
Chapter 11
A Brief Introduction to the Use of Machine
Learning Techniques in the Analysis
of Agent-Based Models

María Pereda, José Ignacio Santos and José Manuel Galán

Abstract In this paper, we give a succinct introduction to some basic concepts
imported from the fields of Machine and Statistical Learning that can be useful in
the analysis of complex agent-based models (ABM). The paper presents some
guidelines in the design of experiments. It then focuses on considering an ABM
simulation as a computational experiment relating parameters with a response
variable of interest, i.e. a statistic obtained from the simulation. This perspective
gives the opportunity of using a supervised learning algorithm to fit the response
with the parameters. The fitted model can be used to better interpret and understand
the relation between the parameters of the ABM and the results in the simulation.

Keywords Agent based modelling � Machine learning � Simulation � Permutation
test � Statistical learning

1 Agent-Based Modelling

Agent-based modelling (ABM) is currently one of the most active modelling
paradigms in many scientific disciplines ranging from Sociology (Macy and Willer
2002) to Industrial Organization (Chang 2011) or Economics (Hernández et al.
2014). The gist of the approach lies on the particular process used to build the
abstraction from the target system that is being studied. In an ABM model each
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entity identified in the target system is explicitly and individually represented as an
agent, and the different interactions among the agents and the environment are also
explicitly represented in the model. This direct correspondence provides the
modeller with several interesting features, most of which are a consequence of
making the abstraction process easier (Galán et al. 2009). In an ABM model it is
almost straightforward to remove simplifying assumptions often used in other
modelling paradigms, and consider the effect of heterogeneity, spatial influence,
finite populations or bounded rationality, just to mention some examples.

This advantage at the modelling stage often increases the difficulty of analysis of
the model, which is sometimes so complicated that it is not easy to understand the
combined effects of all its assumptions. In the case of models used to illustrate a
general mechanism or an emergent stylized fact, this circumstance is usually cir-
cumvented, if possible, obtaining closed analytical solutions, or exploring the
complete range of parameter combinations by simulation. However, in models
trying to reproduce specific and detailed situations, occasionally it is not easy to
decide a priori those assumptions that should be simplified and those that are key
elements to keep the model descriptive in terms of the analysed target. Analysts
then face models with a number of parameters so large that a prohibitive quantity of
computational resources is required to fully explore them, and so complicated that
general analytical solutions are difficult to obtain.

The aim of this paper is to discuss a set of concepts and activities used in
machine and statistical learning that can help to understand the behaviour of
complicated (and not only complex) agent-based models. The rest of this work is
structured as follows: The following section succinctly discusses how to sample a
model in an efficient manner. We then explain why it can be useful to think about
the results of a model as a classification or regression problem, and present possible
avenues that an analyst can follow to adjust and interpret the model. Subsequently,
a common way to analyse variable significance is discussed, and finally, conclu-
sions are presented in the last section.

2 Design of Experiments with Space Filling Properties

An experiment is a procedure in which the input variables of a model (i.e. the
system under study) are changed in order to analyse the reasons for the change in
the response variable (a.k.a. output variable). The conduction of formal planned
experimentation, i.e. Design of Experiments (DOE), is a crucial step that consists in
getting the maximum amount of information from the model with the minimum
amount of resources (the more samples, the more CPU time). This is carried out by
properly choosing samples in the design space (part of the parameter space under
study).

Given a parameter space in an ABM model, there are different ways of selecting
samples and design experiments (Lee et al. 2015). Some of them have a particular
configuration, such as Factorial Design, Central Composite, Taguchi, among others,

180 M. Pereda et al.



consisting in discretising the parameter ranges in levels and sampling these values.
Other approaches are the so-called space filling techniques, which aim to cover the
design space uniformly and are based on statistical sampling.

When exploring a stochastic model, deciding whether to spend resources on
exploring more diverse parameter combinations or replicating several times a given
combination of parameters to reduce the uncertainty about the expected output
value implies a trade-off that should be balanced and that is case-dependent.

The most obvious sampling technique is the Monte Carlo random sampling,
which consists in sampling each parameter range randomly. The problem with this
technique is that the design space is not covered evenly, but there can appear
clusters of samples and empty spaces by chance. Another common issue while
planning a DOE for computer models is that, sometimes, large design spaces need
to be explored.

A space filling sampling technique that enjoys great popularity in computer
simulation is Latin Hypercube Sampling (LHS) (McKay et al. 1979), since it
provides an even sample set that is representative of the sampled space. Its popu-
larity is explained by the fact that a DOE with a desired number of samples can be
created, and because of its flexibility (dimensions can be dropped out from the DOE
and still have a LHS, because the samples are non-collapsing (Viana 2013). The
main drawback of LHS is that it suffers from the curse of dimensionality, where
large LHS designs can have inter-variables’ correlations (Viana 2013) and space
filling properties become questionable. There have appeared some methods to avoid
these drawbacks, such as orthogonal arrays and orthogonal LHS, but at the cost of
complex optimization algorithms (Viana 2013).

In LHS, for an N-dimensional design space, each parameter range is divided in
p uniformly spaced levels, thus producing S = p � N subspaces. Each level is
uniformly sampled only once, ensuring that the full space is sampled, and the
resultant number of samples is p.

3 Results as Classification and Regression Problems

Whether the purpose of an ABM model is to provide precise quantitative predic-
tions or simply a better understanding of the logical implications of the model
hypotheses, the task of analysing the relation between the model output and
parameters is usually not simple or easy. The difficulty is greater as the amount of
parameters is larger, complicating the use of the traditional graphical techniques to
draw inferences. In general, but particularly in models with high dimensional
parameter spaces, machine learning techniques can be usefully applied to analyse
ABM models.

In order to understand a model, it is absolutely necessary to understand the
relationship between the model parameters and the model output. In general, we
usually define a statistic representative of the behaviour of the model and analyse
the values that it reaches after a number of time steps—the probability function over
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the set of values—(Izquierdo et al. 2009). In some cases our interest focuses on the
asymptotic behaviour of the model for which the statistic is determined by their
absorbing states or stochastically stable states (Izquierdo et al. 2009); in others, we
want to figure out the state distribution at a time of special interest for the research
case study. In any case, the sort of inferences about the statistic, i.e. output variable
Y, can be described as a function f of the model parameters, i.e. input variables
X = (X1,…, Xp) plus an error term of mean zero and independent of X (see Eq. 1).
This last assumption may be problematic. In such cases, different strategies can be
applied depending on the dependence.

Y ¼ f Xð Þ þ error ð1Þ

We talk about a regression problem if the statistic takes on numerical values
(quantitative values); otherwise (qualitative values) we talk about a classification
problem. Even with quantitative variables, sometimes the state distribution is
composed of a reduced set of states for which the values of the statistic can be
grouped in classes, thus turning the problem into a classification problem too. In
these cases, classification methods become very useful to explain the relationship
between the statistic and the parameters.

Regardless of the type of statistic variable, we can discuss some important
issues. The essence of the problem is to estimate the unknown function f based on
simulation data set. Machine Learning provides a set of parametric and
non-parametric methods to solve this supervised learning problem. The selection of
a specific learning method usually determines the form of the function f̂ , used to
estimate f, so this choice conditions the interpretability of the results. Sometimes
f takes a linear form, making it easy to understand the influence of the parameters
on the statistic; other times f is more complex, making the inference more
challenging.

The expected test error of a learning method, i.e. the expected error when the
estimated function f̂ is evaluated on new data not used in the training, can be
decomposed in the sum of three terms: the bias error, the variance error and the
irreducible error (Hastie et al. 2009). In simple words, the bias error is due to using
a function f̂ that is not flexible enough to fit the unknown function f. The variance
error represents the expected change of the estimated function f̂ when using dif-
ferent training data. Finally, the irreducible error gathers the natural noise of data,
which is the variance of the error term in Eq. (1).

When we seek an estimate f̂ of the function f we always face a bias-variance
trade-off. The goal is choosing a method with the smallest test error, meaning low
bias and low variance simultaneously. This issue is related to the flexibility of the
learning method, i.e. the degrees of freedom of the function f̂ . More flexible
methods have less bias error, but may overfit data and present higher variance errors
than less flexible methods. Frequently the flexibility of a learning method is
inversely related with its interpretability, i.e. the ease to explain the relationships
between the model output and its parameters. For example, linear regressions are
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more interpretable than kernel smoothing methods (see Table 1), something which
is desirable in terms of inference; however, kernel smoothing methods may offer
greater flexibility at the expense of overfitting the data losing interpretability.

Assuming that we have selected a function f̂ cross validation (CV) techniques
(Hastie et al. 2009) can be applied to provide an accurate estimate of the test error.
In particular, the k-fold CV divides randomly the data into k subsets of approxi-
mately equal size, called folds, and use k-1 of these subsets as training set and the
remaining subset as test set. The process is repeated k times, using different subset
combination and averaging the results over the test sets (Hastie et al. 2009). If we
have several estimating functions to choose from, the same technique can be used to
select the best one. Normally, this result is enough to proceed with the inference
about the model. However, the estimated test error might not be an unbiased
estimate of the performance of the selected function. If an unbiased estimation of
the test error of the chosen function is needed, we could apply other refined
techniques such as nested CV (Varma and Simon 2006), which develops the
essence of CV using two nested loops, an inner loop for function selection and an
outer loop for estimating test error.

Table 1 gathers the most important machine learning techniques ordered by
increasing flexibility. In general, the election of more flexible methods can be useful
when we conduct a preliminary analysis, to get an overall insight to the interactions
between all model parameters, while less flexible methods are better for detailed
inferences about particular relationships between parameters (Santos et al. 2015).
Obviously, the particular research interest always drives the election of the learning
method.

4 Variable Importance Analysis

The process of fitting a function f using the parameters as predictors is not only
relevant to predict the value of the response variable of interest. Once a regression
or a classification model has been adjusted, it is also possible to identify the relevant
parameters with the greatest impact on the results. The rationale to conduct this

Table 1 Some popular supervised learning techniques sorted in increasing order of flexibility

Technique

Linear and logistic regression with regularization (Ridge regression, the lasso)
Linear and logistic regression
Kernel smoothing methods

Trees
Boosting methods
Neural networks
Random forests
Support vector machines
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analysis in the context of ABM comes from two related features: (i) the function
f can be simplified and hence could be more amenable for interpretation and (ii) the
computational effort in subsequent experiments can be focused on those parameters
with high influence.

This problem is known in the machine learning and statistics community as feature
or variable selection (James et al. 2013). There are several classes of methods to
address this problem, e.g., shrinkage or regularization, dimension reduction or subset
selection. Some of the subset selection approaches are based on estimating the vari-
able importance for each possible predictor using the fitted function f̂ . The concept
“importance” tries to capture the contribution of each variable to the function f.

In recent years, random forests (Breiman 2001), an ensemble learning method
that employs trees as weak learners, have become one of the most popular and
widely used techniques in many scientific disciplines. This popularity not only
comes from the good predictive performance in classification and regression
problems (even in high dimensional and non-linear problems). Random forests are
also appealing since they provide a very natural way to find out the importance of
each predictor (Criminisi et al. 2011).

A first measure of variable importance in classification problems with ensembles
of trees is the decrease in the node impurity measure used to train the trees in each
splitting criterion. However a more sophisticated variable importance measure is the
“permutation accuracy importance” measure (Strobl et al. 2007). The idea is as
follows: given a set of predictor variables Xj used to predict a response variable
Y using a random forest, in order to measure the importance of the Xth variable after
training, the values of this variable are permuted among the training data and the
(out of bag) error is computed and compared before and after the permutation over
all trees. This score is sometimes normalized using the standard deviation.
Variables with large values are those with higher influence in the response and are
therefore considered more important. The underlying assumption of this permuta-
tion test is that, by randomly permuting the variable under study, its original
association with the response is broken. If that association was originally relevant
the prediction accuracy of the forest will decrease, and the higher the decrease the
higher the variable importance (Strobl et al. 2007).

Although other variable importance methods are available using different
machine learning algorithms (Altmann et al. 2010), the simplicity and inter-
pretability of the permutation test used in random forests and their suitability for
being used in complicated situations have made them very popular as a method to
gain insight into the significance of the different variables. Notwithstanding, recent
research (Strobl et al. 2007, 2008; Wei et al. 2015) has pointed out different sources
of bias that can affect this importance measure in random forests. The standard
method using CART trees can be hindered in cases where variables vary in their
scale level or in their number of categories, or in situations in which there are
correlated predictor variables. In those cases, conditional permutation schemes and
unbiased conditional inference trees are recommended to reflect the true relevance
of the different potential features (Strobl et al. 2007, 2008).
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5 Concluding Remarks

The aim of this paper has been to briefly identify some of the concepts from the
Machine and Statistical Learning fields that can be useful to the ABM community.
We have discussed that this approach can help to improve the understanding of
complicated models with many parameters that can be difficult to fully explore.
Given that such models can have a huge parameter space and the limited compu-
tational resources available, we have discussed some alternatives to explore the
parameter space in a more efficient manner.

Considering an ABM model as a function that relates its parameters with its
results, one can usefully employ different supervised learning mechanisms to fit
such a function. The constructed estimate of the function is an approximation of the
agent-based model that can be useful for many purposes. In some cases the
approximated fitted function can be more amenable to interpretation and under-
standing; in other cases it can be useful for generalization and visualization; and
very often it can serve to assess the individual impact of the parameters on the
results. We have discussed this last analysis process in the case of random forests,
but this work is far from being an exhaustive review of all the methods—each one
with their advantages and disadvantages—that can be used in the analysis of ABM
models.

The insights obtained using these techniques can guide subsequent steps of the
modelling process, such as simplifying the model or focusing on a finer grain
analysis of the most influential parameters. But they can also be useful from an
empirical and a policy-making perspective, leading the efforts of calibration or
control into the most relevant variables in the target system.
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