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Abstract Uncertainty quantification (UQ) is a multidisciplinary area, that deals

with quantitative characterization and reduction of uncertainties in applications. It

is essential to certify the quality of numerical and experimental analyses of physi-

cal systems. The present manuscript aims to provide the reader with an introductory

view about modeling and quantification of uncertainties in physical systems. In this

sense, the text presents some fundamental concepts in UQ, a brief review of probabil-

ity basics notions, discusses, through a simplistic example, the fundamental aspects

of probabilistic modeling of uncertainties in a physical system, and explains what is

the uncertainty propagation problem.
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1 An Introductory Overview on UQ

Typically, highly complex engineering projects use both numerical simulations and

experimental tests on prototypes to specify a certain system or component with

desired characteristics. These two tools are used in a similar way by scientists to

investigate physical phenomena of interest. However, none of these approaches pro-

vides a response that is an exact reproduction of the physical system behaviour,

because computational model and test rig are subject to uncertainties, which are

intrinsic to modeling process (lack of knowledge on the physics) and model parame-

ters (measurement inaccuracies, manufacturing variabilities, etc.).

In order to improve the reliability level of numerical results and experimental data,

it is necessary to quantify the underlying uncertainties. The cautious experimentalists

have been doing this for many decades, leading to a high level competence in what

concerns the specification of the level of uncertainty in an experiment. It is worth
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remembering that an experiment that does not specify the level of uncertainty is not

well seen by the technical/scientific community. On the other hand, just recently the

numerical community has begun to pay attention to the need of specifing the level

of confidence for computer simulations.

Uncertainty quantification (UQ) is a multidisciplinary area that deals with quanti-

tative characterization and the reduction of uncertainties in applications. One reason

that UQ has gained such popularity over the last years, in numerical world, is due

to several books on the subject have recently emerged [1–12]. To motivate its study,

we present three important scenarios where UQ is an essential tool:

Decision making: Some risk decisions, which negative result can cause catastrophic

failure or huge financial costs, need to be well analysed before a final opinion by the

responsible party. The possible variabilities that generate uncertain scenarios need

to be taken into account in the analysis. The evaluation of these uncertain scenarios

has the task of assisting the responsible party to minimize the chances of a wrong

decision. Briefly, and in this context, UQ is essential to provide the necessary certi-

fication for a risk decision.

Model validation: Experimental data are widely used to check the accuracy of a

computational model which is used to emulate a real system. Although this procedure

is already being used by scientists and engineers for many decades, there is still no

universally accepted criteria to ensure the model quality. However, it is known that

any robust criteria of model validation must take into account the simulation and

experiment uncertainties.

Robust design: An increasingly frequent requirement in several projects is the robust

design of a component which consists make a specific device low sensitive to varia-

tion on its properties. This requires the quantification of model and parameters uncer-

tainties.

In a very simplistic way, we can summarize UQ objectives as (i) add error bars to
experiments and simulations, and (ii) define a precise notion of the validated model.

The first objective is illustrated in Fig. 1a, which shows the comparison between

a simulation result with experimental data, and in Fig. 1b, that presents the previ-

ous graph with the inclusion of an envelope of reliability around the simulation. As

careful experimentalists, which use error bars for a long time, UQ mainly focuses on

“error bars for simulations”.

Moreover, a possible notion of validated model is illustrated in Fig. 2, where

experiment and simulation are compared, and the computational model is consid-

ered acceptable if the admissible range for the experimental value (defined by the

point and its error bar) is contained within the reliability envelope around the simu-

lation.

This chapter is organised into six sections. Besides this introduction, there is a

presentation of some fundamental concepts of UQ in Sect. 2; a brief review on proba-

bility theory basics in Sect. 3; an exposure of the fundamental aspects of probabilistic

modeling of uncertainties, through a simplistic example, in Sect. 4; the presentation

of the uncertainty propagation problem in Sect. 5; and the final remarks in Sect. 6.
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Fig. 1 a Comparison between simulation and experimental data, without an envelope of reliability

for the simulation, and b including this envelope
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Fig. 2 Illustration of a possible notion of validated model

It is noteworthy that many of the ideas that are presented in this manuscript are

very influenced by courses taught by the author’s doctoral supervisor, Prof. Chris-

tian Soize [13–15]. Lectures of Prof. Gianluca Iaccarino, Prof. Alireza Doostan, and

collaborators were also very inspiring [16–18].

2 Some Fundamental Concepts on UQ

This section introduce some fundamental notions in the context of UQ.

2.1 Errors and Uncertainties

Unfortunately, until the present date, there is still no consensus in UQ literature about

the notions of errors and uncertainties. This manuscript presents the definitions we

think make more sense, introduced by [19].
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Fig. 3 Schematic representation of the relationship between the designed system, the real system

and the computational model [19]

Let’s start with three conceptual ideas that will be relevant to the stochastic mod-

eling of physical systems: designed system, real system and computational model. A

schematic illustration of these concepts is shown in Fig. 3.

Designed system: The designed system consists of an idealized project for a physi-

cal system. It is defined by the shape and geometric dimensions, material properties,

connection types between components (boundary conditions), and many other para-

meters. This ideal system can be as simple as a beam or as complex as an aircraft [19].

Real system: The real system is constructed through a manufacturing process taking

the designed system as reference. In contrast to the designed system, the real system

is never known exactly, as the manufacturing process introduces some variabilities

in the system geometric dimensions, on its materials properties, etc. No matter how

controlled the construction process is, these deviations from the conceptual project

are impossible to eliminate, since any manufacturing process is subjected to finite

accuracy. Thus, the real system is uncertain with respect to the designed system [19].

Computational model: In order to analyze the real system behaviour, a computa-

tional model should be used as predictive tool. The construction of this computa-

tional model initially performs a physical analysis of the designed system, identifies

the associated physical phenomena and makes hypotheses and simplifications about

its behaviour. The identified physical phenomena are then translated into equations

in a mathematical formulation stage. Using the appropriate numerical methods, the

model equations are then discretized and the resulting discrete system of equations

is solved, providing an approximation to the computational model response. This

approximate response is then used to predict the real system behaviour [19].

Numerical errors: The response obtained with the computational model is, in fact,

an approximation to the model equation’s true solution. Inaccuracies, intrinsic to the

discretization process, are introduced in this step giving rise to numerical errors [19].

Other source of errors are: (i) the finite precision arithmetic that is used to perform

the calculations, and (ii) possible bugs in the computer code implementation of the

computational model.
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Uncertainties on the data: The computational model is supplied with model input

and parameters, which are (not exact) emulations of the real system input and para-

meters, respectively. Thus, it is uncertain with respect to the real system. The dis-

crepancy between the real system and computational model supplied information is

called data uncertainties [4, 19].

Uncertainties on the model: In the conception of the computational model, consid-

erations made may or may not be in agreement with reality, which should introduce

additional inaccuracies known as model uncertainties. This source of uncertainty is

essentially due to lack of knowledge about the phenomenon of interest and, usually,

is the largest source of inaccuracy in computational model response [4, 19].

Naturally, uncertainties affect the response of a computational model, but they

should not be considered errors because they are physical in nature. Errors are purely

mathematical in nature and can be controlled and reduced to a negligible level if the

numerical methods and algorithms used are well known by the analyst [4, 19]. This

differentiation is summarized in Fig. 4.

2.2 Verification and Validation

Today verification and validation, also called V&V, are two concepts of fundamen-

tal importance for any carefully done work in UQ. Early works advocating in favor

of these ideas, and showing their importance, date back to the late 1990s and early

2000s [20–23]. The impact on the numerical simulation community was not imme-

diate, but has been continuously growing over the years, conquering a prominent

space in the last ten years, especially after the publication of Oberkampf and Roy’s

book [24].

These notions are well characterized in terms of two questions:

Verification:

Are we solving the equation right?

Fig. 4 The difference

between errors and

uncertainties
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Validation:

Are we solving the right equation?

Although extremely simplistic, the above “definitions” communicate, directly and

objectively, the key ideas behind the two concepts. Verification is a task whose goal

is to make sure that the model equation’s solution is being calculated correctly. In

other words, it is to check if the computational implementation has no critical bug

and the numerical method works well. It is an exercise in mathematics. Meanwhile,

validation is a task which aims to check if the model equations provide an adequate

representation of the physical phenomenon/system of interest. The proper way to do

this “validation check up” is through a direct comparison of the model responses

with experimental data carefully obtained from the real system. It is an exercise in

physics. In Fig. 5 the reader can see a schematic representation of the difference

between the two notions.

An example in V&V: A skydiver jumps vertically in free fall, from a helicopter that

is stopped in flight, from a height of y0 = 2000m with velocity v0 = 0m∕s. Such

situation is illustrated in Fig. 6. Imagine we want to know the skydiver height in

every moment of the fall. To do this we develop a (toy) model where the falling man

is idealized as point mass m = 70 kg, under the action of gravity g = 9.81m∕s2. The

height at time t is denoted by y(t).
The skydiver’s height at time t can be determined through the following initial

value problem (IVP)

m ÿ(t) + m g = 0, (1)

ẏ(0) = v0,
y(0) = y0,

where the upper dot is an abbreviation for a time derivative, i.e., ̇□ ∶= d □∕dt. This

toy model is obtained from Newton’s 2nd law of motion and considers the weigh as

the only force acting on the skydiver body.

Imagine that we have developed a computer code to integrate this IVP using a

standard 4th order Runge-Kutta method [25]. The model response obtained with

this computer code is shown in Fig. 7.

Fig. 5 The difference

between verification and

validation



Modeling and Quantification of Physical Systems Uncertainties . . . 133

Fig. 6 V&V example: a

skydiver in free fall from an

initial height y0

y

g
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Fig. 7 Response obtained

with the toy model
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To check accuracy of the numerical method and its implementation we have at

our disposal the analytical (reference) solution of the IVP, given by

y(t) = −1
2

g t2 + v0 t + y0. (2)

In Fig. 8a we can see the comparison between toy model response (solid blue

curve —) and the reference solution (dashed red curve - - -). We note that both

curves are in excellent agreement, but if we look at Fig. 8b, which shows the difer-

ence between numerical and analytical solutions, it is evident the effectiveness of the

numerical method and the robustness of its implementation become ever clearer.
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Fig. 8 a Solution verification: comparison between toy model response and reference solution;

b absolute error of Runge-Kutta method approximation

Here the verification was made taking as reference the real solution of the model

equation. In the most frequent case, the model equations solution is not known. In

such a situation, the verification task can be performed, for instance, using the method
of manufactured solutions [24, 26–28].

Now let’s turn our attention to model validation, and compare simulation results

with experimental data, such as shown in Fig. 9a. We note that the simulation is

completely in disagreement with the experimental observations. In other words, the

model does not provide an adequate representation of the real system behaviour.

The toy model above take into account the gravitational force which attracts the

skydiver toward the ground, but neglects air resistance effects. This is the major

reason for the observed discrepancy, the model deficiency (model uncertainty). If

the air drag force effects are included, the improved model below is obtained
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Fig. 9 a Model validation: comparison between experimental data and the toy model, b compari-

son between experimental data, the toy model, and the improved model
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m ÿ(t) + m g − 1
2
𝜌A CD (ẏ(t))2 = 0, (3)

ẏ(0) = v0,
y(0) = y0,

where 𝜌 is the air mass density, A is the cross-sectional area of the falling body, and

CD is the (dimensionless) drag coefficient.

With this new model, a better agreement between simulation and experiment is

expected. In Fig. 9b the reader can see the comparison between experimental data

and the responses of both models, where we note that the improved model provides

more plausible results.

An important message, implicit in this example, is that epistemic uncertainties

can be reduced by increasing the actual knowledge about the phenomenon/system

of interest [22, 24].

2.3 Two Approaches to Model Uncertainties

Being uncertainties in physical system the focus of stochastic modeling, two

approaches are found in the scientific literature to deal with then: probabilistic, and

non-probabilistic.

Probabilistic approach: This approach uses probability theory to model the phys-

ical system uncertainties as random mathematical objects. This approach is well-

developed and very consistent from the mathematical foundations point of view for

this reason, there is a consensus among the experts that it is preferable whenever

possible to use it [4].

Non-probabilistic approach: This approach uses techniques such as interval analy-

sis, fuzzy finite element, imprecise probabilities, evidence theory, probability bounds

analysis, fuzzy probabilities, etc. In general these techniques are less suitable for

problems in high stochastic dimension. Usually they are applied only when the prob-

abilistic approach can not be used [4].

Because of their aleatory nature, data uncertainties are, quite naturally, well repre-

sented in a probabilistic environment. Thus, the parametric probabilistic approach is

an appropriate method to describe this class of uncertainties. This procedure consists

in describe the computational model random parameters as random objects (random

variables, random vectors, random processes and/or random fields) and then consis-

tently construct their joint probability distribution. Consequently, the model response

becomes aleatory, and starts to be modeled by another random object, depending on

the nature of the model equations. The model response is calculated using a stochas-

tic solver. For further details, we recommend [4, 19, 29–31].
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When model uncertainties are the focus of analysis, the non-probabilistic tech-

niques receive more attention. Since the origin of this type of uncertainty is epis-

temic (lack of knowledge), it is not naturally described in a probabilistic setting.

More details on non-probabilistic techniques can be seen in [32–34]. However, the

use of probability theory for model uncertainties is still possible through a methodol-

ogy called nonparametric probabilistic approach. This method, which also take into

account the data uncertainty, was proposed in [35], and describes the mathematical

operators in the computational model (not the parameters) as random objects. The

probability distribution of these objects must be constructed in a consistent way,

using the Principle of Maximum Entropy. The methodology lumps the model level

of uncertainty into a single parameter, which can be identified by solving a parameter

identification problem when (enough) experimental data is available. An overview

of this technique can be seen in [19, 31].

A generalized probabilistic approach describing model and data uncertainties on

different probability spaces, with some advantages, is presented in [36, 37].

3 A Brief on Probability Theory

This section presents a brief review of probability basic concepts. Such exposition is

elementary, being insufficient for a solid understanding of the theory. Our objective is

only to equip the reader with basic probabilistic vocabulary necessary to understand

UQ scientific literature. For deeper studies on probability theory, we recommend the

references [38–41].

3.1 Probability Space

The mathematical framework in which a random experiment is described consists of

a triplet (Ω,˚,ℙ), where Ω is called sample space, ˚ is a 𝜎-algebra over Ω, and ℙ
is a probability measure. The trio (Ω,˚,ℙ) is called probability space.

Sample space: The set which contains all possible outcomes (events) for a certain

random experiment is called sample space, being represented by Ω. An elementary

event in Ω is denoted by 𝜔. Sample spaces may contain a number of events that is

finite, denumerable (countable infinite) or non-denumerable (non-countable infin-

ity). The following three examples, respectively, illustrate the three situations:

Example 3.1 (finite sample space) Rolling a given cube-shaped fare die, where the

faces are numbered from 1 through 6, we have Ω = {1, 2, 3, 4, 5, 6}.

Example 3.2 (denumerable sample space) Choosing randomly an integer even num-

ber, we have Ω = {… ,−8,−6,−4,−2, 0, 2, 4, 6, 8,…}.
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Example 3.3 (non-denumerable sample space) Measuring the temperature

(in Kelvin) at Rio de Janeiro city during the summer, we have Ω = [a, b] ⊂ [0,+∞).

𝜎-algebra: In general, not all of the outcomes in Ω are of interest so that, in a proba-

bilistic context, we need to pay attention only to the relevant events. Intuitively, the

𝜎-algebra ˚ is the set of relevant outcomes for a random experiment. Formally, ˚ is

𝜎-algebra if:

∙ 𝜙 ∈ ˚ (contains the empty set);

∙ for any  ∈ ˚ we also have c ∈ ˚ (closed under complementation);

∙ for any countable collections of i ∈ ˚, it is true that
⋃∞

i=1 i ∈ ˚
(closed under denumerable unions).

Example 3.4 Consider the experiment of rolling a die with sample space Ω =
{1, 2, 3, 4, 5, 6} where we are interested in knowing if the result is odd or even. In

this case, a suitable 𝜎-algebra is ˚ = {Ω, {1, 3, 5}, {2, 4, 6}, 𝜙}. On the other hand,

if we are interested in knowing the upper face value after rolling, an adequate 2𝜔 (set

of all subsets of 𝜔). Different 𝜎-algebras generate distinct probability spaces.

Probability measure: The probability measure is a function ℙ ∶ ˚ → [0, 1] ⊂ ℝ
which indicates the level of expectation that a certain event in ˚ occurs. In tech-

nical language, ℙ has the following properties:

∙ ℙ {} ≥ 0 for any  ∈ ˚ (probability is nonnegative);

∙ ℙ {Ω} = 1 (entire space has probability one);

∙ for any denumerable collection of mutually disjoint events i, it is true that

ℙ
{⋃∞

i=1 i
}
=
∑∞

i=1 ℙ
{
i

}
.

Note that ℙ {𝜙} = 0 (empty set has probability zero).

3.2 Random Variables

A mapping 𝕏 ∶ Ω → ℝ is called a random variable if the preimage of every real

number under 𝕏 is a relevant event, i.e.,

𝕏−1(x) = {𝜔 ∈ Ω ∶ 𝕏 (𝜔) ≤ x} ∈ ˚, for every x ∈ ℝ. (4)

We denote a realization of 𝕏 by 𝕏(𝜔).
Random variables provide numerical characteristics of interesting events, in such

a way that we can forget the sample space. In practice, when working with a proba-

bilistic model, we are concerned only with the possible values of 𝕏.
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Example 3.5 The random experiment is now toss a two fare dice, then Ω ={
(d1, d2) ∶ 1 ≤ d1 ≤ 6 and 1 ≤ d2 ≤ 6

}
. Define the random variables 𝕏1 and 𝕏2 in

such way that 𝕏1(𝜔) = d1 + d2 and 𝕏2(𝜔) = d1 d2. The former is a numerical indi-

cator of the sum of dice upper faces values, while the latter characterizes the product

of these numbers.

3.3 Probability Distribution

The probability distribution of 𝕏, denoted by P𝕏, is defined as the probability of the

elementary event {𝕏 ≤ x}, i.e.,

P𝕏(x) = ℙ {𝕏 ≤ x} . (5)

P𝕏 has the following properties:

∙ 0 ≤ P𝕏(x) ≤ 1 (it is a probability);

∙ P𝕏 is non-decreasing, and right-continuous;

∙ limx→−∞ P𝕏(x) = 0, and limx→+∞ P𝕏(x) = 1;

so that

P𝕏(x) =
∫

x

𝜉=−∞
dP𝕏(𝜉), (6)

and

∫ℝ
dP𝕏(x) = 1. (7)

P𝕏 is also known as cumulative distribution function (CDF).

3.4 Probability Density Function

If the function P𝕏 is differentiable, then we call its derivative the probability density
function (PDF) of 𝕏, using the notation p𝕏.

Given that p𝕏 = dP𝕏∕dx, we have dP𝕏(x) = p𝕏(x) dx, and then

P𝕏(x) =
∫

x

𝜉=−∞
p𝕏(𝜉) d𝜉. (8)
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The PDF is a function p𝕏 ∶ ℝ → [0,+∞) such that

∫ℝ
p𝕏(x) dx = 1. (9)

3.5 Mathematical Expectation Operator

Given a function g ∶ ℝ → ℝ, the composition of g with the random variable 𝕏 is

also a random variable g(𝕏).
The mathematical expectation of g(𝕏) is defined by

𝔼 {g(𝕏)} =
∫ℝ

g(x) p𝕏(x) dx. (10)

With the aid of this operator, we define

m𝕏 = 𝔼 {𝕏}

=
∫ℝ

x p𝕏(x) dx,
(11)

𝜎

2
𝕏 = 𝔼

{(
𝕏 − m𝕏

)2}

=
∫ℝ

(x − m𝕏)2 p𝕏(x) dx,
(12)

and

𝜎𝕏 =
√

𝜎

2
𝕏, (13)

which are the mean value, variance, and standard deviation of 𝕏, respectively. Note

further that

𝜎

2
𝕏 = 𝔼

{
𝕏2} − m2

𝕏. (14)

The ratio between standard deviation and mean value is called coefficient of vari-
ation of 𝕏

𝛿𝕏 =
𝜎𝕏
m𝕏

, m𝕏 ≠ 0. (15)

These scalar values are indicators of the random variable behaviour. Specifically,

the mean value m𝕏 is a central tendency indicator, while variance 𝜎

2
𝕏 and standard

deviation 𝜎𝕏 are measures of dispersion around the mean. The difference in these

dispersion measures is that 𝜎𝕏 has the same unit as m𝕏 while 𝜎

2
𝕏 is measured in m𝕏
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unit squared. Once it is dimensionless, the coefficient of variation is a standardized

measure of dispersion.

For our purposes, it is also convenient to define the entropy of p𝕏

S
(
p𝕏

)
= −𝔼

{
ln
(
p𝕏(𝕏)

)}
, (16)

which (see Eq. 10) is equivalent to

S
(
p𝕏

)
= −

∫ℝ
p𝕏(x) ln

(
p𝕏(x)

)
dx. (17)

Entropy provides a measure for the level of uncertainty of p𝕏 [42].

3.6 Second-Order Random Variables

The mapping 𝕏 is a second-order random variable if the expectation of its square

(second-order moment) is finite, i.e.,

𝔼
{
𝕏2}

< +∞. (18)

The inequality expressed in (18) implies that 𝔼 {𝕏} < +∞ (m𝕏 is also finite). Con-

sequently, with the aid of Eq. (14), we see that a second-order random variable 𝕏
has finite variance, i.e., 𝜎

2
𝕏 < +∞.

This class of random variables is very relevant for stochastic modeling, once, for

physical considerations, typical random parameters in physical systems have finite

variance.

3.7 Joint Probability Distribution

Given the random variables 𝕏 and 𝕐 , the joint probability distribution of 𝕏 and 𝕐 ,

denoted by P𝕏𝕐 , is defined as

P𝕏𝕐 (x, y) = ℙ {{𝕏 ≤ x} ∩ {𝕐 ≤ y}} . (19)

The function P𝕏𝕐 has the following properties:

∙ 0 ≤ P𝕏𝕐 (x, y) ≤ 1 (it is a probability);

∙ P𝕏(x) = limy→+∞ P𝕏𝕐 (x, y), and P𝕐 (y) = limx→+∞ P𝕏𝕐 (x, y)
(marginal distributions are limits);
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such that

P𝕏𝕐 (x, y) =
∫

x

𝜉=−∞ ∫

y

𝜂=−∞
dP𝕏𝕐 (𝜉, 𝜂), (20)

and

∫ ∫ℝ2
dP𝕏𝕐 (x, y) = 1. (21)

P𝕏𝕐 is also known as joint cumulative distribution function.

3.8 Joint Probability Density Function

If the partial derivative 𝜕

2 P𝕏𝕐∕𝜕x 𝜕y exists, for any x and y, then it is called joint
probability density function of 𝕏 and 𝕐 , being denoted by

p𝕏𝕐 (x, y) =
𝜕

2 P𝕏𝕐
𝜕x 𝜕y

(x, y). (22)

Hence, we can write dP𝕏𝕐 (x, y) = p𝕏𝕐 (x, y) dy dx, so that

P𝕏𝕐 (x, y) =
∫

x

𝜉=−∞ ∫

y

𝜂=−∞
p𝕏𝕐 (𝜉, 𝜂) d𝜂 d𝜉. (23)

The joint PDF is a function p𝕏𝕐 ∶ ℝ → [0,+∞) which satisfies

∫ ∫ℝ2
p𝕏𝕐 (x, y) dy dx = 1. (24)

3.9 Conditional Probability

Consider the pair of random events {𝕏 ≤ x} and {𝕐 ≤ y}, where the probability of

occurrence of the second one is non-zero, i.e., ℙ {{𝕐 ≤ y}} > 0. The conditional
probability of event {𝕏 ≤ x}, given the occurrence of event {𝕐 ≤ y}, is defined as

ℙ
{
{𝕏 ≤ x} || {𝕐 ≤ y}

}
=

ℙ {{𝕏 ≤ x} ∩ {𝕐 ≤ y}}
ℙ {{𝕐 ≤ y}}

. (25)
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3.10 Independence of Random Variables

The event {𝕏 ≤ x} is said to be independent of event {𝕐 ≤ y} if the occurrence of

the former does not affect the occurrence of the later, i.e.,

ℙ
{
{𝕏 ≤ x} || {𝕐 ≤ y}

}
= ℙ {{𝕏 ≤ x}} . (26)

Consequently, if the random variables 𝕏 and 𝕐 are independent, from Eq. (25)

we see that

ℙ {{𝕏 ≤ x} ∩ {𝕐 ≤ y}} = ℙ {𝕏 ≤ x} ℙ {𝕐 ≤ y} . (27)

This also implies that

P𝕏𝕐 (x, y) = P𝕏(x)P𝕐 (y), (28)

and

p𝕏𝕐 (x, y) = p𝕏(x) p𝕐 (y). (29)

3.11 Random Process

A random process 𝕌, indexed by t ∈  , is a mapping

𝕌 ∶ (t, 𝜔) ∈  × Ω → 𝕌(t, 𝜔) ∈ ℝ, (30)

such that, for fixed t, the output is a random variable 𝕌(t, ⋅), while for fixed 𝜔, 𝕌(⋅, 𝜔)
is a function of t. In other words, it is a collection of random variables indexed by a

parameter. Roughly speaking, a random process, also called stochastic process, can

be thought of as a time-dependent random variable.

4 Parametric Probabilistic Modeling of Uncertainties

This section discusses the use of the parametric probabilistic approach to describe

uncertainties in physical systems. Our goal is to provide the reader with some key

ideas behind this approach and call attention to the fundamental issues that must be

taken into account. The exhibition is based on [13, 15] and use a simplistic example

to discuss the theory.
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Fig. 10 Mechanical system

composed by a fixed spring

and a constant force

k

u

f

4.1 A Simplistic Stochastic Mechanical System

Consider the mechanical system which consists of a spring fixed on the left side of

a wall and being pulled by a constant force on the right side (Fig. 10). The spring

stiffness is k, the force is represented by f , and the spring displacement is denoted

by u. A mechanical-mathematical model to describe this system behaviour is given

by

k u = f , (31)

from where we get the system response

u = k−1 f . (32)

4.2 Stochastic Model for Uncertainties Description

We are interested in studying the case where the above mechanical system is subject

to uncertainties on the stiffness parameter k. To describe the random behaviour of

the mechanical system, we employ the parametric probabilistic approach.

Let us use the probability space (Ω,˚,ℙ), where the stiffness k is modeled as the

random variable 𝕂 ∶ Ω → ℝ. Therefore, due to result of the relationship imposed

by Eq. (32), the displacement u is also uncertain, being modeled as a random vari-

able 𝕌 ∶ Ω → ℝ, which respects the equilibrium condition given by the following

stochastic equation

𝕂𝕌 = f . (33)

It is reasonable to assume that the deterministic model is minimally represen-

tative, and corresponds to the mean of 𝕂, i.e., m𝕂 = k. Additionally, for physical

reasons, 𝕂 must have a finite variance. Thus, 𝕂 is assumed to be a second-order

random variable, i.e., 𝔼
{
𝕂2}

< +∞.
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4.3 The Importance of Knowing the PDF

Now that we have the random parameter described in a probabilistic context, and

a stochastic model for the system, we can ask ourselves some questions about the

system response. For instance, to characterize the system response central tendency,

it is of interest to know the mean of 𝕌, denoted by m𝕌.

Since m𝕂 is a known information about 𝕂 (but p𝕂 is unknown), we can ask our-

selves: Is it possible to compute m𝕌 with this information only? The answer for this

question is negative. The reason is that 𝕌 = 𝕂−1 f , so that

m𝕌 = 𝔼
{
𝕂−1 f

}

=
∫ℝ

k−1 f p𝕂(k) dk,

and the last integral can only be calculated if p𝕂 is known. Once the map g(k) = k−1 f
is nonlinear, 𝔼 {g (𝕂)} ≠ g (𝔼 {𝕂}).

Conclusion: In order to obtain any statistical information about model response, it
is absolutely necessary to know the probability distribution of model parameters.

4.4 Why Can’t We Arbitrate Distributions?

As the knowledge of the probability distribution of 𝕂 is necessary, let’s assume that

it is Gaussian distributed. In this way,

p𝕂(k) =
1

√
2𝜋 𝜎

2
𝕂

exp

{

−
(k − m𝕂)2

2 𝜎2
𝕂

}

, (34)

whose support is the entire real line, i.e., Supp p𝕂 = (−∞,+∞).
The attentive reader may question, at this point, that from the physical point of

view, make no sense use a Gaussian distribution to model a stiffness parameter, since

𝕂 is always positive. This is true and makes the arbitrary choice of a Gaussian dis-

tribution inappropriate. However, this is not the only reason against this choice.

For physical considerations, it is necessary that the model response𝕌 be a second-

order (finite variance) random variable, i.e., . 𝔼
{
𝕌2}

< +∞. Is this possible when
we arbitrate the probability distribution as Gaussian? No way! Just do a simple

calculation
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𝔼
{
𝕌𝟚} =𝔼

{
𝕂−𝟚 f 2

}

=
∫ℝ

k−2 f 2 p𝕂(k) dk

=
∫

+∞

k=−∞
k−2 f 2

⎛
⎜
⎜
⎜
⎝

1
√

2𝜋 𝜎

2
𝕂

exp

{

−
(k − m𝕂)2

2 𝜎2
𝕂

}⎞
⎟
⎟
⎟
⎠

dk

= +∞.

(35)

In fact, we also have 𝔼 {𝕌} = m𝕌 = +∞.

The Gaussian distribution is a bad choice since 𝕂 must be a positive-valued ran-

dom variable (almost sure). Thus, we know the following information about 𝕂:

∙ Supp p𝕂 ⊆ (0,+∞) ⟺ 𝕂 > 0 a.s.
∙ m𝕂 = k > 0 is known

∙ 𝔼
{
𝕂2}

< +∞

All these requirements are verified by the exponential distribution, in which the PDF

is given by the function

p𝕂(k) = 1(0,+∞)(k)
1

m𝕂
exp

{

− k
m𝕂

}

, (36)

where 1(0,+∞) the indicator function of the interval (0,+∞).
However, we still have

𝔼
{
𝕌𝟚} =𝔼

{
𝕂−2 f 2

}

=
∫ℝ

k−2 f 2 p𝕂(k) dk

=
∫

+∞

k=0
k−2 f 2

(
1

m𝕂
exp

{

− k
m𝕂

})

dk

= +∞,

(37)

once the function k ↦ k−2 diverges in k = 0. Thus, in order to 𝔼
{
𝕌2}

< +∞, we

must have 𝔼
{
𝕂−2}

< +∞.

Conclusion: Arbitrate probability distributions for parameters can generate a sto-
chastic model that is inconsistent from the physical/mathematical point of view.

4.5 An Acceptable Distribution

In short, an adequate distribution must satisfy the conditions below
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∙ Supp p𝕂 ⊆ (0,+∞) ⟹ 𝕂 > 0 a.s.
∙ m𝕂 = k > 0 is known

∙ 𝔼
{
𝕂2}

< +∞
∙ 𝔼

{
𝕂−2}

< +∞.

The gamma distribution satisfies all the conditions above so that it is an acceptable

choice. Its PDF is written as

p𝕂(k) = 1(0,+∞)(k)
1

m𝕂

𝛿

−2𝛿−2𝕂
𝕂

Γ
(
𝛿

−2
𝕂
)
(
k∕m𝕂

)
𝛿

−2
𝕂 −1 exp

{

−
k∕m𝕂

𝛿

2
𝕂

}

, (38)

where 0 ≤ 𝛿𝕂 = 𝜎𝕂∕m𝕂 < 1∕
√
2 is a dispersion parameter, andΓ denotes the gamma

function

Γ(𝛼) =
∫

+∞

t=0
t𝛼−1 e−t dt. (39)

Conclusion: Probability distributions for model parameters must be objectively con-
structed (never arbitrated), and take into account all available information about the
parameters.

4.6 How to Safely Specify a Distribution?

In the previous example, we have chosen a suitable probability distribution by ver-

ifying if the candidate distributions satisfy the constraints imposed by physical and

mathematical properties of the model parameter/response. However, this procedure

is not practical and does not provide a unique distribution as a possible choice. For

instance, in the spring example, uniform, lognormal and an infinitude of other dis-

tributions are also acceptable (compatible with the restrictions).

Thus, it is natural to ask ourselves if it is possible to construct a consistent sto-

chastic model in a systematic way. The answer for this question is affirmative, and

the objective procedure to be used depends on the scenario.

Scenario 1: large amount of experimental data is available

The usual procedure in this case employs nonparametric statistical estimation to

construct the random parameter distribution from the available data [13, 15, 43].

Suppose we want to estimate the probability distribution of a random variable 𝕏,

and for that we have N independent samples of 𝕏, respectively denoted by X1
, X2

,

…, XN
.
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Assuming, without loss of generality, that X1
< X2

< ⋯ < XN
, we consider an

estimator for P𝕏(x) given by

̂PN(x) =
1
N

N∑

n=1
 (x − Xn) , (40)

where  is defined as

 (x − Xn) =

{
1 if x ≥ Xn

0 if x < Xn
.

(41)

This estimator, which is mean-square consistent

𝔼
{
̂PN(x)

}
= P𝕏(x), (42)

and unbiased

lim
N→+∞

𝔼
{(

̂PN(x) − P𝕏(x)
)2

}

= 0, (43)

is known as the empirical distribution function or the empirical CDF [13, 15, 43,

44].

If the random variable admits a PDF, it is more common to estimate its probability

distribution using a histogram, that is an estimator for p𝕏(x). To construct such a

histogram, the first step is to divide the random variable support into a denumerable

number of bins m, where

m = [(m − 1) h,m h] , m ∈ ℤ, (44)

being h the bin width. Then we count the number of samples in each of the bins m,

denoting this number by 𝜈m. After that, we normalize the counter (dividing by Nh)

to obtain the normalized relative frequency 𝜈m∕ (Nh). Finally, for each bin m, we

plot a vertical bar with height 𝜈m∕ (Nh) [43, 44].

In analytical terms (see [43, 44]) we can write this as PDF estimator as

p̂N(x) =
1

N h

+∞∑

m=−∞
𝜈m 1m

(x), (45)

where 1m
(x) is the indicator function of m, defined as

1m
(x) =

{
1 if x ∈ m

0 if x ∉ m.
(46)
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Fig. 11 These samples are realizations of a standard Gaussian random variable
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Fig. 12 a Estimators for the probability distribution of 𝕏: the empirical CDF, and b a histogram

Both estimators above are easily constructed, but they require a large number of

samples in order to obtain a reasonable approximation [43, 44].

In practice, these estimators are used when we do not know the random variable

distribution. However, to illustrate the use of these tools, let us consider a dataset

with N = 100 samples obtained from the (standard) Gaussian random variable 𝕏,

with zero mean and unity standard deviation. Such samples are illustrated in Fig. 11.

Considering these samples, we can construct the two estimators shown in Fig. 12,

with the empirical CDF on the left and a histogram on the right.

Scenario 2: little or even none experimental data is available

When very little or no experimental data is available, to the best of the author’s

knowledge, the most conservative approach uses the Maximum Entropy Principle
(MEP) [15, 45, 46, 48], with parametric statistical estimation, to construct the ran-

dom parameter distribution. If no experimental data is available, this approach takes

into account only theoretical information which can be inferred from the model

physics and its mathematical structure to specify the desired distribution.
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The MEP can be stated as follows: Among all the (infinite) probability distrib-
utions, consistent with the known information about a random parameter, the most
unbiased is the one which corresponds to the maximum of entropy PDF.

Using it to specify the distribution of a random variable 𝕏 presupposes finding

the unique PDF which maximizes the entropy (objective function)

S
(
p𝕏

)
= −

∫ℝ
p𝕏(x) ln

(
p𝕏(x)

)
dx, (47)

respecting N + 1 constraints (known information) given by

∫ℝ
gk (𝕏) p𝕏(x) dx = 𝜇k, k = 0,… ,N, (48)

where gk are known real functions, with g0(x) = 1, and 𝜇k are known real values,

being 𝜇0 = 1. The restriction associated with k = 0 corresponds to the normalization

condition of p𝕏, while the other constraints, typically, but not exclusively, represent

statistical moments of 𝕏.

To solve this problem, the method of Lagrange multipliers is employed, and intro-

duces other (N + 1) unknown real parameters 𝜆k (Lagrange multipliers). We can

show that if this optimization problem has a solution, it actually corresponds to a

maximum and is unique, being written as

p𝕏(x) = 1(x) exp
(
−𝜆0

)
exp

(

−
N∑

k=1
𝜆k gk(x)

)

, (49)

where  = Supp p𝕏 here denotes the support of p𝕏, and 1(x) is the indicator func-

tion of .

The Lagrange multipliers, which depend on 𝜇k and , are identified with the aid

of the restriction defined in Eq. (48) using techniques of parametric statistics.

4.7 Using the Maximum Entropy Principle

In this section we exemplify the use of the MEP to consistently specify the proba-

bility distribution of a random variable 𝕏.

Suppose that Supp p𝕏 = [a, b] is the only information we know about 𝕏. In this

case, a consistent (unbiased) probability distribution for 𝕏 is obtained solving the

following optimization problem:
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Maximize

S
(
p𝕏

)
= −

∫ℝ
p𝕏(x) ln

(
p𝕏(x)

)
dx

= −
∫

b

x=a
p𝕏(x) ln

(
p𝕏(x)

)
dx,

subjected to the constraint

1 =
∫ℝ

p𝕏(x) dx

=
∫

b

x=a
p𝕏(x) dx.

To solve this optimization problem, first we define the Lagrangian


(
p𝕏, 𝜆0

)
= −

∫

b

x=a
p𝕏(x) ln

(
p𝕏(x)

)
dx − (𝜆0 − 1)

(

∫

b

x=a
p𝕏(x) dx − 1

)

, (50)

where 𝜆0 − 1 is the associated Lagrange multiplier. It is worth mentioning that 𝜆0
depends on the known information about 𝕏, i.e. 𝜆0 = 𝜆0(a, b).

Then we impose the necessary conditions for an extreme

𝜕

𝜕p𝕏

(
p𝕏, 𝜆0

)
= 0, and

𝜕

𝜕𝜆0

(
p𝕏, 𝜆0

)
= 0, (51)

whence we conclude that

p𝕏(x) = 1[a,b](x) e−𝜆0 , and
∫ℝ

p𝕏(x) dx = 1. (52)

The first equation in Eq. (52) provides the PDF of 𝕏 in terms of the Lagrange

multiplier 𝜆0, while the second equation corresponds to the known information about

this random variable (the normalization condition).

In order to represent p𝕏 in terms of the known information (a and b), we need to

find the dependence of 𝜆0 with respect to these parameters. To this end, let’s go to

replace the expression of p𝕏 into the second equation of Eq. (52), so that

∫ℝ
1[a,b](x) e−𝜆0 dx = 1 ⟹ e−𝜆0 (b − a) = 1, ⟹ e−𝜆0 = 1

b − a
, (53)

from where we get

p𝕏(x) = 1[a,b](x)
1

b − a
, (54)
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Table 1 Maximum entropy distributions for given known information

Support Known information Maximum entropy PDF

[a, b] – p𝕏(x) = 1[a,b](x)
1

b−a
(uniform in [a, b])

[a, b] 𝔼 {𝕏} = m𝕏 ∈ [a, b] p𝕏(x) = 1[a,b](x) exp
(
𝜆0 − x 𝜆1

)

𝜆0 = 𝜆0(a, b,m𝕏)
𝜆1 = 𝜆1(a, b,m𝕏)

[a, b] 𝔼 {𝕏} = m𝕏 ∈ [a, b]
𝔼
{
𝕏2} = m2

𝕏 + 𝜎

2
𝕏

p𝕏(x) = 1[a,b](x) exp
(
𝜆0 − x 𝜆1 − x2 𝜆2

)

𝜆0 = 𝜆0(a, b,m𝕏, 𝜎𝕏)
𝜆1 = 𝜆1(a, b,m𝕏, 𝜎𝕏)
𝜆2 = 𝜆2(a, b,m𝕏, 𝜎𝕏)

[0, 1] 𝔼 {ln (𝕏)} = p, |p| < +∞
𝔼 {ln (1 −𝕏)} = q, |q| < +∞

p𝕏(x) = 1[0,1](x)
Γ(a+b)
Γ(a)Γ(b)

xa−1 (1 − x)b−1

a =
(
m𝕏∕𝛿2𝕏

) (
1∕m𝕏 − 𝛿

2
𝕏 − 1

)

b = a
(
1∕m𝕏 − 1

)

(beta with shape parameters a and b)

(0,+∞) 𝔼 {𝕏} = m𝕏 > 0 p𝕏(x) = 1(0,+∞)(x)
1

m𝕏
exp

(
− x

m𝕏

)

(exponential with mean m𝕏)

(0,+∞) 𝔼 {𝕏} = m𝕏 > 0
𝔼 {ln (𝕏)} = q, |q| < +∞

p𝕏(x) = 1(0,+∞)(x)
1

m𝕏

𝛿

−2𝛿−2𝕏
𝕏

Γ(𝛿−2𝕏 )
(
x∕m𝕏

)
𝛿

−2
𝕏 −1 exp

{
− x∕m𝕏

𝛿

2
𝕏

}

(gamma with mean m𝕏 and variation coefficient 𝛿𝕏)

(0,+∞) 𝔼 {ln (𝕏)} = 𝜇 ∈ ℝ
𝔼
{
(ln (𝕏) − 𝜇)2

}
= 𝜎

2
, 𝜎 > 0

p𝕏(x) =
1

x
√
2𝜋 𝜎

2
exp

{
− (ln (x)−𝜇)2

2 𝜎2

}

𝜇 = ln
(

m𝕏
/√

1 + 𝛿

2
𝕏

)

𝜎 =
√

ln
(
1 + 𝛿

2
𝕏
)

(lognormal with location 𝜇 and scale 𝜎)

(−∞,+∞) 𝔼 {𝕏} = m𝕏 ∈ ℝ
𝔼
{
𝕏2} = m2

𝕏 + 𝜎

2
𝕏

p𝕏(x) =
1√
2𝜋 𝜎

2
𝕏

exp
{
− (x−m𝕏)2

2 𝜎2
𝕏

}

(normal with mean m𝕏 and variance 𝜎

2
𝕏)

which corresponds to the PDF of a uniform distributed random variable over the

interval [a, b].
Other cases of interest, where the optimization problem solution is a known dis-

tribution, are shown in Table 1. In the fourth line of this table the maximum entropy

PDF corresponds to a gamma distribution. Once any gamma random variable has

finite variance, and 𝔼 {ln (𝕏)} = q, |q| < +∞, which implies 𝔼
{
𝕂−2}

< +∞, the

known information in this case is equivalent to those listed in Sect. 4.5, required to

be satisfied by the distribution of 𝕂. For this reason, we presented the gamma dis-

tribution as the acceptable choice in Sect. 4.5. It corresponds to the most unbiased

choice for that set of information.

For other possible applications of the maximum entropy principle and to go

deeper into the underlying mathematics, we recommend the reader to see the ref-

erences [15, 47–54].
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5 Calculation of Uncertainty Propagation

Once one or more of the model parameters are described as random objects, the sys-

tem response itself becomes random. To understand how the variabilities are trans-

formed by the model, and influence in the response distribution, is a key issue in UQ,

known as uncertainty propagation problem. This problem can only be attacked after

the construction of a consistent stochastic model.

Very succinctly, we understand the uncertainty propagation problem as to deter-

mine the probability distribution of model response once we know the distribution of

model input/parameters. A schematic representation of this problem is can be seen

in Fig. 13.

The methods for calculation of uncertainty of propagation are classified into two

types: non-intrusive and intrusive.

Non-intrusive methods: These methods of stochastic calculation obtain the random

problem response by running an associated deterministic problem multiple times

(they are also known as sampling methods). In order to use a non-intrusive method,

it is not necessary to implement the stochastic model in a new computer code. If

a deterministic code to simulate the deterministic model is available, the stochas-

tic simulation can then be performed by running the deterministic program several

times, changing only the parameters that are randomly generated [55].

Intrusive methods: In this class of stochastic solvers, the random problem response is

obtained by running a customized computer code only once. This code is not based

on the associated deterministic model, but on a stochastic version of the computa-

tional model [2].

5.1 Monte Carlo Method: A Non-intrusive Approach

The most frequently used technique to compute the propagation of uncertainties of

random parameters through a model is the Monte Carlo (MC) method, originally

proposed by [56], or one of its variants [57].

An overview of the MC algorithm can be seen in the Fig. 14. First, the MC method

generates N realizations (samples) of the random parameters according to their joint

Fig. 13 Schematic

representation of uncertainty

propagation problem

Uncertainty Propagation

computational
model

input
PDF

output
PDF
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Fig. 14 An overview of monte carlo algorithm

distributions (stochastic model). Each of these realizations defines a deterministic

problem which is then solved (processing) using a deterministic technique, gener-

ating a certain amount of data. Then, these data are combined through statistics, to

access the response of the random system [55, 58]. By the nature of the algorithm,

we note that MC is a non-intrusive method.

It can be shown that if N is large enough, the MC method describes very well the

statistical behaviour of the random system. However, the rate of convergence of this

non-intrusive method is very slow—proportional to the inverse of number of samples

square root, i.e., ∼1∕
√

N. Therefore, if the processing time of a single sample is very

large, this slow rate of convergence makes MC a very time-consuming method—

unfeasible to perform simulation of complex models. Meanwhile, the MC algorithm

can easily be parallelized, once each realization can be processed separately and then

the results aggregated to compute the statistics [55].

Because of its simplicity and accuracy, MC is the best method to compute the

propagation of uncertainties, whenever its use is feasible. Thus, it is recommended

that anyone interested in UQ master this technique. Many good references about MC

method are available in the literature. For further details, we recommend [58–64].

5.2 Stochastic Galerkin Method: An Intrusive Approach

When the use of MC method is unfeasible, the state of art strategy is based on the so-

called stochastic Galerkin method. This spectral approach was originally proposed

by [65, 66], and became very popular in the last 15 years, especially after work of

[67]. It uses a Polynomial Chaos Expansion (PCE) to represent the stochastic model

response combined with a Galerkin projection to transform the original stochastic

equations into a system of deterministic equations. The resulting unknowns are the

coefficients of the linear combination underlying to the PCE.
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Once PCE theory is quite rich and extensive, we do not have space in this manu-

script to cover it in enough detail, but to the reader interested in digging deeper on

this subject is encouraged to see the references [2, 3, 8, 68–70].

6 Concluding Remarks

In this manuscript, we have argued about the importance of modeling and quantifica-

tion of uncertainties in engineering projects, advocating in favor of the probabilistic

approach as a tool to take into account the uncertainties. It is our thought that spec-

ifying an envelope of reliability for curves obtained from numerical simulations is

an irreversible tendency. We also introduced the basic probabilistic vocabulary to

prepare the reader for deeper literature on this subject, and discussed the key points

of the stochastic modeling of physical systems, using a simplistic mechanical system

as a more in-depth example.
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