊆ coRTIME(nO(log log n)). According to complexity theories

[2,4,5], this implies that our result holds if NP � ZTIME(nO(log log n)). 	

Theorems 1 and 8 implies the following Corollary:

Corollary 3. The general DirSPC problem cannot be approximated within a
factor of o

(( log |E|
log log |E|

)α|E|− 1
4

)
unless NP ⊆ ZPTIME(nO(log log n)).

4 Conclusion

Motivated by the concern on the energy efficiency of communication networks, in
this paper we study the inapproximability of the DirSPC problem. We start by
reducing from a instance Ψ of a CSP problem to a directed graph DΨ as the input
of DirSPC. DΨ is constructed in a randomized manner with nO(log log n)-time.

To obtain a proper bound on the hardness factor, we adapt the labeling
technique into the construction of DΨ . Different from related works [5,8], the
labeling technique in our paper can ensure that every traffic request follows a
canonical path strictly, and can guarantee that every label is over-ambiguous.
These two properties enables us to simultaneously guarantee proper bounds on
the congestion and the number of edges with the congestion. In this way, we
prove an Ω

(( log |E|
log log |E|

)α|E|− 1
4

)
-hardness factor for DirSPC.

When α � 3, our hardness result is still not tight enough compared to the
best known approximation ratio [13]. How to further improve our hardness result
will be investigated in the future work.
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A Cryptographic View of Regularity Lemmas:
Simpler Unified Proofs and Refined Bounds
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Abstract. In this work we present a short and unified proof for the
Strong and Weak Regularity Lemma, based on the cryptographic tech-
nique called low-complexity approximations. In short, both problems
reduce to a task of finding constructively an approximation for a certain
target function under a class of distinguishers (test functions), where dis-
tinguishers are combinations of simple rectangle-indicators. In our case
these approximations can be learned by a simple iterative procedure,
which yields a unified and simple proof, achieving for any graph with
density d and any approximation parameter ε the partition size
– a tower of 2’s of height O

(
dε−2

)
for a variant of Strong Regularity

– a power of 2 with exponent O
(
dε−2

)
for Weak Regularity

The novelty in our proof is: (a) a simple approach which yields both
strong and weaker variant, and (b) improvements when d = o(1). At an
abstract level, our proof can be seen a refinement and simplification of
the “analytic” proof given by Lovasz and Szegedy.

Keywords: Regularity lemmas · Boosting · Low-complexity approxi-
mations · Convex optimization · Computational indistinguishability

1 Introduction

Szemeredi’s Regularity Lemma was first used in his famous result on arithmetic
progressions in dense sets of integers [Sze75]. Since then, it has emerged as an
important tool in graph theory, with applications to extremal graph theory,
property testing in computer science, combinatorial number theory, complexity
theory and others. See for example [DLR95,FK99b,HMT88] to mention only few.

Roughly speaking, the lemma says that every graph can be partitioned into a
finite number of parts such that the edges between these pairs behave randomly.
There are two popular forms of this result, the original result referred to as
the Strong Regularity Lemma and the weaker version developed by Frieze and
Kannan [FK99b] for algorithmic applications.
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M. Skórski—Supported by the European Research Council Consolidator Grant
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The purpose of this work is to give yet another proof of regularity lem-
mas, based on the cryptographic notion of computational indistinguishability.
We don’t revisit applications as it would be beyond the scope. For more about
applications of regularity lemmas, we refer to surveys [KS96,RS,KR02]

From now, G is a fixed graph with a vertex set V (G) = V and the edge set
E(G) = E ⊂ V 2. By a partition of V we understand every family of disjoint
subsets that cover V .

The rest of the paper is organized as follows: the remaining part of this section
introduces necessary notions (Sect. 1.1), states regularity lemmas (Sect. 1.2), and
summarizes our contribution (Sect. 1.3). In Sect. 2 we show how to obtain strong
regularity and in Sect. 3 we deal with weak regularity. We conclude our work in
Sect. 4.

1.1 Preliminaries

By the edge density of two vertex subsets we understand the fraction of pairs
covered by graph edges.

Definition 1 (Edge density). For two disjoint subsets T, S of a given graph
G we define the edge density of the pair T, S as

dG(T, S) =
EG(T, S)

|T ||S| (1)

We slightly abuse the notation denoting dG = dG(V, V ) for the graph density.

Sets Regularity. The notion of set irregularity measures the difference between
the number of actual edges and expected edges as if the graph was random. Note
that for a random bipartite graph with a bipartition (T, S) we expect that for
almost all subsets S′, T ′ roughly the same fraction of vertex pairs is covered by
graph edges. The deviation is precisely measured as follows

Definition 2 (Irregularity [LS07,FL14]). The irregularity of a pair (S, T )
of two vertex subsets is defined as

irregG(S, T ) = max
S′⊂S,T ′⊂T

|E(S′, T ′) − dG(S, T )|S′||T ′||

If this quantity is a small fraction of |S||T | then the edge distribution is “homo-
geneous” or, if we want, random-like.

In turn, two vertex subsets are called regular if the density is almost preserved
on their (sufficiently big) subsets1

1 The requirement of being “sufficiently big” is to make this notion equivalent with
the irregularity above.
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Definition 3 (Regularity). A pair (S, T ) of two disjoint subsets of vertices is
said to be ε-regular, if

|dG(S′, T ′) − dG(S, T )| � ε

for all S′ ⊂ S, T ′ ⊂ T such that |S′| � ε|S|, |T ′| � ε|T |.
For completeness we mention that irregularity and regularity are pretty much
equivalent (up to changing ε).

Remark 1 (Irregularity vs Regularity). It easy to see that irregG(S, T ) � ε|S||T |
is implied by ε-regularity, and it implies ε

1
3 -regularity.

Partition Regularity. The next important objects are regular partitions, for
which almost all pairs of parts are regular. Note that irregular indexes are
weighted by set sizes, to properly address partitions with parts of different size.

Definition 4 (Regular Partitions). A partition V1, . . . , Vk of the vertex set
is said to be ε-regular if there is a set I ⊂ V × V such that

∑

(i,j)∈I

|Vi||Vj | � ε|V |2

and for all ∀(i, j) �∈ I the pair (Vi, Vj) is ε-regular.

We say that a partition is equitable (or simply: is an equipartition) if any two
parts differ in size by at most one. Note that for equitable partitions the above
conditions simply means that all but ε-fraction of pairs are regular.

There is also a notion of partition irregularity based on sets irregularity

Definition 5 (Partition Irregularity). The irregularity of a partition V =
{V1, . . . , Vk} is defined to be irreg(V) =

∑
i,j irregG(Vi, Vj).

Remark 2 (Partition Irregularity vs Partition Regularity). Again it it easy to see
that both notions are equivalent up to a change in ε. Concretely, ε-regularity is
implied by irregularity smaller than ε4|V |2 and implies ε-irregularity [FL14].

The partition size in the Strong Regularity Lemma grows as fast as powers
of twos. For completeness, we state the definition of the tower function.

Definition 6 (Power tower). For any n we denote

T (n) = 22
..
2

︸︷︷︸
n times

.
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1.2 Regularity Lemmas

Summary of the State of the Art. Having introduced necessary notation,
we are now in position to state regularity lemmas. There is a strong (original)
and weak variant of the regularity lemma (developed later for algorithmic appli-
cations), which differ dramatically in the partition size. The strong variant has
a few slightly relaxed statements, which are more convenient for applications
and simpler to prove. These versions are equivalent up to a replacing ε by εO(1).
The state of the art is that the variant of Strong Regularity Lemma (Theorem 2
below) and the Weak Regularity Lemma (Theorem 4 below) are tight in general,
as shown recently2 in [FL14]. For the sake of the completeness we note that there
are more works offering the proofs for Regularity Lemmas, for example [FK99a]
but they are not discussed here as they do not achieve optimal bounds.

Strong Regularity. The original variant of the Strong Regularity Lemma sim-
ply says that there is always an equipartition such that almost every pair of
parts is regular, and the partition size is not dependent on the graph size.

Theorem 1 (Strong Regularity Lemma, original variant 1). For any
graph G there exists a partition V1, . . . , Vk of vertices such that for all up to
ε-fraction of pairs (i, j)

|E(S, T ) − dG(Vi, Vj)|S||T || � ε|Vi||Vj |
for any S ⊂ Vi, T ⊂ Vj such that |S| � ε|Vi|, |T | � ε|Vj |. Moreover, the size of
partition is at most a power of twos of height poly(1/ε).

It has been observed that proofs are much easier when one works with the
total irregularity, rather than separate bounds for each pair. The following ver-
sion is equivalent (up to changing ε).

Theorem 2 (Strong Regularity Lemma, variant 2 [FL14]). For any graph
G there exists a partition V1, . . . , Vk of the vertices such that

∑

i<j

irregG(Vi, Vj) � ε|V |2. (2)

Moreover, the partition size k is a power of twos of length O(ε−2).

The regularity lemma can be also formulated as an approximation by a weighted
graph.

Theorem 3 (Strong Regularity Lemma, variant 3 [LS07]). For any graph
G there is a partition V1, . . . , Vk of the vertices and real numbers di,j such that

∑

i<j

max
S⊂Vi,T⊂Vj

|E(S, T ) − di,j |S||T || � ε|V |2, (3)

2 Worse bounds were known before for example [Gow97].



590 M. Skórski

and moreover the partition size k is at most a tower3 of twos of height O(ε−2).

Weak Regularity. Finally, we state the weaker version obtained originally by
Frieze and Kannan, with refined bounds due do Vadhan and Zheng [VZ13].

Theorem 4 (Weak Regularity Lemma [VZ13]). For any graph G there
exists a partition V1, . . . , Vk of the vertices such that

∣
∣
∣
∣
∣
∣

∑

i,j

E(S ∩ Vi, T ∩ Vj) −
∑

i,j

di,j |S ∩ Vi||T ∩ Vj |
∣
∣
∣
∣
∣
∣
� ε|V |2 (4)

for all S, T . Moreover, the partition is generated4 by O
(
ε−2dG log(d−1

G )
)

subsets
of V , where d = |E|. In particular, k is at most 2O(ε−2dG log d−1

G ).

1.3 Our Contribution and Related Works

We present a simple proof of both Regularity Lemmas, using the cryptographic
framework of low complexity approximations. Our contribution is twofold:
(a) conceptual, as we show how the Regularity Lemmas can be written and
easy proved using the notion of indistinguishability, and (b) technical, as we
improve known bounds by a factor equal to the graph density. We elaborate
more on out techniques and results below.

A Simpler Proof. Our proof uses only a naive optimization algorithm, avoid-
ing combinatoric calculations using energy arguments based on Cauchy-Schwarz
inequalities, that appear in other proofs like [FL14].

Quantitative Improvements. For the Strong Regularity Lemma we bound the
partition size by a tower of twos of height O(ε−2dG) which is an improvement by
a factor of dG over best results [FL14]. Similarly, for the Weak Regularity Lemma
we prove that the partition is an overlay of O(ε−2dG) subsets (in particular has
up to 2O(ε−2dG) members) which improves by a factor of log dG the best bounds
from [VZ13].

Note that for constant densities dG, this matches both best upper and lower
bounds [FL14]. Our improvements for smaller densities doesn’t contradict the
lower bounds as they depend on the density in a complicated and non-explicit
way (and hence don’t apply to all regimes of dG).

3 The original work [LS07] proves a bound being O(ε−2) iterations of the function

s(1) = 1, s(k + 1) = 2s(1)4...s(k)4 starting at 1. It is easy to see that s(k) can be
bounded by a tower of height k + O(1).

4 The generated partition arises as intersections of the generating sets with their com-
plements.
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Regularity Lemmas as Low Complexity Approximations. We show that a variant
of the Szemeredi Regularity Lemma, equivalent to the most often used statement,
can be written in the following form

∀f ∈ F :
∣
∣
∣ E
e←X

g(e)f(e) − E
e←X

h(e)f(e)
∣
∣
∣ � ε (5)

for some functions g, f and a class of functions F on a finite set X , where
h is “efficient” in terms of complexity. More precisely, the result states that
a given function f (in our case related to the irregularity of the graph) can
be efficiently approximated under a certain class of test functions (called also
distinguishers). In cryptography results of this sort are known as low complexity
approximations and are a powerful and elegant technique of proving complicated
results [TTV09,VZ13,JP14]. The quantity in the absolute values in Eq. (5) is
referred to as the advantage of f in distinguishing g and h, so the statement
simply means that h is indistinguishable from g for small ε by all functions in F .
Depending on the class F it may be a good “replacement” for g in applications.

In our case the class of test functions changes depending on the problem.
For weak regularity we use rectangle indicator functions, whereas for strong
regularity we consider combinations of rectangle-indicator functions

F = {f : f = ±1T×S} (for Weak Regularity)

F =

{

f : f =
∑

i,j

±1Ti,j×Si,j

}

(for Strong Regularity)

The proof is in both cases very simple and can be viewed as a special case of the
general subgradient descent algorithm well known in convex optimization5. The
algorithm is given below in pseudocode (see Algorithm 1).

A similar result has been shown by Trevisan et al. [TTV09] with respect to
the weak regularity lemma. It turns out that the weak regularity lemma can
be directly translated to a form of Eq. (5). The case of the Strong Regularity
Lemma is however a bit different, because the standard statement doesn’t admit
a direct translation to Eq. (5) so we need first to reduce the Regularity Lemma
to a slightly relaxed form similar6 to Theorem 2 and prove the relaxed statement
by low complexity approximation tools. Also, the same class of functions appear
in the analytic proof in [LS07] but in a different approximation technique.

Abstracting the Concept of Pseudo-regularity. In the Weak Regularity Lemma,
we measure the irregularity of the partition as average difference between the
actual number of edges and the expected number of edges across the pairs of

5 If we consider the mapping h → maxf

∣
∣
∣ E
e←X

g(e)f(e) − E
e←X

h(e)f(e)
∣
∣
∣ then its sub-

gradient equals f for some f ∈ F . Then the update is h := h − t · f precisely as in
the proof of Sect. 2.1.

6 The relaxed form we use is except that we allow any numbers di,j in place of densities
dG(Vi, Vj).
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Algorithm 1. Low Complexity Approximations
Input : target function g to approximate,

class of test functions F ,
a starting point h0,
accuracy parameter ε,
stepsize t

Output: function h of low complexity w.r.t F and indistinguishable from g
(with respect to test functions F)

1.1 n ← 0
1.2 while can distinguish hn and g by some f ∈ F with advantage ε do
1.3 n ← n + 1
1.4 hn ← hn−1 − t · f

parts of the partition. Therefore, the Weak Regularity Lemma is obtained from
the bound

∣
∣
∣
∣
∣
∣

∑

i,j

E(Ti, Sj) −
∑

i,j

di,j |Ti||Sj |
∣
∣
∣
∣
∣
∣
� |V |2

(where Ti, Sj are subsets of Vi and Vj respectively; note that
∑

i,j E(Ti, Sj) =
E(T, S)). In turn, to prove the Strong Regularity Lemma, we measure the aver-
age absolute difference between the actual number of edges and the expected
number of edges. To prove our result we introduce the following condition (for
some constants di,j)

∑

i,j

|E(Ti,j , Si,j) − di,j |Ti,j ||Si,j || � |V |2.

(Si,j , Ti,j being subsets of Vi and Vj respectively), and refer to this property
as “pseudo-regularity”7. This condition extends slightly the notion of irregular-
ity, where the true densities of pairs (Vi, Vj) appear in place of di,j . Note that
pseudo-regularity can be understood as approximating the graph by a weighted
graph, where we control the absolute deviation of number of edges across pairs
of partition parts.

The approach with unrestricted constants is much easier to prove and is
more flexible. In fact, the idea of relaxing restrictions on densities (equivalently:
considering a weighted graph) goes back to [FK99b]. The concept of pseudoreg-
ularity is what allows us to connect the approximation lemma with the Strong
Regularity Lemma.

1.4 Proof Techniques

The key ingredient of our proof is a descent algorithm, which translated back to
the partition language is similar to the popular technique of proving regularity
7 This property was also implicitly used in [LS07].
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Indistinguishability
Pseudo-regularity
(implies Theorem 3)

Regularity
Equiparition
(implies Theorem 1)

ε replaced by ε0.25

(Section 2.2)

A constant loss
(Section 2.3)

A tower of height
ε−2dG (decent algo-
rithm, Section 2.1)

Fig. 1. An overview of our proof of the Strong Regularity Lemma

lemmas. As long as the current partition fails to satisfy the desired property, the
algorithm uses sets being counterexamples to refine the partition. Moreover, we
show that a certain quantity, called the energy function, decreases with every
step by a constant (depending on ε). From this one concludes that the process
of refining the partition halts after a number of step (the bound depends on
concrete energy estimates).

Our proof is different with respect to the energy function, as we use simply
the euclidean distance (second norm) between the candidate solution and the
target. This allows us to decrease the number of rounds by the initial distance,
which in our case equals dG, as we start from f = 1E (where E is the edge
set) and g = 0. An overview of the proof (of the Strong Regularity Lemma) is
illustrated in Fig. 1.

The proof of the Weak Regularity Lemma is even simpler and consists of
only first step (with the class of test functions changed accordingly).

1.5 Organization

In Sect. 2 we prove a variant of the Strong Regularity Lemma, in Sect. 3 we prove
the Weak Regularity Lemma and conclude the work in Sect. 4.

2 Strong Regularity Lemma

2.1 Obtaining a Partition with Small Pseudo-irregularity

The key ingredient is the following approximation result, proved by the technique
sketched in Algorithm 1.

Theorem 5 (Simulating against stepwise functions). For any real func-
tion g on V 2 and any ε > 0, there is a partition V1, . . . , Vk of V and a piecewise
function h constant on rectangles Vi×Vj such that h and g are ε-indistinguishable
by functions piecewise constant on subrectangles of Vi × Vj where i � j

Fk =

⎧
⎨

⎩
f =

∑

i�j

ai,j1Si,j×Ti,j
: ai,j = ±1, Si,j ⊂ Vi, Ti,j ⊂ Vj

⎫
⎬

⎭
, (6)
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where indistinguishability means

∀f ∈ Fk :

∣
∣
∣
∣
∣

∑

e∈V 2

h(e)f(e) −
∑

e∈V 2

g(e)f(e)

∣
∣
∣
∣
∣
� ε|V |2, (7)

and moreover k is not bigger than O(dε−2) iterations of the function k → k ·2k+1

at k = 1, where d = 1
|V |2

∑
e∈V 2 g(e)2. In particular, k is at most a tower of 2’s

of height O
(
dε−2

)
.

Remark 3 (Symmetrizing the class F). Note that ordering pairs (i � j) in the
definition of class F is crucial to obtain the complexity being a power of 2.
Otherwise, we would obtain a (much worse) tower of 4’s of the same height.

Remark 4. It is easy to see that the function is a power-tower of twos of height
O(dGδ−2) (a formal proof can obtained by induction as in [FL14].

As a corollary we obtain the following statement which is precisely the variant
stated in Theorem 3.

Corollary 1 (Regularity Lemma in terms of pseudo-regularity
(variant 3)). For any graph G there is a partition {Vi}i of vertices V such that
the absolute pseudo-irregularity is at most ε|V |2, that is for some numbers di,j

∑

(i,j):i�j�k

max
S⊂Vi,T⊂Vj

|E(T, S) − di,j · |T ||S|| � ε|V 2|, (8)

where the number of partition parts is a tower of twos of height O(dGδ−2).

Proof (Proof of Corollary 1). It suffices to apply Theorem 5 to g = 1E and
h = 0. We have then

∑
e g(e)t(e) =

∑
i�j ai,jE(Si,j , Ti,j) and

∑
e h(e)t(e) =∑

i�j ai,jdi,j |Si,j | |Ti,j |. The absolute values in Eq. (8) are achieved by fitting
signs of the coefficients ai,j = ±1.

Proof (of Theorem 5). Suppose we have a function h on a partition V1, . . . , Vk

which is δ|V |-indistinguishable from g by a function f piecewise constant on
squares Ti × Sj , that is

∑

e

(g(e) − h(e))f(e) � δ|V |2 (9)

Consider now h′ = h + t · f and note that
∑

e

(h′(e) − g(e))2 =
∑

e

(h(e) − h(e))2 − 2t
∑

e

(g(e) − h(e))f(e) + t2
∑

e

f(e)2.

Setting t = δ in the above equation, by Eq. (9) we obtain
∑

e

(h′(e) − g(e))2 �
∑

e

(h(e) − h(e))2 − δ2|V |2,
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which means that by replacing h by h′ we decrease the distance to g by δ2|V |2.
Since our first choice for h is the zero function, the initial distance was equal
to

∑
e g(e)2 = d|V |2 and the loop ends after at most O(dδ−2). Regarding the

complexity of h′ = h+t
∑

i�j ai,j1Si,j×Ti,j
note that when adding step functions

1Si,j×Ti,j
, any fixed partition member Vi is intersected by at most k + 1 sets of

the form Si,j or Ti,j (because we consider only ordered pairs i � j!). Therefore,
the function h′ is piecewise constant on the partition V ′ generated by V and sets
Si,j , Ti,j which has at most k · 2k+1 members.

2.2 Small Pseudo-irregularity Implies Regularity

In this section we show that pseudo-regularity implies regularity in the sense of
Definition 3.

Proposition 1. Suppose that for a partition V1, . . . , Vk of V there exist numbers
di,j such that

∑

i,j�k

|E(Si,j , Ti,j) − di,j · |Ti,j ||Si,j || � ε4|V |2 (10)

for all disjoint rectangles Ti,j × Si,j ⊂ Vi × Vj. Then the partition is 2ε-regular.

Proof. Rewrite Eq. (10) as

∑

i,j�k

|Si,j ||Ti,j |
|V |2 |dG(Si,j , Ti,j) − di,j | � ε4

In particular, we get

∑

i,j�k

|Vi||Vj |
|V |2 |dG(Si, Tj) − di,j | � ε2 (11)

when |Si,j |, |Ti,j | � ε|V | for all i. Let S′
i,j , T

′
i,j (both bigger than ε|V |) maxi-

mize |dG(Si,j , Ti,j) − di,j |. By the Markov inequality (applied to the probability
weights pi,j = |Vi||Vj |

|V |2 ), there exists an “exceptional” set I ⊂ {1..k}2 such that

∑

(i,j)∈I

|Vi||Vj | � ε|V |2

and

∀(i, j) �∈ I :
∣
∣dG(S′

i,j , T
′
i,j) − di,j

∣
∣ � ε.

By the choice of the pairs (S′
i,j , T

′
i,j) this implies |dG(Si,j , Ti,j) − di,j | � ε for

every pair Si,j ⊂ Vi, Ti,j ⊂ Vj (provided that (i, j) �∈ I. In particular, this is true
with Si,j = Vi and Ti,j = Vj which gives |dG(Vi, Vj) − di,j | � ε. By the triangle
inequality we have |dG(Si,j , Ti,j) − dG|Vi||Vj || � 2ε for (i, j) �∈ I which finishes
the proof.



596 M. Skórski

2.3 Enforcing Equipartition

To complete the last step of the proof we have to prove the following.

Lemma 1. For any ε-regular partition V there exists a O(ε)-regular equiparti-
tion W of size |W| = O

(
ε−1|V|).

The key observation is the following useful fact, which simply states that
regularity is preserved under refinements. A simple proof is given in Appendix A.

Lemma 2 (Regularity preserved under refinements). For any graph G,
if (S, T ) is ε-regular and S′ ⊂ S, T ′ ⊂ T , then (S′, T ′) is 2ε-regular.

Consider now a coarser partition {Vi,i′}i,i′ such that for every i the set Vi is
partitioned into k(i) � k

ε parts Vi,i′ where i′ = 1, . . . , k(i) which are all, up to
one, of equal size

|Vi,i′ | =
⌈ |V |

�

⌉
, i′ = 1, . . . , k(i) − 1

|Vi,i′ | <

⌈ |V |
�

⌉
, i′ = k(i)

Let V ′ =
⋃

i

Vk(i). In other words, the set V ′ combines all “residual” parts into

one component. We partition W again into equal (except one) parts V ′
1 , . . . , V

′
r

so that

|V ′
i | =

⌈ |V |
�

⌉
, i = 1, . . . , r − 1

|V ′
r | <

⌈ |V |
�

⌉

Therefore, the family
⋃

i=1,...,k

⋃

i′=1,...,k(i)−1

{Vi,i′}i,i′ ∪
⋃

i=1,...,r

{V ′
i } (12)

is a partition of V that has � members, �−1 of them being of size
⌈

|V |
�

⌉
and one

being a “remainder” of size smaller than
⌈

|V |
�

⌉
. It follows that the last term has

to be of size at least |V | − (l − 1)
⌈

|V |
�

⌉
, that is between |V |

� and |V |
� − (l − 1).

Now by moving up to one element from each of the other � − 1 components to
the remaining component we arrive at an equipartition W1, . . . ,W� where all
members are of equal size up to one element, that is

||Wi| − |Wj || � 1 (13)

Note that we moved from sets Vi to V ′ at most k · |V |
� = O(ε|V |) vertices,

which by Eq. (12) belong to at most O(�ε) parts Wj . Therefore
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Claim (Partition Wi is a refinement of Vi up to a small fraction of members).
For all up to a O(ε)-fraction of pairs (i, j) ∈ {1, . . . , �}2, the sets Wi,Wj are
subsets of some pair Vi′ , Vj′ .

Let IW be the set of all pairs (i, j) such that the pair (Wi,Wj) is not ε-regular,
and let IV be the set of pairs (i, j) such that (Vi, Vj) is not ε-regular.

∑

(i,j)∈IW

|Wi||Wj | � ε|V |2 +
∑

(i,j):Wi⊂Vi′ ,Wj⊂Vj′

|Wi||Wj | (14)

�
∑

(i,j)∈IV

|Vi||Vj | (15)

� O
(
ε|V |2) , (16)

where the first line follows by the last claim and the fact that Wi are disjoint,
the second line follows by the regularity of the partition Vi. Now Eq. (13) implies
|IW | = O(ε�2).

3 Weak Regularity Lemma

Theorem 6 (Simulating against rectangle-indicator functions). For any
function g : V 2 → [−1, 1], and any ε > 0, there exists a partition V1, . . . , Vk and
a piece-wise function h constant on squares Vi × Vj such that f and g are ε-
indistinguishable by indicators of rectangles Vi × Vj where i � j

F = {f = ±1S×T : S ⊂ Vi, T ⊂ Vj} , (17)

that is

∀f ∈ F :

∣
∣
∣
∣
∣

∑

e∈V 2

h(e)f(e) −
∑

e∈V 2

g(e)f(e)

∣
∣
∣
∣
∣
� ε|V |2. (18)

Moreover, k is not bigger than 2O(dGε−2). In fact, the partition is an overlay of
O(dGε−2) subsets of vertices.

By applying this result to the function 1E on V 2 (being 1 for pairs e = (v1, v2)
which are connected and 0 otherwise) we reprove Theorem 4.

Corollary 2 (Deriving Weak Regularity Lemma). The Weak Regularity
Lemma holds with k = O(dGε−2).

This result, without the factor dG was proved in [TTV09]. We skip the proof
of Theorem 6 as it merely repeats the argument from Theorem 5, noticing only
that the calculation of k is different because the class F is now simpler. Note
also that for this result the class F doesn’t change with every round.
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4 Conclusion

We have shown that both: weak and strong regularity lemmas can be written
as indistinguishability statements, where the edge indicator function is approxi-
mated by a combination of rectangle-indicator functions.

This extends the result of Trevisan et al. for weak regularity to the case of
Strong Regularity Lemma. Moreover, due to a different analysis of the underlying
descent algorithm, our proof achieves quantitative improvements graphs with low
edge densities.

A Proof of Lemma 2

Proof. Let d be the edge density of the pair (T, S) and d′ be the edge density of
the pair (T ′, S′). Denote ε = irregG(T, S). For any two subsets T ′′ ⊂ T ′, S′′ ⊂ S′,
which are also subsets of T and S respectively, by the definition of d we have

∣
∣
∣
∣
E(T ′, S′)
|T ′||S′| − d

∣
∣
∣
∣ � ε.

which translates to

|d′ − d| � ε. (19)

Therefore, by Eq. (19) and the triangle inequality

|E(T ′′, S′′) − d′ · |T ′′||S′′|| � |E(T ′′, S′′) − d · |T ′′||S′′|| + ε · |T ′′||S′′|. (20)

Since the definition of d applied to T ′′ ⊂ T, S′′ ⊂ S implies

|E(T ′′, S′′) − d′ · |T ′′||S′′|| � ε · |T ′′||S′′|,

from Eq. (20) we conclude that

|E(T ′′, S′′) − d′ · |T ′′||S′′|| � 2ε · |T ′′||S′′|,

which finishes the proof.
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Abstract. Pseudoentropy has found a lot of important applications
to cryptography and complexity theory. In this paper we focus on the
foundational problem that has not been investigated so far, namely by
how much pseudoentropy (the amount seen by computationally bounded
attackers) differs from its information-theoretic counterpart (seen by
unbounded observers), given certain limits on attacker’s computational
power?

We provide the following answer for HILL pseudoentropy, which
exhibits a threshold behavior around the size exponential in the entropy
amount:
– If the attacker size (s) and advantage (ε) satisfy s � 2kε−2 where k is

the claimed amount of pseudoentropy, then the pseudoentropy boils
down to the information-theoretic smooth entropy.

– If s � 2kε2 then pseudoentropy could be arbitrarily bigger than the
information-theoretic smooth entropy.

Besides answering the posted question, we show an elegant application
of our result to the complexity theory, namely that it implies the clas-
sical result on the existence of functions hard to approximate (due to
Pippenger). In our approach we utilize non-constructive techniques: the
duality of linear programming and the probabilistic method.

Keywords: Nonuniform attacks · Pseudoentropy · Smooth entropy ·
Hardness of boolean functions

1 Introduction

Pseudoentropy has recently attracted a lot of attention because of applications
to complexity theory [RTTV08], leakage-resilient cryptography [DP08,Pie09],
deterministic encryption [FOR15], memory delegation [CKLR11], randomness
extraction [HLR07], key derivation, [SGP15] constructing pseudorandom number
generators [VZ12,YLW13] or black-box separations [GW11].

What differs between pseudoentropy and information-theoretic entropy
notions is the parametrization by adversarial resources. That is, pseudoentropy
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not only has quantity k but also quality, which is typically described by the
attacker size s and the advantage ε achieved in the security game.

Despite many works on applications of pseudoentropy, not much is known
about relationships between k, s and ε for a given distribution X, in partic-
ular parameter settings that make pseudoentropy non-trivial (bigger than the
information-theoretic entropy). Concrete numbers can be conjectured for some
applications under assumptions about computational hardness, for example for
outputs of pesudorandom generators, or keys obtained by the Diffie-Hellman
protocol. Yet in many cases, like key derivation where pseudoentropy can model
“weak” sources [SGP15], one simply assumes pseudoentropy of certain (strong
enough) quality.

Without understanding relations between s, ε and k it is not clear how
demanding are specific assumptions on pseudoentropy quality. This is precisely
the issue we are going to address in this work.

1.1 Problem Statement

In this paper we are interested in separating pseudoentropy (entropy seen by
computationally bounded attackers) from its information-theoretic counterpart
(measured against unconstrained attackers).

An n-bit random variable X is said to have k bits of pseudoentropy1 against
attackers of size s and advantage ε if for some distribution Y of min-entropy k,
no circuit of size s can distinguish it from Y with advantage bigger than ε (see
Sect. 2.4)2. Note that the notion is parametrized by the adversarial specific size
s and advantage ε. In particular the amount decreases when s gets bigger and
ε gets smaller (it is harder to fool adversaries with bigger resources). When s is
unbounded, pseudoentropy equals the information-theoretic smooth min-entropy
(see Sect. 2.4).

To better understand possibilities and limitations of using pseudoentropy, it
is natural to ask in what parameter regimes pseudoentropy provides non-trivial
computational security, that is when we have a real gain in the entropy amount
comparing to the information-theoretic case.

Q: How much computational power is needed to boil pseudoentropy down
to information-theoretic smooth entropy?

1.2 Our Contribution

Nonuniform Attacks Against Pseudoentropy. Our result exhibit a thresh-
old phenomena. Intuitively, with enough computational power (say size 2n for
n-bit random variables3) the notion of pseudoentropy is no more stronger than
the corresponding information-theoretic entropy notion. We estimate the value of

1 We consider here the most popular notion of HILL pseudoentropy.
2 This matches the definition of pseudorandomness when k is the length of X.
3 As this complexity is enough to compute every boolean function.
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this threshold on the circuit size s, so that above there is no computational gain
and below there exists non-trivial pseudoentropy. There result is somewhat sur-
prising because: (a) the threshold doesn’t depend on the length but the entropy
amount and (b) the threshold depends also on the square of the advantage.

Theorem (Informal) (Breaking pseudoentropy with enough computa-
tional power). For any k, and any s, ε satisfying

s � 2kε−2

and for every distribution of min-entropy k, unbounded attackers and attackers
of size s see the same entropy amount.

Theorem (Informal) (Lower bound). For any k, and any s, ε satisfying

s � 2kε2

there exists a distribution X such that

(a) (bounded attackers see k bits) pseudoentropy of X against circuits of size s
and advantage ε is k.

(b) (k bits for unbounded attackers see less than k bits) information-theoretic
entropy of X is k.

A short overview of our results is given in Table 1 below. We note that the result
is tight with respect to k, but not with respect to ε.

Table 1. Overview of our results. The analyzed setting is k bits of pseudoentropy
against size circuits of size s and advantage ε.

Regime Result Techniques Reference

s � 2kε−2 Same entropy for attackers of
size s as for s = ∞

LP duality distinguisher
optimization

Theorem 1

s � 2kε2 Arbitrary gap in the amount
for size s and s = ∞

Probabilistic method
concentration bounds

Theorem 2

Proof Outline and Our Tools

Breaking pseudoentropy. We outline the proof of the first result below

1. We first consider somewhat weaker pseudoentropy notion, called Metric
entropy, where the order of quantifiers is reversed. That is, for any distin-
guisher D there has to be some Y of min-entropy k which is close to X under
that particular test D, that is ED(X) ≈ ED(Y ).
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2. We prove that this weaker pseudoentropy notion collapses when s � 2k,
by “compressing” distinguishers down to size 2k. The intuitive reason for
that is that we can always manipulate Y so that it has “small” support
(only O(2k) elements), and if an attacker wants to maximize the advantage
|ED(X) − ED(Y )|, the best strategy is to hardcode the elements x such that
Pr[Y = x] > Pr[X = x] which is a subset of the support of Y and can be
implemented in size Õ(2k).

3. We use a generic transformation due to Barak et al. [BSW03,Sko15] to go
back to our standard entropy notion. The transformation losses Õ(ε2) in size
and is based on the duality of linear programming.

This way we obtain that pseudoentropy with parameters (s, ε) becomes the
same as the amount seen by unbounded attackers when s = Õ

(
2kε−2

)
. The

details are explained in the proof of Theorem 1.

Matching lower bounds. The proof of the second result goes as follows
1. We take a random subset X ⊂ {0, 1}k of size k − c, where c will be the gap

between what bounded and unbounded attackers can see. The distribution
X is the uniform distribution over X plus a “random shift” of an ε-fraction
of the probability mass.

2. We argue that the ε-smooth entropy is still roughly k, because we have shifted
only that fraction of the total probability mass. This is handled by a result of
independent interest, stating that “almost” smooth distributions cannot be
further smoothened (see Corollary 2).

3. We argue that the distribution X is pseudorandom provided that the class of
test functions is small enough. This fact is proved by applying concentration
bounds twice, once to handle the random shift and for the second time to
handle the choice of X . Intuitively, the advantage of bounded attackers is
much smaller than ε because they are “fooled” by the random shift of a
part of the probability mass. In turn, the entropy amount seen by bounded
attackers is much bigger than k − c because X is a random subset of {0, 1}k.

Putting this all together we get a strict separation: not only the amount of
entropy is bigger, but also the advantage is smaller. The necessary assumption
to make it work is that the class of distinguishers is much smaller than 22

k−cε2

members. For the details see the proof of Theorem 2.

1.3 Related Works

Pseudorandomness exists unconditionally. The classical textbook results [Gol06]
shows that pseudorandomness exists unconditionally, which can be seen as a
separation between pseudorandomness and min-entropy.

Our Theorem 2 is stronger as we separate pseudoentropy from smooth min-
entropy (and cannot derive it from the mentioned result). From a technical
point of view, the main difference is the extra random mass fluctuation (Step 1
in the above explanation), which needs to be later handled by bit more subtle
probability tools (we use concentration inequalities for random variables with
local dependence due to Janson).
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Complexity of non-uniform attacks against PRGs. De, Trevisan and Tulsani
studied the complexity of nonuniform attacks against pseudorandom generators
[DTT10]. Their results are specialized to outputs of PRGs and are constructive,
whereas our results apply to any random variable (unfortunately don’t offer
non-trivial results for the case of PRGs). Also,

1.4 Applications

Hard-to-approximate boolean functions. Our Theorem 2 implies the classical
result [Pip76] which states that for any n and δ ∈ (0, 1), there exist δ-hard
functions4 for size s = Ω̃

(
2n(1 − δ)2

)
. For details, see Sect. 5.1.

1.5 Organization

We start with explaining basic concepts and notions in Sect. 2. In Sect. 3 we prove
useful auxiliary facts about smooth min-entropy. In Sect. 4 we give proofs of our
main results. In Sect. 5 we discuss applications to the complexity of approximat-
ing boolean functions.

2 Preliminaries

2.1 Model of Computations

Our results hold in the non-uniform model. We consider general classes of distin-
guishers, denoted by D, which are families of functions from n bits to real values.
When discussing complexity applications, we restrict D to classes of circuits of
certain size s, with boolean or real-valued outputs.

2.2 Basic Notions

Definition 1 (Statistical distance). The statistical distance of two random
variables X,Y taking values in the same finite set is defined as SD(X,Y ) =
1
2

∑
x |Pr[X = x] − Pr[Y = x]|. Equivalently, SD(X,Y ) = maxD |ED(X) −

ED(Y )| where D runs over all boolean functions.

2.3 Information-Theoretic Entropies

Definition 2 (Min-entropy). We say that X has k bits of min-entropy if
minx log 1

Pr[X=x] = k.

Definition 3 (Smooth min-entropy [RW05]). We say that X has k bits of
ε-smooth min-entropy, denoted by Hε

∞(X) � k, if X is ε-close in the statistical
distance to some Y of min-entropy k.

Remark 1. Smoothing allows for increasing the entropy amount by shifting a
part of the probability mass, to make the distribution look “more flat” or “more
smooth”.
4 f is δ hard for size s if every circuit of size s fails to predict f w.p. at least 1+δ

2
.
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2.4 Pseudoentropy

In what follows, X denotes an arbitrary n-bit random variable.

Definition 4 (HILL pseudoentropy [HILL88,BSW03]). We say that X has
k bits of HILL pseudoentropy against a distinguisher class D and advantage ε,
denoted by

HHILL
s,ε (X) � k

if there is a random variable Y of min-entropy at least k that ε-fools any D ∈ D,
that is for every D ∈ D we have such that |ED(X) − ED(Y )| � ε.

Definition 5 (Metric Pseudoentropy [BSW03]). We say that X has k bits
of metric pseudoentropy against a distinguisher class D and advantage ε,
denoted by

HMetric
s,ε (X) � k

if for any D ∈ D there is a random variable Y of min-entropy at least k that
ε-fools this particular D that is such that |ED(X) − ED(Y )| � ε.

Metric entropy is a convenient relaxation of HILL entropy, more suitable to
work with in many cases. The important fact below shows that both notions are
equivalent up to some loss in the circuit size.

Lemma 1 (Metric-to-HILL Transformation [BSW03,Sko15]). If
HMetric

s,ε (X) � k then HHILL
s′,ε′ (X) � k where ε′ = 2ε and s′ ≈ sε2/n.

Remark 2 (Abbreviations and equivalences for circuit classes). In the specific
setting where D consists of deterministic boolean or deterministic real-valued
circuits of size s we will slightly abuse the notation and write HMetric

s,ε (X) =
HMetric

D,ε (X). This is justified by the fact that for metric entropy deterministic
real-valued circuits of size s give the same amount as deterministic boolean
circuits of size s′ ≈ s [FOR15]. In turn, for HILL entropy, deterministic boolean,
deterministic randomized and deterministic real-valued circuits are equivalent
with no entropy loss and with roughly same sizes [FOR15], so we also simply
write HHILL

s,ε (X) = HHILL
D,ε (X).

2.5 Relationships Between Entropy, Smooth Entropy, and
Computational Entropy

The following proposition states that for extreme parameter regimes (unbounded
attackers or zero advantage), pseudoentropy collapses to the information-
theoretic notion of smooth-entropy (we skip the easy proof).
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Proposition 1. Let X be any n-bit random variable. Then we have

(a) (Unbounded attackers) If s = ∞5 then

HMetric
s,ε (X) = HHILL

s,ε (X) = Hε
∞(X) > H∞(X).

(b) (No smoothing) If ε = 0 then for any s

HMetric
s,ε (X) = HHILL

s,ε (X) = Hε
∞(X) = H∞(X).

(c) (General) For any s, ε

HMetric
s,ε (X) � HHILL

s,ε (X) � Hε
∞(X) � H∞(X).

2.6 Concentration Inequalities

The following lemma is a corollary from the famous concentration bound due to
Jason, which exploits local dependencies.

Lemma 2 (Concentration bounds, local dependencies [Jan04]). Let
X1, . . . , Xn be random variables with values in [a, b], such that every Xi is not
independent of at most Δ other variables Xi′ . Let μ = n−1

∑n
i=1 EXi. Then

Pr

[

n−1
n∑

i=1

Xi � μ + δ

]

� exp
(

− 2nδ2

(a − b)2(Δ + 1)

)
.

In particular, for Δ = 0 we obtain the following bound.

Corollary 1 (Hoeffding’s Inequality [Hoe63]). Let X1, . . . , Xn be indepen-
dent random variables with values in [a, b]. Let μ = n−1

∑n
i=1 EXi. Then

Pr

[

n−1
n∑

i=1

Xi � μ + δ

]

� exp
(

− 2nδ2

(a − b)2

)
.

Remark 3 (Hoeffding’s Inequality for sampling without repetitions). The above
inequality applies also the setting where Xi are random samples taken from the
same distribution without repetitions [Ser74].

3 Auxiliary Facts

3.1 Auxiliary Results on Smooth Renyi Entropy

In the lemma below we show that smoothing doesn’t help to increase entropy
for flat distributions.

5 If the domain consists of n-bit strings, it is enough to assume s > 2n as every function
over n bits has complexity at most 2n.
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Lemma 3 (Flat distributions cannot be smoothened). Let X be an n-bit
random variable. Suppose that the distribution of X is flat and H∞(X) = k.
Then Hε

∞(X) � k + log
(

1
1−ε

)
for every ε ∈ (0, 1).

Proof. Let X ′ be any distribution of min-entropy at least k′ > k+log
(

1
1−ε

)
. Con-

sider the distinguisher D which outputs D(x) = 1 if x ∈ supp(X) and D(x) = 0
otherwise. Note that ED(X) = 1 and ED(X ′) = supp(X)

2k′ < 1 − ε. Therefore
ED(X) −ED(X ′) and thus the statistical distance between X and X ′ is bigger ε.

Corollary 2 (Almost-flat distributions cannot be smoothened). Sup-
pose that X is ε1-close to some X ′ being flat over 2k elements. Then Hε2∞(X) �
k + log

(
1

1−ε1−ε2

)
for any ε1, ε2 > 0 such that ε1 + ε2 < 1.

Proof. Suppose not, then there exists X ′′ that is ε2-close to X an has min-
entropy at least k′ > k +log

(
1

1−ε1−ε2

)
. In particular, X ′′ is ε-close to X ′, where

ε = ε1 + ε2. Since X ′ is flat, Lemma 3 implies that the min-entropy of X ′′ is at
most k + log

(
1

1−ε

)
, which is a contradiction.

4 Main Results

4.1 Complexity of Breaking Pseudoentropy

The following result specifies the attacker size for which pseudoentropy provides
no computational security.

Theorem 1 (Breaking pseudoentropy is exponentially easy in the
amount). For any n bit random variable X, if Hε

∞(X) = k then also
HHILL

s,ε (X) = k for s > n22kε−2.

The proof follows the steps explained in Sect. 1.2 and is given in Appendix A.

4.2 Matching Lower Bounds

Theorem 2 (Breaking pseudoentropy can be exponentially hard in the
amount). Let S ⊂ {0, 1}n be a set of cardinality 2k, ε′ ∈ (0, 1) be arbitrary, and
let D be a class of functions from S to [0, 1] such that

|D| < 2−2 · 22
k−C−1ε′2

.

Then for any ε < 1
4 there exists a random variable X on S such that

(a) HHILL
D,ε′ (X) = k.

(b) Hε
∞(X) = k − C + log

(
1

1−2ε

)
.
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Moreover, we have the following symmetry: the probability mass function of X
takes only two values on two subsets of S of equal size.

Remark 4 (Doubly-strong separation: by the amount and the advantage). Note
that the interesting setting of the parameters in the theorem above is when
ε′ � ε so that not only we have a gap in the entropy amount, but even for much
bigger advantage for unbounded distinguishers.

The proof follows the steps explained in Sect. 1.2 and appears in Appendix B.

5 Applications

5.1 Complexity of Hard Boolean Functions

For any function f , and a distribution μ on the domain of f we denote by
GuessD (f, μ) the probability of guessing f by a function D when the input is
sampled according to μ, that is GuessD (f, μ) = Prx∼μ [D(x) = f(x)]. We say
that f on n bits is δ-hard6 for size s if GuessD (f, μ) < 1 − δ

2 for every circuit D

of size s and uniform μ (we also write GuessD (f) < 1 − δ
2 ).

The corollary bellow is the classical result on the complexity of hard func-
tions. Our result is optimal up to a factor linear in n (note that for large n, the
value of n is negligible comparing to 2n. Also, most interesting settings are with
δ ≈ 1 with a negligible gap, and we get the optimal dependency on 1 − δ.).

Corollary 3 (Functions hard to approximate by circuits). For any n
and δ ∈ (0, 1), there exists an n-bit function which is δ-hard for all n-bit boolean
circuits of size s = Ω

(
2n(1 − δ)2

)
.

Proof (of Corollary 3). Let D′(x) = 2D(x)−1. Denote for shortness AdvD(X,Y ) =
ED(X) − ED(Y ). Observe that for any X,Y we have

AdvD(X,Y )
=ED(X) − ED(Y )

=
1
2

∑

x

(2D(x) − 1) (Pr[X = x] − Pr[Y = x])

=SD(X,Y )Ex∼μD
′(x) · sign (PX(x) − PY (x))

=SD(X,Y )
(

Pr
x∼μ

[D′(x) = f(x)] − Pr
x∼PX−PY

[D′(x) �= f(x)]
)

=SD(X,Y )
(

2Pr
x∼μ

[D′(x) = f(x)] − 1
)

=SD(X,Y ) ·
(
2GuessD (f, μ) − 1

)

6 We use the convention for which δ = 1 corresponds to completely unpredictable
function. Some works substitute 1 − δ in place of δ.
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where f(x) = sign (PX(x) − PY (x)) and μ(x) = |PX(x)−PY (x)|
2SD(X,Y ) (note that

∑
x μ(x) = 1). Let us apply Theorem 2 to k = n, ε = 1

8 , ε′ = (1 − δ)ε and
D being the class of deterministic circuits of size s. Let Y be the indistinguish-
able distribution from the definition of HILL entropy. Since in our case Y is
uniform, the function f is well-defined and moreover SD(X,Y ) � ε by (b). Thus

AdvD(X,Y ) > ε ·
(
2GuessD (f, μ) − 1

)

Moreover, |PX(x) − PY (x)| is constant by construction. Therefore μ is uniform
and we obtain

AdvD(X,Y ) > ε ·
(
2GuessD (f) − 1

)

Now AdvD(X,Y ) < ε(1 − δ) implies GuessD (f) < 1 − δ
2 for any D, which means

that f is 1 − δ-hard for size s (here we use the fact that there are exponentially
many circuits of size s, so that 2O(s) < 22

k−O(1)(1−δ)2 and the assumption on the
class size is satisfied).

A Proof of Theorem 1

Proof. We start with proving a weaker result, namely that for Metric pseudoen-
tropy (weaker notion) the threshold equals 2k.

Lemma 4 (The complexity of breaking Metric pseudoentropy). If
Hε

∞(X) = k then also HMetric
s,ε (X) = k for s > n2k.

Proof (Proof of Lemma 4). We will show the following claim which, by Propo-
sition 1, implies the statement.

Claim. If s > n2k and s′ = ∞ then HMetric
s,ε (X) = HMetric

s′,ε (X)

Proof (Proof of Claim). It suffices to show only HMetric
s,ε (X) � HMetric

s′,ε (X) as
the other implication is trivial. Our strategy is to show that any distinguisher D
that negates the definition of Metric entropy can be implemented in size 2k.

Suppose that HMetric
s′,ε (X) < k. This means that for some D of size s′ and all

Y of min-entropy at least k we have |ED(X)−ED(Y )| � ε. Since the set of all Y
of min-entropy at least k is convex, the range of the expression |ED(X)−ED(Y )|
is an interval, so we either have always ED(X)−ED(Y ) > ε or ED(X)−ED(Y ) <
−ε. Without loosing generality assume the first possibility (otherwise we proceed
the same way with the negation D′(x) = 1 − D(x)). Thus

ED(X) − ED(Y ) > ε for all nbit Y of min-entropy k

where by Remark 2 we can assume that D is boolean. In particular, the set
{x : D(x) = 1} cannot have more than 2k elements, as otherwise we would
put Y being uniform over x such that D(x) = 1 and get ED(X) − 1 > ε > 0
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which contradicts the fact that D is boolean. But if D is boolean and outputs 1
at most 2k times, can be implemented in size n2k, by hardcoding this set and
outputting 0 everywhere else. This means precisely that HMetric

s,ε (X) < k. Now
by Proposition 1 we see that also Hε

∞(X) < k which proves that HMetric
s,ε (X) �

Hε
∞(X) finishes the proof of the claim.

Having proven Lemma 4, we obtain the statement for HILL pseudoentropy by
applying the transformation from Lemma 1.

B Proof of Theorem 2

Proof (Proof of Theorem 2). Let X be a random subset of S of cardinality
2k−C . Let x1, . . . , x2k−C be the all elements of X enumerated according the
lexicographic order. Define the following random variables ξ(x)

ξ(x) =
{

random element from {−1, 1}, x = x2i−1 for some i
−x2i−1, x = x2i for some i

(1)

for any x such that x ∈ X . Once the choice of ξ(x) is fixed, consider the distri-
bution

Pr[X = x] =

{
2−k + 2ε · 2−k · ξ(x) x ∈ X

0, x �∈ X (2)

The rest of the proof splits into the following two claims:

Claim (X has small smooth min-entropy). For any choice of X and ε(x), we
have Hε

∞(X) � k − C + log
(

1
1−2ε

)
.

Claim (X has large metric pseudo-entropy). We have HMetric
D,ε (X) = k.

Proof (Small smooth min-entropy). Note that by Eq. (1) the distribution of X
is ε-close to the uniform distribution over X . By Corollary 2 (note that k is
replaced by log |X | = k − C), this means that the ε-smooth min-entropy of X is
at most k − C + log

(
1

1−2ε

)
.

Proof (Large metric entropy). Note that for any D we have

ED(X) =
∑

x∈X
D(x)

(
2−k + ξ(x)2−k · 2ε

)

= ED(UX ) + 2−k · 2ε ·
∑

x∈X
D(x)ξ(x)

In the next step we observe that the random variables ξ(x) have the degree of
dependence Δ = 1. Indeed, by the construction in Eq. (1), for any fixed x the
random variables ξ(x′) are independent of ξ(x) except at most one value of x′.
Now, by Lemma 2 applied to the random variables D(x)ξ(x) we obtain

Pr

[

2−k
∑

x∈X
D(x)ξ(x) > δ

]

� exp
(−2k−1δ2

)
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for any δ > 0, where the probability is over ξ(x) after fixing the choice of the set
X for z ∈ {0, 1}m. In other words, we have

Pr
ξ(x)

[ED(X) � ED(UX ) + 2δε] (3)

with probability 1 − exp
(
2k−1δ2

)
for any fixed choice of sets X .

In the last step, we observe that since the choice of the sets X is random, we
have ED(UX ) ≈ ED(US) with high probability. Indeed, by the Hoeffding bound
for samples taken without repetitions (see Remark 3)

Pr
X

[ED(UX ) � ED(U) + 2δε] � 1 − exp(−2k−C+3δ2ε2) (4)

By combining Eqs. (3) and (4) for any D and any ε < 1
4 we obtain

Pr
X ,ξ(x)

[ED(X) � ED(US) + 4δε] � 1 − 2 exp(−2k−C+3δ2ε2). (5)

Replacing δ with δ/4 and applying the union bound over D we see that

Pr
X ,ξ(x)

[∀D ∈ D : ED(X) � ED(US) + δε] � 1 − 2|D| exp(−2k−C−1δ2ε2).

and thus we have a distribution X such that

∀D ∈ D : ED(X) � ED(US) + δε (6)

as long as

2|D| < 22
k−C−1δ2ε2 . (7)

Finally, note that by adding to the class D all negations (functions D′(x) =
1 − D(x)) we have ED(X) � ED(US) + δε as well as ED(X) � ED(US) − δε, for
every D ∈ D. In particular, we have

∀D ∈ D : |ED(X) − ED(US)| < δε (8)

as long as

4|D| < 22
k−C−1δ2ε2 . (9)

It remains to observe that for every X the probability mass function of X takes
two values on two halves of X .
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Abstract. Given a sequence of k convex polygons in the plane, a start
point s, and a target point t, we seek a shortest path that starts at s,
visits in order each of the polygons, and ends at t. This paper describes
a simple method to compute the so-called last step shortest path maps,
which were developed to solve this touring polygons problem by Dror et
al. (STOC’2003). A major simplification is to avoid the (previous) use
of point location algorithms. We obtain an O(kn) time solution to the
problem for a sequence of disjoint convex polygons and an O(k2n) time
solution for possibly intersecting convex polygons, where n is the total
number of vertices of all polygons. Our results improve upon the previ-
ous time bounds roughly by a factor of log n.

Our new method can be used to improve the running times of
two classic problems in computational geometry. We then describe an
O(n(k + log n)) time solution to the safari problem and an O(n3) time
solution to the watchman route problem, respectively. The last step
shortest path maps are further modified, so as to meet a new requirement
that the shortest paths between a pair of consecutive convex polygons
be contained in another bounding simple polygon.

1 Introduction

Shortest paths are of fundamental importance in computational geometry, robot-
ics and autonomous navigation. The touring polygons problem, introduced by
Dror et al. [6], is defined as follows. Suppose that we are given a start point
s = P0, a target point t = Pk+1, and a sequence of k possibly intersecting poly-
gons P1, P2, . . ., Pk in the plane. The objective is to compute a shortest path
that begins at s, visits P1, P2, . . ., Pk, in that order, and finally arrives at t. See
Fig. 1.

The touring polygons problem has been well studied in the literature [8]. If
the given polygons are disjoint and convex, the shortest touring polygons path
can be computed in O(kn log(n/k)) time [6], where n is the total number of
vertices of all polygons. This simplest variant is related to the well-known safari
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15K00023, and the work by Jiang was partially supported by National Natural Sci-
ence Foundation of China under grant 61173034.
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Fig. 1. Touring a sequence of convex polygons.

problem, in which all convex polygons are placed in the interior of a given polygon
P and have a common edge with P [12]. In the case that the convex polygons
are arbitrarily intersecting, the problem can be solved in O(nk2 log n) time [6]. If
the given polygons are not convex, the touring polygons problem is NP -hard [1].

The solution of the touring polygons problem finds applications in many fun-
damental geometric problems, including the parts cutting problem, the safari
problem, the zoo-keeper problem and the watchman route problem; these prob-
lems involve finding a shortest path, within some constrained region, which vis-
its a set of convex polygons in an order that is given, or can be computed. See
[2,5,6,11–15]. The touring polygons problem is also related to the problem of
finding the shortest path between two given points among polyhedral obstacles
in three dimensions [6,8].

Previous work. A shortest touring path starting at s either goes through a
polygon Pi (1 ≤ i ≤ k) or reflects on some edge of Pi, before it reaches t. In the
case that all given polygons are convex, local optimality of a path implies global
optimality [6]. To give an efficient solution, Dror et al. showed that the plane can
be partitioned into regions such that the last steps of the shortest touring paths
from s to all points in one region are combinatorially equivalent [6]. The location
of the target point t in the subdivision of the plane (i.e., finding the region that
contains t) then tells us the information on the last step of the shortest touring
path. This data structure is termed the last step shortest path map.

The touring polygons problem is then solved using dynamic programming [6].
The last step shortest path maps are computed iteratively, one for each of the
k polygons, in the order that they are given. The shortest touring path to a
vertex v of Pi+1 (0 ≤ i ≤ k), which visit P1, . . . , Pi in order, can be computed
by performing i point location queries in the last step shortest path maps for
the previous polygons Pi, . . . , P1. To efficiently answer a point location query
(roughly in O(log n) time), the last step shortest path map for a polygon Pj

(j ≤ i) is saved in a point location data structure [6].
Although the solution for disjoint convex polygons is simple, other three known

algorithms (for possibly intersecting polygons, the safari problem and the watch-
man route problem) are quite complicated and not easy to be understood (e.g., a
last step shortest path map consists of three data structures: SR, SF and SA) [6].
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It may be because they are obtained as by-products of a more general tour-
ing problem, in which intersecting polygons are allowed and the shortest paths
between a pair of consecutive polygons are limited to a polygonal region.

Our work. A deep observation made in this paper is that instead of perform-
ing the locations of the vertices of Pi+1 in the last step shortest path map for a
polygon Pj (j ≤ i) independently, we can do them together. Since all given poly-
gons are convex, locating the vertices of Pi+1 in a previous map can be handled
by a constant number of traversals of that map. Hence, the point location data
structure is not needed at all. This simple method does decrease the time com-
plexities of all considered algorithms, roughly by a factor of log n. Although this
improvement is small, as only elementary computations are needed, our algo-
rithms are quite simple and easy to implement. Also, we apply our new method
to the safari and watchman route problems, and obtain the improved solutions
to them.

The rest of this paper is organized as follows. Section 2 defines three types of
contact of a shortest touring polygons path with an edge of a polygon. In Sect. 3,
we describe how to construct the last step shortest path maps and give an O(kn)
time solution to the touring problem for disjoint convex polygons. To deal with
the general case of possibly intersecting polygons, it requires to compute and
distinguish the intersection points among the boundaries of the polygons. In
Sect. 4, an O(k2n) time solution is further presented for the intersecting polygons.
In Sect. 5, the applications of our new method to the watchman route problem
and the safari problem are given. For these two problems, we further modify the
shortest touring path maps so as to meet a new requirement that the shortest
paths between a pair of consecutive convex polygons be contained in another
bounding simple polygon. Our data structures are much simpler and essentially
differ from that of Dror et al. (STOC’2003). Concluding remarks are given in
Sect. 6.

2 Local Optimality of Shortest Touring Polygons Paths

Assume that all given polygons P1, P2, . . ., Pk are convex, and the start point
s and the target point t are outside of P1 and Pk respectively; otherwise, P1

or/and Pk needn’t be considered. Also, we denote by |Pi| the number of vertices
of Pi, and let n =

∑k
1 |Pi|. We will simply call a touring polygons path, a touring

path. Let P0 = s and Pk+1 = t. Denote by Topt a shortest touring path for the
given polygons P0, P1, . . ., Pk, Pk+1.

Suppose that Topt visits in order the edges e1, e2, . . . , ek, ei ∈ Pi and 1 ≤
i ≤ k. Note that local optimality of Topt with respect to edge ei (1 ≤ i ≤ k)
is equivalent to global optimality [6,12]. Let us consider the contact point ci of
Topt with the edge ei, after Topt visits P1, P2, . . . , Pi−1. If Topt goes across Pi,
then we consider ci as the second intersection point of the boundary of Pi with
Topt, and thus Topt reaches the point ci from the interior of Pi (see Fig. 2(c)).
The point ci occurs in one of the following situations:
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Fig. 2. Types of contact of Topt with an edge ei of polygon Pi.

1. Perfect reflection contacts: Topt reflects on ei at an interior point ci of ei such
that the incoming angle of Topt with the reflected edge ei is equal to the
outgoing angle. See Fig. 2(a). So, the reflection of the incoming segment of
Topt, with respect to the line through ei, is collinear to its outgoing segment.
In Fig. 2(a), the point a′ is the reflection of a, which is obtained by reflecting
a across the line (considered as a mirror) through ei. This operation is called
the unfolding of the point a with respect to edge ei

2. Bending contacts: Topt bends at a polygon vertex ci, see Fig. 2(b).
3. Crossing contacts: A line segment of Topt passes the edge ei through an inte-

rior point ci of ei, see Fig. 2(c).

3 An O(kn) Algorithm for Touring k Disjoint Polygons

In this section, we describe a new method to construct the last step shortest path
maps, without invoking any point location algorithm.1 We will also consider each
polygon vertex as a target point, and call the path from s to a vertex of Pi, a
partial touring path if it visits in order each of the polygons P1, . . ., Pi−1. The
last step shortest path map for Pi, denoted by Mi, is a subdivision of the plane,
excluding the interior of Pi, into the regions such that the shortest partial touring
paths to all the points in a region visit the same edge or vertex of Pi. In the
following, if a path from s is said to be extended, it means that the last line
segment of the path is extended to infinity, starting from the ending point of the
path.

Observation 1. A necessary condition for Topt to make a perfect reflection
(resp. crossing) contact with an edge e of Pi is that the shortest touring path
from s to any point of e does not intersect (resp. intersects) the interior of Pi.

1 The authors have to point out an unhappy thing. The result (algorithm) obtained
in this section was once given in The Open Automation and Control Systems Jour-
nal, 2015, 7, pp.1364–1368, mainly by a student of the second author, without per-
mission from the authors of this paper. Needless to say more, that paper (titled
“A new algorithm for the shortest path of touring disjoint convex polygons”) had
been RETRACTED.



618 X. Tan and B. Jiang

Suppose that all given polygons are disjoint. Consider the first map M1. For
an edge e of P1, we first find the shortest paths from s to two vertices of e. From
these two shortest paths, one can easily determine whether Topt may make a
perfect reflection contact with e, or Topt may go across e (Observation 1). If Topt

may go across e, the portion of M1 for e is a crossing region, which is bounded
by e and the rays that emanate from two vertices of e along the extensions of the
shortest paths (line segments) from s to them. Clearly, the defining edges for all
crossing regions form a continuous chain on the boundary of P1. In Fig. 3(a), the
crossing regions of the edges from e3 to e7 are shown. If Topt may reflect on e, the
portion of M1 for e consists of a reflection region and two bending regions, one
per vertex. The reflection region is bounded by e and the two rays, which form
perfect reflections on e with the incoming segments of the shortest paths from
s to the vertices of e. Denote by v the common vertex of edge e with the other
edge e′. The bending region of v is then the triangular region, with the apex at
v, bounded by the two rays that emanate from v and are used in defining the
reflection region of e and the reflection or crossing region of e′. (The bending
regions of some vertices may be defined twice, but it can easily be handled.) In
Fig. 3(a), the reflection regions and bending regions for e1 and e2 are shown.
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Fig. 3. The last step shortest path maps for disjoint convex polygons.

The portion of M1 for an edge e consists of at most three regions of constant
size, and can thus be constructed in constant time. So, M1 is of size O(|P1|) and
can be constructed in O(|P1|) time. All regions of M1 form a plane subdivision,
excluding the interior of P1, see Fig. 3(a). Moreover, the regions of the map M1

can be arranged into a circular order according to their defining edges/vertices
on the boundary of P1.

Assume now that the last step shortest path map Mi (1 ≤ i < k) has been
constructed. To construct the next map Mi+1, we first describe how to compute
the (unique) shortest partial touring path to a vertex v of Pi+1 [6]. Suppose that
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the region of Mi containing v has been found. (The method of locating v in Mi

will be given later.) We then distinguish the following three situations.
Case 1. v is contained in the bending region of a vertex u. Clearly, the last

portion of the shortest partial touring path to v is the line segment with the
endpoints u and v.

Case 2. v is contained in a crossing region. We recursively compute the
shortest partial touring path to v by locating v in the map Mi−1. In the case
that v is located in the (empty) map M0, the shortest partial touring path to v
is just the line segment having the endpoints v and s.

Case 3. v is in a reflection region. Let v′ be the reflection of the point v
with respect to the line through the reflected edge, say, e. We then recursively
compute the shortest partial touring path to v′ in Mi−1: replacing the portion
of the (currently) found path from the edge e to v′ by the line segment from e to
v gives the last segment of the shortest partial touring path to v. See Fig. 3(b)
for an example, where the point t′ is obtained by reflecting the endpoint t on
edge e.

After the shortest partial touring paths to all vertices of Pi+1 are computed,
the reflection, crossing and bending regions of Mi+1 can be defined analogously.
Also, all the regions of Mi+1 can be arranged into a circular order, and they
form a plane subdivision, excluding the interior of Pi+1. See Fig. 3(b) for an
instance of M2.

Let m denote the number of vertices of polygon Pi+1, and pj (1 ≤ j ≤ m)
a vertex of Pi+1. Denote by qh,j , 1 ≤ h ≤ i, the (last) contact point of Ph with
the shortest partial touring path to pj in Mh.

Lemma 1. The last contact points qh,1, qh,2, . . . , qh,m of Ph (1 ≤ h ≤ i) with
the shortest partial touring paths to all vertices of Pi+1 form at most three x-
monotone chains in Mh.

Proof. Let x and y be two adjacent vertices of Pi+1. Consider the shortest
partial touring paths to x and y, which start at s and end at x and y, respectively.
The last steps of the two subpaths of them in the map Mh do not cross, due to
subpath optimality. Since Ph is convex, the points qh,1, qh,2, . . . , qh,m then form
two or three x-monotone chains, depending on whether or not the x-coordinate
of qh,1 is the minimum or maximum among those of qh,1, qh,2, . . . , qh,m. �

Lemma 2. Given M1, . . ., Mi, the map Mi+1 can be constructed in time
O(i|Pi+1| +

∑i
h=1 |Ph|).

Proof. The computation of Mi+1 requires to visit, in this order, the maps Mi,
. . ., M1. Locating in Mi the points qi+1,j (i.e., the vertices pj of P ), 1 ≤ j ≤ m,
can be done as follows. First, we locate a point, say, qi+1,1 in Mi. From the found
region, locating all other points qi+1,2, . . . , qi+1,m in Mi can be done by a con-
stant number of monotone scans (Lemma 1). The region containing qi+1,1 can be
found in O(|Pi|) time. The total time required to locate qi+1,1, qi+1,2, . . . , qi+1,m

in Mi is clearly O(|Pi| + |Pi+1|). This procedure is then recursively performed
for Mh, 1 ≤ h < i. Note that if a bending contact occurs in Mh+1, the point
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qh+1,j is then the bending vertex. If a crossing (reflection) contact occurs, then
qh+2,j (the reflection of qh+2,j) can be used as qh+1,j , as they are in the same
region of Mh. Since Mi, . . ., M1 are all visited, the lemma thus follows. �

Since
∑k

i=1 i|Pi| = O(k(
∑k

i=1 |Pi|)) = O(kn), all maps M1, . . ., Mk can
be computed in O(kn) time. After Mk is found, we can report in time O(n)
the shortest path from s to t that tours all polygons P1, . . ., Pk. On the other
hand, following from the circluar property of the map Mi (1 ≤ i ≤ k), a binary
search can also be used to answer a point-in-region query in time O(log |Pi|).
Thus, for a given query point t, we can report the shortest touring path to t in
O(k log(n/k)) time [6]. Hence, we obtain the first result of this paper.

Theorem 1. For the problem of touring a sequence of k disjoint convex poly-
gons, a data structure of O(n) size can be built in time O(kn) such that the
shortest touring path to any given point t can be reported in time O(n) or
O(k log(n/k)), where n is the total number of vertices of the given polygons.

4 Touring a Sequence of Possibly Intersecting Polygons

Let us now extend the data structure developed in the previous section to the
case of intersecting convex polygons. Without loss of generality, assume that no
three (polygon) edges can intersect at a same point. Note that a vertex of Pi may
be in the interior of Pi+1, and the shortest touring path map for Pi+1 is affected
by the intersection points among previous polygons. These new situations need
be handled carefully.

First, we compute the intersection points among all convex polygons. Clearly,
the total number of edge intersections among all convex polygons is bounded by
O(kn). All of these intersection points can simply be computed in time O(k2n)
or O(kn log n). In our algorithm, we consider the intersection points between
Pi and Ph, h < i, as the pseudo-vertices of Pi, and the fragments of a polygon
edge, which are introduced by the pseudo-vertices, as the pseudo-edges. Still, we
denote by |Pi| the total number of the vertices and pseudo-vertices of Pi, and Mi

the shortest path touring map for Pi, 1 ≤ i ≤ k. So, we have
∑k

1 |Pi| = O(kn).
The first map M1 is the same as that constructed in Sect. 3, except that the

interior of P1 is now a crossing region of M1. This is because a portion of P2

may be in the interior of P1. Notice that the size of the crossing region P1 is
|P1|, other than a constant. Clearly, the map M1 is a partition of the full plane.

Suppose that the shortest touring path maps M1, . . ., Mi (1 ≤ i < k) have
been computed. Notice that the shortest partial touring path to a boundary
point of Pi is unique, even in the case that the given polygons are arbitrarily
intersecting [6]. We then compute the shortest partial touring paths to all vertices
v of Pi+1, including the pseudo-vertices. Since Observation 1 also holds in this
case, the reflection and crossing regions of Mi+1 can analogously be computed
for the pseudo-edges of Pi+1. Also, the interior of Pi+1 is a crossing region of
Mi+1. For the instance given in Fig. 4(a), the map M2 is shown. (Clearly, the
crossing regions of Mi+1 for the pseudo-edges of a single edge can be merged.)
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Fig. 4. Illustrating the maps for possibly intersecting polygons.

The bending regions of the vertices of Pi+1 can be computed analogously, too.
However, a new treatment needs for the pseudo-vertices. Let j be an intersection
point of Pi+1 and Ph, 1 ≤ h ≤ i. The bending region of j exists only when (1) j
is in the interiors of Ph+1, . . . , Pi, and (2) the shortest partial touring path to j
does not intersect the interior of Ph nor Pi+1. See Fig. 4(b). The second condition
comes from the fact that if Topt makes a bending contact at point j, then its
outgoing segment (away from j) in the bounding region of j cannot intersect
the interiors of both Ph and Pi+1; otherwise, Topt can be shortened by slightly
sliding its contact point on the edge of either Ph or Pi+1. Clearly, if the last
segments of two shortest partial touring paths to j (in Mh and Mi+1) overlap
each other, the conditions (1) and (2) are true. The bending region of j (if it
exists) is bounded by the two rays which form perfect reflections with the last
segment of the shortest partial touring path to j, on the reflected edges of Ph

and Pi+1 respectively. By definitions of crossing and reflection regions, one of the
regions adjacent to the bending region of j is the crossing region, and the other
is the reflection region. See Fig. 4(b). In summary, at most two pseudo-vertices of
a polygon may have their (extreme) bending regions, and two reflection regions
may be adjacent on a polygon edge, because of the non-existence of bounding
regions of some psuedo-vertices (see Fig. 4(a)).

The time required to construct the map Mi+1 is still O(i|Pi+1|+
∑i

h=1 |Ph|).
This is because finding the Pi+1’s vertices that are in the interior (i.e., the
crossing region) of a polygon Ph can be done in O(|Ph| + |Pi+1|) time, as the
intersection points between Ph and Pi+1 have been precomputed. Also, since we
have the last segments of two shortest partial touring paths to a pseudo-vertex at
hand, whether the bending region of the pseudo-vertex exists can be determined
in constant time, and such a bending region can be computed in constant time.

Since
∑k

i=1 i|Pi| = O(k(
∑k

i=1 |Pi|)) = O(k2n), all last step shortest path
maps can then be computed in time O(k2n). After all maps are found, we can
report in O(kn) time the shortest touring path from s to t.
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Theorem 2. For the problem of touring a sequence of k possibly intersecting
convex polygons, a data structure of O(kn) size can be built in time O(k2n) such
that the shortest touring path to any given point t can be reported in time O(kn),
where n is the total number of vertices of the given polygons.

5 Applications

Our method for touring a sequence of convex polygons can be used to solve two
well-known problems in computational geometry. The safari problem is defined
as follows: Given a simple polygon P (a safari area), a starting point s on the
boundary of P , and disjoint convex polygons (animal zones) P1, P2, . . . , Pk inside
P , each sharing exactly one edge with P , one wants to find a shortest safari tour
that starts at s, visits all polygons in order, and finally returns back to s. Assume
that P1, P2, . . . , Pk appear on P clockwise, starting at s. The safari tour may
enter the interior of a convex polygon Pi, 1 ≤ i ≤ k. See Fig. 5(a)

In the watchman route problem, we are given a simple polygon P with a
starting point s on its boundary. The objective is to find a shortest (closed) tour
such that every point of P is visible from at least one point of the tour, starting
and ending at s. See Fig. 5(b). This problem is quite interesting, because it deals
with both the visibility and metric information [5,9].
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Fig. 5. Instances of the shortest safari and watchman routes.

5.1 New Last Step Shortest Path Maps for the Safari Problem

A vertex of the polygon P is reflex if its internal angle is strictly larger than π;
otherwise, it is convex. For an instance of the safari problem, we denote by n
the total number of the vertices of all the polygons P and Pi, 1 ≤ i ≤ k. Let
Pk+1 = s. Again, we denote by |Pi| the number of vertices of a convex polygon
Pi, and thus

∑k
i=1 |Pi| = O(n). The currently best result on the safari problem

is an O(kn log n) solution [6].
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The last step shortest path map Mi for a polygon Pi, 1 ≤ i ≤ k, is almost
the same as that defined in Sect. 3, except that the shortest paths between any
two points (on convex polygons) have to be contained in the interior of P . With
a careful treatment, we can construct the last step shortest path maps, which
are independent of the enclosing polygon P . For simplicity, we will denote by li
(1 ≤ i ≤ k) the vertex of the common edge of Pi and P , which is first encountered
by a clockwise scan on P from s, and ri the other vertex of that common edge.

To efficiently answer the shortest path queries inside P , we first preprocess
P in O(n) time such that the last segment of a shortest path between two query
points in P (while ignoring all convex polygons) can be found in O(log n) time
[7]. Also, we preprocess P in O(n log n) time such that a ray-shooting query
inside P can be answered in O(log n) time [3]. A shortest path or a ray, as
computed above, may go through the interior of a convex polygon Pi.

Consider how to construct the first map M1. We first compute the last
segments of the shortest paths from s to all vertices of P1 in O(|P1| log n) time.
For the P1’s edges that the shortest safari route may go across, we extend the
last segments of the shortest paths to their vertices until the boundary of P
is reached. For the P1’s edges that the shortest safari route may reflect on,
we extend the outgoing line segments, which form perfect reflections with the
last segments of the shortest paths to their vertices, until the boundary of P is
reached. These first reached, or simply, hit points on P can be found by invoking
the ray-shooting query algorithm [3]. We call the computed segments, which
have the origins on P1 and the hit points on P , the P1-rays (see Fig. 6(a)).

A new situation here is that the shortest partial touring paths to some vertices
of P2 may turn, left or/and right, at reflex vertices of P . For left turns, we
describe below a method to find the first left turn point, denoted by a1. First, we
find the first P1-ray (as viewed from s), which does not intersect P2 and whose hit
point appears before the vertex l2 on the boundary of P . Denote by u1 (it always
exists) the vertex of P1 from which the found P1-ray emanates, see Fig. 6(a).
Whether or not a P1-ray intersects P2 can be determined in O(log |P2|) time.
Hence, the vertex u1 can be computed in O(|P1| log |P2|), or simply O(|P1| log n)
time.

Observe that the point a1 (if it exists) is contained in the bending region of
u1 or the reflection/crossing region of the edge having u1 as its right vertex (as
viewed from s). Although M1 has not yet been completely computed, the u1’s
region is known at this moment. In the case that the u1’s region is a bending
one, we compute the first turn point of the shortest path from u1 to the vertex
l2. If that turn point is l2 itself, then a1 does not exist; otherwise, it is the point
a1. In the case that the u1’s region is a reflection or crossing one, a1 is the
first turn point of the shortest path from the other vertex of the edge defining
the u1’s region to l2. After a1 (if it exists) is found, we compute using the u1’s
region the last segment of the shortest touring path to a1 and then extend the
found segment till the boundary of P is reached. We also consider the extended
segment (passing through a1) as a special P1-ray. See Fig. 6(a) for an example,
where the P1-ray through a1 is drawn in bold dashed line. In this way, the vertex
a1 (if it exists) can be computed in O(log n) time.
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Fig. 6. Illustration of the last step shortest path maps for the safari problem.

Consider now the situation in which the shortest partial touring paths to
some vertices of P2 turn right. Again, we focus on the first right turn point,
denoted by b1. First, find the last P1-ray (if it exists) that intersects P2. It
can simply be done in time O(|P1| log |P2|) or O(|P1| log n). Denote by v1 the
vertex of P1 from which the found P1-ray emanates (Fig. 6(b)). Next, we find the
vertex of P2, which is to the right of the line containing the P1-ray emanating
from v1 and whose distance to that line is maximum. This vertex, say, w2, can
be computed in O(|P2|) time. We then find in O(log n) time the first turn point
of the shortest path from v1 to w2. If the found point differs from v1, then it
is the point b1. Also, we find the special P1-ray through b1 (if it exists). See
Fig. 6(b). The portion of P2 that is to the right of the P1-ray through b1 can
safely be ignored, because the shortest safari route needn’t enter it.

The extensions of all P1-rays between two P1-rays through a1 and b1 into
half-lines can be considered as a partition of the plane, excluding the interior
of P1; in the case that the point a1 (b1) does not exist, the restriction placed
by the P1-ray through a1 (b1) is completely released. See Fig. 6(b). We call the
obtained partition, a p-map (short for “portion of the map”), and denote it by
N1. In summary, M1 consists of a p-map N1, a left turn point a1 and a right
turn point b1. At least one of N1, a1 and b1 exists. Note that N1 is completely
independent of the enclosing polygon P .

Suppose now that the maps Mi, for 1 ≤ i < k, have been computed. A map
Mi consists of at most three elements: a p-map Ni, a left turn point ai and a
right turn point bi. Again, let m = |Pi+1|, and denote by qh,j , 1 ≤ h ≤ i, the
last contact point of Ph with the shortest partial touring path to a vertex pj of
Pi+1. (Some of qh,1, qh,2, . . . , qh,m may be the same point.)

Lemma 3. The last contact points qh,1, qh,2, . . . , qh,m (1 ≤ h ≤ i) of Ph with
the shortest partial touring path to all vertices of Pi+1 form at most three
x-monotone chains.

Proof. By an argument similar to the proof of Lemma 1, the lemma simply
follows. �
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For the vertices of Pi+1 that are to the left of the half-line through ai (if it
exists), we then compute the last steps of shortest partial touring paths to them
by taking ai as the local starting point. It clearly takes O(|Pi+1| log n) time. For
the vertices of Pi+1 that are to the left and right of the half-lines through ai (if it
exists) and bi (if it exists) respectively, we compute the shortest partial touring
paths to them using Ni and possibly the previous maps M1, . . ., Mi−1. It then
follows from Lemma 3 that Ni+1 can be computed in O(i|Pi+1| +

∑i
h=1 |Ph|)

time. Analogous to the operation for computing the map M1, we can find the
points ai+1, bi+1 (if they exist) in O(|Pi+1| log n + |Pi+2|) time.

Lemma 4. Given M1, . . ., Mi, the map Mi+1 can be constructed in time
O((i + log n)|Pi+1| + |Pi+2| +

∑i
h=1 |Ph|).

Proof. The lemma simply follows from the discussion made above. �

Since
∑k

i=1 i|Pi| = O(k(
∑k

i=1 |Pi|)) = O(kn), all maps M1, . . ., Mk can be
computed in O(n(k+log n)) time. After Mk is found, we can report in time O(n)
the shortest path, starting and ending at s, for touring all polygons P1, . . . , Pk.

Theorem 3. Suppose that a simple polygon P with a starting point on its bound-
ary is given. Then, the safari problem can be solved in O(n(k+log n)) time, where
k is the number of convex polygons Pi inside P and n is the total number of the
vertices of all polygons P and Pi, 1 ≤ i ≤ k.

5.2 An O(n3) Algorithm for the Watchman Route Problem

For the watchman route problem, Tan et al. [13,14] gave the first polynomial-
time (O(n4)) algorithm using dynamic programming, where n denotes the num-
ber of the vertices of the given polygon P . This result was later improved to
O(n3 log n) [6].

Let e be an edge incident to a reflex vertex v of P . Starting from v, one can
extend e inside P , until the boundary of P is reached. This extension of e divides
P into two pieces. It is called a cut, denoted by C, if the extension of e leads to a
convex vertex at v in the piece containing s. The portion of P not containing s,
is called a pocket. A cut C is essential if no other pocket is fully contained in
the pocket of C. Also, a pocket is essential if its cut is essential. Then, a tour
sees all points of P if and only if it visits all essential pockets, or equivalently,
all essential cuts.

Let us denote by P1, . . . , Pk (C1, . . . , Ck) the sequence of essential pockets
(cuts), ordered by their appearances (i.e., their first points) on the boundary of P
clockwise, starting from s. Clearly, some of P1, . . . , Pk may intersect each other.
Then, there exists a shortest watchman route that visits the pockets P1, . . . , Pk,
in this order, see Fig. 5(b).2

2 The shortest watchman route may not visit the essentail cuts C1, . . . , Ck, exactly in
this order. But, the cuts on which the shortest watchman route reflects (e.g., the
cuts of P1, P4 and P5 in Fig. 5(b)) still follow that order.
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Observe that the shortest watchman route needs not to visit any common
boundary point between P and a pocket Pi, except for two endpoints of the
cut Ci. So, the (convex) cut Ci can be considered as a simple representation
of its (non-convex) pocket Pi. The last step shortest path maps for P1, . . . , Pk

can then be defined as those in Sect. 4, by considering the intersection points
among C1, . . . , Ck as the pseudo-vertices. By handling the enclosing polygon P
as described in Sect. 5.1, we then compute the shortest partial watchman tours to
the pseudo-vertices of Ci, in the increasing order of i. In this way, we can find the
shortest watchman route through s. Since the total number of cut intersections
is O(n2), we obtain a new result for the watchman route problem.

Theorem 4. Suppose that a simple polygon P of n vertices and a starting point
s on the boundary of P are given. Then, the watchman route problem can be
solved in O(n3) time.

6 Conclusions

We have presented an O(kn) time solution to the problem of touring a sequence
of disjoint convex polygons, and an O(k2n) time solution for a sequence of pos-
sibly intersecting convex polygons, where k is the number of convex polygons
and n is the total number of vertices of all polygons. Our results improve upon
the previous time bounds roughly by a factor of log n. We have also given an
O(n(k + log n)) time solution to the safari problem and an O(n3) time solu-
tion to the watchman route problem, improving upon the previous time bounds
O(kn log n) and O(n3 log n) respectively. The data structures presented in this
paper are much simpler and essentially differ from that of Dror et al. (STOC’03).
Whether or not our results can be improved is an interesting open problem.
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Abstract. Deletion problems are those where given a graph G and a
graph property π, the goal is to find a subset of edges such that after its
removal the graph G will satisfy the property π. Typically, we want to
minimize the number of elements removed. In fair deletion problems we
change the objective: we minimize the maximum number of deletions in
a neighborhood of a single vertex.

We study the parameterized complexity of fair deletion problems with
respect to the structural parameters of the tree-width, the path-width,
the size of a minimum feedback vertex set, the neighborhood diversity,
and the size of minimum vertex cover of graph G.

We prove the W[1]-hardness of the fair FO vertex-deletion problem
with respect to the first three parameters combined. Moreover, we show
that there is no algorithm for fair FO vertex-deletion problem running

in time no(
3√
k), where n is the size of the graph and k is the sum of the

first three mentioned parameters, provided that the Exponential Time
Hypothesis holds.

On the other hand, we provide an FPT algorithm for the fair MSO
edge-deletion problem parameterized by the size of minimum vertex cover
and an FPT algorithm for the fair MSO vertex-deletion problem para-
meterized by the neighborhood diversity.

1 Introduction

We study the computational complexity of fair deletion problems. Deletion prob-
lems are a standard reformulation of some classical problems in combinatorial
optimization examined by Yannakakis [20]. For a graph property π we can for-
mulate an edge deletion problem. That means, given a graph G = (V,E), find
the minimum set of edges F that need to be deleted for graph G′ = (V,E \ F )
to satisfy property π. A similar notion holds for the vertex deletion problem.
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Many classical problems can be formulated in this way such as minimum

vertex cover, maximum matching or minimum feedback arc set. For
example minimum vertex cover is formulated as a vertex deletion problem
since we aim to find a minimum set of vertices such that the rest of the graph
forms an independent set. An example of an edge deletion problem is perfect

matching: we would like to find a minimum edge set such that the resulting
graph has all vertices being of degree exactly one. Many of such problems are
NP-complete [1,13,19].

Fair deletion problems are such modifications where the cost of the solution
should be split such that the cost is not too high for anyone. More formally, the
fair edge deletion problem for a given graph G = (V,E) and a property π
finds a set F ⊆ E which minimizes the maximum degree of the graph G∗ = (V, F )
where the graph G′ = (V,E \ F ) satisfies the property π. Fair deletion problems
were introduced by Lin and Sahni [17].

Minimizing the fair cost arises naturally in many situations, for example in
defective coloring [5]. A graph is (k, d)-colorable if every vertex can be assigned
a color from the set {1, . . . , k} in such a way that every vertex has at most d
neighbors of the same color. This problem can be reformulated in terms of fair
deletion; we aim to find a set of edges of maximum degree d such that after its
removal the graph can be partitioned into k independent sets.

We focus on fair deletion problems with properties definable in either first
order (FO) or monadic second order (MSO) logic. Our work extends the result
of Kolman et al. [12]. They showed an XP algorithm for a generalization of fair
deletion problems definable by MSO2 formula on graphs of bounded tree-width.

We give formal definitions of the problems under consideration in this work.

Fair FO edge-deletion

Input: An undirected graph G, an FO sentence ψ, and a positive
integer k.

Question: Is there a set F ⊆ E(G) such that G \ F |= ψ and for every
vertex v of G, the number of edges in F incident with v is at
most k?

Similarly, fair vertex deletion problem finds, for a given graph G = (V,E)
and a property π, the solution which is the minimum of maximum degree of
graph G[W ] where graph G[V \ W ] satisfy property π. Those problems are NP-
complete for some formulas. For example Lin and Sahni [17] showed that deciding
whether a graph G has a degree one subgraph H such that G \ H is a spanning
tree is NP-complete.

Fair FO vertex-deletion

Input: An undirected graph G, an FO sentence ψ, and a positive
integer k.

Question: Is there a set W ⊆ V (G) such that G \ W |= ψ and for
every vertex v of G, it holds that |N(v) ∩ W | ≤ k?

Both problems can be straightforwardly modified for MSO1 or MSO2.
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The following notions are useful when discussing the fair deletion problems.
The fair cost of a set F ⊆ E is defined as maxv∈V |{e ∈ F | v ∈ e}|. We refer to
the function that assigns each set F its fair cost as the fair objective function.
In case of vertex-deletion problems, the fair cost of a set W ⊆ V is defined as
maxv∈V |N(v)∩W |. The fair objective function is defined analogously. Whenever
we refer to the fair cost or the fair objective function, it should be clear from
context whether we mean the edge or the vertex version.

We now describe the generalization of fair deletion problems considered by
Kolman et al. The main motivation is that sometimes we want to put additional
constraints on the deleted set itself (e.g. Connected Vertex Cover, Inde-
pendent Dominating Set). However, the framework of deletion problems does
not allow that. To overcome this problem, we define the generalized problems as
follows.

Generalized Fair MSO edge-deletion

Input: An undirected graph G, an MSO formula ψ with one free
edge-set variable, and a positive integer k.

Question: Is there a set F ⊆ E(G) such that G |= ψ(F ) and for every
vertex v of G, the number of edges in F incident with v is at
most k?

Generalized Fair MSO vertex-deletion

Input: An undirected graph G, an MSO formula ψ with one free vertex-
set variable, and a positive integer k.

Question: Is there a set W ⊆ V (G) such that G |= ψ(W ) and for every
vertex v of G, it holds that |N(v) ∩ W | ≤ k?

In this version, the formula ψ can force that G has the desired property after
deletion as well as imposing additional constraints on the deleted set itself.

Courcelle and Mosbah [4] introduced a semiring homomorphism framework
that can be used to minimize various functions over all sets satisfying a given
MSO formula. A natural question is whether this framework can be used to
minimize the fair objective function. The answer is no, as we exclude the pos-
sibility of an existence of an FPT algorithm for parameterization by tree-width
under reasonable assumption. Note that there are semirings that capture the fair
objective function, but their size is of order O(ntw (G)), so this approach does
not lead to an FPT algorithm.

1.1 Our Results

We prove that the XP algorithm given by Kolman et al. [12] is almost optimal
under the exponential time hypothesis (ETH) for both the edge and the vertex
version. Actually we proved something little bit stronger. We prove the hardness
of the classical (weaker) formulation of fair deletion problems described in
(weaker as well) FO logic.
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Theorem 1. If there is an FPT algorithm for Fair FO vertex-deletion para-
meterized by the size of the formula ψ, the pathwidth of G, and the size of min-
imum feedback vertex set of G combined, then FPT = W[1]. Moreover, let k
denote pw(G)+ fvs(G). If there is an algorithm for Fair FO vertex-deletion

with running time f(|ψ|, k)no(
3√
k), then Exponential Time Hypothesis fails.

Theorem 2. If there is an FPT algorithm for Fair FO edge-deletion para-
meterized by the size of the formula ψ, the pathwidth of G, and the size of
minimum feedback vertex set of G combined, then FPT = W[1]. Moreover, let k
denote pw(G) + fvs(G). If there is an algorithm for Fair FO edge-deletion

with running time f(|ψ|, k)no(
3√
k), then Exponential Time Hypothesis fails.

By a small modification of our proofs we are able to derive tighter (
√

k instead
of 3

√
k) results using MSO2 logic or MSO1 logic respectively. However, there is

still a small gap that has been left open.

Theorem 3. If there is an FPT algorithm for Fair MSO1 vertex-deletion

parameterized by the size of the formula ψ, the pathwidth of G, and the size
of minimum feedback vertex set of G combined, then FPT = W[1]. Moreover,
let k denote pw(G) + fvs(G). If there is an algorithm for Fair MSO1 vertex-

deletion with running time f(|ψ|, k)no(
√
k), then Exponential Time Hypothesis

fails.

Theorem 4. If there is an FPT algorithm for Fair MSO2 edge-deletion

parameterized by the size of the formula ψ, the pathwidth of G, and the size of
minimum feedback vertex set of G combined, then FPT = W[1]. Moreover, let k
denote pw(G)+fvs(G). If there is an algorithm for Fair MSO2 edge-deletion

with running time f(|ψ|, k)no(
√
k), then Exponential Time Hypothesis fails.

On the other hand we show some positive algorithmic results for the gener-
alized version of the problems.

Theorem 5. Generalized Fair MSO1 vertex-deletion is in FPT with
respect to the neighborhood diversity nd(G) and the size of the formula ψ.

We also provide an algorithm for the MSO2 logic (strictly more powerful than
MSO1), however we need a more restrictive parameter because model checking
of an MSO2 formula is not even in XP for cliques unless E = NE [3,15]. We
consider the size of minimum vertex cover that allows us to attack the edge-
deletion problem in FPT time.

Theorem 6. Generalized Fair MSO2 edge-deletion is in FPT with respect
to the size of minimum vertex cover vc(G) and the size of the formula ψ.

2 Preliminaries

Throughout the paper we deal with simple undirected graphs. For further stan-
dard notation in graph theory, we refer to Diestel [6]. For terminology in para-
meterized computational complexity we refer to Downey and Fellows [7].
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Fig. 1. Hierarchy of graph parameters. An arrow indicates that a graph parameter
upper-bounds the other. Thus, hardness results are implied in direction of arrows and
FPT algorithms are implied in the reverse direction.

2.1 Graph Parameters

We define several graph parameters being used throughout the paper (Fig. 1).
We start by definition of vertex cover being a set of vertices such that its

complement forms an independent set. By vc (G) we denote the size of a smallest
such set. This is the strongest of considered parameters and it is not bounded
for any natural graph class.

A feedback vertex set is a set of vertices whose removal leaves an acyclic
graph. Again, by fvs (G) we denote the size of a smallest such set.

Another famous graph parameter is tree-width introduced by Bertelé and
Brioshi [2].

Definition 1 (Tree decomposition). A tree decomposition of a graph G is
a pair (T,X), where T = (I, F ) is a tree, and X = {Xi | i ∈ I} is a family of
subsets of V (G) such that:

– the union of all Xi, i ∈ I equals V ,
– for all edges {v, w} ∈ E, there exists i ∈ I, such that v, w ∈ Xi and
– for all v ∈ V the set of nodes {i ∈ I | v ∈ Xi} forms a subtree of T .

The width of the tree decomposition is max(|Xi| − 1). The tree-width of a
graph tw (G) is the minimum width over all possible tree decompositions of
the graph G. The parameter of path-width (analogously pw (G)) is almost the
same except the decomposition need to form a path instead of a general tree.

A less known graph parameter is the neighborhood diversity introduced by
Lampis [14].

Definition 2 (Neighborhood diversity). The neighborhood diversity of a
graph G is denoted by nd (G) and it is the minimum size of a partition of vertices
into classes such that all vertices in the same class have the same neighborhood,
i.e. N(v) \ {v′} = N(v′) \ {v}, whenever v, v′ are in the same class.

It can be easily verified that every class of neighborhood diversity is either a
clique or an independent set. Moreover, for every two distinct classes C and C ′,
either every vertex in C is adjacent to every vertex in C ′, or there is no edge
between them. If classes C and C ′ are connected by edges, we refer to such
classes as adjacent.
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2.2 Parameterized Problems and Exponential Time Hypothesis

Definition 3 (Parameterized language). Let Σ be a finite alphabet. A para-
meterized language L ⊆ Σ∗ × N set of pairs (x, k) where x is a finite word over
Σ and k is a nonnegative integer.

We say that an algorithm for a parameterized problem L is an FPT algorithm
if there exist a constant c and a computable function f such that the running
time for input (x, k) is f(k)|x|c and the algorithm accepts (x, k) if and only if
(x, k) ∈ L.

A standard tool for showing nonexistence of an FPT algorithm is W[1]-
hardness (assuming FPT �= W[1]). For the definition of W[1] class and the notion
of W[1]-hardness, we refer the reader to [7].

A stronger assumption than FPT �= W[1] that can be used to obtain hardness
results is the Exponential Time Hypothesis (ETH for short). It is a complexity
theoretic assumption introduced by Impagliazzo, Paturi and Zane [11]. We follow
a survey on the topic of lower bounds obtained from ETH by Lokshtanov, Marx,
and Saurabh [18], which contains more details on this topic.

The hypothesis states that there is no subexponential time algorithm for 3-

SAT if we measure the time complexity by the number of variables in the input
formula, denoted by n.

Exponential Time Hypothesis (ETH) [11]. There is a positive
real s such that 3-SAT with parameter n cannot be solved in time
2sn(n + m)O(1).

Definition 4 (Standard parameterized reduction). We say that parame-
terized language L reduces to parameterized language L′ by a standard parame-
terized reduction if there are functions f, g : N → N and h : Σ∗ × N → Σ∗ such
that function h is computable in time g(k)|x|c for a constant c, and (x, k) ∈ L
if and only if (h(x, k), f(k)) ∈ L′.

For preserving bounds obtained from the ETH, the asymptotic growth of the
function f need to be as slow as possible.

2.3 Logic Systems

We heavily use graph properties that can be expressed in certain types of logical
systems. In the paper it is Monadic second-order logic (MSO) where monadic
means that we allow quantification over sets (of vertices and/or edges). In first
order logic (FO) there are no set variables at all.

We distinguish MSO2 and MSO1. In MSO1 quantification only over sets of
vertices is allowed and we can use the predicate of adjacency adj(u, v) returning
true whenever there is an edge between vertices u and v. In MSO2 we can addi-
tionally quantify over sets of edges and we can use the predicate of incidence
inc(v, e) returning true whenever a vertex v belongs to an edge e.
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It is known that MSO2 is strictly more powerful than MSO1. For example,
the property that a graph is Hamiltonian is expressible in MSO2 but not in
MSO1 [16].

Note that in MSO1 it is easy to describe several complex graph properties
like being connected or having a vertex of a constant degree.

3 Hardness Results

In this section, we prove hardness of Fair FO vertex-deletion by exhibiting
a reduction from Equitable 3-coloring.

Equitable 3-coloring
Input: An undirected graph G.
Question: Is there a proper coloring of vertices of G by at most 3 colors

such that the size of any two color classes differ by at most one?

The following result was proven implicitly in [9].

Theorem 7. Equitable 3-coloring is W[1]-hard with respect to pw(G) and
fvs(G) combined. Moreover, if there exists an algorithm for Equitable 3-

coloring running in time f(k)no(
3√
k), where k is pw(G) + fvs(G), then the

Exponential Time Hypothesis fails.

The proof in [9] relies on a reduction from Multicolored Clique [10]
to Equitable coloring. The reduction transforms an instance of Multi-

colored clique of parameter k into an Equitable coloring instance of
path-width and feedback vertex size at most O(k) (though only tree-width is
explicitly stated in the paper). Algorithm for Equitable coloring running in
time f(k)no(

3√
k) would lead to an algorithm for Multicolored Clique run-

ning in time f(k)no(k). It was shown by Lokshtanov, Marx, and Saurabh [18]
that such algorithm does not exist unless ETH fails.

We now describe the idea behind the reduction from Equitable 3-coloring

to Fair FO vertex-deletion. Let us denote by n the number of vertices of G
and assume that 3 divides n. The vertices of G are referred to as original vertices.
First, we add three vertices called class vertices, each of them corresponds to a
particular color class. Then we add edge between every class vertex and every
original vertex and subdivide each such edge. The vertices subdividing those
edges are called selector vertices.

We can encode the partition of V (G) by deleting vertices in the following
way: if v is an original vertex and c is a class vertex, by deleting the selector
vertex between v and c we say to the class represented by c. If we ensure that
the set is deleted in such a way that every vertex belongs to exactly one class,
we obtain a partition of V (G).

The equitability of the partition will be handled by the fair objective function.
Note that if we delete a subset W of selector vertices that encodes a partition
then |W | = n. Those n vertices are adjacent to 3 class vertices, so the best
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possible fair cost is n/3 and thus a solution of the fair cost n/3 corresponds to
an equitable partition.

Of course, not every subset W of vertices of our new graph encodes a parti-
tion. Therefore, the formula we are trying to satisfy must ensure that:

– every original vertex belongs to exactly one class,
– no original or class vertex was deleted,
– every class is an independent set.

However, the described reduction is too naive to achieve those goals; we need to
slightly adjust the reduction. Let us now describe the reduction formally:

Proof (of Theorem 1). Let G be a graph on n vertices. We can assume without
loss of generality (by addition of isolated vertices.) that 3 divides n and n ≥ 6.

First we describe how to construct the reduction. All vertices of G will be
referred to as original vertices. We add three vertices called class vertices and
connect every original vertex with every class vertex by an edge. We subdivide
each such edge once; the vertices subdividing those edges are called selector
vertices. Finally, for every original vertex v, we add n new vertices called dangling
vertices and connect each of them by an edge to v. We denote the graph obtained
in this way as G′. For a schema of the reduction, see Fig. 2.

Now, we wish to find a set W ⊆ V (G′) such that it encodes an equitable 3-
coloring of a graph G. The set is described by the following FO formula eq 3 col
imposed on a graph G \ W . We claim that whenever this set satisfy following
claims it encodes an equitable 3-coloring. A set W can contain only selector
vertices and some dangling vertices (but those do not affect the coloring). For
each vertex v of a graph there can be only one selector vertex in the set W and
that vertex has only one class vertex as a neighbor. That vertex determine the
color of v.

Fig. 2. The schema of the reduction
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We use the following shorthand ∃=k meaning there are exactly k distinct
elements satisfying a given predicate:

(∃=kw)(pred(w)) ≡ (∃v1, . . . , vk)
( k∧

i=1

pred(vi) ∧
∧

1≤i<j≤k

(vi �= vj)

∧(∀v′)
(
pred(v′) →

k∨

i=1

(v′ = vi)
))

The building blocks for the formula are as follows:

isol(v) ≡ (∀w)(¬adj(v, w))

dangling(v) ≡ (∃w)
(
adj(v, w) ∧ (∀w′)(adj(v, w′) → w = w′)

)

original(v) ≡ (∃w)(dangling(w) ∧ adj(v, w))
selector(v) ≡ (∃=2w)(adj(v, w))

class(v) ≡ ¬orig(v) ∧ ¬selector(v) ∧ ¬dangling(v)
belongs to(v, a) ≡ original(v) ∧ class(a) ∧ ¬(∃w)(adj(v, w) ∧ adj(w, a))

same class(v, w) ≡ original(v) ∧ original(w)
∧ (∃a)(class(a) ∧ belongs to(v, a) ∧ belongs to(w, a))

valid deletion ≡ (∀v)(¬isol(v))

∧ (∀v)
(
original(v) → (∃=1c)(belongs to(v, c))

)

eq 3 col ≡ valid deletion ∧ (∀v, w)(same class(v, w) → ¬adj(v, w))

The described reduction maps an instance G of an Equitable coloring

into an instance (G′, eq 3 col, n/3) of Fair FO vertex-deletion.
We claim that there exists a set W ⊆ V (G′) of the fair cost at most n/3 if

and only if G admits an equitable 3-coloring.
If we have an equitable 3-coloring of G then it is easy to see that the set

W ⊆ V (G′) corresponding to a partition into color classes has the fair cost
exactly n/3 and it is straightforward to check that G′ \ W |= eq 3 col.

For the other implication we prove that if we delete a subset W ⊆ V (G′)
of the fair cost at most n/3, and the formula valid deletion is true, then we
obtained an equitable 3-coloring of a graph G. To get there we made a few basic
claims.

Claim 1: no original vertex was deleted: Suppose for the contradiction that orig-
inal vertex v was deleted. If we kept at least one of the dangling vertices attached
to v, but this vertex is now isolated and formula valid deletion is not true. On the
other hand if we delete all dangling vertices that were attached to v, our deleted
set has fair cost at least n.

Claim 2: if w has degree one in G′ \ W , then its only neighbor is an original
vertex: If w is dangling, then its only neighbor is original vertex by the construc-
tion of G′. Suppose that w has degree one in G′ \ W but is not dangling. Since
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both class and original vertices have degree at least n in G′, we cannot bring
them down to degree one without exceeding the fair cost limit n/3. This leaves
the only possibility that w is a selector and exactly one of its two neighbors is
in the deleted set W . By Claim 1, the deleted neighbor must have been a class
vertex so the only remaining neighbor of w in G′ \ W is an original vertex.

Claim 3: the formula original correctly recognizes original vertices: If v is orig-
inal, then at least one of its dangling neighbors is not in W , otherwise we would
exceed the fair cost. In this case the formula original(v) is true. The other
direction (original(v) is true implies v is original) is proved by Claim 2.

Claim 4: if v is a dangling vertex such that v /∈ W then dangling(v) is true: By
Claim 1, we cannot delete the only neighbor of v, which means v has exactly
one neighbor and so dangling(v) is true.

Claim 5: the formula class(v) is true if and only if v is a class vertex that was
not deleted: Suppose that v /∈ W is a class vertex. It cannot have neighbor of
degree one in G′\W , because that would mean that an original vertex was deleted
which violates Claim 1. This means that original(v) is false. Moreover, we cannot
decrease the degree of v to two or less by deleting at most n/3 neighbors of v,
so dangling(v) and selector(v) are false too. But then class(v) is true.

For the other direction suppose that v is not a class vertex. If it is original or
dangling, then original(v) or dangling(v) is true (by Claims 3 or 4) and hence
class(v) is false. If v is a selector then either none of its neighbors were deleted,
v has degree two in G′ \ W and selector(v) is true, or its class neighbor was
deleted, v has degree one in G′ \W and dangling(v) is true. Either way, class(v)
is false as required.

Claim 6: no class vertex was deleted: since valid deletion is true, we know that
for every original vertex v there is exactly one class vertex c such that there is
no path of length two between v and c (in other words, the selector vertex that
was on the unique path of length two between v and c was deleted). Suppose
for contradiction that one of the class vertices was deleted; then by Claim 5 we
have at most two class vertices. But the valid deletion formula implies that at
least n selector vertices were deleted. By pigeonhole principle, one of the class
vertices has at least n/2 deleted neighbors which means the fair cost is greater
than n/3, a contradiction.

The chain of claims we just proved guarantees that the deleted set W indeed
obeys the rules we required and corresponds to a partition (though we might have
deleted a small number of dangling vertices, this does not affect the partition in
any way). In order to meet the fair cost limit, each class of the partition must
have at most n/3 vertices and since no original vertex was deleted, it has exactly
n/3 vertices. Now it is easy to see that the formula eq 3 col forces that each class
of the partition is independent and so the graph G has an equitable 3-coloring.

Let us now discuss the parameters and the size of the Fair FO vertex-

deletion instance. If G has a feedback vertex set S of size k, then the union
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of S with the set of class vertices is a feedback vertex set of G′. Therefore,
fvs(G′) ≤ fvs(G) + 3. To bound the path-width, observe that after deletion of
the class vertices we are left with G with O(n2) added vertices of degree one;
the addition of degree one vertices to the original vertices can increase the path-
width by at most one and so we have pw(G′) ≤ pw(G) + 4. Moreover it is clear
that the size of instance is of size O(n2). It is obvious that the reduction can be
carried out in polynomial time. ��

Let us mention that if we are allowed to use MSO formulas, we are actually
able to reduce any equitable partition problem to fair vertex deletion. This allows
us to reduce for example Equitable connected partition to Fair MSO
vertex-deletion which in turn allows us to prove Theorem 3.

Equitable connected partition
Input: An undirected graph G, a positive integer r
Question: Is there a partition of V (G) into r sets such that each of them

induces a connected graph and the sizes of every two sets differ
by at most one?

Enciso et al. [8] showed that Equitable Connected Partition is W[1]-
hard for combined parameterization by fvs(G), pw(G), and the number of parti-
tions r. The part that f(k)no(

√
k) algorithm would refute ETH is again contained

only implicitly; the proof reduces an instance of Multicolored clique of
parameter k to an instance of Equitable connected partition of parameter
O(k2).

Our reduction can be easily adapted to r parts (we just add r class vertices
and we set the fair cost limit to n/r). We define the formula eq conn as follows.

class set(W ) ≡ (∃v ∈ W ) ∧ (∀v, w ∈ W )(same class(v, w))
∧ (∀w ∈ W, z /∈ W )(¬same class(w, z))

eq conn ≡ (∀W )(class set(W ) → connected(W ))

By the same argument as in the proof of Theorem 1, we can show that there
exists W ⊆ V of fair cost at most n/r such that G′ \ W |= eq conn if and only
if G admits an equitable connected partition.

Sketch of proof of Theorem 2. We do not present the complete proof, as the
critical parts are the same as in proof of Theorem 1. The reduction follows the
same idea as before: we add three class vertices and connect each class vertex
to each original vertex by an edge. This time, we do not subdivide the edges, as
the partition is encoded by deleting the edges.

The protection against tampering with the original graph has to be done in
slightly different way: in this case, we add n/3 + 1 dangling vertices of degree
one to each original vertex. Note that if we delete a set F ⊆ E(G) of fair cost
at most n/3, at least one of the added edges from every original vertex survives
the deletion, so we can recognize the original vertices by having at least one
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neighbor of degree one. In our formula, we require that each vertex has at most
two neighbors of degree one. This forces us to delete all of those added edges
except two. Since at least one edge from the original vertex must be deleted to
encode a partition, by deleting an edge of the original graph G we would exceed
the fair cost limit n/3.

For the edge-deletion the formula eq 3 col is built as follows.

dangling(v) ≡ (∃w)
(
adj(v, w) ∧ (∀w′)(adj(v, w′) → w = w′)

)

original(v) ≡ (∃w)(dangling(w) ∧ adj(v, w))
class(v) ≡ ¬orig(v) ∧ ¬dangling(v)

belongs to(v, a) ≡ original(v) ∧ class(a) ∧ ¬adj(v, a)
same class(v, w) ≡ original(v) ∧ original(w)

∧ (∃a)(class(a) ∧ belongs to(v, a) ∧ belongs to(w, a))
valid deletion ≡ (∀v)(∃≤2w)(adj(v, w) ∧ dangling(w))

∧ (∀v)
(
original(v) → (∃=1c)(belongs to(v, c))

)

eq 3 col ≡ valid deletion ∧ (∀v, w)(same class(v, w) → ¬adj(v, w))

The complete proof of correctness is omitted due to space considerations,
however, it is almost exactly the same as in the proof of Theorem 1. ��

The transition between the FO case and the MSO case of edge-deletion
(Theorem 4) is done in exactly the same way as before.

4 FPT Algorithms

We now turn our attention to FPT algorithms for fair deletion problems.

4.1 FPT Algorithm for Parameterization by Neighborhood
Diversity

Definition 5. Let G = (V,E) be a graph of neighborhood diversity k and let
N1, . . . , Nk denote its classes of neighborhood diversity. A shape of a set X ⊆ V
in G is a k-tuple s = (s1, . . . , sk), where si = |X ∩ Ni|.

We denote by s the complementary shape to s, which is defined as the shape
of V \ X, i.e. s = (|N1| − s1, . . . , |Nk| − sk).

Proposition 1. Let G = (V,E) be a graph, π a property of a set of vertices,
and let X,Y ⊆ V be two sets of the same shape in G. Then X satisfies π if and
only if Y satisfies π.

Proof. Clearly, we can construct an automorphism of G that maps X to Y . ��
Definition 6. Let r be a non-negative integer and let (s1, . . . , sk), (t1, . . . , tk)
be two shapes. The shapes are r-equivalent, if for every i:
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– si = ti, or
– both si, ti are strictly greater than r,

and the same condition hold for the complementary shapes s, t.

The following proposition gives a bound on the number of r-nonequivalent
shapes.

Proposition 2. For any graph G of neighborhood diversity k, the number of
r-nonequivalent shapes is at most (2r + 3)k.

Proof. We show that for every i, there are at most (2r + 3) choices of si. This
holds trivially if |Ni| ≤ 2r + 3. Otherwise we have following 2r + 3 choices:

– si = k and si > r for k = 0, 1, . . . , r, or
– both si, si > r, or
– si > r and si = k for k = 0, 1, . . . , r. ��

The next lemma states that the fair cost of a set can be computed from its
shape in a straightforward manner. Before we state it, let us introduce some
auxiliary notation.

If a graph G of neighborhood diversity k has classes of neighborhood diversity
N1, . . . , Nk, we write i ∼ j if the classes Ni and Nj are adjacent. If the class Ni

is a clique, we set i ∼ i. Moreover, we set ηi = 1 if the class Ni is a clique and
ηi = 0 if it is an independent set. The classes of size one are treated as cliques
for this purpose.

Lemma 1. Let G = (V,E) be a graph of neighborhood diversity k and let Ni be
its classes of neighborhood diversity. Moreover, let X ⊆ V be a set of shape s.
Then the fair vertex cost of X is

max
i

(( ∑

j:i∼j

sj

)
− ηi

)
.

Proof. It is straightforward to check that vertex v ∈ Ni has exactly
∑

j:i∼j sj−ηi
neighbors in X. ��

Our main tool is a reformulation of Lemma 5 from [14]:

Lemma 2. Let ψ be an MSO1 formula with one free vertex-set variable, qE
vertex element quantifiers, and qS vertex set quantifiers. Let r = 2qSqE. If G =
(V,E) is a graph of neighborhood diversity k and X,Y ⊆ V are two sets such
that their shapes are r-equivalent, then G |= ψ(X) if and only if G |= ψ(Y ).

The last result required is the MSO1 model checking for graphs of bounded
neighborhood diversity [14]:

Theorem 8. Let ψ be an MSO1 formula with one free vertex-set variable. There
exists an FPT algorithm that given a graph G = (V,E) of neighborhood diver-
sity k and a set X ⊆ V decides whether G |= ψ(X). The running time of the
algorithm is f(k, |ψ|)nO(1).
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We now have all the tools required to prove Theorem 5.

Proof (Proof of Theorem 5). Let ψ be an MSO1 formula in the input of Fair

MSO1 vertex-deletion. Denote by qS the number of vertex-set quantifiers in
ψ, by qE the number of vertex-element quantifiers in ψ, and set r = 2qSqE .

By Proposition 1, the validity of ψ(X) depends only on the shape of X. Let
us abuse notation slightly and write G |= ψ(s) when “X has shape s” implies
G |= ψ(X). Similarly, Lemma 1 allows us to refer to the fair cost of a shape s.

From Lemma 2 it follows that the validity of ψ(s) does not depend on the
choice of an r-equivalence class representative. The fair cost is not same for all
r-equivalent shapes, but since the fair cost is monotone in s, we can easily find
the representative of the minimal fair cost.

Suppose we have to decide if there is a set of a fair cost at most �. The
algorithm will proceed as follows: For each class of r-equivalent shapes, pick a
shape s of the minimal cost, if the fair cost is at most � and G |= ψ(s), output
true, if no such shape is found throughout the run, output false.

By the previous claims, the algorithm is correct. Let us turn our attention
to the running time. The number of shapes is at most (2r + 3)k by Proposi-
tion 2, and so it is bounded by f(|ψ|, k) for some function f . The MSO1 model
checking runs in time f ′(|ψ|, k)nO(1) by Theorem 8, so the total running time is
f(|ψ|, k)f ′(|ψ|, k)nO(1), so the described algorithm is in FPT. ��

4.2 FPT Algorithm for Parameterization by Vertex Cover

The FPT algorithm for parameterization by the size of minimum vertex cover
uses the same idea. We use the fact that every MSO2 formula can be translated
to MSO1 formula — roughly speaking, every edge-set variable is replaced by
vc (G) vertex-set variables.

We only sketch translation from MSO2 to MSO1, for the proof we refer
the reader to Lemma 6 in [14]. Let G = (V,E) be a graph with vertex cover
C = {v1, . . . , vk} and F ⊆ E a set of edges. We construct vertex sets U1, . . . , Uk

in the following way: if w is a vertex such that an edge in F connects w with
vi, we put w into Ui. It is easy to see that the sets U1, . . . , Uk together with the
vertex cover v1, . . . , vk describe the set F .

In this way, we reduce the problem of finding a set F to finding k-tuple of sets
(U1, . . . , Uk). We can define shapes and classes of r-equivalence in an analogous
way as we did in previous section. Since the number of r-equivalence classes
defined in this way is still bounded, we can use essentially the same algorithm:
for each class of r-equivalence, run a model checking on a representative of this
class. From those representatives that satisfy ψ, we choose the one with best fair
cost.

Due to the space limitation we omit more detailed treatment.

5 Open Problems

The main open problem is whether the bound in Theorems 1 and 2 can be
improved to f(|ψ|, k)no(k/ log k) or even to f(|ψ|, k)no(k).
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Abstract. Bergstra and Tucker [1,2] proved that computable univer-
sal algebras have finitely presented expansions. Bergstra and Tucker,
and Goncharov, independently, asked whether all finitely generated com-
putably enumerable algebras have finitely presented expansions. Khous-
sainov and Hirschfeldt [3] constructed finitely generated, infinite c.e.
semigroups without finitely presented expansions; furthermore, Khous-
sainov and Miasnikov [6] found such examples in class of groups and
algebras over finite fields. In this paper, we consider Turing degrees of
the word problem for semigroups constructed in [3] and for algebras over
finite fields constructed in [6], and prove that the word problem for such
semigroups and algebras appears in all nonzero c.e. degrees respectively.

Keywords: Computably enumerable universal algebra · Finitely
presented expansion · Word problem

1 Introduction

Given a signature σ = (f1, · · · , fn, c1, · · · , cm) with ki-ary function symbols fi,
1 ≤ i ≤ n and constant symbols cj , 1 ≤ j ≤ m, a universal algebra (or simply,
an algebra) for σ is a structure A = (A, fA

1 , · · · , fA
n , cA1 , · · · , cAm) with domain A,

ki-ary functions fA
i : Aki → A, and constants cAj ∈ A. An algebra is computable

if its domain and all its functions are computable. An example of computable
algebras is the term algebra. Here a term for a signature σ is defined by induction
as usual: all variables and constants are terms, and if ti, 1 ≤ i ≤ k, are terms
and f is a k-ary function symbol in σ, then f(t1, · · · , tk) is also a term.

Definition 1. A ground term of σ is a term containing no variables. We use
TG to denote the set of all ground terms of σ. Based on TG, we can define the
following interpretation: the interpretation of constant symbol is itself, and for a
k-ary function symbol f in σ, the interpretation of f is fTG , which is a function
on T k

G such that for any (t1, · · · , tk) ∈ T k
G, fTG(t1, · · · , tk) is the ground term

f(t1, · · · , tk). We denote this algebra by TG.
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For an algebra A = (A, fA
1 , · · · , fA

n , cA1 , · · · , cAm), and an equivalence relation
E on domain A, say that E is a congruence relation on A if each ki-ary function
fA

i : Aki → A satisfies the condition: for any (x1, · · · , xki
), (y1, · · · , yki

) ∈ Aki ,
if xj E yj for all 1 ≤ j ≤ ki, then fA

i (x1, · · · , xki
)EfA

i (y1, · · · , yki
), where the

symbol x E y means x and y are equivalent under relation E.
Let E be a congruence relation on an algebra A = (A, fA

1 , · · · , fA
n , cA1 , · · · ,

cAm), the set of all equivalence classes A/E of E can be turned into an algebra
A/E = (A/E, f

A/E
1 , · · · , f

A/E
n , c

A/E
1 , · · · , c

A/E
m ) such that for each i,

f
A/E
i ([x1], · · · , [xki

]) = [fA
i (x1, · · · , xki

)]

and for each j, c
A/E
j = [cAj ], where for x ∈ A, the symbol [x] stands for the

equivalence class of E containing x. We will call A/E the quotient algebra of A
modulo the congruence relation E.

Definition 2. An algebra is computably enumerable (c.e. for short) if it is the
quotient algebra A/E of a computable algebra A modulo a c.e. congruence rela-
tion E on A.

A finitely presented algebra A is given by a finite set G of generators (G is
the interpretations of all constants of the signature of A) and a finite set R
of relations among generators, then A is the quotient algebra of term algebra
modulo the congruence relation generated by R. Finitely presented algebras
are finitely generated and computably enumerable, but the converse is false, as
there are finitely generated and c.e. algebras which are not finitely presented,
for example, (ω, 0, S, 2x), where S is the successor function on ω, is generated by
0 but not finitely presented, note the expansion (ω, 0, S, 2x,+,×) by two binary
operations, the usual addition and multiplication on natural numbers, is finitely
presented.

A well known result of Bergstra and Tucker is that for any computable uni-
versal algebra, there is an expansion by signatures (that is, by adding finitely
many function symbols or constant symbols) which is finitely presented. After
proving this, Bergstra and Tucker, and Goncharov, independently, asked whether
we can extend this result to finitely generated c.e. universal algebras? A neg-
ative answer is first provided by Kasymov in 1987 [4], and Khoussainov also
gave a negative answer in 1998 [5] by an alternative approach. A recent work
of Hirschfeldt and Khoussainov [3] show the existence of finitely generated and
c.e. semigroups with no finitely presented expansions; furthermore, Khoussainov
and Miasnikov [6] proved the existence of finitely generated and c.e. groups and
algebras over finite fields having no finitely presented expansions.

For a c.e. algebra A/E of a finitely generated computable algebra A modulo
the c.e. congruence relation E, the word problem for A/E is the problem of
deciding whether any two elements in A are equal in A/E, so the word problem
for A/E is Turing equivalent to the c.e. congruence relation E.

In this paper, we will prove that the word problem for c.e. semigroups con-
structed by Hirschfeldt and Khoussainov in [3] occurs in each nonzero c.e. degree:
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Theorem 1. For each nonzero c.e. degree c, there is a finitely generated, c.e.
semigroup without any finitely presented expansions whose word problem has
degree c.

Khoussainov and Miasnikov [6] proved the existence of finitely generated c.e.
algebras over finite fields without finitely presented expansions. We will prove
that the word problem for such algebras exists in any nonzero c.e. degree.

Theorem 2. For each nonzero c.e. degree c, there is a finitely generated, c.e.
algebra over finite fields without any finitely presented expansions whose word
problem has degree c.

We will follow basic ideas of Hirschfeldt and Khoussainov [3] and Khoussainov
and Miasnikov [6]. The following properties are needed:

Definition 3. A c.e. algebra A/E is algorithmically finite if there is no infi-
nite c.e. sequence of mutually nonequivalent elements of A under relation E.
Otherwise, A/E is called effectively infinite.

Definition 4. A universal algebra A is residually finite if for any two different
elements a, b of A, there is a homomorphism ϕ (depending on a, b) from A onto
some finite algebra keeping ϕ(a) �= ϕ(b).

A crucial point of both constructions is the following sufficient condition for
a universal algebra with no finitely presented expansions:

Theorem 3 (NFP Theorem [6]). For a signature σ, let E be a c.e. congruence
relation on the term algebra TG. If the c.e. algebra TG/E is infinite, finitely
generated, algorithmically finite and residually finite, then TG/E has no finitely
presented expansions.

2 Semigroup SA and Basic Idea of Constructions

Consider the set S of all finite strings of 0’s and 1’s. It forms a semigroup
S = (S,� , 0, 1) under the usual concatenation �, and with two constants 0, 1.
We first define a computable linear order ≤S on domain S of S, and then deal
with permitting and coding constructions within S under ≤S . Let Si be the
set of all strings of length i in S for all i, and λ the empty string with length
|λ| = 0. We can assign a linear order ≤S on domain S of S according to the
length of strings as follows: on each Si, ≤S is the usual lexicographical linear
order with 0 <S 1; for each i, j with i < j, set maxSi <S minSj . For example,
λ <S 0 <S 1 <S 00 <S 01 <S 10 <S 11 <S 000. Assume S := {v0

0 <S v0
1 <S

· · · }. By definition, ≤S is a computable linear order on S such that |u| < |v|
implies u <S v for all u, v ∈ S, this property is important for our permitting
and coding constructions.

Let A be a subset of S, and define a congruence relation ηA on S as follows:

u ηA v ifu = v or u, v ∈ R(A),
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where R(A) := {u�
1 v�u2 : u1, u2 ∈ S, v ∈ A}, the realization set of A, the

elements in R(A) are just binary strings containing a substring in A. We often
write u�v as uv for convenience. It is easy to see that the equivalence classes of ηA

are R(A) and all singletons {x} with x /∈ R(A). Let SA be the quotient semigroup
S/ηA of S modulo the c.e. congruence relation ηA. As the word problem for SA

is Turing equivalent to ηA and ηA ≡T R(A), the word problem for SA is Turing
equivalent to R(A).

Definition 5. A c.e. subset A of S is simple if its complement is infinite and
contains no infinite c.e. subsets.

The desired semigroup in [3] is the quotient semigroup SA = S/ηA with A
satisfying:

• A is a simple set;
• for all e, A has at most e elements of length < e + 5.

if these requirements hold, SA is c.e., infinite and algorithmically finite, SA is
obvious finitely generated, according to Kasymov [4], SA is residually finite. By
above NFP Theorem, SA has no finitely presented expansions.

Let c be a nonzero c.e. degree, and D a c.e. subset of natural numbers in
c. Above linear order ≤S provides an effective bijection between S and natural
numbers in that the i-th element v0

i of S under ≤S maps to i for all i ∈ ω, let
δ : S → ω be the corresponding effective bijection. Choose C = δ−1(D) := {v ∈
S : δ(v) ∈ D}, then C is a c.e. subset of S and the degree of C is just c. We will
construct a semigroup of the form SA = S/ηA with R(A) ≡T C, then the word
problem for SA has degree c, this implies Theorem 1.

Theorem 4. For any noncomputable c.e. subset C of S, there is a simple set
A such that the word problem for semigroup SA = S/ηA has the same degree as
C and that SA satisfies all the conditions of NFP Theorem, and hence has no
finitely presented expansions.

2.1 Requirements

As the degree of the word problem for SA = S/ηA is the same as the degree of
R(A), we need to show that R(A) ≡T C. By R(A) ≤T A, we just need to show
that A ≤T C ≤T R(A). We adopt usual permitting strategy to ensure A ≤T C,
so we enumerate a string v into A only when some string u ≤S v is enumerated
into C; we adopt usual coding strategy to ensure C ≤T R(A), for each string v
and stage s, we will define a coding marker σ(v, s) which is an element in the
complement of R(As) at stage s, and if v is enumerated into C at stage s for
first time, we enumerate the coding marker σ(v, s) into As which is a subset of
R(As), recall R(As) is the set of all strings which have a substring in As.

The desired A will be constructed to meet following requirements. As in [3],
let {We : e ∈ ω} be an enumeration of all c.e. subsets of S.
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Q : C = ΣR(A), A = ΓC , with Σ, Γ total computable functionals built by us.
Pe : If We is infinite, then A ∩ We �= ∅.
Re : A has at most e elements of length less than e + 5.

If Q is satisfied, as A ≤T C ≤T R(A) ≤T A, we have R(A) ≡T C. If all the Re

requirements are satisfied, then the complement of R(A) is infinite, as A ⊆ R(A),
this also implies A, the complement of A, is infinite. If all the Pe requirements
are satisfied, then A contains no infinite c.e. subsets.

Recall S = {v0
0 <S v0

1 <S · · · }. Fix a computable enumeration {Cs}s∈ω

of C such that for each stage s, Cs ⊆ {v0
0 <S · · · <S v0

s} and |Cs+1 − Cs| ≤
1. There are two types of elements in A, one type is enumerated by positive
requirements {Pe}e∈ω and we say such elements are permitted elements as they
must be permitted by C, the other type is enumerated as coding markers to
make C = ΣR(A).

2.2 A Re-strategy

For each e, our construction will ensure at most e permitted elements of A with
length < 2e + 5, and those elements are only provided by requirements Pj with
j < e. We also want the number of coding markers of length < 2e + 5 in A is
bounded by a number g(e) with g(e) ≤ e for each e. Then for all e,

|{v ∈ A : |v| < 2e + 5}| ≤ e + g(e) ≤ 2e.

So all R2e hold. Function g is also properly chosen such that all R2e+1 hold, we
choose g(e) = e

2 , then g(e + 1) = e+1
2 ≤ e for all e ≥ 1, so R2e+1 holds for all

e ≥ 1, in fact,

|{v ∈ A : |v| < (2e + 1) + 5}| ≤ |{v ∈ A : |v| < 2(e + 1) + 5}|

≤ (e + 1) + g(e + 1) =
3(e + 1)

2
≤ 2e + 1.

During the construction, we will make |{v ∈ A : |v| < 2e + 5}| ≤ 3e
2 for all e.

Then R2e holds for all e and R2e+1 holds for all e ≥ 1, it is easy to check R1

also holds.

2.3 The Coding Strategy

At stage s, for v ∈ S with v ≤S v0
s , define ΣR(As)(v) = Cs(v) with use σ(v, s),

where σ(v, s) is the coding marker defined below, and ΣR(A)(v) = lim
s→∞ ΣR(As)(v)

with use σ(v) = lim
s→∞ σ(v, s). To maintain ΣR(A)(v) = C(v), we need to effec-

tively find a coding marker σ(v, s) from R(As), the complement of the realization
set R(As) of As, to put it into As+1 when v is first enumerated into C at stage
s + 1, and satisfying the overall requirement: the number of all coding markers
of length < 2e + 5 in A is ≤ e

2 .
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Before defining coding marker σ(v, s), we first define a computable bijection φ
from S to a set O containing exactly one element of each length and |φ(v)| ≥ |v|
for all v ∈ S as follows: for i ∈ ω, let oi = minSi, where Si is the set of binary
strings of length i, then o0 = λ and oi is the string with i many 0’s if i ≥ 1, the set
O = {oi : i ∈ ω} has exactly one element of length i, define φ : S → O; v0

i �→ oi,
recall S = {v0

0 <S v0
1 <S · · · }. We now start to define σ(v, s), notice that if

|σ(v, s)| ≥ 4|φ(v)| + 7, then the coding markers of length < 2e + 5 in A can only
be provided by those φ(v) with |φ(v)| < e−1

2 , moreover,

|{v ∈ S : |φ(v)| <
e − 1

2
}| ≤ e

2
.

So there are at most e
2 many strings in S whose coding markers are of length

< 2e + 5, and thus the number of all coding markers of length < 2e + 5 in A is
≤ e

2 . For each v and s, we choose σ(v, s) ∈ R(As) ∩ [ ∪
i≥4|φ(v)|+7

Si], and define

σ(v, s) := min(R(As) ∩ [ ∪
i≥4|φ(v)|+7

Si]), that is, σ(v, s) is the minimal element of

set R(As) ∩ [ ∪
i≥4|φ(v)|+7

Si], where minimal is taking under the linear order ≤S

on domain of S.
We now show how the functional ΣR(A) computes C. For v ∈ S, let v =

v0
s0

, then at stage s0, ΣR(As0 )(v) is first defined as Cs0(v) with use σ(v, s0).
Suppose at stage s ≥ s0, we have ΣR(As)(v) = Cs(v) with use σ(v, s), positive
requirements or coding requirements may enumerate elements ≤S σ(v, s) into A
at later stages to undefine ΣR(As)(v), say t > s is the least stage such that a
new x ≤S σ(v, s) is put into At, then ΣR(At)(v) is undefined after enumerating
x into At, and then ΣR(At)(v) is redefined as Ct(v) with use σ(v, t) ≥S σ(v, s)
at the end of stage t. If there is a stage t > s0 such that v ∈ Ct − Ct−1,
we have ΣR(At−1)(v) = Ct−1(v) = 0 with use σ(v, t − 1) at the end of stage
t − 1, then we enumerate the use σ(v, t − 1) into At to undefine ΣR(At)(v), and
then redefine ΣR(At)(v) = 1 with new use σ(v, t) >S σ(v, t − 1) at the end of
stage t. So for the definition of ΣR(A)(v), its approximation values {ΣR(As)(v) :
s ≥ s0} will change from 0 to 1 for at most once, and its final use will be
σ(v) = min(R(A) ∩ [ ∪

i≥4|φ(v)|+7
Si]), as we will ensure all Re requirements hold,

R(A) is infinite, then R(A) ∩ [ ∪
i≥4|φ(v)|+7

Si] is a nonempty subset of S, when the

least element in this set appears in R(As) at some stage s, this least element is
never enumerated into A as it is in R(A) which is a subset of the complement
of A, so σ(v, t) = σ(v, s) for all t ≥ s, and ΣR(A)(v) = Cs(v) = C(v) with use
σ(v, s).

2.4 A Pe-strategy with Permitting

At a stage s, for v ∈ S with v ≤S v0
s , define ΓCs(v) = As(v) with use v, and

ΓC(v) = lim
s→∞ ΓCs(v) with use v. The number of permitted elements of length

< 2e + 5 is at most e, so we only put elements with length ≥ 2e + 5 of We into
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A. For a subset B of S and an element v of S, the symbol B �v stands for the
set {u ∈ B : u ≤S v}.

To satisfy Pe, a Pe strategy proceeds with cycles: cycle k(k ∈ ω) proceed as
follows.

(1) Wait for a witness xk ∈ We,sk
at some stage sk satisfying xk /∈ Ask

, |xk| ≥
2e + 5 and xk >S xk−1.

(2) Open cycle k + 1. Wait for Cs+1 �xk
�= Cs �xk

at some stage s + 1.
(3) Now ΓCs+1(xk) is undefined, redefine ΓCs+1(xk) = 1 and put xk into As+1.

Close all other cycles.

For v ∈ S, let v = v0
s0

, ΓCs0 (v) is first defined as As0(v) with use v at stage
s0, and at stage s ≥ s0, the use of ΓCs(v) is always v to make sure ΓC(v)
totally defined. Assume we have ΓCs(v) = As(v), if t > s is the least stage
such that a new element ≤S v goes into Ct, then ΓCt(v) is undefined and we
redefine it as At(v) with same use v at the end of stage t. For s ≥ s0, on the one
hand, we enumerate v into As+1 for positive requirements only when ΓCs+1(v)
is undefined by Cs+1 �v �= Cs �v, that is, some new element v′ ≤S v goes into
C at stage s + 1, and then redefine ΓCs+1(v) = 1; on the other hand, v maybe
enumerated into As+1 as a coding element σ(u, s) for some u ∈ Cs+1 − Cs, as
our σ(u, s) is selected such that |u| < |φ(u)| < |σ(u, s)|, then u <S σ(u, s) = v,
we also have Cs+1 �v �= Cs �v, and ΓCs+1(v) is undefined, so we have a chance to
redefine ΓCs+1(v) = 1.

3 Construction

We say Pe requires attention at stage s if

(1) Pe-strategy has already opened cycle 0 at some previous stage te.
(2) There is a cycle k of a basic Pe-strategy which has already reached (2) at

some previous stage sk > te, that is, there is a witness xk ∈ We,sk
we found

at stage sk, under a basic Pe-strategy, cycle k + 1 is opened at stage sk and
we started to wait for Csk

�xk
to change; moreover, stage s is the least stage

larger than te such that there is a cycle of Pe-strategy arriving at (3), and
this cycle is cycle k.

We now state the construction of A.

Stage 0: Let A0 := ∅, A0 := S, and fix δ : S → ω; v0
i �→ i. Start P0-strategy:

open cycle 0 for requirement P0, that is, we start to wait for witness x0 at some
stage s0 satisfying x0 ∈ W0,s0 with x0 /∈ As0 and |x0| ≥ 5, and then proceed
according to a basic P0-strategy unless P0 is satisfied.

Assume at the end of stage s, we have set As, and for v with δ(v) ≤ s, we
have ΣR(As)(v) = Cs(v) with use σ(v, s) = min(R(As) ∩ [ ∪

i≥4|φ(v)|+7
Si]) and

ΓCs(v) = As(v) with use v. We say requirement Pe(e ≤ s) is satisfied at stage s
if We,s ∩ As �= ∅, otherwise, Pe is unsatisfied.
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Stage s + 1:

(i) Coding. If Cs+1(v) �= Cs(v), and δ(v) ≤ s, in order to change ΣR(As+1)(v),
we first put the use σ(v, s) into As+1 to undefine ΣR(As+1)(v). Let A′

s+1 =
As ∪ {σ(v, s)} if Cs+1(v) �= Cs(v), and A′

s+1 = As otherwise.
(ii) Permitting. For those unsatisfied Pe with e ≤ s at stage s, if We,s+1 ∩

A′
s+1 �= ∅, Pe is satisfied now, close all existed cycles of Pe-strategy. For

those unsatisfied Pe with e ≤ s at stage s and We,s+1 ∩A′
s+1 = ∅, there are

two cases:
(1) If there is a least e ≤ s such that Pe requires attention at stage s + 1,

assume cycle k is the first cycles of Pe-strategy reaching (3), we have
Csk

�xk
= Cs �xk

�= Cs+1 �xk
, where stage sk is the stage at which cycle

k reached (2) by finding witness xk, and we started to wait for Csk
�xk

to change. Now ΓCs+1(xk) is undefined, we enumerate xk into As+1 and
redefine ΓCs+1(xk) = 1 with use xk, Pe is satisfied now and close all
cycles for Pe. Now As+1 = A′

s+1∪{xk}, for each unsatisfied requirement
Pj with j ≤ s at stage s, if Wj,s+1 ∩ As+1 �= ∅, it is satisfied now, close
all its cycles if such cycles are still opened.

(2) Otherwise, no Pe requires attention at stage s+ 1 for e ≤ s, let As+1 =
A′

s+1. If there is a least j ≤ s + 1 such that Pj has no cycles opened,
and Pj is not satisfied so far, that is, Wj,s+1∩As+1 = ∅, then we start a
basic Pj-strategy by opening cycle 0: we first start to wait for witness x0

at some stage s0 such that x0 ∈ Wj,s0 with x0 /∈ As0 and |x0| ≥ 2j + 5,
and then proceed as in a basic Pj-strategy unless Pj is satisfied.

(iii) Defining Σ and Γ . For v with δ(v) ≤ s+1, let ΣR(As+1)(v) = Cs+1(v) with
use σ(v, s + 1) = min(R(As+1) ∩ [ ∪

i≥4|φ(v)|+7
Si]), and ΓCs+1(v) = As+1(v)

with use v.

This completes the stage s+1 of the construction and hence the construction
of A.

4 Verification

Lemma 1. For all e, (1) Re holds; (2) Pe holds.

Proof. (1) There are two types of elements in A, one is coding markers, the other
is permitted elements. The number of coding markers of length < 2e + 5 in A is
at most e

2 , and the number of permitted elements of length < 2e + 5 in A is at
most e, so |{v ∈ A : |v| < 2e + 5}| ≤ 3e

2 , this implies |{v ∈ A : |v| < e + 5}| ≤ e
according to Re-strategy.

(2) Suppose Pe fails, then We is infinite and A ∩ We = ∅, we will show C
is computable. Imagine how the construction looks like under Pe strategies: as
We is infinite, there are infinitely many witnesses of length ≥ 2e + 5 in We,
so infinitely many cycles are opened for Pe; each witness xk ∈ We,sk

in cycle
k arrives at (2) but never reaches (3), that is, for each stage t > sk, we have
Ct �xk

= Csk
�xk

, then for all k, C �xk
= Csk

�xk
. Now for a given v ∈ S, choose

such a stage sk with witness xk >S v, then C(v) = Csk
(v). �
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Lemma 2. C = ΣR(A).

Proof. For each v, as R(A) ∩ [ ∪
i≥4|φ(v)|+7

Si] �= ∅, there is a least stage s such

that σ(v) = min(R(A) ∩ [ ∪
i≥4|φ(v)|+7

Si]) = min(R(As) ∩ [ ∪
i≥4|φ(v)|+7

Si]) = σ(v, s),

then σ(v) = σ(v, t) for all t ≥ s. By σ(v) ∈ R(A) ⊆ A, Ct(v) = Cs(v) for all
t ≥ s, so ΣR(A)(v) = ΣR(As)(v) = Cs(v) = C(v) with use σ(v). �
Lemma 3. A = ΓC .

Proof. For v ∈ S, find the least stage s with C �v= Cs �v. Then A(v) = As(v),
in fact, if As(v) = 1, of course A(v) = 1; if As(v) = 0, on the one hand, v can
not be put into A by permitting strategies at later stages, on the other hand,
for all u ∈ Ct+1 − Ct with t ≥ s, σ(u, t) >S u ≥S v, then At(v) = 0 for all t ≥ s.
So A(v) = As(v) = ΓCs(v) = ΓC(v) with use v. �

As mentioned at the beginning of Sect. 2.1, R(A) ≤T A [to see whether τ is
in R(A) or not, we check whether there exists some substring τ ′ of τ in A, and
the reduction follows as τ has only finitely many substrings]. Thus, by Lemma
3, R(A) ≤T C. Together with Lemma 2, we have R(A) ≡T C. This completes
the proof of Theorem 4, and hence the proof of Theorem 1.

5 Basic Ideas of Proving Theorem 2

For a field K, an algebra A over K is a ring (A,+A, ·A, 0A, 1A) with identity 1A

together with a K-vector space structure under abelian group (A,+A, 0A) and a
scalar multiplication · such that · is compatible with the multiplication of rings,
that is, for all k ∈ K, a, b ∈ A, k · (a ·A b) = (a · k) ·A b = a ·A (k · b) = (a ·A b) · k.

Let F = K{x1, · · · , xm}, m ≥ 2, be the free algebra on {x1, · · · , xm}, where
K is a finite field, then F = ⊕

i∈ω
Fi, where Fi is the subspace of F generated by

words on {x1, · · · , xm} of length i. For each i, a nonzero polynomial in Fi is called
a homogeneous polynomial of degree i. A subset of F is called homogeneous if
any its nonzero polynomial is homogeneous. Note a set is homogeneous iff it is a
subset of ∪

i∈ω
Fi. An ideal (two-sided) of F is homogeneous if it is generated by

a homogeneous set.
As the field K is finite, we have the following Proposition 1 which is an

analogue of R(A) ≤T A in the proof of Theorem 1.

Proposition 1. Let H be a homogeneous set of F and (H) be the ideal generated
by H, then (H) ≤T H.

In this section, we provide some basic idea of constructing a computable
linear order ≤F on F such that for each i, max(Gi) <F min(Fi+1), where Gi =

⊕
0≤k≤i

Fk. This property is crucial for us to deal with permitting and coding in

our construction.
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We first partition F into a computable sequence of disjoint finite subsets
Q(i,j) with i ≤ j, and then build the order level by level under this partition.

For i ≤ j, define
G(i,j) := ⊕

i≤k≤j
Fk,

where Fk is the subspace of F generated by words on {x1, · · · , xm} of length
k, Q(i,j) will be a subset of G(i,j). As K is finite, G(i,j) is finite. So we can fix a
linear order ≤G(i,j) on G(i,j) first for each (i, j).

Now let
Q(i,i) := Fi;

and for i < j, let
Q(i,j) := G(i,j) − (G(i,j−1) ∪ G(i+1,j)).

Then F = ∪
i≤j

Q(i,j), and Q(i,j) ∩ Q(k,l) = ∅ if (i, j) �= (k, l), where (i, j) = (k, l)

means i = k and j = l.
Define an one to one map ϕ on {(i, j) : i ≤ j} by letting ϕ(0, 0) = 1, and for

i ≤ j,

ϕ(i, j) =
{

(t + 1)2 − i, if i + j = 2t;
(t + 1)2 + i + 1, if i + j = 2t + 1.

Then we can have an order of {Q(i,j) : i ≤ j}, where ϕ(i, j) is the location
number of Q(i,j) in this order. This provides an order ≤F on F : for f, g ∈ F ,
if f, g are in the same Q(i,j), then f ≤F g iff f ≤G(i,j) g; if f ∈ Q(i,j) and
g ∈ Q(i′,j′) with (i, j) �= (i′, j′), then f <F g iff ϕ(i, j) < ϕ(i′, j′). We can check
max(Gi) <F min(Fi+1) for each i by using

Gi ⊆ ∪
ϕ(i′,j′)<ϕ(i+1,i+1)

Q(i′,j′).

This completes the construction of wanted computable linear ordering ≤F .
The following form of Golod-Shafarevich Theorem for F is used in [6] to

build infinite dimensional algebras.

Theorem 5 (Golod-Shafarevich Theorem). If a homogeneous set B of F =
K{x1, · · · , xm} satisfies the condition: there is an ε with 0 < ε ≤ m

2 such that
for all i ≥ 2, the number di of homogeneous polynomials of degree i in B is less
than or equal to ε2(m − 2ε)i−2, then the quotient algebra F/(B) has an infinite
dimension, where (B) is the ideal generated by B.

If a homogeneous c.e. subset B of F satisfies the condition of Golod-
Shafarevich Theorem, and F/(B) is also algorithmically finite, then as in [6],
F/(B) satisfies all conditions in the NFP Theorem, and hence F/(B) has no
finitely presented expansions. As the word problem for F/(B) is Turing equiva-
lent to (B), the ideal generated by B, to prove Theorem 2, we just need to prove
that such (B) occurs in each nonzero c.e. degree, where a standard permitting
and coding argument will be used within F under above computable linear order
≤F , as we did in the proof of Theorem 1.
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Abstract. A 3-path vertex cover in a graph is a vertex subset C such
that every path of three vertices contains at least one vertex from C. The
parameterized 3-path vertex cover problem asks whether a graph has a
3-path vertex cover of size at most k. In this paper, we give a kernel of
5 k vertices and an O∗(1.7485k)-time algorithm for this problem, both
new results improve previous known bounds.

1 Introduction

A vertex subset C in a graph is called an �-path vertex cover if every path of
� vertices in the graph contains at least one vertex from C. The �-path vertex
cover problem, to find an �-path vertex cover of minimum size, has been studied
in the literature [5,6]. When � = 2, this problem becomes the famous vertex
cover problem and it has been well studied. In this paper we study the 3-path
vertex cover problem. A 3-path vertex cover is also known as a 1-degree-bounded
deletion set. The d-degree-bounded deletion problem [11,25,26] is to delete a
minimum number of vertices from a graph such that the remaining graph has
degree at most d. The 3-path vertex cover problem is exactly the 1-degree-
bounded deletion problem. Several applications of 3-path vertex covers have
been proposed in [6,16,27].

It is not hard to establish the NP-hardness of the 3-path vertex cover problem
by reduction from the vertex cover problem. In fact, it remains NP-hard even
in planar graphs [28] and in C4-free bipartite graphs with vertex degree at most
3 [4]. There are several graph classes, in which the problem can be solved in
polynomial time [2–4,6,7,14,15,18–20].

The 3-path vertex cover problem has been studied from approximation
algorithms, exact algorithms and parameterized algorithms. There is a ran-
domized approximation algorithm with an expected approximation ratio of
23
11 [16]. In terms of exact algorithms, Kardoš et al. [16] gave an O∗(1.5171n)-
time algorithm to compute a maximum dissociation set in an n-vertex graph.

This work is supported by National Natural Science Foundation of China, under the
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Chang et al. [8] gave an O∗(1.4658n)-time algorithm and the result was further
improved to O∗(1.3659n) later [27].

In parameterized complexity, this problem is fixed-parameter tractable by
taking the size k of the 3-path vertex cover as the parameter. The running
time bound of parameterized algorithm for this problem has been improved
at least three times during the last one year. Tu [22] showed that the prob-
lem can be solved in O∗(2k) time. Wu [24] improved the result to O∗(1.882k)
by using the measure-and-conquer method. Katrenič designed an O∗(1.8172k)-
time algorithm [17]. Very recently, Chang et. al. [29] gave an O∗(1.7964k)-time
polynomial-space algorithm and an O∗(1.7485k)-time exponential-space algo-
rithm. In this paper, we show that this problem can be solved in O∗(1.7485k)
time and polynomial space Another important issue in parameterized complex-
ity is kernelization. A kernelization algorithm is a polynomial-time algorithm
which, for an input graph with a parameter (G, k) either concludes that G has
no 3-path vertex cover of size k or returns an equivalent instance (G′, k′), called
a kernel, such that k′ ≤ k and the size of G′ is bounded by a function of k.
Kernelization for the d-degree-bounded deletion problem has been studied in
the literature [11,25]. For d = 1, Fellows et al.’s algorithm [11] implies a kernel
of 15 k vertices for the 3-path vertex cover problem, and Xiao’s algorithm [25]
implies a kernel of 13 k vertices. There is another closed related problem, called
the 3-path packing problem. In this problem, we are going to check if a graph has
a set of at least k vertex-disjoint 3-paths. When we discuss kernelization algo-
rithms, most structural properties of the 3-path vertex cover problem and the
3-path packing problem are similar. Several previous kernelization algorithms
for the 3-path packing problem are possible to be modified for the 3-path vertex
cover problem. The bound of the kernel size of the 3-path packing problem has
been improved for several times from the first bound of 15 k [21] to 7 k [23] and
then to 6 k [10]. Recently, there is a paper claiming a bound of 5 k vertices for the
3-path packing problem in net-free graphs [9]. Although the paper [9] provides
some useful ideas, the proof in it is incomplete and the algorithm may not stop.
Several techniques for the 3-path packing problem in [23] and [9] will be used in
our kernelization algorithm. We will give a kernel of 5 k vertices for the 3-path
vertex cover problem.

Omitted proofs in this extended abstract can be found in the full version of
this paper.

2 Preliminaries

We let G = (V,E) denote a simple and undirected graph with n = |V | vertices
and m = |E| edges. A singleton {v} may be simply denoted by v. The vertex set
and edge set of a graph G′ are denoted by V (G′) and E(G′), respectively. For a
subgraph (resp., a vertex subset) X, the subgraph induced by V (X) (resp., X)
is simply denoted by G[X], and G[V \ V (X)] (resp., G[V \ X]) is also written
as G \ X. A vertex in a subgraph or a vertex subset X is also called a X-vertex.
For a vertex subset X, let N(X) denote the set of open neighbors of X, i.e.,
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the vertices in V \ X adjacent to some vertex in X, and N [X] denote the set of
closed neighbors of X, i.e., N(X) ∪ X. The degree of a vertex v in a graph G,
denoted by d(v), is defined to be the number of vertices adjacent to v in G. Two
vertex-disjoint subgraphs X1 and X2 are adjacent if there is an edge with one
endpoint in X1 and the other in X2. The number of connected components in
a graph G is denoted by Comp(G) and the number of connected components of
size i in a graph G is denoted by Compi(G). Thus, Comp(G) =

∑
i Compi(G).

A 3-path, denoted by P3, is a simple path with three vertices and two edges.
A vertex subset C is called a 3-path vertex cover or a P3V C-set if there is no
3-path in G \ C. Given a graph G = (V,E), a P3-packing P = {L1, L2, ..., Lt}
of size t is a collection of vertex-disjoint P3 in G, i.e., each element Li ∈ P is a
3-path in G and V (Li1) ∩ V (Li2) = ∅ for any two different 3-paths Lii , Li2 ∈ P.
A P3-packing is maximal if it is not properly contained in any strictly larger
P3-packing in G. The set of vertices in 3-paths in P is denoted by V (P).

Let P be a P3-packing and A be a vertex set such that A ∩ V (P) = ∅ and A
induces a graph of maximum degree 1. We use Ai to denote the set of degree-i
vertices in the induced graph G[A] for i = 0, 1. A component of two vertices
in G[A] is called an A1-edge. For each Li ∈ P, we use A(Li) to denote the set
of A-vertices that are in the components of G[A] adjacent to Li. For a 3-path
Li ∈ P, the degree-2 vertex in it is called the middle vertex of it and the two
degree-1 vertices in it are call the ending vertices of it.

3 A Parameterized Algorithm

In this section we will design a parameterized algorithm for the 3-path ver-
tex cover problem. Our algorithm is a branch-and-reduce algorithm that runs
in O∗(1.7485k) time and polynomial space, improving all previous results. In
branch-and-reduce algorithms, the exponential part of the running time is deter-
mined by the branching operations in the algorithm. In a branching operation,
the algorithm solves the current instance I by solving several smaller instances.
We will use the parameter k as the measure of the instance and use T (k) to
denote the maximum size of the search tree generated by the algorithm running
on any instance with parameter at most k. A branching operation, which gener-
ates l small branches with measure decrease in the i-th branch being at least ci,
creates a recurrence relation T (k) ≤ T (k−c1)+T (k−c2)+· · ·+T (k−cl)+1. The
largest root of the function f(x) = 1 − ∑l

i=1 x−ci is called the branching factor
of the recurrence. Let γ be the maximum branching factor among all branch-
ing factors in the algorithm. The running time of the algorithm is bounded by
O∗(γk). More details about the analysis and how to solve recurrences can be
found in the monograph [13]. Next, we first introduce our branching rules and
then present our algorithm.

3.1 Branching Rules

We have four branching rules. The first branching rule is simple and easy to
observe.
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Branching rule (B1): Branch on a vertex v to generate |N [v]|+1 branches by
either

(i) deleting v from the graph, including it to the solution set, and decreasing
k by 1, or

(ii) deleting N [v] from the graph, including N(v) to the solution set, and
decreasing k by |N(v)|, or

(iii) for each neighbor u of v, deleting N [{u, v}] from the graph, including
N({u, v}) to the solution set, and decreasing k by |N({u, v})|.

A vertex v is dominated by a neighbor u of it if v is adjacent to all neighbors
of u. The following property of dominated vertices has been proved and used
in [27].

Lemma 1. Let v be a vertex dominated by u. If there is a minimum 3-path
vertex cover C not containing v, then there is a minimum 3-path vertex cover
C ′ of G such that v, u /∈ C ′ and N({u, v}) ⊆ C ′.

Based on this lemma, we design the following branching rule.

Branching rule (B2): Branch on a vertex v dominated by another vertex u to
generate two instances by either

(i) deleting v from the graph, including it to the solution set, and decreasing
k by 1, or

(ii) deleting N [{u, v}] from the graph, including N({u, v}) to the solution set,
and decreasing k by |N({u, v})| = |N(v)| − 1.

For a vertex v, a vertex s ∈ N2(v) is called a satellite of v if there is a
neighbor p of v such that N [p] − N [v] = {s}. The vertex p is also called the
parent of the satellite s at v.

Lemma 2. Let v be a vertex that is not dominated by any other vertex. If v
has a satellite, then there is a minimum 3-path vertex cover C such that either
v ∈ C or v, u �∈ C for a neighbor u of v.

Branching rule (B3): Let v be a vertex that has a satellite but is not dominated
by any other vertex. Branch on v to generate |N [v]| instances by either

(i) deleting v from the graph, including it to the solution set, and decreasing
k by 1, or

(ii) for each neighbor u of v, deleting N [{u, v}] from the graph, including
N({u, v}) to the solution set, and decreasing k by |N({u, v})|.
Lemma 3. Let v be a degree-3 vertex with a degree-1 neighbor u1 and two adja-
cent neighbors u2 and u3. There is a minimum 3-path vertex cover C such that
either C ∪ {u1, v} = ∅ or C ∪ {u1, u2, u3} = ∅.

Branching rule (B4): Let v be a degree-3 vertex with a degree-1 neighbor u1

and two adjacent neighbors u2 and u3. Branch on v to generate two instances by
either
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(i) deleting N [{u1, v}] from the graph, including {u2, u3} to the solution set,
and decreasing k by 2, or

(ii) deleting N [{u2, u3}] ∪ {u1} from the graph, including N({u2, u3}) to the
solution set, and decreasing k by |N({u2, u3})|.

3.2 The Algorithm

We will use P3VC(G, k) to denote our parameterized algorithm. The algorithm
contains 7 steps. When we execute one step, we assume that all previous steps
are not applicable anymore on the current graph. We will analyze each step after
describing it.

Step 1 (Trivial cases). If k ≤ 0 or the graph is an empty graph, then return
the result directly. If the graph has a component of maximum degree 2, find a
minimum 3-path vertex cover S of it directly, delete this component from the
graph, and decrease k by the size of S.

After Step 1, each component of the graph contains at least four vertices. A
degree-1 vertex v is called a tail if its neighbor u is a degree-2 vertex. Let v be a
tail, u be the degree-2 neighbor of v, and w be the other neighbor of u. We show
that there is a minimum 3-path vertex cover containing w but not containing
any of u and v. At most one of u and v is contained in any minimum 3-path
vertex cover C, otherwise C ∪ {w} \ {u, v} would be a smaller 3-path vertex
cover. If none of u and v is in a minimum 3-path vertex cover C, then w must be
in C to cover the 3-path uvw and then C is a claimed minimum 3-path vertex
cover. If exactly one of u and v is contained in a minimum 3-path vertex cover
C, then C ′ = C ∪ {w} \ {u, v} is a claimed minimum 3-path vertex cover.

Step 2 (Tails). If there is a degree-1 vertex v with a degree-2 neighbor u, then
return p3vc(G \ N [{v, u}], k − 1).

Step 3 (Dominated vertices of degree ≥ 3). If there is a vertex v of
degree ≥ 3 dominated by u, then branch on v with Rule (B2) to generate two
branches

p3vc(G \ {v}, k − 1) and p3vc(G \ N [{v, u}], k − |N({v, u})|).
Lemma 1 guarantees the correctness of this step. Note that |N({v, u})| = d(v)−1.
This step gives a recurrence

T (k) ≤ T (k − 1) + T (k − (d(v) − 1)) + 1, (1)

where d(v) ≥ 3. For the worst case that d(v) = 3, the branching factor of it is
1.6181.

A degree-1 vertex with a degree-1 neighbor will be handled in Step 1, a degree-1
vertexwith adegree-2neighborwill behandled inStep2, andadegree-1 vertexwith
a neighbor of degree ≥ 3 will be handled in Step 3. So after Step 3, the graph has
no vertex of degree ≤ 1. Next we consider degree≥ 4 vertices.
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Step 4 (Vertices of degree ≥ 4 with satellites). If there is a vertex v of
d(v) ≥ 4 having a satellite, then branch on v with Rule (B3) to generate d(v)+1
branches

p3vc(G\{v}, k−1) and p3vc(G\N [{v, u}], k−|N({v, u})|) for each u ∈ N(v).

The correctness of this step is guaranteed by lemma 2. Note that there is no
dominated vertex after Step 3. Each neighbor u of v is adjacent to at least one
vertex in N2(v) and then |N({v, u})| ≥ d(v).

This step gives a recurrence

T (k) ≤ T (k − 1) + d(v) · T (k − d(v)) + 1, (2)

where d(v) ≥ 4. For the worst case that d(v) = 4, the branching factor of it is
1.7485.

After Step 4, if there is still a vertex of degree ≥ 4, we use the following
branching rule. Note that now each neighbor u of v is adjacent to at least two
vertices in N2(v) and then |N({v, u})| ≥ d(v) + 1.

Step 5 (Normal vertices of degree ≥ 4). If there is a vertex v of d(v) ≥ 4,
then branch on v with Rule (B1) to generate d(v) + 2 branches

p3vc(G \ {v}, k − 1), p3vc(G \ N [v], k − |N(v)|)
and p3vc(G \ N [{v, u}], k − |N({v, u})|) for each u ∈ N(v).

Since |N({v, u})| ≥ d(v) + 1, this step gives a recurrence

T (k) ≤ T (k − 1) + T (k − d(v)) + d(v) · T (k − (d(v) + 1)) + 1, (3)

which d(v) ≥ 4. For the worst case that d(v) = 4, the branching factor of it is
1.6930.

After Step 5, the graph has only degree-2 and degree-3 vertices. We first
consider degree-2 vertices.

A path u0u1u2u3 of four vertices is called a chain if the first vertex u0 is of
degree ≥ 3 and the two middle vertices are of degree 2. Note that there is no
chain with u0 = u3 after Step 3. So when we discuss a chain we always assume
that u0 �= u3. A chain can be found in linear time if it exists. In a chain u0u1u2u3,
u2 is a satellite of u0 with a parent u1.

Step 6 (Chains). If there is a chain u0u1u2u3, then branch on u0 with
Rule (B3). In the branch where u0 is deleted and included to the solution set, u1

becomes a tail and we further handle the tail as we do in Step 2.
We get the following branches

p3vc(G \ N [{u1, u2}], k − 2)
and p3vc(G \ N [{u0, u}], k − |N({u0, u})|) for each u ∈ N(u0).



660 M. Xiao and S. Kou

Note that |N({u0, u})| ≥ d(u0) since there is no dominated vertex. We get a
recurrence

T (k) ≤ T (k − 2) + d(u0) · T (k − d(u0)) + 1,

where d(u0) ≥ 3. For the worst case that d(u0) = 3, the branching factor of it is
1.6717.

After Step 6, each degree-2 vertex must have two nonadjacent degree-3 ver-
tices. Note that no degree-2 is in a triangle if there is no dominated vertex.

Step 7 (Degree-2 vertices with a neighbor in a triangle). If there is a
degree-2 vertex v with N(v) = {u,w} such that a neighbor u of it is in a triangle
uu1u2, then branch on w with Rule (B1) and then in the branch w is deleted
and included in the solution set further branch on u with Rule (B4). We get the
following branches

p3vc(G \ N [{u, v}], k − |N({u, v})|),
p3vc(G \ N [{u1, u2}] ∪ {u,w}, k − |N({u1, u2}) ∪ {w}|), and

p3vc(G \ N [{w, u′}], k − |N({w, u′})|) for each u′ ∈ N(w).

There two neighbors u and w of v are degree-3 vertices. Since there is no
dominated vertex, for any edge v1v2 it holds |N({v1, v2})| ≥ min{d(v1), d(v2)}.
We know that |N({u, v})| ≥ d(u) = 3, |N({u1, u2}) ∪ {w}| ≥ |N({u1, u2})| ≥ 3
(since no degree-2 vertex is in a triangle) and |N({w, u′})| ≥ d(w) for each
u′ ∈ N(w). We get the following recurrence

T (k) ≤ T (k − 3) + T (k − 3) + 3 · T (k − 3) + 1.

The branching factor of it is 1.7100.
After Step 7, no degree-3 vertex in a triangle is adjacent to a degree-2 vertex.

Step 8 (Degree-2 vertices v with a degree-3 vertex in N2(v)). If there is
a degree-2 vertex v such that at least one of its neighbors u and w, say u, has a
degree-3 neighbor u1, then branch on u with Rule (B1) and in the branch where
u is deleted and included to the solution set, branch on w with Rule (B2). We
get the branches

p3vc(G \ {u, v, w}, k − 2), p3vc(G \ N [{w, v}], k − |N({w, v})|),
and p3vc(G \ N [{u, u′}], k − |N({u, u′})|) for each u′ ∈ N(u).

Note that d(u) = d(w) = 3. It holds |N({w, v})| ≥ d(w) = 3 and |N({u, u′})| ≥
d(u) = 3 for u′ ∈ N(u). Furthermore, we have that |N({u, u1})| ≥ 4 because u
and u1 are degree-3 vertices not in any triangle. We get the following recurrence

T (k) ≤ T (k − 2) + T (k − 3) + 2 · T (k − 3) + T (k − 4).

The branching factor of it is 1.7456.

Lemma 4. After Step 8, if the graph is not an empty graph, then each compo-
nent of the graph is either a 3-regular graph or a bipartite graph with one side
of degree-2 vertices and one side of degree-3 vertices.
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Lemma 5. Let G = (V1 ∪V2, E) be a bipartite graph such that all vertices in V1

are of degree 2 and all vertices in V2 are of degree 3. The set V1 is a minimum
3-path vertex cover of G.

Step 9 (Bipartite graphs). If the graph has a component H being a bipartite
graph with one side V1 of degree-2 vertices and one side V2 of degree-3 vertices,
then return p3vc(G \ H, k − |V1|).
Step 10 (3-regular graphs). If the graph is a 3-regular graph, pick up an
arbitrary vertex v and branch on it with Rule (B1).

Lemma 4 shows that the above steps cover all the cases, which implies the cor-
rectness of the algorithm. Note that all the branching operations except Step 10
in the algorithm have a branching factor at most 1.7485. We do not analyze the
branching factor for Step 10, because this step will not exponentially increase
the running time bound of our algorithm. Any proper subgraph of a connected
3-regular graph is not a 3-regular graph. For each connected component of a 3-
regular graph, Step 10 can be applied for at most one time and all other branch-
ing operations have a branching factor at most 1.7485. Thus each connected
component of a 3-regular graph can be solved in O∗(1.7485k) time. Before get-
ting a connected component of a 3-regular graph, the algorithm always branches
with branching factors of at most 1.7485. Therefore,

Theorem 1. The 3-path vertex cover problem can be solved in O∗(1.7485k) time
and polynomial space.

4 Kernelization

In this section, we show that the parameterized 3-path vertex cover problem
allows a kernel with at most 5k vertices.

4.1 Graph Decompositions

The kernelization algorithm is based on a vertex decomposition of the graph,
called good decomposition, which can be regarded as an extension of the crown
decomposition [1]. Based on a good decomposition we show that an optimal
solution to a special local part of the graph is contained in an optimal solution
to the whole graph. Thus, once we find a good decomposition, we may be able
to reduce the graph by adding some vertices to the solution set directly. We only
need to find good decompositions in polynomial time in graphs with a large size
to get problem kernels. Some previous rules to kernels for the parameterized 3-
path packing problem [10,12,23] are adopted here to find good decompositions
in an effective way.

Definition 1. A good decomposition of a graph G = (V,E) is a decomposition
(I, C,R) of the vertex set V such that
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1. the induced subgraph G[I] has maximum degree at most 1;
2. the induced subgraph G[I ∪ C] has a P3-packing of size |C|;
3. no vertex in I is adjacent to a vertex in R.

Lemma 6. A graph G that admits a good decomposition (I, C,R) has a P3-
vertex cover (resp., P3-packing) of size k if and only if G[R] has a P3-vertex
cover (resp., P3-packing) of size k − |C|.

Lemma 6 provides a way to reduce instances of the parameterized 3-path
vertex cover problem based on a good decomposition (I, C,R) of the graph:
deleting I ∪ C from the graph and adding C to the solution set. Here arise a
question: how to effectively find good decompositions? It is strongly related to
the quality of our kernelization algorithm. The kernel size will be smaller if we
can polynomially compute a good decomposition in a smaller graph. Recall that
we use Comp(G′) and Compi(G′) to denote the number of components and
number of components with i vertices in a graph G′, respectively. For a vertex
subset A that induces a graph of maximum degree at most 1 and j = {1, 2}, we
use Nj(A) ⊆ N(A) to denote the set of vertices in N(A) adjacent to at least one
component of size j in G[A], and N ′

2(A) ⊆ N2(A) be the set of vertices in N(A)
adjacent to at least one component of size 2 but no component of size 1 in G[A].
We will use the following lemma to find good decompositions, which was also
used in [9] to design kernel algorithms for the 3-path packing problem.

Lemma 7. Let A be a vertex subset of a graph G such that each connected
component of the induced graph G[A] has at most 2 vertices. If

Comp(G[A]) > 2|N(A)| − |N ′
2(A)|, (4)

then there is a good decomposition (I, C,R) of G such that ∅ �= I ⊆ A and
C ⊆ N(A). Furthermore, the good decomposition (I, C,R) together with a P3-
packing of size |C| in G[I ∪ C] can be computed in O(

√
nm) time.

By using Lemma 7, we can get a linear kernel for the parameterized 3-path
vertex cover problem quickly. We find an arbitrary maximal P3-packing S and let
A = V \V (S). We assume that S contains less than k 3-paths and then |V (S)| <
3k, otherwise the problem is solved directly. Note that |N(A)| ⊆ |V (S)|. If
|A| > 12k, then Comp(G[A]) ≥ |A|

2 > 6k > 2|V (S)| ≥ 2|N(A)| and we reduce
the instance by Lemma 7. So we can get a kernel of 15k vertices. This bound
can be improved by using a special case of Lemma 7.

For a vertex subset A such that G[A] has maximum degree at most 1. Let A0

be the set of degree-1 vertices in G[A]. Note that Comp(G[A0]) = Comp2(G[A])
and |N(A0)| = |N2(A0)| = |N2(A)|. By applying Lemma 7 on A0, we can get

Corollary 1. Let A be a vertex subset of a graph G such that each connected
component of the induced graph G[A] has at most 2 vertices. Let N2(A) ⊆ N(A)
be the set of vertices in N(A) adjacent to at least one vertex in a component of
size 2 in G[A]. If

Comp2(G[A]) > |N2(A)|, (5)
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then there is a good decomposition (I, C,R) of G such that ∅ �= I ⊆ A and
C ⊆ N(A). Furthermore, the good decomposition (I, C,R) together with a P3-
packing of size |C| in G[I ∪ C] can be computed in O(

√
nm) time.

Note that |A| = Comp1(G[A]) + 2 · Comp2(G[A]). If |A| > 9k, then Comp1
(G[A]) + 2 · Comp2(G[A]) = |A| > 9k > 3|V (S)| ≥ 3|N(A)| ≥ (2|N(A)| −
|N ′

2(A)|) + |N2(A)| and at least one of (4) and (5) holds. Then by using Lemma 7
and Corollary 1, we can get a kernel of size 9k + 3k = 12k. It is possible to bound
|N(A)| by k and then to get a kernel of size 3k + 3k = 6k. To further improve the
kernel size to 5 k, we need some sophisticated techniques and deep analyses on the
graph structure.

4.2 A 5 k Kernel

In this section, we use “crucial partitions” to find good partitions. A vertex
partition (A,B,Z) of a graph is called a crucial partition if it satisfies Basic
Conditions and Extended Conditions. Basic Conditions include the following
four items:

(B1) A induces a graph of degree at most 1;
(B2) B is the vertex set of a P3-packing P;
(B3) No vertex in A is adjacent to a vertex in Z;
(B4) |Z| ≤ 5 ·γ(G[Z]), where γ(G[Z]) is the size of a minimum P3V C-set in the

induced subgraph G[Z].

Before presenting the definition of Extended Conditions, we give some used
definitions. We use Pj to denote the collection of 3-paths in P having j vertices
adjacent to A-vertices (j = 0, 1, 2, 3). Then P = P0 ∪P1 ∪P2 ∪P3. We use P1 to
denote the collection of 3-paths L ∈ P such that |A(L)| = 1. We also partition
P1 \ P1 into two parts:
let PM ⊆ P1 \ P1 be the collection of 3-paths with the middle vertex adjacent
to some A-vertices;
let PL ⊆ P1 \ P1 be the collection of 3-paths Li such that |A(Li)| ≥ 2 and one
ending vertex of Li is adjacent to some A-vertices.

A vertex in a 3-path in P is free if it is not adjacent to any A-vertex. A
3-path in P0 is bad if it has at least two vertices adjacent to some free-vertex in
a 3-path in PL and good otherwise. A 3-path in PL is bad if it is adjacent to a
bad 3-path in P0 and good otherwise.

Extended Conditions include the following seven items:

(E1) For each 3-path Li ∈ P \ P1, at most one vertex in Li is adjacent to some
vertex in A, i.e., P \ P1 = P0 ∪ P1;

(E2) No 3-path in PM is adjacent to both of A0-vertices and A1-vertices;
(E3) No free-vertex in a 3-path in PL is adjacent to a free-vertex in another

3-path in PL;
(E4) No free-vertex in a 3-path in PL is adjacent to a free-vertex in a 3-path in

PM ;
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(E5) Each 3-path in P1 has at most one vertex adjacent to a free-vertex in a
3-path in PL;

(E6) If a 3-path in P0 has at least two vertices adjacent to some free-vertex in a
3-path in PL, then all those free-vertices are from one 3-path in PL, i.e., each
bad 3-path in P0 is adjacent to free-vertices in only one bad 3-path in PL;

(E7) No free-vertex in a 3-path in PL is adjacent to a vertex in Z.

Lemma 8. A crucial partition of the vertex set of any given graph can be found
in polynomial time.

After obtaining a crucial partition (A,B,Z), we use the following three reduc-
tion rules to reduce the graph. In fact, Extended Conditions are mainly used for
the third reduction rule and the analysis of the kernel size.

Refinement Rule 1. If the number of 3-paths in P is greater than k − |Z|/5,
halt and report it as a no-instance.

Note that each P3V C-set of the graph G must contain at least |Z|/5 vertices
in Z by Basic Condition (B4) and each P3V C-set must contain one vertex from
each 3-path in P. If the number of 3-paths in P is greater than k − |Z|/5, then
any P3V C-set of the graph has a size greater than k.

Refinement Rule 2. If Comp2(G[A]) > |N2(A)| (the condition in Corollary 1)
holds, then find a good decomposition by Corollary 1 and reduce the instance
based on the good decomposition.

Reduction Rule 2 is easy to observe. Next, we consider the last reduction
rule. Let B∗ be the set of free-vertices in good 3-paths in PL and let A∗ be
the set of A0-vertices adjacent to 3-paths in P1. Let A′ = A ∪ B∗ \ A∗. By the
definition of crucial decompositions, we can get that

Lemma 9. The set A′ still induces of a graph of maximum degree 1.

Proof. Vertices in B∗ are free-vertices and then any vertex in B∗ is not adjacent
to a vertex in A. Furthermore, no two free-vertices in B∗ from two different 3-
paths in PL are adjacent by Extended Condition (E3). Since A induces a graph
of maximum degree 1, we know that A∪B∗ induces a graph of maximum degree
1. The set A′ = A∪B∗ \A∗ is a subset of A∪B∗ and then A′ induces of a graph
of maximum degree 1. ��

Based on Lemma 9, we can apply the following reduction rule.

Refinement Rule 3. If Comp(G[A′]) > 2|N(A′)| − |N ′
2(A

′)| (the condition in
Lemma 6 on set A′) holds, then find a good decomposition by Lemma 6 and
reduce the instance based on the good decomposition.

Next, we assume that none of the three reduction rules can be applied and
prove that the graph has at most 5 k vertices.
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We consider a crucial partition (A,B,Z) of the graph. Let k1 be the number
of 3-paths in P. Since Reduction Rule 1 cannot be applied, we know that

k1 ≤ k − |Z|/5. (6)

Since Reduction Rule 2 and Reduction Rule 3 cannot be applied, we also have
the following two relations

Comp2(G[A]) ≤ |N2(A)|, (7)

and

Comp(G[A′]) ≤ 2|N(A′)| − |N ′
2(A

′)|. (8)

By Extended Condition (E1), we know that P = P0 ∪ P1 ∪ P1 = P0 ∪
PL ∪ PM ∪ P1. Let x1 and x2 be the numbers of good and bad 3-paths in PL,
respectively. Let yi (i = 0, 1) be the number of 3-paths in P0 with i vertices
adjacent to some free-vertex in a 3-path in PL, and y2 be the number of 3-paths
in P0 with at least two vertices adjacent to some free-vertex in a 3-path in PL,
i.e., the number of bad 3-paths in P0. Let z1 and z2 be the numbers of 3-paths
in PM adjacent to only A0-vertices and only A1-vertices, respectively. Let w1 be
the number of 3-paths in P1 adjacent to some free-vertex in a 3-path in PL and
w2 be the number of 3-paths in P1 not adjacent to any free-vertex in a 3-path
in PL. We get that

k1 = x1 + x2 + y0 + y1 + y2 + z1 + z2 + w1 + w2. (9)

By Extended Conditions (E1) and (E2), we know that

|N(A)2| ≤ x1 + x2 + z2. (10)

Extended Condition (E6) implies the number of bad 3-paths in PL is at most
the number of bad 3-paths in P0, i.e.,

x2 ≤ y2. (11)

Each 3-path in P1 is adjacent to only one A0-vertex. Since A∗ is the set of
A0-vertices adjacent to 3-paths in P1, we know that |A∗| is not greater than
w1 + w2, i.e., the number of 3-paths in P1. By the definition of A′, we know
that

Comp(G[A′]) ≥ Comp(G[A]) + x1 − (w1 + w2). (12)

Next, we consider |N(A′)| and |N ′
2(A

′)|. Note that each 3-path has at most
one vertex adjacent to vertices in A \ A∗ by Extended Condition (E1). This
property will also hold for the vertex set A′ = (A \ A∗) ∪ B∗. We prove the
following two relations

|N(A′)| ≤ x1 + x2 + y0 + y1 + z1 + z2 + w1, (13)
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and

|N ′
2(A

′)| ≥ y1 + z2 + w1. (14)

By Extended Conditions (E1) and (E3), we know that each 3-path in PL has at
most one vertex in N((A\A∗)∪B∗) = N(A′). By the definition of good 3-paths
in P0, we know that each good 3-path in P0 has no vertex adjacent to vertices
in A and has at most one vertex adjacent to vertices in B∗ (which will be in a
component of size 2 in G[A′]). There are exactly y1 vertices in good 3-paths in
P0 adjacent to vertices in B∗. No vertex in a bad 3-path in P0 is adjacent to a
vertex in A ∪ B∗ by the definitions of bad 3-paths and B∗. Each 3-path in PM

has at most one vertex adjacent to A′ by Extended Conditions (E1) and (E4).
Only z2 vertices in 3-paths in PM are adjacent to vertices in A′, all of which are
vertices of degree-1 in G[A′]. No vertex in a 3-path in P1 is adjacent to a vertex
in A \ A∗ ⊇ A′ by the definition of A∗. Furthermore, each 3-path in P1 has at
most one vertex adjacent to vertices in B∗ (which will be in a component of size
2 in G[A′]) by Extended Condition (E5) and there are exactly w1 vertices in
3-paths in P1 adjacent to vertices in B∗. No vertex in Z is adjacent to a vertex
in A ∪ B∗ by Basic Condition (B3) and Extended Condition (E7). Summing all
above up, we can get (13) and (14).

Relations (8), (12), (13) and (14) imply

Comp(G[A]) ≤ 2(x2 + y0 + z1 + w1) + x1 + y1 + z2 + w2. (15)

According to (7) and (10), we know that

Comp2(G[A]) ≤ x1 + x2 + z2. (16)

Note that |A| = Comp(G[A]) + Comp2(G[A]), we get

|A| = Comp(G[A]) + Comp2(G[A])
≤ 2(x1 + x2 + y0 + z1 + z2 + w1) + x2 + y1 + w2 by (15) and (16)
≤ 2(x1 + x2 + y0 + z1 + z2 + w1) + y2 + y1 + w2 by (11)
≤ 2k1 by (9).

Note that |B| = 3k1 and k1 ≤ k − |Z|/5 by (6). We get that

|V | = |A| + |B| + |Z|
≤ 5k1 + |Z| ≤ 5k.

Theorem 2. The parameterized 3-path vertex cover problem allows a kernel of
at most 5k vertices.
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Abstract. Given a graph that contains an invisible fugitive, the fast
searching problem is to find the fast search number, i.e., the minimum
number of searchers to capture the fugitive in the fast search model. In
this paper, we give a new lower bound on the fast search number. Using
the new lower bound, we prove an explicit formula for the fast search
number of the Cartesian product of an Eulerian graph and a path. We
also give formulas for the fast search number of variants of the Cartesian
product. We present an upper bound and a lower bound on the fast
search number of hypercubes, and extend the results to a broader class
of graphs including toroidal grids.

1 Introduction

Motivated by applied problems in the real world and theoretical issues in com-
puter science and mathematics, graph searching has become a hot topic. It has
many models, such as edge searching, node searching, mixed searching, fast
searching, etc. These models are basically defined by the class of graphs, the
actions of searchers and fugitives, visibility of fugitives, and conditions of cap-
tures [1,3,4,8,9].

Megiddo et al. [12] first introduced the edge search problem. In the edge
search model, there are three actions for searchers: placing a searcher on a vertex,
removing a searcher from a vertex and sliding a searcher along an edge from one
endpoint to the other. An edge is cleared if both of its endpoints are occupied
by searchers or cleared by a sliding action. Kirousis and Papadimitriou [10]
introduced the node search problem, in which there are two actions for searchers:
placing and removing. An edge uv becomes cleared if both u and v are guarded
by searchers. Bienstock and Seymour [2] introduced the mixed search problem,
which is a combination of the edge searching and node searching.

Throughout this paper, we only consider finite undirected graphs with no
loops or multiple edges. Let G = (V,E) be a graph with vertex set V and edge
set E. We also use V (G) and E(G) to denote the vertex set and edge set of G
respectively. We use uv to denote an edge with endpoints u and v. For a vertex
v ∈ V , the degree of v is the number of edges incident on v, denoted degG(v).
A leaf is a vertex that has degree one. A vertex is odd when its degree is odd.
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An odd graph is a graph with vertex degrees all odd. Similarly, a vertex is even
when its degree is even. Define Vodd(G) = {v ∈ V : v is odd}.

For a subset V ′ ⊆ V , we use G[V ′] to denote the subgraph induced by
V ′, which consists of all vertices of V ′ and all the edges between vertices in
V ′. We use G − V ′ to denote the induced subgraph G[V \ V ′]. For a subset
E′ ⊆ E, we use G − E′ to denote the subgraph (V,E \ E′). Let G1 = (V1, E1)
and G2 = (V2, E2) be two subgraphs of G. The union of two graphs G1 and
G2 is the graph G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). We use G1 + V2 to denote the
induced subgraph G[V1 ∪ V2] and we also use G1 + E2 to denote the subgraph
(V1 ∪ V (E2), E1 ∪ E2), where V (E2) is the vertex set of E2.

Given two graphs H1 and H2, the Cartesian product of H1 and H2, denoted by
H1�H2, is the graph whose vertex set is the Cartesian product V (H1)×V (H2) of
the two vertex sets V (H1) and V (H2), and in which two vertices (u, v), (u′, v′) ∈
V (H1) × V (H2) are adjacent in H1�H2 if and only if u = u′ and v is adjacent
to v′ in H2, or v = v′ and u is adjacent to u′ in H1.

A walk is a list v0, e1, v1, . . . , ek, vk of vertices and edges such that each edge
ei, 1 ≤ i ≤ k, has endpoints vi−1 and vi. A path is a walk in which every vertex
appears once, except that its first vertex might be the same as its last. We use
v0v1...vk to denote a path with ends v0 and vk. A cycle is a path in which its
first vertex is the same as its last vertex. We use v0v1...vkv0 to denote a cycle
with k + 1 vertices. We will also use Pn to denote a path with n vertices and
Cn to denote a cycle with n vertices, respectively. A trail is a walk that does
not contain the same edge twice. For a connected subgraph G′ with at least one
edge, an Eulerian trail of G′ is a trail that traverses every edge of G′ exactly
once. A circuit is a trail that begins and ends on the same vertex. An Eulerian
circuit is an Eulerian trail that begins and ends on the same vertex. A graph
is called Eulerian if it contains an Eulerian circuit that traverses all its edges.
We will use Bm to denote an Eulerian graph with m vertices. Note that we only
consider finite graphs with no loops or multiple edges. So an Eulerian circuit or
Eulerian subgraph contains at least three edges throughout this paper. A trail
cover of a graph G is a family of edge-disjoint trails in G that contain every edge
of G. The minimum number of such trails is called the trail cover number of G
and is denoted by τ(G).

Dyer et al. [7] introduced the fast search model, in which the fugitive hides
either on a vertex or along an edge. The fugitive can move at a high speed at any
moment from a vertex to another vertex along a path that contains no searchers.
We call an edge uv contaminated if uv may contain the fugitive. An edge uv
that does not contain the fugitive is called cleared. In the fast search model,
all edges are contaminated initially. One of the two actions can happen in each
step: placing a searcher on a vertex or sliding a searcher along a contaminated
edge from one endpoint to the other. An edge uv can be cleared in one of the
following two ways: if u is occupied by at least two searchers, one of them slides
along uv from u to v; or if u is occupied by only one searcher and uv is the
only contaminated edge incident on u, the searcher on u slides to v along uv.
Since searchers are allowed to slide only on contaminated edges, every edge can
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only be traversed exactly once. A fast search strategy of a graph is a sequence
of placing and sliding actions that clear all edges of the graph. The fast search
number of G, denoted by fs(G), is the smallest number of searchers needed to
capture the fugitive in G.

Stanley and Yang [13] gave a linear time algorithm for computing the fast
search number of Harlin graphs and their extensions. They also presented a
quadratic time algorithm for computing the fast search number of cubic graphs,
while the problem of finding the node search number of cubic graphs is NP-
complete [11]. Yang [14] proved that the problem of finding the fast search num-
ber of a graph is NP-complete; and it remains NP-complete for Eulerian graphs.
He also proved that the problem of determining whether the fast search number
of G is a half of the number of odd vertices in G is NP-complete; and it remains
NP-complete for planar graphs with maximum degree 4. Dereniowski et al. [6]
characterized graphs for which 2 or 3 searchers are sufficient in the fast search
model. They also proved an NP-completeness result.

This paper is organized as follows. In Sect. 2, we first consider the trail cover-
ing problem, and show its relations to the fast searching problem. We then give
a new lower bound on the fast search number. Using the new lower bound, we
give an explicit formula for the fast search number of the Cartesian product of
an Eulerian graph and a path. In Sect. 3, we investigate the fast search number
of hypercubes. We prove an upper bound and a lower bound respectively on the
fast search number of hypercubes. Section 4 concludes the paper with some open
problems.

2 Lower Bounds and Cartesian Products

In this section, we first give lower bounds on the fast search number. We then
apply the lower bounds to proving a formula for the fast search number of the
Cartesian product of an Eulerian graph and a path.

2.1 Lower Bounds

We first consider two lower bounds on fs(G).

Lemma 1 ([7]). For any connected graph G, fs(G) ≥ 1
2 |Vodd(G)|.

Lemma 2 ([13]). For any connected graph G with no leaves, fs(G) ≥
1
2 |Vodd(G)| + 2.

We now establish relations between a graph and its subgraph under some
constraints.

Lemma 3. Given a graph G, let W be a subset of V (G). If G′ is a graph obtained
from G by adding a pendant edge to each vertex in W , then fs(G) ≤ fs(G′).

Lemma 4. Given a graph G, let W be a subset of Vodd(G). If H is a graph
obtained from G by adding a pendant edge to every vertex in W , then fs(G) =
fs(H).



672 Y. Xue and B. Yang

The following lemma shows a relation between the trail cover number and
the number of odd vertices.

Lemma 5. Let G be a graph that contains at least one edge. Then τ(G) =
μ(G) + |Vodd(G)|/2, where μ(G) is the number of connected components in G
that are Eulerian.

Proof. If Vodd(G) = ∅, then each connected component of G is Eulerian. Thus
τ(G) = μ(G). Suppose that Vodd(G) �= ∅. Let G′ be a graph obtained from G by
deleting all connected components of G that are Eulerian. Note that the number
of odd vertices in a graph is even. Since each odd vertex must be an end vertex
of a trail in any trail cover of G′, we know that τ(G′) ≥ |Vodd(G′)|/2.

We now show that there is a trail cover of G′ whose cardinality is at most
|Vodd(G′)|/2. Let a and b be any two odd vertices in a connected component
of G′ and let P be a trail between them. After deleting all edges of P from
G′, the remaining graph G′ − E(P ) has two less odd vertices than G′, that is,
Vodd(G′ − E(P )) = Vodd(G′) \ {a, b}. We repeat this process until the remaining
graph H contains no odd vertices. Thus H is a graph with vertex degrees all
even. Let S be the set of all trails deleted from G′ and H ′ be the graph obtained
from H by deleting all isolated vertices from H. For each connected component
H ′′ in H ′, it must have a vertex that is contained in some trail of S, say P . Since
H ′′ is Eulerian, we can merge H ′′ and P into a new trail P ′, and replace P of
S by P ′. In this way, every edge of G′ is contained in a trail of S. Thus S is a
trail cover of G′ whose cardinality is |Vodd(G′)|/2. Hence τ(G′) ≤ |Vodd(G′)|/2.
Therefore, we have

τ(G) = μ(G) + τ(G′) = μ(G) + |Vodd(G′)|/2 = μ(G) + |Vodd(G)|/2.

Theorem 1. Let G be a connected graph and H be a graph obtained from G by
adding two pendant edges on each vertex of G. If G has at least one odd vertex,
then fs(H) = τ(H) = |V (G)| + τ(G); otherwise, fs(H) = τ(H) = |V (G)|.
Corollary 1. Let G be a connected graph that contains at least one edge and P
be a path that contains at least two edges. Then fs(G�P ) ≤ |V (G)| + τ(G)|P |.

A subset E′ of the edge set of a connected graph G is an edge cut of G, if
G − E′ is disconnected. We now use an edge cut to give a lower bound on the
fast search number.

Theorem 2. Let G be a connected graph and Eχ be an edge cut of G such
that the graph G − Eχ consists of two connected components G1 and G2. If
each edge of Eχ connects a vertex of V (G1) to a vertex of V (G2), then fs(G) ≥
fs(G1 + Eχ) + fs(G2 + Eχ) − |Eχ|.
Proof. Let S be an optimal fast search strategy of G. We first consider the graph
G1+Eχ. We modify S to obtain a fast search strategy S1 that can clear G1+Eχ

in the following way: We first delete all actions from S that are related only to
G2, i.e., “placing a searcher on a vertex of G2” or “sliding a searcher along an
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edge of G2”; for each edge v1v2 of Eχ with v1 ∈ V (G1) and v2 ∈ V (G2), if it is
cleared by the action of “sliding a searcher from v2 to v1” in S, then immediately
before this sliding action, we insert a new placing action, i.e., “placing a searcher
on v2”. Let m1 be the total number of new placing actions added to S1.

We now show how to use S1 to clear G1+Eχ. Considering an edge v1v2 ∈ Eχ

with v1 ∈ V (G1) and v2 ∈ V (G2), if it is cleared by sliding a searcher from v2
to v1 in S, since we have inserted the action of placing a searcher on v2 in S1,
then the searcher can be used to clear v1v2 by sliding from v2 to v1. Further, in
S1, since we keep all sliding actions of S on edges of G1 +Eχ, we know G1 +Eχ

can be cleared in the same way as in S. Therefore, S1 can clear G1 + Eχ.
Similarly, we can also modify the fast search strategy S to obtain a fast search

strategy S2 that can clear G2 + Eχ. Let m2 be the total number of new placing
actions added to S2.

From the above, we know that the total number of searchers used to clear
G1 + Eχ and G2 + Eχ is fs(G) + m1 + m2. Thus, fs(G1 + Eχ) + fs(G2 + Eχ) ≤
fs(G) + m1 + m2. It is easy to see that m1 is the number of edges in Eχ that
are cleared by sliding actions in S from G2 to G1, and m2 is the number of
edges in Eχ that are cleared by sliding actions in S from G1 to G2. Since every
edge of Eχ can be traversed exactly once, we have |Eχ| = m1 + m2. Therefore,
fs(G1 + Eχ) + fs(G2 + Eχ) ≤ fs(G) + |Eχ|.

2.2 Cartesian Products of Eulerian Graphs and Paths

Recall that Bm is an Eulerian graph with m ≥ 3 vertices and Pn is a path with
n vertices. We will use Gm×n to denote Bm�Pn. Let vi,j denote a vertex of
Gm×n, which corresponds to the vertex vi on Bm and the vertex vj on Pn. So
we use Bj

m, 1 ≤ j ≤ n, to denote the Eulerian graph in Gm×n with vertex set
{v1,j , v2,j , . . . , vm,j} (the j-th copy of Bm). Similarly, we use P i

n, 1 ≤ i ≤ m, to
denote the path in Gm×n with vertex set {vi,1, vi,2, . . . , vi,n} (the i-th copy of
Pn). We first give an upper bound on fs(Gm×n).

Lemma 6. For m ≥ 3 and n ≥ 2, fs(Gm×n) ≤ m + n.

Proof. Here is a fast search strategy that clears all edges of Gm×n using m + n
searchers.

1. Place a searcher λi on each vertex vi,1 ∈ V (Gm×n), 1 ≤ i ≤ m, and place a
searcher γj on each vertex v1,j ∈ V (Gm×n), 1 ≤ j ≤ n.

2. Slide γ1 along the Eulerian circuit of B1
m to clear all its edges. Let j = 1.

3. Slide each λi to Bj+1
m , 1 ≤ i ≤ m, and then slide γj+1 along the Eulerian

circuit of Bj+1
m to clear all its edges. If j + 1 = n, then stop; otherwise,

j ← j + 1 and repeat step 3.

Since the above fast search strategy has m+n placing actions, we know that
fs(Gm×n) ≤ m + n.

Lemma 7. For m ≥ 3, fs(Gm×2) = m + 2.
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In order to obtain a lower bound for fs(Gm×3), we need to consider a graph
obtained from Gm×n by adding a pendant edge to every vertex of Bn

m (see Figs. 1
and 2). This new graph is denoted by G′

m×n. Since G′
m×1 has 2m odd vertices,

it follows from Lemma 1 that fs(G′
m×1) ≥ m. In Lemma 9, we will give a fast

search strategy for G′
m×1 that uses m searchers. Before that, we need a structure

property of the Eulerian subgraph in G′
m×1, which is described in Lemma 8.

Fig. 1. An instance
of G′

6×3.
Fig. 2. An instance of G′

6×1. Fig. 3. An instance of G′′
6×2.

Let B be an Eulerian graph and a be a vertex of B. Let d = degB(a)/2. We
repeat the following process d times until the degree of a is dropped to 0: select a
cycle containing a, which has the shortest length among all the cycles containing
a, and then remove all the edges of the cycle from B. Let C1

a , C2
a , . . . , Cd

a be the
cycles selected in each iteration. The cycle Cd

a has the following property.

Lemma 8. Let a be a vertex of an Eulerian graph B. Let C1
a , C2

a , . . . , Cd
a be the

cycles described above. Then Cd
a contains two neighbors of the vertex a which

are not contained in any Cj
a, j < d.

From Lemma 8, we can prove the following results.

Lemma 9. fs(G′
m×1) = m.

Proof. It follows from Lemma 1 that fs(G′
m×1) ≥ m. So we only need to describe

a fast search strategy that uses m searchers to clear G′
m×1. Let B be the Eulerian

graph obtained from G′
m×1 by deleting all its leaves. Let a be a vertex that

has the minimum degree among all vertices of B, and let d = degB(a)/2. Let
u ∈ V (B) be a neighbor of a and C1

a , C2
a , . . . , Cd

a be the cycles in Lemma 8 such
that u ∈ V (Cd

a) and u �∈ V (Cj
a) for j < d. If d ≥ 2, then let Hu be a connected

component that contains u after all edges of ∪1≤i≤d−1E(Ci
a) are deleted from

B, and let Hu be a subgraph of B obtained from B by deleting all edges of Hu

from B. Note that both Hu and Hu are Eulerian, and E(Hu) and E(Hu) form a
partition of E(B). If d = 1, then let Hu = B. Now we give a fast search strategy
for G′

m×1 that uses m searchers.
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1. Place a searcher on every leaf of G′
m×1, except the leaf neighbor of u; then

slide these searchers to their non-leaf neighbors. Place another searcher on a.
If Hu = B, go to Step 3.

2. Note that Hu is an Eulerian subgraph, in which a is occupied by two searchers
and each other vertex is occupied by one searcher. Slide one of the two
searchers on a from a to itself along all edges of Hu.

3. Note that Hu is an Eulerian subgraph with degHu
(a) = 2, in which a is

occupied by two searchers, u is not occupied, and each other vertex is occupied
by one searcher. Slide one of the two searchers on a from a to u along the
edge au, and slide the other searcher from a to u along all edges of Hu except
the edge au. After Hu is cleared, slide one searcher from u to its leaf neighbor
on G′

m×1.

Since only m searchers are placed on G′
m×1 in Step 1, the above strategy

clears G′
m×1 using m searchers.

Lemma 10. Each optimal fast search strategy of G′
m×1 has the following prop-

erties: (1) the first cleared edge is cleared by sliding a searcher from a leaf to
its neighbor; and (2) the last cleared edge is cleared by sliding a searcher from a
non-leaf vertex to its leaf neighbor.

From Theorem 2, Lemmas 4, 7, 9 and 10, we can prove the following result.

Lemma 11. For m ≥ 3, fs(G′
m×3) = m + 3.

Proof. Recall that G′
m×3 is a graph obtained from Bm�P3 by adding a pendant

edge to every vertex of B3
m (see Fig. 1). Let G′

m×1 be the subgraph of G′
m×3 which

contains B1
m (see Fig. 2) and G′′

m×2 be the subgraph of G′
m×3 after deleting all

edges on B1
m (see Fig. 3). Recall that Bj

m, 1 ≤ j ≤ 3, is an Eulerian graph with
vertex set {v1,j , v2,j , . . . , vm,j}. For convenience, we will use vi,4, 1 ≤ i ≤ m, to
denote the leaf neighbor of vertex vi,3.

Note that G′′
m×2 is the graph obtained from Gm×2 by adding a pendant

edge to every odd vertex of Gm×2. From Lemmas 4 and 7, we have fs(G′′
m×2) =

fs(Gm×2) = m+2. So it follows from Theorem 2 and Lemma 9 that fs(G′
m×3) ≥

fs(G′′
m×2) + fs(G′

m×1) − m = m + 2.
For the sake of contradiction, we assume that fs(G′

m×3) = m + 2. Then let
SG′

m×3
be an optimal fast search strategy of G′

m×3 that uses m + 2 searchers.
Note that all placing actions in SG′

m×3
take place before all sliding actions. So

each odd vertex of G′
m×3 contains at least one searcher either before the first

sliding action or at the end of SG′
m×3

. Thus, Vodd(G′
m×3) should contain at least

m searchers at the beginning or at the end. If Vodd(G′
m×3) contains at least m

searchers at the end of SG′
m×3

, then, using the method in the proof of Theorem
4.4 in [13], we can reverse the strategy SG′

m×3
so that Vodd(G′

m×3) contains
at least m searchers initially. So we can assume that Vodd(G′

m×3) contains m
searchers before the first sliding action in SG′

m×3
.

Note that the edge set {vi,1vi,2 | 1 ≤ i ≤ m} is an edge cut of G′
m×3. We can

modify the strategy SG′
m×3

, using the method described in the first paragraph of
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the proof of Theorem 2, to obtain two separate fast search strategies SG′
m×1

and
SG′′

m×2
for G′

m×1 and G′′
m×2, respectively. Since {vi,1vi,2 | 1 ≤ i ≤ m} contains m

edges, we need to add m additional placing actions to obtain SG′
m×1

and SG′′
m×2

.
Totally, 2m + 2 searchers are used in SG′

m×1
and SG′′

m×2
. Because fs(G′

m×1) = m

and fs(G′′
m×2) = m + 2, we know SG′

m×1
uses at least m searchers and SG′′

m×2

uses at least m + 2 searchers. Therefore, SG′
m×1

uses exactly m searchers and
SG′′

m×2
uses exactly m + 2 searchers, which also means that SG′

m×1
and SG′′

m×2

are both optimal. We can assume that all placing actions in SG′
m×1

and SG′′
m×2

are carried out before all sliding actions.
From Lemma 10, the optimal fast search strategy SG′

m×1
must have the fol-

lowing properties: The first cleared edge of G′
m×1 must be cleared by sliding a

searcher from a leaf, say vi1,2, to its neighbor vi1,1; and the last cleared edge of
G′

m×1 must be cleared by sliding a searcher from a non-leaf vertex, say vi2,1, to
its leaf neighbor vi2,2.

Since G′
m×1 and G′′

m×2 share each edge vi,1vi,2, 1 ≤ i ≤ m, we know SG′
m×1

and SG′′
m×2

must share the sliding action on each edge vi,1vi,2, 1 ≤ i ≤ m. Thus
SG′′

m×2
must satisfy the following conditions: The first cleared edge in the set

{vi,1vi,2 | 1 ≤ i ≤ m} must be cleared by sliding a searcher from vi1,2 to vi1,1;
and the last cleared edge in the set {vi,1vi,2 | 1 ≤ i ≤ m} must be cleared by
sliding a searcher from vi2,1 to vi2,2.

From the assumption for SG′
m×3

, we know that Vodd(G′′
m×2) contains at least

m searchers before the first sliding action in SG′′
m×2

. Thus, B2
m and B3

m contain
at most two searchers before the first sliding action of SG′′

m×2
. Moreover, B2

m

should contain at least one searcher before the first sliding action of SG′′
m×2

.
This is because the first cleared edge in the set {vi,1vi,2 | 1 ≤ i ≤ m} is cleared
by sliding a searcher from vi1,2 to vi1,1. If B2

m does not contain any searcher
before the first sliding action, then we know no searcher can slide from vi1,2 to
vi1,1. Suppose that B2

m contains two searchers before the first sliding action of
SG′′

m×2
. One of the following two cases must happen.

Case 1. There are two vertices of B2
m, each of which contains one searcher

before the first sliding action of SG′′
m×2

. It is easy to see that the two searchers
cannot move until another searcher slides to them. We also know that each
searcher placed on vj,1, 1 ≤ j ≤ m, cannot move until a searcher slides from
vi1,2 to vi1,1. Searchers that are placed on a subset of {vj,4 | 1 ≤ j ≤ m} can slide
to B3

m. However, they would be stuck on B3
m since B3

m contains no searchers.
Thus, no edges between B2

m and B3
m can be cleared, which is a contradiction.

Case 2. There is a vertex vk,2, 1 ≤ k ≤ m, of B2
m that contains two searchers

before the first sliding action of SG′′
m×2

. Then we have three subcases.
Case 2.1. The first cleared edge incident on vk,2 is cleared by sliding one

of the two searchers from vk,2 to vk,1 (in this case, k = i1). After this action,
the other searcher contained in vk,2 cannot move until another searcher slides to
vk,2. Further, since all the vertices of B2

m and B3
m except vk,2 contain no searcher

initially, we know searchers sliding from vi,1 to vi,2, 1 ≤ i ≤ m, or from vj,4 to
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vj,3, 1 ≤ j ≤ m, are stuck on B2
m or B3

m respectively. Thus, no edges between
B2

m and B3
m can be cleared. This is a contradiction.

Case 2.2. The first cleared edge incident on vk,2 is cleared by sliding one of the
two searchers from vk,2 to vk,3. After this action, the other searcher contained in
vk,2 cannot move until another searcher slides to vk,2. If a searcher slides from
vj,3 to vj,2, 1 ≤ j ≤ m and j �= k, then we know the searcher must be stuck on
vj,2 since then. Note that the first cleared edge between B2

m and B1
m is cleared

by sliding a searcher from vi1,2 to vi1,1. But no searcher can slide from vi1,2 to
vi1,1. This is a contradiction.

Case 2.3. The first cleared edge incident on vk,2 is cleared by sliding one of the
two searchers from vk,2 to vk′,2, which is a neighbor of vk,2 on B2

m. Similar to Case
1, no edges between B2

m and B3
m can be cleared, which brings a contradiction.

Therefore, B2
m must contain exactly one searcher before the first sliding

action of SG′′
m×2

. Further, B3
m also contains exactly one searcher before the first

sliding action of SG′′
m×2

; otherwise, no searcher can slide from B3
m to B2

m. Note
that the remaining m searchers are placed on m odd vertices of G′′

m×2 respec-
tively. Since each leaf contains at most one searcher all the time in an optimal
strategy, we know these m searchers are placed on m distinct odd vertices of
G′′

m×2.
Before the first sliding action of SG′′

m×2
, let v�1,2 be a vertex of B2

m that
contains a searcher, and let v�2,3 be a vertex of B3

m that contains a searcher.
Since deg(v�1,2) = deg(v�2,3) = 4, both v�1,2 and v�2,3 will be occupied by at
least one searcher throughout SG′′

m×2
. Note that all other m searchers will stop

on the m leaves of G′′
m×2, on which no searchers are placed before the first sliding

action of SG′′
m×2

. Hence, at the end of SG′′
m×2

, B2
m contains exactly one searcher

that occupies v�1,2, and B3
m contains exactly one searcher that occupies v�2,3.

If no searcher slides from v�1,3 to v�1,2, then searchers sliding from B3
m to B2

m

would be stuck on B2
m and no searcher can clear the edge vi1,2vi1,1. Thus the edge

v�1,2v�1,3 is cleared by sliding a searcher from v�1,3 to v�1,2. Similarly, the edge
v�2,3v�2,4 is cleared by sliding a searcher from v�2,4 to v�2,3; otherwise, searchers
sliding from a subset of {vj,4 | 1 ≤ j ≤ m} to B3

m would be stuck on B3
m.

Let t denote the moment just after the last contaminated edge, i.e., vi2,1vi2,2,
in {vi,1vi,2 | 1 ≤ i ≤ m} is cleared. Since the edge vi2,1vi2,2 is cleared by sliding
a searcher from vi2,1 to vi2,2, we know that at the moment t, vi2,2 should contain
at least one searcher.

If all edges between B2
m and B3

m are cleared at the moment t, B2
m would

contain at least two searchers at the end because v�1,2 always contains a searcher
throughout SG′′

m×2
. This is a contradiction. If there are edges between B2

m and
B3

m that are not cleared at the moment t, we have two cases.
Case 1. All edges of B2

m are cleared at t. Then vi2,2 contains two searchers
at t. We have two subcases:

Case 1.1. i2 = �1. Because the edge v�1,2v�1,3 is cleared by sliding a searcher
from v�1,3 to v�1,2, the searchers contained in vi2,2 cannot slide to B3

m along
vi2,2vi2,3. Since all edges of B2

m are cleared, we know vi2,2 would contain at least
two searchers at the end of SG′′

m×2
, which is a contradiction.
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Case 1.2. i2 �= �1. Since all edges of B2
m are cleared, there is at most one con-

taminated edge incident on vi2,2. Thus, vi2,2 must contain at least one searcher
at the end of SG′′

m×2
. This is also a contradiction.

Case 2. There are edges of B2
m that are not cleared at t. Consider a sliding

action that leaves all edges of B2
m cleared. Let vj1,2vj2,2 denote the last cleared

edge of B2
m which is cleared by sliding a searcher from vj1,2 to vj2,2. Then vj2,2

contains two searchers at the moment when vj1,2vj2,2 becomes cleared. If j2 = �1,
vj2,2 would contain two searchers at the end since the edge vj2,2vj2,3 must be
cleared by sliding a searcher from vj2,3 to vj2,2. This is a contradiction. If j2 �= �1,
since the edge vj2,2vj2,1 has been cleared, we know that vj2,2 would contain a
searcher at the end, which is a contradiction.

From the above, we know fs(G′
m×3) ≥ m+3. Therefore, from Lemmas 6 and

4, we have fs(G′
m×3) = m + 3.

Lemma 12. For m ≥ 3 and n ≥ 2, fs(Gm×n) ≥ m + n.

Proof. If n = 2, it follows from Lemma 7 that fs(Gm×2) = m + 2. If n = 3, from
Lemmas 4 and 11, we have fs(Gm×3) = fs(G′

m×3) = m + 3. We now suppose
that n ≥ 4.

If n is odd, then we can decompose Gm×n into one Gm×3 and (n − 3)/2
copies of Gm×2 (see Fig. 4). From Theorem 2, we have

fs(Gm×n) ≥ fs(G′
m×3) + fs(G′

m×(n−3)) − m

≥ m + 3 + fs(G′′
m×2) + fs(G′

m×(n−5)) − 2m

≥ m + 3 +
1
2
(n − 3)(m + 2) − 1

2
(n − 3)m

= m + n.

If n is even, then we decompose Gm×n into n/2 copies of Gm×2 (see Fig. 5).
Similar to the above case, we have

fs(Gm×n) ≥ 1
2
n(m + 2) − (

1
2
n − 1)m = m + n.

Therefore, fs(Gm×n) ≥ m + n when n ≥ 2.

From Lemmas 6 and 12, we have the main result of this section.

Theorem 3. For m ≥ 3 and n ≥ 2, fs(Bm�Pn) = m + n.

2.3 Variants of Bm�Pn

From the proofs in Sect. 2.2, we know that even if each Eulerian graph Bj
m,

1 ≤ j ≤ n, is replaced by an arbitrary Eulerian graph with m vertices (all these
Eulerian graphs may be different), we can still prove the same results. This
means Theorem 3 holds for a larger class of graphs including all Bm�Pn.
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Fig. 4. Decomposition of G6×5

into G6×2 and G6×3.
Fig. 5. Decomposition of G6×6

into three copies of G6×2.

Theorem 4. Let Wm,n be a graph obtained from Bm�Pn (m ≥ 3, n ≥ 2) by
replacing each Eulerian graph Bj

m (1 ≤ j ≤ n) by an arbitrary Eulerian graph
with m vertices. Then fs(Wm,n) = m + n.

We now consider another variant of the Cartesian product Bm�Pn. For every
Bi

m on Bm�Pn, 1 ≤ i ≤ n, we select a vertex vxi,i, 1 ≤ xi ≤ m. We then add
an edge between vxi,i and vxi+1,i+1 for every i = 1, . . . , n− 1. Let the new graph
denoted by Zm×n.

Lemma 13. For m ≥ 3 and n ≥ 2, fs(Zm×n) = m + 1.

It is easy to see that the lower bound and the fast search strategy in the proof
of Lemma 13 can also be applied to the graph W ′

m,n defined in the following
corollary.

Corollary 2. Let W ′
m,n be a graph obtained from Zm×n (m ≥ 3, n ≥ 2) by

replacing each Eulerian graph Bj
m (1 ≤ j ≤ n) by an arbitrary Eulerian graph

with m vertices. Then fs(W ′
m,n) = m + 1.

Note that by adding a path with n vertices to Bm�Pn, the fast search num-
ber of the new graph Zm×n can be arbitrarily smaller than fs(Bm�Pn). This
demonstrates that the fast searching problem is not subgraph-closed.

3 Hypercubes and Toroidal Grids

In this section, we investigate the fast search number of hypercubes and the
fast search number of toroidal grids. Let Qk, k ≥ 0, denote a k-dimensional
hypercube.

Theorem 5. If k is odd and k ≥ 3, then fs(Qk) = 2k−1 + 2.

Proof. Note that Qk has 2k vertices and every vertex has degree k. Since k is
odd and k ≥ 3, we know that Qk−1 is an Eulerian graph with 2k−1 vertices. It
follows from Theorem 3 that fs(Qk) = fs(Qk−1�P2) = 2k−1 + 2.
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Observe that Qk = Qk−2�Q2 = Qk−2�C4 and Qk−2 is an Eulerian graph when
k is even and k ≥ 4. This motivates us to consider fs(Bm�Cn), where Bm is
an Eulerian graph with m vertices. Although Bm�Cn is a simple extension of
Bm�Pn which was considered in the previous section, it turns out to be much
more difficult to find a nontrivial lower bound on fs(Bm�Cn). We first give an
upper bound on fs(Bm�Cn).

Lemma 14. If m ≥ 3 and n ≥ 3, then fs(Bm�Cn) ≤ 2m + n − 2.

From the above proof, we know that even if each Eulerian graph Bj
m, 1 ≤

j ≤ n, is any arbitrary Eulerian graph with m vertices, we can still prove the
same results.

Corollary 3. Let Dm,n be a graph obtained from Bm�Cn (m ≥ 3, n ≥ 3) by
replacing each Eulerian graph Bj

m (1 ≤ j ≤ n) by an arbitrary Eulerian graph
with m vertices. Then fs(Dm,n) ≤ 2m + n − 2.

From the structure of Bm�Cn, the fast search strategy described in the proof
is essential and the upper bound in Lemma 14 seems hard to beat. But to our
surprise, we can improve this upper bound when Bm is a cycle with at least four
vertices.

Theorem 6. If n ≥ m ≥ 4, then fs(Cm�Cn) ≤ 2m + n − 3.

We now consider the upper bound of fs(Qk) when k is even. Since Qk =
Qk−2�C4 and Qk−2 is an Eulerian graph when k is even and k ≥ 4, it follows
from Lemma 14 that fs(Qk) ≤ 2k−1 + 2. In the following theorem, we use a new
technique to improve this upper bound.

Theorem 7. If k is even and k ≥ 4, then fs(Qk) ≤ 2k−1 + 1.

Proof. If k = 4, then from Theorem 6 we have fs(Q4) ≤ 9, and so the theorem is
proved. Suppose that k ≥ 6 and k is even. We observe that Qk = Qk−4�Q4 =
Qk−4�C4�C4. Let Q

(i,j)
k−4 , 1 ≤ i, j ≤ 4, denote a copy of Qk−4 in C4�C4 (see

Fig. 6). Let Q
(j)
k−2, 1 ≤ j ≤ 4, denote a copy of Qk−2 in Qk which is induced by

the vertices of Q
(1,j)
k−4 , Q

(2,j)
k−4 , Q

(3,j)
k−4 , and Q

(4,j)
k−4 . We now describe a fast search

strategy that clears Qk using 2k−1 + 1 searchers.
(1) Place two searchers on each vertex of Q

(1,1)
k−4 ; place one searcher on each

vertex of Q
(2,1)
k−4 , place three searchers on each vertex of Q

(4,1)
k−4 ; place two searchers

on each vertex of Q
(3,2)
k−4 ; and place an additional searcher on just one vertex of

Q
(3)
k−2.

(2) For Q
(1,1)
k−4 , slide a searcher from one of its vertices along all its edges and

back to this vertex. At the end of this step, all edges of Q
(1,1)
k−4 are cleared.

(3) Slide a searcher from each vertex of Q
(4,1)
k−4 to its neighbor on Q

(1,1)
k−4 , and

then slide further to a new neighbor on Q
(2,1)
k−4 . At the end of this step, each

vertex of Q
(1,1)
k−4 , Q

(2,1)
k−4 and Q

(4,1)
k−4 contains two searchers.
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(4) Slide a searcher from each vertex of Q
(1,1)
k−4 , Q

(2,1)
k−4 and Q

(4,1)
k−4 to its neighbor

on Q
(2)
k−2 along the edge between them.

(5) Slide a searcher from a vertex of Q
(3,2)
k−4 along all the edges of Q

(2)
k−2 and

back to this vertex. Then slide a searcher from each vertex of Q
(3,2)
k−4 to its neigh-

bor on Q
(3,1)
k−4 along the edge between them.

(6) After Step (5), each vertex of Q
(1)
k−2 and Q

(2)
k−2 contains exactly one

searcher. Since all edges of Q
(2)
k−2 are cleared, slide a searcher from each ver-

tex of Q
(2)
k−2 to its neighbor on Q

(3)
k−2 along the edge between them.

(7) First slide the additional searcher placed in Step (1) along all edges of
Q

(3)
k−2 to clear them, and then slide a searcher from each vertex of Q

(3)
k−2 to its

neighbor on Q
(4)
k−2 along the edge between them.

(8) After Step (7), each vertex of Q
(1)
k−2 and Q

(4)
k−2 contains exactly one

searcher. From Steps (2) and (3), we know that each vertex of Q
(1,1)
k−4 has only

one contaminated edge incident on it. So, slide a searcher from each vertex of
Q

(1,1)
k−4 to its neighbor on Q

(1,4)
k−4 along the edge between them.

(9) For Q
(4)
k−2, slide a searcher from one of the vertices on Q

(1,4)
k−4 along all

edges of Q
(4)
k−2. Then slide a searcher from each vertex of Q

(i,4)
k−4 , 2 ≤ i ≤ 4, to its

neighbor on Q
(1)
k−2 along the edge between them.

(10) For each of Q
(i,1)
k−4 , 2 ≤ i ≤ 4, slide one searcher from one of its vertices

along all its edges and back to this vertex. At the end of this step, all edges of
Q

(i,1)
k−4 , 2 ≤ i ≤ 4, are cleared.

(11) Slide a searcher from each vertex of Q
(2,1)
k−4 to its neighbor on Q

(3,1)
k−4 , and

then slide further to a new neighbor on Q
(4,1)
k−4 . At the end of this step, every

edge of Qk is cleared.
From Step (1), we know that 3 · 2k−3 searchers are placed on Q

(1)
k−2, 2k−3

searchers are placed on Q
(2)
k−2, and one additional searcher is placed on Q

(3)
k−2. In

total, 2k−1 + 1 searchers are placed on Qk. Therefore, fs(Qk) ≤ 2k−1 + 1.

Applying the same idea as that used in the proof of Theorem 7, we can show
the following.

Corollary 4. For m ≥ 3, fs(Bm�Q4) ≤ 8m + 1.

Similar to Corollary 3, we can extend Corollary 4 to a broader class of graphs.

Corollary 5. Let Qm,n be a graph obtained from Bm�Q4 (m ≥ 3) by replac-
ing each copy of Bm by an arbitrary Eulerian graph with m vertices. Then
fs(Qm,n) ≤ 8m + 1.

A graph is even if every vertex has an even degree.



682 Y. Xue and B. Yang

Fig. 6. Qk = Qk−4�Q4: the vertex Q(i, j), 1 ≤ i, j ≤ 4, represents Q
(i,j)
k−4 .

Corollary 6. Let n ≥ 6 and H be a graph with m vertices. If n and H are even,
or n and H are odd, then fs(H�Qn) ≤ m2n−1 + 1. If one of n and H is even
and the other is odd, then fs(H�Qn) = m2n−1 + 2.

Before giving a lower bound for fs(Qk) when k is even, we first consider the
treewidth of Qk, denoted by tw(Qk). From [5], we have the following lower bound
for tw(Qk).

Lemma 15. ([5]) There is a constant k0 such that, for any k ≥ k0, tw(Qk) ≥
12·2k
25

√
k
.

Since fs(G) ≥ pw(G) ≥ tw(G), where pw(G) is the pathwidth of G, we have
the following result (we rewrite the lower bound in a power of 2 so that it can
be easily compared with the upper bound of fs(Qk) when k is even).

Theorem 8. There is a constant k0 such that fs(Qk) ≥ 3
252k+2−log

√
k for any

k ≥ k0.

4 Open Problems

We conclude this paper by listing some open problems that we consider worth
to investigate.

(1) For toroidal grids Cm�Cn (n ≥ m ≥ 4), we proved that fs(Cm�Cn) ≤
2m+n−3. We conjecture that 2m+n−3 is also a lower bound when n ≥ m ≥ 4.
We also conjecture that fs(Bm�Cn) ≥ 2m + n − 3, n ≥ m ≥ 4.

(2) We proved that fs(Qk) ≤ 2k−1 + 1 when k is even and fs(Qk) ≥
3
252k+2−log

√
k for large k. We conjecture that fs(Qk) = 2k−1 + 1 when k is

even.
(3) In [13], Stanley and Yang showed that fs(Pm�Pn) = m + n − 2 (m ≥ 2,

n ≥ 2). We also believe that it would be interesting to consider algorithms for
computing fs(Tm�Pn), where Tm is a tree with m vertices and Pn is a path with
n vertices.
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Abstract. Given a run of a concurrent program and the underlying
memory model, we can view the shared memory accesses as a chronolog-
ical sequence of read and write operations. This chronological sequence
of shared memory accesses exactly characterizes the run. We present an
approach to sequentialization that captures these sequences by assigning
timestamps to the memory accesses. The axioms of the underlying mem-
ory model can be encoded as constraints on the timestamps, within the
sequentialized program, to generate precisely the set of traces permissible
by the original concurrent program. Experimental evaluation shows that
the encoding can be efficiently checked by the backend model checker.

1 Introduction

As multi-core processors gain widespread adoption, multi-threaded software is
being increasingly designed, developed and deployed. The exponential number of
interleavings exhibited by concurrent software poses a challenge during the vali-
dation phase of the software development lifecycle. Further, many architectures
support weak memory models allowing concurrent program behaviours that need
not conform to sequential consistency. Consequently, model checking is neces-
sary to exhaustively check the concurrent program for heisenbugs - bugs that lie
deep inside an interleaving and are near-impossible to detect or reproduce using
testing. In this work, we present an approach to sequentialization of concurrent
C programs to enable efficient checking of program assertions.

Consider two threads T1:x++; and T2:x--;, incrementing and decrementing
a shared variable, respectively. The threads issue a read operation of the shared
variable from memory and then a write to store the updated value. Let ri and
wi denote the read and write operation, resp., for thread i. Under Sequential
Consistency (SC) memory model [1], any run must satisfy the following condi-
tions: (i) program order be maintained among operations within a thread, and
(ii) the execution appears to be the result of a single sequential order across
threads (atomicity). The set of sequences of the shared memory read r and
write w operations, corresponding to all possible runs of the threads, can be
listed as: {〈r1, r2, w1, w2〉, 〈r1, r2, w2, w1〉, 〈r1, w1, r2, w2〉, 〈r2, w2, r1, w1〉}. Note
that we ignore sequences that differ only in a read sub-sequence permutation,
for e.g. 〈r2, r1, w1, w2〉.

It is well-known [3,16] that the set of all correct sequences can be captured
as solutions to constraints derived from the program and the underlying mem-
ory model. For the example shown above, we obtain two relations from the
c© Springer International Publishing AG 2017
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threads, namely po(r1, w1) and po(r2, w2), where po denotes the per-thread pro-
gram order between memory accesses. Additionally, as per condition (i) of SC
stated earlier, po(m1,m2) ⇔ hb(m1,m2) must hold for all m1,m2 belonging to
the same thread, in every correct sequence. We say that hb(m1,m2) holds in
a sequence if m1 precedes m2 in that sequence. Thus we obtain the constraint
hb(r1, w1) ∧ hb(r2, w2), which can be solved to get precisely the sequences listed
above.

The hb relation is commonly referred to as the happens before relation in the
literature, relating memory accesses in an execution trace. The second condition
of SC specifies how a given sequence or trace can be interpreted: a read must
return the value of the freshest write, i.e. if a read r links to a write w then �w′ :
hb(w,w′) ∧ hb(w′, r), unless w,w′ write to different memory locations. Observe
that both the SC conditions can be expressed using the happens-before relation,
which can be naturally modeled if we could refer to the time of occurrence of
the shared memory operations. For example, if tm and tm′ denote the time of
occurrence of memory access m and m′ respectively, then hb(m,m′) is simply
the constraint tm < tm′ .

In this paper, we propose the use of timestamps for sequentialization.
A timestamp is a natural number that encodes the logical time of occurrence of
a shared memory access. We assign timestamps to shared memory accesses to
map reads with writes as permitted by the underlying memory model. The set of
permitted read-write maps is defined by the axiomatic specification of the mem-
ory model. It is this specification that we encode as constraints on timestamps,
at the source level.

We construct a sequentialized program, that encodes the constraints on
timestamps described above, as follows. We introduce global arrays to store
timestamps of writes along with their values. Timestamps are assigned non-
deterministically and constrained to be monotonically increasing. We encode
the requirements for SC by rewriting instructions accessing shared memory i.e.,
read and write operations. The program is instrumented as follows: (i) a write
access is redirected to an array location whose timestamp is larger than a locally
tracked current time, (ii) a read reads from a location with a timestamp closest
to the current time i.e. the timestamp of the successive write (in the array) must
be larger than current time. The sequentialization is completed by issuing calls
to the thread function bodies directly. Locks are modeled as shared variables.
Locking sets the variable provided the latest access to the variable was a reset,
and unlocking resets the variable. We show in Sect. 2.3 that the sequentialized
program exhibits precisely the set of behaviours of the concurrent programs.

We propose that using timestamps can naturally describe the runs of a con-
current program under any memory consistency model and yield a simple yet
efficient sequentialized program. We make the following contributions through
this work.

– A sequentialization approach based on timestamps that encodes axioms of SC.
– A prototype tool, ConSequence, that implements the proposed encoding.
– An experimental evaluation demonstrating the usability of this approach.
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The rest of the paper is organized as follows. In Sect. 2, we illustrate our
encoding under SC with an example, formalize the encoding and present an
argument for its correctness. Our experimental results are presented in Sect. 3.
We discuss the related work in Sect. 4 before concluding in Sect. 5 and listing
some immediate directions of future work.

2 Sequential Consistency Memory Model

2.1 Illustrative Example

We illustrate our approach with an example, shown in Fig. 1(a), that computes
the Fibonacci sequence with two threads, under SC. The assertion can be vio-
lated only when context switches between the threads follow a certain order
(the reads and writes occur hand-in-hand). This makes the analysis challenging
for tools that rely on under-approximations such as write-bounding or context-
bounding.

The sequentialized code is shown in Fig. 1(b). We use two procedures,
write var() and read var(), for every shared variable var, to instrument
its memory writes and reads, respectively. Thread creation in main function

Fig. 1. Example concurrent program fib.c (a) and its sequentialization (b)
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Fig. 2. Datastructures and auxiliary code for sequentialization

is replaced with direct calls to the thread function body, augmented with pre-
and post-processing code.

The auxiliary datastructures and code used for sequentialization is shown in
Fig. 2. We assume fib.c is structurally bounded with loops executing N number
of times. Let MAXW var denote the maximum number of writes to shared memory
variable var that may occur along any program path, across all threads of the
program. In the example of Fig. 1(a), MAXW i = MAXW j = N+1, as each thread
writes to a variable exactly once in a loop iteration, apart from the initialization.
Additionally, we define MAXT as the total number of unique timestamps needed
for write accesses across all shared variables, where initializations of all shared
variables get the same timestamp.

For each shared variable, we use additional memory as explained here. Arrays
value var,ts var store the value of a write access and its timestamp, respec-
tively, and free var tracks if an index in value and timestamp arrays is available.
An index ceases to be available once it is written to. We refer to the three arrays
as a timestore for the shared variable. Auxiliary variable count var records the
number of writes and last var tracks the largest index accessed by a read or
write in each timestore. The variable ct, common to all shared memory variables
of the concurrent program, tracks the time of the latest memory access issued
by a thread procedure. Note that ct is updated locally by each thread, though
declared as a global variable.
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Procedure sysinit() initializes each timestore to non-deterministic values
(timestamps are bounded by the respective maximum number of writes along
any path) through malloc calls. It further adds the constraint that timestamps
in ts var increase strictly monotonically.

We explain the write and read instrumentation scheme wrt. shared variable i
of Fig. 1(a), presented in the procedures write i() and read i() of Fig. 2. Intu-
itively, in the sequentialized program, a write advances the local clock to allow
for interfering writes from other threads to happen. We select an empty loca-
tion by non-deterministically advancing from the current location loc i in the
timestamp array and store the value (value i[loc]==value). We also add a con-
straint to ensure that this write occurs after the current time ct (ts i[loc]>ct).
A read in the sequentialized program, may return the value at any index of the
timestore, provided this is the most recent write relative to the read. We first
select a write in the timestore array by non-deterministically advancing from
the last accessed (read or write) location by this thread. Next, to ensure that
this is the most recent write relative to the read, we add a constraint that the
successive write occurs after the current time (ts i[loc+1]>ct), which is intu-
itively the time at which the read happens. Recall that the timestores are sorted
on timestamps a-prióri ; this guarantees the succession of writes. Note that an
explicit assignment of timestamps to read accesses is not required to encode the
aforementioned constraint; we thus do not assign timestamps to read accesses.

The procedure procinit() resets variables ct and loc i, loc j. The pro-
cedure procend() tracks the last write location updated by thread procedures.
Finally, procedure sysend() ensures that writes are stored contiguously in the
timestore by adding the constraint last==count for each shared variable and
finally reinstates the shared variables.

Fig. 3. Datastructures populated by the counterexample produced by Cbmc

The resulting sequentialized program can be analyzed by any sequential
model checker such as Cbmc [6]. Figure 3 shows how the datastructures are
populated by the counterexample returned by Cbmc, violating the assertion,
for N=3.

2.2 Formalization

Let PC be a structurally bounded concurrent C program consisting of threads
T1, .., Tn, invoking procedures f1, .., fn, respectively, using the pthreads API.
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Let V denote the set of variables shared by the threads. We assume that pro-
cedure main invokes the threads and waits for the threads to join, followed by
an assertion φ to be checked. Let Gk denote the unfolded control flow graph
of thread id k, with each statement containing at most one read r or write w
access to a shared variable. We denote a memory access by m when we do not
distinguish between a read or write. We use the notation mv to represent the
memory access m operates on the shared variable v.

Definition 1. The per-thread program order po is a relation that statically
orders memory accesses.

∀m,m′, path(m,m′) ⇔ (m,m′) ∈ po (1)

where path(i, j) holds iff there is a path from i to j in Gk.

We encode po in terms of happens-before relation ĥb, i.e. hb (stated in Sect. 1)
restricted to same-thread memory accesses, as follows.

∀m,m′, po(m,m′) ⇔ ĥb(m,m′) (2)

Any interleaving or trace of PC is a sequence τ of memory accesses that is
a solution to the po constraints encoded as the ĥb relation (Eq. 2). The inter-
pretation of τ , in terms of the values of the memory accesses, comes from the
underlying memory model as a read-from relation.

Definition 2. The read-from relation rf maps every read to a write in τ .

Under SC, rf enforces the condition that in a trace, a read returns the value
of the most recent write to the same variable. We refer to this condition as
atomicity.

We encode rf in terms of the happens-before relation:

∀r ∈ τ,∃w | val(r) = val(w) ∧ hb(w, r) ∧ �w′ : hb(w,w′) ∧ hb(w′, r) (3)

where val(.) returns the value of the memory access and we interpret hb(i, j)
over the trace as i precedes j in τ .

Timestamps allow us to model the hb relation naturally and succinctly. In
fact,

∀m,m′, hb(m,m′) ⇔ tm < tm′ (4)

Sequentialization. The sequentialization is presented in example Fig. 1(b)
and 2. The listing in Fig. 2 encodes the SC conditions stated in Eqs. 2 and 3,
in procedures read and write.

In the next subsection, we show that the encoding correctly captures these
conditions in terms of timestamps (Eq. 4).

Note that in Eq. 4, the inequality need not be strict when m′ is a read access.
It suffices to have distinct timestamps for writes. As an optimization, wher-
ever possible, we allow a read access to implicitly acquire the timestamp of the
preceding memory access, whether read or write.
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2.3 Correctness of the Sequentialization

In this section we take a closer look at the auxiliary code for sequentialization
shown in Fig. 2. Recall that the timestore records writes from all threads in a
single global order, obtained by sorting the timestamps a priori. Also, procedures
read and write are the ones that encode the axioms of the underlying memory
model, when accessing timestore.

The intra-thread program order, encoded as constraints on timestamps, is
preserved through (i) the constraint ts[loc]>ct when writing and ct getting
updated to ts[loc], and (ii) advancing ct when reading in the future.

Lemma 1. The conditions listed above guarantee program order between per-
thread memory accesses.

Proof. Consider m,m′ | (m,m′) ∈ po. When m′ is a write access, then condition
(i) ensures that tm < tm′ as a write always updates ct to a larger value. Note
that ct, intuitively the current time, is at least as large as tm when the memory
access m has occurred. When m′ is a read, the timestamp of m′ is either the same
as ct (when reading in the past) or advanced (when reading in the future) as per
condition (ii). This ensures tm <= tm′ (note that the equality on timestamps
is an optimization not violating SC, as described earlier). Thus the proposed
sequentialization guarantees the per-thread program order.

The atomicity condition of SC is preserved by (i) the constraints iloc<loc
and iloc<=loc when writing and reading, respectively, and (ii) the constraint
ts i[loc+1]>ct when reading.

Lemma 2. The conditions (i) and (ii), above, guarantee atomicity under SC.

Proof. The variable ct also accounts for thread interference. Whenever a read
maps to a write of a different thread, the timestamps of the read and write are
compared. If the write has occurred in the past relative to the read, we ensure
the atomicity condition of SC by constraining the successive write in global order
to occur after this read, through the constraint ts i[loc+1]>ct. If the write is
located in the timestore in the future wrt. this read, then this implies that the
read should have occurred after this write and before the subsequent write (in
global order); thus the current time, which is the time this read happens, is
updated to match the write’s time, again guaranteeing atomicity.

The existential quantifier stated in the SC atomicity condition is handled
implicitly in our implementation by sorting the timestore during the initial-
ization. The timestore reflects the write serialization to main memory i.e. the
sequence of writes to main memory as agreed upon by all threads.

To summarize, shared memory read and write operations are constrained
exactly according to the axioms of the memory model. The runs of the sequen-
tialized program can be obtained by solving the read and write constraints in
addition to the program logic. This set of runs exactly corresponds to the set
of runs of the parallel program, since the runs of the sequentialized program
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are exactly the solutions to the system of constraints of the axiomatic memory
model, encoded at source level.

Since our sequentialization approach does not impose (or relax) any other
constraints, the only constraints present in the sequentialized program are the
memory model axioms which define the correct behavior. Therefore, the trans-
formation precisely captures correct behavior. The approach easily generalizes
to a framework where one can plug the memory model axioms, akin to a library
call, to obtain a transformation corresponding to a different memory model.

Corollary 1. The proposed encoding correctly captures the constraints of SC at
the source level i.e. the sequentialization exactly encodes the behaviours of the
concurrent program.

3 Experiments

We have implemented the timestamp-based sequentialization approach in a pro-
totype tool ConSequence. Given a structural or unwind bound u, ConSequence
transforms the multi-threaded C code by instantiating a header file from a tem-
plate, which can be viewed as a library that replaces thread API calls. Read
and write accesses to shared memory variables are identified using PRISM1and
replaced with calls to respective procedures. ConSequence automatically com-
putes the maximum number of writes for every shared variable. Thread creation
and joining calls are replaced with calls to thread procedures with pre and post
processing code. ConSequence uses Cbmc to check assertions in the resulting
sequentialized program (other model checkers can be used). For efficient per-
formance with Cbmc, ConSequence implements several tweaks/optimizations
during the sequentialization.

Table 1. Results for Sequential Consistency

S. No. Benchmark Unwind Assertion ConSequence MU-CSeq 0.3 Cbmc5.5 Corral CIVL

1 stateful01.c 1 safe 0.17 0.53 1.18 53.71 1.72

2 stateful01.c 1 unsafe 0.17 0.52 1.07 47.64 1.72

3 fib bench longer.c 7 safe 2.8 17.12 17 timeout timeout

4 3Var-nolock-2threads.c 4 safe 0.65 38 7.21 16.5 18.4

5 27 Boop.c 10 unsafe 1.1 52.7 2.75 error timeout

6 fib bench longest.c 12 safe 130 timeout timeout timeout timeout

7 fib bench longest.c 12 unsafe 101 543.6 749 error timeout

8 peterson.c 60 safe 1.5 42.9 15.3 2.07 1.61

9 szymanski.c 21 safe 2.30 45.02 7.5 1.91 1.65

10 inc-dec-lock-2threads.c 9 safe 8.9 44.5 timeout timeout 4.8

11 dekker.c 9 safe 6 37 4.94 error timeout

Table 1 shows the comparison between ConSequence, MU-CSeq 0.3 [18],
Cbmc 5.5 [6], Corral [2] and CIVL [15]. Though MU-CSeq 0.3 comes with Cbmc

1 A static analysis framework developed at TRDDC, Pune [5,11].
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4.9 by default, in order to have an unbiased evaluation, we have run both Con-
Sequence and MU-CSeq with Cbmc 5.5 as the backend model checking tool.
The benchmarks have been selected from the concurrency category of verifica-
tion tasks at SV-COMP 2016 [4], except the ones numbered 4 and 10 that are
synthetic. inc-dec has 2 threads and one shared variable incremented and decre-
mented under a lock, in a loop. 3var has 3 shared variables with two threads
incrementing and decrementing the variables in a loop. For every benchmark,
we report the unwinding depth chosen, state whether the benchmark was safe or
unsafe for the chosen unwinding, and list the time taken (in seconds) by the tools
to analyze the benchmark correctly. We set a timeout of 60 s for these experi-
ments, except for fib bench longest program (rows 6 and 7) where we set a
timeout of 900 s. All the benchmarks, except fib bench longest, were run with
the largest possible unwind such that at least 3 out of 5 tools run to completion,
i.e. we allowed no more than two tools to time out. The term error indicates
that the tool either crashed, or terminated without producing the correct result.
For the comparison to be unambiguous, the reported values of time are in fact
the time taken by the underlying decision procedure in the analysis, for all the
tools except CIVL. In case of CIVL we could not determine the time taken by the
decision procedure separately, and hence we have reported the total time taken.
We conducted our experiments on an Intel Xeon 2.2 GHz 32-core machine with
20 GB RAM. As seen from Table 1, ConSequence outperforms all other tools
on both safe and unsafe instances. The benchmark programs, their sequential-
ized version (as produced by ConSequence), the exact commands used to invoke
the tools, and the corresponding log files are available at http://www.cmi.ac.in/
∼madhukar/ConSequence/.
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Fig. 4. Plots comparing the number of variables (left), and the number of clauses
(right), as reported by the backend decision procedure in ConSequence and MU-CSeq
0.3, for the benchmarks shown in Table 1.

The graphs shown in Fig. 4 compare the number of variables and clauses
generated by ConSequence and MU-CSeq (by the backend decision procedure of

http://www.cmi.ac.in/~madhukar/ConSequence/
http://www.cmi.ac.in/~madhukar/ConSequence/
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Cbmc, in both the cases), during the analysis of benchmarks shown in Table 1.
Our encoding consistently generates fewer variables and clauses, explaining the
order of magnitude reduction in the model checking time with ConSequence.

4 Related Work

The idea of sequentialization was proposed by Qadeer and Wu [14] with the
motivation to leverage analysis techniques developed for sequential programs. Lal
and Reps [13] proposed a sequentialization for a given bound on context switches.
Their scheme implemented a non-deterministic scheduler by instrumenting the
code and storing the program state at each switch. An improved version of this
algorithm was implemented in [7]. Inverso et al. proposed a further enhancement
[8,9] combining [12] and bounded model checking. Recently, Tomasco et al. [19]
proposed a new technique for sequentialization that bounds the number of shared
memory write accesses. This approach explores an orthogonal set of interleavings
compared to the earlier context-bounding approaches.

Tomasco et al. [19] propose memory unwinding, i.e. a sequence of write oper-
ations into the shared memory. The technique guesses the sequence and simu-
lates the executions of a multi-threaded program according to any scheduling
that respects it. However, it bounds the total number of write operations into
the shared memory. To track writes, they use arrays and duplicate the shared
memory state (of unmodified variables) each time a write occurs in a thread
(read-explicit scheme), or use pointers to track the last relevant write at each
memory location (read-implicit scheme). The main difference is how time is
stored and used to form constraints: in [19], the array location implicitly rep-
resents time whereas we use an auxiliary array to explicitly store timestamps.
The advantage of our encoding is that the successive write is actually stored in
the next location. This avoids costly duplication of the read-explicit scheme and
maintaining pointers in the read-implicit scheme, scaling better as the number
of memory accesses and/or threads increases. Further, linking constraints can
be naturally and compactly expressed with respect to timestamps instead of
locations of (arrays representing) shared memory.

The memory unwinding technique has been extended further [19] to use
timestamps and for the analysis of TSO and PSO [20]. The authors view a
concurrent program as two independent subsystems, separating computation
(individual threads) from communication (shared memory). This is similar in
spirit to our approach but we differ in the encoding and implementation details.
This reflects as an order of magnitude reduction in both the number of clauses
and the number of variables for the benchmarks (see Fig. 4).

Partial orders employing memory model axioms to link read and write events
are presented in [3,10,16]. A two-stage approach involving intra-thread summa-
rization and composition under sequential consistency is presented in [16,17].
The method constructs a concurrent control flow graph (as part of an inter-
ference skeleton) to discover intra-thread causal ordering of events. The linking
phase gives rise to redundant pairing of read-write events, requiring pruning
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using dataflow analysis. In contrast, our approach works at source-level, pro-
vides a syntactic transformation under SC, and does not require any pruning of
constraints. Several sequential program analysis techniques can be applied on
the transformed program including procedure summarization.

5 Conclusion and Future Work

We have presented an approach to sequentialization of concurrent programs that
uses timestamps to map reads with appropriate writes. The possible read-write
maps, defined by the axiomatic memory model, are encoded as constraints over
the timestamps. The solutions to these constraints yield traces that precisely
capture all valid interleavings of the concurrent program. Our encoding, based
on timestamps, naturally captures the semantics of memory models expressed as
axiomatic composition rules on reads and writes. Further, the encoding is com-
pact, simple and efficiently analyzable by a bounded model checker like Cbmc.

The use of model checkers to explore interleavings encoded as constraints on
timestamps has the potential to face state space explosion problem. In particular,
the technique may explore redundant orders of writes whenever the number of
writes produced some choice of paths is less than the (statically) allocated space
in the timestore. Further, when the size of shared memory is large, such as
when entire arrays are shared, the timestores may become prohibitively large
to analyze. Another limitation is that the programs need to be structurally
bounded, which effectively bounds the number of threads by bounding loops
and recursive function calls. However, given that bounded model checking is the
most popular form of model checking used in the industry, this limitation may
be acceptable in practice.

The future steps for this work are:

– Improve tool support for more thread operations from posix-API.
– Optimize the timestamps space by assigning the same timestamps to inde-

pendent writes (or fixing their order of exploration). Note that the size of
timestamps directly affects the model checker’s state space.

– Use invariants to reduce the timestore size.
– Extend the work to support relaxed memory models i.e. program order and

atomicity relaxation.

References

1. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: a tutorial. IEEE
Comput. 29, 66–76 (1995)

2. Lal, A., Qadeer, S., Lahiri, S.: Corral: a solver for reachability modulo theories.
Technical report (January 2012). https://www.microsoft.com/en-us/research/
publication/corral-a-solver-for-reachability-modulo-theories/

3. Alglave, J., Kroening, D., Tautschnig, M.: Partial orders for efficient bounded
model checking of concurrent software. In: Sharygina, N., Veith, H. (eds.) CAV
2013. LNCS, vol. 8044, pp. 141–157. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39799-8 9

https://www.microsoft.com/en-us/research/publication/corral-a-solver-for-reachability-modulo-theories/
https://www.microsoft.com/en-us/research/publication/corral-a-solver-for-reachability-modulo-theories/
http://dx.doi.org/10.1007/978-3-642-39799-8_9
http://dx.doi.org/10.1007/978-3-642-39799-8_9


Sequentialization Using Timestamps 695

4. Beyer, D.: Reliable and reproducible competition results with benchexec and wit-
nesses (report on SV-COMP 2016). In: Chechik, M., Raskin, J.-F. (eds.) TACAS
2016. LNCS, vol. 9636, pp. 887–904. Springer, Heidelberg (2016). doi:10.1007/
978-3-662-49674-9 55

5. Chimdyalwar, B., Kumar, S.: Effective false positive filtering for evolving software.
In: Proceedings of the 4th India Software Engineering Conference, ISEC 2011, pp.
103–106. ACM, New York (2011). http://doi.acm.org/10.1145/1953355.1953369

6. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

7. Fischer, B., Inverso, O., Parlato, G.: CSeq: A concurrency pre-processor for sequen-
tial C verification tools. In: 2013 IEEE/ACM 28th International Conference on
Automated Software Engineering (ASE), pp. 710–713. IEEE (2013)

8. Inverso, O., Tomasco, E., Fischer, B., La Torre, S., Parlato, G.: Bounded model
checking of multi-threaded C programs via lazy sequentialization. In: Biere, A.,
Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 585–602. Springer, Cham (2014).
doi:10.1007/978-3-319-08867-9 39

9. Inverso, O., Tomasco, E., Fischer, B., Torre, S., Parlato, G.: Lazy-CSeq: a
lazy sequentialization tool for C. In: Ábrahám, E., Havelund, K. (eds.) TACAS
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