
Chapter 1
Atomic Structure and Quantum
Mechanics

Abstract Like most books dedicated to structural chemistry, we start with a short
recall of the long history leading to current theories of the atomic constitution of
matter and the structure of atoms, mentioning Bohr’s crude model and, subse-
quently, the quantum mechanics frame. A brief introduction to quantum theory,
operator and matrix techniques is provided, with annotations explaining the
intriguing puzzle of the facts and non-intuitive reasons that contoured this para-
digm. The story of Schrödinger’s cat is retold, where the animal is not hurt,
replacing the dead or alive states with a sleep versus awake scenario, making the
probabilistic paradox quite clear, as a legitimate mixing of wave functions sym-
bolizing the state of the system. The quantum structure of the atom is presented in
an original way, i.e. by putting a special emphasis on the effective role in chemistry
of Spherical Harmonics functions, grasping the concepts in an intuitive manner,
with the help of heuristic symmetry reasons. Taking variable transformations as
artifices in the Schrödinger equation of the hydrogen atom, the spectrum of orbital
energies unfolds without following through to a complete solution. The chapter
offers picturesque descriptions and explanatory artifices which are original, not met
in other textbooks. An incursion into the even more mysterious world of relativistic
quantum mechanics is made, bringing electron spin into sight, along with related
consequences, important for understanding further topics, such as atomic and
molecular magnetism. The complexity of the theorization is increased by incor-
porating the Feynman path integral method, bringing pictures from a territory less
often visited by chemists, for the sake of a complete cross-border perspective.
Finally, while introducing specific particle and wave representations, as well as
their ratio, in quantifying the wave-to-particle quantum information, the basic
Heisenberg Uncertainty Relationship (HUR) is recovered for a large range of
observable particle-wave Copenhagen duality, although with the dominant wave
manifestation, while registering its progressive modification with the factorffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
, in terms of magnitude n 2 0; 1½ � of the quantum fluctuation, for the free

quantum evolution around the exact wave-particle equivalence.
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1.1 The Long Road from Democritus to Bohr

1.1.1 Arcadian Antiquity

Humankind has been doing science as it is currently understood for only a few
centuries, which represents an infinitesimal portion in the horizon of the history
of the civilization and of the species itself. A multitude of social and cultural
factors have contributed to the present stage of scientific knowledge, in both pure
and applied forms, coupling material needs and pragmatism with the impetus for
knowledge. However, the intellectual power of our ancestors, as individuals, was,
in anatomical terms, the same as ours and demonstrated its own strength of insight.
Therefore, it is right to pay tribute to the ancient roots of a field, even though the
distance between the modern version of accepted truth and the old models, often
mixed with myths and beliefs, may seem large. Thus, with no condescension to an
apparently naïve picture, one should start with Democritus’ atomic theory.
A picture of Democritus (460–370 BCE) and his symbolized idea is shown in
Fig. 1.1. It can be considered as a thought experiment, avant la lettre. His idea was
that, whether with mechanical tools one can divide different sorts of matter, beyond
instrumental limitations, a conceptual ultimate level of smallness must exist. One
can see that his argument is not completely free of experimental reasoning,
extrapolating a fact that could be perceived in everyday practice.

Fig. 1.1 Democritus and a representation of the idea of the finite divisibility of matter, ending
with the primordial atomic concept
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Etymologically, the term of atom was coined joining the prefix for negation “a”
with the Greek word for being chopped, “tomos”, yielding “atomos = without cut”.
Many ancient mythological or philosophical speculations addressed the idea of a
primordial substance. Thales proposed water as that substance. The four elements
mentioned in Plato’s Timaeus dialogue (earth, water, air, and fire), inherited from
Empedocles’s constructs, contain the empirical seeds for states of matter (solid,
liquid, gas, and plasma). From this, a theory was constructed, equating
earth = cube, water = icosahedron, and air = octahedron. In terms of Platonic
solids, the dodecahedron represented the whole Cosmos. In the Phaedo, Plato
quoted Anaxagoras, who proposed the idea of an ordering principle that organizes
things in optimal ways. Such perspectives shared much from the Pythagorean
paradigm that mathematics can explain the world, this method being ennobled with
the virtue of beauty. Some of these theories became obsolete, or received criticism
from rival schools. For instance, Aristotle accused Pythagoras and Plato of con-
fusing form and matter, casting doubt on the view that entities like dots, lines, and
numbers can explain objects and their properties, such as heaviness.

However, the idea of primordial substances was a valuable contribution from
these early thinkers. It encapsulates the same spirit that guided the development of
modern chemistry, of finding that the huge variety of compounds is made up of
relatively few species of atoms. One may continue this line of thought by pointing
to the fact that atoms themselves are built from a limited number of particles (just
three—proton, neutron, and electron—if we ignore the details of subatomic particle
physics) and actually only one, the electron, is responsible for the whole chemistry.

It would be an exaggeration to link Platonic ideas with the principles of theo-
retical molecular geometry, but a tiny trace of common conceptual background may
be supposed. We used ancient Greek thought as the conventional landmark of
modern thinking, but we should acknowledge that the Pythagoreans inherited, and
further transmitted (to Plato’s world-view, for instance) some oriental influences.
Theories about the duality of body and soul (which can be regarded as precursors of
wave-particle conceptual bi-functionality) and Zeno’s paradoxical constructs
(aporia = conceptual difficulty) about possible conflicts in conceiving movement
and steadiness, were a sort of primary habituation with the puzzling nature of
ultimate matter. Such philosophical difficulties capture the spirit of quantum
mechanics breakthroughs, by having the courage to advance ideas which are per-
plexing to common sense.

Roman civilization retained and enriched with further details these early
proto-atomic ideas, for instance, described in tableaus from the extended poem De
rerum natura (On the Nature of the Things) by Titus Lucretius Carus (99–55 BC).
Very imaginative scenarios of atom “structure” and dynamics were constructed,
which, although seen as poetic license, may be regarded as the beginnings of a
structural causal explanation of the world. Thus, the sour taste of vinegar correlates
with atoms wearing stings. As a collection of structures with all sorts of shapes and
decorations, Lucretius’s objects resemble molecules rather than atoms.
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1.1.2 Along the Centuries, to the Positivist Era

During the Middle Ages, the promising line of speculative philosophy was broken
and diverted in other directions. The celebrated theory and practice of alchemy,
among many mystical traditions, contributed somewhat to the corpus of experi-
mental techniques of chemistry, but had little to add to the incipient theories of
matter. This is not to blame alchemy: it was in the spirit of the times. Let us recall
that Isaac Newton (1643–1727), a very rigorous thinker, apostle of modern physics,
and the author ofMathematica Principia, lost himself for many years in the study of
alchemical works (experiment and “theory”). Although not entirely valuable, the
alchemists’ idea of the mutual affinities of substances can be regarded as parallel
with the modern concepts of chemical affinity, suggesting electronegativity
equalization and hard and soft acids and bases theory. Unlike antiquity’s recourse to
geometry as an explanatory framework, and its occasional further appearance in
other branches of science, e.g. Kepler’s ideas on planetary orbits as a superposition
of Platonic solids, the alchemists of the Middle Ages, Renaissance, and Baroque
eras did not employ geometry to advance toward the idea of structured matter.
Hidden, mystical, variables and strange substances such as phlogiston (proposed by
Johann Joachim Becher and Georg Ernst Stahl in the mid-seventeenth, in books
such as Becher’s Physica subterranea) were assumed, instead of the idea of geo-
metrically structured matter. Phlogiston theory is usually regarded as a negative
stage in the history of chemistry, and sure the theory was a doubtful one, but with
an indulging eye, in an era still far from the outskirts of positivist sciences, it can be
taken as a proto-theory of redox processes. Phlogiston does almost what electron
flow performs, when passing between atomic or molecular centers (if we overlook
the point that phlogiston was assigned with negative mass, while the idea of charge
was not an ingredient of the construct).

It was perhaps the philosophy of Immanuel Kant (1724–1804), drawing atten-
tion to space as an essential category of thought and empirical experience, which
opened up new approaches at the dawn of modern science. Kant’s philosophy was
influential in the age of the European Enlightenment, which gave rise to a gener-
ation of physicists and mathematicians (Lagrange, Laplace) who rearranged in very
elegant ways the Newtonian and Galilean beginnings of mechanics. At about the
same time, John Dalton (1766–1844) rediscovered atomic theory from the ancient
sources. There is a fascinating history about how chemistry, step by step, came to
work with formulas and bonding ideas, but we leave that aside here, focusing
instead on atomic theory.

The firm foundations of the idea of atomic inner structure were provided by
investigations revealing the electrons, as building charged particles, emerging in
different experiments, as well as the discovery that the light absorbed or emitted in
spectroscopy has to do with the internal dynamics of the parts constituting the
atoms and molecules. Ernest Rutherford (1871–1937) discovered that the coun-
terpart of electron charge was confined in a smaller space, the atomic nucleus,
whose structure is less important for chemistry itself, at least not in a direct manner.
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In the pre-quantum stage, a remarkable guess, since 1888, was the Rydberg
formula for the lines observed in the spectrum of hydrogen:

1
k
¼ R

1
n21

� 1
n22

� �
; ð1:1Þ

where k is the wavelength of the spectral line, n1 < n2 are integers, and R the
Rydberg constant (R = 1.097373156 � 107 m−1 in the International System;
R = 13.605 eV or R = 1.097373156 � 105 cm−1—in units customary in spec-
troscopy, and R = 1/2 in atomic units—Hartree). Equation (1.1) is perfectly in line
with the Bohr atomic model; it is remarkable that early experimenters saw a
numeric pattern in the yet mysterious nature of the line spectra, in advance of a
proper theory. A first correlation was observed by Johann Balmer (1825–98), in
1885, for the n1 = 2 case, explaining the series with the same name, that begins
invisible. Here we already have the empirical path to the quantum paradigm. Some
properties appear as tuned by integers, in a discontinuous manner, instead of the
customary view on the continuous constitution and rules of the world, expressed in
Leibniz’s precept “natura non facit saltus” (nature does not make jumps), in line
with differential calculus ideas.

1.1.3 Bohr’s Atomic Model: Natura Facit Saltus!

The Bohr model interprets the lines as transitions from lower level n1 to higher n2, in
absorption, or reversed—as relaxation—in emission. Inspired from the planetary
model, with the electrons orbiting around the nuclei, the Bohr model was stated
eluding, in a manner similar to Alexander the Great cutting the Gordian knot, the
rules of already well-established electromagnetism. Namely, an electron on a cir-
cular orbit (as on a macroscopic scale is enforced in a coiled conductor) will produce
an electromagnetic radiation, this being the principle on which radio-emitters work.
Emitting radiation means energy loss. Therefore, the charged particles cannot be
stable, like planets on the cosmic scale, on circular or elliptical orbits, tending to
spiral down onto nuclei. Niels Bohr (1882–1965) famously said that the electrons are
not obeying the mandatory rule of radiation release, since there are privileged
quantified orbits. Assuming such a discontinuity, Niels Bohr built on previous
hypotheses by Max Planck (1900) and Albert Einstein (1905) about the quantifi-
cation of light energy, hm, in elementary bits of Planck constant h, proportional to its
m frequency. Conversely, he proposed the quantification of the angular momentum
along the perimeter of circular motion, 2p|L| = 2pr�p = nh, or |L| = nħ (where p is
the impulse, n is an integer, and ħ the reduced Planck constant ħ = h/2p in Bohr’s
theory). We will not discuss here the well-known derivation of Bohr’s model.
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We present directly the result for the energy of the orbit characterized by the
quantum number n, for an atom with one electron and a fixed nucleus with charge Z:

En ¼ � Z2

n2
mee4

8h2e20
¼ � Z2

n2
R; ð1:2Þ

where me is the electron mass, e is the electron charge, e0 is the vacuum permit-
tivity, and h the Planck constant (working in the international units convention).
The radius of the orbit is:

rn ¼ n2

Z
e0h2

pmee2
¼ n2

Z
a0; ð1:3Þ

the factor a0 being the radius of the first orbit of the hydrogen atom (at n = 1,
Z = 1), a0 = 0.529177 Å (where 1 Å = 10−10 m). The model accounts admirably
for the spectrum of hydrogen, in the pattern of formula (1.1), assimilating the
emission or absorption lines with the differences between orbit energies En2 � En1 ,
for two quantum numbers n1 < n2. Figure 1.2 shows the radii of several Bohr
orbits, at proportional scale, and the schemes of the first lines from the Lyman,
Balmer, and Paschen series, related to the respective n1 = 1, 2, and 3 as lower
energy level. Only the Balmer series falls into visible spectrum, the transition
arrows from Fig. 1.2 being colored according to the wavelength. The Lyman series
is placed into ultraviolet, while Paschen (n1 = 3), Brackett (n1 = 4), and Pfund
(n1 = 5) are going into infrared and far infrared.

Fig. 1.2 The orbits with n = 1–6 quantum numbers in the Bohr model, represented at
proportional radial scale altogether with the first spectral series, considered as emission: Lyman
(from n2 = 2, 3, etc., to n1 = 1); Balmer (from n2 = 3, 4, etc., to n1 = 2), Paschen (from n2 = 4, 5
etc., to n1 = 3). The lines falling in visible (Balmer series) are rendered in corresponding colors.
The ultraviolet (Lyman) and infrared (Paschen) are drawn in black
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At very large n quantum numbers the energy gaps become negligible, meeting
the so-called correspondence principle, assuming that quantum mechanics retrieves
the classical continuum. Since the high quantum number orbits are close to each
other, the “interdicted space”, that was the specific of quantification disappears,
resembling the classical continuum.

The Bohr model appeared in 1913, quite late in comparison with other significant
discoveries at the beginning of the twentieth century (quanta ideas from 1900 to
1905 and restricted relativity in 1905). However, it had to wait for the decisive
experiment with gold foils, almost transparent to alpha particle fluxes (done in 1909
by Hans Geiger and Ernest Marsden at Manchester, under the guidance of Ernest
Rutherford who proposed in 1911 the interpretation of the small space occupied
by the positive charge). This gave the green light for conceiving the atom, on an
experimental basis, in terms of a planetary model. Prior to this, there was no firm
reason to dismiss other imagined atomic structures, such as the “plum-pudding
model” of Joseph John Thomson (1856–1940), with negative electrons rotating in a
sphere of positive diffuse charge. In addition to giving Thomson the credit for the
discovery of electrons, we should also acknowledge that his atomic model was
rational. It included the basic intuition about the sphericity of the atoms, although the
hypothesis of uniform positive charge was a disputable view, in the absence of other
information. About the existence of electrons, as distinct particles, the cathode rays
experiments were sufficiently convincing. Then, without experimental information
on the positive charge, it would have been completely unreasonable to assume its
concentration in a small volume, against strong electrostatic repulsion forces.

Bohr’s quantum mechanics generated many conundrums, such as the question: where
is the electron during the transition, if only the quantified orbits are allowed? An answer
to this was offered by the next generation of quantum scientists, denying the sense of
trajectory and introducing the uncertainty relationships that generated, in turn, further
puzzling statements. Although his model became obsolete relatively soon, because of the
new quantum mechanics of Heisenberg and Schrödinger (from 1925–26), Bohr was not
outside of the further evolution of the domain, establishing the “Copenhagen interpre-
tation” of quantum mechanics at his institute, in his home city, Copenhagen.

The Bohr atomic model has drawbacks and limitations. Although it was used to set
the so-called Bohr magneton, lB, i.e. the quantized unit of the magnetic moment, the
model predicts the wrong magnetism for the hydrogen atom, since 1 lB is not in
agreement with experimental data. As will be revealed later, both in this text and also in
the time line of science history, it turns out that the ground orbital movement of
hydrogen does not produce any magnetic moment (although the orbit looks like a coil of
electric current), while the measurable projections, with ±1/2 lB, are carried by the
electron itself. The derivation of the Bohr magneton is historically and formally related
to the assimilation of the n = 1 hydrogenic orbit with a coil of current. In classical
electromagnetism, the induced magnetic moment is proportional with the product
between the area of a coil and the passing current intensity. Assigning the current
intensity to the frequency of the electron around the orbit (replacing number electrons in
definition of intensity with the number of circular tours) and having the speed (or
impulse) and area (via radius) quantized, the moment results with the absolute value:
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lB ¼ jej�h
2me

; ð1:4Þ

in International System units. Actually, this value was correctly calculated two
years in advance of Bohr model, in 1911, by the Romanian physicist Stefan
Procopiu (1890–1972), based on Planck quantum modeling. Several other scientists
fiddled around of the topic, proposing values that were either smaller (Pierre
Langevin) or larger (Pierre-Ernest Weiss) than the now accepted lB unit.

A strange aspect of the Bohr model is that it seems to be two-dimensional. As
suggested in Fig. 1.3, showing three superposed equivalent orbits with different
inclinations, the plane of the trajectory is arbitrary. By conserving the mechanical
momentum, the hydrogen atoms should behave as small gyroscopes, keeping the
plane of the trajectory. On the other hand, there is no reason to propose a preferred
orbit, inducing a non-natural space anisotropy. A collection of hydrogen atoms
should then have arbitrary oriented orbits, so that the averaged picture of the
trajectories creates spheres. One may imagine that interaction with different envi-
ronment factors, or even random genesis, determines the tumbling of the orbit
planes, but this sort of reasoning goes beyond the model’s own controls.

An extension of Bohr’s reasoning was made in 1915 by Arnold Sommerfeld
(1868–1951), who allowed elliptical trajectories, at the expense of a secondary
quantum number, k, varying from 1 to n, the last index being the main quantum
number. The ellipse is characterized by long and short half axes, a and b, whose
ratio is decided by the n/k = a/b regularity. At k = n the orbit is a circle, the smaller
values making more eccentric ellipses, with the nucleus in a focal point. The focal

Fig. 1.3 The pictorial suggestion that the two-dimensional Bohr orbits can be arbitrarily placed in
space. We superimposed three sets of n = 1 (inner circles) and n = 2 (outer circles) orbits, as well
as the first Lyman emission transition, taking place from the three different space orientations.
Representations of this sort are chosen frequently as the icons for topics related to quantum theory
or as logos of agencies dealing with atomic or nuclear activities
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points are placed on the long axes, at the ±(1/2)(a2 − b2)1/2 positions from the
symmetry center of the ellipse. The energies of all the orbits with a given n have the
same expression like in the Bohr model, being independent on the k quantum
number. The secondary quantum number k results from the quantization condition
for an angular parameter, while the principal index n results from a radial com-
ponent. A representation of various Sommerfeld orbits is given in Fig. 1.4.

In spite of their apparent simplicity and relative familiarity to common sense,
since they have for a long time been known as the orbits of the planets, the ellipses
are tricky things. Thus, while the area has a simple expression, pab, looking like
splitting of circle area, pr2, into the product of semi-axes, the perimeter does not
have a closed formula, but an infinite series expansion, or several possible
approximations.

In fact, the Sommerfeld model is an unnecessary complication, since it does not
advance in the conquering of new true physical regularities, although the finding
that there are secondary quantum numbers and multiple orbits with the same
energies goes somewhat toward the complete quantum solution of the hydrogen
atom, reached by Schrödinger’s and Heisenberg’s quantum mechanics. However,
the name of Sommerfeld deserves to be recognized among the contributors to
quantum mechanics, because his mathematical knowledge, disseminated to his

n=2, k=1
n=2, k=2

n=1, k=1

n=3, k=1

n=3, k=2

n=3, k=3

n=4, k=1

n=4, k=2

n=4, k=3

n=4, k=4

Fig. 1.4 The representation at relative scale of several orbits from the Sommerfeld atomic model,
characterized by quantum numbers n = 1, 2, 3, etc. and k = 1 to n. The smaller the k index, the
larger is the eccentricity of the elliptical trajectory. At k = n the orbits become circular, Bohr-type

1.1 The Long Road from Democritus to Bohr 9



pupils, helped to seed this revolution of humankind. A list of his doctoral and
postgraduate students contains names of great importance for theories of quanta,
atomic, and molecular structure: Heisenberg, Pauli, Debye, Bethe, Heitler, Ewald,
Laporte, Lenz, Landé, Brillouin, Pauling, von Laue, Rabi, Condon, and Morse.
Seven of Sommerfeld’s apprentices won the Nobel Prize. One may say that he was
an integer character, a fact measurable by his supportiveness to his students. For
instance, Sommerfeld’s intervention during the doctoral examination of Werner
Heisenberg was essential, because the evaluators found the apprentice to be at fault
with bad knowledge in some issues of experimental optics.

The Bohr and Sommerfeld models were in a difficult position in further accounts
of atomic and molecular species. The atom with many electrons was not tractable,
neither were the molecules. A suggestion of an attempt made by Pauli, in 1922, to
solve the hydrogen molecule ion, H2

+, into the Bohr–Sommerfeld paradigm, is
represented in Fig. 1.5. Various possible orbits were found, such as a simple
pendulum along the axis between nuclei, orbits around a single nucleus, lemniscata
lines, circulating in a two-lobe profile around both nuclei and passing through the
symmetry center, or ellipsoidal paths. The last ones were guessed as the most stable,
but the numerical account proved to be cumbersome and unsatisfactorily correlated
with spectroscopy data. Soon after, a better theory appeared and changed the
paradigm fundamentally.

Fig. 1.5 Representation resembling one type of orbit proposed by Pauli’s early treatment of H2
+

(hydrogen molecule ion), in 1922, with a quantization of elliptic coordinates similar to the Bohr–
Sommerfeld conditions.

10 1 Atomic Structure and Quantum Mechanics



1.2 The Dawn of Quantum Theory
and the Founding Fathers

1.2.1 The Revolutionary Milieu and Quantum Mechanics

Lord Kelvin (William Thomson, 1824–1907, a revered scientist knighted in 1866)
opined in 1900 that physics was a clear sky, shadowed by only a few minor clouds,
the so-called ultraviolet catastrophe being one. It turned out that those apparently
small dilemmas were crisis points, leading to quantum mechanics. The laws of
atomic and molecular structure are the subject of this particular field of physics, a
rather tricky one, since the intuition that guides us in the macroscopic world does
not operate in the microcosm. The audacious reconsideration of physics began at
the beginning of the twentieth century (e.g. the first idea of quanta, by Max Planck,
in 1900, to cure the ultraviolet catastrophe of black body radiation, followed by
Einstein’s quantum-like interpretation of the photoelectric effect, an idea arising
from his relativity papers, from 1905, his annus mirabilis).

The dark years of World War I overshadowed the impact of the Bohr model,
released in 1913. However, the quantum paradigm continued with a new peak
between the two world wars. Such fresh spirit was reflected more widely in the
interwar revolutionary climate, from arts and philosophy to politics and social
theory. Particularly, the spirit of the Weimar republic, replacing the crushed
German empire in the aftermath of World War I, occasioned a partial melting of
rigid conventions in academic life too, the scientists becoming unafraid to venture
exciting new hypotheses, shaking the apparently well-established edifice of a
mechanical interpretation of the world (von Meyenn 1994).

It was the time when cubist plastic artists rebelled against the boring rules of
spatial perspective and created virtual worlds that needed new operators to decrypt
their message. It was also an age of enjoying the postwar peace and the “rebirth” of
human nature, with large numbers of people experiencing new forms of happiness,
epitomized in the exuberance of the Charleston dance (which emerged in 1923 in
South Carolina). While the Charleston has acquired by now a dated and “vintage”
feel, the energized spirit of the 1920s and 1930s generated a new physics that
shaped knowledge for the rest of the century, still bearing the stamp of the modern,
to the present day.

In this milieu, scientists discovered in quantum mechanics a new field in which
to play games of knowledge, partly for art’s sake (ars gratia artis). After all,
scientists are not logical automata; accordingly, their work appears to be influenced
by, and to reflect, the trends of the époque and their own cultural position within it.
We can recall here the speculation of the Romanian philosopher Lucian Blaga
(1895–1961), a lesser-known figure, but somewhat comparable with Oswald
Spengler, in his glittering original rethinking of world mechanisms in terms of
subtle cultural parameters. Blaga took the example of quantum statistics theories
and correlated them with the cultural frame of their creators. Thus, Blaga (1943)
argued that Fermi and Dirac, having Western and European cultural backgrounds,
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based on individual self-projection, were more inclined toward the statement of a
statistics giving to every state not more than one particle. By contrast, Bose and
Einstein, coming, in principle, from more collectivistic oriental cultures (Indian and
Semitic), were more able to imagine and accept that many particles may occupy the
same place in the energy scheme.

In 1924, the duke Louis de Broglie developed the idea of wave-particle dualism
in his PhD thesis (under Paul Langevin). In 1925, Werner Heisenberg established
the grounding principles of so-called matrix mechanics, in cooperation with Max
Born and Pasqual Jordan. According to his memoirs, he got the illuminating key
during a trip to Helgoland Island, on the North Sea. In 1926, Schrödinger published
his equation (Schrödinger 1926), about which the famous American physicist
Richard Feynman said that seemed to have come from nowhere. Sommerfeld
categorized it as the most stunning among all the dazzling discoveries of the
twentieth century. Max Planck appreciated the beauty of the equation.
Schrödinger’s and Heisenberg’s approaches made the quantum mechanics of
Planck, Bohr, and Sommerfeld—still new and non-orthodox at that time—become
quickly the “old theory”.

Although a demonstration of Schrödinger’s formula free of heuristic inserts and
conceptual persuasion is probably not possible, the equation did not appear from
thin air. On the other hand, the Schrödinger formula worked in innumerable tests
and problems. Like several other basic hypotheses of physics, it can be conceived in
terms of symmetry (Sundermeyer 2014). A ground for building hypotheses (Joas
and Lehner 2009) was the optical-mechanical analogy due to Hamilton, since 1833,
making a connection between geometrical optics and analytical mechanics. It put in
comparison the Fermat principle for the shortest route of a ray of light passing
spaces with different refractivity and Maupertuis’s hypothesis of minimal action for
a material particle. Since, on the other hand, the light can be treated as wave, the
link between mechanics and wave theory, as mathematical apparatus, was foreseen,
Schrödinger being interested in Hamilton’s works in 1920. He aimed at an
ambitious unification between waves and relativity, although ended with a
non-relativistic wave function. At the same time, de Broglie spotted the analogy
between the Fermat and Maupertuis principles, as inspiration for his hypothesis of
material waves. The relativistic Wave Function Theory was established in 1928,
by Dirac, not long after Schrödinger’s discovery from 1926 (Fig. 1.6).

1.2.2 Modus Operandi: Waves and Operators

The quantum mechanical systems are described by the so-called wave functions,
which encipher all the physical properties, from where these can be “decoded”
using operators consisting in appropriate “recipes” of mathematical operations
(multiplication, derivation), able to render the desired information.

In principle, the operator should keep the same definition, independent of the
wave function at which it has to be applied. Later on, we will see that, for technical
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Fig. 1.6 The coryphées of quantum theory: Top: Niels Bohr (left), Werner Heisenberg (right);
Bottom: Erwin Schrödinger (left), Paul Adrien Maurice Dirac (right)
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reasons, in order to approximate the complicated problems without analytical
solutions, we must build operators that depend on the wave function of interest,
namely self-consistent procedures, as strategy in iterative approaches. After acting
on a wave function, an operator produces, in general, a linear combination of
numbers factoring other functions (whose full set is regarded as a basis of a space).
There is a particular situation in which the operator f̂ returns the same function with
a numerical factor f, called an eigenvalue, X being of the eigenfunction:

f̂ X ¼ f X: ð1:5Þ

The “eigen” prefix, from the German word “own”, marks the special link between
the elements of the right side, belonging to each other, as solution to the given
operator problem. The hat placed on the symbol denotes its quality as operator. The
fact that the algebraic machinery of the operator leaves the adequately selected wave
function unchanged, up to a real factor, suggests a symmetry-like problem.
Specifically, a symmetry operation is an act that leaves an object unchanged. In
several cases, the eigenfunction equations have symmetry reasons. Even the justi-
fication of the generic equation of Schrödinger can be grounded on symmetry of
impulses with respect of the isotropic space and of the energy related with the time
flow. This reasoning is the quantum version of Noether’s general theorem from
mechanics (Noether 1918). Thus, momentum conservation is a consequence of the
homogeneity of space (translational symmetry). Conservation of angular momentum
is a consequence of spatial isotropy (rotational symmetry). Energy conservation is an
expression of translation symmetry in time. These nice findings were outlined by
Emmy Noether (1882–1935), a woman strongly dedicated to science at a time when
such a life was quite difficult and almost forbidden for women. She worked (without
payment) in the mathematical department of the University of Göttingen, a city
which produced many personalities who contributed significantly to modern sci-
entific theories. They include David Hilbert (1862–1943), a mathematician whose
constructs shaped the new quantum mechanics, and Hermann Weyl (1885–1955)
another mathematician, who contributed to relativity and quantum theories. Weyl
embraced the paradigm drawn by Noether, generalizing it in a heuristic belief that all
the basic physical rules must be rooted in symmetry.

Compressing quantum mechanics in a nutshell, we must first point out that a
basic importance is given to the operator that renders the energy, called the
Hamiltonian operator. In systems whose state does not depend directly on time, the
generic Hamiltonian equation is:

bH W ¼ E W: ð1:6Þ

The equation of energy eigenvalues is the very core of quantum physics and
computational chemistry, in a wide range of approaches, with varying degrees of
approximation. For the most general form of Schrödinger’s equation, including
explicit dependence on time, the quantum Hamiltonian is:
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bH WðtÞ ¼ � �h
i
@

@t
WðtÞ: ð1:7Þ

Here �h is the reduced Planck constant and “i” is the imaginary unit. To be
distinguished from “i” used as index, in italics, the imaginary unit “i” is presented in
plain text format. The name “Hamiltonian” stands in honor of the man who, one
century in advance of Schrödinger, devised tools for handling the energy in ana-
lytical mechanics and produced the seeds of ideas that led Schrödinger to his iconic
equation.

When the energy does not depend explicitly on time, i.e. the system is placed in a
definite state and no perturbation arises from outside, Eqs. (1.6) and (1.7) can be linked
proposing an exponential factor for the formal time evolution: W(t) = exp(iE t/ħ) W.
Indeed, applying the derivation from the right side of the general Schrödinger equation
(1.6) one retrieves its stationary form (1.7). To make things a bit clearer, let us observe
that if we associate the energywith a frequency, hm, or equivalently, ħx considering the
angular speed (x = m/2p), then the factors take the exp(ixt) form, familiar from
classical periodical wave equations.

Other useful operators are the impulses, which, in Cartesian components are:

p̂x ¼ �h
i
@

@x
; p̂y ¼ �h

i
@

@y
; p̂z ¼ �h

i
@

@z
: ð1:8Þ

On this occasion we can see the “pure” form of an operator, without specifying a
function on which it has to work. For instance, p̂zW has to perform coordinate
derivative and a certain multiplication with quantum constants: �i�h@W=@z. In
vector notation, the impulse is ascribed with the Nabla symbol:

p̂ ¼ �h
i
r: ð1:9Þ

The Nabla symbol (the Hebrew name for harp, whose shape is suggested by the
ceiling-pointing tip) is also called Del in English technical literature. The impulse
operator form is not obvious in relation to customary classical mechanics, where the
impulse is a product of mass of the particle and velocity, the last being derivative of
a coordinate with respect of time, e.g. pz = m dz/dt. However, it may be suggested
by formulations of analytical mechanics, where the definition of the Lagrange
operator (kinetic minus potential energy) and the Hamilton principle of minimized
action (a path integral of the Lagrangian) implies the use of generalized coordinate
derivatives, @=@q, associated to the space parameters, q. The somewhat strange
form of the impulse in quantum mechanics suggests, from the beginning, that it is
not usable in constructing something like trajectories. The absence of mass in the
impulse operator says that this sort of information has to be contained implicitly
somewhere in the wave function, while the imaginary factor suggests that the
impulse is a sort of half-prepared ingredient, not suitable to be used alone in setting
a problem (because the physical measurables must yield real numbers).
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Other operators, such as the potential energy components, are expressed simply
as factors coming from the classical definitions. For instance, the potential energy of
a harmonic oscillator along x axis will be proportional to x2, while the electrostatic
potential between two particles will be a factor related to the 1/r12 classical
Coulomb formula. In general, the potential operator V is a multiplicative one.

The kinetic energy of a particle withmassm is formedwith the help of the p2/(2 m)
classical analogy, applying twice each operator of the p̂ set and adding them up:

bT ¼ 1
2m

p̂2x þ p̂2y þ p̂2z
� �

¼ � �h2

2m
@2

@x2
þ @2

@y2
þ @2

@z2

� �
� � �h2

2m
r2 � � �h2

2m
D:

ð1:10Þ

The last parts suggest other notations, as square of Nabla symbol, or by capital
Greek letter Delta. In case of many particles, the total kinetic operator is the sum of
each particle component. In the cases implying circular or spherical symmetry, the
transformation from Cartesian (x, y, z) to polar coordinates (r, h, u) is convenient.
Then, the angular moments are replacing the description by impulses. The quantum
moments are obtained putting the above defined impulse operators into the com-
ponents of~l ¼~r �~p classic angular momentum components:

l̂x ¼ �h
i

y
@

@z
� z

@

@y

� �
¼ � �h

i
sin u

@

@h
þ cos h

sin h
cos u

@

@u

� �
; ð1:11Þ

l̂y ¼ �h
i

z
@

@x
� x

@

@z

� �
¼ þ �h

i
cos u

@

@h
� cos h

sin h
sin u

@

@u

� �
; ð1:12Þ

l̂z ¼ �h
i

x
@

@y
� y

@

@x

� �
¼ �h

i
@

@u
: ð1:13Þ

The transformation between Cartesian and polar coordinate operators is based,
obviously, on the well-known relationships: x = rcosu sinh, y = rsinu sinh,
z = rcosh.

The impulse operators in spherical coordinates imply derivatives on vectors
along the radial axis, and tangent to spherical surfaces, along the meridians of a
globe (d/dh) or along the parallels (d/dhu). Readers, with the help of the above,
may realize the conversion to spherical coordinates defined angular momentum
vector set:

p̂ ¼ �h
i
~r
r
@

@r
�~r � l̂

r2
: ð1:14Þ
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The total energy operator, Ĥ, is the sum of kinetic energy and potential opera-
tors, bT þV , the latter one having a simple multiplicative nature, a case for which
we dropped the use of upper hat.

1.2.3 The Schrödinger Equation and Schrödinger’s Cat

The Hamiltonian eigenvalue problem for a collection of particles with generally
different masses, mk, without making explicit the nature of the potential V is:

�
XN
k¼1

�h2

2mk

@2W

@x2k
þ @2W

@y2k
þ @2W

@z2k

� �
þVðx; y; zÞ W ¼ E W: ð1:15Þ

This is the explicit form of the time-independent Schrödinger equation. In most
of the cases, the atomic or molecular problems, where the particles are electrons and
nuclei, the nuclei system may be considered fixed and not entering in the kinetic
operator.

It is instructive to consider the equation for a free particle in the whole universe. Its
form can be guessed in terms of heuristic symmetry reasons. Thus, it has to be periodic,
for which we can take sine or cosine functions, or better, the imaginary exponential
function, that comprises both options. The free particle can be everywhere in the empty
space and it can adopt an infinite number of solutions with the same energy, which is
entirely kinetic. Exploiting the correspondence principle, one may imagine that a free
particle is reaching the classical limit. Therefore, the quantum kinetic operator should
retrieve the p2/(2m) classical formula. An exp(i p�r/ħ) function will do it. Making
explicit the impulse-coordinate scalar product, p�r = pxx + pyy + pzz, one observes
that applying the second-order coordinate derivatives from definition of kinetic
operator (1.10), one obtains the p2 = px

2 + py
2 + pz

2 quantum form that resembles the
classical kinetic energy. Adding the exp(−iE t/ħ) factor, discussed previously (after
Eq. 1.7), as appropriate to express stationarity with respect of time evolution, the
Schrödinger wave function for a free particle can be taken as follows:

Wfree ¼ exp
i
�h

p � r� E tð Þ
� �

: ð1:16Þ

In quantum mechanics, the waves are ways to process information, the square
modulus, |W|2, having the signification of probability of density. Not to take the
form of square of modulus as pleonastic, must indicate that, in general, the wave
function W is complex-valued, having a conjugated companion W*. Therefore, the
square is the product of the function with its conjugate |W|2 � W*W. The proba-
bility meaning refers primarily to the location in space of particles, having then,
instead of trajectories, a cloud of possible positions in space.
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Since it is quite famous, we will recall the Schrödinger’s cat imaginary (thought)
experiment, that expressed the turmoil in the face of the wave function concept. The
initial setting conceived a random event that can kill the cat caged in a box without
communication with the exterior, so that it was impossible to know the situation.
A detector was set to receive (or not, this being the random switch) a particle
coming from a possible radioactive decay, triggering (or not) the release of a
poisonous gas. As long the box was sealed, there existed the equal probability for
the cat to be dead or alive, this being the expressed dilemma: the wave function for
the cat’s state seeming a non-physical object. The opening of the box, associated
with the observation perturbing the system, brings the case to a conceivable mode,
deciding if the cat was alive or dead. With all respect for the original story, we
would like to consider Schrödinger’s cat in a different setting, more acceptable in
terms of care for animals in experiments, even imaginary ones. Thus, we will
consider a softer antinomy—the awake or asleep cat. The illustration of the story
appears in Fig. 1.7. Assume that there is no need for an external trigger to control
this (as cats can sleep any time of the day or wake in the middle of the night). If the
cat has a comfortable apartment (not a box), not necessarily free of humans, but not

Fig. 1.7 Cat in a “ket”. The Schrödinger’s cat thought experiment, slightly modified: awake
versus asleep cat (not alive or dead!). As function of “closed door” versus “open door” proposed
operators (note the hat symbol beneath the door’s icon), the solutions are of “delocalized” versus
localized types. Note that functions with equal probability of awake or sleeping cat are two:
w+ = in-phase and w− = out-of-phase. This couple has no intuitional meaning, but their remixing
(sum and difference, as represented in the top half of the figure) gives rise to “measurable” states of
awake or sleeping cat
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in contact with the observers, then we assume that the cat spends half of the time in
one of the states. One may accept that the cat state is unrelated to diurnal cycles, as
just pointed out. The door is taken as the operator constructing our wave functions.
Then, for a closed door, we have equal probabilities for an awake or a sleeping cat.

What is not usually observed in this cat story is that we shall have two functions
driving the equal probability: the sum (awake) + (asleep) and the difference
(awake) - (asleep). These are decided “by symmetry”, in the condition of closed
door as active operator. Of course, the sum and difference of “wave functionalized”
cat do not have a common-sense equivalent, but this is how quantum mechanics is.
We will even assume that the in-phase function (with summed cat states) is more
stable. This assumption is not strictly needed, but brings a bit more concreteness.
The states can be degenerate if the awake or sleeping cats do not interact. However,
one may take as “non-diagonal” element between the cat states the beneficent
feeling acquired when the cat is stretching at awakening. In this way, we evasively
persuaded for a preferred “in-phase function”. The symmetrized wave functions are
shown in the bottom panel of Fig. 1.7. The awake or asleep cat can be obtained by
the proper recombination of in-phase and out-of-phase time-independent wave
functions (see the upper panel from Fig. 1.7). The opening of the door means the
change of the operator, practically to a time-dependent format, bringing a pertur-
bation that was only averaged previously (all sorts of stimuli that were not
accounted before: daylight on night mysteries, a running mouse, a sleep-tempting
warm chimney, and so on). The cat responds to light, noises, and other factors,
while the observer is using the same channels to acquire the information about the
cat status. It may seem now acceptable that the real world can be made by com-
bination of wave functions (the state delocalized cat), which taken in themselves,
are puzzling but valid in the mathematical sense, as a basis of description.

1.2.4 The Heisenberg Equations: Uncertainty and Matrix
Mechanics

The handling of the operator and wave function equations is not practical, more
tractable being the matrix version of quantum mechanics. The Schrödinger equation
is equivalent with matrix mechanics developed by Werner Heisenberg, with
essential further help from Max Born and Jordan Pasqual, in figuring the meaning
and methodologies. Born gave the probabilistic interpretation and Jordan settled the
matrix formalisms. The key role of Heisenberg was the revealing of the famous
indetermination relationships. These signaled, from another perspective, what
Schrödinger and de Broglie said, namely that the mechanics of the microcosm differ
from those verified in the scales ranging from the current life objects up to the
celestial bodies.

The conversion from Schrödinger to what we can generically call the Heisenberg
formulation (to which many others contributed) implies the integration of the wave
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function over the space of coordinates. The spatial ones, with position of particles,
are usually taken as primary variables, but an equivalent formulation in the impulse
space is also possible.

Relying now on the statistical interpretation of the wave functions, we can put an
integral equation in the form: Z

all V space

W�W dV ¼ 1; ð1:17Þ

namely the so-called normalization condition. This means that the sum of the
probabilities on all events, or its integral in continuous cases, must give unity, or the
tackled particles should be somewhere in the space of considered coordinates.

The solutions of the Schrödinger equation are in general not unique. Several
operator equations of type (1.6) or (1.15) can be satisfied for different eigenvalues,
with different functions, or even distinct eigenfunctions can be found for the same
eigenvalue, in the case of states called degenerate, representing multiplets deter-
mined by symmetry factors.

Assuming various solutions, WI, then we submit arbitrary linear combinations of
them, either to the general Hamiltonian operator form (1.5), or the wave-type
equations (1.15), and this mixing will yet satisfy the equality of left and right
members of the formulas. This may give rise to some ambiguity which can be
cleared by the following integral conditions:

WIh|{z}
00bra00

j WJi|{z}
00ket00

¼
Z

all V space

W�
IWJdV ¼ dIJ ; ð1:18Þ

WIh j|ffl{zffl}
00bra00

bH|{z}
00operator00

WJj i|ffl{zffl}
00ket00

¼
Z

all V space

W�
I
bHWJdV ¼ dIJEI : ð1:19Þ

where dIJ is the Kronecker symbol, equal to 1 when I = J and to zero for different
indices, I 6¼ J. With this occasion we introduced the “bra”-“ket” notation, which is
a wordplay related to the outline of the integral as a bracket. The conjugated
component WI

* is the “bra” while the WJ is the “ket”, being affected by the operator.
The condition (1.18) is called ortho-normalization, adding the orthogonality of
different solutions, aside the normalization of each one. The orthogonality con-
straint is a way to say that the information contained in the function WI is distinctly
non-redundant from those carried by any other WJ component. Otherwise, a
non-null overlap (such integration without any operator is called overlap integral)
can be always formulated as the mixing of a WI part into WJ (or vice versa). The
non-orthogonal bases can be brought by a linear transformation into an
ortho-normal one. Thus, the condition (1.18) is not restraining the generality. In
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cases when such an adaptation is not possible there is something wrong with the
chosen basis (e.g. incompleteness).

For a given operator the series of wave eigenfunctions may be regarded as a
vector space, organized with the help of an ortho-normalization condition. The
vector space has to be complete and it may be infinite, the related algebra being
called the Hilbert space. Completeness means that the action of considered oper-
ators over functions from the known set must retrieve a combination of functions
from the same set. In such context, the obtained eigenfunctions are also
eigenvectors.

We started with the special case of an operator satisfying the eigenvalue prob-
lem. In the most general circumstances, an operator â applied to a function that is an
eigen-solution of another operator, say the Hamiltonian, results in an expansion into
eigenfunctions of its space:

âWI ¼
X
J

aJIWJ : ð1:20Þ

Then, in the space of ortho-normal eigenvectors of the Hamiltonian, the action of
the â operator can be characterized by the matrix built with the following integrals:

WJh jâ WIj i ¼ aJI : ð1:21Þ

The diagonal elements, named expectation values,

ah iI¼ �aI ¼ WIh jâ WIj i ¼
Z

all V space

W�
I âWIdV ; ð1:22Þ

bear the meaning of the average of the magnitude described by the operator â on the
state WI.

The â operator may describe perturbations driving the interaction between states
(such as an electromagnetic wave), e.g. triggering a I ! J transition that occurs
with the quantified |EI − EJ| energy gap.

In general, two different operators may not have the same eigen-solutions.
However, such a regularity happens when the composite operator,

½â; b̂� ¼ âb̂� b̂â; ð1:23Þ

called a commutator, becomes null. In other words, the operators that commute
have common eigenvectors.

Let us go to an important pair of non-commuting operators: impulse and posi-
tion, namely the couples that are conjugated variables in the analytical mechanics.
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For a selected component, say the z Cartesian axis, taking the corresponding
commutator applied to an arbitrary function:

½p̂z; ẑ�w ¼ �h
i
@

@z
; ẑ

� 	
w

¼ �h
i
@

@z
zwð Þ � z

�h
i
@

@z
w ¼ �h

i
@

@z
z

� �
w ¼ �h

i
w:

ð1:24Þ

we end with a non-null operation. Or, in another formulation, expressing the
“hungry” operator without a function aside, the non-commutative relation of
impulse-space coordinates is written:

½p̂n;bf� ¼ �h
i
dnf; ð1:25Þ

where denoted by n − f are various couples of x, y, z coordinates. The
non-vanishing impulse-space commutators forbid the concept of trajectory in
quantum mechanics and drive the celebrated uncertainty relationships with which
Heisenberg puzzled the world. Turning to the operators customized for problems of
spherical symmetry, one may check by formulas (1.11)–(1.13) that the momentum
operators are implied in the following non-commutative relations:

½̂ln; l̂f̂� ¼ � �h
i
l̂s; ð1:26Þ

where the nf − s series of symbols refer to the cyclic permutation of Cartesian
indices: xy − z, yz − x, and zx − y. This means that the rotation moments cannot be
simultaneously resolved or measured. However, there is an important commutation
relationship between the square of the operator and its z component,

½̂l2; l̂z� ¼ 0; ð1:27Þ

meaning that the squared modulus and the projection on the quantization axis (the
convened z vector) can be simultaneously defined with the same set of eigenstates.
It is also interesting to verify with Cartesian definition that the kinetic operator
(1.10) and the z momentum component obey the following commutation relation:

½r2; l̂z� ¼ 0: ð1:28Þ

For the case of a free particle, with energy based totally on the kinetic operator,
this implies also a commutation of the Hamiltonian operator with the kinetic
moment. The property (1.28) may occur in problems with certain symmetry,
spherical or axial. For the free particle, the commutation of the Hamiltonian goes
equally with all the x, y, and z kinetic momentum components, expressing the
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isotropic nature of the space, aside the translational symmetry. In the spherical and
axial cases the z coordinate is conventionally selected as quantization axis, while
x and y do not show simultaneously the same properties. The analysis of com-
mutation properties is a way to introduce quantum numbers in a given treatment.

1.2.5 Hamiltonian Matrices, Non-orthogonal Bases,
Variational Methods

It is possible to work with non-orthogonal functions. For two general functions, say
Up and Uq, the integral UpjUq


 �
can differ from the Kronecker definition, dpq. The

UpjUq

 �

works as the equivalent of scalar product known from geometry or linear
algebra. In a simplistic analogy, we can recall the x, y, z Cartesian frame as an
example of an orthogonal basis. In certain problems, such as the crystallography of
a triclinic system with the (a, b, c) axes and (a, b, c) angles (between respective
b − c, a − c, and a − b axes pairs), must work in the non-orthogonal frame. After
all, it admits a linear transformation to a rectangular one.

Since the wave function space is considered to be complete, meaning that any
conceivable function related with the problem at hand (and any operation on it)
must be retrieved as linear combinations of the WI basis set, let us take the general
element Up as the following expansion:

Up ¼
X
I

uIp WI : ð1:29Þ

Even more, consider that a series of Up components forms a new basis of the
space, instead of the WJ functions that we convened as exact solutions of a
Schrödinger equation. The matrix representation of the Hamiltonian in a general
basis will be as follows:

Hpq ¼ Hð Þpq¼ Up

 �� bH Uq

�� � ¼X
I

X
J

u�IpuJq WIh jbH WJj i ¼
X
I

u�IpuIqEI : ð1:30Þ

We help ourselves assuming the idealized knowledge of the EI elements of the
energy spectrum. The eigenvalues of the Hamiltonian, as should be the case also for
any operator related with a physical observable, are real quantities. We can check
now the self-adjoint property of the Hamiltonian matrix, namely that it equals its
conjugated transpose. Thus, if take the transpose of the Hpq from the above
equation, namely Hqp, we will have it as a summation of the u�IquIpEI terms. If apply
the conjugation to these elements, we transmute them into: uIqu�IpEI ¼ u�IpuIqEI .
Rearranging the summation, one finds that the Hamiltonian matrix is self-adjoint, or
Hermitical:
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Hpq ¼ H�
qp; ð1:31Þ

a property obeyed by any operator with real eigenvalues.
We can work in a generally non-orthogonal basis, with the quantities

UpjUq

 � ¼ Spq 6¼ dpq; ð1:32Þ

called overlap integrals. In principle, we can regard the Up elements as results of
deliberated basis change, starting from the exact functions WI basis, but it is more
reasonable to think that the Up are the primarily known objects, as a sort of
available guess, from which the Hamiltonian equations can be started. The aim is
then to find the reverse transformation of (1.30), arriving to the solution, as a linear
combination of the Up approximations. Besides, the Up can be quite crude esti-
mations, and their set incomplete (as practical compromise), but still can use the
principle of linear combination, to advance toward a reasonable interpolation of the
Hamiltonian eigenvalues–eigenstates problem. Previously, we noted by capital
Greek Psi letter the exact eigenfunctions, WI. Now let us denote by corresponding
lower-case Greek psi letter (wI) the best possible approximations that can be con-
structed from prefabricated pieces, Xp:

wI ¼
Xn
q¼1

cqIXq: ð1:33Þ

To mark the limitations, related to practical tractability, we introduced the finite
size of the basis set, to a n-dimensional vector space, while, previously, avoiding
the notation of limit on running indices, we suggested any necessary size, even an
infinite space. Within the above-defined basis, relationships resembling the
(1.18)–(1.19) conditions for energy and ortho-normalization, can be searched in a
variational manner. This means finding a null variation under formal differentiation:

d wJh jbH wIj i � EI

� �
¼ d wJh jbH wIj i ¼ 0; ð1:34Þ

d wJ jwIh i � dIJð Þ ¼ d wJ jwIh i ¼ 0: ð1:35Þ

The intermediate terms in the above equation are nothing else than the EI and dIJ,
which, regarded as numbers, are quenched in the differentiation process. Since the
two conditions have to be simultaneously accounted, a Lagrange multiplier, e,
linking them is introduced:
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d wJh jbH wIj i � e wJ jwIh i
� �

¼ 0: ð1:36Þ

Expanding the target functions wI and wJ into the X-type basis components, the
above line is rewritten as follows:

d
Xn
p¼1

Xn
q¼1

c�pJcqI Xp

 �� bH Xq

�� �� e XpjXq

 �� �

¼ 0; ð1:37Þ

and then we develop it to:

Xn
p¼1

dc�pJ
Xn
q¼1

cqI Xp

 �� bH Xq

�� �� e XpjXq

 �� �

þ
Xn
q¼1

dcqI
Xn
p¼1

c�pJ Xp

 �� bH Xq

�� �� e XpjXq

 �� �

¼ 0

ð1:38Þ

With arbitrary variation of coefficients the condition turns in the separate van-
ishing each of the inner summations (those factored by dc*), e.g.:

Xn
q¼1

cqI Xp

 ��H Xq

�� �� e XpjXq

 �
 � ¼ 0 ð1:39Þ

This is picked from the first part of the (1.38) equation. In the second part of
(1.38) one can formally swap the p and q indices, obtaining a formula containing
the c�pI factors and the transposed matrix elements Xq


 �� bH Xp

�� �
and XqjXp


 �
. If

apply now the conjugation over the whole factored parenthesis, transform the c�pI
into cpI and, grace to self-adjoint nature of the Hamiltonian and overlap matrices,
we end with a formula equivalent to (1.39) isolated from the first part of (1.38). The
linear equations (1.39) must be accomplished irrespective of the i-index or, in fact,
for every i element in the given vector space. Or, in other words, one may form a
stack of equations like the above one, with i = 1, n, which can be reformulated in
the matrix form:

HcI ¼ eI ScI ; ð1:40Þ

where cI is a column of cpI coefficients associated with specific eI multiplicators,

H is the Hamiltonian matrix with the Xp

 �� bH Xq

�� �
elements and S is the overlap

matrix, made from the XpjXq

 �

integrals. Recall that the Hamiltonian and overlap
matrices are self-adjoint: H = (HT)* = H†, and S = (ST)* = S†. This is a linear
algebra problem, well known as an eigen-system. For square matrices of dimension
n there is a set of n multipliers e, corresponding to the desired EI eigenvalues set
since, with the appropriate matrix c solving the (1.40) equations, a solution similar
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to (1.19) conditions is achieved. In the used notation, the columns of the matrix c
are corresponding to the eigenvectors, namely the combination coefficients that
define an eigenfunction, in the selected basis.

A slight reformulation of (1.40) is done by putting all the e values on the
diagonal of matrix E:

Hc ¼ ScE: ð1:41Þ

Multiplying from the left side with transpose and conjugated coefficient matrix,
symbolized with dagger superscript, c† = (cT)*, the conditions from Eqs. (1.18–1.19)
are fulfilled via the variation formulation from (1.39):

cyHc ¼ cyScE ¼ E ð1:42Þ

The last multiplication brings the overlap to the identity matrix c†Sc = I, while
that involving the Hamiltonian to a diagonal matrix E containing the eigenvalues
EI. The eigenvalues– eigenvectors problem, in its matrix form, stays at the very core
of applied quantum mechanics and computational chemistry.

The Schrödinger equation is soluble for relatively few problems (e.g. harmonic
or Morse oscillators, free 2D or 3D rotors, free particle, or particle in a box).
Among the chemical species, it is approachable only for the hydrogen atom, H, and
hydrogen molecule ion, H2

+. The wave functions of the one-electron problems of H
and H2

+ are called orbitals (atomic orbitals—AOs—or molecular orbitals—MOs,
respectively), a name suggesting the replacement of classical orbits with a new
concept (based on probabilistic meaning of wave function squares). In more
complex problems, the matrix apparatus, in a basis of guessed components, is the
practical way of having approximations for the eigenvalue spectrum. For instance,
an approximate solution of the H2

+ can be conceived as linear combination of
atomic orbitals (LCAO) taken from hydrogen. At the same time, for atoms with
many electrons one may follow the clue of constructing the wave function from
pieces resembling hydrogenic orbitals, or even from simpler functions, thinking
pragmatically and making compromises with different costs in the approximation
level. This is the way followed in quantum chemistry for several decades. The
atomic orbital (AO) bases, which are just materials of construction, not solutions of
a rigorous atomic problem, are used for producing, by linear combination of atomic
orbitals, the molecular orbitals (MOs), that further serve in approximating the
many-electron wave functions, encountered on real scale problems. When one
selects from the realm of quantum mechanics the smaller areas of interest (such as
calculating the energies of formation of molecules from atoms, retrieving the
optimum molecular geometries, computing ionization potentials, and simulating
spectra or other quantities of chemical flavor), the domain of quantum chemistry is
therefore delineated. It is nevertheless a part of structural chemistry, that
includes also experimental approaches, such as the elucidation of molecular
structures by diffraction techniques, or by interpreting details of various spectra
(magnetic resonance, vibrations, visible and ultraviolet records). The orbitals are
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produced in implementations based on variational methods, optimizing their form
iteratively. The interim orbitals, at a given stage of the iteration process, are used to
produce model Hamiltonians (containing effective potentials) that lead subse-
quently to other orbital sets, until a self-consistent field (SCF) level is achieved.
Thus, we anticipate very briefly things that will be detailed in the next chapters,
dedicated to the practical methods of calculations for atoms and molecules. In the
following, we focus again on the fundamental principles of the atom structure.

1.3 Atomic Shell Structure and the Spherical Harmonics

1.3.1 Atomic Orbitals and Quantum Numbers: The
Radial-Angular Factorization of the Atomic Wave
Functions

We are going to discuss here the wave functions named atomic orbitals, which are
the results for the Schrödinger equation of an atom carrying a single electron (aka
hydrogenic atoms, with nuclear charge Z and atomic charge Z − 1, having the H
neutral species as the first member of the series). For atoms with many electrons,
the orbitals are yet useful pieces for constructing approximations of the whole wave
functions. As will be immediately detailed, the atomic orbitals form classes of
symmetry equivalent functions, this leading to a shell pattern of electronic density.

As shown in many manuals and materials introducing the electronic structure,
the orbitals, taken at a given point in the space (function of the x, y, z Cartesian
coordinates or the r, h, u polar ones) are dichotomized in radial, R(r), and angular,
Yl,m, parts, altogether with a numerical factor, Nn,l, ensuring the normalization:

wn;l;m ðx; y; zÞ � wn;l;m ðr; h;uÞ ¼ Nn;l � Rn;lðrÞ � Yl;m h;uð Þ: ð1:43Þ

The components carry indices (n, l, m), the quantum numbers, which are integer
parameters for which certain equations (not detailed here) get solutions. The main
quantum number, with positive integer values, n = 1, 2, …, will not be discussed
now, mentioning only that it bounds the l secondary quantum number to the n − 1
limit, i.e. subtending l = 0, 1, 2, …, n − 1 series. The m index, running on the
m = {−l, −l + 1, … −1, 0, 1, … l − 1, l} set, yields a 2l + 1 count of equivalent
functions. Such collections, called orbital multiplets (or shells, in the specific case
of atomic orbitals), contain congeners with the same symmetry pattern, the objects
being mutually transformable under certain operations such as rotations. An
advanced expression of such an equivalence classification is reached within the
mathematical concept of symmetry group (continuous symmetry groups, more
exactly). In a physical sense, the symmetry equivalence translates into the fact that
the 2l + 1 functions correspond to states with the same energy (so-called degenerate
levels).
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One may say that quantum mechanics had to struggle mostly with the radial part,
since the angular components, Yl,m, were known a long time in advance, since the
1780s, due to French mathematicians Laplace and Legendre. For the hydrogen
atom case, the formulation of the radial part also benefited from the prefabricated
pieces of Laguerre polynomials, provided also in advance of the quantum era, in the
middle of the nineteenth century, by the French mathematician with this family
name. The fortunate coincidence of already existing mathematical building blocks,
to be fed into the atomic theory, can probably be assigned to the inner beauty of the
underlying equations, which was spotted by mathematicians, a priori, irrespective
of their potential physical meaning. This demonstrates also the absolute need for
pure branches of science, unchained from the pressing demands of immediate
practical utility.

The radial-angular separation of the atomic wave functions is made possible by
the spherical nature of the potential exerted from the central nucleus. In fact, the
spherical harmonic functions, whose components are labeled by Yl,m are irreducible
representations of the spherical group. The mathematical notion of symmetry group
is not detailed here. The reader unacquainted with such aspects may accept the
shortcut explanation that the irreducible representations are ways to classify the
types of objects that obey a given symmetry. Molecular symmetries relate with
various polyhedra, while the atom symmetry is the sphere itself.

The spherical harmonics Yl,m are factorized as functions of the h and u polar
coordinates:

Yl;m � Yl;m h;uð Þ ¼ ð2lþ 1Þðl� mÞ!
4pðlþmÞ!

� �1=2

Pm
l cos hð Þ � exp imuð Þ; ð1:44Þ

where Pl,m is the associated Legendre function, the u-based factor accounting for
the axial symmetry (representations on a circle). The first factor in the above
formula ensures the normalization conditions (integration of squared modulus over
the polar coordinates yields the unity).

For completion, but without reasoning on its origin, we present the general form
of associated Legendre polynomials:

Pm
l ðzÞ ¼

ð�1Þm
2ll!

ð1� z2Þm=2 dlþm

dzlþm
z2 � 1

 �l

: ð1:45Þ

Without showing explicitly the normalization factor, for which there are several
conventions, we opt for the version satisfying the ortho-normality as follows:

Yl;m jYl0;m0

 � ¼ Zp

h¼0

Z2p
u¼0

Y�
l;m h;uð ÞYl0;m0 h;uð Þ sin ðhÞdhdu¼ dll0dmm0 : ð1:46Þ
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Another useful convention is the Condon-Shortley phase:

Y�
l;m h;uð Þ ¼ ð�1ÞmYl;�m h;uð Þ: ð1:47Þ

For common purposes it is convenient to do the conversion to real forms, by
summing and subtracting the functions factored by the conjugated exp(±imu). This
gives two series of real functions: one, Yc

l;m, having the Pl;m factored by cos(mu)
and another, Ys

l;m, by sin(mu), except the m = 0 case that has no u dependence
(taking therefore only m > 0 labels).

1.3.2 Intuitive Primer on the Pattern of Atomic Orbitals

A transparent re-notation of the real spherical harmonics uses the transformation of
the trigonometric formula with h and u variables into Cartesian coordinates x, y,
and z, restricted on the unit sphere, i.e. x2 + y2 + z2 = 1. The monomials or poly-
nomials resulting in this way serve for labeling the orbitals, in the most common
cases. For instance, the p orbitals are indexed with the well-known px, py, and pz
subscripts because the l = 1 set of spherical harmonics do resemble the respective
sin(h)cos(u), sin(h)sin(u), and cos(h) polar equivalents of the Cartesian x, y,
z elements. For the d-type set, the dxy, dxz dyz, dx2�y2 , dz2 orbitals are proportional to
the xy, xz, yz, x2 − y2 nominal formulas, while the subscript z2 stands as shorthand
notation for a 2z2 − x2 − y2 polynomial. Going back to the s orbitals, this is the
trivial case of proportionality to the x2 + y2 + z2 combination which equals the
unity, being equivalent at end with the polynomial zero degree. Alternatively, one
may regard the orbitals from the s, p, d, f (and so on) sets as made from combi-
nations of monomials of 0, 1, 2, 3 (etc.) degrees. The s is the trivial zero order case,
while the p orbitals are first-order x, y, and z monomials. The p orbitals are mutually
orthogonal. This means that the product of two different components, integrated
over the all space, e.g.

R
x � y dV , in a loosely defined notation, is null. It can be

figured that the x�y product contains equal amounts of positive and negative zones,
which are summed to zero. We discard here the question of normalization.

For the second-order case, there are six monomial possible components, xy, xz, yz,
x2, y2, and z2. However, since these are linked by the x2 + y2 + z2 = 1 condition, we
end with five components, rearranging the squared components into the x2 − y2 and
2z2 − x2 − y2, which also obey the condition of orthogonality, between them and
against the other monomials, namely xy, xz, and yz. If we consider a basis, made from
the above-listed six monomials, we can see that the first three are orthogonal between
them and against the last three ones. For instance the product of xy with yz,R
xy � yz dV � R y2 � xz dV , has a null volume integral since the y2 factor is positive

or null over all the range, while the xz part creates equal positive and negative content.
For similar reasons, the first three monomials are orthogonal against the squared
ones. At the same time, one may note that the squared forms are not mutually
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orthogonal, since their products, e.g.
R
x2 � y2 dV , are non-negative everywhere and

cannot lead to null integration. The orthogonalization by remixing the x2, y2, and z2

components into the independent x2 − y2 and 2z2 − x2 − y2 and eliminating the
x2 + y2 + z2, as spurious part, leads to the well-known set of d orbitals.

Going to the third order, we have in principle ten monomials, xyz, xy2, x2y, xz2,
x2z, yz2, y2z, x3, y3, z3. However, only seven are independent, as we know for the
l = 3, f-type orbitals, since three components, that can be grouped as x�(x2 + y2 + z2),
y�(x2 + y2 + z2) and z�(x2 + y2 + z2) are in fact equivalent to the p-type set, x, y, z,
and should be removed from the final count. The customary notation of real f orbitals
is as follows: fz3 , fxz2 , fyz2 , fxyz, fzðx2�y2Þ, fxðx2�3y2Þ and fyð3x2�y2Þ, the components
being (except the normalization factors) defined by the respective poly-
nomials z�(2z2 − 3x2 − 3y2), x�(4z2 − x2 − y2), y�(4z2 − x2 − y2), xyz, z�(x2 − y2),
x�(x2 − 3y2) and y�(3x2 − y2). Such forms are obtained either by transforming to
real the Y3,mspherical harmonics (with m = −3 to 3) or by performing the diago-
nalization of the overlap integral matrix between the ten monomials of third order.

In some quantum chemical programs, for sake of expediency, the d and f orbitals
are introduced in the basis of six or ten monomials of second or third order, bringing
together spurious s respective p basis components. The undesired components do not
impinge much in the practice, since, in the applied computational approach, the basis
sets are regarded as rich baskets of trial functions, without strict link with the atom in
a given state. It is the task of iterations, by variational procedures, to pick what is
needed from these bases and optimize a result as close as possible to the physical
reality. For technical reasons, the quantum chemistry may use atomic shells with
larger secondary quantum numbers, l > 3, e.g. g and h orbitals, although these upper
sets are not among the objects of the customary intuition. On the other hand, the
involvement of high quantum numbers is possible in excited states and the atom in
the molecule can be regarded as deformed by mechanisms infusing local excitations
and mixing with the neighbor wave functions.

As pointed out previously, the spherical harmonics are special functions, the
subject of advanced mathematics. However, the mathematical intricacies can partly
be avoided by heuristic suggestions. Thus, in a very qualitative fashion, the real
spherical harmonics are classified as the possible ways of painting a sphere in two
colors, by cutting borders between areas of different type, the so-called nodal
planes. The colors will correspond, in fact, to the “+” and “−” signs, while the nodal
planes are formed by the collection of points where the function becomes null. The
index l from the Yl,m notation, assigned in the atomic theory to the secondary
quantum number, corresponds also to the number of nodal planes. As shown in
Fig. 1.8, the l = 0 case is a uniformly colored sphere, without nodal borders. The
l = 1 implies one border between hemispheres with different coloring (or opposed
sign of the function). Next sets with l = 2, 3 etc. imply further partition with 2, 3,
nodal planes and so on. We can understand from this perspective too why the x2, y2,
and z2 are not “good orbitals”, because being overall positive (or null at respective
x = 0, y = 0 and z = 0) they do not show the proper nodal structure and sign
alternation, assigned to the d orbitals (namely two nodal planes).

30 1 Atomic Structure and Quantum Mechanics



The exp(imu) component of the spherical harmonics, or equivalently, the
real-type description by {sin(mu), cos(mu)} couples determines the axial sym-
metry, or the representation on a circle, suggested in Fig. 1.9, where we see the sign
of trigonometric functions. The first member, m = 0, is the trivial case with the
same sign (conventionally positive) on all the sections. On the left side, we see the
sign of sin(mu) functions which has a nodal plane along the horizontal x axis,
where the function vanishes. By contrary, the cos(mu) has a maximal amplitude at
u = 0, having lobes along x axis. The m index describes the way in which nodal
lines and two-color partitioning may be represented over a circle. The axial sym-
metry factors are common to different spherical harmonics sets. For instance the
m = 0 uniformly colored circle is found from an upper view, along the z axis, on all
the Yl,0 functions represented on a sphere, e.g. s, pz, dz2 , fz3 , etc. The profile colored
in two halves (second line of Fig. 1.9 reading from top to bottom), related with the

sign of the {sin(u), cos(u)} functions is the same for all the Ys
l;1; Y

c
l;1

n o
couples,

e.g. {py, px}, {dyz, dxz}, fxz2 ; fyz2
� �

, from Fig. 1.8 in the view along z. The com-
ponents with two nodal lines and four colored patches, m = 2, appear at spherical
harmonics with l � 2, dxy; dx2�y2

� �
, fxyz; fzðx2�y2Þ
� �

, etc. The last line in Fig. 1.9
shows three nodal lines, appearing first in the fxðx2�3y2Þ; fyð3x2�y2Þ

� �
sequence and,

of course, at sets with l > 3. If the atoms were two-dimensional, then the

Fig. 1.8 The sign pattern for the first sets of real spherical harmonics, represented by coloring
(blue = positive, green = negative). Note that the index l, associated to the quantum number
determining the atomic shells equals the number of nodal planes (borders between positive and
negative areas): l = 0, s-type orbitals, no nodal surface, l = 1, p-type orbitals, one nodal plane,
l = 2, d-type orbitals, two nodal planes, etc.

1.3 Atomic Shell Structure and the Spherical Harmonics 31



Schrödinger equation would be factorized in a radial part and a simple exp(imu)
angular component. The axial symmetry is applied in the diatomic molecules and is
relevant for the general classification of bonding types.

Fig. 1.9 The sign pattern for the axial components of real spherical harmonics, represented by
coloring (blue = positive, green = negative). The number of nodal lines is parallel with the
m index, driving the sign variation in the {sin(mu), cos(mu)} couples (m = 0, no nodes; m = 1,
one nodal line; m = 2, two nodal lines, etc.).
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In Fig. 1.8 we suggested only the signs of angular components of the atomic
orbitals. The usual representation with lobes can be realized by replacing the col-
ored patches with a lobe of the same color, yet bending their profiles toward the null
radius when coming closer the nodal zones. More concretely, the polar maps for the
corresponding angular functions represent the qualitative orbital lobes. A polar map
of a trigonometric function is obtained scanning the angle (the u variable in a 2D
representation or the h and u in the 3D case) and tuning the radius equal to the
absolute value of the represented function.

Thus, the representation of a constant value will be a sphere with the radius
equal to it. Then, the s orbitals, having no angular dependence, are drawn as
spheres, as is well known. Considering the normalization factor, a sphere with
radius

ffiffiffiffiffiffiffiffiffiffi
1=4p

p
is drawn in the left side of Fig. 1.10. The pz orbital is proportional

with the cos(h) function. Its polar representation is obtained scanning a radius
pointing toward a grid of the h and u coordinates (similar to latitude and longitude
on the globe map) and scaling its extension with absolute value of cos(h). The
drawing is symmetric around the z axis (because the function does not depend on
u), and reaches maximal extension (equaling the

ffiffiffiffiffiffiffiffiffiffi
3=4p

p 	 0:49 normalization
factor) at h = 0 and h = p directions. The variation of sign is figured by conven-
tional coloring of the lobes, as seen in the middle panel of Fig. 1.10.

The right side of Fig. 1.10 shows the case of dz2 , proportional to 2z2 − x2 − y2

Cartesian form, or to the 3cos(h)2 − 1 polar representation. The normalization
factor is ð1=2Þ ffiffiffiffiffiffiffiffiffiffi

5=4p
p 	 0:315. At h = 0 and h = p, the product of factor and

trigonometric function yield the maximal value, *0.63, that decides the elongation
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Fig. 1.10 The orbital shapes as polar surfaces of the corresponding trigonometric function related
with their angular part. Namely, for a given direction, from the center to outside, determined by the
h, u, polar coordinate, the distance to the surface is proportional to the amplitude of the wave
function. The surface is “squeezed” to touch the center in the nodal zones, where the represented
function is null. The sign of function is marked by coloring: positive = blue, green = negative.
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of the lobe. At h values varying slowly from the poles toward the “tropics”, the
function decreases rapidly, e.g. at h = p/6 the distance between center and distance
is about *0.4. The polar shape goes toward a nodal plane that happens when 3cos
(h)2 = 1, i.e. at a h ¼ arccosð ffiffiffiffiffiffiffiffi

1=3
p Þ *0.955 rad *54.7 degrees, where the radius

collapses to zero. In between h ¼ arccosð ffiffiffiffiffiffiffiffi
1=3

p Þ and h ¼ p� arccosð ffiffiffiffiffiffiffiffi
1=3

p Þ the
module of radius increases again (while the sign turns negative) with a new
maximum at equator, h = p/2. The shape is symmetric at the rotation around the
z axis, since no u dependence occurs in the chosen function.

1.3.3 Toward Setting the Schrödinger Equation in Atoms

We will not solve the Schrödinger equation for the hydrogen-like atoms. In turn, we
will perform certain transformations that may suggest the structure of the solutions.
It is useful to rewrite the kinetic energy operator in spherical coordinates, or its core
made of the Delta symbol (alias Nabla square). It is a basic exercise of coordinate
changing, for which we present the result:

D ¼ r2 ¼ @2

@r2
þ 2

r
@

@r
þ 1

r2
@2

@h2
þ cos h

sin h
sin u

@

@u
þ 1

sin hð Þ2
@2

@u2

 !
: ð1:48Þ

It is interesting to remark that the angular part is proportional (by −ħ2r2) to the
square of momentum operator:

l̂2 ¼ l̂2x þ l̂2y þ l̂2z þ l̂x l̂y þ l̂y l̂x þ l̂x l̂z þ l̂z l̂x þ l̂z l̂y þ l̂y l̂z; ð1:49Þ

the Nabla square operator being then tailored as follows:

r2 ¼ @2

@r2
þ 2

r
@

@r
� 1

�h2
l̂2

r2
; ð1:50Þ

which is a form to remember.
Coming back to the spherical harmonics, one may see that, considering the

separation into factors function of h and u variables, like in (1.44), applying the z-
component of kinetic momentum directly verifies the following relationship:

l̂z Yl;m ¼ �hmYl;m: ð1:51Þ

For simplicity, we omit detailing the polar coordinates, keeping in mind the
Ylm � Ylm(h, u) equivalence. The above equation looks like an eigenvalue equa-
tion, with the general format suggested in (1.5). In fact, the spherical harmonics are
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eigenfunctions of the z-component of kinetic momentum and the m indices are the lz
eigenvalues: m � lz. The kinetic operator obeys another operator equation:

l̂2Yl;m ¼ �h2l lþ 1ð ÞYl;m; ð1:52Þ

which establishes the modulus of kinetic moment operator. In atomic units, one
may consider m and l(l + 1) as eigenvalues for the projection and square
momentum operators. Later on, we will see this pattern for other quantum operators
(the spin S and the J resultant of spin and orbital moments). In evasive manner, one
may observe that the 2l + 1 degeneracy looks like a “density of states” (number of
states found in an infinitesimal interval, divided to the interval size) associated with
the d[l(l + 1)]/dl = 2l + 1 derivative. This is a peculiarity, interpreted with reserve,
since, of course, we are not allowed to take derivatives with respect of integer
quantum numbers.

The spherical harmonics are obeying the Laplace equation, this being their birth
certificate:

r2 rlYl;m

 � ¼ 0: ð1:53Þ

For this reason, the Nabla square operator is also called Laplacian. Expanding
the operator with the previously discussed equivalence (1.50), the Laplace equation
becomes:

@2

@r2
rlYl;m

 �þ 2

r

@ rlYl;m

 �
@r

� 1

�h2
rl�2̂l2 Yl;m


 � ¼ 0: ð1:54Þ

Considering that the radial derivatives do not operate over the Ylm factor and
dividing with the rl−2 factor, one retrieves the (1.53) eigenvalue of the squared
kinetic momentum. The rlYlm functions are called solid spherical harmonics. The
solid spherical harmonics obey the same eigenvalue relationships pointed out for
the genuine functions, since the multiplication with the isotropic radial factors does
not alter their properties with respect of polar coordinates.

One may observe that the rl factor brings a dimensionality that was suggested
previously when the spherical harmonics were discussed in terms of the polynomial
expressions. If we return to Cartesian coordinates, the solutions of the Laplace
equation can be envisaged as linear combinations of monomials of rank l, namely
xiyjzk, with i + j + k = l. The first cases, with l = 0 and 1 are trivial. The r0Y00
function is a constant that will yield immediately null value at derivation by
Laplacian operator. The l = 1 is also immediate, since any x, y, or z component, or
any arbitrary linear combination of them, will yield zero under the second
derivative of the considered operator. In this way, the real solutions were tacitly
considered. The imaginary forms can be equally conceived too, as corresponding
linear combinations of the real harmonics. The l = 2 is yet simple. Any mixed
monomial xy, xz, or yz, are also becoming null after operated with the
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@=@x2; @=@y2; and @=@z2 operator components. The remaining two l = 2 congeners
can be put in simple form: ax2 + bx2 + cx2 and a′x2 + b′x2 + c′x2. The action of the
Laplacian on the first combination is straightforward: @=@x2 þ @=@y2 þ @=@z2ð Þ
(ax2 + bx 2 + cx2) = a + b + c, the second function yielding, similarly, the a′ +
b′ + c′ result. The Laplace equation on these forms reads simply as a + b + c = 0
and a′ + b′ + c′ = 0. Disregarding other conditions imposed on the function, one
may see that possible choices, are a = −1, b = −1, c = 2 and a′ = 1, b′ = −1,
c′ = 0. This choice also obeys the orthogonality condition aa′ + bb′ + cc′ = 0.
Rescaling with (a2 + b2 + c2)−1/2 and (a′2 + b′2 + c′2)−1/2 respective factors, the
normalization is also achieved, the obtained functions being the dz2 and dx2�y2

orbitals. This pair of solutions is not unique. For instance the permutation of (a, b, c)
and (a′, b′, c′) sets of coefficients are also solutions. This means that, for instance,
dx2 and dy2�z2 are equally good orbitals, the choice of axis of quantization, usually
taken as z, being a conventional step. Higher l solutions can in principle be con-
structed as combination of products between x, y, z and elements of a previously
resolved l − 1 harmonics, or reworking from scratch any situation as linear
expansion in terms of xiyjzk monomials (with i + j + k = l). With the above diva-
gation, we hope that the topic of spherical harmonics has been made a bit more
vividly palpable.

1.3.4 The Schrödinger Equation for the One-Electron
Atom: The Radial Part

Let us write the Schrödinger equation for one electron and a fixed nucleus with
Z charge. This aim can be achieved by replacing in the generic formula (1.15) the
kinetic energy for a single electron, ascribed in the polar form (1.50) and the
electrostatic term as potential V, imposing also the radial-angular factorization of
the wave functions:

� �h2

2me
r2 RðrÞYl;mðh;uÞ

 �� Ze2

4pe0r
RðrÞYl;mðh;uÞ ¼ E RðrÞYl;mðh;uÞ: ð1:55Þ

In the following we will switch to the convenient scale of atomic units, where the
factors ħ2/2me and e

2/4pe0 become both equal to 1 (hereme and e are mass and charge
of the electron, while e0 is the permittivity of the vacuum). We also renounce spec-
ifying the explicit dependence on r in the radial part, or on h and u in the spherical
harmonics. Then, the schematized equation for the one-electron atom becomes:

� 1
2
r2 RYl;m

 �� Z

r
RYl;m ¼ E RYl;m: ð1:56Þ
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In order to use the previously discussed Lagrange equation (1.53), let us enforce
a formal re-factorization, introducing the rlYl,m solid spherical harmonics, at the
expense of making the R/rl the new radial part:

R � Yl;m ) R
rl

� �
� rlYl;m

 �

: ð1:57Þ

The Nabla square operator can be written as follows:

r2 R
rl

� �
rlYl;m

 �� 	

¼ @2

@r2
R
rl

� �
þ 2ðlþ 1Þ

r
@

@r
R
rl

� �� 	
rlYl;m þ R

rl

� �
r2 rlYl;m

 �

;

ð1:58Þ

observing that the last term contains the vanishing Laplace equation (1.53) as
factor. This leads to a form where the angular part vanished:

� 1
2

@2

@r2
R
rl

� �
þ 2ðlþ 1Þ

r
@

@r
R
rl

� �� 	
� Z

r
R
rl

� �
¼ E

R
rl

� �
: ð1:59Þ

A further handling leads to:

� 1
2

@2R
@r2

þ 2
r
@R
@r

� lðlþ 1Þ
r2

R

� 	
� Z

r
R ¼ ER; ð1:60Þ

which, otherwise, can be obtained replacing in (1.55) the spherical harmonics
property of producing eigenvalues for squared kinetic moment, combining (1.50)
and (1.52) equations. Multiplying the (1.60) equation by r2, the l(l + 1)R term
remains the only one not affected by a factor that enforces vanishing at r = 0. This
probes that, nearby nucleus if l > 0, the radial function must trend to zero. The l = 0
case is allowed to be finite, since the discussed cancelation is ensured by the l(l + 1)
factor.

Consider the l = 0 case (which means the discarding of the 1/r2 term) and
multiply now by r the (1.60) equation. In this case, the parts that are not enforced to
vanish at r = 0 are the first derivative and the Coulomb terms, which must then
cancel each other. In this way, we reached a condition known as Kato’s cusp (Kato
1957):

@R
@r

� �
r!0

¼ �ZR; ð1:61Þ

stating the form of wave function and related density at nucleus. The density at
nucleus is finite, but discontinuous, with a sharp pattern. Note that the nucleus
density comes only from l = 0 functions. At infinity, all the terms with r in
denominator are going extinct, having then:
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@r2
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r!1

¼ �2ER ¼ 2 Ej jR: ð1:62Þ

Knowing that bound states must keep E < 0 and that a zero energy is already the
atom with its electron ionized, we transmuted the minus factor to the module of the
energy. Then, in atomic units, the tail of the wave function at large distances would
be:

RðrÞjr!1 	 exp �
ffiffiffiffiffiffiffiffiffi
2 Ej j

p
r

� �
; ð1:63Þ

where the negative sign inside the exponential function ensures its proper decay to
zero at large r, since we do not want the electron outside the atom orbits.

Several other common functions can satisfy the (1.63) condition, e.g. sine,
cosine, or the exponential form for periodic conditions. Not allowing the function to
extend at infinity, the periodic solutions are ruled out, choosing then the (1.63)
exponential with negative coefficient, quenched at infinity.

Multiplying by r the whole Eq. (1.60), one observes the possibility of a rear-
rangement implying only the second derivative term; at the expense of reformu-
lating the radial part as the rR function:
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� 	

� Z
r
ðrRÞ ¼ E � ðrRÞ: ð1:64Þ

This formulation of radial function is convenient, since its square, (rR)2, renders
directly the radial density probability and the normalization condition:

Z1
r¼0

rRðrÞð Þ2dr ¼ 1: ð1:65Þ

Playing with variable changes and choosing

q ¼ ðlþ 1Þr; ð1:66Þ

Equation (1.64) is brought to
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which, simplified by (l + 1)2, becomes:
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: ð1:68Þ

Rescaling the terms, the radial equation becomes:

� 1
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@2eR
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þ 2
q
@eR
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" #
�
eZ
q
eR ¼ eE eR; ð1:69Þ

where eZ ¼ Z= lþ 1ð Þ, eE ¼ E= lþ 1ð Þ2 and eR ¼ R=ql.
In this format, there is no explicit dependence on l (although tacitly incorporated

in the performed rescaling), so that one may suggest that different classes of orbitals
have isomorphous master equations. For l = 0, one may directly suggest a first
simple solution:

eR ¼ expð�eZqÞ: ð1:70Þ

One may immediately check that the first derivative of this function cancels the
electrostatic term and the energy remains identical to:

eE ¼ �eZ 2=2 ð1:71Þ

In the l = 0 case the transformed variables and functions are identical to the
genuine ones (R, Z, E), i.e.

R1 ¼ expð�ZqÞ � expð�ZrÞ; ð1:72Þ

and

E1 ¼ �Z2=2: ð1:73Þ

We will pass on to non-null l quantum numbers, aiming to restore the function by
the reverse transformation R ¼ qleR. Actually, the q is equivalent to r, without
considering its formal back-transformation, since both variables are playing the same
variation from 0 to ∞, being mutually replaceable. The l = 1 case can be tackled
immediately by replacing Z ! Z/2 and E ! E/4, reaching the following solutions:

R2 ¼ q expð�ZqÞ � r expð�Zr=2Þ; ð1:74Þ

E2 ¼ E1=4 ¼ �ð1=2Þ Z=2ð Þ2: ð1:75Þ

Here, the normalization factor was neglected, since it is not changing the
structure of the differential equations, while it is explicitly useful in matrix
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formulation of the problem. In similar manner, the l general case, treated with the
Z ! Z/(l + 1) and E ! E/(l + 1) 2 replacements leads to:

Rlþ 1 ¼ ql expð�ZqÞ � rl expð�Zr=ðlþ 1ÞÞ; ð1:76Þ

Elþ 1 ¼ E1=ðlþ 1Þ2 ¼ �ð1=2Þ Z=ðlþ 1Þð Þ2: ð1:77Þ

The E1, E2, …, En must be the lowest eigenvalues encountered for the sets of
l = 0, 1, …, n − 1 quantum numbers. At the same time, the sets may have multiple
solutions, with higher energies. However, in (1.69) we formulated a general
equation for any possible case. Then, we must find repeated solutions in each l set,
based on the formal equivalence of equations, irrespective of this index. Therefore,
the E1, E2, …, En solutions are expected in the l = 0 case too. Analogously, the
l = 1 starts with E2, but will continue with the same elements in the row E2, E3,…, En.
The l = 2 spans the E3, …, En series, etc. Then, one may regroup the solutions in
classes of energy equivalence: E1 appears once, for l = 0, E2 occurs for l = 0 and l = 1,
E3 for l = 0, l = 1, and l = 2, etc. In general, the En level admits n solutions, running in
the l = 0, …, n − 1 interval. We reached then the suggestion of a regularity managed
by an index n that gets the quality of a quantum number.

The above reasoning is not a completed analytical proof, but it seems a sug-
gestive way for guessing the pattern of eigenvalues for the atom with one electron,
driven by a central electrostatic field. Interestingly, the energy formulas are the
same as in the case of a Bohr atom:

En ¼ E1

n2
¼ � Z2

2n2
: ð1:78Þ

The simplified reasoning does not cover the finding of the full sets of wave
functions. The (1.76) formulas are valid only for the l = n − 1 elements, while the
l < n − 1 cases of a given n are getting more complicated (multi-exponential)
expressions.

The n index can be identified as the main quantum number, and l as the sec-
ondary one (l = 0, 1, … n − 1). Recall the magnetic quantum number, m running
from −l to +l, appearing as index in the Yl,mspherical harmonics angular factor,
going back from radial problem, to the full format of atomic orbitals.

1.3.5 A Qualitative Analysis of the Radial Nodal Structure
of the Atomic Orbitals

Resuming, the atomic structure can described as made of shells with 2l + 1 orbitals,
labeled by merging the n quantum number and the letter customized for the first
l values (s, p, d, f for respective l = 0, 1, 2, 3). The larger l = 4, 5, etc. indices get
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the letters in the alphabetic order, g, h, etc. skipping however the j letter (reserved
for the j quantum number met in the quantum relativistic theory of the atom) and
also s or p (taken at beginning). Thus, the hydrogen levels are successively (1s)
(2s2p)(3s3p3d) etc.

Aside the 2l + 1 degeneracy determined by the symmetry equivalence of the Yl,m
spherical harmonics, we found (strictly for the case of one-electron atom) an energy
equality relationship for different l sets bound to the same main quantum number, n,
expressed by (1.78). The chemists are inclined to assume different energies for each
l, but this is a consequence of using the orbitals as effective approximations for the
many-electron atom. If we ignore the relativistic effects (which lead to another split
pattern, under the systematics of the j quantum number), in the hydrogen-type (one
electron) atoms all l shells originating from the same n are equal in energy.

As discussed previously, the l quantum number induces l nodal contours on the
surface of the sphere scanned in h, u coordinates. The radial part has, in its series of
solutions, also an increasing number of nodes. For instance l = 0 starts with no node
at n = 1, and has 1, 2, … etc. crosses with the zero value axis for n = 2, 3,… and so
on. The l = 1 starts nodeless at n = 2 and acquires one node at each n step. In fact,
each first apparition of an l at n = l + 1 has no node, these occuring at higher
quantum numbers, at energies growing with the number of nodes. Or, in other words,
each function characterized by n and l quantum numbers shows n − l − 1 radial
nodes and l angular ones. Then, each quantum number n is characterized by a total of
n − 1 nodes, counting both the radial and angular ones. Thus, the n = 2 case must be
characterized by one node. The angular part of n = 2 and l = 1 already has one node,
so that the radial factor has none. In turn, the l = 0 (n = 2), being isotropic, must form
a node in the radial part. At n = 3 nodes are as follows: two angular and none radial
for l = 2, one angular and one radial for l = 1, none angular and two radial for l = 0.
There is a certain topology equivalence between the angular and radial nodes, that
ultimately leads to the somewhat unexpected degeneracy along the l = 0, 1,… n − 1
series.

Without dedicating here to mathematical scrupulosity, just allowing ourselves a
qualitative evasiveness, we present in Fig. 1.11 a process persuading the idea of
radial versus angular equivalency in the nodal pattern. Starting from a plane-wave
picture (that admits, by symmetry, solutions of exp(ikx), exp(iky), exp(ikz), or their
sine-cosine equivalents) with symmetry equivalent solutions (see left side of
Fig. 1.11) the drawn landscape is deformed, by a procedure resembling those called
in mathematics conformal mapping (Di Francesco et al. 1997). An intermediate
stage of this transformation is suggested in the middle part of Fig. 1.11. After
completing the conformal mapping, we arrive (on the right side of Fig. 1.11) at
figures similar to the cases of n = 2, l = 0 (with one radial node) versus n = 2, l = 1
(with one angular node).
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1.3.6 The Complete Analytic Formulas
of the Atomic Orbitals

One may loosely suggest a certain analogy between the associated Legendre
polynomials Pn

l (z) that decide the node pattern in the angular part and the asso-
ciated Laguerre functions contained in the general expression of the radial part for
the Schrödinger solutions of the one-electron atom.

The associated Laguerre polynomials are defined as follows:

LanðrÞ ¼
r�a expðrÞ

n!
dn

drn
expð�rÞrnþ að Þ; ð1:79Þ

this being also a solution ready-made before the age of quantum mechanics, by
mathematicians of past centuries, endeavoring to solve equations of different
general patterns. Since the second-order equations were the focus of mathematics
from the eighteenth and the nineteenth centuries, and the Schrödinger equation
belongs to this class, it benefited from the outlining of several prototypic solutions.
Aside the already encountered Legendre and Laguerre functions, we point also to
the utility of Hermite polynomials (actually, initially due also to Legendre) in the
quantum solutions of the harmonic oscillator. All these special functions have also
the feature of orthogonality between the congeners of the series (Abramowitz and
Stegun 1965), a property of essential importance in conceptual and applied quan-
tum theory. Such polynomials are of great importance in general numerical anal-
ysis, able to do exact integration or interpolations of an arbitrary function, working
with a finite number of properly selected points along the investigated curve.

Fig. 1.11 A suggestion of topological equivalence between radial and angular nodes in states
with different l quantum numbers belonging to the same n set. A conformal mapping of
plane-wave solutions into the spherical ones is qualitatively drawn. The solutions with the same
energy for the one-electron atom have the same total in radial plus angular nodes.
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Various programming media offer convenient calls of the special functions. For
instance, in the current most powerful program for symbolic algebra, named
MathematicaTM (Wolfram Research 2014; Wolfram 2003), the keywords for some
of the invoked functions are: LaguerreL, LegendreP, SphericalHarmonicY, and
HermiteH.

We complete now the topic of the Schrödinger equation for the hydrogen atom
and one-electron congeners by defining the radial function met in the (1.43) formula
in terms of Laguerre associate polynomials:

Rn;lðrÞ ¼ 2Zr
na0

� �l

exp � Zr
na0

� �
L2lþ 1
n�l�1

2Zr
na0

� �
: ð1:80Þ

The corresponding normalization factor from (1.43) is:

Nn;l ¼ 2Z
na0

� �3=2 ðn� l� 1Þ!
2nðnþ lÞ!

� �1=2

: ð1:81Þ

In the previous series of equations we worked in atomic units, where the radius
of the first Bohr orbit is a0 = 1. If we want to express the radial function in other
units, we must introduce the corresponding value, e.g. a0 = 0.529177 Å, if we
follow the Ångstrom length unit (1 Å = 10−10 m ). Introducing the above-defined
radial component and its normalization factor in generic formula of orbital func-
tions (1.43) altogether with previously discussed angular functions, one obtains the
complete description of the Schrödinger solutions for the atom with one electron
and fixed nucleus with Z point charge.

For a touch of concreteness, we present below a MathematicaTM definition for
the general wave functions of the one-electron atom as function of atomic charge
(see first square parenthesis), the set of quantum numbers (the second parenthesis),
and space variables (the third square parenthesis):

psiH[Z_][n_, l_, m_][r_, theta_, phi_] :=

Sqrt[((2 Z/n)^3) (n - l - 1)!/(2 n*(n + l)!)]*

(2 Z*r/n)^l Exp[-Z*r/n] *LaguerreL[n - l - 1, 2 l + 1, 2 Z*r/n]*

SphericalHarmonicY[l, m, theta, phi]

This formula, applied in one row (here truncated for editing reasons) can be
called with a combination of numeric and symbolic variables, to obtain concrete
analytic definitions of the orbitals, or to handle them by plotting, integrating, etc.
The above form is assumed in atomic units. For other options, must replace by the
corresponding r/a0 ratio the actual r variable.
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For instance, the successive calls:

psiH[1][1,0,0][r,h,u],psiH[1][2,0,0][r,h,u],psiH[1][2,1,-1][r,h,u],

psiH[1][2,1,0][r,h,u], psiH[1][2,1,1][r,h,u]

will render the functions belonging to the n = 1, 2 orbital sets. Or, the command.

Plot[{r*psiH[1][1,0,0][r,0,0],r*psiH[1][2,0,0][r,0,0],

r*psiH[1][2,1,0][r,0,0]},{r,0,10},PlotStyle->{Red, Green, Blue}]

is an example for drawing (in respective red, blue, and green colors) the radial
dependencies of the rw1,0,0(r, 0, 0), rw2,0,0(r,0,0), rw2,1,0(r, 0, 0) functions,
revealing the maxima at a0 and about 4a0 for the n = 1 and n = 2 cases, respec-
tively. More concretely, these are the maxima for the 1s and 2p curves, since the 2s
(with one node) has two extrema at 3 ± 51/2, a fact that can be checked equating in
MathematicaTM the vanishing of the first derivative of the rw2,1,0(r, 0, 0), by typing

Solve[D[r*psiH[1][2,0,0][r,0,0], {r,1}] == 0, {r,1}]

It is interesting that for the 1s function, having the maximum of rR radial
function at exactly the a0 value predicted by the Bohr model, the quantum inter-
pretation does not correspond, in fact, to the electron orbiting in the planetary style.
In a permissive perspective, we may be tempted to perceive the spherical profile of
the wave function with maximum density of probability at the Bohr orbit as the
puckering of the trajectory (by positional uncertainty) and tumbling of the 2D Bohr
picture into a 3D average. However, the l = 0 quantum number tells us that the
electron in this state has no freedom to move around the atom, because of the null
kinetic momentum. Therefore, the s-type orbitals are merely the result of the denied
fall of the electron on the nucleus along the radius lines, rather than of equilibration
between centrifugal and electrostatic attraction forces, as conceived in the Bohr
model.

1.3.7 A Philosophical Divagation

Fantasizing a bit with a sort of counterfactual history (what would have happened if
some past events were different from their actual record), we speculate that, in a
branch of not materialized history, it was possible to have a quantum description of
the atom even in advance of the proper quantum mechanics. Thus, if a genius of
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multilateral knowledge had seen a connection with the classical image from
antiquity (revived by John Dalton in the first decade after 1800), according to which
atoms are spheres, it appears that these objects can be described with harmonic
functions (available already at the beginning of the nineteenth century). Let us
further realize a parallelism between the length of lines (2, 4, 10, 14) from the
periodic table (attributed to Mendeleev, in 1869) and the double of the (2l + 1)
multiplicities of the Ylm sets. Then, we speculate that an atomic model could have
emerged from such a vision. However, the first periodic tables had not yet reached
the optimal level of organization of the modern ones (deliberately correlated with
the known atomic structure) and maybe the suggested heuristic correlation was not
very visible. Actually, Bohr, who headed the quantum theory evolution even
beyond the frames of his incipient model, was quite close to such correlative ideas,
bringing the clue of spherical symmetry and the possibility of intermediate shells as
rationale for poly-electronic atomic spectra (Bohr 1923). It is interesting to con-
template that factors related to spherical symmetry (as the spherical harmonics were
described), played a decisive role in the structure of the atom and finally in the
properties of the whole series of existing atoms.

We have clarified now the complete wave function structure of the first element,
the hydrogen. Even though one cannot exactly solve the quantum equations, we can
say that, while accounting for the heavier atoms with many electrons, for the
elementary sake of symmetry, the spherical harmonics should be retrieved. It
appears that a “song of spheres” is shaping somehow the structure of our material
universe.

1.4 Elements of Relativistic Quantum Mechanics

1.4.1 The Electronic Spin, the Missing Link Between
Atomic Shell Scheme and Chemical Systematics
from the Periodic Table of Elements

The relativistic quantum theory appeared in 1928, due to Paul Adrien Maurice
Dirac (1902–84), soon after Heisenberg’s matrix mechanics (1925) and
Schrödinger’s wave equation (1926). Given the vogue of Einstein’s restricted and
generalized relativity theories (in 1905 and 1915), a quantum version was a must (a
quest still continuing nowadays). Such a challenge was not just a matter of pride
and honor, but a necessary completion in knowing the true nature of the atomic
structure. The major advance of the relativistic quantum theory consisted not only
in a quantitative correction to the energy scheme, which is quite necessary for heavy
atoms (where the expectation values for the electron speed on lower orbits reach
significant fractions from the light speed) but in giving the physical fundaments for
new quantum numbers.
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Wolfgang Pauli (1900–58) pointed out the need for a supplementary quantum
number in 1924, by the analysis of complex spectra (Pauli 1924). The atomic levels
of hydrogen show, experimentally, a finer structure than predicted by the wave
mechanics and undergo further splitting in a magnetic field. The helium atom could
be guessed as containing two electrons sharing the same hydrogen-type orbit, but it
was not clear why the heavier atoms do not accommodate all the electrons on the
same lower state. Such puzzles were solved with Pauli’s exclusion principle adding
a new double-valued quantum number (Pauli 1925), now known as the spin of the
electron (sz). This postulate says that the atom is not allowed to have electrons with
a repeated set of quantum numbers (n, l, m from Schrödinger’s equation, and the
newly added sz). If those resulting from the solution of space-coordinate based
equations are coincident, the further one acts as seemingly allowing the coupling of
electrons in pairs on the same (n, l, m) orbital, by taking two different indices
(whose non-coincidence decides different quantum sets).

As he recalls in his Nobel lecture (awarded for the exclusion principle and
related merits) (Pauli 1964), there were serious efforts in the frame of what we call
now “old quantum mechanics” to figure a relationship between the atom structure
and the periodic table. Rydberg observed the correlation between the lengths of
periodic table rows, 2, 8, 18, and the 2n2 count. Like Lewis from another per-
spective, Sommerfeld was speculating about the number 8 as “magic configura-
tion”, by the electron arrangement in the corners of a cube. Bohr came up with ideas
on a 3D atom (Bohr 1923) that implied quantum numbers related with the
degeneracy and angular momentum, going conceptually (though not quantitatively
and analytically) quite close to the complete picture, as resulted later from
Schrödinger’s solution.

The idea of electronic spin was proposed initially by a less famous physicist,
Ralph Kronig (1904–95), of German origin, who received his academic degrees in
the United States. He described his image of a rotating electron generating its own
magnetic field, with two orientations, in some short encounters with Pauli (and in
subsequent letters). Pauli initially mocked Kronig about such a classical mechanics
flavored idea, a fact that hindered him from publishing or disseminating his point.
Fortunately, Kronig was not bitter toward Pauli, and they remained friends (Pauli
calling Kronig as assistant during his professorship tenure in Zürich, in 1928).
Shortly after Kronig’s and Pauli’s pre-relativistic ideas about the electronic spin, the
young Dutch scientists Uhlenbeck and Goudsmit (1925) cemented in 1925 the
concept of a quantum number with s = 1/2 value and two sz = ±1/2 projections,
interpreting the experiments of Gerlach and Stern (1922). These were using silver
atoms, not free electrons, but it was clear that the behavior was intrinsic to the
electron itself. Later tests on electrons confirmed this fact (Batelaan et al. 1997).
The idea of the new quantum number, the spin, was spinning around the com-
munity of quantum scientists for quite a while, but it received full theoretical
support with Dirac’s relativistic equation.

Before turning to the relativistic approach, an illustration of the relationship
between the periodic table and the scheme of the electrons filling the atomic shells
is given in Fig. 1.12. The idea is that the orbitals are used to accommodate
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electrons. The filling of symmetry-equivalent orbital components belonging to a
given quantum number l gives rise to an electronic shell. The spin quantum number,
with its two projections, doubles the occupation capacity of a shell, from the 2l + 1
orbital multiplicity to 4l + 2. Spin–orbital functions are defined by coupling the
orbital denominations with the spin projection. The two orientations of the spin are
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Fig. 1.12 The scheme of the periodic table and its relationship with the ordering of the electron
placement in the orbital shells of the atoms. The rows are assimilated to the spin–orbitals sets for
given l quantum number. For a certain atom, the position in the periodic table indicates the shells
where the “last” electron is placed. The cells with smaller indices (upper and at the left) indicate
orbitals already completed. The aufbau ordering is obtained reading the cells of the periodic table
from left to the right and then from up to down, until the targeted element is reached. Considering
Hund’s rule of maximal spin multiplicity, the first halves of the rows are conventionally made of a
spin–orbitals (sz = + 1/2) while the second parts correspond to the b spin–orbitals (sz = −1/2).
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labeled a and b, corresponding to the +1/2 and −1/2 projections. The spin-up versus
spin-down and figurative representation with arrows having such orientations is
also used as customary labeling. One may understand the fractional quantum
s number as necessary to get the doublet multiplicity when applying the 2s + 1
formula, in analogy to the 2l + 1 count.

The occupation scheme for most atoms can be obtained with a simple algorithm
by reading the periodic table (see Fig. 1.12). Taking the lines from the left to right,
and advancing progressively to the next rows, from up to down, exactly like the
usual reading of a page, one finds the approximate ordering of orbital energies. The
orbitals are occupied in a scheme similar to the successive laying of bricks first
along horizontal lines, then from lower to higher potential energy. This algorithm,
called “aufbau”, the German word for building, or, more specifically, for growing a
brick wall, is kept in the quantum chemical lexicon in honor of the German pioneers
(e.g. Hund) who figured these regularities. In the convention of the periodic table,
the energy of orbitals grows from up to down, so that with respect of vertical, the
bricks are placed actually in reverse order. A better suggestion is obtained by
bending the periodic tables to match the ideas of orbits, the outer ones having
smaller absolute values of negative energy (see Fig. 1.12).

With the isomorphism between shell structure and periodic table established, we
can find, in a certain approximation, how the spin–orbitals related with the cells in
the periodic table are occupied in the ground-state of a given atom. Since in the
poly-electronic atom the orbitals do not hold the same properties as in the hydrogen
scheme, the ordering is different from those driven by the n quantum index,
especially for the orbitals with higher l quantum numbers. Thus, the 3d orbitals are
not equal in energy with the 3s and 3p shell, being interlaced between the 4s and 4p
ones. A similar shift occurs for the 4d and 5d. The 4f orbitals are more displaced in
comparison to a hydrogen-type scheme, being placed above the 5s, 4d, and 5p
shells. Thus, the structure of the periodic table is a mnemonic for the effective
orbital ordering in the complex atom.

Thus, the “periodic table” of orbitals, starting from first position is read as: 1sa,
1sb, 2sa, 2sb, 3 � (2pa), 3 � (2pb), 3sa, 3sb, 3 � (3pa), 3 � (2pb), 4sa, 4sb,
5 � (3da), 5 � (3db), etc. However, there are several reversions from the simple
scheme, due to intrinsic complexities induced by the so-called exchange effects, or
by the interference of relativity consequences. For instance, the configuration of the
neutral vanadium atom can be read as having the 1s, 2s2p, 3s3p shells completed in
the same manner as the previous noble gas, the argon, so that one may ascribe as
[Ar]4s23d3 its atomic ground structure, the three electrons in the d shell being
understood as spin up: 3d3a. The structure of the next atom, chromium, is not
ending with a 3d4a configuration, because the exchange effects are leading to a
specific preference for the half-completed shell, 3d5a, so that the chromium has the
particular [Ar]4s13d5 configuration. A similar situation occurs at the end of the 3d
series, the copper having [Ar]4s13d10 instead of simplistically predicted [Ar]4s23d9.
The situation occurs also in the positions preceding half- or full- completion of 4d
and 5d shells, even with more inversions from the regular completion, for heavy
transition metal elements. Another irregular step occurs at the border with
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lanthanides and actinides. For instance, according to the periodic table reading
algorithm, the lanthanum should have the [Xe]6s24f1 configuration, showing
instead [Xe]6s25d1. The next lanthanide element, cerium, shows [Xe]6s24f15d1,
while the simple mnemonics gives [Xe]6s24f2. The next elements show a regular
configuration [Xe]6s24fn with n = 3–7, 9–14, except the central element, gadolin-
ium, that adopts a [Xe]6s24f75d1 state, for the sake of stabilizing features of the
half-filled shell. The lutetium, usually considered as a lanthanide, starts filling the
5d orbitals, having a closed 4f shell [Xe]6s24f145d1, so that it is included in a
d-block in the actual scheme of the periodic table. In common prints, the lan-
thanides and actinides are outlined as footnotes, showing only the inset between the
s and d blocks at sixth and seventh rows. If both La and Lu are considered lan-
thanides, their row will count 15 cells, while the capacity of the f shell is limited to
14, being formally necessary to move one of them to the d-block. Otherwise, since
the chemistry of lanthanides and actinides is merely based on ionized atoms, where
the ns and (n − 1)d electrons are stripped, the properties are due to the (n − 2)f
shells (with specific n = 6, 7 quantum numbers).

Thus, the orbitals are used as building blocks for the atom with many electrons.
Qualitatively, electrons are housed in different spin–orbitals, which cannot contain
more than one electron. Or, in other words, one orbital contains no more than two
electrons that are then of opposite spin. In this way, since one spin–orbital is
characterized, in atom, by a set of four quantum numbers, n (principal), l (orbital),
m (magnetic), and sz (spin), the Pauli exclusion principle is satisfied, having no
repeated set of indices. Quantitatively, for tackling the quantum Hamiltonian of the
poly-electronic atom, some more technical details have to be worked. In a following
chapter, the trial wave functions will be presented as determinants, that have the
property of incorporating the exclusion principle (two identical functions imply
equal lines and the quenching of the determinant) fulfilling also the idea of indis-
cernible electrons (implying all possible permutations in the design). The relativistic
treatments bring a full justification for the spin degree of freedom and also a new
effect, its coupling with the orbital momentum, giving rise to another quantum
number j. The j quantum number is a reorganization of all the combinations of
projection indices possible for a given l and s sets, the spin–orbit coupling replacing
the use of independent spin and orbital quantization schemes.

1.4.2 First Principles of Relativistic Quantum Mechanics:
Klein-Gordon and Dirac Equations

The essence of the relativistic approach is regarding the product of time with light
speed, factored with the imaginary unit, ict, as a new space coordinate. The special
relativity results as rotation in this four-dimensional space-time frame, similar to
Lorentz transformations in electromagnetism. Whether in relativity the space and
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time are on an equal footing, in Schrödinger’s equation the space coordinates are
entered as second-order derivatives, and the time as first derivative (in explicit
time-dependent formulation). Attempting to bring both space and time derivatives at
the same ranking, the Klein-Gordon equation results in settling them in the second
order (Klein 1926; Gordon 1926). For a free particle with static mass m0, this
equation results starting from the p2c2 + m0c

2 = E2 identity, introducing the p as the
differential operator from Eq. (1.9) and energy as time derivative EW = iħd W/dt in
analogy with the Schrödinger time-dependent form (1.7). It results:

�h2

m0
r2W� �h2

m0c2
@2W
@t2

¼ m0c
2W: ð1:82Þ

However, this does not account well for the hydrogen atom, being, in fact, valid
for a spinless particle. Dirac showed his brilliant imaginativeness and mathematical
prowess, succeeding in bringing both the space and time derivatives to the first
order (Dirac 1928). The Pauli equations were presented as follows:

�h
i

ax
@W
@x

þ ay
@W
@y

þ az
@W
@z

þ @W
c@t

� �
þ bm0cW ¼ 0; ð1:83Þ

imposing the a and b factors in such a manner that the product of the left side row
with its complex conjugate renders the Klein-Gordon equation. In order to achieve
this property, a and b must be at least 4 � 4 matrices, presented as tableaus of 2 �
2 blocks:

an ¼ 02�2 rn
rn 02�2

� �
; b ¼ 12�2 02�2

02�2 �12�2

� �
; ð1:84Þ

where the index n denotes the x, y, and z coordinates, 02�2 is a null matrix of
dimension 2, and 12�2 is the identity matrix of the same size.

The rn are the so-called Pauli matrices:

rx ¼ 0 1
1 0

� �
; ry ¼ 0 �i

i 0

� �
; rz ¼ 1 0

0 �1

� �
; 12�2 ¼ 1 0

0 1

� �
;

ð1:85Þ

the 12�2 identity matrix being also made explicit.
The Pauli matrices show anti-commutation relationships similar to those initially

remarked for kinetic momentum:

rx; ry
� � ¼ 2irz; ry; rz

� � ¼ 2irx; rz; rx½ � ¼ 2iry; ð1:86Þ
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forming the basis for the components of the spin quantum number:

ŝn ¼ �h
2
rn; ð1:87Þ

with the index n representing the x, y, and z. The factor (ħ/2) can be briefly
explained as useful to bring the commutation formulas parallel to those shown in
Eq. (1.26):

ŝn; ŝf̂

h i
¼ � �h

i
ŝs; ð1:88Þ

the subscript indices running cyclic permutations of the xyz triad. Also the

ŝ2; ŝz
� � ¼ 0 ð1:89Þ

relationship is held.
Due to the four-fold pattern, the Dirac equation apparently yields more solutions

than needed. Two of them are welcomed as the expected new quantum number
called the electron spin. Another couple represents the so-called positronic states,
proposing mirror solutions for an anti-particle of the electron, not yet discovered at
the launch of Dirac’s equations. However, the positron was discovered a few years
after, in 1930, as a coronation of the absolute power of pure and strong theory.
Dirac was not much interested in the metaphysics behind the physics but held a
strong belief that the ultimate realities are hidden in equations and that the beauty of
mathematical constructs is a strong criterion for validating a model, even prior to
the comparison with experiment.

The formula (1.83) may be rearranged such that it connects with the Hamiltonian
for the four-component Dirac equation:

bHW ¼ �hc
i

ax
@

@x
þ ay

@

@y
þ az

@

@z

� �
þ bm0c

2 ¼ � �h
i
@W
@t

¼ EW; ð1:90Þ

the end-notation suggesting the case of time-independence. The summation of the
three elements from parenthesis can be condensed as a � ∇ scalar product (with
matrices as objects). Recall that the above equation is still for a free particle (since
no field term was introduced).
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1.4.3 The Quantum Numbers of Dirac Relativistic
Equations

Since for the Schrödinger equation case the Hamiltonian commutes with the kinetic
momentum components, one may inquire about this property for Dirac formalism.
The following check:

bH ; l̂z
h i

¼ ��h2c a � r; x
@

@y
� y

@

@x

� �� 	
¼ ��h2c ax

@

@y
� ay

@

@x

� �
; ð1:91Þ

suggests that the kinetic momentum projection has lost the quality of being a
quantum number generator. Searching for something else resembling the kinetic
moment projection, one may guess that a 4 � 4 matrix with rz as diagonal blocks
will suggest the pattern of opposite spin projections for electronic and positronic
states. Proposing the form from the first equality:

bRz ¼ �h
2

rz 0
0 rz

� �
¼ �h

2i
axay ¼ �h

4i
ax; ay
� �

; ð1:92Þ

and checking the commutation:

bH ; bRz

h i
¼ � �h2c

2
½a � r; bRz� ¼ �h2c ax

@

@y
� ay

@

@x

� �
; ð1:93Þ

one observes a result opposite in sign, compared to the (1.91) case.
Therefore, composing the following operator

ĵz ¼ l̂z þ bRz; ð1:94Þ

one reaches the aimed null commutation:

bH ; ĵz
h i

¼ 0: ð1:95Þ

This z component identified in (1.94) suggests the full operator:

ĵ ¼ l̂þ bR; ð1:96Þ

where:

bR ¼ �h
4
a� a: ð1:97Þ

52 1 Atomic Structure and Quantum Mechanics



All the components of the ĵ operator are commuting with the Hamiltonian.
Another formulation of four-component spin matrices is:

bRn ¼ �h
2

rn 02�2

02�2 rn

� �
; ð1:98Þ

with n standing as the x, y, and z coordinates.
The conversion of the Dirac operator to polar coordinates looks like “defor-

mation” of the classical transformation of impulse operator from Cartesians, see
Eq. (1.14), into the metrics created by the a matrices:

�h
i
a � r ¼ �h

i
1
r2
ða �~rÞð~r � rÞ � 1

r
a � ð~r � l̂Þ ¼ �h

i
1
r
ða �~rÞ @

@r
� 1

r
a � ð~r � l̂Þ:

ð1:99Þ

One may also algebraically check the following identity (Thaller 2002):

� 1
r
a � ð~r � l̂Þ ¼ 2i

r
ða �~rÞð̂l � bRÞ; ð1:100Þ

that introduces a scalar product between spin and orbital moments, which leads the
spin–orbit coupling effects:

�h
i
a � r ¼ �h

i
1
r
ða �~rÞ @

@r
þ 2i

r
ða �~rÞð̂l � bRÞÞ ¼ a �~r

r
�h
i

@

@r
� 2
�h
l̂ � bR� �

: ð1:101Þ

We noted here the spin from the four-dimensional relativistic approach by R to
distinguish it from the two-component form introduced by Pauli matrices.

1.4.4 The Two Quantum Worlds of Dirac Equations:
Small and Large Spinor Components

The b matrix shows two solutions: the “normal” ones are in the range of +m0c
2,

while the exotic positronic states are with large negative values, −m0c
2. To explain

why the electrons do not stay on the huge negative energy states must postulate that
these are already completed, forming a world invisible to us. However, when large
energies are invested and one electron is expelled from these hidden levels, the
emptied place appears as a positron, the particle with the same features as the
electron, except the positive charge. The trend of anti-matter to be annihilated by
particles of the common world would in fact reflect the imperious need to de-excite
the system, consuming one electron from the “real” world (placed around the +m0c

2

level), to fill back the deep sea from the −m0c
2 range. This releases the 2m0c

2

energy, corresponding to the erasing of one electron and one positron, both with m0
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masses. Thus, in the relativistic approach we have a huge positive shift of the scale,
due to the energy incorporated in the mass. In the atomic units, where we take the
electron mass equal to 1, the speed of light has the value of 137.036. Therefore, the
positive mass energy for a system made of a single electron is the square of this
number, 18,780 Hartree (energy atomic units), sensibly larger than the
−0.5 Hartree found for the first Bohr orbit.

Shifting to zero the electronic part (pushing to −2m0c
2 the positronic branch), the

four component time-independent Dirac equations can be rewritten in terms of
2 � 2 block matrices:

Vwþ cðr � p̂Þg ¼ Ew; ð1:102Þ

cðr � p̂ÞwþðV � 2m0c
2Þg ¼ Eg; ð1:103Þ

where the two-component (w and η) wave functions are called spinors, comprising,
each, the two degrees of freedom related to the spin quantum number. Since we are
not so much interested in the η spinor of the positronic “underground” world,
comfortably spaced by the large −2m0c

2 energy amount, we can formally eliminate
its explicit intervention. From the second equation of the above set, the spinor
related with large negative energy eigenvalues is obtained:

g ¼ ðE � V þ 2m0c
2Þ�1cðr � p̂Þw: ð1:104Þ

Replacing it in the first equation, the elimination of the small component (η) is
achieved:

cðr � p̂Þ 1
E � V þ 2m0c2

cðr � p̂ÞþV

� �
w ¼ Ew; ð1:105Þ

the mass term 2m0c
2 predominating over the E − V part. For a particle free of

potential, one may roughly assume for E the kinetic energy only, approximating the
small spinor as follows:

g 
 p2

2m0
þ 2m0c

2
� ��1

cðr � p̂Þw ¼ 1
2m0c

1þ p2

4m2
0c

2

� ��1

ðr � p̂Þw


 1
2m0c

1� p2

4m2
0c

2

� �
ðr � p̂Þw:

ð1:106Þ

This truncation includes the effect of renormalization due to the small spinor
component. Solving the effective equation based on the large component, the
normalization tacitly regards the w*w ! 1 goal, while it should concern the full
four component wave function, w*w + η*η ! 1. Introducing this correction, the
equation becomes:
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Vwþ ðr � p̂Þ2
2m0

w� ðr � p̂Þp2ðr � p̂Þ
8m3

0c
2

w ¼ Ew: ð1:107Þ

Treating the factor in p2/c2 as having numerical (not operator) nature, because of
approximate reasoning about the renormalization factor, the equation of the main
spinor is:

Vwþ 1� p2

4m2
0c

2

� � ðr � p̂Þ2
2m0

w ¼ Ew: ð1:108Þ

Using a property that can be simply verified, (r � a) (r � b) =
(a�b) + ir � (a � b), the momentum based operator is transformed as follows:

ðr � p̂Þ2 ¼ p̂2 þ ir � ðp̂� p̂Þ: ð1:109Þ

1.4.5 Toward the Relativistic Atom: Electromagnetism
Instead of Electrostatics

Working in relativity, the electrostatics cannot be separated from magnetism, the
full set of Maxwell equations being, in principle, necessary. Aside the electric
potential V, it must include the magnetic field B. Since the magnetic component
obeys the ∇ � B = 0 Maxwell equation, a mathematical trick is to present it as
B = ∇ � A, where A is the so-called vector potential. In this form, the vanishing of
the divergence from B will automatically be accomplished, due to the property
∇ � ∇ � A = 0, valid for any vector. The vector potential A is non-unique, since
any arbitrary vector can be added and the above conditions will be fulfilled. One of
the conventions able to eliminate the arbitrariness of the A vector potential is by
imposing the ∇ � A = 0 condition (so-called Coulomb gauge). In time-independent
circumstances, the Maxwell rules imply ∇ � B = 0, i.e. ∇ � ∇ � A = 0, expanded
to ∇2A − ∇(∇�A) = 0, (according to the general a � b � c = b(a � c) − c(a � b)
vector operation). Once the Coulomb gauge is imposed, it results that ∇2A = 0.
This means that each component of the vector potential follows a Laplace equation,
∇2Ax = 0, ∇2A y = 0, and ∇2Az = 0. As discussed in the atomic orbitals topic, there
is a large variety of functions satisfying a Laplace format. The monomials x, y, z are
trivial cases of Laplace equation solutions. For instance, to describe a homogenous
magnetic field B0 along the z axis one may take Ax = −B0/2, Ay = B0/2, and Az = 0,
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the curl operation from this giving Bx = 0, By = 0, and Bz = B0. For an arbitrary
orientation of the homogenous field, the following choice

A ¼ 1
2
B
* � r* ð1:110Þ

is a conventional solution. This methodology implies a gauge dependence upon the
choice of space coordinates, which does not impinge upon the magnetic field, but
affects subsequent equations. The advantage of the vector potential formalism is the
merging of magnetic components with the impulse vector:

p̂ ¼ �h
i
rþ eA; ð1:111Þ

the new momentum describing the speed of the charged particle in a magnetic field.
In the following we will expand different terms obtained from entering the vector
field in the Dirac equations and subsequent approximations. Introducing the gen-
eralized momentum in the first term of the right side member of Eq. (1.109), one
obtains:

ðp̂ � p̂Þw ¼ ð�i�hrþ eAÞ � ð�i�hrþ eAÞw
¼ ��h2ðr2Þw� ie�hr � ðAwÞ � ie�hA � ðrwÞþ e2A2w:

ð1:112Þ

The first element in the last equality is the kinetic energy, in Schrödinger-like
form. The term e2A2 is a small effect that leads to the diamagnetism of matter. The
middle terms are expanded into:

�ie�hr � ðAwÞ � ie�hA � ðrwÞ ¼ �ie�hðr � A)w� 2ie�hA � ðrwÞ: ð1:113Þ

The first term after the equality sign disappears by the convened Coulomb
gauge. Entering the back transformation of the vector potential to magnetic field,

�2ie�hA � ðrwÞ ¼ �ie�hðB* � r*Þ � ðrwÞ ¼ �ie�hðr* �rwÞB*

¼ �ie�hðr* �rÞ � B*w ¼ eð̂l � B*Þw;
ð1:114Þ

one finds a term describing the interaction of the orbital momentum with the
external magnetic field.

The second term in the right side of (1.109) can be expanded in first instance as:

ðp̂� p̂Þw ¼ ð�i�hrþ eAÞ � ð�i�hrþ eAÞw
¼ ��h2ðr �rÞw� ie�hr� ðAwÞ � ie�hA� ðrwÞþ e2A� Aw:

ð1:115Þ
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The ∇ � ∇ and A � A terms are disappearing due to basic vector product
properties (visible if we rely on the determinant formulation of the vector product,
where two lines become equal), remaining with

ðp̂� p̂Þw ¼ �ie�hðr � AÞw� ie�hðrwÞ � A� ie�hA� ðrwÞ: ð1:116Þ

The first two elements of expansion appeared because the derivative Nabla
operator acts separately on the elements of the Aw product. Because of the
a�b = −b � a property, the last two terms are mutually cancelling, ending with:

irðp̂� p̂Þw ¼ re�hðr � AÞw ¼ e�hirBw ¼ 2eŝ � B: ð1:117Þ

Here, the conventional definition of magnetic field B as curl from the vector
potential was introduced, converting the term to a spin operator in scalar product
with the magnetic field.

Returning to the complete equation for the large component (the w spinor), we
must note that the numerator should be treated as an operator, the derivative con-
tained in the left side impulse factor acting over the potential V:

ðcr � p̂Þ 1
E � V þ 2m0c2

ðcr � p̂Þ

¼ c2

E � V þ 2m0c2
ðr � p̂Þ2 þ c2

1
E � V þ 2m0c2

� �2

ð�i�hr � rVÞðr � p̂Þ:

ð1:118Þ

The first term in the right side member corresponds to the trivial operation over
the scalar, where both the derivative and vector field potential components of the
generalized impulse behave in simple multiplicative manner. The second term
catches the action of the derivative part of the impulse over the V from the
denominator. The operator of first term is worked as described previously in
(1.112). The second operator is detailed as follows:

�i�hðr � rVÞðr � p̂Þ ¼ �i�hðrV � p̂Þþ �hr � ðrV � p̂Þ: ð1:119Þ

From all the possible terms appearing when the generalized p operator is
detailed, we will be interested in the part due to genuine impulse operators, since
the main part, due to action of the external magnetic field, was approximated in the
previous step. Then, without the A components, we remain with the −iħ2r�
(∇V � ∇) operator. Assuming an isotropic case, valid for spherical or plane-wave
based problems, the gradient is expressed as below:

�i�h2r � ðrV �rÞ ¼ �h
1
r
@V
@r

r � r* � �h
i
r

� �
¼ �h

1
r
@V
@r

r � l̂ ¼ 2
r
@V
@r

ŝ � l̂: ð1:120Þ
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The spin operator (see Eq. 1.87) was introduced instead of Pauli matrices.
Without a complete algebraic expansion, one may guess that the above term brings
the spin–orbit coupling.

1.4.6 Concluding the Types of Relativistic Hamiltonian
Terms: Zeeman, Spin–Orbit, Mass-Correction,
Darwin, Breit, Breit-Pauli

Picking from the previous discussion the terms selected from the expansion of the
operators appearing in the attempt to eliminate the small components of the Dirac
equation, the Hamiltonian is given as the following summation:

bH ¼ bT þV þ bHZeeman þ bHSO þ bHrmc þ bHDarwin; ð1:121Þ

where the first two terms are the classical kinetic energy and the multiplicative
potential. The Zeeman Hamiltonian expresses the interaction of the orbital and spin
moments with an external magnetic field:

bHZeeman ¼ e
2m0

l̂ � B* þ 2ŝ � B
� �

¼ � lB
�h

gl̂l � B
* þ geŝ � B

� �
; ð1:122Þ

while spin–orbit term, the mutual coupling of these moments:

H
_

SO ¼ � 1
2m2

0c
2

1
r
@V
@r

� �
ŝ � l̂
 �

: ð1:123Þ

Note that the negative in the definition of the Zeeman Hamiltonian sign appeared
from making explicit the electron charge when the Bohr magneton, lB (see defi-
nition 1.4), is brought as factor. The gyromagnetic factors were introduced.
According to the previous derivation, these are gl = 1 for the orbital part and ge = 2
for the electronic spin. The last one, receiving higher order relativistic increments is,
more precisely, ge = 2.0023. The relativistic mass correction

bHrmc ¼ � p2

8m3
0c

2
; ð1:124Þ

and the Darwin term

H
_

Darwin ¼ i�hðrV � p̂Þ
4m2

0c
2

; ð1:125Þ

are important when the total energy of the relativistic system is concerned, while the
Zeeman and spin–orbit are needed for the split of the spectral terms, in comparison
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to the Schrödinger quantization. In spectral or magnetic problems, where the dif-
ferences between energy terms are concerned, the mass and Darwin increments can
be ignored (as common shifts in all the states).

The above dichotomy of the Hamiltonian resulted in perturbation theory manner,
assuming the predominance of the 2m0c

2 over the E − V. To make things more
flexible, one includes the potential into the denominator of the expansion factor:
E/(2m0c

2 − V).
Then the operator from (1.105) is expanded into:

1
E � V þ 2m0c2

¼ 1
2m0c2 � V

� E

ð2m0c2 � VÞ2 þ � � � : ð1:126Þ

Confining to the first (zero order) term, the so-called ZORA (Zero Order Regular
Approximation) (see van Lenthe et al. 1993; van Leeuwen et al. 1994) is obtained:

EZORA ¼ wZORA T þV þðcr � p̂Þ 1
2m0c2 � V

ðcr � p̂Þ
���� ����wZORA

� �
; ð1:127Þ

where the potential V is the subject of a self-consistent approach. Since the right
side operators act over the potential part in the manner outlined in previous dis-
cussion, the spin–orbit results naturally as output of the ZORA procedures (Faas
et al. 2000).

We tacitly referred until now to the one-electron case. The main part of rela-
tivistic effects is of one-electron nature, the poly-electronic problems implying a
summation of the kinetic Dirac operators for each electron. The potential operator
must be amended for reasons of quantum electrodynamics, to be distinguished from
the classic Coulomb interaction, which acts as if it were instantaneous in time.
Since no information can be propagated faster than the light speed, an adjusting
ingredient must be added to the 1/r12 Coulomb interaction of two electrons, labeled
1 and 2, taking the so-called Breit Hamiltonian (Breit 1932), without detailing the
proof:

bHBreitð1; 2Þ ¼ � 1
2r12

að1Þ � að2Þþ að1Þ � r12ð Þ að2Þ � r12ð Þ
r212

� �
: ð1:128Þ

Here a represent the sets of Dirac matrices for the two electrons, 1 and 2, the
equation being therefore devised for the four-component formalism. The symbol of
scalar product should be understood as summation over the three space compo-
nents, e.g. a � a = ax � ax + ay � ay + az � az. Introducing this in the approximations
related to the elimination of small spinor, it leads to various terms, such as a
two-electron contribution to the spin–orbit parameters (sometimes called
Breit-Pauli Hamiltonian) and some more exotic ingredients, such as spin–spin
relativistic effects, orbit–orbit or spin-other-orbit couplings. However, the main
relativistic contributions are still related with the one-electron terms, some effects
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such as the spin–orbit coupling in complex atoms being ascribed in this effective
manner.

According to the discussion of the Dirac equation, it seems that the spin is a
relativistic consequence, a fact that also may induce the subjective satisfaction that
the other pillar of modern physics, relativity, plays an essential role in quantum
mechanics. On the other hand, some interpretations are saying that it may arise in a
non-relativistic frame, if we simply replace the p2 kinetic part by (rp)2 in the
Schrödinger equation (Jensen 2007). In this case, the Zeeman interaction can be
obtained, but not yet the spin–orbit part. At the same time, the non-relativistic spin
was proposed by Pauli by reasons of conceiving the completion with electrons
of the atomic shells. Equally, the experimental finding of the Zeeman effect
demanded the new quantum number. The split of the spectral lines in the magnetic
field was observed much in advance of the old or new quantum mechanics era
(Zeeman 1897), a part of it being understandable in term of the electrodynamics
governed by Lorentz or Maxwell formulas. The Bohr model allowed conceiving the
orbits as coils of electric current, suggesting then the orbital momentum as a source
of atomic inner magnetic fields that can interact with the outer ones. However, the
spectral details were not understandable in this way. Named initially the anomalous
field effect, these were transitions involving the spin of electrons. Although the spin
can be introduced in a non-relativistic manner, in the style of the Pauli postulate, it
nevertheless results in full algebraic splendor in the more sophisticated paradigm
staying at the ground of Dirac derivation. Besides, the full consequences of the spin
will be not complete without the spin–orbit part, which definitely comes from the
coupling of the large spinor with the small component, so that the spin can be
vindicated as a messenger from a deeper world of relativity and anti-particle
underground sea. Relativistic quantum chemistry is nowadays a well-established
field, in theoretical backgrounds and applications (Reiher and Wolf 2009).

1.4.7 The Spin–Orbit Coupling: A Term to Remember

The most important way in which relativity is reflected in the optic and magnetic
properties of atoms and molecules is the spin–orbit coupling, occurring inside a
spectral term with non-vanishing orbital and spin quantum numbers. The prepon-
derant one-electron nature of this effect makes possible to regard it as included in
the orbital part. Then, if consider that the radial part of an orbital set characterized
by the n and l quantum numbers is integrated to the factor fn,l:

fn;l ¼ � Rn;lðrÞ 1
2m2

0c
2

1
r
@V
@r

� ����� ����Rn;lðrÞ
� �

; ð1:129Þ
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one deals, in continuation, with the phenomenological form:

bHSO ¼ fn;l̂l � ŝ; ð1:130Þ

targeted to describe new orbital quantum numbers and energies. Since the gradient
of the potential at the nucleus is negative, the integral in (1.129) gets positive. In the
general algebra of the moments, with particularization on the l and s couple, the
newly composed quantum number, j in our case, takes values between the |l − s|
and l + s limits. Actually, we are treating now orbitals, objects of a single electron
function, having then s = 1/2. Then, the 2l + 1 degeneracy of the Schrödinger
equation, enhanced formally to the 4l + 2 doubling by the two sz = ±1/2
spin projections, goes to description by the new quantum number j = l + 1/2 and
j = l − 1/2, which corresponds to the split in two subsets with 2j + 1 multiplicities,
respectively 2l + 2 and 2l. The gap between the relativistic atomic orbitals can be
calculated easily by a trick that can transform the above scalar product of operators
in numbers, expanding the square of the ĵ operator:

ĵ2 ¼ ð̂lþ ŝÞ2 ¼ l̂2 þ ŝ2 þ 2̂l � ŝ: ð1:131Þ

We know that the square of a momentum operator, e.g. ĵ2, must yield an
eigenvalue like j(j + 1), a similar regularity acting in the l and s cases. This means
that replacing the scalar product extracted from (1.131) into (1.130), one obtains a
closed formula for the spin–orbit gap, inside a shell described the l quantum number
(and assigned to an n main index):

En;jðlÞ ¼ En;l þ 1
2
fn;l jðjþ 1Þ � lðlþ 1Þ � 3=4ð Þ: ð1:132Þ

Here it is suggested that the gap occurs on a previously non-relativistic orbital
level and, inside the parenthesis the s(s + 1) term, was already particularized for
s = 1/2. More concretely, given the positive value of the spin–orbit coupling factor
fn,l, the relativistic orbitals with j = l − 1/2 quantum number and 2l multiplicity are
lower, with the relative energy (−1/2)fn,l (l + 1), while the j = l + 1/2 of 2l + 2
degenerate levels are placed at (1/2)fn,ll. The respective orbitals are labeled [l]l-1/2
and [l]l+1/2, where [l] stands for the literal label of the shell. Thus, from p shell one
obtains the p1/2 and p3/2 relativistic companions, from d the d3/2 and d5/2, and from f
the f5/2 and f7/2 couple. Obviously, for s orbitals there is no spin–orbit spacing.
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The magnitude of the relativistic orbital gap increases for the heavier atoms and
for the orbitals from the core, placed closer to the nucleus, sensible to the gradient
expressed in the definition of the coupling parameter as radial integral. Figure 1.13
illustrates X-ray photoelectron spectroscopy (XPS), reflecting the relativistic orbital
energies resulting from the spin–orbit spacing of the core 2p orbital of titanium
atom in the TiO2 oxide lattice. The areas of the peaks are proportional with the
2j + 1 multiplicities of the components (respectively, 2 and 4 for the 2p1/2 and 2p3/2
couple). The abscissa represents the energy for extracting one electron from the 2p1/2
and 2p3/2 relativistic shells, its negative being assignable to the orbital energies.

The spin–orbit coupling is of major importance in the magnetic properties of the
atoms and molecules. It gives the mechanism of a special property, the magnetic
anisotropy, which is of large interest for the academic focus of molecular mag-
netism, as well as in applied current and future material sciences.

We clarified the status of relativistic orbitals, as functions of one electron, but
paving the way for many-electron description, we will need to take general matrix
elements in a given orbital (non-relativistic) basis from the spin–orbit operator. For
such technical respects, we must refer to the Hamiltonian handling of the spin–
orbit. It is useful to recall first the orbital momentum operators, l̂x, l̂y and l̂z, realizing
the following combinations:

l̂þ ¼ l̂x þ îly; ð1:133Þ

l̂� ¼ l̂x � îly; ð1:134Þ

Fig. 1.13 The photoelectron 2p doublet of Ti in TiO2 XPS spectrum. The spin–orbit parameter,
which is assigned as the energy difference between the two split components (2p3/2; 2p1/2)
exhibits a value of 5.54 eV. The same parameter for the elemental (metallic) Ti shows a value of
6.17 eV. Data, by courtesy of Petre Osiceanu from the Institute of Physical Chemistry, Bucharest,
recorded on PHI-Quantera SXM (ULVAC-PHI Co).
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called ladder (or shift) operators, because they can provoke the rising and lowering
of the lz projection. Concretely, the orbital operators refer to spherical harmonics
bases, but for sake of more general notation we will ascribe l; lzj i instead of the Yl;lz
functions. Starting from formula (1.26), the commutation rules with the new
operators are identified:

l̂z; l̂�
� � ¼ ��ĥl�; ð1:135Þ

l̂þ ; l̂�
� � ¼ 2�ĥlz: ð1:136Þ

Now, recall how the z component works, rewriting:

l̂z l; lzj i ¼ �hlz l; lzj i; ð1:137Þ

and apply the left and right members of commutator from (1.135) to a basis
component:

l̂ẑl� l; lzj i � l̂� l̂z l; lzj i ¼ ��ĥl� l; lzj i: ð1:138Þ

Letting the element having the z operator nearby the ket to act as in (1.137) and
regrouping, one arrives at:

l̂z l̂� l; lzj i� � ¼ �hðlz � 1Þ l̂� l; lzj i� �
: ð1:139Þ

Now, one observes that the z operator from the left side can obtain the lz±1
factors only if the object comprised in square brackets, in both members, would be
proportional to the l; lz � 1j i function, namely if the ladder operators indeed shift
the projection values by ±1. It remains to know the factors of the ladder operators,
which, without continuing the proof, are presented as:

l̂� l; lzj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� lzÞðl� lz þ 1Þ

p
z l; lz � 1j i: ð1:140Þ

The demonstration comes from retrieving the l; lzj i component by operating it
successively, with up and down operations, then by down and up, using the other
commutator relationship, from (1.27).

For the orbital momentum, we started with the operators for which we had a
concrete expression, with filiations in classical mechanics. But the same formalism
can be simply proposed, by extension, to other objects consisting in manifolds with
indexed projections, e.g. to the spin:

ŝ� s; szj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs� szÞðs� sz þ 1Þ

p
z s; sz � 1j i: ð1:141Þ
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The ladder operators act also on the j and jzquantum numbers:

ĵ� j; jzj i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðj� jzÞðj� jz þ 1Þ

p
z j; jz � 1j i: ð1:142Þ

Up to now we acted tacitly as for one-electron operators (as the orbital
momentum can be thought of as attached to one moving particle and the spin meant
that of the electron itself). Similar procedures of indenting quantum numbers
assignable to projections on the z axis can be conceived for more general states, of
poly-electronic nature, usually designated by capital letters L; Lzj i, S; Szj i and
J; Jzj i resulting from appropriate build-up from one-electron states (orbitals).
Returning to the spin–orbit operator, a convenient rewriting of the scalar product

is realized as follows:

l̂ � ŝ ¼ l̂xŝx þ l̂yŝy þ l̂zŝs ¼ 1
2

l̂þ ŝ� þ l̂�ŝþ

 �þ l̂zŝs: ð1:143Þ

With this form, based on ladder operators, one may easily equate the action of
the operator upon an atomic spin–orbital, which is a spherical harmonics decorated
with the spin-up a or spin-down b label. The spin operators act on the spin label:

ŝþ bj i ¼ aj i; ŝ� aj i ¼ bj i; ŝþ aj i ¼ 0; ŝ� bj i ¼ 0; ŝz aj i ¼ 1=2ð Þ aj i and

ŝz bj i ¼ �1=2ð Þ bj i:

Denoting an atomic spin–orbital with known quantum numbers
v ¼ n; l;m;rj i � n; l; lz; szj i, where r stands for the a or b spin components (or,
equivalently, sz = ±1/2 projections), the scalar product of the spin–orbit operator
acts as follows:

ð̂l � ŝÞ n; l; lz; szj i ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� lzÞðlþ lz þ 1Þðsþ szÞðs� sz þ 1Þ

p
n; l; lz þ 1; sz � 1j i

þ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ lzÞðl� lz þ 1Þðs� szÞðsþ sz þ 1Þ

p
n; l; lz � 1; sz þ 1j i

þ lzsz n; l; lz; szj i:
ð1:144Þ

Put in other notation, we have for a- and b-type spin–orbitals:

ð̂l � ŝÞ n; l;m; aj i ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� mÞðlþmþ 1Þ

p
n; l;mþ 1; bj i þ 1

2
m n; l;m; aj i; ð1:145Þ

ð̂l � ŝÞ n; l;m; bj i ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl� mþ 1Þ

p
n; l;m� 1; aj i � 1

2
m n; l;m; bj i: ð1:146Þ
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Multiplying from the left side with different “bra” functions 〈n,l,m′,r′| one iden-
tifies the non-vanishing elements of the l̂ � ŝ operator as the numeric factors of
components matching in the operated “ket” the same series of indices as on the right
side:

n; l;m; ah jð̂l � ŝÞ n; l;m; aj i ¼ 1
2
m; ð1:147Þ

n; l;m; bh jð̂l � ŝÞ n; l;m; bj i ¼ � 1
2
m; ð1:148Þ

n; l;m� 1; ah jð̂l � ŝÞ n; l;m; bj i ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþmÞðl� mþ 1Þ

p
; ð1:149Þ

n; l;mþ 1; bh jð̂l � ŝÞ n; l;m; aj i ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� mÞðlþmþ 1Þ

p
: ð1:150Þ

The following chapter describes how a matrix in a many-electron basis is con-
structed, focusing explicitly on the one-electron part, taken as kinetic plus electron–
nuclear interaction and inter-electronic terms. Thinking more generally and con-
sidering the above defined matrix elements as one-electron part in the expansion
recipes described later, one reaches the issue of spin–orbit coupling in many-electron
states (spectral terms of atoms and molecules). Basically, the predominant part of the
spin–orbit in molecules comes from intra-atom contributions, making the above
discussion confined to atomic quantum numbers worth extending in practical
respects.

1.5 Perturbation Theory Application:
Quantum Polarizability

Since the Schrödinger equation (or its equivalent matrix quantum mechanics ) can
be exactly solved only in a limited number of cases, the methods of approximation
are highly priced, to find practical ways toward significant complex problems.
A way of approximation uses iterative (self-consistent) procedures (based on model
Hamiltonians depending on the wave functions from a preceding step). The
application of this strategy depends specifically on the problem at hand. The per-
turbation theory unfolds from the series expansion of the Hamiltonian terms and
wave functions. Tacitly, we used such a strategy in the previous section, in the
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separation of the large and small components of the relativistic Dirac equation.
The perturbation method starts by defining a zero order Hamiltonian, with known
solutions, while the other terms are small contributions with respect of this refer-
ence. Therefore, the additional terms are the subject of the series expansion,
stopping usually at smaller ranks, first or second order (Putz 2010a, 2016a, b).

Let us consider the non-degenerate non-perturbed discrete (stationary) solved
problem (Putz 2016a)

bH0 ekj i ¼ ek ekj i; ð1:151Þ

whose eigen-states made the ortho-normalized basis:

ej
�� ek
 � ¼ djk; ð1:152Þ

1̂ ekj if g ¼
X1
k ¼ 1
k 2 N

ekj i ekh j: ð1:153Þ

Here, we adopted another notation, with standalone “bra” and 00ket00j jh i sym-
bols, representing respectively the complex conjugate and the “direct” wave
functions attached to the eigenvalues enclosed inside. The Eq. (1.153) is in fact an
operator. When it is integrated (multiplied with a “bra” from the left side and a
“ket” from the right), the “ket” of the operator falls in an overlap relationship with
the “bra” of the formed integral, while the right side operator “bra” is coupled and
integrated with the added “ket”. More precisely, (1.153) is an operator for the
resolution to identity, whose task is to retrieve the (1.152) ortho-normalization
conditions when operated with functions from the same set constituting it. This is
another way to state the completeness of the basis set.

In these conditions, the perturbed eigen-states are generically written as a
superposition of all non-perturbed eigenstates:

EðkÞj i ¼
X
k

ckðkÞ ekj i; ð1:154Þ

while the perturbation itself is comprised of the expansion coefficients:

ckðkÞ ¼ cð0Þk þ kcð1Þk þ k2cð2Þk þ � � � ð1:155Þ
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The perturbed eigen-problem equivalently becomes:

bHðkÞ EðkÞj i ¼ EðkÞ EðkÞj i
, bH0 þ kbH1

� �X
k

ckðkÞ ekj i ¼ EðkÞ
X
k

ckðkÞ ekj i

,
X
k

ckðkÞ bH0 ekj i|fflfflffl{zfflfflffl}
ek ekj i

þ k
X
k

ckĤ1 ekj i ¼ EðkÞ
X
k

ckðkÞ ekj i

,
ejh jX

k

ckðkÞek ej
�� ek
 �|fflfflfflffl{zfflfflfflffl}
dik

þ k
X
k

ck ej

 �� bH1 ekj i ¼ EðkÞ

X
k

ckðkÞ ej
�� ek
 �|fflfflfflffl{zfflfflfflffl}
djk

, cjðkÞ EðkÞ � ej
� � ¼ k

X
k

ej

 �� bH1 ekj ick

, cð0Þj þ kcð1Þj þ k2cð2Þj þ � � �
h i

Eð0Þ � ej þ kEð1Þ þ k2Eð2Þ þ � � �
h i

¼ k
X
k

ej

 �� bH1 ekj i cð0Þk þ kcð1Þk þ k2cð2Þk þ � � �

h i
ð1:156Þ

from where, by equal power of coefficients one successively gets the cut-offs:
Order (0):

cð0Þj Eð0Þ � ej
h i

¼ 0 ð1:157Þ

Order (I):

Eð0Þ � ej
h i

cð1Þj þEð1Þcð0Þj ¼
X
k

ej

 �� bH1 ekj icð0Þk ð1:158Þ

Order (II):

Eð0Þ � ej
h i

cð2Þj þEð1Þcð1Þj þEð2Þcð0Þj ¼
X
k

ej

 �� bH1 ekj icð1Þk ð1:159Þ

���
Order (p):

Eð0Þ � ej
h i

cðpÞj þEð1Þcðp�1Þ
j þ � � � þEðpÞcð0Þj ¼

X
k

ej

 �� bH1 ekj icðpÞk ð1:160Þ

Let us now analyze each order in perturbation, based on the above separate,
however somewhat iterative, equations.
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Order (0): The solution of this (unperturbed) problem is immediate:

Eð0Þ ¼ en ð1:161Þ

recovering the whole isolated energy spectrum, while for the wave function reads
as:

Eð0Þ�� E
¼
X
k

cð0Þk ekj i ¼! enj i ð1:162Þ

from where there follows the necessary identity:

cð0Þk ¼ dkn ð1:163Þ

so that the 0th order equation is verified as:

cð0Þj Eð0Þ � ej
h i

¼ 0 , djn en � ej
� � ¼ 0 ð1:164Þ

Order (I): Here, apart from employing the results of the order (0) perturbation
analysis, two cases are distinguished, namely one in which the associate equation is
specialized for some j ¼ n in the non-perturbed discrete spectrum that gives:

en � en½ �|fflfflfflffl{zfflfflfflffl}
0

cð1Þn þEð1Þ dnn|{z}
1

¼
X
k

enh jbH1 ekj idkn ð1:165Þ

releasing the first-order energy perturbation

Eð1Þ ¼ enh jbH1 enj i ð1:166Þ

as the average of the perturbation Hamiltonian over the non-perturbed eigen-states,

while emphasizing the impossibility of cð1Þn evaluation since canceling its energy
multiplication, but assuming with indeterminate expression:

cð1Þn ¼ djnZ
ð1Þ ð1:167Þ
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Instead, for the case in which j 6¼ n the corrected energy vanishes while allowing
the determination of the first-order perturbation coefficient:

en � ej
� �

cð1Þj 6¼n þEð1Þ dj6¼n|{z}
0

¼
X
k

ej

 �� bH1 ekj idkn ð1:168Þ

cð1Þj6¼n ¼
ej

 �� bH1 enj i
en � ej

ð1:169Þ

Combining both cases, the first-order perturbation coefficient of the perturbed
wave function looks like:

cð1Þj ¼ djnZ
ð1Þ þ 1� djn


 � ej

 �� bH1 enj i
en � ej

ð1:170Þ

Order (II): The same procedure as for the previous order applies, however with a
supplemented degree of complication since we are considering the results and cases
raised from lower orders. As such, for the j ¼ n case the original equation of
second-order perturbation unfolds as:

en � en½ �|fflfflfflffl{zfflfflfflffl}
0

cð2Þj þEð1Þ cð1Þj¼n|{z}
Zð1Þ

þEð2Þ dnn|{z}
1

¼
X
k

enh jbH1 ekj i cð1Þk

k ¼ n k 6¼ n
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{#

, Eð2Þ ¼ �Eð1Þ 6 Zð1Þ þ enh jĤ1 enj i|fflfflfflfflfflffl{zfflfflfflfflfflffl}
Eð1Þ

cð1Þk¼n|{z}
Zð1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

þ
X
k

enh jbH1 ekj i cð1Þk 6¼n|{z}
ekh jĤ1 enj i
en�ek

ð1:171Þ

until we give the expression of the second-order energy perturbation:

Eð2Þ ¼
X
k 6¼n

ekh jbH1 enj i
��� ���2

en � ek
ð1:172Þ

while leaving, as before, the j ¼ n second-order coefficient of wave function
expansion as undetermined:

cð2Þn ¼ djnZ
ð2Þ: ð1:173Þ
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Analogously, the j 6¼ n case leaves us with the second-order coefficient deter-
mination while canceling the associate energy:

en � ej
� �

cð2Þj6¼n þ Eð1Þ|{z}
enh jbH1 enj i

cð1Þj6¼n|{z}
ejh jbH1 enj i
en�ej

þEð2Þ dn 6¼j|{z}
0

¼
X
k

ej

 �� bH1 ekj i cð1Þk

k ¼ n k 6¼ n
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{#

) cð2Þj 6¼n ¼
1

en � ej

� enh jbH1 enj i ej

 �� bH1 enj i
en � ej

þ ej

 �� bH1 enj i cð1Þk¼n|{z}

Zð1Þ

þ
X
k 6¼n

ej

 �� bH1 ekj i cð1Þk 6¼n|{z}

ekh jbH1 enj i
en�ek

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
¼ Zð1Þ ej


 �� bH1 enj i
en � ej

� ej

 �� bH1 enj i enh jbH1 enj i

en � ej

 �2

þ
X
k 6¼n

ej

 �� bH1 ekj i ekh jbH1 enj i
en � ej

 �

en � ekð Þ

ð1:174Þ

Combining both cases we can write for the second-order coefficient of perturbed
wave function the general expression:

cð2Þj ¼ djnZ
ð2Þ þ 1� djn


 �
Zð1Þ ej


 �� bH1 enj i
en � ej

þ 1� djn

 � X

k 6¼n

ej

 �� bH1 ekj i ekh jbH1 enj i
en � ej

 �

en � ekð Þ � ej

 �� bH1 enj i enh jbH1 enj i

en � ej

 �2

" # ð1:175Þ

Now, it is worth making the observation according to which the corrections Zð1Þ

and Zð2Þ are not entering the perturbed energies corrections, thus may be principally
set as being equal with zero (0) since they do not affect the perturbed spectra.
Moreover, it can be easily proved that such choice is equivalent with the condition
that perturbed states are orthogonal on the non-perturbed eigen-states: if one
defined the “p” order states as:

pj i ¼
X
k

cðpÞk ekj i ð1:176Þ
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and the “p” undetermined correction coefficient as:

ZðpÞ ¼ cðpÞk¼n ¼
X
k

cðpÞk dnk ¼
X
k

cðpÞk en j ekh i ¼ enh j
X
k

cðpÞk ekj i|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
pj i

¼ en j ph i ð1:177Þ

there is the immediate result that the condition:

0 ¼ ZðpÞ ¼ en j ph i; 8 enj i 2 bH0

n o
spectra

& pj i 2 bH1

n o
spectra

ð1:178Þ

leaves with the physical condition that the Hilbert (sub)spaces of the isolated and
perturbation Hamiltonians are orthogonal, H bH0

� �?H bH1

� �, thus allowing their

direct product to reproduce the whole-problem spectra (levels and states) of the
perturbed system:

H bH0 þ kbH1

� � ¼ H bH0

� � 
H bH1

� � ð1:179Þ

With this remarkable result, the full perturbed ðk ¼ 1Þ energy and wave function
may be written as the series:

Enðk ¼ 1Þ ¼ en þ enh jbH1 enj i þ
X
k 6¼n

ekh jbH1 enj i
��� ���2

en � ek
þ � � � ð1:180Þ

Enðk ¼ 1Þj i ¼ enj i þ
X
k 6¼n

ekj i ekh jbH1 enj i
en � ek

þ
X
k 6¼n

ekj i
X
j6¼n

ekh jbH1 ej
�� � ej

 �� bH1 enj i

en � ekð Þ en � ej

 � � ekh jbH1 enj i enh jbH1 enj i

en � ekð Þ2
" #

þ � � �

ð1:181Þ

while, usually, in practice, there are retained only the expansion until the second
order in energy and the first order in wave function, respectively. Even so, the
calculations imply the evaluation of all matrix elements ekh jbH1 enj i, this being
non-trivial algebra unless some of them are identically null (Putz 2016a).
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Other special appearances are next unfolded for the stationary perturbations for
some paradigmatic physical situations (Putz 2010a, 2016b). Starting from so-called
second-order perturbation energy, see Eq. (1.181):

Eð2Þ ¼
X
k 6¼n

nh jbH1 kj i
��� ���2
Ek � En

ð1:182Þ

is specialized for the Stark potential produced by the applied external electric field
with the amplitude e in the 0x direction

bH1 ¼ V x̂ð Þ ¼ �x̂Ze0e ð1:183Þ

under the form

Eð2Þ ¼ � 1
2
ae2 ð1:184Þ

that allows for a-polarizability in (1.184) the general hydrogenoid (Z-dependent)
formulation

a ¼ 2e20Z
2
X
k 6¼n

nh jx̂ kj ij j2
En � Ek

ð1:185Þ

where

e20 ¼
e2

4pe0
ð1:186Þ

is the reduced squared elementary charge.
Now, going on to evaluate the atomic polarizability in terms of the quantum

basic information contained within the atomic quantum numbers (e.g. n, k), one
starts recognizing the general operatorial identity over the complete set of quantum
(eigen) states (Putz 2010a)

X
k

nh jbO kj i
��� ���2 ¼X

k

nh jbO kj i kh jbO nj i

¼ nh jbO X
k

kj i kh j
( )
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

1

bO nj i ¼ nh jbO2 nj i: ð1:187Þ
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Equation (1.187) represents the sum rule of Bethe and Jackiw (1968) and Jackiw
(1967), while its simplest dipole matrix element sum rule casts asX

k

nh jx̂ kj ij j2 ¼ nh jx̂2 nj i ð1:188Þ

On the other hand, recalling the basic quantum commutation rule of momentum
with space coordinate

p̂; x̂½ � ¼ �h
i

ð1:189Þ

along the companion energy-coordinate commutator

bH ; x̂
h i

¼ p̂2

2m
þVðx̂Þ; x̂

� 	
¼ 1

2m
p̂2; x̂
� � ¼ �h

mi
p̂ ð1:190Þ

there can be inferred the quantum relationship

�h
i
¼ nh j p̂x̂� x̂p̂ð Þ nj i ¼

X
k

nh jp̂ kj i kh jx̂ nj i
� nh jx̂ kj i kh jp̂ nj i

� �
ð1:191Þ

upon inserting of the above quantum closure relation over the complete set of
eigen-states. The first term in the right-hand side of the last expression may be
reformulated as

nh jp̂ kj i ¼ nh jmi
�h
bH ; x̂
h i

kj i

¼ mi
�h

nh j bHx̂� x̂bH� �
kj i ¼ mi

�h
En � Ekð Þ nh jx̂ kj i

ð1:192Þ

and along the similar relation that springs out from the second term in (1.191) one
gets the equation (Putz 2010a)

�h
i
¼ mi

�h

X
k

En � Ekð Þ � Ek � Enð Þ½ � nh jx̂ kj ij j2 ð1:193Þ

that can be rearranged under the so-called Thomas-Reiche-Kuhn (TRK)
energy-weighted sum rule (Reiche and Thomas 1925; Thomas 1925; Kuhn 1925)

�h2

2m
¼
X
k

Ek � Enð Þ nh jx̂ kj ij j2: ð1:194Þ
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Remarkably, the expansion (1.194) may be also obtained by requiring that the
Kramers-Heisenberg dispersion relation reduce to the Thomas scattering formula at
high energies; indeed, through rewriting Eq. (1.194) in the form

X
k

2m Ek � Enð Þ
�h2

nh jx̂ kj ij j2 ¼
X
k

fn;k ¼ 1 ð1:195Þ

it provides an important theoretical support for the experimental checks of the
oscillator strengths (fn:k) as a confirmation of early quantum results (Mehra and
Rechenberg 1982; Bethe 1997).

Now, returning to the evaluation of polarizability given by (1.185) one can use
the recipe (1.194) to facilitate the skipping out of the energy-singularity toward the
all-eigen-state summation (1.188) with the successive results (Putz 2010a)

a ¼ 2e20Z
2
X
k 6¼n

nh jx̂ kj ij j2
En � Ek

¼ 2
2me20
�h2

Z2 �h2

2m

X
k 6¼n

nh jx̂ kj ij j2
En � Ek

¼ 4me20
�h2

Z2
X
k

Ek � Enð Þ nh jx̂ kj ij j2
( )X

k 6¼n

nh jx̂ kj ij j2
En � Ek

�!all k 2 4me
2
0

�h2
Z2

X
k

nh jx̂ kj ij j2
 !2

¼ 8
me20
�h2

Z2 nh jx̂2 nj i�� ��2¼ 8
Z2

a0
nh jx̂2 nj i�� ��2

ð1:196Þ

where we recognized the first Bohr radius expression (1.280).
Finally, the obtained expression (1.196) is unfolded through replacing the

coordinate observation with the atomic radius as the quantum average displacement
respecting its instantaneous value (Putz 2010a) x ! r � rh inl. It allows the
immediate formation of the squared coordinate expression x2 ¼ r2 � 2r rh inl þ rh i2nl
of which the observed quantum average looks like nh jx̂2 nj i ! x2


 �
nl¼ r2


 �
nl� rh i2nl

and whose replacement in the polarizability (1.196) produces its radial averages’
dependency

a ¼ 8
Z2

a0
r2

 �

nl� rh i2nl
h i2

ð1:197aÞ

While replacing the first- and second-order quantum averages for the atomic
radius of a hydrogenic system in terms of the principal and azimuthal quantum
numbers n and l, respectively (Morse and Feshbach 1953)
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rh inl¼ 1
2

a0
Z


 �
3n2 � l lþ 1ð Þ½ � and r2


 �
nl¼ 1

2
a0
Z


 �2
n2 5n2 � 3l lþ 1ð Þþ 1½ � the static

atomic polarizability (1.197a) takes the analytical form (Putz 2010a)

anl Zð Þ ¼ a30
2Z2 n2 2þ n2


 �� l2 1þ lð Þ2
h i2

ð1:197bÞ

remarkably recovering the exact result for the hydrogen limiting case

an¼1;l¼0 Z ¼ 1ð Þ ¼ 9
2
a30: ð1:197cÞ

1.6 Atomic Stability: The Proof by Quantum Path
Integrals

Despite the quantum arsenal of tools and relationships, above presented, the sta-
bility of matter resists explanation in a consistent way. Paradoxically, the proof of
matter’s stability at quantum level is not direct, i.e. by using the differential
equations of quantum mechanics, since the inherent quantum evolution opposite
behavior to stability itself. Therefore, the alternative integral approach should be
formulated—indeed the integral picture contains the information of all-possible
evolutions, averaged and appropriately weighted, so furnishing the stability output;
at the same time, such a picture, in order to be accepted, should first provide its firm
connection and equivalence with the fashioned Schrodinger formulation; this sec-
tion aims to achieve this double goal.

1.6.1 Schrodinger Equation by Quantum Path Integral

The starting point is the manifested equivalence between the path integral propa-
gator and the Green function, with the role of transforming one wave function
registered on one space-time event into another one, either in the future or
past quantum evolution (Putz 2009, 2016a). Here we consider only retarded
phenomena,

x2; t2; x1; t1ð Þ ¼ iGþ x2; t2; x1; t1ð Þ ð1:198Þ

in accordance with the very beginning path integral construction and the so-called
quantum Huygens principle of wave-packet propagation (Greiner and Reinhardt
1994):

w x2; t2ð Þ ¼
Z

x2; t2; x1; t1ð Þw x1; t1ð Þdx1; t2 [ t1 ð1:199Þ
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Yet, we will employ Eq. (1.199) for an elementary propagator, for a quantum
evolution as presented in Fig. 1.14, thus becoming like:

w x; tþ eð Þ ¼ A
Z

exp
i
�h
eL

xþ x0
2

;
x� x0
2

; tþ e
2

� �� 	
w x� n; tð Þdx0 ð1:200Þ

where A plays the role of the normalization constant in (1.200) to assure the
convergence of the wave function result. Equation (1.200) may still be transformed
through employing the geometrical relation:

x ¼ x0 þ n ð1:201Þ

to compute the space and velocity averages:

xþ x0
2

¼ 2x� n
2

¼ x� n
2

ð1:202Þ

x� x0
e

¼ n
e

ð1:203Þ

respectively, while changing the variable

dx0 ¼ �dn ð1:204Þ

Fig. 1.14 Depiction of the
space-time elementary
retarded path connecting two
events characterized by their
dynamic wave functions (Putz
2009, 2016a).
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to the actual form:

w x; tþ eð Þ ¼ eA Z exp
i
�h
e
m
2
n2

e2
� V x� n

2
; tþ e

2

� �� 	� �
w x� n; tð Þdn

¼ eA Z exp
im
2�he

n2
� 	

exp � i
�h
eV x� n

2
; tþ e

2

� �� 	
w x� n; tð Þdn

ð1:205Þ

where Lagrangian was considered with its canonical form, and the new constant
factor was considered assimilating the minus sign of (1.205).

Next, since noticing the square dependence of n in (1.205) there will be assumed
the series expansion in coordinate (n) and time (e) elementary steps restrained to the
second and first order, respectively, being the time interval cut-off in accordance
with the general e2 ffi 0 prescription. Thus we have:

w x� n; tð Þ ffi w x; tð Þ � n
@

@x
w x; tð Þ

� 	
n!0

þ n2

2
@2

@x2
w x; tð Þ

� 	
n!0

ð1:206Þ

w x; tþ eð Þ ffi w x; tð Þþ e
@

@t
w x; tð Þ

� 	
e!0

ð1:207Þ

exp � i
�h
eV x� n

2
; tþ e

2

� �� 	
ffi 1� i

�h
eV x; tð Þ ð1:208Þ

and the form (1.205) successively rearranges:

w x; tð Þþ e
@

@t
w x; tð Þ

� 	
¼ eA Z e�

m
2i�hen

2

1� i
�h
eV x; tð Þ

� 	
w x; tð Þ � n

@

@x
w x; tð Þ

� 	
þ n2

2
@2

@x2
w x; tð Þ

� 	� �
dn

¼ eAw x; tð Þ
Z

e�
m
2i�hen

2

dn� eA @

@x
w x; tð Þ

� 	 Z
ne�

m
2i�hen

2

dnþ eA 1
2

@2

@x2
w x; tð Þ

� 	
�
Z

n2e�
m
2i�hen

2

dn

� eA i
�h
eV x; tð Þw x; tð Þ

Z
e�

m
2i�hen

2

dnþ eA i
�h
eV x; tð Þ @

@x
w x; tð Þ

� 	 Z
ne�

m
2i�hen

2

dn

ð1:209Þ
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where we have neglected the mixed orders producing a total order beyond the
maximum two, e.g. en2 ffi 0, and where we arranged the exponentials under inte-
grals of Gaussian type (i.e. employing the identity �i ¼ 1=i). Now, the integrals
appearing on (1.209) are of Poisson type of various orders, and solves for notation

m
2�hei

� a ð1:210Þ

as:

Z
e�

m
2i�hen

2

dn !
Zþ1

�1
exp �an2

 �

dn ¼
ffiffiffi
p
a

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
2p�hei
m

r
ð1:211Þ

Z
ne�

m
2i�hen

2

dn !
Zþ1

�1
n exp �an2


 �
dn ¼ 0 ð1:212Þ

Z
n2e�

m
2i�hen

2
dn !

Zþ1

�1
n2 exp �an2


 �
dn ¼ 1

2a

ffiffiffi
p
a

r
¼ �hei

m

ffiffiffiffiffiffiffiffiffiffiffi
2p�hei
m

r
ð1:213Þ

With these the expression (1.209) simplifies to:

w x; tð Þþ e
@

@t
w x; tð Þ

� 	
¼ eA ffiffiffiffiffiffiffiffiffiffiffi

2p�hei
m

r
1þ 1

2
�hei
m

@2

@x2
� i
�h
eV x; tð Þ

� 	
w x; tð Þ ð1:214Þ

which in the limit e ! 0, common for path integrals, leaves with identity:

w x; tð Þ ¼ lim
e!0

eA ffiffiffiffiffiffiffiffiffiffiffi
2p�hei
m

r !
w x; tð Þ ð1:215Þ

from where the convergence constant of path integral (1.205) is found

eA eð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
m

2p�hei

r
: ð1:216Þ

Nevertheless, with the constant (1.216) back in (1.214) we get the equivalent
forms:
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w x; tð Þþ e
@

@t
w x; tð Þ

� 	
¼ w x; tð Þþ 1

2
�hei
m

@2

@x2
w x; tð Þ � i

�h
eV x; tð Þw x; tð Þ

, @

@t
w x; tð Þ ¼ 1

2
�hi
m

@2

@x2
w x; tð Þ � i

�h
V x; tð Þw x; tð Þ

, i�h
@

@t
w x; tð Þ ¼ � 1

2
�h2

m
@2

@x2
þV x; tð Þ

� 	
w x; tð Þ

ð1:217Þ

this last one identically recovering the Schrödinger wave function equation.
By the present result (1.217) we have thus proved that the Feynman path integral

may be reduced to the quantum wave-packet motion while carrying also the
information that connects coupled events across the paths’ evolution, this being a
general approach in quantum mechanics and statistics.

The next section(s) will deal with the practical application/calculation of the path
integrals for the fundamental quantum problem, i.e. the stability of Bohr’s atom in
particular and of general matter especially.

1.6.2 Feynman-Kleinert Effective Density Formalism

The effective electronic density may be analytically unfolded with the aid of path
integrals formalism, for which the Feynman and Kleinert (1986) formalism may be
considered as a meaningful analytical model; it starts from the quantum statistic
representation of the partition function (Feynman and Kleinert 1986; Kleinert 2004;
Kleinert et al. 2002; Putz 2009):

Z ¼
I

rð0Þ¼rð�hbÞ

DrðsÞ exp � 1
�h

Z�hb
0

ds m0
r
�2ðsÞ
2

þVðrðsÞÞ
24 358<:

9=; ð1:218Þ

in which the periodicity rð0Þ ¼ rð�hbÞ of the paths on the temporal (imaginary) axis
is admitted, being the quantum statistical measure of integration in the Wick-rotated
quantum mechanical one, i.e. performing the transformations:

t :¼ �is
d
dt ¼ ds

dt
d
ds ¼ i dds

�
: ð1:219Þ

Since the Fourier decomposition of the periodical paths is considered:

rðsÞ ¼ r0 þ
X1
m¼1

ðrm exp½ixms� þ c.c.Þ ð1:220Þ
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being xm ¼ 2pm=ð�hbÞ the Matsubara frequencies, with m the integer number of
indexation, the quantum statistic partition function (1.218) further becomes:

Z ¼
Zþ1

�1

dx0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�hb=m0

p Y1
m¼1

Zþ1

�1

Zþ1

�1

dRexmdImxm
p=ðm0bx2

mÞ
exp

�bm0
P1
m¼1

x2
m xmj j2

� 1
�h

R�hb
0

dsVðxðsÞÞ

2664
3775

8>><>>:
9>>=>>;

ð1:221Þ

This form of the partition function has the advantage of including all the periodic
paths, the quantum statistical ones, that characterize a given many-electronic
ensemble, but having also the disadvantage of requiring the calculus of an infinite
product of integrals. This is why the approximations are necessary, to enable the
approach of the path integrals to become analytically applicable.

Firstly, we will formally rewrite the partition function (1.221) in a more compact
form, which requires a single path integral only, governed by the formal effective
classical potential, Veff; clðr0Þ, instead of the entire Hamiltonian:

Z ¼
Zþ1

�1

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�h2b=m0

q exp½�bVeff; clðr0Þ�: ð1:222Þ

The r0 variable represents the average position of all the possible quantum
statistical paths on the imaginary temporal axis:

r0 � r ¼ 1
�h b

Z�hb
0

ds rðsÞ: ð1:223Þ

In order to build up a formalism with a sufficient accuracy for the classical
effective potential approximation, one has to consider a trial path integral, as a
superposition of path integrals with harmonic potentials centered in different r0
positions, each one of them having its own trial frequency, X2(r0).

Afterwards, the superposition and the respectively associated frequency will be
chosen in the optimal way, so that the classical effective potential of the system
should correspond to a quantum state as close as possible to that approximated by
the effective potential.

Consequently, the trial quantum statistic partition function (Z1) successively
becomes:

Z1 �
Zþ1

�1

dr0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p�h2b=m0

q exp½�bW1ðr0Þ� ð1:224Þ
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and the trial partition function appears now re-expressed in terms of the introduced
trial potential W1:

W1ðr0Þ ¼ 1
b
log

sinh½�hbXðr0Þ=2�
�hbXðr0Þ=2

� �
þVa2ðr0Þðr0Þ �

m0

2
X2ðr0Þa2ðr0Þ

ð1:225Þ

determined such thatW1(r0) to correspond to the optimal state, i.e. the closest one to
the classical effective potential.

Veff; clðr0Þ�W1ðr0Þ ð1:226Þ

The new introduced potential:

Va2ðr0Þðr0Þ ¼
Zþ1

�1

dr00ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2ðr0Þ

p Vðr00Þ exp �ðr00 � r0Þ2
2a2ðr0Þ

" #
ð1:227Þ

appears from the original potential, the V(r0) one, by its expansion in the neigh-
borhood of each effective event-point r0, as a Gaussian package with the width
a2(r0). This modified smeared out potential (1.227) takes into consideration all the
quantum statistic fluctuations on the evolution of the considered electronic system.

The introduced a2(r0) and X2(r0) parameters fulfill the relations:

a2ðr0Þ ¼ 1

m0bX
2ðr0Þ

�hbXðr0Þ
2

coth
�hbXðr0Þ

2

� 	
� 1

� �
ð1:228Þ

X2ðr0Þ ¼ 2
m0

@Va2ðr0Þðr0Þ
@a2ðr0Þ ð1:229Þ

The computation of the electronic density will be carried out within the
Feynman-Kleinert-Putz PI formalism, by using the following expressions:

q1ðr0Þ ¼ Z�1
1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p �h2b=m0

q exp½�bW1ðr0Þ� ð1:230Þ

Z1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p �h2b=m0

q Zþ1

�1
dr0 exp½�bW1ðr0Þ� ð1:231Þ
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and where the path influence was comprised within the introduced Feynman cen-
troid r0, see Eq. (1.223). It is worth noting that the electronic density (1.231) fulfills
the normalization condition:

Zþ1

�1
q1ðr0Þdr0 ¼ 1 ð1:232Þ

as specific to conceptual quantum theory. However, relation (1.232) is also in
agreement with the Density Functional Theory theorems as far as the evaluation of
electronegativity and of the related quantities is under focus; it is worth noticing that
electronegativity characterizes the whole system at the frontier limit, i.e. at the
valence or to the outer electronic shell. Often, the effective electron can be added or
released from the valence shell according with the electronegativity tendency
describing the frontier shell. Therefore, the condition (1.232), used to characterize
the effective valence electron behavior, is well justified.

However, it is worth noticing that, in general, through the density functional
description by means of the path integrals the memory effects can be limited by
imposing the so-called Markovian condition

�hb ! 0 ð1:233Þ

with the merit of canceling the low temperature quantum fluctuations by such a high
temperature limit, which is nevertheless specific to chemical systems in their
valence state (Putz 2012). Due to the temporal nature of the quantum statistical
quantity �hb / Dt, the limit (1.233) corresponds also to the ultra-short correlation of
the involved electrons with the applied external potential. This means that, since
initially the free motion of the electrons in the absence of an external potential
(Dt ¼ 0 , b ¼ 0) is assumed, as far as the external potential is then applied, an
immediate orbit stabilization of the electronic system is reached
(Dt ! 0 , b ! 0); in other words, the escape (unstable) paths are precluded.
Finally, this limit introduces also correlation effects with the medium. Therefore, it
is worth applying the limit (1.233) also to the PI Feynman-Kleinert results, see
Eqs. (1.224)–(1.229). The smeared out potential (1.227), by changing the variable
in such a way that:

zðr00Þ ¼
r00 � r0
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2ðr0Þ

p ; dzðr00Þ ¼
d r00
�� ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a2ðr0Þ
p ð1:234Þ
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can be rewritten in terms of the so-called Wigner (equivalent with high temperature)
expansion (Wigner 1932), of a high temperature limit (1.233), successively as:

Va2ðr0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p a2ðr0Þ
p Zþ1

�1
Vðr00Þ exp �ðr00 � r0Þ2

2a2ðr0Þ

" #
dr00

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p a2ðr0Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2ðr0Þ

p Zþ1

�1
V r0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2ðr0Þ

p
z

� �
exp �z2

 �

dz

¼ 1ffiffiffi
p

p
Zþ1

�1

Vðr0Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2ðr0Þ

p
zV 0ðr0Þ

þ 1
2 ð2a2ðr0ÞÞz2V 00ðr0Þþ � � �

( )
exp �z2

 �

dz

ffi 1ffiffiffi
p

p
Zþ1

�1

Vðr0Þ
þ 1

2 ð2a2ðr0ÞÞz2V 00ðr0Þ
� �

exp½�z2� dz

¼ Vðr0Þþ 1
2
a2ðr0ÞV 00ðr0Þ:

ð1:235Þ

Now, within the same (1.233) limit, the parameters (1.227) and (1.229) also
respectively become:

a2ðr0Þ ffi �h2
b

12m0
ð1:236Þ

X2ðr0Þ ffi 1
m0

V 00ðr0Þ ð1:237Þ

With Eqs. (1.235)–(1.237) back into the potential (1.225) one gets (Putz 2003):

W1ðr0Þ ffi Vðr0Þþ 1
b
ln

sinh �hb
2

ffiffiffiffiffiffiffiffiffiffi
V 00ðr0Þ
m0

q� �
�hb
2

ffiffiffiffiffiffiffiffiffiffi
V 00ðr0Þ
m0

q
264

375 ð1:238Þ

from which it appears that the Feynman-Kleinert PI constrained-search algorithm in
the Markovian limit provides an efficient recipe to compute electronic densities
using only the external potential dependence.

However, the resulting W1 Markovian potential (1.238) is next plugged into the
limit (1.233). This last step agrees with the Parr and Yang approach, which has shown
(Parr and Yang 1989) that the integral formulation of the Kohn-Sham (orbital) DFT
arrives at the electronic density expression by performing the Wigner semi-classical
expansion combined with the short time approximation (in b parameter). All the
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potential components around V can be formally interpreted as the exchange-
correlation PI potential VPI

XC of the medium. Even if this potential (1.238) can be
expanded into higher orders, it will be here truncated at the second-order expansion,
and yields (Putz 2003, 2009):

W1ðr0Þb!0 ffi Vðr0Þþ �h2
b

24m0
V 00ðr0Þ

¼ Va2! b
12
ðr0Þ

� Vðr0ÞþVPI
XCðr0Þ

ð1:239Þ

in which the exchange-correlation PI potential of the medium,

VPI
XCðr0Þ ¼ �h2

b
24m0

V 00ðr0Þ ð1:240Þ

corrects the classical external potential V, this way specializing the
Feynman-Kleinert formalism for further use and application in chemistry (see
Chap. 4, Sect. 4.7.2).

1.6.3 Quantum Smeared Effects and the Stability of Matter

The intriguing role the smeared potential in special and the smearing effect in
general play in optimization of the total energy and partition function of a quantum
system opens the possibility of analyzing the “smearing” phenomenon of the
quantum fluctuation in a more fundamental way (Putz 2009, 2016b).

I. First, it was noted that the smearing potential (1.227) appears as a Gaussian
convolution of the applied potential, although modeling the evolution of a
wave-packet under that potential; in other words, there appears the fundamental
question whether the Gaussian and wave function “kernels” behave in a similar way
throughout the smearing effect of quantum fluctuations; analytically, one would like
to see whether there holds the smearing average equality:

exp �ikxð Þh ia2ðx0Þ¼
? exp �k2x2


 �
 �
a2ðx0Þ: ð1:241Þ
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In order to check (1.241) one separately computes each of its sides separately by
the aid of k-form

Va2ðx0Þ x0ð Þ ¼
Zþ1

�1

dk
2p

V kð Þ exp ikx0 � 1
2
a2ðx0Þk2

� 	

¼
Zþ1

�1

dk
2p

Zþ1

�1
dxV xð Þ exp �ikxð Þexp ikx0 � 1

2
a2ðx0Þk2

� 	

¼ 1
2p

Zþ1

�1
dxV xð Þ exp � x� x0ð Þ2

2a2ðx0Þ

" # Zþ1

�1
dkexp

x� x0ffiffiffi
2

p
aðx0Þ

� i
aðx0Þffiffiffi

2
p k

 !2
24 35

¼ 1
2p

Zþ1

�1
dxV xð Þ exp � x� x0ð Þ2

2a2ðx0Þ

" # Zþ1

�1
dk0exp � a2ðx0Þ

2
k02

� 	

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2ðx0Þ

p Zþ1

�1
dxV xð Þ exp � x� x0ð Þ2

2a2ðx0Þ

" #
� V xð Þh ia2ðx0Þ

ð1:242Þ

and gets successively the smearing average for wave function:

exp �ikxð Þh ia2ðx0Þ ¼
Zþ1

�1

dk
2p

exp �ikxþ ikx0 � 1
2
a2 x0ð Þk2

� 	

¼
Zþ1

�1

dk
2p

exp �ik x� x0ð Þ � 1
2
a2 x0ð Þk2

� 	

¼ exp � x� x0ð Þ2
2a2 x0ð Þ

" # Zþ1

�1

dk
2p

exp � a2 x0ð Þ
2

kþ i
x� x0
a2 x0ð Þ

� 	2( )

¼ 1
2p

exp � x� x0ð Þ2
2a2 x0ð Þ

" # Zþ1

�1
dk0 exp � a2 x0ð Þ

2
k02

� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2ðx0Þ

p exp � x� x0ð Þ2
2a2 x0ð Þ

" #
ð1:243Þ
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and respectively for the Gaussian packet:

exp �k2x2

 �
 �

a2ðx0Þ ¼
Zþ1

�1

dk
2p

exp �k2x2 þ ikx0 � 1
2
a2 x0ð Þk2

� 	

¼
Zþ1

�1

dk
2p

exp �k2 x2 þ a2 x0ð Þ
2

� �
þ ikx0

� 	

¼ exp � x20
4 x2 þ a2 x0ð Þ=2ð Þ

� 	 Zþ1

�1

dk
2p

� exp � x2 þ a2 x0ð Þ=2
 �
k � i

x0
2 x2 þ a2 x0ð Þ=2ð Þ

� 	2( )

¼ 1
2p

exp � x20
4 x2 þ a2 x0ð Þ=2ð Þ

� 	 Zþ1

�1
dk0

� exp � x2 þ a2 x0ð Þ=2
 �
k02

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p 2x2 þ a2 x0ð Þ½ �p exp � x20
2 2x2 þ a2 x0ð Þð Þ

� 	
:

ð1:244Þ

Now to closely compare the expressions (1.243) and (1.244) the most elegant
way is once more to make recourse to the smearing procedure, this time referring
both to the entire paths and the Feynman centroid:

x0 ¼ 1
�hb

Z�hb
0

x sð Þds: ð1:245Þ

To this end, the similar result

m
2
X2 x0ð Þ x� x0ð Þ2

D E
a2ðx0Þ

¼ m
2
X2 x0ð Þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa2ðx0Þ
p Zþ1

�1
dx x� x0ð Þ2 exp � x� x0ð Þ2

2a2ðx0Þ

" #

¼ m
2
X2 x0ð Þa2ðx0Þ

ð1:246Þ
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is here used explicitly as:

x� x0ð Þ2
D E

a2
¼ a2: ð1:247Þ

It allows the additional similar relationships:

x2

 �

a2¼ x20

 �

a2¼
a2

2
ð1:248Þ

due to the symmetry of the smearing average formula (1.242) at the interchange
x $ x0, while the mixed term of (1.247) expansion vanishes, xx0h ia2ðx0Þ¼ 0, in any
path representation. With these, practically we can reconsider Eqs. (1.247) and
(1.248) by performing the formal equivalences

x� x0ð Þ2
 a2; x2 
 a2

2
; x20 


a2

2
ð1:249Þ

yielding:

exp �ikxð Þh ia2

1ffiffiffiffiffiffiffiffiffiffi
2pa2

p exp � 1
2

� 	
ð1:250Þ

exp �k2x2

 �
 �

a2 

1ffiffiffiffiffiffiffiffiffiffi
4pa2

p exp � 1
8

� 	
¼ exp �ikxð Þh ia2

exp 3=8ð Þffiffiffi
2

p
ð1:251Þ

Since the difference between these expressions is numerically proportional with
the factor

exp 3=8ð Þffiffiffi
2

p ffi 1:029 ð1:252Þ

they can be considered as identical in quantum smearing effects and Eq. (1.241) as
valid.

Yet, the quantum identity between the plane-wave and Gaussian packet has
profound quantum implications, revealing for instance the de Broglie–Born identity
in Gaussian normalization of the de Broglie moving wave-packet. It may express as
well the observational Gaussian character of the wave function evolution in Hilbert
space. Finally, and very importantly, it leads to explanation of Bohr’s first postu-
late, i.e. it is able to explain the stationary wave on orbits under singular
(Coulombic) potential thus explaining the matter stabilization on a rigorous
quantum base, rather than admitting it by the power of a postulate. This is next to be
proved (Feynman and Kleinert 1986; Kleinert 2004; Putz 2009).
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II. Let us consider a quantum system evolving under the influence of the
Yukawa potential, as a generalization of the Coulomb interaction, available also in
the subnuclear world:

VYuk rð Þ ¼ A
r
exp �arð Þ; r ¼ x� x0 ð1:253Þ

which goes to the celebrated hydrogen Coulomb central potential in the limit:

lim
a ! 0
A ¼ �e20

VYuk rð Þ ¼ VH rð Þ ¼ � e20
r
; e20 ¼ � e2

4pe0
: ð1:254Þ

Now, we would like to investigate the smeared version of the Yukawa potential
(1.253). In 3D toward radial formulation the general definition (1.242) specializes
as:

VYuk r ¼ x� x0ð Þh ia2 ¼ A4p
Zþ1

0

r2drffiffiffiffiffiffiffiffiffiffi
2pa2

p� �3 e�ar

r
exp � x� x0ð Þ2

2a2

" #

¼ A2peax0
Zþ1

0

d r2ð Þffiffiffiffiffiffiffiffiffiffi
2pa2

p� �3 e�ax exp � r2

2a2

� 	 ð1:255Þ

In the last expression one can recognize the squared integration variable, of the
same nature as fluctuation width, see Eq. (1.249) with r ¼ x� x0, so that the
passage to integration upon the variable a2 seems natural, yet meaning that the
path-dependent terms become smeared respecting the fluctuations, and the inte-
gration (lower) limit changes accordingly:

VYuk r0ð Þh ia2¼ A2p eax0h ia2
Zþ1

a2

d ~a2ð Þffiffiffiffiffiffiffiffiffiffi
2p~a2

p� �3 e�axh i~a2e�
r2
0

2~a2 : ð1:256Þ

In this new integral form only one smeared term is truly of the compulsory form
(1.243), namely

e�ax0h ia2¼ exp �i iað Þx0½ �h ia2ffi exp � iað Þ2x20
h iD E

a2
ð1:257Þ
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where also the proved identity (1.241) was considered upon it. Yet, the Eq. (1.257)
may transformed by the application of the Jensen-Peierls equality limit

exp O½ �h i � exp Oh i½ � ð1:258Þ

to yield

e�ax0h ia2ffi exp a2x20
� �
 �

a2
 exp a2 x20

 �

a2

h i
¼ exp a2a2=2


 � ð1:259Þ

when the smeared rules (1.248) are counted as well. The other similar term in
(1.256) is, however, evaluated by the approximated inverse identity:

eaxh i~a2ffi
1

e�axh i~a2
ffi exp �a2~a2=2


 �
: ð1:260Þ

However, based on the unconnected version of the second-order Wick cumulant

eaxh i~a2 e�axh i~a2ffi eaxe�axh i~a2¼ 1h i~a2¼ 1 ð1:261Þ

with expressions (1.259) and (1.260) back into the smeared Yukawa potential
(1.256) it becomes:

VYuk r0ð Þh ia2¼ A2p e
a2a2
2

Zþ1

a2

d ~a2ð Þffiffiffiffiffiffiffiffiffiffi
2p~a2

p� �3 e� a2~a2
2 � r2

0
2~a2 : ð1:262Þ

Now, through considering the variable exchange under the integral:

f ¼ r0ffiffiffiffiffiffiffi
2~a2

p ð1:263Þ

there result the following transformations:

~a2 ¼ r20
2f2

;
d ~a2ð Þffiffiffiffiffi
~a2

p� �3 ¼ � 2
ffiffiffi
2

p

r0
df ð1:264Þ

so that the smeared potential (1.262) is finally cast as:

VYuk r0ð Þh ia2¼ A
exp a2a2=2ð Þ

r0

2ffiffiffi
p

p
Zr0= ffiffiffiffiffi2a2
p

0

df exp � f2 þ a2r20
4f2

� �� 	
ð1:265Þ
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which has no longer singularity at origin, since the integral in (1.265) is behaving
like its integration interval for the limit r0 ! 0, which gives:

VYuk 0ð Þh ia2¼ A
2 exp a2a2=2ð Þffiffiffiffiffiffiffiffiffiffi

2pa2
p ð1:266Þ

Now, it is clear that under the Coulombic limit (1.254) the resulting atomic (say
for the hydrogen case) smeared effect leaves it with the form:

VH r0ð Þh ia2¼ � e20
r0

2ffiffiffi
p

p
Zr0= ffiffiffiffiffi2a2
p

0

df exp �f2

 � ¼ � e20

r0
erf r0=

ffiffiffiffiffiffiffi
2a2

p� �
ð1:267Þ

while its value on origin is of finite value:

VH 0ð Þh ia2¼ � 2e20ffiffiffiffiffiffiffiffiffiffi
2pa2

p ð1:268Þ

thus assuring (and explaining) why the atomic electron(s) do not fall onto the
nucleus.

Therefore the smearing procedure plays a kind of renormalization role in
transforming singular potential in finite interactions by means of quantum fluctu-
ation effects. Such a picture strongly advocates for powerful path integral formalism
in general and for that of Feynman-Kleinert in particular since it explicitly accounts
for the fluctuation width in optimizing the quantum equilibrium states.
Nevertheless, it is worth particularizing the Feynman-Kleinert formalism to the
ground and excited states cases to better capture its realization and limits.

1.6.4 Ground State (b ! ∞, T ! 0 K) Case

The basic ground state conditions in terms of thermodynamic factor (b) or the
temperature (T),

b ! 1 , T ! 0 ð1:269Þ

aim to bring the Feynman-Kleinert formalism, through its working potential
(Feynman and Kleinert 1986):

WFK x0ð Þ ¼ 1
b
ln

sinhð�hbX x0ð Þ=2Þ
�hbX x0ð Þ=2

� 	
þVa2ðx0Þ x0ð Þ � m

2
X2 x0ð Þa2ðx0Þ ð1:270Þ
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to the variational ground state as usually provided by the quantum variational
principle. For this purpose it will be first specialized within the general limit (1.269)
and then tested for the paradigmatic hydrogen ground state case for investigating
the accuracy of the formalism itself (Putz 2009, 2016a).

As such, the components of the Feynman-Kleinert potential (1.270) have the
ground state limits:

lim
b!1

1
b
ln

sinhð�hbX x0ð Þ=2Þ
�hbX x0ð Þ=2

� 	� �
¼ �hX

2
lim
b!1

cosh �hbX x0ð Þ=2ð Þ
sinh �hbX x0ð Þ=2ð Þ � lim

b!1
1
b

¼ �hX
2

ð1:271Þ

which recognizes the ground state of harmonic motion of trial fluctuations, while
the ground state of the fluctuation width (1.228) reads as

lim
b!1

a2 x0ð Þ ¼ lim
b!1

1

mbX2

�hbX
2

coth
�hbX
2

� �
� 1

� 	� �
¼ �h

2mX
lim
b!1

coshð�hbX x0ð Þ=2Þ
sinhð�hbX x0ð Þ=2Þ � lim

b!1
1

mbX2

¼ �h
2mX

ð1:272Þ

from where also the trial fluctuations frequency springs as:

lim
b!1

X ¼ �h
2ma2 x0ð Þ : ð1:273Þ

Considering the relations (1.272) and (1.273) yields for the working general
effective-classical approximation potential (1.270) the general ground state limit:

WT!0
FK x0ð Þ ¼ lim

b!1

1
b ln sinh �hbX x0ð Þ=2ð Þ

�hbX x0ð Þ=2
h i

� m
2 X

2 x0ð Þa2 x0ð Þ

8<:
9=;þVT!0

a2ðx0Þ x0ð Þ

¼ �hX
4

þVT!0
a2ðx0Þ x0ð Þ

¼ �h2

8ma2
þVT!0

a2ðx0Þ x0ð Þ

ð1:274Þ
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with the ground state smeared out potential remaining for individuation for a given
problem. Very interestingly, the expression (1.274) entirely corresponds to the
smeared out effect applied on the ordinary quantum Hamiltonian:

bH ¼ � �h2

2m
@2
x þV xð Þ ð1:275Þ

which one can immediately check out by applying the general smearing averaging
definition (1.242) on it:

bHD E
a2ðx0Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2 x0ð Þp Zþ1

�1
dx � �h2

2m
@2
x þV xð Þ

� 	
exp � x� x0ð Þ2

2a2 x0ð Þ

" #

¼ � �h2

2m
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa2 x0ð Þp Zþ1

�1
dx

@2

@x2
exp � x� x0ð Þ2

2a2 x0ð Þ

" #( )
þVT!0

a2ðx0Þ x0ð Þ

¼ � �h2

2m
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa2 x0ð Þp Zþ1

�1
dx

x� x0ð Þ2
2a2 x0ð Þ � 1

" #
exp � x� x0ð Þ2

2a2 x0ð Þ

" #( )
þ VT!0

a2ðx0Þ x0ð Þ

¼ �h2

8ma2
þVT!0

a2ðx0Þ x0ð Þ:
ð1:276Þ

The identity between expressions (1.274) and (1.276) presents the important idea
that the smearing operation produces in fact the average of quantum fluctuation for
the ground state equilibrium. For the Coulomb interaction, say on the hydrogen,
either expression produces the working form

WT!0
FK�H x0ð Þ ¼ bHH

D E
a2ðx0Þ

¼ 3�h2

8ma2
� 2e20ffiffiffiffiffiffiffiffiffiffi

2pa2
p ð1:277Þ

where the 3D version of the kinetic term of (1.276) was here considered aside the
smearing out potential in the origin (1.268) to produce the form ready for ordinary
minimization respecting the fluctuation width:

@

@a2 x0ð Þ
bHH

D E
a2ðx0Þ

¼ 0: ð1:278Þ
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The solution of Eq. (1.278) with the form (1.277) produces the optimum width
for quantum fluctuations:

aoptFK ¼ 3�h2
ffiffiffiffiffiffi
2p

p

8me20
ð1:279Þ

which, in terms of the standard first Bohr radius

a0 ¼ �h2

me20
ð1:280Þ

reads as

aoptFK ¼
ffiffiffiffiffiffi
9p
32

r
a0 ffi 0:94a0 ð1:281Þ

thus producing only a 6% error in predicting the localization for the stabilization of
electronic ground state orbit closer to the nucleus respecting the exact
Bohr-Schrödinger solution. However, the predicted approximated ground state
energy error is a bit higher due to the energy dependency

Emin
FK�H ¼ bHH

D E
a2ðx0Þ

aoptFK


 �
¼ � e20ffiffiffiffiffiffi

2p
p

aoptFK

¼ � 8
3p

e20
2a0

� �
¼ 8

3p
EH
0 ffi 0:84EH

0

ð1:282Þ

this way lying about 16% higher than the exact ground state of the hydrogen atom.
Such a “universal” quantum statistical picture of equilibrium is hard to find in

quantum theory, at the same level of elegance, analyticity, and complexity (Dirac
1944; Duru and Kleinert 1979, 1982; Blinder 1993; Kleinert 1996).

1.7 Free and Observed Quantum Evolution: Extended
Heisenberg Uncertainly Relationship (HUR) by Path
Integrals

Beside the stability of matter, the duality versus complementarity of matter’s nature,
either as wave or particle, and their uncertainty, remains another “big challenge” of
quantum mechanics in general, and of matter structure in particular. Path integral
formalism offers, nevertheless, a unique opportunity to treat the Heisenberg
uncertainty relationship, and even allowing its extension so that both free and
observed quantum evolutions can be described in quantum terms (Putz 2010b,
2016a, b).
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1.7.1 HUR by Periodic Paths

Since its inception, the Heisenberg Uncertainty Relationship (HUR) (Heisenberg
1927) has been one of the most fascinating and controversial issues of quantum
mechanics. Under its customary presentation

DxDp� �h
2

ð1:283Þ

as independently proved by Robertson and Schrodinger (Robertson 1929;
Schrödinger 1930) working out the standard deviation of coordinate (x) and
momentum (p)

Dx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2h i � xh i2

q
; Dp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2h i � ph i2

q
ð1:284Þ

it was eventually criticized as being no more than the experimental realization of the
operatorial (non-)commutation relation x; p½ � ¼ i�h that implicitly contains the
incompatibility between the coordinate and momentum spaces (Ozawa 2002,
2003a, b).

Here, the philosophy is to introduce appropriately the quantum fluctuation
information a = a(x0) respecting the average of the observed coordinate (x0), by the
Feynman integration rule founded in the ordinary quantum average [Eq. (1.285)]

fh ia2ðx0Þ¼
Zþ1

�1
dxw� x; a2ðx0Þ


 �
fw x; a2ðx0Þ

 � ð1:285Þ

for the normalized Gaussian wave function [Eq. (1.286)]

w x; a2ðx0Þ

 � ¼ 1

2pa2ðx0Þ½ �1=4
exp � x� x0ð Þ2

4a2ðx0Þ

" #
ð1:286Þ

recovering the de Broglie wave-packet (Feynman and Kleinert 1986; de Broglie
1987) upon which a quantum property may be estimated.

It is obvious that Eqs. (1.285) and (1.286) fulfill the necessary (natural) condi-
tion according which the average of the coordinate over the quantum fluctuations
recovers the observed quantity of the Feynman centroid, based on simple Poisson
integration rules
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xh ia2ðx0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa2ðx0Þ
p Zþ1

�1
dx x� x0 þ x0½ � exp � x� x0ð Þ2

2a2ðx0Þ

" #

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2ðx0Þ

p Zþ1

�1
dx x� x0½ � exp � x� x0ð Þ2

2a2ðx0Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

0

þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2ðx0Þ

p Zþ1

�1
dx x0½ � exp � x� x0ð Þ2

2a2ðx0Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

x0h ia2ðx0Þ

¼ x0
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa2ðx0Þ
p Zþ1

�1
dx exp � x� x0ð Þ2

2a2ðx0Þ

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

1

¼ x0;

xh ia2ðx0Þ ¼ x0h ia2ðx0Þ¼ x0:

ð1:287Þ

The next test is about the validity of Eq. (1.283)—the HUR itself. To this end
with the aid of the Feynman-de Broglie rule (1.286) the quantities of Eq. (1.284)
are computed:

x� x0ð Þ2
D E

a2ðx0Þ
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa2ðx0Þ
p Zþ1

�1
dx x� x0ð Þ2 exp � x� x0ð Þ2

2a2ðx0Þ

" #
¼ a2: ð1:288Þ

Then, through combining the expression

a2 ¼ x� x0ð Þ2
D E

a2ðx0Þ
¼ x2

 �

a2ðx0Þ�2 xh ia2ðx0Þ x0h ia2ðx0Þ þ x20

 �

a2ðx0Þ ð1:289Þ

with the prescription (1.287) we are left with the actual result

x2

 �

a2ðx0Þ¼ a2 þ x20 ð1:290Þ

which, when plugged into the basic Eq. (1.284) alongside the information of
Eq. (1.287), yields the coordinate dispersion

Dx ¼ a ð1:291Þ

featuring it in a direct relationship with the quantum fluctuation width.
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In the same manner, the evaluations for the integrals of the first and second
orders of kinetic moment unfold as

ph ia2ðx0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa2ðx0Þ
p Zþ1

�1
dx exp � x� x0ð Þ2

4a2ðx0Þ

" #
�i�h@xð Þ exp � x� x0ð Þ2

4a2ðx0Þ

" #

¼ i�h
2a2ðx0Þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2ðx0Þ

p Zþ1

�1
dx x� x0ð Þ exp � x� x0ð Þ2

2a2ðx0Þ

" #
¼ 0

ð1:292Þ

p2

 �

a2ðx0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa2ðx0Þ
p Zþ1

�1
dx exp � x� x0ð Þ2

4a2ðx0Þ

" #
��h2@2

x


 �
exp � x� x0ð Þ2

4a2ðx0Þ

" #

¼ � �h2

a2ðx0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2ðx0Þ

p Zþ1

�1
dx

x� x0ð Þ2
4a2ðx0Þ � 1

2

" #
exp � x� x0ð Þ2

2a2ðx0Þ

" #
¼ �h2

4a2

ð1:293Þ

while when plugging them into Eq. (1.284) produce the momentum dispersion
expression

Dp ¼ �h
2a

: ð1:294Þ

It is worth noting that from the coordinate and momentum dispersions,
Eqs. (1.291) and (1.294), it appears that the dependency of the Planck constant is
restricted only to the latter, whereas the quantum fluctuations are present in both, in
a direct and inverse manner, respectively.

However, Heisenberg uncertainty as the exact specialization of Eq. (1.283) is
re-obtained when multiplying the expressions (1.291) and (1.294), i.e.

DxDp ¼ �h
2

ð1:295Þ

this way resembling in an elegant manner the previous result of statistical com-
plementary observables of position and momentum (Hall 2001).
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1.7.2 Wave-Particle Ratio Function

The present algorithm may be specialized to the analysis of the wave-particle
duality. This is accomplished by means of considering further averages over the
quantum fluctuations for the mathematical objects exp(−ikx) and exp(−k2x2) that are
most suited to represent the waves and particles, due to their obvious shapes,
respectively. By employing the Fourier k-transformation as resulted from the de
Broglie packet (1.286), we have successively (Putz 2010b, 2016b):

f ðx; kÞh ia2ðx0Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pa2ðx0Þ
p Zþ1

�1
dxf ðx; kÞ exp � x� x0ð Þ2

2a2ðx0Þ

" #

¼ 1
2p

Zþ1

�1
dxf ðx; kÞ exp � x� x0ð Þ2

2a2ðx0Þ

" # Zþ1

�1
dk0 exp � a2ðx0Þ

2
k02

� 	

¼ 1
2p

Zþ1

�1
dxf ðx; kÞ exp � x� x0ð Þ2

2a2ðx0Þ

" # Zþ1

�1
dk

� exp
x� x0ffiffiffi
2

p
aðx0Þ

� i
aðx0Þffiffiffi

2
p k

 !2
24 35

¼
Zþ1

�1

dk
2p

Zþ1

�1
dxf ðx; kÞ exp �ikxð Þ exp ikx0 � 1

2
a2ðx0Þk2

� 	

¼
Zþ1

�1

dk
2p

f kð Þ exp ikx0 � 1
2
a2ðx0Þk2

� 	
:

ð1:296Þ

With the rule (1.296) one may describe the average behavior of the wave and
particle, respectively, as
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exp �ikxð Þh ia2ðx0Þ ¼
Zþ1

�1

dk
2p

exp �ikxþ ikx0 � 1
2
a2ðx0Þk2

� 	

¼
Zþ1

�1

dk
2p

exp �ik x� x0ð Þ � 1
2
a2ðx0Þk2

� 	

¼ exp � x� x0ð Þ2
2a2ðx0Þ

" # Zþ1

�1

dk
2p

exp � a2ðx0Þ
2

kþ i
x� x0
a2ðx0Þ

� 	2( )

¼ 1
2p

exp � x� x0ð Þ2
2a2ðx0Þ

" # Zþ1

�1
dk0 exp � a2ðx0Þ

2
k02

� �

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pa2ðx0Þ

p exp � x� x0ð Þ2
2a2ðx0Þ

" #
ð1:297Þ

and

exp �k2x2

 �
 �

a2ðx0Þ ¼
Zþ1

�1

dk
2p

exp �k2x2 þ ikx0 � 1
2
a2ðx0Þk2

� 	

¼
Zþ1

�1

dk
2p

exp �k2 x2 þ a2ðx0Þ
2

� �
þ ikx0

� 	

¼ exp � x20
4 x2 þ a2ðx0Þ=2ð Þ

� 	 Zþ1

�1

dk
2p

� exp � x2 þ a2ðx0Þ
2

� �
k � i

x0
2 x2 þ a2ðx0Þ=2ð Þ

� 	2( )

¼ 1
2p

exp � x20
4 x2 þ a2ðx0Þ=2ð Þ

� 	 Zþ1

�1
dk0

� exp � x2 þ a2ðx0Þ
2

� �
k02

� �
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p 2x2 þ a2ðx0Þ½ �p exp � x20
2 2x2 þ a2ðx0Þð Þ

� 	
:

ð1:298Þ
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It is worth observing that the practical rule (1.296) is indeed consistent since
recovering in (1.297) the kernel of the Gaussian de Broglie wave-packet—for the
wave behavior of a quantum object—as expected. Consequently, the result (1.298)
is a viable analytical expression for characterizing the complementary particle
nature of the quantum manifestation of an object.

Next, the ratio of Eqs. (1.297) and (1.298) is formed:

Particle
Wave

�
exp �k2x2ð Þ
 �

a2ðx0Þ
exp �ikxð Þh ia2ðx0Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2ðx0Þ
2x2 þ a2ðx0Þ

s
exp � x20

2 2x2 þ a2ðx0Þð Þ þ
x2 � 2xx0 þ x20

2a2ðx0Þ
� 	 ð1:299Þ

giving the working tool in estimating the particle-to-wave content for a quantum
object by considering various coordinate average information.

1.7.3 Extended HUR

We would like to identify the general quantum fluctuation conditions, i.e. whether
the HUR is valid and when it is eventually extended. We already noted that,
whereas relations (1.292)–(1.294) fix the momentum dispersion computation, the
evaluation of the coordinate dispersion has more freedom in its internal working
machinery, namely:

(i) considering the condition (1.287) as an invariant of the measurement theory
since it assures the connection between the average over quantum fluctuation
of the coordinate and the observed averaged coordinate;

(ii) specializing the quantum (average) relationship (1.289) for the condition
given by Eq. (1.287);

(iii) obtaining the average of the second-order coordinate (1.290);
(iv) combining steps (i) and (ii) by computing the coordinate dispersion Δx as

given by Eq. (1.284);
(v) and making the formal identity of the coordinate quantities in Eq. (1.299)

with the respective values as furnished by steps (i)–(iii) of the above coor-
dinate averages’ algorithm

x0 $ x0h ia2ðx0Þ; x $ xh ia2ðx0Þ; x20 $ x20

 �

a2ðx0Þ; x2 $ x2

 �

a2ðx0Þ
ð1:300Þ

since they nevertheless emerge from quantum average operations (measurements).
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Now we are ready to present the two possible scenarios for quantum evolutions
along the associate HUR realization and the wave-particle behavior.

For the case of observed quantum evolution, the averaged observed position is
considered in relation with the quantum fluctuation by the general relationship

xh ia2ðx0Þ¼ x0h ia2ðx0Þ¼ x0 ¼ na; n 2 < ð1:301Þ

implying that the average of the second-order of the Feynman centroid looks like

x20

 �

a2ðx0Þ¼ n2a2: ð1:302Þ

When (1.301) and (1.302) are introduced into the identity (1.290), according
with step (iii) above, the actual average of the second-order coordinate is obtained:

x2

 �

a2ðx0Þ¼ a2 1þ n2

 �

: ð1:303Þ

Not surprisingly, when further combining relations (1.301) and (1.303) in com-
puting the coordinate dispersion of Eq. (1.284), i.e. fulfilling step (iv) above, one
regains the value of Eq. (1.291) that recovers in its turn the standard HUR no matter
how much the quantum fluctuation is modulated by the factor n. However, the
P(article)/W(ave) ratio of Eq. (1.299) takes the form

Particle
Wave

� �
Observed
Evolution

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3þ 2n2

p exp
3þ n2

6þ 4n2

� �
¼

0:952 . . . n ¼ 0
0:667 . . . n ¼ 1
0 . . . n ! 1

8<:
ð1:304Þ

showing that the wave-particle duality is indeed a reality that can be manifested in
various particle-wave (complementary) proportions—yet never reaching perfect
equivalence (the ratio approaching unity). Moreover, because (P/W)Obs < 1, it
appears that the general behavior of a quantum object is merely manifested as a
wave when observed, from which arises the efficacy of spectroscopic methods in
assessing the quantum properties of matter.

Moving to the treatment of the free quantum evolution, the average of the
first-order coordinate is vanishing

xh ia2ðx0Þ¼ x0h ia2ðx0Þ¼ x0 ¼ 0 ð1:305Þ

since the quantum object, although existing, is not observed (see the spontaneous
broken symmetry mechanism in Chap. 4).
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The relation with quantum fluctuation is apparent by the average of the second
order of the Feynman centroid—considered under the form

x20

 �

a2ðx0Þ¼ n2a2: ð1:306Þ

Note that Eqs. (1.305) and (1.306) parallel the statistical behavior of error in
measurements that being vanishing in the first case as mean deviation results in the
second as squared deviation (dispersion), respectively.

Next, through recalling the referential Eq. (1.289)—step (ii) in the above
algorithm—the average of the second-order coordinate provides now the expression

x2

 �

a2ðx0Þ¼ a2 1� n2

 �

: ð1:307Þ

The result (1.307) restrains the domain of the free evolution quantum fluctuation
factor n to the realm n 2 0; 1½ �. With Eqs. (1.305) and (1.307), step (iii) in the above
algorithm, one finds the coordinate dispersion

Dx ¼ a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
ð1:308Þ

with the immediate consequence in adjusting the basic HUR as

DxDp� �h
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
ð1:309Þ

On the other hand, within conditions fixed by Eqs. (1.305)–(1.307) the P(arti-
cle)/W(ave) index of Eq. (1.299) becomes

Particle
Wave

� �
Free
Evolution

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3� 2n2

p exp
3� 3n2

6� 4n2

� �

¼
0:952 . . . n ¼ 0
1 . . . nX ¼ 0:54909
1:048 . . . n ¼ 0:87
1 . . . na ¼ 1

8>><>>: : ð1:310Þ

Through characterizing the numerical results of Eq. (1.310), one first observes
that they practically start from where the P/W function of Eq. (1.304) approaches its
highest output. In other words, this furnishes remarkable information according to
which the observed and free quantum evolutions are continuous realities, being
smoothly accorded in the point of precise measurement (n = 0). Another very
interesting observation is that the P/W ratio symmetrically spans in (1.310) the
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existence domain either for wave P/W2[0.952, 1) or particle P/W2(1, 1.048]
manifestations around their exact equivalence P/W = 1 (Fig. 1.15). However, the
precise wave-particle equivalence is twofold, namely in the so-called omega (X)
and alpha (a) points of Eq. (1.310) characterized by the extended HUR versions of
Eq. (1.309); written, respectively:

DxDpð ÞX � 0:418�h ð1:311Þ

DxDpð Þa � 0: ð1:312Þ

Note that the possibility that a quantum object is manifested only under particle
behavior (i.e. for P/W!∞) is forbidden. This is an important consequence of the
present analytical discourse that is in agreement with the Copenhagen interpretation
according to which the quantum phenomena are merely manifested as undulatory
(viz. Schrödinger equation) although some particle information may be contained
but never in an exclusive manner (naturally, otherwise the Newtonian object would
exist with no Planck constant and HUR relevance upon it).

Fig. 1.15 The Heisenberg Uncertainty Relationship (HUR) appearance for observed and free
quantum evolutions covering the complete scale of the particle to wave ratios as computed from
Eqs. (1.304) and (1.310), respectively; the points X and a correspond to wave-particle precise
equivalence and to the special extended HURs of Eqs. (1.311) and (1.312), respectively (Putz
2010b, 2016b).
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1.8 Conclusions

The main items learned in the present chapter for the further theoretical and
applicative investigation of atomic and matter’s quantification pertain to the
following:

• Highlighting the role of quantum mechanics in the panoply of knowledge.
• Tracing the facts and reasons leading to various levels of atomic theory.
• Contouring the further relations between atomic and molecular structure and

determinative lines to properties and applications of materials.
• Defining the quantum paradigm: wave functions, wave equations (Schrödinger,

Klein-Gordon, Dirac), operators (impulse, momenta, Hamiltonian), matrix
representation (Heisenberg), path integrals (Feynman).

• Assimilating the modes and limits of interpretation (indetermination relation-
ships, commutators).

• Employing approximation methods: variation and perturbation theory.
• Characterizing the shell atomic structure with the help of spherical symmetry

reasons (spherical harmonics). New hints and heuristic keys.
• Solving the Schrödinger equation for a one-electron atom (hydrogenoid) with

change variable strategies. New transformation methods, corroborated with
inductive reasoning.

• Writing the hydrogenoid atomic orbitals with the support of computer algebra
codes.

• Understanding the principles and manifestations of relativistic quantum effects.
• Concluding a conceptual synopsis and extrapolating a methodological organon.
• Regaining the Schrodinger equation by the alternative path integral method.
• Formulating the effective density formalism within quantum statistics special-

ized as Feynman-Kleinert formalism.
• Explaining atomic stability by path integrals in ground state asymptotic limit of

quantum statistical description of central potential.
• Discovering that while the observed reality is fully covered by the standard

HUR albeit with an undulatory predominant manifestation of the quantum
objects, P/W 2 [0, 0.952], the free evolution corresponds with isolated (not
measured) quantum systems/states with a symmetrical appearance between the
particle and wave dominant manifestations around their perfect equivalency,
P/W 2 [0.952, 1.048]—however, with the price of altering HUR realization
with the factor

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

p
in terms of the quantum fluctuation magnitude

n 2 0; 1½ �.
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