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Foreword

All engineering systems—energy systems, transportation systems, micro-
mechanical–electrical–systems, and computer chips, all of which are initially
designed for longevity and durability—will, in due course, suffer damage initiation
at the smallest level, under repeated hygro-thermal–mechanical–electrical–
electromagnetic loadings. The materials used in these diverse engineering
systems are both mechanical load-bearing as well as multifunctional. These mate-
rials are almost always heterogeneous, with very complex microstructures. The
science of damage precursors in such materials, and thus in the engineering systems
they are made of, is an emerging discipline. The detection of damage precursors, the
measurement of the growth of damage (including cracks), and the prediction of the
remaining useful life of an engineering system are the emerging science of diag-
nostics and prognostics. This will also involve sensors and actuators and thus forms
the emerging Internet of Things.

The issues of damage precursors, measurement of damage progression by
non-intrusive techniques, and the prediction of useful life are all subject to
uncertainties, are all stochastic processes, and are data-driven. In the 1960s, in order
to cope with data subject to noise, the so-called Kalman filter was discovered. Later,
in order to cope with nonlinear physical phenomena, the so-called particle filters
were discovered. Damage initiation as well as its development under repeated
general loads is all highly nonlinear phenomena. Thus, Bayesian statistical methods
are needed to cope with randomness in the measured data as well as in the pre-
dictive methodologies. Hence, the science of diagnostics and prognostics is rooted
in the disciplines of filtering of noisy data, Bayesian statistics, uncertainties in
computation, data-driven modeling, non-intrusive measurement techniques,
high-performance near-real-time computations, the Internet of Things, the design of
new materials with delayed or nullified damage precursors, and the general disci-
pline of sustainment.
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This monograph is a collection of papers dealing with emerging research in all
these disciplines. Thus, it belongs to all engineering libraries. All the authors are to
be complimented for contributing succinct summaries of the pieces of research
which comprise the whole of the subject of this monograph.

Lubbock, TX, USA Satya N. Atluri
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Probabilistic Prognostics and Health
Management: A Brief Summary

Fisseha M. Alemayehu and Stephen Ekwaro-Osire

Abstract This chapter gives a brief summary of probabilistic prognostics and
health management (PPHM) and presents a framework to implement PPHM to
predict remaining useful life (RUL) of energy systems efficiently and with minimal
uncertainty. The chapter also presents the way forward by indicating that an
interdisciplinary research is critical so as consortium of multidiscipline experts will
come together and discuss the implementation of the framework for enhanced RUL
prediction. The prediction of RUL with minimal uncertainty will significantly lower
or avoid the downtime of energy systems and thereby reduce the cost of energy.
The reduction in cost will make renewable energy, like wind energy, cheaper.

Keywords Remaining useful life ⋅ Uncertainty ⋅ Probability ⋅ Prognostics and
health management

1 Introduction

Energy is crucial to the security and prosperity of nations. Renewable and
non-renewable sources of energy are being used to quench the demand of different
societies in all over the globe. These sources of energy are mainly
thermo-chemo-electro-mechanical systems that are subjected to uncertainty in future
loading conditions, material properties, process noise and other design parameters.

The uncertainty in remaining useful life (RUL) prediction of these energy sys-
tems, for example the drive train of wind turbines, is high. The determination of
RUL in the field of prognostics and health management (PHM) has to consider the
uncertainties in the current state of the system, future loading conditions, future
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system parameters as well as the future process noise [1–3]. The uncertainties in the
aforementioned quantities need to be quantified and the RUL estimation should
reflect the uncertainty propagation of these quantities.

2 Methodology

A framework that could be implemented in different energy systems for the
condition-based PPHM method has been developed and presented in Fig. 1. Effi-
cient uncertainty quantification methods to quantify future loading, system
parameters and process noise will be investigated. A physics-based or data-driven
system model will be used to predict future states of the system while checking if
threshold values that define failure are attained. Improved sensing techniques will
be implemented to accurately measure the current condition of the energy system,
for example the wind turbine gearboxes (WTG), and efficient filtering methods will
enhance the estimated current state in light of the sensed data. Finally, using ana-
lytical and/or numerical probabilistic methods, the probability distribution function
(pdf) of the RUL will be defined. The RUL results with minimal uncertainty will
help the energy operator to decide if preventive/corrective maintenance will be
needed to troubleshoot system failure.

Fig. 1 Condition-based probabilistic prognostics and health management (PPHM)

4 F.M. Alemayehu and S. Ekwaro-Osire



Each Tablet shown in Fig. 1 is defined as follows:

Tablet 1. Efficient Uncertainty Quantification

The future of the system, i.e. future loading, operating and environmental condi-
tions are not precisely known [1, 2]. PDF of future parameter uncertainties like load
variations, degradation or variation in material properties, process noise need to
efficiently be quantified. Future uncertainty quantification methodologies such as
Maximum Entropy Principles [4, 5], ensemble techniques [6], Maximum Likeli-
hood Evaluation (MLE) [7, 8], and neural networks [9, 10] can be implemented.

Tablet 2. Improved Sensing

As the quality of sensors increase, measurement uncertainty will decrease which in
turn will enhance the precision of the current state estimation. In energy system, like
in the case of the WTGs, oil cleanliness and lubrication parameters, oil temperature,
vibrations, acoustic emissions can be monitored [11] to directly or indirectly [2] be
used in the estimation of current state of the system. Measurement noise [12] and
resonance problems as well as sensor installation (attachment) and powering are
future challenges that the industry faces.

Tablet 3. Efficient Filtering

The present condition or state, i.e. at the time of prediction, has to be precisely
estimated so as RUL will be predicted with minimum uncertainty. The state of the
system may or may not be measurable using sensors [13]. Hence, sensor measure-
ment data is directly or indirectly, via state quantification process using measurement
function, used as an input to filtering approaches so as to improve the estimated
current state in light of measured data [1, 12]. Using filtering approaches such as
Kalman or Particle filtering techniques, the uncertainty in current state is described
with a distribution. Efficient filtering methods and improved sensing can improve the
estimate of the current states and thus reduce the uncertainty in RUL prediction [1].

Tablet 4. Computationally Efficient Modelling

Physics-based or data-driven efficient models need to be used to predict the future
states. Numerical modeling techniques such as Finite Element Analysis (FEA) [14],
Multibody Dynamic (MBD) [8, 15], and Peridynamics [16] or analytical models
with exact solutions could be implemented. These models should describe pro-
gression of the faults and damages in time. Current state of the system, future
loading, system parameters, and process noise are used as model inputs.

Tablet 5. Computationally Efficient Probabilistic Analysis

Efficient probabilistic techniques are critical to estimate uncertainty propagation in
RUL estimation. Probabilistic sampling-based methods such as Monte Carlo (MC),
Latin Hypercube Sampling (LHS), Adaptive Importance Sampling (AIS), or ana-
lytical methods such as First Order Reliability Method (FORM), Second Order
Reliability Method (SORM), Advanced Mean Value (AMV) method [2, 12, 17, 18]
could be implemented.

Probabilistic Prognostics and Health Management … 5



3 The Way Forward

Operators of energy systems are extremely interested in knowing the current state of
their systems and thereby predict the future in such a way that preventive main-
tenance will be implemented. Eventually, operators would like to have high degree
of certainty in the knowledge of the Remaining Useful Life (RUL) of their system
at certain point of time. Such a subject is extremely intertwined that it needs the
intervention of multidisciplinary team of experts to untangle the problem and come
up with a better solution in determining the RUL with high degree of certainty.
Hence, an interdisciplinary research is critical so as consortium of multidiscipline
experts will come together and discuss.

The framework presented on Fig. 1 invites the involvement of experts from the
fields of engineering, energy, atmospheric science, mathematics, management and
others. Currently, the framework is on development stage and results of PPHM of
selected energy systems, like the drivetrain of wind turbines, will be published in
the future.
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Introduction to Data-Driven
Methodologies for Prognostics
and Health Management

Jay Lee, Chao Jin, Zongchang Liu and Hossein Davari Ardakani

Abstract This book chapter gives an overview of prognostics and health man-
agement (PHM) methodologies followed by a case study in the development of
PHM solutions for wind turbines. Research topics in PHM are identified and
commonly used methods are briefly introduced. The case study in wind turbine
prognostics has shown in detail how to develop a PHM system for an industrial
asset. With the advancement of sensing technologies and computational capability,
more and more industrial applications are emerging. Current gaps and future
directions in PHM are discussed at the end.

Keywords Prognostics and health management ⋅ Wind energy ⋅ Data-driven ⋅
Prognostics

1 Overview of Prognostics and Health Management
(PHM)

1.1 Definition and the Value of Prognostics and Health
Management

Prognostics and health management (PHM) is an engineering discipline that aims at
minimizing maintenance cost by the assessment, prognosis, diagnosis, and health
management of engineered systems. With an increasing prevalence of smart sensing
and with more powerful computing, PHM has been gaining popularity across a
growing spectrum of industry such as aerospace, smart manufacturing, trans-
portation, and energy at breakneck speed. Regardless of application, one common
expectation of PHM is its capability to translate raw data into actionable infor-
mation to facilitate maintenance decision making. This practice in industry is often
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referred to as Predictive Maintenance, which, as estimated by Accenture [1], could
possibly save up to 12% over scheduled repairs, reduce overall maintenance costs
by up to 30% and eliminate asset failures up to 70%. For example, a study per-
formed by National Science Foundation (NSF) indicates that Center for Intelligent
Maintenance Systems (IMS), which is a leading research center in the field of PHM,
has created more than $855 M of economic impact to the industry with a benefit
cost ratio of 238:1 [2] through the development and deployment of PHM tech-
nologies to achieve near-zero unplanned downtime and a more optimized mainte-
nance practice.

However, the value of PHM does not stop at maintenance alone. By performing
smart analytics to asset usage data, users would be able to gain knowledge about
how to achieve optimized performance of the asset. For instance, the State of Health
(SoH) and Remaining Useful Life (RUL) of batteries on electric vehicles are highly
dependent on the driving behavior. By analyzing the relationship between driving
behavior and battery condition, a customized solution could be provided for the
improvement of user’s driving behavior and thus prolong battery life. Also, by
relating process data with product quality metrics, predictive error compensation
can be realized for increased product quality assurance. Additionally, asset usage
and failure analysis could be fed back to the designers and manufacturers of the
asset to nurture customer co-creation for an improved product design.

1.2 Research in Data-Driven Prognostics and Health
Management

Besides huge economic potential in various industrial applications, PHM also holds
great research value in the fields of signal processing, machine learning and data
mining. Research in data-driven PHM requires an interdisciplinary background of
computer science, signal processing, statistics, and necessary domain knowledge. In
general, there are four major tasks for data analysis and modeling in PHM:
pre-processing and feature extraction, health assessment, diagnostics, and prog-
nostics, as indicated in Fig. 1. Prior to doing such tasks, it is critical to perform an
overall analysis of the system to find out its critical components and the associated
failure modes. Once the critical components of an asset have been determined, a
data acquisition system needs to be devised to collect a sufficient set of measure-
ments from the system for further analysis. Below is a description of the four data
analysis steps for data-driven modeling of engineering systems:

• The task of pre-processing and feature extraction includes data quality evalua-
tion, data cleaning, regime identification, and segmentation. Even though
pre-processing does not directly offer immediate actionable information, it is a
critical step and requires both domain knowledge and data processing skills to
maintain the valuable parts of the data while removing its unwanted components.

10 J. Lee et al.



• The task of health assessment consists of estimating and quantifying the health
condition of an asset by analyzing the collected data. If there is data of failed
condition, then a Confidence Value (CV) could be generated to indicate the
probability of asset failure. However, if asset failure data are not available,
health assessment could be transformed into either a degradation monitoring
problem for gradual faults or a fault detection problem for abrupt faults.

• In PHM, diagnostics refers to the classification of different failure modes by
extracting the fault signatures from the data. For rotating machinery, for
example, this process consists of enhancing the signal-to-noise ratio of the
vibration signals and extracting the cyclo-stationary components which can
represent defects in certain components of the machine. A collection of various
features can be used along with a clustering or classification algorithm for
developing a data-driven model for machine fault diagnosis.

• The task of prognostics refers to the prediction of asset health condition. If a
short-term prediction is desired, time-series modeling is often utilized to predict
when the machine would go out of threshold. If a long-term prediction is pre-
ferred, then the problem becomes a remaining useful life (RUL) prediction with
many existing machine learning and statistics tools available. A confidence
range will need to be defined for such predictions as the performance of the
machine is also highly dependent on the usage pattern and proper maintenance
actions that will be taken.

Besides the aforementioned research topics, feature selection and dimension
reduction is of vital importance to achieve better PHM results. Health management
approaches such as maintenance scheduling and operation management are also
within the scope of PHM discipline, but this introduction will only focus on the
analytics aspect of PHM.

1.3 Methodology

In this section, a systematic approach for designing and implementing PHM for
industrial applications is provided, as described in Fig. 2. The process is separated

Fig. 1 Research tasks of
data-driven PHM analytics

Introduction to Data-Driven Methodologies … 11



into five major steps following the “5S” methodology proposed in [3]. Within the
5S methodology, smart processing fulfills the major tasks of a PHM system and
comprises the major intelligence of a system.

Smart processing focuses on utilizing data-to-information conversion tools to
convert asset raw data into actionable information such as health indicators,
maintenance recommendations, and performance predictions. All of this informa-
tion is crucial for users to fully understand the current situation of the monitored
asset and to make optimized decisions. Available data-to-information tools for
smart processing includes: physics-based models, statistical models and machine
learning/data mining algorithms. Among all three options, machine learning/data
mining has its origins in computer practices and holds many advantages in
industrial applications [4–6]: (1) Less domain knowledge requirements [7]: without
building an exact mathematical model for the physical system, machine learning
can also extract useful information by observing the input-output data pairs like the
physical models do. This feature makes machine learning useful for complex
engineering systems and industrial processes where prior knowledge is inadequate
to build satisfactory physical models. (2) Scalable for a variety of applications [8].
(3) Easy implementation: compared with physics-based models, machine learning
is more suitable to handle large-scale datasets since it requires less computation
resources.

1.3.1 Algorithms

PHM algorithms refer to the data-driven models that serve as the computational
core to transforming features into meaningful information. In Fig. 3, an example of
this process for health assessment of induction motors is described. The process will
be similar for diagnostics and prognostics, but the final visualization tool will be
different depending on the purpose of users.

Fig. 2 General procedures for implementing PHM solutions

12 J. Lee et al.



1.3.2 Data Pre-processing Algorithms

A summary of data preprocessing tools along with the merits and disadvantages of
each method are provided in Table 1. In many applications, one or more of these
methods is needed for ensuring that the data is suitable for additional processing
and algorithm development. Data quality inspection is particular important to
ensure that there are no sensor or data acquisition errors. However, developing an
effective algorithm requires some prior knowledge of the signal characteristics or
the distribution of the signal.

For more complicated working regimes, it might be necessary to have more
advanced techniques for identifying the operating conditions. The regime

Fig. 3 Example of health assessment process [9]

Table 1 Summary of data pre-processing methods

Method Pros Cons

1 Data quality
inspection

Requires prior knowledge of signal
type but effective in particular for
vibration signal validation

Thresholds are needed for
determining whether to include the
signal in the analysis

2 Regime
identification

Regime identification is important for
developing baseline data sets in each
operating condition

More sophisticated methods are
needed for identifying the
operating regime if the system
changes operating conditions
quickly

Abnormality
removal

Outliers, constant values, and
missing values can dramatically
increase the false alarm rate

Inclusion of domain knowledge is
helpful for outlier detection

Introduction to Data-Driven Methodologies … 13



information allows one to develop baseline data sets in each operating condition
and have a fair comparison and a local health model in each operating condition.
Outlier removal from the measured data is also crucial in some of the applications
as the presence of outliers can significantly affect the output of the analysis. Various
methods exist for removing outlier instances from the signal or extracted features.
However, these methods are purely based on the data distribution or characteristics,
engineering experience and domain knowledge could be used to further improve
the outlier removal algorithm.

1.3.3 Feature Extraction Algorithms

Numerous methods and algorithms are available for extracting characteristics or
features from the measured signals, and an overview of some of the available
techniques is provided in Table 2. For high frequency type signals such as vibration
or current, there are well-established signal processing and feature extraction
methods for extracting information from the time and frequency domain repre-
sentation of the signal [10]. For rolling element bearings, mechanical shafts and
gear wheels, there are several specific processing methods for extracting degrada-
tion features for these components [11]. Although it is advantageous to use the
component specific feature extraction methods for high frequency vibration and
current signals, they require a higher sampling rate, more computation, and more
costly data acquisition systems.

For applications in which the monitored set of signals consists of trace signals
such as temperature, pressure, or other controller signals, a different set of feature
extraction algorithms would be recommended. Residual-based processing algo-
rithms such as auto-associative neural networks, or principal component based

Table 2 Summary of feature extraction algorithms

Method Pros Cons

1 Frequency
based feature
extraction
methods

Frequency domain and envelope
processing allows for component
specific fault features to be
extracted

Requires a higher sampling rate
and more costly data
acquisition

2 Residual based More suited for low frequency
signals and signals with a
potential correlation

Residual processing algorithms
can involve training a neural
network which requires more
computation

3 Statistics for
each process
segment or time
slice

Ideal for process signals and
provides a simple way of
capturing the key aspects of the
measured signal

Requires context information
for identifying the various time
slices of a process signal

4 Time statistics Requires the least amount of
domain knowledge and easiest to
implement

Provides less specific
information then other methods

14 J. Lee et al.



methods are example methods that can be used to process trace signals [12]. For
these types of algorithms, a baseline is established based on the normal operation of
the machine. This baseline is used for comparing the predicted sensor values and
processing the residuals as a sign of the drift in machine performance. The
extraction of various statistical parameters is a straightforward but effective
approach for characterizing the system condition from the available controller
signals. In many instances, more insight can be gained by extracting statistics
during different time slices, and a time slice could represent a different motion or
action that is being performed by the monitored system [13]. If the context infor-
mation regarding the process signals is not available, then extracting time statistics
without any segmentation is a suitable alternative.

1.3.4 Health Assessment and Anomaly Detection Algorithms

A listing of the more commonly used algorithms for assessing machine health is
provided in Table 3. The simplest approach for health assessment is to extract a
health metric based on the weighted summation of the feature values. This health
metric is simple to calculate and statistical thresholds for degradation detection can
then be derived based on the distribution of the health value [14].

Various distances from normal health metrics can be used for determining the
health condition of the monitored system or component. Mahlanobis distance and
principal component analysis based Hotelling’s T2 statistics are distance metrics
that incorporate the covariance relationship among the variables; however, Eucli-
dean and other distance metrics are also commonly used [15]. Distance based

Table 3 Summary of health assessment algorithms

Method Pros Cons

1 Weighed
combination
of features

Simple to implement, easier for
setting thresholds based on the
health value distribution

Does not account for the
correlation relationship in the
features

2 Distance
from normal

Requires only baseline data sets
for training the algorithm,
distance methods can also
account for the variable
covariance relationship

Does not account for whether the
features are lower or higher than
expected

3 Statistical
hypothesis
Testing

Simple to implement and can be
used to test whether the system is
in a normal condition

Data might not fit assumed
distribution for the hypothesis
testing

4 Regression
methods

Provides a mapping between the
features and an output defect level
or health value.

Requires an output value that is
related to the health condition of
the system and multiple data sets
for training

5 One-class
classifiers

Support vector data description
algorithms can provide a
boundary for detecting anomalies

Requires experience on selecting
the appropriate parameters and
kernel function
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methods do not account for whether the features are higher or lower than normal.
This has potential drawbacks in that a system can have a lower vibration then
normal and this would still trigger a higher distance based health value and an
anomalous condition.

A simple but effective approach for anomaly detection is the use of statistical
hypothesis testing. Sequential probability ratio test, rank permutation test, and a
T-test, are all examples of some of the more commonly used hypothesis test for
anomaly detection [16]. Other anomaly detection based methods include a one-class
classifier, such as the support vector data description (SVDD) algorithm [17].
Regarding SVDD, one disadvantage is the lack of guidance in the literature on which
kernel functions or settings to use for a given application. Regression or neural
network based methods are particular effective if sufficient data is available for
developing the regression models. A neural network or regression model can be used
to provide a mapping between the feature values and a health value or defect size [18].
The ability for the model to generalize usually requires multiple training data sets.

1.3.5 Health Diagnostic Algorithms

For root-cause analysis and diagnosis, there are many different methods and
algorithms to perform this task, and a sample of some of the more commonly used
methods are listed in Table 4. Incorporating engineering knowledge and experience
into the diagnostic algorithm makes the use of fuzzy membership functions and
rules an attractive technique [19]. However, it becomes more challenging to use
fuzzy based diagnostic algorithm for new applications in which there is not suffi-
cient experience on the failure modes and their signatures.

The use of a classification algorithm is a popular alternative if there is data from
multiple health states including a baseline condition and several of the different
failure modes that can occur. The use of neural networks, support vector machines,
and Naïve Bayes algorithm are some of the more common classification algorithms
used for machine condition monitoring [20]. By learning the relationship between
the extracted features and the baseline and failure signatures, the classification

Table 4 Summary of health diagnostics algorithms

Method Pros Cons

1 Fuzzy
membership
rules

Can include engineering
knowledge and experience in the
diagnostic algorithm

Requires experience for
determining the rules and
membership functions

2 Machine
learning
classifier
algorithm

Can learn the relationship
between the feature values and
the output health label

Requires data sets from each fault
class for training the algorithm

3 Bayesian
belief
network

Models the cause and effect
relationship between the feature
values and various health states

Determining the BBN structure
requires experience or learning the
network structure from data
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method can accurately diagnose and label the health condition from the monitored
system. Another method for diagnostics includes the use of a Bayesian Belief
Network (BBN) which provides a network representing the casual relationship
between the measured variable and the different failure modes or system conditions
that can occur [21].

1.3.6 Prognostics Algorithms

A sample of the more commonly used remaining useful life prediction algorithms is
presented in Table 5, along with the advantages and disadvantages of each method.
Curve fitting based methods are relatively simple to apply as they do not require a
substantial amount of training data or a detailed physical model that describes the
fault progression. Neural network or regression based methods can directly relate the
feature values with the remaining useful life of the monitored component or system
[22]. These methods require substantial training data for learning this relationship
and obtaining multiple run-to-failure data sets is not feasible in many applications.

A similarity-based prognostic algorithm is a unique method that matches the
previous degradation patterns to the current degradation pattern of the monitored
system [23]. The similarity-based prognostic algorithm can be quite accurate;
however, it requires several runs to failure data sets in order to obtain a library for
performing the degradation trajectory matching. In contrast to the previously
described data-driven prognostic algorithms, the incorporation of the physics of
failure with a stochastic filtering algorithm is an effective approach. Whether the
fault propagation dynamic equations are linear or non-linear, and also whether the
measurement noise is Gaussian or not, this group of methods can be used [24].
Applying model-based prediction algorithms using stochastic filtering does have
some potential challenges. Only for a subset of applications does one have estab-
lished models for describing the failure mechanism.

Table 5 Summary of prognostics algorithms

Method Pros Cons

1 Curve fitting
methods

Simple to implement, does not
require substantial training data sets

Results are dependent on
selecting an appropriate curve
fitting model form

2 Neural
network
methods

Provides a mapping between the
feature pattern and the remaining
useful life

Requires several
run-to-failure data sets for
learning this relationship

3 Stochastic
filtering
methods

Incorporates the failure physics and
can handle uncertainties in the
modeling and sensor data

Requires a physical model to
describe the failure
mechanism

4 Similarity
based
prediction
method

Accurate and can account for
different degradation patterns or
initial degradation conditions

Requires several
run-to-failure data sets
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In the following section, a case study is provided which further elaborates on
how a comprehensive PHM system can be applied to a real-world application and
how the industry can benefit from such a system.

2 Case Study in Wind Turbine Monitoring System

2.1 Project Background

Wind power industry has been growing exponentially world-wide since 2000. By
the year of 2012, there were more than 200,000 wind turbines operating, with a
total nameplate capacity of 282,482 MW [25]. The US Department of Energy
(DoE) claims that it is technically feasible to meet its goal of 20% of the total energy
requirements by 2030, but this will involve extensive research in all aspects such as
structural design, manufacturing, operation and maintenance, and construction [26].
In spite of the inspiring facts about wind power industry, there are also some hidden
risks and concerns for all the players. In addition to the initial investment for turbine
construction, operation and maintenance is estimated to take 20–25% of the total
cost for on-shore turbines and 18% for offshore turbines over the lifetime, and can
increase to 30–35% share of cost by the end of life [27].

Prognostics and health management (PHM) can play an important rule in pro-
moting the development of wind energy and reducing the operation costs by
ensuring wind turbines are more reliable and productive. According to Wind System
Magazine, 70% of total wind turbine maintenance costs are from unscheduled
breakdown. And for a 100 MW scale wind farm, only 1% of availability increase
can worth between $300–500 K of revenue per year. This view is also shared by the
European Wind Energy Association (EWEA) to suggest that condition monitoring
is a critical and integral system to the operation and maintenance [28].

By moving to condition based maintenance for wind turbine applications, there
are numerous savings and benefits that can be provided as a service to the customer.
The potential benefits include lower maintenance cost, a reduced risk of unplanned
downtime, and higher asset utilization and uptime [3]. Different industries, such as
semiconductor manufacturing, automotive, and machine tool among others, have
benefitted from condition monitoring system integrated with advanced PHM tools.
However, a similar level of advancement has not been developed in the wind
turbine industry due to the very strict system integration requirements and low
public acceptance.

The existing monitoring systems for wind turbines mainly fall into two cate-
gories: Supervised Control and Data Acquisition (SCADA) system and Condition
Monitoring System (CMS). SCADA system has a variety of sensors to collect data
from critical components and external environment. The data is used as the inputs
for the control systems of pitch angle, yaw, and braking to name a few. CMS
mainly have accelerometers and AE sensors mounted on the critical parts of
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drivetrain and generator. Vibration level and related features are used to assess the
health conditions of the components nearby. However, neither of the two systems
are more than data collection system, and very limited and indirect information of
operation risks is given to the operator to make optimal maintenance decisions.

2.2 Benefits to Users

The users that can directly benefit from the condition monitoring system are wind
turbine OEMs and operators. For OEMs, the benefits include increasing the com-
petitiveness and reliability of their wind turbines, reducing the maintenance and
repair costs in warranty period, and with a minimum increase in prices. For oper-
ators, they can benefit from increasing availability of the turbines, reducing safety
hazards, and reducing operation costs while increasing the revenue.

The benefits to turbine OEM and operators are summarized from the following
aspects:

Increase Reliability of wind turbines (OEM, Operator): The condition moni-
toring system can benefit OEMs to increase the reliability of their wind turbines to
increase the competitiveness of their product. This requires reducing the unplanned
breakdown by detecting any incipient faults and repairing in the early stages of
failure.

Reduce Warranty Costs (OEM): The warranty for wind turbines is usually
5-10 years with coverage of defects or faults in material, wear and tear, gradual
deterioration, inherent vice, and latent defects. The price of an extended warranty
ranges from $30,000 per turbines per year for a 1.5 MW turbine to $150,000 per
turbine per year for a 3 MW turbine (Mike McMullen, Wind Power Magazine).
However, the cost for warranty on the OEM’s side is highly dependent on the
failure rate of the components. Repair and replacement of critical components are
usually very expensive. Gearbox replacement can cost $250–350 K, generator
replacement is $90–120 K, and blade replacement can be $120–200 K [29]. Hence,
it is very important to monitor the critical components to avoid severe damage and
to reduce warranty costs.

Increase Availability of Wind Turbines (Operators): For operators, it is ideal
that the turbine can run 24/365 to maximize the revenue. It can be seen from simple
match that for a 100 MW scale wind farm, only 1% of availability increase can be
worth between $300–500 K of revenue per year. The goal of increasing availability
of wind turbines can be achieved from two aspects: decrease the failure rate of
critical component, and decrease the maintenance and repair response time.

Reduce the Redundancy of Maintenance (OEMs and Operators): Whatever
information or suggestions are given by the system should be accurate. False alarms
and fault misdetection should be controlled to a very low limit. This requires the
DAQ system and analytical modules to have a high level of accuracy and optimal
settings for threshold.
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2.3 Method Development

2.3.1 Identify Critical Subsystems/Components

According to the studies performed by Faulstich and Hahn [29], the component
failure frequency and the average downtime per failure are listed in Fig. 4. The
components that are suitable for predictive maintenance are those with a low failure
rate but with a very high downtime per failure. Hence the components that will be
included in the fault localization and diagnosis system are: the drivetrain, the yaw
system, the pitch system the rotor blade, and other selected critical electrical
components. The total breakdown of those components causes more than 80% of
total unplanned downtime of the wind turbine.

2.3.2 Data Acquisition/Signal Selection

Most wind turbines are instrumented with supervised control and data acquisition
system (SCADA), while CMS is installed based on customers’ (operator)
requirement. As shown in Fig. 5, the SCADA system includes variables related to
the operating condition of the key components. The sampling frequency is usually
very low, and the output data is the statistical values such as mean, peak values and
standard deviation. The sampling frequency of the SCADA system varies for dif-
ferent wind turbine settings, but is able to be customized according to data analysis
requirement. For data storage, since the data volume is not very large, and SCADA

Fig. 4 Wind turbine failure rate and caused downtime [29]
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data is important to provide reference information for maintenance actions, the
historical data are always stored through lifetime.

The CMS data shall be available for fault localization and diagnosis for critical
components. For data format, the sampling frequency determines the range of
frequency spectrum while the data length determines the resolution of frequency
spectrum in FFT analysis. The sampling frequency should be high enough to
capture gear mesh frequencies and bearing characteristic frequencies for high-speed
components in drivetrain, and the resolution of the frequency spectrum should be
reasonably high. Since CMS collects data in very high frequency, and usually the
monitored components are very stable and reliable, there is no need for continuous
collection to reduce data storage and processing burden. Hence the data acquisition
is usually triggered based on routine or event-based manners. Table 6 shows a
summary for the DAQ system of wind turbine.

2.3.3 Multi-regime Modeling for Turbine Global Health Assessment

The global health of wind turbines shall reflect their generation efficiency, namely
the efficiency to convert wind energy to electrical energy. Data from SCADA

Fig. 5 List of SCADA variables [27]

Table 6 Design and operations summery of DAQ system

DAQ
system

Sampling frequency Collection interval Data length Data storage

SCADA Range from
1/600–1/30

Continuous
collection

1 sample per
collection

From beginning
of life

CMS And from 1 K to
10 s KHz

Periodically or
event based

From seconds to
minutes

From beginning
of life
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system shall be used to estimate the global health value. Figure 6 shows the power
curve of wind turbines under normal and faulty conditions, and it is desired to
quantify this kind of change and relate it to the loss of power efficiency.

SCADA parameters, including output power, wind speed, wind direction and
pitch angle, is used to model turbine performance. Historical data is fed through a
pre-processing module first to remove any outliers and undesired operating regimes
for performance analysis. A multi-regime method is used to model the baseline
behavior based on data from a selected training duration. Data from subsequent
duration is then modeled and tested against the trained model, using distance
metrics as a comparison method to quantify the deviation of testing data. Contin-
uous testing can generate frequent evaluation of turbine performance and provide
insight of turbine degradation over time with considerable time granularity, which
could lead to valuable prediction (Fig. 7).

2.3.4 The Proposed Approach to Assessing Turbine Performance

SCADA variables are first fed into a pre-processing module to go through the
following analysis.

1. Outlier filtering based on iterative Grubbs’ test.
2. Rule-based non-operational regime filtering, where observations are filtered

when wind speed is below cut-in and power output is zero.

Fig. 6 Wind turbine power curve under normal and faulty conditions [30]

SCADA
Pre-

processing
Multi-regime 

Modeling
Model
Testing

Fig. 7 Flow of wind turbine prognostic modeling
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3. Curtailment event filtering, where observations are filtered when a stalling event
due to wind gust is determined to have occurred based on wind speed deviation
and pitch angle deviation.

4. Data standardization, which equalizes variable contribution in the multivariate
dataset (Fig. 8)

Gaussian Mixture Model (GMM), a probabilistic clustering model, is used to
model the training data.

HðxÞ= ∑
n

i=1
pihðx; θiÞ. ð1Þ

It partitions data into a mixture of Gaussian components with membership
assignments where the component parameters and membership weights are esti-
mated using techniques such as Expectation Maximization. The number of cluster,
n, is decided based on the “goodness-of-fit” of the model when n is chosen as
different numbers. A scoring method such as Bayesian Information Criterion
(BIC) is used to evaluate model accuracy.

A testing model can be estimated with same GMM method for new data. An L2
distance between the two mixture models can be calculated, based on computing
distance between all possible pairings of Gaussian components of the training and
testing model. The normalized L2 distance is considered as a confidence value
(CV) of turbine power performance.

HðxÞ ⋅GðxÞk kL2 = ∑
n

i=1
∑
m

j=1
piqj hðx; θiÞ ⋅ hðx;ϕj

�� ��
L2
, ð2Þ

CV =
HðxÞ ⋅GðxÞk kL2

HðxÞk kL2 GðxÞk kL2
. ð3Þ

Fig. 8 Gaussian mixture model (GMM) based multi-regime clustering
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A SCADA dataset acquired from an onshore large-scale turbine is used to
validate the proposed methodology for estimating the global health estimator
(GHE). The duration of the data is 26 months, during which different parameters
are extracted from the SCADA module every 10 min. The actual power output is
shown in Fig. 6 where three major downtime events are highlighted in grey
shadowed areas: (1) Q1-08 – Q2-08, (2) Q1-09 – Q3-09 and (3) Q4-09 – Q1-10
(Figs. 9 and 10).

2.3.5 Vibration-Based Condition Monitoring for Drivetrain System

Prognostics techniques are mainly developed for key drive train components that
cause costly and sometimes catastrophic failures, including rotor, gearbox and
generator. In many applications, CMS and SCADA systems are used separately for
condition monitoring purposes, mainly due to the issue of data availability shared
by different shareholders. A degradation assessment framework is proposed to

Fig. 9 Active power and failure events

Fig. 10 Health risk increases between downtime
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integrate both the CMS data and SCADA variables for the evaluation of drivetrain
degradation for the scenario when both data resources are available.

The framework of prognostics and diagnosis for drivetrain gearbox based on
CMS vibration signals is shown in Fig. 11. In the framework, vibration signals first
go through an automatic data quality check process to make sure the DAQ system is
problem free. The data quality check process includes a series of check criteria as
shown in Table 2. Afterwards, instance selection of vibration signals is performed
based on the working regime variables from SCADA data. Vibration signals under
certain conditions such as no energy generation will be removed. The selected
vibration signals are then applied to the signal processing and feature extraction
process to extract gearbox health related features. A collection of features will be
extracted from the processed signals from frequency spectrum, TVDFT order
tracing, spectral kurtosis filtering, Cepstrum analysis, and envelop analysis. Those
features will be used as input for degradation assessment algorithms such as
Self-Organizing Map Minimize Quantitation Error (SOM-MQE) and Principle
Component Analysis techniques, so that the deviation of current condition from
baseline model is quantified by distance metric.

In the training process, the input features are projected to output units by the
weight vector in the mapping layer. The output units will compete with each other
to determine the cluster of units with the best similarity, and the mapping layer will
adjust the weight vector for the wining units. Hence when the training process is

SCADA CMS

Instance 
Selection

Feature 
Extraction

Variable 
Selection

Degradation Assessment

Fault Localization

Fault Detection

Visualization

Yes

No

Fig. 11 Framework for
drivetrain components health
assessment [31]

Introduction to Data-Driven Methodologies … 25



finished, the units in output layer will gather together to form several clusters, and
each cluster corresponds to the same class of input data. If the training data are all
under healthy condition, the units will gather to form one (single-regime) or several
(multi-regime) clusters that represent the feature characteristics under healthy
condition. In the testing process, the input feature vector (xi) is projected into the
output layer with the same weight vector, and its Euclidean distances to the units
(wj) are calculated based on Eq. 4. The unit that has the smallest distance to the
projected vector is called the ‘Best Matching Unit (BMU)’, and the corresponding
distance is called ‘Minimum Quantitation Error (MQE)’. The MQE value is cal-
culated by (Table 7):

Table 7 Data quality check criteria [32]

Check method Data processing Check value Threshold

Mean check Mean value of vibration
signal

Mean value Smaller than 1e-5
(should be decently
small)

RMS check RMS value of vibration
signal

RMS value 1e-5–0.05 (minimum
energy rule and
dynamic range rule)

Parseval’s
theorem-based
Energy
conservation
rule

Time domain RMS and
frequency domain RMS
level should be close
(conservation of energy
for FFT)

RMS(x(t)) − RMS
(X(f))

Smaller than 0.1%

Statistical
distribution
rule

Fit normal distribution
of vibration signal

Hellinger-like
distance and
Komogorov distance
of empirical and
fitted distribution

<0.12 for K-distance
<0.1 for H-distance

N-point rule N neighbor points with
the same value

N-point Depends on sampling
frequency. (<1 for our
case due to very high
sampling frequency)

U-point check Number of unique
points in the vibration
signal

Portion of unique
points to the length
of dataset

>99.99% for our case

Positive and
negative point
check

Portion of positive and
negative points to the
length of dataset

Max[P(+), P(−)] <52% for our case
(the value should be
close to 50%)

Derivative
check

Derivative of vibration
signal

RMS value of
derivative signal;
number of derivative
value that exceeds
threshold

0.015 for RMS
derivative;
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xi −wck k= min
i

xi −wj
�� ��� �

, ð4Þ

MQE= x−wBMUk k. ð5Þ

This method is validated based on the historical data collected from an offshore
wind turbine. The data span was 15 months, and had a severe damage at its rotor
bearing that has caused downtime of 2 weeks. Figure 12 shows the change of MQE
value before and after the breakdown. An incipient fault was detected five days
before the severe damage.

Fig. 12 Fault prognostic with SOM-MQE approach for offshore wind turbine drivetrain (Note
Legend and axes labels were intentionally removed to keep the confidentiality of the data.)

Fig. 13 Radar chart for fault
localization
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As observed from the SOM-MQE result, there is a short duration in the middle
of the history when MQE value noticeably exceeded the MQE threshold. The MQE
excess occurred about five days before an operation pause due to a failure. The
result shows that SOM-MQE is capable of detecting drivetrain anomaly at an early
stage. A radar chart is created to view component criticality simultaneously. In this
chart, each axis represents the contribution of each component to MQE abnor-
mality. The closer the data point is to the center, the smaller the contribution is
(Fig. 13).

3 Industrial Implementation and Gaps

3.1 Available Software and Platforms

As the industry recognizes the potential and business values in different sectors, a
lot of companies have developed their PHM solutions/software/platform to achieve
predictive modeling for industrial users.

• GE has announced Predix™ as a cloud-based service platform to enable
industrial-scale analytics for management of asset performance and optimization
of operations [33].

• National Instruments introduced Big Analog Data™ three-tier architecture
solution [34], as well as LabVIEW Watchdog Agent™ Toolkit to support smart
analytics solutions throughout different big data applications [35, 36].

• Many startup companies emerge recent years providing scalable PHM solutions,
such as:

– Predictronics (http://www.predictronics.com/) provides vertical solutions in
various industrial applications from component level to fleet systems.

– Uptake (http://www.uptake.com/) has been strategically working with
Caterpillar and aims at developing a general PHM software.

– Sparkcognition (http://www.sparkcognition.com/) has products concerning
both cyber security and machine prognostics.

– Trendminer (https://www.trendminer.com/) provides predictive analytics
solutions to majorly process industry.

Besides, equipment makers themselves are also developing customized PHM
systems for their own machines. For example, Prizm™ by Applied Materials for
semiconductor manufacturing equipment [37], or RigWatch® by Canrig for their oil
and gas applications [38].
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3.2 Gaps and Future Directions

3.2.1 Preprocessing

“Industrial Big Data” is usually more structured, more correlated, more orderly in
time and more ready for analytics [6]. This is because “Industrial Big Data” is
generated by automated equipment and processes, where the environment and
operations are more controlled and human involvement is reduced to minimum.
Nevertheless, the values in “Industrial Big Data” will not reveal themselves after
connectivity is realized by “Industrial Internet”. Even though machines are more
connected and networked, “Industrial Big Data” usually possess the characteristics
of “3B” [6], namely:

• Below-Surface

– General “Big Data” analytics often focuses on the mining of relationships
and capturing the phenomena. Yet “Industrial Big Data” analytics is more
interested in finding the physical root cause behind features extracted from
the phenomena. This means effective “Industrial Big Data” analytics will
require more domain know-how than general “Big Data” analytics.

• Broken

– Compared to “Big Data” analytics, “Industrial Big Data” analytics favors the
“completeness” of data over the “volume” of the data, which means that in
order to construct an accurate data-driven analytical system, it is necessary to
prepare data from different working conditions. Due to communication
issues and multiple sources, data from the system might be discrete and
un-synchronized. That is why pre-processing is an important procedure
before actually analyzing the data to make sure that the data are complete,
continuous and synchronized.

• Bad-Quality

– The focus of “Big Data” analytics is mining and discovering, which means
that the volume of the data might compensate the low-quality of the data.
However, for “Industrial Big Data”, since variables usually possess clear
physical meanings, data integrity is of vital importance to the development of
the analytical system. Low-quality data or incorrect recordings will alter the
relationship between different variables and will have a catastrophic impact
on the estimation accuracy.

Therefore, preprocessing and how to ensure data quality would be an important
issue in PHM. The evaluation of data quality does not have to be limited to the
inspection of signal validity, but can also include trend detection to evaluate the
predictability, cluster analysis to evaluate potential for fault diagnosis, etc. [39].
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3.2.2 Fleet-Based PHM

A fleet refers to a set of assets/machines that share some common characteristics
that can be used to group them together according to a specific purpose. e.g. air
crafts, vessels, wind turbines, trains, etc. Modern manufacturing enterprise scale is
becoming larger and individual asset-based PHM might not be able to sufficiently
fit in the changing environment in future.

Fleet-based PHM will be more accurate than conventional individual asset-based
PHM:

• Prediction: similarity-based prediction
• Fault detection: peer-to-peer comparison, multiple kernel learning
• Compensation of training data insufficiency

– Peer comparison without long history of individual baseline data for training.

3.2.3 General PHM Platform

Today’s PHM solutions are still very customized and confined to one application.
Different applications would have different data acquisition and storage system,
different domain knowledge-dependent features and different monitoring purposes.
It is very difficult to create a platform that could cover all kinds of applications.

One way of expanding the scope of a PHM solution is to combine several
mainstream component/machine level PHM solutions together, and have users
choose tools from similar applications. An alternative approach is to build up a
standard platform where analytical tools are available but not customized. For such
platform, background knowledge about how to use these tools for their application
is required.
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Prognostics and Health Management
of Wind Turbines—Current Status
and Future Opportunities

Shuangwen Sheng

Abstract The global wind industry has seen tremendous growth during the past
two decades. However, the industry is challenged by premature component failures,
which lead to increased turbine downtime and subsequently, cost of energy for
wind power. To mitigate the impacts from these failures, the wind industry has been
exploring various areas for improvements ranging from product design, new
materials or lubricants, to operation and maintenance (O&M) practices.
Condition-based maintenance or prognostics and health management (PHM) has
been explored as one enabling technology for improving O&M practices. This
chapter provides a brief overview of wind turbine PHM with a focus on operational
data mining and condition monitoring of drivetrains. Some future research and
development opportunities in wind turbine PHM are also briefly discussed.

Keywords PHM ⋅ Wind turbine ⋅ Diagnostics ⋅ Prognostics ⋅ Operation and
maintenance

1 Introduction

Global cumulative wind installation capacity reached 430 gigawatts (GW) by the
end of 2015 [1]. However, the industry still experiences premature turbine com-
ponent failures, led by gearboxes, leading to increased operation and maintenance
(O&M) costs and subsequently, the cost of energy for wind power. The cost of
failures can become much higher for offshore wind plants. Based on European
experiences, on average, the availability of offshore wind plants is about 7% lower
than land-based plants, which have an averaged availability of about 98% [2], and
the O&M costs for an offshore wind plant is twice the cost of a land-based plant [3].
There is a clear need for the wind industry to improve reliability and reduce O&M
costs, especially when turbines are installed offshore.
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The wind industry has tried to improve reliability and reduce O&M costs from a
wide range of perspectives, such as testing and design [4, 5], tribology and lubri-
cants [6, 7], and O&M [8, 9]. Once turbines are manufactured and installed in a
wind plant, the main opportunity for cost reduction lies in improvement of O&M
practices. Condition-based maintenance (CBM), or prognostics and health man-
agement (PHM), is one enabling technology that the wind industry has investigated
for O&M improvement. Condition monitoring is often used interchangeably with
CBM or PHM but in this chapter, condition monitoring is treated as a set of various
techniques that focus on data sensing, signal processing, fault detection, diagnosis
and prognostics; however, CBM or PHM is treated as a framework containing all
elements of condition monitoring, as listed earlier, and also adding an O&M
decision supporting piece. In the remaining sections of this chapter, PHM, which is
typically thought to encompass CBM, will be used for simplicity of discussion.

PHM is defined in [10] as an approach to system life-cycle support that seeks to
reduce or eliminate inspections and time-based maintenance through accurate
monitoring, incipient fault detection and diagnosis, and prediction of impending
faults. A PHM framework or process typically involves activities that are classified
in [11] into seven layers: data acquisition, data processing, condition assessment
(detection), diagnostics (identification), prognostics, decision support, and
human-machine interface. These layers can be grouped into three blocks according
to their functions as observation (data acquisition and processing layers), modeling
and analysis (condition assessment, diagnostics, and prognostics layers), and
decision (decision support and human-machine interface). The benefits of PHM
highlighted in [12] include increased productivity, reduced downtime, reduced
number and severity of failures (particularly unanticipated failures), optimized
operating performance, extended operating periods between maintenance, reduced
unnecessary planned maintenance, and reduced life-cycle cost. When root causes
for a certain failure mode are identified, improvements in operation and product
design can potentially be accomplished. PHM has been successfully applied in fuel
cell systems, nuclear power plants, aviation applications, and electronics. The
benefits of PHM, as seen in other applications, can help greatly improve O&M
practices in the wind industry if it is harnessed to the full potential. The original
onset of PHM for wind turbines was the 1980s, when turbines were equipped with
supervisory control and data acquisition (SCADA) systems; however, with dedi-
cated add-on instrumentation, PHM emerged about two decades later when such
systems became economically beneficial for utility-scale wind turbines. Because
turbine SCADA data mining for PHM purposes had only commenced a few years
ago and the deployment of drivetrain condition monitoring systems on utility-scale
wind turbines is still increasing, it is reasonable to state that the PHM of wind
turbines is largely at the nascent stage.

So far, the development of PHM for wind turbines has focused on data acqui-
sition, data processing, condition assessment, and diagnostics. Depending on the
specific technologies employed, some are more mature than the others. The O&M
decision supporting piece within the PHM framework still appears to be at the
research and development (R&D) stage, with the majority of the work on O&M
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strategy optimization being done in Europe and focusing on offshore applications
[13, 14]. There is a much higher value proposition for PHM when turbines are
installed offshore because of the challenges with accessibility and the availability of
maintenance vessels. With the evolution of new technologies such as big data,
cloud computing, and Internet of Things [15], there are opportunities to implement
the entire PHM framework for wind in a more cost-effective manner to help reduce
O&M costs—and, subsequently, the cost of energy for wind power without sub-
sidies—to a level competitive with traditional power generations.

In a broad sense, PHM of wind turbines can target almost all its major assem-
blies, including the rotor, drivetrain, tower, foundation, and even subsea cables.
Providing these assemblies are instrumented with appropriate sensors as part of the
turbine or substation SCADA systems, potential issues with them are likely to be
discovered through SCADA data mining, which is often referred to as performance
monitoring. However, this type of analysis may be unable to identify specific issues
down to the component level unless the sensor location is unique to the faulted
component. This limitation can often be overcome by deploying dedicated condi-
tion monitoring systems on turbines. The vast amount of SCADA data generated at
a wind plant is the very first resource the wind industry can explore to improve
O&M practices. As a result of high downtime and replacement costs, the main
focus of PHM in the wind industry has been on drivetrains, not only through
SCADA data mining but also dedicated condition monitoring technologies. Given
the number of components in a typical wind turbine and the diverse failure modes
these components may experience, if economically feasible, it is beneficial to
integrate a few technologies for PHM of wind turbines to cover a wider range of
failure modes and take advantage of the strengths of each technology.

There is substantial R&D and deployment potential for PHM technologies in the
wind industry to help reduce O&M costs and increase the competitiveness of wind
power. This chapter provides a brief overview of typical practices of PHM in wind
turbines covering both SCADA data mining and dedicated condition monitoring
with a focus on drivetrains. The chapter also highlights some future R&D oppor-
tunities in PHM of wind turbines.

2 Typical Practices in Utility-Scale Wind Turbines

This section discusses typical PHM practices in commercially operated utility-scale
wind turbines. It focuses on drivetrains and includes subsections on SCADA data
mining and condition monitoring. Both SCADA data mining and condition mon-
itoring can be integrated in the PHM framework serving the observation and
modeling and analysis functions. The drivetrains discussed herein are for geared
wind turbines and are considered to include the main shaft bearings, the gearboxes,
and the generators.
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2.1 SCADA Data Mining

Modern utility-scale wind plants are normally equipped with SCADA systems,
which collect various types of data from the turbines and send them to a centralized
computer for monitoring and control purposes. The parameters collected by a wind
plant SCADA system are typically 10-minute averages and can be classified into
[16]:

• Wind parameters (e.g., wind speed, deviation)
• Performance parameters (e.g., power output, rotor speed, and blade pitch angle)
• Vibration parameters (e.g., tower acceleration and drivetrain acceleration)
• Temperature parameters (e.g., bearing temperature).

The SCADA system also provides information on turbine states (e.g. operation,
service, and alarm) [17]. For PHM of wind turbines, there are typically two types of
analyses based on SCADA data:

• Modeling the correlations among different parameters (e.g. power and wind, for
normal operational states) and using these models to identify abnormal turbine
conditions

• Conducting statistical analysis of events (e.g., status codes) experienced by
turbines [18].

A diagram introduced in [19] is shown in Fig. 1 as a sample schematic for a
typical PHM of wind turbine practice based on SCADA data mining. The PHM is
meant for real-time monitoring of wind turbines and built on an offline model,
which leads to the Turbine Model as shown in the figure. The Turbine Model is
developed to reflect the relationship between model inputs (e.g., wind speed and air
density) and output (i.e., turbine active power as used in Fig. 1) under fault-free
conditions. The algorithm starts with feeding the most recent time step SCADA
data history to the Data Filtering block, which selects only those samples meeting a
number of status requirements, such as blade pitch limits. The status requirement
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Fig. 1 A sample schematic for PHM of wind turbines based on SCADA data mining (reproduced
from [19] with permission)

36 S. Sheng



check is implemented by the Conditions Satisfied step in the diagram, and the
outputs of this step are passed as inputs to the Turbine Model. The Model generates
a predicted mean power, as the Model output, for the current state. A residual or
difference between the predicted power output from the model and the turbine
actual power at the current state is generated; this is termed the residual generation
stage in Fig. 1. Throughout the period when the turbines are being monitored, the
residual values generated at intervals of the SCADA time step, typically l0 min, are
combined to form a time series, which is then analyzed at the residual evaluation
stage, including residual processing and decision logic (two steps). The residual
processing step identifies and discards the portion of residuals with high uncer-
tainties. The decision logic step determines whether certain characteristics of the
processed residuals are met to indicate a fault condition. When any of the fault
conditions are met, an alarm is generated. Otherwise, the algorithm continues to
iterate.

To illlustrate SCADA data-mining-based PHM for wind turbines, a case study
conducted in [20] using data collected from the two-bladed Controls Advanced
Research Turbine (CART2) at the U.S. Department of Energy’s National Renew-
able Energy Laboratory (NREL) is presented here. The CART2, which is rated at
600 kilowatts (kW), is used for dedicated wind turbine control research, together
with a three-bladed Controls Advanced Research Turbine. The data were collected
at 100 hertz (Hz), which is a much higher resolution than a typical commercial
SCADA system because of the need for other research activities. The data include
measurements taken when a gearbox failure, i.e., gear tooth fracture, occurred. The
modeling input was a 1-minute average wind speed in meters/second (m/s), a higher
resolution than typical the 10-minute average SCADA data on commercially
operated wind turbines, and the output was the high-speed shaft (HSS) ratio, which
is defined as the ratio between HSS torque in Newton meters (N ⋅m) and the HSS
speed in revolutions per mintue (rpm). Figure 2a shows the observations between
the chosen inputs and outputs during normal operations and the gearbox failure. It
can be seen that after the gearbox damage occurred, the HSS ratios were lower at
the low-to-medium wind speed range (i.e., 3–10 m/s) than those during normal
operations. A model for fault-free condition was developed using the data collected
during normal operations, and it was used to generate a residual control chart in
which decision boundaries were defined as three-sigma of the averaged residuals.
The HSS ratios calculated based on data collected during gearbox failure are
compared with those estimated by the baseline model, and the corresponding
residuals are illustrated in Fig. 2b, along with the residual control boundaries. The
monitoring sequence in the horizonal axis of Fig. 2b refers to the data pairs formed
by a certain input wind speed and its corresponding HSS ratio. It can be seen that
most of the residuals during gearbox failure fall outside of the lower control limits,
indicating an abnormal turbine condition.

To summarize, the typical benefits of SCADA data mining-based wind turbine
PHM include:
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• Readily available data with no additional investments in dedicated condition
monitoring instruments

• Easy identification of abnormal turbine conditions by looking at key perfor-
mance parameters or status codes, triggering further inspections

(a) Observations from CART2 during normal operations and gearbox failure.

(b) Most residuals during gearbox failure fall outside of control 
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38 S. Sheng



• Use of temperature as a reliable condition indicator for some turbine compo-
nents, such as main bearings, generator bearings, or gearbox bearings.

The main limitations of this approach include:

• Difficulties in immediate detection of exact damaged components (e.g., bearings
or gears inside gearboxes)

• Possibility of insufficient lead time from temperature-only measurements to save
monitored components from irreparable or collateral damage

• Possibility or presence of false alarms caused by varying loads experienced by
wind turbines

• Inability to meet full turbine condition monitoring or wind plant PHM needs of
accurate fault detection and diagnostics [21].

2.2 Condition Monitoring

Various dedicated condition monitoring technologies can be deployed on wind
turbines and these may include [22] vibration analysis, acoustic measurement, oil
monitoring, thermography, and visual inspection. These technologies can be clas-
sified into two categories: continuous and periodic techniques. PHM of wind tur-
bines based on dedicated continuous condition monitoring techniques is widely
recognized by the industry as technically beneficial but economically debatable,
especially for aging land-based turbines. For offshore and newly developed wind
plants, deploying one continuous condition monitoring technology has almost
become a default option. The increasing deployment level of continuous condition
monitoring technologies on wind turbines provides the industry a significant
opportunity to harness the benefits of PHM to its full potential and reduce O&M
costs.

An abstract description of typical continuous condition monitoring systems
deployed in wind turbines is illustrated in Fig. 3. These technologies normally
target a few mission-critical and cost-prohibitive assemblies of wind turbines, such
as gearboxes. The physical measurement varies depending on the specific tech-
nology used (e.g., the popular sensors for vibration analysis are accelerometers).
Data acquisition is normally implemented by a data acquisition unit (DAU) with
microprocessor-based software. The DAU collects signals generated by the phys-
ical measurement sensors and converts them into data that can be transmitted to a
remote computer for analysis. Some data-buffering storage is typically provided at
the DAU. The data collected by the DAU can be transmitted to the remote computer
via cabled or wireless connections. The following few steps (i.e., signal processing,
fault detection and diagnostics, and prognostics) are normally implemented on the
remote computer. The computer is equipped with a dedicated software package that
has its own database, a user-friendly interface, and typically a hierarchical archi-
tecture representing the monitored wind plants, turbines, assemblies, and
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components. The computer also typically provides much more data storage than the
DAU does. Signal processing may involve data cleaning, filtering, and feature
extraction, which drives values from raw data to make it more informative,
nonredundant, and normally to a reduced dimension. Fault detection and diag-
nostics can provide information on whether there is a fault, where the fault is, and
severe the fault is in the monitored turbine components. Prognostics targets fault
progression and estimation of remaining useful life [23, 24], which provide critical
inputs for O&M optimization. The fault detection, diagnostics, and prognostics
tasks normally require human interventions whereas the other tasks can be auto-
matically performed.

The measurements obtained by continuous wind turbine condition monitoring
systems may include strains, accelerations, acoustic emissions, oil debris counts, oil
condition measurements, electric currents, and voltages. Most of these signals
except oil-related measurements can be processed to derive certain features or
condition indicators that are useful for subsequent fault diagnostics and prognostics.
The processing may include certain preprocessing of data, feature extraction in
time-domain (e.g., peak, root mean square values), frequency-domain (e.g.,
gear-meshing frequencies and sidebands and bearing fault frequencies), and joint
time-frequency-domain analyses (via wavelet or short-time Fourier transforms). For
oil-related measurements, the sensor outputs normally can be used without the
complex processing listed earlier. Fault detection and diagnostics are typically

Wind Turbine Physical 
Measurement

Signal 
Processing 

Data 
Acquisition 

Fault Detection 
and Diagnostics Prognostics  

Vi
br

ati
on

 Le
ve

l Bearing Failure

Alarm Trigger

Healthy ThresholdVi
br

ati
on

 Le
ve

l Bearing Failure

Alarm Trigger

Healthy Threshold

Fig. 3 An abstract description of a typical continuous wind turbine condition monitoring system.
(Photos courtesy of: wind turbine [upper left], Joshua Bauer, NREL 500057; physical
measurement [upper middle], IMI Sensors, a division of PCB Piezotronics, Inc.; data acquisition
[upper right], SKF)
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conducted through various pattern classification, clustering, or regression analysis
algorithms. Specifically, it may involve trending the derived features or condition
indicators, and the rates of change of these variables. It may also involve identifying
the appearance of new frequencies that correspond to certain component faults, the
evidence of abnormal modulations of certain operating frequencies, or the violation
of thresholds set for certain features or condition indicators. For prognostics, there
are two main methods: a data-driven approach, using pattern recognition or
machine-learning techniques (e.g., autoregressive models and neural networks
[25]), and empirical or physics-based modeling methods, using physical under-
standing of the governing mechanism of the modeled phenomena, such as crack
propagation models developed via fracture mechanics [26]. Among fault detection,
diagnostics, and prognostics, detection and diagnostics are normally provided by
most commercial condition monitoring systems with prognostics remaining mainly
at the R&D or tryout stage.

Among the different continuous monitoring techniques [27], vibration analysis
and oil debris monitoring are predominantly used on wind turbines. The gearbox,
main bearing, and generator of a wind turbine have been typically monitored due to
their cost-prohibitive replacement. It is beneficial to deploy both vibration and oil
debris analysis techniques to cover the broad, complex, and diverse failure modes
that wind turbine drivetrains experience. In reality, the most commercially opera-
tional wind turbines either have one of these two technologies or none. Typical
practices with vibration analysis and oil debris monitoring in wind turbines are
provided in the next two sections, which focus on commercial solutions for fault
detection and diagnostics of drivetrains.

2.2.1 Vibration Analysis

For a wind turbine, vibration analysis is typically used to monitor the drivetrain. It
consists of several sensors (typically a few accelerometers and a tachometer), a
DAU located in the turbine nacelle, and a data server located at the wind plant or a
remote monitoring center. The tachometer can be a dedicated channel for the
condition monitoring system or it can be shared with the turbine controller. The
communication between the DAU and the data server located at the wind plant can
be through Ethernet or fiber optic cables. If no data server is set up at the local wind
plant, the DAU normally can be configured to wirelessly transmit the test data to a
server located in the remote monitoring center, which can be anywhere around the
globe. The data server normally hosts a software package, which is used to review
and analyze the collected data, present analysis results, and streamline both raw and
processed condition monitoring data into a database. One wind plant, typically
consisting of hundreds of turbines, can be monitored by one condition monitoring
software package located at the server if there is no problem with communications
between the condition monitoring DAUs and the data server.

The main differences among various vibration analysis systems are the number
of sensors, measurement locations, and analysis algorithms used, whereas almost all
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commercial solutions use accelerometers as their main physical measurement
devices. Typically, one to two accelerometers are mounted on the main bearing to
measure either radial or axial acceleration. Three to four accelerometers are
installed on the gearbox to measure the radial accelerations at different gearbox
stages (e.g., planetary and parallel stages). One to two accelerometers are installed
on the generator to measure either drive or nondrive end radial acceleration.

For analysis algorithms, various vibration condition monitoring systems may
have different approaches covering time and frequency, or joint time-frequency
domains [28]. Often, the time domain parameters are used to track the trend of
overall vibration level over time at a specific sensor location and to detect faults that
have occurred to the monitored component. Some triggering mechanisms can be set
up based on the trending of these time domain parameters to enable discrete
snapshots of detailed frequency analysis on raw or preprocessed signals. Based on
these snapshots, detailed diagnostics of the monitored component can be conducted.
Based on data processed by frequency domain analysis algorithms, some statistical
parameters can be calculated, such as the amplitude of characteristic frequencies for
gears (e.g., meshing frequency) and bearings (e.g., ball-passing frequency), and
these parameters can be trended over time in a fashion similar to those calculated
based on the raw data for both fault detection and diagnostics purposes. The
challenge with traditional frequency domain spectrum analysis is its in effectiveness
on nonstationary transient signals, which can be better handled by joint
time-frequency domain methods. Modern vibration analysis systems used on wind
turbines typically have signal processing methods in all these domains to take
advantage of their strengths and improve system performance.

2.2.2 Oil Debris Monitoring

Continuous oil debris monitoring in wind turbines is typically applied to the
gearbox, as it is normally the only oil-lubricated assembly in the drivetrain [8]. The
main function of this type of sensor is to measure debris shed by gears and bearings
and circulated with the lubrication oil. Sensing is typically done using a magnetic
field-based principle [29]. When lubrication oil circulates through these sensors,
total debris counts, including ferrous and nonferrous types, are recorded. Often,
these sensors can estimate the debris sizes and separate them according to different
size bins.

One main difference among various oil debris monitoring sensors has to do with
the sensor-mounting location, which can be either inline within the main lubrication
system or online within a side-stream lubrication system that has a slower flow rate.
The sensor-mounting location is determined by the bore size of the sensor, the
pressure ranges, and the flow rate that the sensor can handle. Another difference has
to do with the minimum detectable debris size. For inline sensors, the size is at the
level of hundred microns and a few times bigger than the minimum size detectable
by online sensors.
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The outputs of the oil debris monitoring sensors can be viewed using dedicated
software packages provided by the sensor suppliers, the software platform of a
vibration analysis system that can accommodate the outputs from these sensors, or a
website, which is typically managed by the sensor suppliers. With some postpro-
cessing algorithms, the debris generation rates [30] can be trended and examined, in
addition to the total debris counts, to identify potential gear or bearing faults.

This subsection thus far has focused on continuous condition monitoring tech-
nologies. Given that offline oil sample analysis has been a fairly standard practice in
the wind industry, it is briefly discussed here. For offline oil sample analysis, an oil
sample from a gearbox lubrication system is normally taken at a 6-month interval
and sent to a dedicated laboratory for analysis. However, if the continuous oil debris
monitoring sensors reveal abnormal conditions, it is better to conduct spot oil
sample analyses to help identify failures in progress. The parameters sought in an
oil sample analysis typically include particle counts, water content, total acid
number, viscosity, and sometimes particle element identification. An analyst at the
laboratory reviews the testing results and provides maintenance recommendations
to the owner or operator of the test turbine based on limits of metal content set by
using historical data collected from similar wind turbine gearboxes. The main
benefits of offline oil sample analysis include examining parameters not covered by
continuous oil debris monitoring sensors, especially those reflecting oil condition,
identifying failure sources through elemental analysis of debris, and enabling root
cause analysis for some failures.

2.2.3 Discussions

To summarize, the typical benefits of continuous condition monitoring-based PHM
for wind turbines include:

• Detection of turbine high-frequency dynamics that is not achievable with a
typical SCADA system via dedicated vibration measurements; this can normally
help isolate damaged components

• Unique insights on gearbox oil and component condition gained through oil
debris sensors whose results are relatively easy to interpret, or periodic oil
sample analysis which can help pinpoint failed gearbox components and assist
failure root cause analysis

• Coverage of more failure modes occurring in wind turbines than identified
through SCADA data mining.

The limitations of this approach include:

• Additional investment in dedicated instrumentation, monitoring service, or
resources for data analysis and interpretation of results

• Challenges with vibration analysis for low-speed-stage turbine components [31]
• Low effectiveness of oil debris monitoring for pinpointing damaged

components.
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Given the diverse and complex failure modes seen in wind turbine components,
an approach that integrates various technologies is recommended, especially one
that starts with an initial mining of the SCADA data and then incorporates rec-
ommendations given by dedicated condition monitoring technologies, such as
vibration analysis or oil debris monitoring.

3 Future R&D Opportunities

Despite the fact that some elements within the framework of PHM of wind turbines
(e.g., SCADA data mining and various condition monitoring techniques that are
increasingly exploited by the wind industry), plenty of R&D opportunities to realize
the full potential of PHM of wind turbines still exist. This section discusses some
current R&D activities and future R&D opportunities in PHM of wind turbines
according to three areas: data acquisition, signal processing and modeling (i.e., data
processing, condition assessment, diagnostics, and prognostics), and O&M (i.e.,
decision support and human-machine interface).

In terms of data acquisition, some R&D activities are currently carried out by
both industrial solution providers and research institutes. A few examples [32]
include a shock pulse method for main shaft bearing condition monitoring, gearbox
filter element analysis to complement traditional oil sample analysis, and electric
signature analysis (currently evaluated only on a test rig or small wind turbines).
These approaches could be targeted as potential opportunities for future R&D work.
In addition, future R&D efforts could focus on new technologies that are either
complementary or superior to the popular sensing solutions for drivetrain condition
monitoring or unique and beneficial to other mission-critical and cost-sensitive
components in wind turbines. When turbines are installed offshore, special sensing
techniques for undersea cables and foundation may be needed.

Along the lines of signal processing and modeling, some current R&D activities
[33] include time-frequency analysis based on wavelet transform, Wigner-Ville
distribution, or empirical mode decomposition, and data-driven modeling based on
neural networks, genetic programming, or regression analysis. Most of these R&D
efforts are conducted by research institutes, and they are academically very
attractive but often computationally expensive and hard to implement in the field. In
terms of modeling effort, validation presents a major challenge with the need for
long-term data collection and the lack of publicly available data. Future R&D work
may focus on increased use of SCADA data, improved accuracy and certainty of
diagnostic decisions including severity-level evaluations, and reliable and accurate
prognostics based on performance monitoring, usage monitoring, and load pre-
diction to enable estimation of the remaining useful life of turbine components.

R&D activities on wind plant O&M have focused on offshore wind plants. The
reason may be that owners and operators of land-based wind plants are challenged
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more by the availability of spare parts and qualified technicians; also, they have not
seen many obvious benefits from optimized O&M practices. O&M optimization is
more attractive to owners and operators of offshore wind plants than it is to owners
and operators of land-based plants because of the high value proposition, which is
mainly caused by even lower accessibility and additional logistics and scheduling
complexities. A few example R&D activities on offshore wind plants include
time-domain Monte Carlo simulation to determine the most cost-effective approach
to allocating O&M resources considering environmental conditions, transportation
systems, failures, and repairs [34], and Bayesian theory for optimal planning of
inspections and maintenance based on a single wind turbine and component con-
sidering inspections, repairs, and loss of production [35]. Future R&D efforts in
O&M need to focus on a fusion of various data streams or models (e.g., weather
forecasting) to optimize O&M practices that can reduce loads and extend the life of
turbine components, offer convincing evidence of additional benefits to both
land-based and offshore wind plants, and can help develop proper reasoning or
expert systems that are able to automate data interpretation and deliver actionable
maintenance recommendations.

In addition, a few R&D opportunities span across two or three of the above
categories. One area is to conduct R&D work to handle uncertainty within the PHM
framework, including uncertainty representation and interpretation, quantification,
propagation, and management [36]. For offshore wind plants, the structural load
prediction, which is needed for component life estimation, becomes more complex
as both wave and wind influences exist. Some novel sensing, sensor integration, or
modeling methods may need to be developed. Another area is reliability-centered
maintenance, which can target the entire wind plant and recommend the appropriate
maintenance for different failures seen in turbine components at the right time. The
maintenance of a typical wind plant in the foreseeable future has to combine
different strategies, including reactive, preventative, predictive, and proactive
measures owing to the number of turbines, the diversity of components on the
turbines, and the variation in their failure modes and mission criticality. Yet,
another area of interest is root cause analysis. Although very detailed and thorough
root cause analysis for all turbine failures may not be economically feasible, it is
recommended for frequent failures, as the findings can potentially help improve the
turbine operation, control strategy, and even component design.

The PHM of wind turbines can take advantage of emerging technologies (e.g.,
big data, cloud computing, and the Internet of Things) to become more effective and
attractive yet economical. With further R&D in PHM of wind turbines and its
relevant areas, and with gradual acceptance by the industry, the technology will
help increase the competitiveness of wind power by reducing its O&M costs and
subsequently the cost of energy.
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Overview on Gear Health Prognostics

Fuqiong Zhao, Zhigang Tian and Yong Zeng

Abstract This chapter is dedicated to an overview of prognostics methods for gear
health management. By noticing that most prognostic methods are application
dependent and new methods keep emerging, this study is necessary for providing
the latest status of prognostics capability specific to gears. The reviewed frame-
works and/or methods are grouped into data-driven, physics-based and integrated
ones. Their respective merits and drawbacks are outlined. The opportunities and
challenges are also discussed for future research.

Keywords Gears ⋅ Prognostics ⋅ Condition monitoring ⋅ Failure mode ⋅
Remaining useful life prediction ⋅ Vibration analysis

1 Introduction

Gears are commonly seen components and are widely used in machinery and
equipment for heavy-duty tasks. When transmitting power, gears typically need to
carry a heavy load on their teeth, which makes gears prone to fatigue fracture
especially at locations where the load is applied and where there exists large
bending stress. The working environment can also accelerate the health deteriora-
tion of gears. For example, sliding wear appears and grows due to inadequate
lubrication on mating faces, and as a result, material is removed from the gear faces
in form of metal particles. These particles are immersed in the oil accelerating the
wear process, and tooth geometry changes due to material loss causing over-
whelming vibration which could immediately call a halt on the service life of the
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gears. Failures of gears, if unexpected, could cause malfunction of the power
transmission subsystem and even serious damage to the whole system.

Because of the important role of gears for ensuring the whole system health and
safety, methods to accurately and timely detect gear faults have been a focus that
has prevailed in the literature for decades. Except for the sudden failures, there is
considerable time for the fault to develop before actual failure occurs, and by
noticing this fact, gear remaining useful life (RUL) prediction becomes more
attractive to provide extra economic benefits by exploiting gear service life or to
better improve safety by adjusting operating conditions. The two aforementioned
aspects, fault detection and RUL prediction, are the main tasks in the modern
context of equipment prognostics and health management (PHM) [1]. Gear fault
detection has received massive research attention and many well-established
methods exist [2–5]. In contrast, RUL prediction in PHM is still in its infancy and
needs further development for practical applications. Some researchers have done
excellent reviews on general prognostics methods [6–13]. However, most of the
prognostic methods are application dependent and tailoring a general method into a
particular application still needs extra efforts, if possible. In this book chapter, we
review prognostics methods that are devised specifically for gears. By giving an
overview of the existing frameworks and methods for gear failure prediction, we
suggest future directions of gear prognostics methods for better equipment health
management.

First, a short introduction to PHM, an advanced framework for modern system
health management, is presented. Traditional maintenance strategy after the system
is deployed to field is reactive in nature, which simply responds to the fault
occurrence. The corrective maintenance actually implicitly allows for outage, and
thus is unavoidably accompanied with the high risk of downtime as well as high
operational cost. A more intelligent alternative is time-based maintenance, where
actions are taken upon failure, while otherwise maintenance is scheduled every
optimal time interval [14]. The time-based maintenance can prevent some unex-
pected failures, but it is still resource-wasteful due to the unexploited service life of
some units. It is worth mentioning that failure time distribution of unit population is
usually needed to determine the optimal time interval in time-based maintenance.
Therefore, it is population oriented which is useful at the stage of product design
and setting warranty policy. However, testing and assessment based on population
only provide an average performance of interest, and can hardly be used to char-
acterize the performance of an individual. In contrast, at the stage of product
deployment, the real concerns for maintenance and operation is indeed the per-
formance of individuals. While addressing such concerns, PHM attracts research
interest and efforts from both academia and industry.

The basic idea of PHM is to detect/diagnose faults (diagnostics), use the diag-
nostic information afterwards to predict failure progression (prognostics) and then
to plan maintenance/operation/logistics actions beforehand (maintenance opti-
mization) based on the predicted failure time. In this way, PHM aims to achieve
zero unexpected failures, full usage of service life and minimum maintenance cost.
One distinct feature of PHM (compared to traditional statistics based life models) is
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to use sensors acquiring signals which could be indicative to the system degrada-
tion. The framework of PHM opens opportunities for accurate gear life prediction.
For example, sensor data (vibration, operational data, etc.) may be utilized to adjust
predictive models or to estimate the current state of damage, which could then lead
to a better prediction as a result of taking account of the latest health condition.
From another perspective, PHM also offers an amenable way for uncertainty
quantification when a Bayesian filtering is used for data assimilation. In this
chapter, a focus will be given to the cutting-edge prognostics methods for gears
within the PHM framework with the traditional ones also covered to better illustrate
the comparison and evolution of algorithms.

The remainder of this chapter is organized as follows. In Sect. 2, various gear
failure prediction models are reviewed with a focus to demonstrate the
state-of-the-art approaches in PHM for gear health prognostics. These approaches
are deterministic or stochastic, physics-based or data-driven, and population-
oriented or individual oriented. Various methods show their respective strengths
and drawbacks. Section 3 will discuss the opportunities and challenges encountered
in the course of developing prognostic algorithms, and based on which we suggest
areas for future research to improve their efficiency, accuracy and robustness.
Conclusions are given in Sect. 4.

2 Gear Health Prognostics Methods

The objective of prognostics is to predict RUL of gears before they fail to meet
operation requirements. Owing to a large number of uncertainty sources accom-
panied by prognostics, it is acknowledged that prognostics should be conducted in a
stochastic way. More specifically, one should be able to tell the confidence in the
predicted RUL. Apart from that, a good prognostic algorithm is also expected to
have a mechanism of uncertainty reduction to increase the confidence for
decision-making in maintenance or mission planning [1].

In this section, we will review four categories of prognostic methods for gears.
Section 2.1 will review the first one, which is based on Weibull analysis of material
rupture before the concept of PHM was even proposed and dates back to 1940s.
This method (along with other well-known s−N curve, ε−N curves and their
modified variants) copes with micro-cracks or micro-pits in the damage initiation
stage. At the same time, the other three categories are spotted and recognized within
the PHM context: the physics-based, the data-driven and the integrated methods.
They are invented for damage propagation stage during which the damage grows
from a scale that is sufficient to be detected until failure. In Sect. 2.2, we review
several physics-based models of damage propagation pertinent to different failure
modes of gears. Section 2.3 is dedicated to the counterpart data-driven prognostic
methods for gears. Features extraction for prognostic purpose from gearbox con-
dition monitoring data are also reviewed because it is an essential step in devel-
oping data-driven methods. Section 2.4 covers the prognostics methods that
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combine the physics-of-failure damage propagation model and the condition
monitoring data to achieve an adaptive and robust prediction.

2.1 Gear Fatigue Life Statistical Models

Back in 1939, the theoretical work by Weibull [15] developed a fundamental
formula to estimate the probability of material rupture at any given stress over a
volume. This paper noticed the variation of ultimate material strength and chose to
use a distribution function rather than a constant to represent it. Based on this result,
a general fatigue life model was proposed by Lundberg and Palmgren [16] in 1947
for rolling-element bearings.

Coy et al. [17] later applied this Lundberg-Palmgren model to surface fatigue life
estimation for spur and helical gears as the gear life is reached when pitting appears
due to fatigue contact. The output of this model is the gear life at a given survival
probability (i.e., reliability) under a given transmitted load, and by feeding the gear
mesh contact stress, shear stress and stressed volume. For example, the 90%
probability of survival can be written in Eq. (1), where τ0 is the critical stress, z0 is
the depth of the critical stress, V is the stressed volume, h, c,K1 are material
dependent exponents and e is Weibull slope.

L1 =
K1zh0
τc0V

� �1 ̸e

. ð1Þ

To use this model, failure experiments are needed to determine the parameters
(exponents and material constant) in the life model; gear mesh contact analysis
under certain lubrication condition is also required to obtain the stress undertaken
by the material. Thus, this model is built on theories of both material and statistics,
so it has the merit of physics-based methods along with the capability to account for
the overall uncertainty in population. This model is instrumental as a pioneer for
adopting a probabilistic way for gear fatigue life prediction. However, as suggested
by the authors, more tests are needed to obtain statistical significance of the
experimentally determined parameters. As mentioned before, this model is
population-oriented, and it makes no differentiation among individual gears. A large
amount of variance in the predicted lifetime is expected with this model.

2.2 Physics-Based Gear Prognostics

Fault initiation and propagation are physical processes that take place in the
structure, joint or component made of various types of materials. Researchers
naturally intend to understand these processes from physical perspectives, such as
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understanding the material property under repetitive thermal and dynamic loading.
Unlike the fatigue life model in Sect. 2.1, prognostics in PHM try to understand
how the fault propagates or grows with time after an initial fault is detected. The
physics-based prognostics method resorts to physical laws that govern the fault
propagation process, and if the physics behind fault propagation process is well
understood, physics-based methods will give the predictions with the highest
accuracy among all the categories. To apply such methods, the first step is to
identify the failure mode of interest so that the proper fault progression model is
selected.

Gears have several main failure modes: tooth fracture due to crack growth,
surface fatigue (pitting/spall) due to rolling contact, and surface wear due to sliding
contact. By noticing the scarce publications on pitting progression model for gears,
this section will only review the models for the other two failure modes, leaving
surface fatigue for a later section when we discuss future opportunities.

2.2.1 Tooth Fracture

As cyclic loading continues during gear mesh, cracks will initiate at tooth fillets
subject to maximum bending stress. The propagation of cracks will eventually
cause tooth breakage and result in gear failure. Paris’ law shown in Eq. (2) is
commonly used to describe crack growth with time [18]. It predicts the crack size
(a) increment per loading cycle (N).

da
dN

=CðΔKÞm. ð2Þ

The important quantity to calculate in Paris’ law is the stress intensity factor
(SIF), ΔK, which determines the stress distribution near the crack tip in linear
elastic fracture mechanics. Many publications are devoted to calculating SIF using
different numerical techniques, and interested readers can refer to [19–23] for these
techniques in computational fracture mechanics. Many papers applied Paris’ law for
gear life prediction [24–27]. As a physical law, Paris’ equation has many variants to
incorporate additional factors that affect crack growth in a gear, such as load ratio,
toughness [28], hardness [29], closure retard [30] and random loading [31].

The failure criteria of gears bearing a crack is usually defined by the critical
value of crack size or SIF. Hence, SIF calculation is a key to obtain accurate crack
propagation prediction. The residual stress due to tooth case hardening was con-
sidered in the finite element (FE) models to compute SIF in [32]. Authors in [33,
34] investigated several factors that may influence the crack growth trajectory in the
gear tooth, including backup ratio, initial crack location, fillet geometry, rim/web
compliance, gear size and pressure angle. Most publications have assumed a con-
stant load applied at a fixed position when calculating SIF. However, in actual gear
meshing, the load moves along the tooth, changing in both amplitude and position,
so in order to account for moving load during tooth mesh, authors in [35] developed
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a quasi-static numerical method to calculate cycles for cracks to propagate to a
critical value by breaking the tooth engagement into multiple steps. Even though
many factors may affect crack propagation, Paris’ law was applied in the absence of
any latest information of the crack state in the above-mentioned research neglecting
the characteristics of a specific gear in a specific operating condition. In [36] and
[37], authors developed the gear RUL prediction system which combined the gear
dynamic model, the fracture FE model and the crack estimation algorithm together
to achieve the improved prognostics accuracy for a specific gear. The novelty is the
incorporation of a module to estimate the current crack size using the measured
transmission error [38] or vibration index [39]. As a result, the current health
condition is updated before applying Paris’ law so that the life prediction will get
accurate. However, Paris’ law is still applied in a deterministic way and the pre-
dicted RUL is a single value with no confidence evaluation.

2.2.2 Sliding Wear

When gear teeth mesh with each other, the tangential velocity is different from two
mating teeth surfaces. The relative movement will cause sliding between the two
surfaces and as a consequence of the direct asperity contacts, the metal material will
be removed from the surface which then defines the sliding wear. Sliding wear will
gradually change the tooth geometry (e.g., the tooth thickness becomes thinner),
increasing vibrational level of the gearbox and accelerating the formation and
growths of other faults. A widely accepted wear model is the Archard’s model [40]
shown in Eq. (3)

dh
ds

= kp ð3Þ

which describes the wear depth (h) increase at a point on the tooth surface during
one unit sliding distance. In Eq. (3), k is the wear coefficient and p is the contact
pressure on the mating surface. From this model, it is obvious to conclude that there
is no sliding wear at the pitch point of a spur gear because no sliding motion occurs
there. It is also worth mentioning that the wear process is highly influenced by the
lubrication condition. Most gears run in a partial elastohydrodynamic lubrication
(EHL) regime, where the gear teeth moving speed is fast enough to create a film but
the film is inadequate to prevent direct asperity contact between two surfaces.
Similar to the Paris’ law, Archard’s model also has its generalizations to account for
more factors [41, 42].

Wu and Cheng proposed a sliding wear model for partial-EHL contacts in [43], a
model that accounted for many factors including contact pressure, sliding velocity,
contact area, thermal desorption and oxidation. Afterwards, this model was later
applied to a spur gear wear process where the dynamic loading was considered and
the sliding wear volume was calculated in one mesh period. Later, Flodin and
Andersson used Archard’s model to predict sliding wear on spur and helical gears
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[44, 45]. Hertz theory and Winkler’s mattress model were applied to calculate the
contact pressure on meshing teeth. However, no experiment results were present in
their work. Following this work, authors in [46] developed methods that were able
to take manufacturing/assembly imperfection and intentional surface modification
of gears into wear prediction. Gear wear experiments were also conducted to val-
idate the model. In these methods, the wear coefficient k was treated as a constant
obtained from the experiment on some training units. When using this value to
predict wear process of other units, there must be some errors because of inevitable
uncertainties in material, lubrication and loading condition. To mitigate this
drawback, Zhao et al. [47] proposed integrated method for gear wear prediction
which will be discussed in later section.

Physics-based methods are generally accurate if the required information is
available, but they typically require intensive efforts to build the fault progression
model and then to determine the parameters in it. Physical models are usually not
available for complex systems or for certain failure mechanisms that is not well
understood. Even if the model is available, sometimes the computational resources
are too demanding to afford in practice. In addition, physics-based methods are
blind to the current health status of the gears, and so any model error can be
amplified to an unacceptable level as time proceeds. Furthermore, the deterministic
way to treat physical parameters also renders the risk of physics-based methods in
predicting fault progression of a specific unit. Last but not least, physics-based
methods lack a measure of confidence in the predicted results.

2.3 Data-Driven Gear Prognostics

The fast development in sensor technology provides a large amount of condition
monitoring data from which the gear health status can be evaluated and tracked.
Data-driven methods are able to extract useful intelligence from huge datasets
consisting of sensor signals and/or operational data to achieve desired PHM pur-
poses. The distinct feature of data-driven methods is that the prognostic models are
obtained by training on and only on the data, with no input from physics of failure
nor assumption of mathematical model for degradation process. The rationale
behind the data-driven methods is that, as system performance degrades with usage,
its health status can be manifested by or be hidden in the condition monitoring data.

In data-driven methods, before the predictive models are trained, there is a
critical step called feature extraction where the features for training are obtained by
signal processing and learning techniques. A qualified trending feature should be
sensitive to degradation over time (e.g., monotonically increases with damage
increases), immune to noise, and robust to changes in environmental/operating
conditions. As is well known, vibrational analysis of gears plays an essential role in
gear fault diagnostics. There has been a large volume of literature on gear fault
detection methods, but traditional features that are used to detect gear faults are not
always effective to serve as prognostic indicators because the amplitude of fault

Overview on Gear Health Prognostics 55



detection features may not be as sensitive to the extent of the fault. The situation is
worsened when the gears are subject to non-stationary operating conditions (e.g.,
time-varying speed and load). Therefore, sophisticated signal processing and
machine learning techniques are usually needed for developing good indicators to
predict the damage growth trend.

In the remainder of the section, we will review popular data-driven methods for
gear health prognostics, including statistical machining learning methods and
dynamic systems.

2.3.1 Data-Driven Methods: Statistical Matching Learning Methods

Once a qualified indicator is selected, the damage propagation process can be
represented as a time series which is an important tool in failure prediction. The
neuro-fuzzy (NF) approach and recurrent neural networks (RNN) are two com-
monly used techniques for time series prediction. NF combines neural networks
(NN) and fuzzy logic to circumvent the drawbacks of NN (i.e. a lack of trans-
parency and a slow training rate). It was also found that in [48] that RNN was a
better predictor than feedforward neuro-networks (FNN). Therefore, Wang et al.
[49] investigated NF system and RNN for gear prognosis. In the proposed NF
systems, the time step span is constant (i.e. a number of previous indicator values
are fed into NF systems to predict the value at the next step). The method was
evaluated by datasets of various gear failure modes: worn gear, chipped gear,
cracked gear and pitting gear. A feature of wavelet amplitude pattern based on the
overall residual signal was developed as the prognostic indicator for the first three
faults, and a normalized kurtosis based on the overall residual signal was used to
track the pitting. The signal processing method to extract such features can be found
in [50]. The results have shown that the NF predictor accurately caught the feature
trend and tracked it very well whereas RNN failed to adapt itself to the new system
dynamics after the fault was initiated. Therefore, the study concluded that a
properly trained NF system performs better than RNN in both forecasting accuracy
and training efficiency. The author later developed an extended neuro-fuzzy
(ENF) network which could achieve more accurate prediction in [51].

Following the same route, Samanta and Nataraj investigated the other two
time-series prediction techniques for gear prognostics: adaptive neuro-fuzzy infer-
ence system (ANFIS) and support vector regression (SVR) in [52]. Both techniques
were designed to achieve one-step-ahead prediction in the examples. The same
datasets as in [49, 51] were used to compare the performance, and it concluded that
SVR performed better than ANFIS at the price of higher training time.

Tian and Zuo [53] proposed an extended recurrent neural network (ERNN) to
predict the health condition of gears. The incorporation of the Elman context layer
in the proposed networks was to enhance its ability to model nonlinear time series.
The authors also added self-feedbacks to the Jordan context neurons to improve the
dynamic property of the predictors. In addition, output error was taken into account
by the way of feeding it back to the hidden layer using the Jordan context neuron.
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All the innovative treatments will make the proposed ERNN more stable and
accurate. The feature used for trending is root mean square (RMS) of a vibration
signal collected from an accelerated run-to-failure test of a gearbox. Before being
fed as inputs, a Weibull curve fitting was conducted on these discrete RMS values
so that the inputs are relatively smooth out. The trained ERNN is able to predict a
time series of RMS in the future. In the proposed ERNN, there are two neurons in
the input layer which implies that the data point in a time series only strongly
depends on the two preceding values; with one output and the prediction error fed
back into a Jordan network, this approach achieves one-step ahead prediction.

The authors in [54] developed a neural network (NN) approach and with a
dynamic window selecting the number of training data as time proceeds. This
approach could achieve time span adjustment and multi-step ahead prediction. The
feature used for tracking gear pitting progression is the sideband index extracted
from the signal after narrowband interference cancellation [55]. This approach
attempts to mitigate the heavy reliance on the existence of failure histories; how-
ever, the statistical significance of the predicted results need further investigation
because it affects the reliability of the algorithm.

Hussain and Gabbar [56] proposed a novel feature extraction technique based on
the psychoacoustics phenomenon followed by a wavelet smoothing. The predictors
of ANFIS and nonlinear autoregressive model with exogenous inputs (NARX) were
tested on the vibration signals obtained from a planetary gearbox inside a wind
turbine. It can be seen that the feature gradually increases with time and the authors
attributed the reason of vibration increase to the oil loss. It is worth mentioning that
the vibration data used in [56] called the National Renewable Energy Laboratory
(NREL) through a consortium named Gearbox Reliability Collaborative
(GRC) [57]. This consortium is dedicated to the improvement of the reliability of
the gearbox in the wind turbines. It is acknowledged that the issue of reliability and
maintenance of the gearbox in the wind turbine is of critical concern to the owner
and operators in wind industry due to its harsh working environment and high
inaccessibility. The complexity of the planetary structure of the gearbox in the wind
turbine and the future uncertainty in operating conditions further increase the dif-
ficulties in developing effective diagnostics and prognostics methods for it.

In [58], the author used a Gaussian mixture to simulate the vibration signal of a
gearbox. By noticing the ineffectiveness of using kurtosis of the residual signal to
trend the crack growth, it suggested using a physical index instead. However, the
interim model for simulation has no physical meaning. Tian et al. [59] investigated
health indicator extraction using a one-stage gearbox dynamic model. It identified
RMS based on the residual signal segments as a sensitive indicator for early crack
detection as well as for subsequent crack growth trends. In addition, it was found that
discrete wavelet transform (DWT) techniques can increase the sensitivity of the
indicator. Apart from vibration signals, oil debris monitoring and acoustic emissions
have also been used to detect and trend the gear fault propagation [60, 61]. Because
the particles emerged in the lubrication oil can lead to excessive wear of gears, it is
also an important perspective to directly investigate the degradation and RUL of
contaminated lubrication oil used in the gearbox, as done by authors of [62].
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2.3.2 Data-Driven Methods: Dynamic System

There is an increasing to model the damage propagation and observation processes
as a dynamic system. Recently, there is an increasing volume of literature reported
in PHM area that applies the Kalman filter [63] and the particle filter [64] to obtain
posterior states and parameters of interest. Dynamic systems have natural interface
with data and can achieve real-time implementation as new data arrive. The state
transition and observation equations may be obtained using a data-driven process.

The experiments conducted on the spiral bevel gear test facility at NASA pro-
vided a gear condition monitoring dataset, which is often used by researchers to
validate their gear prognostic models. The purposes of the experiments were to
investigate the performance of gear material, tooth design and the effect of lubri-
cation additives on gear fatigue strength. Interested readers can refer to [60] for a
detailed description of the test rig and test procedure.

For each failure mode of gears, there exists the associated condition index (CI) to
detect the incipient fault. However, there is no universal CI that is effective for all
the failure modes. For example, residual RMS works well for tooth pitting but is not
effective for gear eccentricity. By noticing this fact, Bechhoefer and He [65]
developed a single health index (HI) by fusing multiple correlated condition index
(CI) based on gearbox vibration data. The selected six CIs include residual RMS,
energy operator RMS, FM0, narrowband kurtosis, amplitude modulation kurtosis
and frequency modulation RMS, all of which have good sensitivity to the fault.
Based on the six CIs, a single HI can be constructed in different ways: order statistic
of CIs, a summation of CIs or the total energy of CIs.

In [66], authors used particle filters to track the pitting growth in gears and used
the aforementioned HI [58] and oil debris mass (ODM) in [60] for validation. In the
framework of the proposed method, the autoregressive integrated moving average
(ARIMA) method was applied to define gear degradation state transition equation
using ODM data while the observation equation was obtained by a double expo-
nential smoothing model fitting a single vibrational HI and ODM.

Authors in [67] treated gear feature evolution process as a linear dynamic model.
The feature was the component from a Hilbert transform of the vibration data.
Designed for on-line applications, the Expectation-Maximization algorithm was
first applied to estimate the model parameters using the data in the past time
window, and then the linear state-space model was employed to predict future data
points in the time series.

Wang et al. [68] utilized two Hidden Markov Models (HMMs) to design two
health indicators for gear early fault detection and degradation trending, respec-
tively. Particle filters were also used to track the health indicator evolution which
followed an exponential decay. The health indicator in the state-space model was
selected as a probability rather than any form of condition monitoring data, and
which was proved to have less sensitivity to varied work load compared to RMS of
the residual error signals.

The predictive models in data-driven methods are purely dependent on data
originating from various sources that are available to us. Therefore, the data
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availability is a critical prerequisite. Furthermore, the data quality is also
demanding, which requires a qualified trending feature to be extracted from huge
condition monitoring data as the first step. In addition, the performance of
data-driven method is highly impacted by the noise in the data (e.g., large variance,
outliers). In particular, when a gearbox is operating under time-varying conditions
(e.g. varying loading and speed), the training stage in the machine learning tech-
niques is difficult to implement because the varying operating conditions cannot be
exhausted. In summary, with qualified data, the data-driven approach can be easily
applied to complex systems. It is also worth mentioning that in practical applica-
tions, the failure threshold setting requires extra efforts because the feature has no
direct physical meaning.

2.4 Integrated Gear Prognostics

Data-driven and physics-based methods are two main directions for failure prog-
nostics method development. Their respective merits and drawbacks motivate the
integrated prognostics methods which combine data and physics of failure to benefit
from both. In the integrated prognostics methods, the fault progression model can
be updated with the current fault state estimated from the condition monitoring data.
The state-of-the-art integrated methods usually have update processes with data
assimilation. The model update process could achieve uncertainty reduction and/or
better robustness.

Kacprzynksi et al. [69] developed an integrated prognostics tool which predicts
the gear life through fusion of physics-of-failure models and diagnostics informa-
tion to achieve an improved prediction accuracy. The total probability of failure at a
given time was defined as the product of two independent events: crack initiation
and crack propagation to failure. The diagnostics information was fused though a
mapping between the vibrational features (residual Kurtosis and residual peak to
peak) and crack size. Hence, the current crack size estimation is able to shrink the
uncertainty in failure time prediction. Uncertainty from multiple sources were also
considered when applying Paris’ law including uncertainty in loading, material
properties, modeling uncertainty and the crack estimation uncertainty. The results
showed a variance reduction in failure probability when diagnostics information
was present.

Zhao et al. [70] proposed an integrated prognostics framework for gears with a
crack at tooth root that combines physical models and condition monitoring data.
Physical models include Paris’ law, the fracture mechanics model and the one-stage
gearbox dynamics model. To account for the uncertainty in crack propagation,
material parameters in Paris’ law are treated as random variables. Bayesian infer-
ence was applied to update the distribution of material parameters in Paris’ law each
time a crack size was observed. With more observations becoming available, RUL
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predicted by the updated Paris’ law became more accurate and precise (reduced
uncertainty). In this way, not only is Paris’ law applied in a stochastic way but
tighter confidence bounds are also obtained in the predicted results. This framework
also accounted for the effect of dynamic load on crack propagation through the
one-stage gearbox dynamics model. Later, the authors investigated uncertainty
quantification problem in the proposed integrated prognostics framework [71].
Stochastic collocation methods based on polynomial chaos expansion (PCE) was
applied to improve computational efficiency in both likelihood calculation and RUL
prediction. Compared to traditional Monte Carlo and analytical methods for
uncertainty propagation, PCE exhibits the desired properties considering the opti-
mal balance between computational accuracy and efficiency. Afterwards, this
integrated prognostics framework and PCE based uncertainty quantification method
were extended to dealing with time-varying operating conditions in [72].

As stated in Sect. 2.2, physics-based methods use deterministic parameters in
their predictive model, which could cause errors for a specific unit. As far as the
failure mode of sliding wear is concerned, most of the existing approaches applied
Archard’s model, seen in Eq. (3), as the wear depth propagation model. The wear
coefficient k has been treated as a constant value obtained from experiment. Being
aware of the variability in the wear coefficient, Zhao et al. [47] developed an
integrated method for wear prediction by treating this coefficient as a random
variable with the mass loss of the gear weight considered as the condition moni-
toring data. The wear coefficient can be updated in a Bayesian framework whenever
the weight of gear is measured. Validation was conducted using a run-to-failure test
on a planetary gearbox, and the results show that the integrated method can
effectively capture the characteristics of the wear coefficient for a specific gear and
lead to an accurate prediction on gear mass loss due to sliding wear.

The idea of constructing a single HI for gear prognostics was adopted in [65].
Instead of using a data-driven process to obtain the state transition equation, a
state-space model was built based on Paris’ law, where the extended Kalman filter
was applied to obtain predictions on the HI, and the authors applied the method
proposed in [73] to set the failure threshold of HI. The results showed that the
bounds on the predicted HI became narrower as time proceeds which demonstrated
the uncertainty reduction in the presence of new data.

Integration of condition monitoring data and physical models can enhance the
predictive capability to a large extent, and with the presence of unavoidable errors
in both models and data, their integration may achieve the optimal performance. If
applied properly, sufficient data sources from condition monitoring and operational
records can further increase the flexibility of integrated methods by devising
innovative ways of integration. Additionally, the integrated prognostics method is
individual oriented because condition monitoring data are specific to each indi-
vidual unit. The associated uncertainty reduction mechanism will make the pre-
diction more specific to this individual unit with more confidence.
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3 Opportunities and Challenges in Gear Prognostics

Although prognostics attract increasing attention and many efforts have been taken
to develop effective methods for RUL prediction, prognostics capabilities are far
from perfect in meeting the requirements in real-world applications. The following
challenges need to be addressed to improve the performance of PHM for gears.

• Increase the fidelity of physical models. To save the efforts needed to build
high-fidelity physical models, existing methods usually simplify the actual
working condition that the gears undergo, causing the discrepancy between
predicted results and actual ones. For example, effects of dynamics, lubrication
and load variation should be considered in crack or wear propagation modeling.

• Develop damage propagation model for more failure modes of gears. Beside the
two failure modes reviewed in this Chapter, gears also have other failure modes,
most of which rarely have well-established physical laws to describe their
evolution. The theory of damage mechanics has already been used to study the
pitting evolution in bearings [74], and it would be beneficial to investigate
whether it can be applied to gears.

• Develop prognostics for multiple concurrent failure modes that may be
dependent and interactive with each other. There is very little research con-
ducted on this topic, and we foresee the difficulty of applying physics-based
methods to deal with this problem. However, data-driven methods may as well
face the challenges because an overall health indicator is virtually impossible
when the vibration signature of simultaneous faults is unknown.

• Increase reliability and robustness of prognostic algorithms. It still needs further
development of qualified prognostic indicators that are closely related to fault
growth with small noise and insensitive to operating conditions.

• Improve computational efficiency of modeling and uncertainty quantification to
facilitate real-time application of PHM system.

• Develop an intelligent PHM system that has synthesized functionalities of fault
detection, fault classification, fault assessment, fault tracking and decision
making. Integrate PHM outputs into the control module of the monitored system
to achieve minimum specialist involvement.

4 Conclusions

We have reviewed prognostics methods for gear health management in this chapter.
Because these methods are specific to gears, there must be further analysis involved
for gear health monitoring or physical models for gear kinematics and mesh contact.
As such, along with physical models describing damage propagation in gears, we
also review the extracted features based on gear condition monitoring for
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prognostic purpose. The merits and drawbacks of four categories of prognostics
methods are discussed. Opportunities and challenges in the future research are also
suggested.
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Probabilistic Model-Based Prognostics
Using Meshfree Modeling

Stephen Ekwaro-Osire, Haileyesus Belay Endeshaw,
Fisseha M. Alemayehu and Ozhan Gecgel

Abstract Improved system reliability and reduced maintenance cost are guaran-
teed if the prediction of remaining useful life (RUL) is deemed to be accurate.
Energy systems, like wind turbines, are the primary beneficiaries of this achieve-
ment as they tend to suffer from an unexpected early life failure of components that
resulted in the loss of revenue and high maintenance costs. The issue of uncertainty
in the prediction of a future state is yet a prevailing issue in prognostics and due
attention is paramount. Hence, there is a need for establishing a comprehensive
framework to quantify uncertainty in prognostics and this research addresses this
issue by considering a research question that reads ‘can uncertainty considerations
improve the prediction of RUL?’ The following specific aims were developed to
answer the research question: (1) develop a meshfree cantilever beam with
uncertainty in loading conditions, and (2) predict remaining useful life reliably.
A probabilistic framework was developed that efficiently predicts remaining useful
life of a component using a combination of meshfree model and degradation model.
To account for prediction uncertainty, modeling and loading uncertainties are
quantified and incorporated into the framework. As an example, the problem of a
cantilever beam subjected to a fatigue loading was considered and local radial point
interpolation method was used to find the stresses. The cyclic stresses and the
damage model, constructed using the S-N equation, are implemented in the prog-
nostics framework to predict the RUL. Uncertainties in the RUL were quantified in
terms of probability density functions, cumulative distribution functions, and 98%
confidence limit. The prognostics framework is flexible and can be used as a
starting point for RUL prediction of other physical phenomena such as crack
propagation, by incorporating more sources of uncertainties in order to make it
comprehensive.
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1 Introduction

1.1 Prognostics and Health Management

Accurate failure predictions and health management could significantly reduce the
operation and maintenance costs of an energy system. These costs account for a
large amount of the total cost of the system [1]. While prognostics is the prediction
of future states of a system or a component to predict the remaining useful life
(RUL), health management refers to instantaneous health monitoring of a system
[2–4]. System diagnosis results (measurements) will be used as the initial input data
to prognostics [2]. Generally, prognostics follows two important steps: (i) state
estimation using Bayesian tracking and (ii) future state prediction [5].

There are three prognostics methodologies known as model-based, statistical
data driven, and hybrid methods [6, 7]. Data-driven methods build a relationship
between measured data and the state of a system using machine learning and pattern
recognition methodologies [8]. It has been shown that the results from a purely
data-driven approach without the physical model results in a high uncertainty
values and inconvenient for long term predictions [9]. An extensive review of
statistical data driven approaches is provided by Si et al. [10]. Model-based
approaches implement mathematical formulations to approximate the physics of the
system for RUL prediction [8]. Hybrid methodologies use the combination of
model-based and data-driven approaches [6]. Studies on data-driven approaches can
be found in [8, 11]. Detail review of common model-based and data-driven algo-
rithms and their advantages and disadvantages can be found in [12].

Since prognostics refers to predicting future state of a system, it is necessary to
consider uncertainties to account for eminent variability [3, 13, 14]. There are
various sources of uncertainty that should be considered in prognostics [3, 15].
Sources of uncertainty include sensor and measurement errors, state estimates,
future loading conditions, and environmental conditions [16]. Of these sources of
uncertainties, future loading is the most challenging in prognostics [5, 17]. Another
classification of sources of uncertainty is present uncertainty, future uncertainty,
modeling uncertainty and prediction method uncertainty [5, 16]. It should also be
important to know that Remaining Useful Life (RUL) prediction of prognostics
should be expressed as a distribution with a given confidence interval instead of a
specific life estimate [18, 19]. It should be based on this confidence interval that
business decisions should be made [18]. Preventive maintenance decisions would
be more justifiable based on the confidence intervals and probability values of
RULs.
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1.2 Modeling

Finite element method (FEM) has been widely used for problems which do not
have a closed form solution. Although FEM is a very useful numerical technique in
finding approximate solutions, it has also some limitations. The first limitation
arises from the necessity of re-meshing in crack propagation problems. Due to
inherent nature of the cracks, crack propagation path is random and complex which
causes misalignment with the edge of the finite elements. That results in the gen-
eration of discontinuous displacement fields within the elements [20–23]. Thus,
re-meshing in FEM is required which makes finite element (FE) computation
cumbersome and computationally expensive [20]. Moreover, since it is a
mesh-based interpolation, FEM does not work well with distorted meshes which is
another limitation [23]. In large deformations, from distorted or low-quality meshes,
the accuracy of stresses at element interfaces get low which is caused by the
assumption of continuous displacement field during FEM formulation [24]. To
overcome some of the problems of FEM, the extended finite element method
(X-FEM) was developed. Bordas et al. [25] presented a C++ open source frame-
work for X-FEM, compiled by Visual Studio. In X-FEM the crack is modelled by
adding enrichments to standard FEM in order to improve the approximation of
crack propagation without the need of re-meshing. This achievement is done by
describing the crack approximately by local signed distances of the nodes around
the face of the crack [26]. Although X-FEM avoids the issue of re-meshing in FEM,
lack of smoothness and inability of handling distorted meshes decreases the
accuracy and creates limitation [23].

Meshfree methods (also known as meshless methods) were formulated to avoid
some of the issues associated with FE approximations; i.e. issues caused by reliance
on the mesh. Meshfree methods were applied in areas of solid mechanics, fluid
dynamics, and astrophysics [23]. Unlike FE methods, meshfree methods do not
depend on the predefined mesh to generate a system of algebraic equations for the
problem domain [27]; instead, meshfree methods use nodes (also known as field
nodes) for approximation [23, 24]. In other words, a meshless method is an
approximation rather than an interpolation like FEM. This feature requires very
careful treatments of essential boundary conditions, mirror symmetries and moving
discontinuities [28]. The quality of higher order of continuity in meshfree methods
becomes especially very beneficial in problems with discontinuities, such as cracks,
and they can easily model problems with moving discontinuities such as crack
propagation and phase transformation [23]. Some of the most common meshfree
methods include smooth particle hydrodynamics method, element-free Galerkin
(EFG) method [29], reproducing kernel particle method (RKPM), radial point
interpolation method, and meshless local Petrov-Galerkin (MLPG) method [30].
Meshfree methods can be classified based on: formulation methods (local
weak-forms, global weak-forms, and collocation techniques), function approxi-
mation methods (moving least squares, integral representation, point interpolation
methods), and domain representation (domain-type and boundary-type methods)
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[24]. EFG and RKPM are based on global weak-forms, whereas MLPG method is
based on local weak-forms. Meshfree methods which are based on global
weak-forms require background cells to perform integration, whereas those based
on local weak-forms use quadrature domains for integration. Local meshfree
methods use the so-called support domains for the sake of interpolation. Thus,
interpolation will be based on the field nodes inside the support domain.

1.3 Filtering

Model parameter identification can be performed by various techniques, which are
based on Bayesian inference to update model parameters using measured data.
Filtering methods that are based on Bayesian inference include Kalman filter,
particle filter [5, 18], and the extended Kalman filter, the Bayesian method [12].
Bayesian methods can be classified into two broad categories: non-linear process
and linear process. Linear process Bayesian methods refer to Kalman filter. Kalman
filter is applicable for linear systems with additive Gaussian noise. Kalman filter is
not applicable to non-linear systems and/or non-Gaussian noise since these distri-
butions require high dimensional integrals, which are not possible to evaluate
analytically [31]. Some examples of Kalman filter applications are given in
[32–34]. Non-linear process methods can be further categorized based on the type
of noise added to the system as Gaussian additive noise (extended or unscented
Kalman filter) and non-Gaussian additive noise (particle filter) [7, 18, 35, 36].
Non-linear filtering employs non-linear and non-Gaussian state-space model and
estimates at least the first two states by using measured data [37].

Filtering approaches involve using an appropriate model function to estimate the
state of the system or the component, x(t), using the observed data, y(t). This is
because the state of the system may not be the parameter that is measured (ob-
served) [17]. For instance, the quantity of oil debris can be used to estimate the level
of damage to a gearbox. In this case, the quantity of oil debris is observed data, y(t),
and the level of damage of the gearbox is the state, x(t), of the gearbox [38].
Similarly, battery life estimation involves the determination of the capacity, which
is a function of the internal resistance. The internal resistance is directly measured
to estimate the capacity of the battery. Therefore, the capacity of the battery is the
state, x(t), whereas the internal performance is y(t). In other words, the capacity can
be expressed as a function of the internal resistance, i.e. x(t) = f(y(t)) [7]. However,
in some applications, observed data may be the same as the state of the system or
component, i.e. x(t) = y(t). A good example is the problem of crack propagation,
where both the measured data, y(t), and the state of the component, x(t), is the crack
size [7, 33].

Particle filter employs Monte Carlo sampling to implement a filtering method
using Bayesian inference [9]. Particle filter has a capability of integrating mea-
surement data from different sources systematically [31]. An et al. [7] and Aru-
lampalam et al. [39] presented tutorials on methodology and implementation of the
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particle filter. Particle filter has a greater process efficiency and is more suitable for
selecting a variety of initial distributions [40]. It has also the advantage of
straightforward implementation and the ability to control performance by the
number of particles used [35]. Thus it can be directly applicable to fault detection
and identification [41]. Orchard et al. [42] proposed a particle filter approach inte-
grated with a correction algorithm and compared the results with those of Kalman
filter; it was reported that the proposed approach is greater in accuracy and precision
[37]. Particle filtering follows three important steps: prediction, updating, and
resampling. In the prediction step, the prior probability density function is obtained.
In the updating step, the likelihood of the prior distribution is obtained. The last step
is resampling where measurement data is used to remove some of the samples and
duplicate the others according to the weight that is given to the particles [7].

1.4 Degradation Models

The discretized form of Paris’ law, presented in Eq. 1, has been selected as a
degradation model to estimate future states and predict RUL of a system or a
component based on available data. This model is used recursively to predict future
crack sizes based on previous crack size estimate [7, 43], as given by

ak = ak− 1 +CðΔKÞmk− 1 ΔNð Þk− 1 ð1Þ

where ak and ak− 1 are the estimated and prior crack sizes, respectively, ΔN is the
added number of cycles to the component, ðΔKÞk − 1 is the (k–1)th stress intensity
range per cycle that depends on stress range Δσ and empirical material constants
C & m.

In addition, the life of a component (number of cycles-to-failure) under a cyclic
loading can be determined from:

N =
σa
af

� �1 ̸bf
ð2Þ

where σa is a cyclic stress amplitude and af and bf are the model parameters that are
updated according to Manson’s method of cumulative fatigue damage (CFD) [44].

1.5 Probabilistic Analysis

Uncertainty is ubiquitous in engineering systems. Not only is data collection usu-
ally uncertain, but also most engineering parameters are random in nature. This
hinders the state of a system from being exactly determined. Hence, future state is
expressed in terms of probability or reliability, which is the probability of obtaining
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the desired performance [45]. Traditional deterministic design approaches are not
practical in such aspect since they do not take uncertainties into consideration. On
the other hand, the probabilistic analysis determines the reliability of an engineering
system by quantifying uncertainties [46]. In the probabilistic analysis, random
variables are carefully selected and their uncertainty is quantified and expressed in
terms of probability density function (PDF) and cumulative distribution function
(CDF). The random variables will then be used in a mathematical model to deter-
mine the uncertainty associated with the response variable. The role of probabilistic
analysis in the reliability of wind turbine gearboxes is discussed in [19, 46, 47].

1.6 Remaining Useful Life Prediction

In model-based prognostics, RUL prediction involves filtering of observed data and
state estimation using a degradation model. First, RUL prediction involves filtering
of available data for state estimation. Once the available data have been used, future
state prediction will be solely based on the physics of the problem, i.e. degradation
model. The physics-based model performs RUL prediction until the criteria for the
end of life is reached [7]. Sankararaman et al. [17] implemented first order relia-
bility method to quantify uncertainties including loading uncertainty and state
uncertainty in a lithium-ion battery. They quantified the uncertainty in the terms of
variations in remaining battery life. Other researchers employed prognostics of
fatigue crack propagation of a gear using gear dynamics model and FEM analysis to
determine RUL [48]. Si et al. [10] outlined challenges regarding prediction of RUL.
The first challenge is in building model-based prediction methods since
model-based prediction is especially important for applications where measured
data are unavailable. The second challenge is the issue of integrating
multi-dimensional data from condition monitoring. The last challenge is the
development of a model for RUL prediction of a system considering multiple
modes of failure.

1.7 Motivation

The traditional schedule-based maintenance is not capable of preventing failure
efficiently. This may result in system deterioration and an eminent failure causing
unforeseen downtime [6]. This is especially apparent in wind turbine gearbox
system, which often fails before its expected lifetime [49]. The degree of uncer-
tainty is higher in prognostics than in diagnostics due to additional future state
uncertainty. Thus, it is crucial to quantify uncertainty in prognostics [17]. Mea-
surement, modeling, material property and future loading are some of the
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uncertainties in prognostics [15, 16]. For this reason, uncertainties are considered in
prognostics and a distribution of RUL is sought [6]. Despite the numerous research
activities in prognostics and health management, the issue of accurate uncertainty
quantification in prognostics and a reliable RUL prediction still prevails. Operation
and maintenance costs of a wind turbine consist of a large portion of its total
lifetime cost [50]. Hence, there is a need for a comprehensive framework that
efficiently quantifies uncertainty in prognostics [5, 16]. Accurate prediction of RUL
will improve reliability and reduce the maintenance cost [51]. There is a need for
reliable physics-based models which can substitute for data-driven methods in case
of insufficient data availability [10, 18]. Meshfree methods are reported to have
better performance than FEM in modeling of discontinuous structures such as
cracks [23, 24]. A meshfree method was selected in this study to investigate their
advantages so that their use can be extended to discontinuous structures.

1.8 Research Question and Specific Aims

This research addresses the issue of uncertainty in RUL prediction by considering a
research question that reads ‘Can uncertainty considerations improve the prediction
of RUL?’ The following specific aims were developed to answer the research
question: (1) develop a meshfree cantilever beam with uncertainty in loading
conditions, (2) predict remaining useful life using probabilistic methods.

2 Methodology

Prediction of RUL of a cantilever beam under fluctuating and varying fluctuating
(constant and variable amplitude) fatigue loading was considered. Results from
meshfree modeling show the behavior of the cantilever beam under deterministic
loading condition. Besides, the framework that was developed to predict RUL is
presented. Results of the RUL prediction using a deterministic approach are dis-
cussed first [44], followed by a probabilistic RUL prediction. Deterministic results
of the RUL from the current state up to failure are presented both for constant
amplitude fatigue loading as well as varying fluctuating loading conditions [19].
Changes in the path of the RUL as a result of CFD were also discussed. Proba-
bilistic RUL prediction also considers the two case: fluctuating fatigue loading with
constant amplitude and variable fluctuating loading. Results are presented as PDFs
and CDFs of the RUL at selected future cycles. The range of possible RUL values
and the implication of the reduction in the range of RUL values with an increase in
the number of cycles are explained.
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2.1 Efficient Modeling

An efficient meshfree method called local radial point interpolation method
(LRPIM) that employs augmented basis functions of radial and polynomial basis
functions [24]; and presented in detail in authors’ previous publication [19], is
implemented to calculate the stress values near the fixed end of the cantilever beam.
The LRPIM programming flowchart is also presented in the same publication [19].
For ease of study, a 2D cantilever beam, shown in Fig. 1, subjected to a completely
reversed random cyclic loading is considered. The following model parameters
given in Table 1, as indicated in [19], are used to model the system.

2.2 RUL Prediction

A MATLAB framework, shown in Fig. 2, was developed for RUL estimation of
the cantilever beam subjected to cyclic loading. The framework consists of sub-
routines for LRPIM modeling of the cantilever beam and material degradation
modeling for RUL prediction. The model is capable of performing both deter-
ministic and probabilistic RUL estimations. The first set of input parameters are
related to the characteristics of the cantilever beam such as the Young’s modulus, E,
the width, B, height, H, poison’s ratio, v, the ultimate strength of the material, Su,
and the traction, P. The second set of inputs, which are model parameters for the
meshfree modeling, is listed in Table 1.

The framework first uses the meshfree method subroutine to compute the
maximum normal stress on the beam. In the case of deterministic analysis, the
maximum stress is directly entered into the degradation model subroutine together

Fig. 1 Cantilever beam depicting nodes, Gauss quadrature points, xQ, quadrature domains, Ωq,
support domains, Ωs, weight domain, Ωw, local boundaries (Γqt, Γqu, and Γqi), and global
boundaries (Γu and Γt)
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Table 1 LRPIM model parameters

Parameter Value Parameter Value Parameter Value

αs 3.0 αc 4.0 ndx 2
αq 1.7 q 1.03 ndy 2
αw 3.0 dcx L/20 p 3
Radial basis function Multi-quadrics dcy H/8

Fig. 2 Flowchart of a framework for prognostics of a cantilever beam under cyclic loading [19]
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with the ultimate strength, Su. The relationship between dynamic loading, σa, and
fatigue life, N, was presented in [19] as,

σa = af Nbf ð3Þ

where

bf = −
1
3
logðSm ̸SeÞ ð4Þ

and

af =10ðlog Smð Þ− 3bf Þ. ð5Þ

Sm is the fatigue strength at 103 given by 0.9 Su and Se is the endurance limit of
the beam given by:

Se =
1
2
SuCLCGCSCTCR ð6Þ

where CL, CG, CS, CT, and CR are correction factors due to loading, size, surface,
temperature, and reliability, respectively. From Eq. 3, one can find that N = ðσaaf Þ

1 ̸bf .

Hence, the degradation model to predict RUL is given by a piecewise function for
r number of loading and unloading events as

RUL=

σa, 1
af , 1

� � 1
bf , 1 − nc nc = 0, nc, 1½ �

σa, 2
af , 2

� � 1
bf , 2 − nc nc = nc, 1, nc, 2½ �

⋮
σa, r
af , r

� � 1
bf , r − nc nc = ncr− 1, nc, r½ �

8>>>>>><
>>>>>>:

ð7Þ

where nc is the number of cycles. Equation (7) is used to predict the RUL of a
component subjected to σa for nc cycles r number of times. Note that parameters af and
bf are updated in every loading case due to CFD according to Manson’s rule [43].

2.2.1 Deterministic RUL Prediction

In deterministic RUL prediction, the degradation model subroutine returns the
expected life of the beam undergoing the given stress after a given nc number of
cycles. The framework then obtains the corresponding RUL by employing Eq. 7. In
the case of multiple loading scenarios, the framework follows a recursive algorithm
to compute the RUL given by Eq. 7 multiple times. It accumulates an array of RUL
values that correspond to each loading case and plots RUL versus number of cycles
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to show the path of the RUL until failure. The deterministic analysis section of this
study includes two loading cases. The first one employs multiple applications of
single amplitude loads, whereas the second case employs multiple applications of
multiple amplitude loads. In each case, the loads are consecutively applied until
failure.

2.2.2 Probabilistic RUL Prediction

Probabilistic RUL prediction employed continuous (uninterrupted) loading and
consecutive (interrupted) loading conditions. In both loading conditions, the
framework takes the maximum stress value obtained from the meshfree subroutine
as a mean to generate a PDF of the stress. Monte Carlo method was then used in the
material degradation subroutine to compute the RUL using Eq. 7.

In the case of uninterrupted loading condition, 10% of standard deviation
(SD) was employed to obtain the stress PDF. The PDF of initial life, N, of the beam
was obtained from Eq. 7 and the RUL versus the number of cycles plot was
generated by subtracting the number of cycles, nc, from N. Note that parameters af
and bf are not updated (i.e. CFD is not incorporated) since Eq. 7 is used only at the
initial life prediction. Single mean and multiple mean values were considered in the
RUL prediction of uninterrupted loading condition.

The interrupted loading application was categorized as a fluctuating (single mean
amplitude) and varying fluctuating (multiple mean amplitude loading) applications.
In single mean application, 10% SD was employed to the mean value of 200 MPa at
each loading application. In other words, similar loading conditions were employed
consecutively until failure. In the case of multiple mean application, however, the
mean value was changed in every loading application keeping the SD constant. The
degradation model parameters af and bf of each sample stress were updated with
every level of load application. Due to the randomness nature of the stress, the RUL
was a PDF with each level of load application. The median RUL and the RUL at the
bounds of the 98% confidence level at each level of load application was selected.
After the application of the last loading, the framework plots these RUL values.
Finally, the above steps were repeated by using a SD of 5 and 15%, resulting in
three sets of results corresponding to 5, 10, and 15% SD of the stress and results
were plotted together with the rest of the corresponding analyses for comparison.

3 Results and Discussion

The results presented and discussed hereunder are based on the meshfree LRPIM
model of a cantilever beam and a degradation model. In a previous publication [19]
of the authors, stress and deflection results of the meshfree model were verified with
exact solutions and have shown good agreement. Detail discussion about
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verification of the meshfree model and its computational efficiency are provided in
this publication.

3.1 RUL Prediction

3.1.1 Deterministic RUL Prediction

The deterministic RUL results for fluctuating loadings of single as well as varying
amplitude is published in [19]. In this publication, it has been demonstrated that the
RUL is expected to drop down at the end of each interval since CFD will reduce the
endurance limit of the material after the beam has run for certain amount of cycles
in each interval.

3.1.2 Probabilistic RUL Prediction

Similar to the loading conditions of the deterministic RUL estimation published
previously [19], multiple applications of cyclic loads with constant and varying
amplitudes were employed until failure conditions are met [19]. Nevertheless, the
amplitudes of the loading conditions were, at each level, considered as random
variables with a standard PDF, mean and standard deviations. Results in this section
are categorized into twomajor section. First, results in the case of loading interruption
(hence considering CFD) are presented in sections ’Loadings of Single Mean Value”
and “Loadings of Multiple Mean Values”, for a single and multiple mean values,
respectively. Next, results of RUL in the case of uninterrupted loading conditions (i.e.
no CFD consideration) are presented in sections “Single Uninterrupted Loading
Application” and “Multiple Uninterrupted Loading Application”.

Loadings of Single Mean Value

For the interrupted but single mean value case, three Gaussian stress PDFs were
considered as an input for RUL estimation. These PDFs used the deterministic
stress value result of the meshfree method as their mean value and three cases of
coefficients of variation (COV) of 0.05, 0.10 and 0.15, i.e., SDs of 5, 10, and 15%
of the mean value. From each Gaussian (normal) PDF, one thousand random
samples were generated as shown in the histograms of Fig. 3 for each COV values.

Here, the effect of CFD due to consecutive interrupted loading applications as
well as the effect of various degrees of loading uncertainties were studied. Applying
the three random stress cases into the degradation model, the corresponding three
RUL (remaining useful cyclic life) CDFs and histograms, during the initial cyclic
life, were obtained for each loading applications, as shown in Figs. 4a, b, respec-
tively. It can be seen from these figures that the range of stress values is directly
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proportional to the magnitude of the COV, which depicts uncertainty, i.e., the wider
the uncertainty in the loading condition, the more uncertain the prediction of RUL
will be. It can be observed that the stress with COV = 15% results in RUL CDF
that has a wider range. On the other hand, 5% COV causes the RUL CDF (depicted
as COV = 5%) to have the least range. The CDFs also show the probability of
getting a prespecified RUL value or less. For instance, from Fig. 4a, it can be
depicted that the probability of getting RUL = 2.5 × 105 or less, according to the
CDF marked COV = 5%, is about 80%. The probability of getting RUL = 3
105 or less, on the other hand, shows 100% using the same COV = 5% CDF,
whereas it shows 88% according to the COV = 15% CDF. This shows that the
variation on the input stress PDF has a significant effect on the output RUL.
Figure 4b shows histograms of the RUL for three stress with different COV values.
The increase in variation of the RUL histogram can be clearly seen with increase in
COV of the stress.

Similarly, the histograms after the third and fifth cyclic loading depict gradual
decrease in the mean value of the RUL as shown in Fig. 5 and Fig. 6, respectively.
However, it can be seen that the effect of the stress due to its varying COV still
remains.

RUL values of the median and 98% confidence limits versus number of cycles
are depicted in Fig. 7. The figure shows three pairs of bounds of RUL that corre-
spond to three stress PDFs with COVs of 5, 10, and 15%. Stress SD of 15% of the
mean (COV of 15%) resulted in the widest bounds of RUL, whereas 5% stress COV
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resulted in the lowest RUL bounds. Thus, the higher the stress variation, the higher
the uncertainty will be in the RUL prediction. Besides, it is interesting to note that
the level of RUL uncertainty is also affected by the cycle at which the prediction is
made. As can be seen in Fig. 7, the width of the bounds of all COV values, which
imply the level of uncertainty, decrease towards the end of life.

Loadings of Multiple Mean Values

In this case, the meshfree deterministic stress outputs of varying, fluctuating (seven
different amplitudes) loading conditions were used as mean values to generate
seven consecutive random loading cases. To compare the influence of the degree of
uncertainty of stress on RUL, three Gaussian PDFs of each loading case were
generated using the aforementioned mean values and three COVs of 5, 10, and 15%
for each case. Each random and fluctuating (cyclic) loading case was applied for
1.5 × 104 cycles.

Figure 8 shows the CDFs and histograms of the RUL for three predictions of
initial life using the first mean value (i.e. 200 MPa) and three COVs (5, 10, and
15%). Note that since the stress parameters used are the same, results are similar to
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Fig. 5 Histograms of RUL at the third load application
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the initial life for single mean value application shown in Fig. 4. Figures 9 and 10
show the RUL histograms of the third and sixth loading cases.

Figure 11 shows the median RUL and its three 98% bounds of confidence level
corresponding to 5, 10, and 15% stress COVs. The second mean stress value used
was 250 MPa. Note that the RUL is inversely related to the mean of the stresses.
Therefore the reduction in the new RUL prediction emanates not only from the
previous 1.5 × 104 cycles of 200 MPa stress but also from the increase in the
mean value of the new stress. The third loading is reduced to 150 MPa. This makes
the RUL prediction to rise despite a decrease due to the second cyclic loading.
A rise in the 4th loading application is also the result of a further decrease in the
mean of the stress to 70 MPa.

From the presented results above, it can be deduced that probabilistic analysis
provides a better RUL prediction showing a range of possible outcomes and the
probability of occurrence under seven discrete mean values of variable cyclic
loading cases each applied for 1.5 × 104 cycles. Probabilistic prognostics accounts
for uncertainty, and hence, encompasses a range of possible RUL values that enable
the engineer to predict the status of a component with a quantified level of
confidence.

RUL (cycles) 105

1 2 3 4 5 6 7
0

50

100

150
SD = 15%
SD = 10%
SD = 5%

Fig. 9 Histograms of RUL at the third load application
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Fig. 10 Histograms of RUL at the sixth load application
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Single Uninterrupted Loading Application

The cyclic stress was considered as a random variable with σa ∼ N(200, 20) MPa.
In this case, CFD was not considered since the loading was uninterrupted until
failure.

Figure 12 shows the RUL of the component as a function of the number of
cycles with 98% bounds of RUL trajectory once the initial life estimate was
obtained from the S-N plot. In the case of a single uninterrupted loading condition,
i.e. without CFD, and considering only one random variable, i.e. the stress, the final
end of life is the same as what was initially predicted before loading. The RUL
trajectories, therefore, will have a slope of –1. Another observation from Fig. 12 is
that unlike interrupted loading conditions, the variation of the RUL values does not
decrease with increase in nc. This is because, when CFD is considered, the S-N
lines are continuously updated to give a better approximation. With every updated
S-N line, the interval between prediction and end of life becomes less and less.
Reduced interval, on the other hand, means reduced uncertainties associated with
the interval of prediction up to end of life. However, in this case, one uses the
original S-N line with no updates. This makes the interval between the initial RUL
prediction and end of life to be large. Hence, there will not be a reduction in the
uncertainties of RUL prediction as the system approaches its end of life, i.e. the
98% confidence bounds stay parallel.

Fig. 12 RUL values showing the median and 98% bounds of confidence interval
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Multiple Uninterrupted Loading Application

The case of uninterrupted but variable loading application is considered in this
section. Several load stress values of the various mean were applied consecutively
to the system without interruption. This means that CFD does not play a role in the
life of the system.

Figure 13 shows variation of RUL values with number of cycles, depicting the
median and 98% confidence limits. It can be observed that the bounds of the
confidence interval do not converge. This implies that the uncertainties associated
with RUL prediction do not reduce since the S-N lines used are not updated, as
discussed in section “Single Uninterrupted Loading Application”.

3.1.3 Conclusions

Meshfree modeling provides an efficient way of representing a physical problem
that could easily be integrated with a degradation model in prognostics. The pro-
gram for meshfree modeling was efficient and convenient as it is easy to alter values
of parameters for model performance and accuracy.

A framework for computing the RUL of a component was developed. The
framework is capable of predicting RUL both deterministically and probabilisti-
cally. The framework was used to perform RUL prediction of a cantilever beam
subjected to fatigue loading. Deterministic analyses of a cantilever beam using the
framework under constant and variable loading depict that CFD plays a significant
role in RUL predictions of a component undergoing cyclic loadings. It was also
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shown that the amplitude of the stress can change the trajectory of the RUL and the
component may fail in less number of cycles than what was predicted during initial
loading. Therefore, it is crucial to continuously estimate the magnitude of future
loading and to quantify its uncertainty to accurately determine the path of the RUL
lines. Future loading uncertainty is especially manifested in wind turbine gearboxes,
which are subjected to dynamic loading. Here, future loading is uncertain since
future wind speed is uncertain. Probabilistic prognostics is, thus, essential to show
possible RUL values so that a decision will be made to deter failure and avoid
downtime. Loading uncertainties were considered and quantified to provide reliable
RUL prediction. Probabilistic analysis of the cantilever beam was performed by
quantifying loading uncertainties to provide reliable RUL prediction. Results show
the bounds of possible RUL for 98% interval of different degrees of uncertainties of
the input stress. It was shown that the variation in RUL is highly affected by the
uncertainty in the input stress. Therefore, it is important to accurately quantify
uncertainties of random variables for reliable RUL prediction.

The framework integrates efficient meshfree modeling and damage estimation.
By capturing these uncertainties, the framework provides results that depict prob-
abilities of RUL in the desired future time. Future loading conditions could be
continuously updated when they are available for improved RUL prediction. The
computational framework aids in decision making and fault mitigation.

Future work includes construction of a reliable and comprehensive prognostics
framework for remaining useful life prediction using particle filter considering
various uncertainties such as loading, modeling, measurement, and material
parameter uncertainties. Crack propagations in a gear teeth of a wind turbine
gearbox will be studied using enhanced prognostics framework.
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Cognitive Architectures for Prognostic
Health Management
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Abstract In the real-time battlefield arena, situational awareness becomes critical
to making the right decisions and achieving the overall goals for the system. The
key to Situational Awareness is not simply collecting and disseminating data, but it
is actually getting the right information to the right users at the right time. In ground
processing systems, various sensors, spacecraft, and other data sources gather and
generate data different relevant contexts. What is required is an Integrated System
Health Management (ISHM) processing architecture that allows users to turn the
data into meaningful information and to reason about that information in a context
relative to the user at that time, and to update the information real-time as the
situation changes. In short, it is imperative that the information processing envi-
ronment be efficient, timely, and accurate. This chapter will describe an Intelligent
Information Agent processing environment which allows data to be processed into
relevant and actionable knowledge using high-fidelity knowledge relativity threads.
Based on the technologies described above, the situational management and
recombinant knowledge assimilation process built on top of a multi-dimensional
high-fidelity knowledge relationship store is one of the most innovative components
of this Prognostic Health Management (PHM) system. Utilizing the Artificial
Cognitive Neural Framework (ACNF), it can provide real-time processing and
display of dynamic, situational awareness information.
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1 Introduction

Even in modern architectures, true Integrated System Health Management (ISHM)
and Prognostic Health Management (PHM) that drives situational awareness is
difficult because the enterprise system has to become more aware, more flexible,
and more agile than ever before. Information gathering, processing, and analyzing
must be done continually to keep track of current trends in the context of the current
situations, both local and overall, and to provide timely and accurate knowledge to
allow the users to anticipate and respond to what is happening in a changing
environment. To achieve the combination of awareness, flexibility, and agility
means supporting dynamic and flexible processes that adapt as situations change.
This is possible with learning and evolving Intelligent Information Agents, such as
those described here.

Data Steward Agents will support growing volumes of data and allow Reasoner
Agents to produce accurate and relevant metrics about past, current, and future
situations (prognostics). Through inter-agent communication, they provide control
and visibility into the entire ground processing enterprise. This is made possible by
integrating the processing environment into the flexible, distributed, Service Ori-
ented Architecture (SOA) that enables secure collaboration, advanced information
management, dynamic system updates, and customer, rule-based processes
(Advisor Agents).

The inter-agent communication allows shared awareness which, in turn, enables
faster operations and more effective information analysis and transfer, providing
users with an enhanced visualization of the overall constellation and situational
awareness across the ground processing system’s Enterprise Infrastructure. This
Intelligent Agent-based system can deal with massive amounts of information to
levels of accuracy, timeliness, and quality never before possible.

Even applications that deal with object-oriented technologies fail to achieve the
goals of awareness, flexibility, and agility because their processes are hard coded
into the applications. The flexible, learning, and adapting Intelligent Software
Agents can adapt, collaborate, and provide the increased flexibility required in a
growing and changing signal/source environment [1].

2 Integrated System Health Management

Following the evolution of diagnostic systems, prognostic initiatives started to be
introduced in order to try to take advantage of the maintenance planning and
logistics benefits. However, the early prognostic initiatives often were driven by
in-field failures that resulted in critical safety or high-cost failures, and thus retro-
fitted technology was hard to implement and costly to develop. Hence, diagnostic
and prognostic system developers found the need to analyze and describe the
benefits associated with reducing in-field failures and their positive impact on
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safety, reliability, and overall lifecycle-cost reduction. This has led to many
cost-benefit analyses and ensuing discussions and presentations to engineering
management about why the diagnostic and prognostic technologies need to be
included in the design process of the system and not simply an afterthought once
field failures occur. This had lead us to the point where many complex
vehicle/system designs, like DD(X), GPS, and various weapon systems are now
developing ‘‘designed in’’ health management technologies that can be imple-
mented within the Integrated Maintenance & Logistics and supports the system
throughout its lifetime. This ‘‘designed in’’ approach to health management is
performed with the hardware/software design itself and also acts as the process for
system validation and managing inevitable changes from in-field experiences and
evaluating system design tradeoffs, as shown in Fig. 1 [2].

Realizing such an approach involves synergistic deployments of component
health monitoring technologies as well as integrated reasoning capabilities for the
interpretation of fault-detect outputs. Further, it will involve the introduction of
learning technologies to support the continuous improvement of the knowledge
enabling these reasoning capabilities. Finally, it will involve organizing these ele-
ments into a maintenance and logistics architecture that governs integration and
interoperation within the system, between its on-board elements and their
ground-based support functions, and between the health management system and
external maintenance and operation functions. Here we present and discuss the
required prognostic functions of an Integrated Health Management System that, if
applied correctly, can directly affect the operations and maintenance of the equip-
ment and positively affect the lifecycle costs.

Produc on/PrototypeDesign Stage

System Design 
Concepts

ISHM/PHM Design 
Concepts

FMECAs, Modeling,
Cost/Benefit Analyses

System Design 

Maintenance/
Management System

Health Monitoring
System

Con nuous Feedback of Experience

Con nuous Design Improvement and Support

Fig. 1 The “Design in” approach to system health management
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2.1 Prognostics and Diagnostics

A comprehensive health management system philosophy integrates the results from
the monitoring sensors all the way through to the reasoning software that provides
decision support for optimal use of maintenance resources. A core component of
this strategy is based on the ability to (1) accurately predict the onset of impending
faults/failures or remaining useful life (RUL) of critical components and (2) quickly
and efficiently isolate the root cause of failures once failure effects have been
observed. In this sense, if fault/failure predictions can be made, the allocation of
replacement parts or refurbishment actions can be scheduled in an optimal fashion
to reduce the overall operational and maintenance logistic footprints. From the fault
isolation perspective, maximizing system availability and minimizing downtime
through more efficient troubleshooting efforts is the primary objective.

In addition, the diagnostic and prognostic technologies require an integrated
maturation environment for assessing and validating PHM system accuracy at all
levels in the system hierarchy. Developing and maintaining such an environment
will allow for inaccuracies to be quantified at every level in the system hierarchy
and then be assessed automatically up through the health management system
architecture. The final results reported from the system-level reasoners and decision
support is a direct result of the individual results reported from these various levels
when propagated throughout the process. Hence, an approach for assessing the
overall PHM system accuracy is to quantify the associated uncertainties at each of
the individual levels, as illustrated in Fig. 2, and build up the accumulated inac-
curacies as information is passed up the system architecture. This type of hierar-
chical verification and validation (V&V) and maturation process will be able to
provide the capability to assess diagnostic and prognostic technologies in terms of
their ability to detect subsystem faults, to diagnose the root cause of the faults, to
predict the RUL of the faulty component, and to assess the decision-support rea-
soner algorithms. Specific metrics include accuracy, false-alarm rates, reliability,
sensitivity, stability, economic cost/benefit, and robustness, just to name a few.
Cost-effective implementation of a diagnostic or prognostic system will vary
depending on the design maturity and operational/logistics environment of the
monitored equipment. However, one common element to successful implementa-
tion is feedback. As components or Line Replaceable Units (LRUs) are removed
from service, disassembly inspections must be performed to assess the accuracy of
the diagnostic and prognostic system decisions [3]. Based on this feedback, system
software and warning/alarm limits should be optimized until desired system
accuracy and warning intervals are achieved. In addition, selected examples of
degraded component parts should be retained for testing that can better define
failure progression intervals.

A systems-oriented approach to prognostics requires that the failure detection
and inspection-based methods be augmented with forecasting of parts degradation,
mission criticality and decision support. Such prognostics must deal not only with
the condition of individual components, but also the impact of this condition on the
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mission-readiness and the ability to take appropriate actions [4]. However, such a
continuous health management system must be carefully engineered at every stage
of a system design, operation and maintenance. Figure 2 illustrates the overall
ISHM/PHM process which includes modeling, sensing, diagnosis, inference and
prediction (prognostics), learning, and updating. The two most important steps in
this process are (1) fault detection and diagnosis and (2) prognostic reasoning
(prediction):

3 Fault Detection and Diagnostic Reasoning

This determines if a component/subsystem/system has moved away (degraded)
from nominal operating parameters, along a known path, to a point where com-
ponent performance may be compromised. Novelty detection determines if the
component has moved away from what is considered acceptable nominal operations
and away from all known fault health (diagnostics as defined above) propagation
paths [1].

Fig. 2 Functional layers in an ISHM system
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4 Prognostic Reasoners

The purpose of reasoners is the assessment of the component’s current health and a
prediction of the component’s future health, or RUL. There are two variations of the
prediction problem. The first prediction type may have just a short horizon time—is
the component good to fly the next mission? The second type is to predict how
much time we have before a particular fault will occur and, by extension, how much
time we have before we should replace it, or it may be even longer term—tell me
when to schedule removal of an engine for overhaul.

Accurate prognosis is a requirement for implementing Prognostic Health Man-
agement (PHM). The creation of a prognostic algorithm is a challenging problem.
There are several areas that must be addressed in order to develop a prognostic
reasoner that achieves a given level of performance. Figure 3 illustrates the prog-
nostic process utilizing Intelligent Information Agents (I2As).

5 The Prognostic Process

The prognostics component (utilizing Analyst Agents) provides specific informa-
tion to the Advisor Agents about the system’s state of health, status, RUL, confi-
dence and recommendations. A graphical representation of the inputs and outputs to
the Prognostics Analyst Agent is illustrated in Fig. 4. The description of the inputs
and outputs is given below in Fig. 5.

Case 123321
Measurements:
Test Results:
Action Taken:

Case 123324
Measurements:
Test Results:
Action Taken:

Case 123327
Measurements:
Test Results:
Action Taken:

Case 123344
Measurements:
Test Results:
Action Taken:

Case Library with past 
cases

Human experience 
captured in cases

Advice based on past 
cases

Maintenance
Measurements

Feedback to maintenance
to improve System

Feedback to operations to
Improve System

Case 123321
Measurements:
Test Results:
Action Taken:

Case 123324
Measurements:
Test Results:
Action Taken:

Case 123327
Measurements:
Test Results:
Action Taken:

Case 123344
Measurements:
Test Results:
Action Taken:

Case 123321
Measurements:
Test Results:
Action Taken:

Case 123324
Measurements:
Test Results:
Action Taken:

Case 123327
Measurements:
Test Results:
Action Taken:

Case 123344
Measurements:
Test Results:
Action Taken:

Identify similarities, patterns,
and relations.  Suggest actions

based on past cases and 
analysis algorithms

Operations

Measure, identify and
Predict problems

Fig. 3 Prognostic process utilizing I2As
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6 Automated Decision Making

The Automated Decision Making component utilizes Advisor Agents that acquire
data primarily from Diagnostic and Prognostic Analyst Agents. The primary
function of the Automated Decision Making Advisor Agents is to provide rec-
ommended actions and alternatives and the implications of each recommended
action. Recommendations may include maintenance action schedules, modifying
the operational configuration of assets and equipment in order to accomplish
mission objectives, or modifying mission profiles to allow mission completion. The
Automated Decision Making Advisor Agents take into account operational history

Fig. 4 Prognostic analyst agent processing

Fig. 5 Prognostic analysis inputs and outputs
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(including usage and maintenance), current and future mission profiles, high-level
unit objectives, and resource constraints. This is always a Human-in-the-Loop to
assess the correctness of major decisions and adjust the decision process. Figure 6
illustrates the PHM Decision Making Process.

7 Prognostic Learning Using High-Fidelity Relationships

A major problem with optimization of system prognostics is that systems are not
built to remember what they do so; it makes it difficult for a system to learn and
improve. This is related to capacity constraints which drive the practical applica-
tions which, in turn, drives an inability to think about how systems could be
constructed so that they could heal themselves. A key attribute to high fidelity
prognostic system management, learning and prediction includes the implementa-
tion of Recombinant Knowledge Assimilation (RNA) frameworks [2] and the
utilization of memory threads created using high-fidelity relationship mappings.
Biomedical and health care systems must access vast stores of research and clinical
information in their attempts to gather information about a particular
topic/disease/condition, and often searches yield thousands of possible sources,
most of which are not relevant to the context that the medical professional is
seeking. Over a period of time, this recursive refinement of knowledge and context

Fig. 6 PHM decision making process
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occurs as user cognitive system interaction where the granularity of information
content results are analyzed, followed by the formation of relationships and related
dependencies. Ultimately, the knowledge attained from assimilating the information
content reaches a threshold of decreased ambiguity and level of understanding
which acts as a catalyst for decision-making, subsequently followed by actionable
activity or the realization that a research objective has been attained. Therefore, a
system employing knowledge threads holding relationship mappings are critical for
prognostic evaluation and proper resolution of system issues of all types (e.g.,
power optimization, processing improvement etc.). Figure 7 illustrates the
Knowledge Relativity Thread (KRT) concept.

In its simplest form, a KRT provides a state defining relationship value context,
just as in the brain, but with the ability to capture and represent relationships
multi-dimensionally and to a specific context.

An example of relationship derivation is the KRT’s use of an abstraction of
Newton’s Law of Gravitation as an analogy for representing relationships between
two objects of knowledge using context, is written as Eq. (1) shown below, which
describes the components of the formula for representing relationships between two
objects of knowledge using context:

A=B
I1I2ð Þ
c2

ð1Þ

where

A is the magnitude of the attractive force between the two objects of knowledge,
B is a balance variable,
I1 is the importance measure of the first object of knowledge,
I2 is the importance measure of the second object of knowledge, and
c is the closeness between the two objects of knowledge

Fig. 7 Knowledge relativity thread
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Other mathematical constructs can represent value relationships (e.g. Shannon
and Renyi entropy). For optimizing systems based upon prognostics, capturing
some form of value relationship construct is required.

8 Prognostic Technologies: Intelligent Information Agents
(I2As)

The I2A architecture is a framework for constructing a hybrid system of Intelligent
Information Software Agents. This provides a productivity toolkit for adding
intelligent software agent functions to applications and modern architectural
frameworks. This provides the constructs for building multi-agent intelligent
autonomic systems. This includes the framework for providing business rules and
policies for run-time systems, including an autonomic computing core technology
within a multi-agent infrastructure. Figure 8 illustrates the Intelligent Information
Agents for the I2A framework.
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Fig. 8 The I2A framework
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9 The I2A Framework

The I2A hybrid computing architecture uses genetic, neural-network and fuzzy
logic that are used to integrate diverse sources of information, associate events in
the data and make observations [5]. When combined with a dialectic search, the
application of hybrid computing promises to revolutionize information processing.
The dialectic search seeks answers to questions that require interplay between doubt
and belief, where our knowledge is understood to be fallible. This ‘playfulness’ is
key to hunting in information and is explained in more detail in the section that
address the Dialectic Argument Structure. Figures 9, 10, and 11 further explain this.
The dialectic search avoids the problems associated with analytic methods and
word searches. In its place, information is used to develop and assess hypotheses
seeded by a domain expert. This is achieved using I2A that augments human reason
by learning from the expert how to argue and develop a hypothesis. Using Franklin
and Graesser’s definition for a software agent, we would define the I2A as: an
autonomous agent situated in and part of the information ecosystem, compre-
hending its environment and acting upon it over time, in pursuit of its own agenda,
so as to affect what it comprehends in the future. The I2A have certain abilities that
distinguish it from software objects and programs and provide it with the intelli-
gence it needs to mimic human reasoning [5].
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This process includes Search Information Agents that mine through multiple
sources to provide data/information to other Intelligent Information Agents
throughout the PHM processing environment. This is called the Federated Search

Ques ons and Answers
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Fig. 10 The reasoner agent
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and is shown in Fig. 10 [6]. Notice that this process includes utilizing Subject
Matter Experts (SMEs) to provide initial information to PHM. The system cannot
just spontaneously generate initial knowledge, it must be fed information to learn
from (not just train as in traditional neural network systems, but learn the infor-
mation). This includes a learning based question and answer processing architecture
that allows the ISHM/PHM processing environment to ask questions, based on
contextual understanding of the information it is processing, and extract answers,
either from its own inference engines, its own memories, other information con-
tained in its storage systems, or outside information from other information sources,
or SMEs. This process is illustrated in Fig. 12 [7].
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Fig. 12 Federated search within PHM
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This allows the modern PHM architecture to comprise a host of functional
capabilities [8]:

1. Sensing and data acquisition,
2. Signal processing, conditioning and health assessment diagnostics and prog-

nostics, and
3. Decision reasoning.

In addition, an intelligent Human System Interface (HSI) is required to provide
the user with relevant, context-sensitive information about system condition.
Utilizing the Intelligent Information Agent Architecture described here, an ISHM
could provide a complete range of functionality from data collection through rec-
ommendations for specific actions. The key functions that an I2A ISHM system
could facilitate include:

1. Sensing and data acquisition (Data Steward Agents)
2. Signal Processing and feature extraction (Reasoner Agents)
3. Production of alarms or alerts (Advisor Agents)
4. Failure or fault diagnosis and health assessment (Analyst Agents)
5. Prognostics: projection of health profiles to future health or estimation of

Remaining Useful Life (RUL) (Analyst and Advisor Agents)
6. Decision reasoning: recommendations or evaluation of asset readiness for a

particular operational scenario (Advisor Agents)
7. Management and control of data flows and/or test sequences (Data Steward

Agents)
8. Management of historical data storage and historical data access (Data Steward

Agents)
9. System configuration management (Data Steward Agents)

10. Human System Interface (Interface Agents—Advisor Agents)

The use of Intelligent Information Agents allows both granular approaches
(individual agents implementing individual functions) and integrated approaches
(individual agents collaborating together to integrate a number of functions).
The PHM architecture would take into account data flow requirements to control
flexibility and performance across the PHM system. This allows the I2A PHM
system to support the full range of data flow requirements through both real-time
and event-based data reporting and processing. Time-based reporting is further
categorized as periodic or aperiodic. The event-based reporting and processing is
based upon the occurrence of events (e.g., exceeding limits, state changes, etc.).

104 J.A. Crowder and J.N. Carbone



10 The Dialectic Argument Search

The Dialectic Argument Search (DAS) uses the Toulmin Argument Structure to
find and relate information that develops a larger argument, or intelligence lead. The
Question and Answer flow for the Dialectic Search is shown in Fig. 13. The DAS,
illustrated in Fig. 14, serves two distinct purposes. First, it provides an effective
basis for mimicking human reason. Second, it provides a means to glean relevant
information from the Topic Map and transform it into actionable intelligence
(practical knowledge.) These two purposes work together to provide an intelligent
system that captures the capability of the ISHM operator to sort through diverse
information and find clues [9].
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Figure 15 illustrates a possible Intelligent Software Agent Architecture that
could be used to implement the DAS: three different agents, the Coordinator,
the DAS and the Search, all working together, each having its own learning
objectives [10].
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11 Conclusion and Discussion

Inter-agent communication allows shared awareness which in turn, enables faster
operations and more effective information analysis and transfer providing users
with an enhanced visualization of the overall constellation and situational aware-
ness across a PHM infrastructure. The Intelligent Agent-based PHM can deal with
massive amounts of information to levels of accuracy, timeliness, and quality never
before possible. The knowledge relationship value store provides the underlying
mechanism for high fidelity prognostic evaluation. The Data Steward Agents will
support growing volumes of data and allow applications that deal with
object-oriented technologies to achieve the goals of awareness, flexibility, and
agility. The flexible, learning, and adapting Intelligent Software Agents of the PHM
system can adapt, collaborate, and provide the increased flexibility required in a
growing, changing environment [11].
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A Review of Crack Propagation Modeling
Using Peridynamics
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Abstract Improvements on prognostics and health management (PHM) techniques
are extremely important in order to prevent system failure and reduce costs with
maintenance and machine downtime. In the particular case of system components
subjected to fracture failure, such improvements are closely related to the effect of
crack propagation mechanisms on the quantification of the system remaining useful
life (RUL). This chapter presents a review of the state-of-the-art of crack propa-
gation modeling techniques and discusses the current limitations of finite elements
methods (FEM) to model structures with cracks. The chapter also gives special
attention to peridynamics (PD), a continuum non-local approach that has been
considered to be a promising method to model structures with crack discontinuities.
Therefore, the purpose of this chapter is to answer the following research question:
“Can PD be a potential alternative to FEM on modeling of crack propagation
problems in predicting RUL?” In order to answer this question, a literature review
of the most relevant works on crack modeling field is presented and discussed. An
application that involves a classical 2D crack propagation problem in a pre-notched
glass plate is also included, in which comparisons between numerical predictions
and experimental observations were performed. It was shown that PD produces
more accurate predictions than FEM based-methods from both qualitative and
quantitative perspectives.
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1 Introduction

1.1 Prognostics and Health Management

Complex energy systems (e.g. wind turbines) are often exposed to extreme and
uncertain operation conditions that require accurate health monitoring techniques in
order to preserve the system’s reliability during its designed lifetime [1]. Addi-
tionally, the reduction on costs of operation and maintenance, which constitutes one
of the main goals of industry, can be achieved through the incorporation of
enhanced health monitoring techniques [2]. Prognostics and health management
(PHM) is a well-established tool to predict the future condition of a system (or its
components) taking into account the available information of the past usage and the
current health state (diagnostics) of the system [3].

Prognostics-based frameworks are able to determine the future condition of the
system by quantifying the remaining useful life (RUL), which measures the
remaining amount of time or cycles of the system before failure based on a con-
venient failure criterion [1, 4]. The knowledge of this information is extremely
useful for engineers to plan and schedule maintenance tasks before the failure of a
system or a specific component occur. For this reason, the consolidation of a robust
method to estimate RUL is fundamentally important for activities involving PHM
[5, 6].

In order to predict RUL properly, previous knowledge on the degradation
behavior of the system is also required. In general, such degradation behavior can
be represented by mathematical models based on the physical description of the
system damage (physics-based models) or, in other hand, based on test data mea-
surements (data-driven models) [7]. Between these models, physics-based models
are always preferred when test data are not available and there is a physical model
of the damage whose unknown parameters can be estimated, such as models for
battery degradation or structural damage caused by crack propagation [8].

Fracture of mechanical component due to crack propagation is the main cause of
system failure when subjected to cyclic loads. Crack propagation in structures
depends on some load operation conditions such as amplitude, stress ratio and
frequency. Furthermore, the stochastic nature of such conditions makes crack
parameters difficult to predict [9]. It is well established, for instance, that fatigue
crack damage on gear tooth reduces its structural stiffness, which can affect the
dynamic behavior (increase of vibration, noise and wear) of gearboxes operating
under certain critical conditions, [10–12]. In this context, it is clear that modeling of
fatigue crack growth and propagation plays a crucial role on RUL prediction of
dynamics systems, [13, 14]. Due to the uncertainties involved in the crack propa-
gation and branching phenomena, some authors [15, 16] have proposed a proba-
bilistic PHM to estimate RUL as shown in Fig. 1. This figure illustrates the
flowchart of the PHM procedure in which the damage model to predict the future
state of the system damage is the focal point of the process. In other words, Fig. 1
shows that the selection of the damage model inputs (physical measurement,
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filtering process, uncertainty quantification process and computational model) will
have a direct impact on the estimation of probability distribution of RUL.

Focusing on crack damage models, the selection of the computational model
plays a crucial role on the proper characterization of some crack features such as,
propagation speed, direction and branching. Crack propagation is a complex phe-
nomenon and different models has been proposed by several authors [17–21]. The
majority of these models are finite element method (FEM) based-models which,
despite the progress brought on the understanding of crack physics, still have
serious limitations regarding mathematical formulation and computational effort
[20, 22]. On the other hand, a new method called peridynamics (PD) recently
developed by Silling [23] uses an integral formulation that has shown to be more
appropriate to predict some crack parameters, such as, crack onset and crack
branching according to experimental data [21, 24].

1.2 Motivation

As discussed in the previous section, the motivations of this chapter is based on:

• the need to improve PHM techniques in order to reduce costs with unnecessary
maintenance procedures and machine downtime [1, 2];

• the need to quantify uncertainties on RUL estimation in order to predict RUL
more accurately and prevent system/components failure events [15, 16];

Fig. 1 Probabilistic PHM process for a crack propagation problem (adapted from [15] and [16])
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• the need to understand the physics of crack propagation better and study its
effects on quantification of RUL of system/components subjected to fracture
failure [18, 19]; and

• the need to develop new numerical methods capable to overcome FEM math-
ematical and computational limitations to model discontinuities such as cracks
[20, 22].

Based on the motivations outlined above, the following research question was
formulated: “Can PD be a potential alternative to FEM on modeling of crack
propagation problems in predicting RUL?” In order to answer this question, the
chapter is organized as follows: Sect. 2 presents a review on the FEM applications
to model cracks. Section 3 introduces PD as an alternative method to overcome
some of the difficulties of FEM to deal with crack onset and branching. In Sect. 4,
an application of 2D crack modeling in a pre-notched glass plate from literature is
presented and discussed, showing the potential of PD to predict crack propagation
in prognostics models and finally, the conclusions of the chapter are presented in
Sect. 5.

2 Crack Propagation Modeling Using Finite Elements
Methods

FEM is the most applied numerical method on both research and industrial fields to
model problems related to structural damage [25]. The method applies two different
forms to solve a problem: the strong form and the weak form. The strong form
consists of the governing partial differential equations and the boundary conditions
for a physical system whereas the weak form is an integral form of these equations
[26].

A large variety of structural failure problems involving fractures due to fatigue
loads can be modelled using the FEM approach. In such problems, cracks are
common features and are mainly responsible for the structural failure. However,
conventional FEM does not often account for the stress singularities around the
crack tips, which consequently makes FEM not accurate enough to model crack
problems [14, 27]. The main mathematical weakness of conventional FEM lies on
the assumption that a body remains continuous as it deforms [28]. Consequently,
this assumption leads to the difficulty of constructing mathematical formulations for
the region around a singularity or a discontinuity such as a crack. It has been shown
that the spatial derivatives for the partial differential equations cannot be con-
structed around a crack tip or surface [29].

In the rare situation when the crack surface coincides with the edge of the finite
elements, FEM may handle crack tip asymptotic stresses [13]. However, such a
situation is very unlikely as the crack propagates “randomly” through the material.
A common characteristic of a crack is its unpredictable growth or propagation. The
modeling of crack propagation using conventional FEM is computationally
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intensive due to the need of the mesh to conform the crack contour [13, 18] at each
time step as crack evolves.

Besides the needed mesh modifications to track the changes in geometrical and
topological characteristics of the crack as it propagates, another drawback of con-
ventional FEM is the necessity of the local refinements of the mesh around the
crack surface [18]. This results in dense local meshes that often increases consid-
erably the computational time processing [14].

To overcome such issues raised by the FEM formulation and its meshing pro-
cess, some modified FEM’s have been proposed to address the stress singularities
problem [14]. One of the most widely used methods is an approach known as
extended finite element method (XFEM). This method is based on the partition of
unity property of the elements [30] allowing the crack not to be constrained to
element boundaries, i.e. the crack can pass through the elements [31], which
completely avoids the need of re-meshing the domain as the crack propagates [13].
Since XFEM permits the incorporation of local enrichment functions, modeling of
moving cracks without changes in the mesh domain is possible due to the evolution
of these enrichment functions with the crack interface geometry [18].

Despite that important progress has been made by using XFEM on crack
propagation modeling, elements subdivision can bring out extra complexity and
increase computational cost to the numerical integration of the method [20].
Additionally, due to the difficulties in setting up proper enrichment functions, the
method still has problems in matching accurate predictions on crack propagation
speed and crack branching angles according to observed experimental data [21, 24].

There have been recently also other methods proposed to address FEM defi-
ciencies to deal with fatigue crack propagation and branching modeling. Some of
these methods include cohesive zone modeling (CZM) [27], XFEM improvements
based on analytical solutions to describe crack tip field enrichment functions [14],
cell-based strain smoothing approach [18], some meshfree-based models [32], and
an extention of XFEM for crack growth modeling to materials under creep con-
dition [30]. A detailed discussion about these methods is out of the scope of this
chapter and the aforementioned references are recommended to interested readers.

3 Peridynamics

3.1 Background

As already shown in the previous section, the mathematical formulation of the
classical continuum theory constitutes the major difficulty in using techniques based
on FEM to model crack behavior in solids [22]. Experimental observations have
shown that crack growth and propagation occurs mostly due to microstructural
irregularities of the material, in a scale size not captured by continuum models. For
this reason, FEM’s are limited to predict crack growth accurately [24]. Despite the
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fact that XFEM has had some success in describing single discontinuities, it still
requires auxiliary equations to predict nucleation and the propagation of a crack
[33], which in turn makes the prediction of crack branching patterns more difficult
[22].

Recently, peridynamics (PD) was proposed to address the shortcomings of FEM
in dealing successfully with the nucleation and propagation of cracks in solids. PD
is, in essence, a non-local reformulation of classical continuum mechanics [31, 34]
which totally suppresses the hypothesis that a body remains continuous as it
deforms [22]. As opposed to methods based on local approaches, PD is based on an
integral formulation of the constitutive equations of motion which does not include
spatial derivatives of the displacements [29, 35]. PD theory employs displacements
rather than displacement derivatives in its formulation since spatial derivatives are
not valid at the discontinuities generated by cracks [22]. The integral-based for-
mulations are naturally able to deal with the presence of discontinuities in the
material [27, 33]. This feature allows cracks to emerge and propagate sponta-
neously in multiple locations, along arbitrary paths without evoking additional
mathematical relationships and/or crack growth criteria [27, 31].

PD has been shown to be a promising method to describe crack initiation,
growth and propagation on fracture related applications [35]. It has already been
applied successfully to model damage problems [34] considering its good accurate
predictions on the shape of the crack paths, branching patterns and propagation
speed [20, 21].

3.2 Problem Formulation

The key feature of PD theory is that material points are not allowed to interact only
with their nearest neighbors but also with the points inside a given region, in PD
defined by a horizon δ [20]. Such an interaction between a point x and a neighbor
point x

0
, both represented by vector Cartesian coordinates, is called bond [33] and is

illustrated schematically in Fig. 2. First, we define a region Hx around the point
x limited by a radius δ (horizon), within which any other material points x

0
can

Fig. 2 Volume correction for
the collocation points inside
the horizon
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interact with x. The force that the material point x
0
exerts on the point x is denoted

by the vector f. Thus, the following relationship for the region Hx is valid [21]:

ξ= x
0
− x

�� ��< δ, ∀x
0
∈ Hx, ð1Þ

in which ξ= x
0 − x

�� �� is the relative position between the two interacting point. This
means that the state of any material point is determined by its pairwise interaction
with the points that are located within the region Hx. In other words, a pair of
interacting material points can be formed only if the distance between them is less
than the horizon radius δ.

Starting from the assumption that the force interactions between any pair of
material points inside the domain obey Newton’s Second Law of motion, the PD
equation of motion can be formulated as [22]:

ρ
d2

dt2
u x, tð Þ=

Z
Hx

f η, ξð ÞdVx0 + b x, tð Þ, ð2Þ

where ρ is the material density, uðx, tÞ is the displacement vector field, t is the time,
dVx0 is the material point volume, bðx, tÞ designates a prescribed body-force density
field and η= u x

0
, t

� �
− uðx, tÞ�� �� is the relative displacement between two inter-

acting points. The vector f ðη, ξÞ is denoted as the pairwise force function, [20, 21]
which represents the force per unit of volume exerted between the material points
x and x

0
. It is important to notice that Eq. (2) is an integral-differential equation, in

which its only derivative appears at the inertia term (time derivative).
In order to model the pairwise force function f ðη, ξÞ, a procedure based on linear

micro-elasticity theory is followed. Basically, f ðη, ξÞ can be derived from the
micro-elastic potential energy function, ωðη, ξÞ, that connects a pair of material
points as:

f η, ξð Þ= ∂

∂η
ω η, ξð Þ. ð3Þ

If we consider that the stretch (or elongation) of the material varies linearly with
the pairwise force between the two points, the micro-elastic potential, ωðη, ξÞ can be
defined as [20, 21, 33]:

ω η, ξð Þ= c ξð Þs2ξ
2

, ð4Þ

where cðξÞ is the micro-modulus that represents the elastic stiffness of the bond and
s is the stretch of a bond given by,
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s=
η+ ξk k− ξ

ξ
. ð5Þ

The PD elastic strain energy density W at a point x is obtained by integrating the
micro-elastic potential (Eq. 4) over the horizon region [21],

W xð Þ= 1
2

Z
Hx

ω η, ξð Þdx0
=

1
2

Zδ

− δ

c ξð Þs2r
2

� �
2πrdr =

π

6
c ξð Þs2δ3. ð6Þ

Assuming a constant value for the micro-modulus c ξð Þ= c0 [36], it can be
obtained by equating Eq. (6) to the classical strain energy density which results in
[20, 21]:

c0 =
6E

πδ3 1− νð Þ , ð7Þ

in which E and ν are the Young’s modulus and the Poisson’s ration of the material,
respectively.

Structural failure in PD occurs when all bounds within a horizon break down, i.e.
if they are stretched beyond a critical value, s0 [20]. After this event, the contact
force between the points is ceased and they no longer interact with each other. This
particular event points out the initiation of a crack whose direction and velocity of
propagation will be determined as other bounds in the domain are broken. As
suggested by Silling and Askari [36], the critical stretch for bound failure, s0, is a
function of the critical fracture energy release, G0, the material Young’s modulus,
E, and the horizon radius δ. For 2D cases, this expression is given by [20, 33]:

s0 =

ffiffiffiffiffiffiffiffiffiffiffi
4πG0

9Eδ

r
. ð8Þ

Therefore, using Eqs. (4) and (5) on Eq. (3) and using the failure criteria
expressed in Eq. (8), the pairwise force function is defined as:

f η, ξð Þ= c ξð Þs ξ+ η
ξ+ ηk k , if s< s0

0, if s≥ s0

�
. ð9Þ

3.3 Solution

In order to obtain the numerical solution of Eq. (2), consider a 2D domain dis-
cretization as illustrated in Fig. 3. Each discrete material point of the domain is
equally spaced each other by a distance Δ. A horizon radius δ=3Δ is defined
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around a material point xj. All xj points whose relative positions ξij to xi are smaller
than the horizon radius will interact with the point xi. Therefore, the discretized PD
equation of motion can be written as [22]:

ρ ̈uni = ∑
j
f ηij, ξij
� �

Vj + bni , ð10Þ

in which the subscript n denotes the time step, Vj is the volume of the sub-domain
that is represented by the collocation point located at xj and the relative position and
relative displacement are respectively written as:

ξij = xnj − xni , and ð11Þ

ηij =unj − uni . ð12Þ

For the discretization of the second derivative of the displacement with respect to
the time (the inertial term at the left side of Eq. 10), a central differences scheme
can be used for a discrete time interval Δt [22]. Thus,

üni =
un+1
i − 2uni +un− 1

i

Δt2
. ð13Þ

Fig. 3 PD discretization scheme of the domain
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4 Crack Propagation Modeling Using Peridynamics

This section presents and discusses an application of crack propagation modeling
using PD available in the open literature [20, 22]. The main purpose is to illustrate
PD’s capability of describing crack propagation problems satisfactorily. The
application involves a classic 2D problem of crack growth in a pre-notched glass
plate studied by two different research groups: Ha and Bobaru [20] and Agwai et al.
[22]. Their PD predictions were compared against FEM-based model predictions
and experimental observations made by other authors [37–40].

4.1 Problem Description

The problem presented by Ha and Bobaru [20] and Agwai et al. [22] considered a
rectangular glass plate (40 mm high vs. 100 mm length) as depicted in Fig. 4.
A notch with 50 mm length is placed at the center of left edge of the plate in order
to increase the stress distribution at this region and facilitate the crack propagation,
in which a uniform dynamic load is applied perpendicularly to the horizontal edges
of the plate. Specific material properties, load conditions and model parameters
used in PD simulations can be found in [20] and [22]. Predictions of some crack
growth parameters obtained by these authors, such as crack patterns and propa-
gation speeds are discussed in the next sub-sections.

4.2 Crack Pattern and Branching Predictions

PD qualitative predictions of the crack propagation pattern and branching features
were performed by Agwai et al. [22] and their results were compared against

Fig. 4 Illustration of a
pre-notched glass plate
submitted to a dynamic
stretching load
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experimental data obtained by Ramulu and Kobayashi [37]. Moreover, Agwai et al.
[22] also compared their predictions with two FEM-based approaches from other
authors, which modeled the same problem: cohesive zone model (CZM) [38] and a
modified version of XFEM to enhance crack modeling, named crack node method
(CNM) [39]. The experimental study [37] showed that the crack propagates lin-
early, with very small branches forming up and stopping suddenly, from the tip of
the notch through a considerably length inside the glass plate. From this point on,
the crack splits into two branches that keep growing independently each other
symmetrically separated by an angle of about 40º with no small branches welling up
[22].

Agwai et al. [22] results showed that PD was able to predict the experimental
behavior observed by Ramulu and Kobayashi [37] exceptionally well. The main
points of agreement between PD prediction and experimental observations were:
(i) the proper representation of the crack breakage into two main branches, (ii) the
capture of the formation of small branches, which start growing and terminates
subsequently, before the crack split up into two, and (iii) the non-existence of small
branches along the path of the two main branches.

Crack propagation predictions using CZM method were performed considering
different levels of mesh refinement for both structured and non-structured meshes
[38]. In general terms, their simulations were also able to capture the phenomenon
of crack breakage into two main branches as observed in Ramulu and Kobayashi
[37] experiments. Nevertheless, their results were shown to be highly dependent on
the mesh parameters (element size, shape and orientation), once this method allows
the crack only to contour the elements boundaries [22], having a direct impact on
the results for the direction of crack propagation. CZM method was not able to
predict properly the small branches during the propagation path from the notch tip
to the main branching initiation observed experimentally in [37]. Furthermore,
Agwai et al. [22] observed that only the unstructured grid produced an irregular
phenomenon slightly similar to the small branches. Moreover, the symmetric
propagation pattern observed in the experiment after the crack splits up into the two
main branches was affected by the mesh parameters: only refined meshes could
capture this symmetry; coarser grids predicted highly unsymmetrical crack
branching patterns.

While CZM method could not predict properly the incidence of small branches
during the crack propagation, the results obtained through XFEM-CNM [39]
showed to follow the opposite direction. Similar to PD and CZM methods,
XFEM-CNM predicted the occurrence of the crack breakage into two main bran-
ches according to the experimental observations from Ramulu and Kobayashi [37].
However, XFEM-CNM captured a disproportionally large number of small bran-
ches welling up even after the crack splits up into two. This phenomenon was not
observed experimentally, in which no small branches were reported along the two
main crack branches. Agwai et al. [22] suggests that this phenomenon seems to be
caused by a model mechanism that cannot discriminate properly when a small
branch should be introduced or not. Other important feature observed on
XFEM-CNM predictions was that, similarly to CZM model, the symmetry between
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the two crack main branches was difficult to capture properly. Agwai et al. [22] also
reasonably explains that the mesh-dependency nature of FEMs requires sophisti-
cated mesh refinement schemes to overcome this problem, which could result on
considerable increase on computational power demand.

4.3 Crack Propagation Speed Predictions

Additionally to the qualitative crack path and branching comparisons, Agwai et al.
[22] also quantified crack propagation speeds and compared their results with the
experimental observations from Ramulu and Kobayashi [37] and the results of FEM
approaches. Essentially, they reported that regarding the time elapsed to initiate the
crack breakage into the two main branches, both PD and CZM predictions fitted
better to experiments than XFEM-CNM. According to the authors, both methods
allowed the crack initially to propagate for a long time before it splits up. Never-
theless, the crack propagation velocities calculated using PD and XFEM-CNM
quantitatively showed very similar behavior after the branching.

Ha and Bobaru [20] also used a PD model to calculate crack propagation speed
for the same problem and compared their predictions against the experiments from
Bowden et al. [40] for a soda-lime glass plate. The differences between Bowden
et al. [40] and Ramulu and Kobayashi [37] experiments are on the type of glass
used (which slightly differs each other on the mechanical properties) and on the
loading conditions. Ha and Bobaru [20] calculated the crack propagation speed by
computing the difference on the position of the crack tip between two consecutive
time steps. Their results showed that the maximum crack propagation speed using
PD model is in good agreement with the experimental measurements from Bowden
et al. [40] (over-predicting experimental results about only 6%). However, the
authors highlighted that, even considering that the experiment were performed
under different type of loading (quasi-static in the experiment and dynamic in their
simulation), the agreement between both can be considered good.

Lastly, a summary table of the comparisons between the crack propagation
models and the experimental works discussed along this section is outlined on
Table 1. Each line of the table shows the main qualitative (second to forth columns)
and quantitative (last column) results for each model. The results of Table 1 show
clearly that PD predictions fitted better to the experiment observations than the
FEM models from both qualitative and quantitative perspectives. Thus, considering
the discussions presented in this chapter and summarized in Table 1, the answer of
the research question outlined in the Sect. 1 is “yes”: PD can be considered a
potential alternative to finite element on modeling of crack propagation problems.
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5 Conclusions

This chapter presented a review of some of the most relevant works dedicated to
model fracture problems related to crack growth and propagation, which is a fun-
damental concern of prognostics and health management (PHM) practices. Cur-
rently, such problems are mostly solved using continuum local-based models such
as finite element methods (FEM). However, some limitations of these methods,
particularly the ones concerning the mathematical difficulties on dealing with crack
discontinuities were pointed out. In an attempt to mitigate FEM shortcomings,
special attention was given to peridynamics (PD), a continuum non-local approach,
that, due to its integral formulation, has been considered a promising method to

Table 1 Summary table of the comparison between crack models and experiments analyzed on
this chapter

Crack model Occurrence
of two main
branches

Occurrence of
small branches

Symmetry
between
the main
branches

Crack propagation speed

Peridynamicsa

[20]
Not
presented

Not presented Not
presented

Good agreement with
experimental maximum crack
propagation speed (only 6%
difference) even considering
different loading conditions

Peridynamicsb

[22]
Captured Well captured Well

captured
Good agreement with
experimental branching
initiation time; good
agreement with XFEM-CNM
[39] propagation speed

CZM
structured
coarse meshb

[38]

Captured Under-estimated Not
captured

Good agreement with
experimental branching
initiation time;
under-estimated propagation
speedCZM

structured
refined meshb

[38]

Captured Under-estimated Well
captured

CZM
unstructured
refined meshb

[38]

Captured Under-estimated Well
captured

XFEM-CNMb

[39]
Captured Over-estimated Not

captured
Under-estimated
experimental branching
initiation time; good
agreement with PD [22]
propagation speed

aComparisons performed with experiments from Bowden et al. [40]
bComparisons performed with experiments from Ramulu and Kobayashi [37]
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model crack discontinuities. This is due to PD’s ability to work with discontinuous
domains without the need of any supplemental relationship that dictates the
direction of crack propagation.

An application of a classical crack modeling in a 2D pre-notched glass plate
using PD, which was selected from the literature, was presented and discussed. The
results of the reviewed PD works were compared with FEM predictions and with
experimental observations, both obtained from other authors. It was clearly verified
that PD predicted more accurately the experimental observations than FEM models
from both qualitative perspective (crack pattern description and branching features)
and quantitative perspective (crack propagation speed). For these reasons, one can
conclude that the answer of the research question outlined in the Sect. 1 of the
chapter is “yes”: PD can be considered as a potential alternative to FEM on
modeling of crack propagation problems in PHM. Despite the need of more
advances and refinements on PD technique, mainly to deal with more complexes
geometries, it has been proved that PD is an extremely useful tool on crack mod-
eling, which can be soon incorporated to the PHM routines to determine the
remaining useful life (RUL) of systems/components subjected to fatigue loading.

Acknowledgements Dr. João Paulo Dias (corresponding author) would like to thank Professor
Stephen Ekwaro-Osire (corresponding editor of this book) for the fruitful discussions during the
writing process of this chapter.
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Modeling and Quantification of Physical
Systems Uncertainties in a Probabilistic
Framework

Americo Cunha Jr.

Abstract Uncertainty quantification (UQ) is a multidisciplinary area, that deals

with quantitative characterization and reduction of uncertainties in applications. It

is essential to certify the quality of numerical and experimental analyses of physi-

cal systems. The present manuscript aims to provide the reader with an introductory

view about modeling and quantification of uncertainties in physical systems. In this

sense, the text presents some fundamental concepts in UQ, a brief review of probabil-

ity basics notions, discusses, through a simplistic example, the fundamental aspects

of probabilistic modeling of uncertainties in a physical system, and explains what is

the uncertainty propagation problem.

Keywords Uncertainty quantification ⋅ Stochastic modeling of uncertainties ⋅
Probabilistic approach

1 An Introductory Overview on UQ

Typically, highly complex engineering projects use both numerical simulations and

experimental tests on prototypes to specify a certain system or component with

desired characteristics. These two tools are used in a similar way by scientists to

investigate physical phenomena of interest. However, none of these approaches pro-

vides a response that is an exact reproduction of the physical system behaviour,

because computational model and test rig are subject to uncertainties, which are

intrinsic to modeling process (lack of knowledge on the physics) and model parame-

ters (measurement inaccuracies, manufacturing variabilities, etc.).

In order to improve the reliability level of numerical results and experimental data,

it is necessary to quantify the underlying uncertainties. The cautious experimentalists

have been doing this for many decades, leading to a high level competence in what

concerns the specification of the level of uncertainty in an experiment. It is worth
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remembering that an experiment that does not specify the level of uncertainty is not

well seen by the technical/scientific community. On the other hand, just recently the

numerical community has begun to pay attention to the need of specifing the level

of confidence for computer simulations.

Uncertainty quantification (UQ) is a multidisciplinary area that deals with quanti-

tative characterization and the reduction of uncertainties in applications. One reason

that UQ has gained such popularity over the last years, in numerical world, is due

to several books on the subject have recently emerged [1–12]. To motivate its study,

we present three important scenarios where UQ is an essential tool:

Decision making: Some risk decisions, which negative result can cause catastrophic

failure or huge financial costs, need to be well analysed before a final opinion by the

responsible party. The possible variabilities that generate uncertain scenarios need

to be taken into account in the analysis. The evaluation of these uncertain scenarios

has the task of assisting the responsible party to minimize the chances of a wrong

decision. Briefly, and in this context, UQ is essential to provide the necessary certi-

fication for a risk decision.

Model validation: Experimental data are widely used to check the accuracy of a

computational model which is used to emulate a real system. Although this procedure

is already being used by scientists and engineers for many decades, there is still no

universally accepted criteria to ensure the model quality. However, it is known that

any robust criteria of model validation must take into account the simulation and

experiment uncertainties.

Robust design: An increasingly frequent requirement in several projects is the robust

design of a component which consists make a specific device low sensitive to varia-

tion on its properties. This requires the quantification of model and parameters uncer-

tainties.

In a very simplistic way, we can summarize UQ objectives as (i) add error bars to
experiments and simulations, and (ii) define a precise notion of the validated model.

The first objective is illustrated in Fig. 1a, which shows the comparison between

a simulation result with experimental data, and in Fig. 1b, that presents the previ-

ous graph with the inclusion of an envelope of reliability around the simulation. As

careful experimentalists, which use error bars for a long time, UQ mainly focuses on

“error bars for simulations”.

Moreover, a possible notion of validated model is illustrated in Fig. 2, where

experiment and simulation are compared, and the computational model is consid-

ered acceptable if the admissible range for the experimental value (defined by the

point and its error bar) is contained within the reliability envelope around the simu-

lation.

This chapter is organised into six sections. Besides this introduction, there is a

presentation of some fundamental concepts of UQ in Sect. 2; a brief review on proba-

bility theory basics in Sect. 3; an exposure of the fundamental aspects of probabilistic

modeling of uncertainties, through a simplistic example, in Sect. 4; the presentation

of the uncertainty propagation problem in Sect. 5; and the final remarks in Sect. 6.
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Fig. 1 a Comparison between simulation and experimental data, without an envelope of reliability

for the simulation, and b including this envelope
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Fig. 2 Illustration of a possible notion of validated model

It is noteworthy that many of the ideas that are presented in this manuscript are

very influenced by courses taught by the author’s doctoral supervisor, Prof. Chris-

tian Soize [13–15]. Lectures of Prof. Gianluca Iaccarino, Prof. Alireza Doostan, and

collaborators were also very inspiring [16–18].

2 Some Fundamental Concepts on UQ

This section introduce some fundamental notions in the context of UQ.

2.1 Errors and Uncertainties

Unfortunately, until the present date, there is still no consensus in UQ literature about

the notions of errors and uncertainties. This manuscript presents the definitions we

think make more sense, introduced by [19].
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Fig. 3 Schematic representation of the relationship between the designed system, the real system

and the computational model [19]

Let’s start with three conceptual ideas that will be relevant to the stochastic mod-

eling of physical systems: designed system, real system and computational model. A

schematic illustration of these concepts is shown in Fig. 3.

Designed system: The designed system consists of an idealized project for a physi-

cal system. It is defined by the shape and geometric dimensions, material properties,

connection types between components (boundary conditions), and many other para-

meters. This ideal system can be as simple as a beam or as complex as an aircraft [19].

Real system: The real system is constructed through a manufacturing process taking

the designed system as reference. In contrast to the designed system, the real system

is never known exactly, as the manufacturing process introduces some variabilities

in the system geometric dimensions, on its materials properties, etc. No matter how

controlled the construction process is, these deviations from the conceptual project

are impossible to eliminate, since any manufacturing process is subjected to finite

accuracy. Thus, the real system is uncertain with respect to the designed system [19].

Computational model: In order to analyze the real system behaviour, a computa-

tional model should be used as predictive tool. The construction of this computa-

tional model initially performs a physical analysis of the designed system, identifies

the associated physical phenomena and makes hypotheses and simplifications about

its behaviour. The identified physical phenomena are then translated into equations

in a mathematical formulation stage. Using the appropriate numerical methods, the

model equations are then discretized and the resulting discrete system of equations

is solved, providing an approximation to the computational model response. This

approximate response is then used to predict the real system behaviour [19].

Numerical errors: The response obtained with the computational model is, in fact,

an approximation to the model equation’s true solution. Inaccuracies, intrinsic to the

discretization process, are introduced in this step giving rise to numerical errors [19].

Other source of errors are: (i) the finite precision arithmetic that is used to perform

the calculations, and (ii) possible bugs in the computer code implementation of the

computational model.
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Uncertainties on the data: The computational model is supplied with model input

and parameters, which are (not exact) emulations of the real system input and para-

meters, respectively. Thus, it is uncertain with respect to the real system. The dis-

crepancy between the real system and computational model supplied information is

called data uncertainties [4, 19].

Uncertainties on the model: In the conception of the computational model, consid-

erations made may or may not be in agreement with reality, which should introduce

additional inaccuracies known as model uncertainties. This source of uncertainty is

essentially due to lack of knowledge about the phenomenon of interest and, usually,

is the largest source of inaccuracy in computational model response [4, 19].

Naturally, uncertainties affect the response of a computational model, but they

should not be considered errors because they are physical in nature. Errors are purely

mathematical in nature and can be controlled and reduced to a negligible level if the

numerical methods and algorithms used are well known by the analyst [4, 19]. This

differentiation is summarized in Fig. 4.

2.2 Verification and Validation

Today verification and validation, also called V&V, are two concepts of fundamen-

tal importance for any carefully done work in UQ. Early works advocating in favor

of these ideas, and showing their importance, date back to the late 1990s and early

2000s [20–23]. The impact on the numerical simulation community was not imme-

diate, but has been continuously growing over the years, conquering a prominent

space in the last ten years, especially after the publication of Oberkampf and Roy’s

book [24].

These notions are well characterized in terms of two questions:

Verification:

Are we solving the equation right?

Fig. 4 The difference

between errors and

uncertainties
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Validation:

Are we solving the right equation?

Although extremely simplistic, the above “definitions” communicate, directly and

objectively, the key ideas behind the two concepts. Verification is a task whose goal

is to make sure that the model equation’s solution is being calculated correctly. In

other words, it is to check if the computational implementation has no critical bug

and the numerical method works well. It is an exercise in mathematics. Meanwhile,

validation is a task which aims to check if the model equations provide an adequate

representation of the physical phenomenon/system of interest. The proper way to do

this “validation check up” is through a direct comparison of the model responses

with experimental data carefully obtained from the real system. It is an exercise in

physics. In Fig. 5 the reader can see a schematic representation of the difference

between the two notions.

An example in V&V: A skydiver jumps vertically in free fall, from a helicopter that

is stopped in flight, from a height of y0 = 2000m with velocity v0 = 0m∕s. Such

situation is illustrated in Fig. 6. Imagine we want to know the skydiver height in

every moment of the fall. To do this we develop a (toy) model where the falling man

is idealized as point mass m = 70 kg, under the action of gravity g = 9.81m∕s2. The

height at time t is denoted by y(t).
The skydiver’s height at time t can be determined through the following initial

value problem (IVP)

m ÿ(t) + m g = 0, (1)

ẏ(0) = v0,
y(0) = y0,

where the upper dot is an abbreviation for a time derivative, i.e., ̇□ ∶= d □∕dt. This

toy model is obtained from Newton’s 2nd law of motion and considers the weigh as

the only force acting on the skydiver body.

Imagine that we have developed a computer code to integrate this IVP using a

standard 4th order Runge-Kutta method [25]. The model response obtained with

this computer code is shown in Fig. 7.

Fig. 5 The difference

between verification and

validation
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Fig. 6 V&V example: a

skydiver in free fall from an

initial height y0

y

g
y0

Fig. 7 Response obtained

with the toy model
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To check accuracy of the numerical method and its implementation we have at

our disposal the analytical (reference) solution of the IVP, given by

y(t) = −1
2

g t2 + v0 t + y0. (2)

In Fig. 8a we can see the comparison between toy model response (solid blue

curve —) and the reference solution (dashed red curve - - -). We note that both

curves are in excellent agreement, but if we look at Fig. 8b, which shows the difer-

ence between numerical and analytical solutions, it is evident the effectiveness of the

numerical method and the robustness of its implementation become ever clearer.
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Fig. 8 a Solution verification: comparison between toy model response and reference solution;

b absolute error of Runge-Kutta method approximation

Here the verification was made taking as reference the real solution of the model

equation. In the most frequent case, the model equations solution is not known. In

such a situation, the verification task can be performed, for instance, using the method
of manufactured solutions [24, 26–28].

Now let’s turn our attention to model validation, and compare simulation results

with experimental data, such as shown in Fig. 9a. We note that the simulation is

completely in disagreement with the experimental observations. In other words, the

model does not provide an adequate representation of the real system behaviour.

The toy model above take into account the gravitational force which attracts the

skydiver toward the ground, but neglects air resistance effects. This is the major

reason for the observed discrepancy, the model deficiency (model uncertainty). If

the air drag force effects are included, the improved model below is obtained
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Fig. 9 a Model validation: comparison between experimental data and the toy model, b compari-

son between experimental data, the toy model, and the improved model
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m ÿ(t) + m g − 1
2
𝜌A CD (ẏ(t))2 = 0, (3)

ẏ(0) = v0,
y(0) = y0,

where 𝜌 is the air mass density, A is the cross-sectional area of the falling body, and

CD is the (dimensionless) drag coefficient.

With this new model, a better agreement between simulation and experiment is

expected. In Fig. 9b the reader can see the comparison between experimental data

and the responses of both models, where we note that the improved model provides

more plausible results.

An important message, implicit in this example, is that epistemic uncertainties

can be reduced by increasing the actual knowledge about the phenomenon/system

of interest [22, 24].

2.3 Two Approaches to Model Uncertainties

Being uncertainties in physical system the focus of stochastic modeling, two

approaches are found in the scientific literature to deal with then: probabilistic, and

non-probabilistic.

Probabilistic approach: This approach uses probability theory to model the phys-

ical system uncertainties as random mathematical objects. This approach is well-

developed and very consistent from the mathematical foundations point of view for

this reason, there is a consensus among the experts that it is preferable whenever

possible to use it [4].

Non-probabilistic approach: This approach uses techniques such as interval analy-

sis, fuzzy finite element, imprecise probabilities, evidence theory, probability bounds

analysis, fuzzy probabilities, etc. In general these techniques are less suitable for

problems in high stochastic dimension. Usually they are applied only when the prob-

abilistic approach can not be used [4].

Because of their aleatory nature, data uncertainties are, quite naturally, well repre-

sented in a probabilistic environment. Thus, the parametric probabilistic approach is

an appropriate method to describe this class of uncertainties. This procedure consists

in describe the computational model random parameters as random objects (random

variables, random vectors, random processes and/or random fields) and then consis-

tently construct their joint probability distribution. Consequently, the model response

becomes aleatory, and starts to be modeled by another random object, depending on

the nature of the model equations. The model response is calculated using a stochas-

tic solver. For further details, we recommend [4, 19, 29–31].
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When model uncertainties are the focus of analysis, the non-probabilistic tech-

niques receive more attention. Since the origin of this type of uncertainty is epis-

temic (lack of knowledge), it is not naturally described in a probabilistic setting.

More details on non-probabilistic techniques can be seen in [32–34]. However, the

use of probability theory for model uncertainties is still possible through a methodol-

ogy called nonparametric probabilistic approach. This method, which also take into

account the data uncertainty, was proposed in [35], and describes the mathematical

operators in the computational model (not the parameters) as random objects. The

probability distribution of these objects must be constructed in a consistent way,

using the Principle of Maximum Entropy. The methodology lumps the model level

of uncertainty into a single parameter, which can be identified by solving a parameter

identification problem when (enough) experimental data is available. An overview

of this technique can be seen in [19, 31].

A generalized probabilistic approach describing model and data uncertainties on

different probability spaces, with some advantages, is presented in [36, 37].

3 A Brief on Probability Theory

This section presents a brief review of probability basic concepts. Such exposition is

elementary, being insufficient for a solid understanding of the theory. Our objective is

only to equip the reader with basic probabilistic vocabulary necessary to understand

UQ scientific literature. For deeper studies on probability theory, we recommend the

references [38–41].

3.1 Probability Space

The mathematical framework in which a random experiment is described consists of

a triplet (Ω,˚,ℙ), where Ω is called sample space, ˚ is a 𝜎-algebra over Ω, and ℙ
is a probability measure. The trio (Ω,˚,ℙ) is called probability space.

Sample space: The set which contains all possible outcomes (events) for a certain

random experiment is called sample space, being represented by Ω. An elementary

event in Ω is denoted by 𝜔. Sample spaces may contain a number of events that is

finite, denumerable (countable infinite) or non-denumerable (non-countable infin-

ity). The following three examples, respectively, illustrate the three situations:

Example 3.1 (finite sample space) Rolling a given cube-shaped fare die, where the

faces are numbered from 1 through 6, we have Ω = {1, 2, 3, 4, 5, 6}.

Example 3.2 (denumerable sample space) Choosing randomly an integer even num-

ber, we have Ω = {… ,−8,−6,−4,−2, 0, 2, 4, 6, 8,…}.
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Example 3.3 (non-denumerable sample space) Measuring the temperature

(in Kelvin) at Rio de Janeiro city during the summer, we have Ω = [a, b] ⊂ [0,+∞).

𝜎-algebra: In general, not all of the outcomes in Ω are of interest so that, in a proba-

bilistic context, we need to pay attention only to the relevant events. Intuitively, the

𝜎-algebra ˚ is the set of relevant outcomes for a random experiment. Formally, ˚ is

𝜎-algebra if:

∙ 𝜙 ∈ ˚ (contains the empty set);

∙ for any  ∈ ˚ we also have c ∈ ˚ (closed under complementation);

∙ for any countable collections of i ∈ ˚, it is true that
⋃∞

i=1 i ∈ ˚
(closed under denumerable unions).

Example 3.4 Consider the experiment of rolling a die with sample space Ω =
{1, 2, 3, 4, 5, 6} where we are interested in knowing if the result is odd or even. In

this case, a suitable 𝜎-algebra is ˚ = {Ω, {1, 3, 5}, {2, 4, 6}, 𝜙}. On the other hand,

if we are interested in knowing the upper face value after rolling, an adequate 2𝜔 (set

of all subsets of 𝜔). Different 𝜎-algebras generate distinct probability spaces.

Probability measure: The probability measure is a function ℙ ∶ ˚ → [0, 1] ⊂ ℝ
which indicates the level of expectation that a certain event in ˚ occurs. In tech-

nical language, ℙ has the following properties:

∙ ℙ {} ≥ 0 for any  ∈ ˚ (probability is nonnegative);

∙ ℙ {Ω} = 1 (entire space has probability one);

∙ for any denumerable collection of mutually disjoint events i, it is true that

ℙ
{⋃∞

i=1 i
}
=
∑∞

i=1 ℙ
{
i

}
.

Note that ℙ {𝜙} = 0 (empty set has probability zero).

3.2 Random Variables

A mapping 𝕏 ∶ Ω → ℝ is called a random variable if the preimage of every real

number under 𝕏 is a relevant event, i.e.,

𝕏−1(x) = {𝜔 ∈ Ω ∶ 𝕏 (𝜔) ≤ x} ∈ ˚, for every x ∈ ℝ. (4)

We denote a realization of 𝕏 by 𝕏(𝜔).
Random variables provide numerical characteristics of interesting events, in such

a way that we can forget the sample space. In practice, when working with a proba-

bilistic model, we are concerned only with the possible values of 𝕏.
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Example 3.5 The random experiment is now toss a two fare dice, then Ω ={
(d1, d2) ∶ 1 ≤ d1 ≤ 6 and 1 ≤ d2 ≤ 6

}
. Define the random variables 𝕏1 and 𝕏2 in

such way that 𝕏1(𝜔) = d1 + d2 and 𝕏2(𝜔) = d1 d2. The former is a numerical indi-

cator of the sum of dice upper faces values, while the latter characterizes the product

of these numbers.

3.3 Probability Distribution

The probability distribution of 𝕏, denoted by P𝕏, is defined as the probability of the

elementary event {𝕏 ≤ x}, i.e.,

P𝕏(x) = ℙ {𝕏 ≤ x} . (5)

P𝕏 has the following properties:

∙ 0 ≤ P𝕏(x) ≤ 1 (it is a probability);

∙ P𝕏 is non-decreasing, and right-continuous;

∙ limx→−∞ P𝕏(x) = 0, and limx→+∞ P𝕏(x) = 1;

so that

P𝕏(x) =
∫

x

𝜉=−∞
dP𝕏(𝜉), (6)

and

∫ℝ
dP𝕏(x) = 1. (7)

P𝕏 is also known as cumulative distribution function (CDF).

3.4 Probability Density Function

If the function P𝕏 is differentiable, then we call its derivative the probability density
function (PDF) of 𝕏, using the notation p𝕏.

Given that p𝕏 = dP𝕏∕dx, we have dP𝕏(x) = p𝕏(x) dx, and then

P𝕏(x) =
∫

x

𝜉=−∞
p𝕏(𝜉) d𝜉. (8)
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The PDF is a function p𝕏 ∶ ℝ → [0,+∞) such that

∫ℝ
p𝕏(x) dx = 1. (9)

3.5 Mathematical Expectation Operator

Given a function g ∶ ℝ → ℝ, the composition of g with the random variable 𝕏 is

also a random variable g(𝕏).
The mathematical expectation of g(𝕏) is defined by

𝔼 {g(𝕏)} =
∫ℝ

g(x) p𝕏(x) dx. (10)

With the aid of this operator, we define

m𝕏 = 𝔼 {𝕏}

=
∫ℝ

x p𝕏(x) dx,
(11)

𝜎

2
𝕏 = 𝔼

{(
𝕏 − m𝕏

)2}

=
∫ℝ

(x − m𝕏)2 p𝕏(x) dx,
(12)

and

𝜎𝕏 =
√

𝜎

2
𝕏, (13)

which are the mean value, variance, and standard deviation of 𝕏, respectively. Note

further that

𝜎

2
𝕏 = 𝔼

{
𝕏2} − m2

𝕏. (14)

The ratio between standard deviation and mean value is called coefficient of vari-
ation of 𝕏

𝛿𝕏 =
𝜎𝕏
m𝕏

, m𝕏 ≠ 0. (15)

These scalar values are indicators of the random variable behaviour. Specifically,

the mean value m𝕏 is a central tendency indicator, while variance 𝜎

2
𝕏 and standard

deviation 𝜎𝕏 are measures of dispersion around the mean. The difference in these

dispersion measures is that 𝜎𝕏 has the same unit as m𝕏 while 𝜎

2
𝕏 is measured in m𝕏
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unit squared. Once it is dimensionless, the coefficient of variation is a standardized

measure of dispersion.

For our purposes, it is also convenient to define the entropy of p𝕏

S
(
p𝕏

)
= −𝔼

{
ln
(
p𝕏(𝕏)

)}
, (16)

which (see Eq. 10) is equivalent to

S
(
p𝕏

)
= −

∫ℝ
p𝕏(x) ln

(
p𝕏(x)

)
dx. (17)

Entropy provides a measure for the level of uncertainty of p𝕏 [42].

3.6 Second-Order Random Variables

The mapping 𝕏 is a second-order random variable if the expectation of its square

(second-order moment) is finite, i.e.,

𝔼
{
𝕏2}

< +∞. (18)

The inequality expressed in (18) implies that 𝔼 {𝕏} < +∞ (m𝕏 is also finite). Con-

sequently, with the aid of Eq. (14), we see that a second-order random variable 𝕏
has finite variance, i.e., 𝜎

2
𝕏 < +∞.

This class of random variables is very relevant for stochastic modeling, once, for

physical considerations, typical random parameters in physical systems have finite

variance.

3.7 Joint Probability Distribution

Given the random variables 𝕏 and 𝕐 , the joint probability distribution of 𝕏 and 𝕐 ,

denoted by P𝕏𝕐 , is defined as

P𝕏𝕐 (x, y) = ℙ {{𝕏 ≤ x} ∩ {𝕐 ≤ y}} . (19)

The function P𝕏𝕐 has the following properties:

∙ 0 ≤ P𝕏𝕐 (x, y) ≤ 1 (it is a probability);

∙ P𝕏(x) = limy→+∞ P𝕏𝕐 (x, y), and P𝕐 (y) = limx→+∞ P𝕏𝕐 (x, y)
(marginal distributions are limits);
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such that

P𝕏𝕐 (x, y) =
∫

x

𝜉=−∞ ∫

y

𝜂=−∞
dP𝕏𝕐 (𝜉, 𝜂), (20)

and

∫ ∫ℝ2
dP𝕏𝕐 (x, y) = 1. (21)

P𝕏𝕐 is also known as joint cumulative distribution function.

3.8 Joint Probability Density Function

If the partial derivative 𝜕

2 P𝕏𝕐∕𝜕x 𝜕y exists, for any x and y, then it is called joint
probability density function of 𝕏 and 𝕐 , being denoted by

p𝕏𝕐 (x, y) =
𝜕

2 P𝕏𝕐
𝜕x 𝜕y

(x, y). (22)

Hence, we can write dP𝕏𝕐 (x, y) = p𝕏𝕐 (x, y) dy dx, so that

P𝕏𝕐 (x, y) =
∫

x

𝜉=−∞ ∫

y

𝜂=−∞
p𝕏𝕐 (𝜉, 𝜂) d𝜂 d𝜉. (23)

The joint PDF is a function p𝕏𝕐 ∶ ℝ → [0,+∞) which satisfies

∫ ∫ℝ2
p𝕏𝕐 (x, y) dy dx = 1. (24)

3.9 Conditional Probability

Consider the pair of random events {𝕏 ≤ x} and {𝕐 ≤ y}, where the probability of

occurrence of the second one is non-zero, i.e., ℙ {{𝕐 ≤ y}} > 0. The conditional
probability of event {𝕏 ≤ x}, given the occurrence of event {𝕐 ≤ y}, is defined as

ℙ
{
{𝕏 ≤ x} || {𝕐 ≤ y}

}
=

ℙ {{𝕏 ≤ x} ∩ {𝕐 ≤ y}}
ℙ {{𝕐 ≤ y}}

. (25)
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3.10 Independence of Random Variables

The event {𝕏 ≤ x} is said to be independent of event {𝕐 ≤ y} if the occurrence of

the former does not affect the occurrence of the later, i.e.,

ℙ
{
{𝕏 ≤ x} || {𝕐 ≤ y}

}
= ℙ {{𝕏 ≤ x}} . (26)

Consequently, if the random variables 𝕏 and 𝕐 are independent, from Eq. (25)

we see that

ℙ {{𝕏 ≤ x} ∩ {𝕐 ≤ y}} = ℙ {𝕏 ≤ x} ℙ {𝕐 ≤ y} . (27)

This also implies that

P𝕏𝕐 (x, y) = P𝕏(x)P𝕐 (y), (28)

and

p𝕏𝕐 (x, y) = p𝕏(x) p𝕐 (y). (29)

3.11 Random Process

A random process 𝕌, indexed by t ∈  , is a mapping

𝕌 ∶ (t, 𝜔) ∈  × Ω → 𝕌(t, 𝜔) ∈ ℝ, (30)

such that, for fixed t, the output is a random variable 𝕌(t, ⋅), while for fixed 𝜔, 𝕌(⋅, 𝜔)
is a function of t. In other words, it is a collection of random variables indexed by a

parameter. Roughly speaking, a random process, also called stochastic process, can

be thought of as a time-dependent random variable.

4 Parametric Probabilistic Modeling of Uncertainties

This section discusses the use of the parametric probabilistic approach to describe

uncertainties in physical systems. Our goal is to provide the reader with some key

ideas behind this approach and call attention to the fundamental issues that must be

taken into account. The exhibition is based on [13, 15] and use a simplistic example

to discuss the theory.
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Fig. 10 Mechanical system

composed by a fixed spring

and a constant force

k

u

f

4.1 A Simplistic Stochastic Mechanical System

Consider the mechanical system which consists of a spring fixed on the left side of

a wall and being pulled by a constant force on the right side (Fig. 10). The spring

stiffness is k, the force is represented by f , and the spring displacement is denoted

by u. A mechanical-mathematical model to describe this system behaviour is given

by

k u = f , (31)

from where we get the system response

u = k−1 f . (32)

4.2 Stochastic Model for Uncertainties Description

We are interested in studying the case where the above mechanical system is subject

to uncertainties on the stiffness parameter k. To describe the random behaviour of

the mechanical system, we employ the parametric probabilistic approach.

Let us use the probability space (Ω,˚,ℙ), where the stiffness k is modeled as the

random variable 𝕂 ∶ Ω → ℝ. Therefore, due to result of the relationship imposed

by Eq. (32), the displacement u is also uncertain, being modeled as a random vari-

able 𝕌 ∶ Ω → ℝ, which respects the equilibrium condition given by the following

stochastic equation

𝕂𝕌 = f . (33)

It is reasonable to assume that the deterministic model is minimally represen-

tative, and corresponds to the mean of 𝕂, i.e., m𝕂 = k. Additionally, for physical

reasons, 𝕂 must have a finite variance. Thus, 𝕂 is assumed to be a second-order

random variable, i.e., 𝔼
{
𝕂2}

< +∞.
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4.3 The Importance of Knowing the PDF

Now that we have the random parameter described in a probabilistic context, and

a stochastic model for the system, we can ask ourselves some questions about the

system response. For instance, to characterize the system response central tendency,

it is of interest to know the mean of 𝕌, denoted by m𝕌.

Since m𝕂 is a known information about 𝕂 (but p𝕂 is unknown), we can ask our-

selves: Is it possible to compute m𝕌 with this information only? The answer for this

question is negative. The reason is that 𝕌 = 𝕂−1 f , so that

m𝕌 = 𝔼
{
𝕂−1 f

}

=
∫ℝ

k−1 f p𝕂(k) dk,

and the last integral can only be calculated if p𝕂 is known. Once the map g(k) = k−1 f
is nonlinear, 𝔼 {g (𝕂)} ≠ g (𝔼 {𝕂}).

Conclusion: In order to obtain any statistical information about model response, it
is absolutely necessary to know the probability distribution of model parameters.

4.4 Why Can’t We Arbitrate Distributions?

As the knowledge of the probability distribution of 𝕂 is necessary, let’s assume that

it is Gaussian distributed. In this way,

p𝕂(k) =
1

√
2𝜋 𝜎

2
𝕂

exp

{

−
(k − m𝕂)2

2 𝜎2
𝕂

}

, (34)

whose support is the entire real line, i.e., Supp p𝕂 = (−∞,+∞).
The attentive reader may question, at this point, that from the physical point of

view, make no sense use a Gaussian distribution to model a stiffness parameter, since

𝕂 is always positive. This is true and makes the arbitrary choice of a Gaussian dis-

tribution inappropriate. However, this is not the only reason against this choice.

For physical considerations, it is necessary that the model response𝕌 be a second-

order (finite variance) random variable, i.e., . 𝔼
{
𝕌2}

< +∞. Is this possible when
we arbitrate the probability distribution as Gaussian? No way! Just do a simple

calculation
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𝔼
{
𝕌𝟚} =𝔼

{
𝕂−𝟚 f 2

}

=
∫ℝ

k−2 f 2 p𝕂(k) dk

=
∫

+∞

k=−∞
k−2 f 2

⎛
⎜
⎜
⎜
⎝

1
√

2𝜋 𝜎

2
𝕂

exp

{

−
(k − m𝕂)2

2 𝜎2
𝕂

}⎞
⎟
⎟
⎟
⎠

dk

= +∞.

(35)

In fact, we also have 𝔼 {𝕌} = m𝕌 = +∞.

The Gaussian distribution is a bad choice since 𝕂 must be a positive-valued ran-

dom variable (almost sure). Thus, we know the following information about 𝕂:

∙ Supp p𝕂 ⊆ (0,+∞) ⟺ 𝕂 > 0 a.s.
∙ m𝕂 = k > 0 is known

∙ 𝔼
{
𝕂2}

< +∞

All these requirements are verified by the exponential distribution, in which the PDF

is given by the function

p𝕂(k) = 1(0,+∞)(k)
1

m𝕂
exp

{

− k
m𝕂

}

, (36)

where 1(0,+∞) the indicator function of the interval (0,+∞).
However, we still have

𝔼
{
𝕌𝟚} =𝔼

{
𝕂−2 f 2

}

=
∫ℝ

k−2 f 2 p𝕂(k) dk

=
∫

+∞

k=0
k−2 f 2

(
1

m𝕂
exp

{

− k
m𝕂

})

dk

= +∞,

(37)

once the function k ↦ k−2 diverges in k = 0. Thus, in order to 𝔼
{
𝕌2}

< +∞, we

must have 𝔼
{
𝕂−2}

< +∞.

Conclusion: Arbitrate probability distributions for parameters can generate a sto-
chastic model that is inconsistent from the physical/mathematical point of view.

4.5 An Acceptable Distribution

In short, an adequate distribution must satisfy the conditions below
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∙ Supp p𝕂 ⊆ (0,+∞) ⟹ 𝕂 > 0 a.s.
∙ m𝕂 = k > 0 is known

∙ 𝔼
{
𝕂2}

< +∞
∙ 𝔼

{
𝕂−2}

< +∞.

The gamma distribution satisfies all the conditions above so that it is an acceptable

choice. Its PDF is written as

p𝕂(k) = 1(0,+∞)(k)
1

m𝕂

𝛿

−2𝛿−2𝕂
𝕂

Γ
(
𝛿

−2
𝕂
)
(
k∕m𝕂

)
𝛿

−2
𝕂 −1 exp

{

−
k∕m𝕂

𝛿

2
𝕂

}

, (38)

where 0 ≤ 𝛿𝕂 = 𝜎𝕂∕m𝕂 < 1∕
√
2 is a dispersion parameter, andΓ denotes the gamma

function

Γ(𝛼) =
∫

+∞

t=0
t𝛼−1 e−t dt. (39)

Conclusion: Probability distributions for model parameters must be objectively con-
structed (never arbitrated), and take into account all available information about the
parameters.

4.6 How to Safely Specify a Distribution?

In the previous example, we have chosen a suitable probability distribution by ver-

ifying if the candidate distributions satisfy the constraints imposed by physical and

mathematical properties of the model parameter/response. However, this procedure

is not practical and does not provide a unique distribution as a possible choice. For

instance, in the spring example, uniform, lognormal and an infinitude of other dis-

tributions are also acceptable (compatible with the restrictions).

Thus, it is natural to ask ourselves if it is possible to construct a consistent sto-

chastic model in a systematic way. The answer for this question is affirmative, and

the objective procedure to be used depends on the scenario.

Scenario 1: large amount of experimental data is available

The usual procedure in this case employs nonparametric statistical estimation to

construct the random parameter distribution from the available data [13, 15, 43].

Suppose we want to estimate the probability distribution of a random variable 𝕏,

and for that we have N independent samples of 𝕏, respectively denoted by X1
, X2

,

…, XN
.
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Assuming, without loss of generality, that X1
< X2

< ⋯ < XN
, we consider an

estimator for P𝕏(x) given by

̂PN(x) =
1
N

N∑

n=1
 (x − Xn) , (40)

where  is defined as

 (x − Xn) =

{
1 if x ≥ Xn

0 if x < Xn
.

(41)

This estimator, which is mean-square consistent

𝔼
{
̂PN(x)

}
= P𝕏(x), (42)

and unbiased

lim
N→+∞

𝔼
{(

̂PN(x) − P𝕏(x)
)2

}

= 0, (43)

is known as the empirical distribution function or the empirical CDF [13, 15, 43,

44].

If the random variable admits a PDF, it is more common to estimate its probability

distribution using a histogram, that is an estimator for p𝕏(x). To construct such a

histogram, the first step is to divide the random variable support into a denumerable

number of bins m, where

m = [(m − 1) h,m h] , m ∈ ℤ, (44)

being h the bin width. Then we count the number of samples in each of the bins m,

denoting this number by 𝜈m. After that, we normalize the counter (dividing by Nh)

to obtain the normalized relative frequency 𝜈m∕ (Nh). Finally, for each bin m, we

plot a vertical bar with height 𝜈m∕ (Nh) [43, 44].

In analytical terms (see [43, 44]) we can write this as PDF estimator as

p̂N(x) =
1

N h

+∞∑

m=−∞
𝜈m 1m

(x), (45)

where 1m
(x) is the indicator function of m, defined as

1m
(x) =

{
1 if x ∈ m

0 if x ∉ m.
(46)
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Fig. 11 These samples are realizations of a standard Gaussian random variable
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Fig. 12 a Estimators for the probability distribution of 𝕏: the empirical CDF, and b a histogram

Both estimators above are easily constructed, but they require a large number of

samples in order to obtain a reasonable approximation [43, 44].

In practice, these estimators are used when we do not know the random variable

distribution. However, to illustrate the use of these tools, let us consider a dataset

with N = 100 samples obtained from the (standard) Gaussian random variable 𝕏,

with zero mean and unity standard deviation. Such samples are illustrated in Fig. 11.

Considering these samples, we can construct the two estimators shown in Fig. 12,

with the empirical CDF on the left and a histogram on the right.

Scenario 2: little or even none experimental data is available

When very little or no experimental data is available, to the best of the author’s

knowledge, the most conservative approach uses the Maximum Entropy Principle
(MEP) [15, 45, 46, 48], with parametric statistical estimation, to construct the ran-

dom parameter distribution. If no experimental data is available, this approach takes

into account only theoretical information which can be inferred from the model

physics and its mathematical structure to specify the desired distribution.
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The MEP can be stated as follows: Among all the (infinite) probability distrib-
utions, consistent with the known information about a random parameter, the most
unbiased is the one which corresponds to the maximum of entropy PDF.

Using it to specify the distribution of a random variable 𝕏 presupposes finding

the unique PDF which maximizes the entropy (objective function)

S
(
p𝕏

)
= −

∫ℝ
p𝕏(x) ln

(
p𝕏(x)

)
dx, (47)

respecting N + 1 constraints (known information) given by

∫ℝ
gk (𝕏) p𝕏(x) dx = 𝜇k, k = 0,… ,N, (48)

where gk are known real functions, with g0(x) = 1, and 𝜇k are known real values,

being 𝜇0 = 1. The restriction associated with k = 0 corresponds to the normalization

condition of p𝕏, while the other constraints, typically, but not exclusively, represent

statistical moments of 𝕏.

To solve this problem, the method of Lagrange multipliers is employed, and intro-

duces other (N + 1) unknown real parameters 𝜆k (Lagrange multipliers). We can

show that if this optimization problem has a solution, it actually corresponds to a

maximum and is unique, being written as

p𝕏(x) = 1(x) exp
(
−𝜆0

)
exp

(

−
N∑

k=1
𝜆k gk(x)

)

, (49)

where  = Supp p𝕏 here denotes the support of p𝕏, and 1(x) is the indicator func-

tion of .

The Lagrange multipliers, which depend on 𝜇k and , are identified with the aid

of the restriction defined in Eq. (48) using techniques of parametric statistics.

4.7 Using the Maximum Entropy Principle

In this section we exemplify the use of the MEP to consistently specify the proba-

bility distribution of a random variable 𝕏.

Suppose that Supp p𝕏 = [a, b] is the only information we know about 𝕏. In this

case, a consistent (unbiased) probability distribution for 𝕏 is obtained solving the

following optimization problem:
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Maximize

S
(
p𝕏

)
= −

∫ℝ
p𝕏(x) ln

(
p𝕏(x)

)
dx

= −
∫

b

x=a
p𝕏(x) ln

(
p𝕏(x)

)
dx,

subjected to the constraint

1 =
∫ℝ

p𝕏(x) dx

=
∫

b

x=a
p𝕏(x) dx.

To solve this optimization problem, first we define the Lagrangian


(
p𝕏, 𝜆0

)
= −

∫

b

x=a
p𝕏(x) ln

(
p𝕏(x)

)
dx − (𝜆0 − 1)

(

∫

b

x=a
p𝕏(x) dx − 1

)

, (50)

where 𝜆0 − 1 is the associated Lagrange multiplier. It is worth mentioning that 𝜆0
depends on the known information about 𝕏, i.e. 𝜆0 = 𝜆0(a, b).

Then we impose the necessary conditions for an extreme

𝜕

𝜕p𝕏

(
p𝕏, 𝜆0

)
= 0, and

𝜕

𝜕𝜆0

(
p𝕏, 𝜆0

)
= 0, (51)

whence we conclude that

p𝕏(x) = 1[a,b](x) e−𝜆0 , and
∫ℝ

p𝕏(x) dx = 1. (52)

The first equation in Eq. (52) provides the PDF of 𝕏 in terms of the Lagrange

multiplier 𝜆0, while the second equation corresponds to the known information about

this random variable (the normalization condition).

In order to represent p𝕏 in terms of the known information (a and b), we need to

find the dependence of 𝜆0 with respect to these parameters. To this end, let’s go to

replace the expression of p𝕏 into the second equation of Eq. (52), so that

∫ℝ
1[a,b](x) e−𝜆0 dx = 1 ⟹ e−𝜆0 (b − a) = 1, ⟹ e−𝜆0 = 1

b − a
, (53)

from where we get

p𝕏(x) = 1[a,b](x)
1

b − a
, (54)
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Table 1 Maximum entropy distributions for given known information

Support Known information Maximum entropy PDF

[a, b] – p𝕏(x) = 1[a,b](x)
1

b−a
(uniform in [a, b])

[a, b] 𝔼 {𝕏} = m𝕏 ∈ [a, b] p𝕏(x) = 1[a,b](x) exp
(
𝜆0 − x 𝜆1

)

𝜆0 = 𝜆0(a, b,m𝕏)
𝜆1 = 𝜆1(a, b,m𝕏)

[a, b] 𝔼 {𝕏} = m𝕏 ∈ [a, b]
𝔼
{
𝕏2} = m2

𝕏 + 𝜎

2
𝕏

p𝕏(x) = 1[a,b](x) exp
(
𝜆0 − x 𝜆1 − x2 𝜆2

)

𝜆0 = 𝜆0(a, b,m𝕏, 𝜎𝕏)
𝜆1 = 𝜆1(a, b,m𝕏, 𝜎𝕏)
𝜆2 = 𝜆2(a, b,m𝕏, 𝜎𝕏)

[0, 1] 𝔼 {ln (𝕏)} = p, |p| < +∞
𝔼 {ln (1 −𝕏)} = q, |q| < +∞

p𝕏(x) = 1[0,1](x)
Γ(a+b)
Γ(a)Γ(b)

xa−1 (1 − x)b−1

a =
(
m𝕏∕𝛿2𝕏

) (
1∕m𝕏 − 𝛿

2
𝕏 − 1

)

b = a
(
1∕m𝕏 − 1

)

(beta with shape parameters a and b)

(0,+∞) 𝔼 {𝕏} = m𝕏 > 0 p𝕏(x) = 1(0,+∞)(x)
1

m𝕏
exp

(
− x

m𝕏

)

(exponential with mean m𝕏)

(0,+∞) 𝔼 {𝕏} = m𝕏 > 0
𝔼 {ln (𝕏)} = q, |q| < +∞

p𝕏(x) = 1(0,+∞)(x)
1

m𝕏

𝛿

−2𝛿−2𝕏
𝕏

Γ(𝛿−2𝕏 )
(
x∕m𝕏

)
𝛿

−2
𝕏 −1 exp

{
− x∕m𝕏

𝛿

2
𝕏

}

(gamma with mean m𝕏 and variation coefficient 𝛿𝕏)

(0,+∞) 𝔼 {ln (𝕏)} = 𝜇 ∈ ℝ
𝔼
{
(ln (𝕏) − 𝜇)2

}
= 𝜎

2
, 𝜎 > 0

p𝕏(x) =
1

x
√
2𝜋 𝜎

2
exp

{
− (ln (x)−𝜇)2

2 𝜎2

}

𝜇 = ln
(

m𝕏
/√

1 + 𝛿

2
𝕏

)

𝜎 =
√

ln
(
1 + 𝛿

2
𝕏
)

(lognormal with location 𝜇 and scale 𝜎)

(−∞,+∞) 𝔼 {𝕏} = m𝕏 ∈ ℝ
𝔼
{
𝕏2} = m2

𝕏 + 𝜎

2
𝕏

p𝕏(x) =
1√
2𝜋 𝜎

2
𝕏

exp
{
− (x−m𝕏)2

2 𝜎2
𝕏

}

(normal with mean m𝕏 and variance 𝜎

2
𝕏)

which corresponds to the PDF of a uniform distributed random variable over the

interval [a, b].
Other cases of interest, where the optimization problem solution is a known dis-

tribution, are shown in Table 1. In the fourth line of this table the maximum entropy

PDF corresponds to a gamma distribution. Once any gamma random variable has

finite variance, and 𝔼 {ln (𝕏)} = q, |q| < +∞, which implies 𝔼
{
𝕂−2}

< +∞, the

known information in this case is equivalent to those listed in Sect. 4.5, required to

be satisfied by the distribution of 𝕂. For this reason, we presented the gamma dis-

tribution as the acceptable choice in Sect. 4.5. It corresponds to the most unbiased

choice for that set of information.

For other possible applications of the maximum entropy principle and to go

deeper into the underlying mathematics, we recommend the reader to see the ref-

erences [15, 47–54].
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5 Calculation of Uncertainty Propagation

Once one or more of the model parameters are described as random objects, the sys-

tem response itself becomes random. To understand how the variabilities are trans-

formed by the model, and influence in the response distribution, is a key issue in UQ,

known as uncertainty propagation problem. This problem can only be attacked after

the construction of a consistent stochastic model.

Very succinctly, we understand the uncertainty propagation problem as to deter-

mine the probability distribution of model response once we know the distribution of

model input/parameters. A schematic representation of this problem is can be seen

in Fig. 13.

The methods for calculation of uncertainty of propagation are classified into two

types: non-intrusive and intrusive.

Non-intrusive methods: These methods of stochastic calculation obtain the random

problem response by running an associated deterministic problem multiple times

(they are also known as sampling methods). In order to use a non-intrusive method,

it is not necessary to implement the stochastic model in a new computer code. If

a deterministic code to simulate the deterministic model is available, the stochas-

tic simulation can then be performed by running the deterministic program several

times, changing only the parameters that are randomly generated [55].

Intrusive methods: In this class of stochastic solvers, the random problem response is

obtained by running a customized computer code only once. This code is not based

on the associated deterministic model, but on a stochastic version of the computa-

tional model [2].

5.1 Monte Carlo Method: A Non-intrusive Approach

The most frequently used technique to compute the propagation of uncertainties of

random parameters through a model is the Monte Carlo (MC) method, originally

proposed by [56], or one of its variants [57].

An overview of the MC algorithm can be seen in the Fig. 14. First, the MC method

generates N realizations (samples) of the random parameters according to their joint

Fig. 13 Schematic

representation of uncertainty

propagation problem

Uncertainty Propagation

computational
model

input
PDF

output
PDF
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Fig. 14 An overview of monte carlo algorithm

distributions (stochastic model). Each of these realizations defines a deterministic

problem which is then solved (processing) using a deterministic technique, gener-

ating a certain amount of data. Then, these data are combined through statistics, to

access the response of the random system [55, 58]. By the nature of the algorithm,

we note that MC is a non-intrusive method.

It can be shown that if N is large enough, the MC method describes very well the

statistical behaviour of the random system. However, the rate of convergence of this

non-intrusive method is very slow—proportional to the inverse of number of samples

square root, i.e., ∼1∕
√

N. Therefore, if the processing time of a single sample is very

large, this slow rate of convergence makes MC a very time-consuming method—

unfeasible to perform simulation of complex models. Meanwhile, the MC algorithm

can easily be parallelized, once each realization can be processed separately and then

the results aggregated to compute the statistics [55].

Because of its simplicity and accuracy, MC is the best method to compute the

propagation of uncertainties, whenever its use is feasible. Thus, it is recommended

that anyone interested in UQ master this technique. Many good references about MC

method are available in the literature. For further details, we recommend [58–64].

5.2 Stochastic Galerkin Method: An Intrusive Approach

When the use of MC method is unfeasible, the state of art strategy is based on the so-

called stochastic Galerkin method. This spectral approach was originally proposed

by [65, 66], and became very popular in the last 15 years, especially after work of

[67]. It uses a Polynomial Chaos Expansion (PCE) to represent the stochastic model

response combined with a Galerkin projection to transform the original stochastic

equations into a system of deterministic equations. The resulting unknowns are the

coefficients of the linear combination underlying to the PCE.
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Once PCE theory is quite rich and extensive, we do not have space in this manu-

script to cover it in enough detail, but to the reader interested in digging deeper on

this subject is encouraged to see the references [2, 3, 8, 68–70].

6 Concluding Remarks

In this manuscript, we have argued about the importance of modeling and quantifica-

tion of uncertainties in engineering projects, advocating in favor of the probabilistic

approach as a tool to take into account the uncertainties. It is our thought that spec-

ifying an envelope of reliability for curves obtained from numerical simulations is

an irreversible tendency. We also introduced the basic probabilistic vocabulary to

prepare the reader for deeper literature on this subject, and discussed the key points

of the stochastic modeling of physical systems, using a simplistic mechanical system

as a more in-depth example.
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Towards a More Robust Understanding
of the Uncertainty of Wind Farm
Reliability

Carsten H. Westergaard, Shawn B. Martin, Jonathan R. White,
Charles M. Carter and Benjamin Karlson

Abstract Understanding wind farm reliability from various data sources is highly
complex because the boundary conditions for the data are often undocumented and
impact the outcome of aggregation significantly. Sandia National Laboratories has
been investigating the reliability of wind farms through the Continuous Reliability
Enhancement Wind (CREW) project since 2007 through the use of Supervisory
Control and Data Acquisition (SCADA) data from multiple wind farms in the fleet
of the USA. However, data streaming from sample wind farms does not lead to
better understanding as it is merely a generic status of those samples. Economic
type benchmark studies are used in the industry, but these do not yield much
technical understanding and give only a managerial cost perspective. Further, it is
evident that there are many situations in which average benchmark data cannot be
presented in a meaningful way due to discrete events, especially when the data is
only based on smaller samples relative to the probability of the events and the
sample size. The discrete events and insufficient descriptive tagging contribute
significantly to the uncertainty of a fleet average and may even impair the way we
communicate reliability. These aspects will be discussed. It is speculated that some
aspects of reliability can be understood better through SCADA data-mining tech-
niques and considering the real operating environment, as, it will be shown that
there is no particular reason that two identical wind turbines in the same wind farm
should have identical reliability performance. The operation and the actual envi-
ronmental impact on the turbine level are major parameters in determining the
remaining useful life. Methods to normalize historical data for future predictions
need to be developed, both for discrete events and for general operational
conditions.
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1 Introduction

The wind industry has improved its operational practices tremendously over the
past decades leading to tremendous global and local successes. According to the
Global Wind Energy Council, a total of 370 GW was installed worldwide by the
end of 2014, of which approximately 66 GW was installed in the USA. The fifth
largest territory in the world is Texas, which according to recent numbers [1] gets
11.7% of its energy from a wind fleet of 16 GW worth of wind turbines. The wind
energy power price in the interior of the USA is low and competitive only
$23/MWh [2] making new installed wind equally attractive to new installed gas
generation. The two sources, wind and gas, each have approximately half the
market of new capacity installed in the past years.

A big contribution to the success of wind energy is the new technology intro-
duced in many of the components of the wind turbines [3] which has driven down
cost and increased efficiency. The huge rotor size is the most noticeable develop-
ment; the size has doubled in the past 15 years, and so more than 80% of the rotors
entering the market are over 100 m in diameter with an average nameplate rating of
2 MW [2]. This improvement results in capacity factors approaching 50%.

A second contributor to improved cost is both the increased reliability and the
operational practices. In the early 80s, reliability was low and availability as low as
20% [4]. Costs were unreasonably high but today the O&M costs of new projects
are of the order of $8/MWh [2]. The availability is beyond 98% [5]. This has been
achieved by intensive monitoring from large operation centers, where owners of
wind farms have reduced the downtime significantly by a fast response and secured
availability for new spare equipment. The improved O&M cost also reflects the
improvements in technology and design procedures.

In spite of these improvements, owners often comment that O&M expenditures
either have increased or are too high. This can, in part, be understood from the large
spread of O&M cost one can observe (see, for example [2]). Individual wind farm
projects do not behave similarly, meaning that unplanned events are an important
part of O&M cost, and, therefore, the reliability of the wind farm.

Three elements contribute to unplanned reliability events. First, new turbine
technology is constantly entering the market, manufacturing flaws (acceptable and
unacceptable) are present and new and/or unexpected failure modes occur. These
types of failures typically show up in the initial life of the wind farm and contribute
to the beginning of the classical bathtub curve. The failure modes are often covered
under warranty and thus are of a proprietary nature, and therefore the cost and
corrective action is not documented for future use. Frequently, the flaws are
overestimated in future planning or studies for the same reason. The second con-
tributor is poor operational practice and a lack of consistent documentation,
including the tagging of reliability events. However, significant resources have now
been put into improvements. The third contributor is truly unforeseen events or
systematic bias and the frequency and nature of the events is typically not
accounted for.
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Removing reliability events of proprietary nature from statistics will remove any
technical bias in our understanding. From a managerial perspective, such events
should be allocated separately. Better tagging and descriptions of the events could
lead to more opportunity for description of rare but costly unforeseen events to be
investigated. Those are, for example, driven by external environmental conditions
and operational practices. Finally, a data-driven description of each turbine’s
expected reliability performance could support a more accurate description of future
expectations.

In this article, it will be discussed how important data quality and tagging is
before aggregating. Further, it will be discussed how the boundary conditions
(especially the external environmental impact) also need to be included with the
data collection in order for the data comparison to be useful. Finally, it will be
shown that SCADA data provides insight to some of these external impacts and
how this knowledge can then support improvement of monitoring of wind farms.

2 The Challenge of Collecting Data

The largest single challenge in collecting data on reliability from wind farms is the
proprietary nature of the data. The second largest challenge is that no one single
participant has an overarching understanding of the entire fleet. Turbine suppliers
know their own products and may be collecting data from those in the first few
years of the wind farm life while the assets are still under warranty. However, the
turbine suppliers do not typically have much knowledge about the remaining time
of the turbine life. The owners often know little about the first years of operations
(because the wind farm is under service agreement with the turbine supplier), but
they do, on the other hand, have 20 years of operational experience with multiple
turbine platforms, knowledge which is often partially shared with the independent
service providers (see Fig. 1).

Fig. 1 Knowledge in the reliability space
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However, the turbine supplier often has access to data that the owner does not,
such as detailed design documentation and high speed turbine controls data (not to
be confused with the SCADA data). The component suppliers know everything
about their products and the physics of the product, but only a little about the
physical conditions to which their product component is subjected. Efforts like the
Gearbox Reliability Collaborative (run by National Renewable Energy Laboratory
(NREL)), help close the gap for a narrow set of challenges such as initially
described in [6]. The Blade Reliability collaborative (BRC) (run by Sandia National
Laboratories) is a similar initiative. The efforts are focused on bringing the physics
of materials, parts and physical conditions together with testing and monitoring
(including condition monitoring or predictive health monitoring).

The Continuous Reliability Enhancement for Wind (CREW) efforts [5, 7–9],
also run by Sandia National Laboratories, are aimed at generating macroscopic
technical data to better understand the system as a whole, with a focus on devel-
oping methods which can be used to describe the external boundary conditions of
the wind farm operation down to the turbine level. This is particularly challenging
because of the large individual variability from turbine to turbine, and because the
individual event data set may be extremely sparse. Further, the descriptive char-
acteristics from event to event can be quite inconsistent. A pathway to a more
robust approach is described in [9].

Other overarching data bases do exist (such as grid compliance by North
American Reliability Council (NERC)) or are in preparation for other purposes,)
such as the economic studies typically performed by private fee-based organiza-
tions. Again, such data is generally not sufficiently technically detailed to be useful
understanding technical trends.

As discussed above, quantifying the reliability in general terms is difficult. Based
on many different sources (such as [2, 5, 10–13] along with experience and con-
versations with different organizations), Table 1 reflects an indicative weighted
approach indicating state-of-the-art for a fictive 2 MW geared turbine. While it is

Table 1 Indicative cost and occurrence of unplanned reliability for a fictive 2 MW turbine in the
USA territory. The total lifetime cost is $516,000 whereof $330,000 is replacement cost. The cost
accumulates to approximately $5/MWh produced energy. The unplanned cost is about half of the
total cost. The objective of this table is not to give accurate numbers, but an order of magnitude

Item Relative
cost

Annual failure rate of
repairable items

Fraction of fleet which will experience
major replacement in lifetime

Blades 29% 16% 14%
Gear and
bearings

36% 6% 42%

Generator 22% 3% 29%
Other 9% 39%
Force
outage or
resets

4%
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common wisdom in the community that gear and bearings have caused challenges
in the past, blades have been ignored at large. As seen, the cost of blade failures is
similar to that of gear and bearings which is one reason it is expected to see more
focus on blades in the coming years.

3 Unplanned Discrete Events

As discussed in the introduction, reliability events of a proprietary nature are,
generally speaking, inaccurate indicators of future behavior either because they are
associated with initial failures due to, for example, manufacturing flaws or because
they are associated with some sort of upgrade by the manufacturer. It can be
difficult to separate such events purely on a time basis. A recent presentation [11]
showed blade failure sorted by blade types across an 8 GW fleet. One particular
blade type showed a large number of events 3 years into the data (approximately
four times larger than the average over 6 years) but with no failure at the end of the
6 year period. Presumably this was associated with events of proprietary nature.
Further, one has to be aware that blade inspections are a manual and labor intensive
process which may only be executed every 3 years. Therefore, the probability of
detecting flaws can include significant delays from the origin of the damage.

Comparing blade failures (reported in [11] and [12]) from two different wind
farm owners, it is apparent that the similar physical symptoms of blade failures are
not tagged in a similar manner. This has, in part, to do with a lack of standards but
also the practical difficulties actually tracking work orders and field reports. As an
example, one of the reports calls out blade damages from lightning (which often
results in damages near the tip of the blades and frequently near the trailing edge in
the tip region). The second report, however, does not call out lightning and only
reported trailing edge damages in general which could have many different root
causes. Although this seems like a very simple case, the operational complexity of
collecting such data from across many geographical locations and a diverse
workforce, cannot be ignored. The uncertainty is real and it makes it difficult (if not
impossible) to aggregate statistical data without unnecessary uncertainty.

Even if the above blade failure data could be accurately aggregated precisely for
lightning damages, one has to be very careful in the interpretation of the data as
common averages do not describe the issues at hand. Firstly, the number of thun-
derstorm days has large regional differences. For the USA, this ranges from almost
no days in California and up to 75 days in the Mid-west. It would not be reasonable
to assume a fleet average directly across these regions with such big differences in
exposure to risk. Secondly, landscape exposure and turbine height plays an
important role. The IEC standard [14] reports a height-square sensitivity, but in [10],
a turbine manufacturer examines their historical fleet performance from very small
turbines to large modern turbines disclosing a probability of strike sensitive to the
height-in-the-fourth-power (with or without failures occurring). Now this level of
sensitivity would mean that newer turbines should be extremely exposed since they
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are much taller than just a decade ago. Although lightning damages in blades are
significant (about 15% of all blade failures according to [11]), the technical
improvement of lightning diverter systems has mitigated this large sensitivity.

The above examples highlight the difficulties in quantifying the reliability of
wind turbine components because both the boundary conditions for the observa-
tions and the failure mechanisms are unknown or inaccurately reported. Further-
more, resorting to reducing the samples to very specific components may be
challenging because the number of samples are usually low. If, for example, the
annual blade failure rate is 16% (see Table 1), and this is distributed evenly on 20
major failure modes in a fleet of 1000 turbines, then only 8 event samples are
retrieved per year. Out of these 8 samples, it will still be necessary to quantify the
similarities in boundary conditions and failure modes, so aggregation becomes
reasonable. If all data from the USA fleet were collected, we would have about 250
events per failure mode per year on record if all market players were contributing
their data to the same standards.

It is clear from this discussion that meaningful aggregation of reliability data
begins with a systematic inclusion of the boundary conditions of the failures:

• Extreme wind with static loading
• Extreme wind with dynamic events (such as vibration)
• Lightning characteristics
• Environmentally induced erosion, corrosion or similar deterioration
• Ice and extreme cold
• Operation or maintenance variance

4 SCADA Data Mining and Modeling Potential

Modern wind farms are instrumented with a large number of sensors (as many as
250 sensors per turbine) which can be accessed in different ways. In general,
SCADA data is available at least as 10-min averages and can provide an overview
of the historical reliability events such as shown in [5, 13]. This approach may
reveal reliability issues like sensor faults, but even if these are frequent, the asso-
ciated costs may not be of big consequence. In the previous section, it was dis-
cussed how discrete events need better clarification on the boundary conditions, but
what about the average operational parameters which induce the wear and tear? Are
they similar between even two neighboring wind turbines in a wind farm? The
answer is no, but we can use SCADA data to understand turbine to turbine vari-
ations and possibly develop models from such mappings.

Recently, Martin et al. [7, 8] investigated 1.5 years of SCADA data from 67
wind turbines in the mid-west of the USA in order to quantify the impact of turbines
shadowing each other with their wakes by mapping the normalized performance in
narrow directional sectors. The study found that turbines waking each other indeed
impose power deficits and increased power variability when a turbine is directly
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waked by another turbine. This scenario is generally covered by the design foun-
dation in wind turbine design, where an increased turbulence level will be used for
computing turbine loads. However, the study also found that certain combinations
of upstream turbine locations actually caused the downstream turbine to produce
much higher power than its peers. Counter-intuitively, these high power situations
were associated with low power variability, and these effects could affect turbine
reliability both in a positive and a negative way. Figure 2 shows the power vari-
ability across the entire wind farm, and it is clear that none of the turbines had the
same experience in the 1.5 years of investigation, so it should not be expected that
the drive train in each of these machines would exhibit the same lifetime wear.
Furthermore, this illustrates that one cannot consider a simple fleet average to
compare drivetrain reliability performance.

In Fig. 3, three turbines have been selected from the upper middle part of the
wind farm, and the power variability shows the clear characteristics just discussed.
In the right hand part of the figure, the average tower vibration over 1.5 years is
plotted, and a similar pattern is seen across the wind farm. The vibrations show
similar trends, (compared to the power variance), in particular in the wake situation.
In addition to individual wake deficit profiles, a generic wake deficit effect can be

Fig. 2 Directional power
variability in an entire wind
farm mapped over 1.5 year
[7, 8]. The colored lines show
turbines which are closely
spaced
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observed across the entire wind farm. To see this effect, 854 turbine pairs were
selected within 25 rotor diameters and an undistributed direct path was chosen
between them (to observe potential wake effects). From these pairs, the maximum
power variance and the maximum tower vibration level of the downwind turbine
versus distance between the turbine pairs is shown in Fig. 4.

In [8], a simple directional analysis model is demonstrated for power and power
variability to effectively map the inter-turbine variability based only on the geo-
metrical layout of the wind farm. A similar model could potentially be built for a
tower, the blades and other main components in order to reduce the uncertainty
imposed on the analysis of reliability data.

As a last step in this investigation showing large inter-turbine variability, the
number of faults reported in the SCADA system were plotted as a function of

Fig. 3 Left Power variability from 3 turbines in the upper middle in Fig. 1. Right Corresponding
average tower vibration levels recorded over 1.5 years, similar to that of the power variability
(Arrows indicate wind farm flow effects identified in [7, 8])

Fig. 4 Power variability in the direction of any neighboring turbine (waked turbine) from Fig. 3
compared to tower vibration in the same direction. Data is 1.5 years of duration
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direction. In Fig. 5, a subset of the wind farm is shown. As a first observation, it is
clear that none of the turbines exhibit similar fault behavior. It is also surprising that
the majority of faults are not aligned with the two main wind directions (NE and
SSE), but seem to be rather randomly oriented. A deeper analysis could potentially
help understand these patterns, but very little validation opportunity exists for this
particular data set so this has not been pursued further.

The directional analysis confirms that, even for a simple flat site in the Mid-west,
higher fidelity analysis provides great insight to the reliability performance of each
turbine and that bulk averaging may not be a suitable approach. This type of
analysis would be useful in complex landscapes where the turbine performance is
heavily influenced by the landscape features. Methods to normalize historical data
for future predictions of reliability are definitely possible.

5 Conclusion

Discrete events of a proprietary nature need to be isolated from technical bench-
marking as they do not support the prediction of the future. Further, it is clear that
environmentally-induced reliability issues (originating, for example, from wind,

Fig. 5 All fault counts by direction over 1.5 years in subset of the wind farm shown in Fig. 1. It is
noticeable that the faults do generally not align with the main wind directions (NE and SSE)
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ice, moisture, lightning, erosion, and corrosion) are relatively undocumented, in
part due to the lack of attention and the inspection methods and the common
tagging methods. The discrete events are relatively rare so large amounts of data is
required, which suggest that a national effort is required if meaningful technical
information is to be retrieved for future modeling. Methods for normalization with
respect to physical processes (size, technology, location, environment etc.) need to
be included in such efforts. The CREW project was initiated to facilitate this
national effort to collect, normalize, analyze, and benchmark this type of data
essential for understanding wind turbine fleet reliability trends and issues. However,
the success of the CREW project will be determined by the willingness of owners to
participate and share data with Sandia National Laboratories under the protection of
a non-disclosure agreement that ensures the safeguarding of all proprietary data.

A novel directional analysis has been developed for power and power variance
showing that individual turbines performance is linked to their location. It is shown
that a similar analysis of sensors relating to loading on main components could be
successful in modeling the common wear and tear on the individual turbines rather
than using common average approaches.

Finally, a directional analysis of faults occurring in the wind farm may prove
extremely useful and reveal these individualities from turbine to turbine. Deviation
from the expected patterns could yield more accurate detection and
accommodation.

Acknowledgements This work is supported and made possible by the Department of Energy
(DOE) Wind and Water Power Program. Sandia National Laboratories is a multi-program labo-
ratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL85000. Wind farm SCADA data was provided by a
strategic industrial partner.

References

1. R. Fares, Texas poised to integrate more wind, solar energy, blogs.scientificamerican.com
(2016)

2. R. Wiser, M. Bolinger, 2014 Wind technologies market report, Department of Energy (2015)
3. P. Jamison, Innovation in Wind Turbine Design (Wiley, West Sussex, UK, 2011)
4. J.F. Manwell, J.G. McGowan, A.L. Rogers, Wind Energy Explained: Theory, Design and

Application (Wiley, 2009)
5. V.A. Peters, A.B. Ogilvie, C.R. Bond, Continuous Reliability Enhancement for Wind (CREW)

Database: Wind Plant Reliability Benchmark
6. W. Musial, S. Butterfield, B. McNiff, Improving wind Turbine Gearbox Reliability (National

Renewable Energy Laboratory, 2007)
7. S.B. Martin, C.H. Westergaard, J.R. White, New wake effects identified using SCADA data

analysis and visualization, in Proceedings of AWEA Wind Power Conference, Florida (2015)
8. S.B. Martin, C.H. Westergaard, J.R. White, B. Karlson, Visualizing wind farm wakes using

SCADA data. Sandia report (2016)

166 C.H. Westergaard et al.



9. C. Carter, B. Karlson, S. Martin, C.H. Westergaard, Continuous reliability enhancement for
wind (CREW), Program Update. Sandia report (2016)

10. Cannata, Lightning protection system (LPS), Presentation at Windpower Monthly Seminar:
Blade Inspection Damage and Repair Forum, Hamburg (2014)

11. D. Coffey, Blade Reliability case study, in Sandia Wind Turbine Blade Workshop,
Albuquerque, New Mexico (2014)

12. M. Nissim, Blade maintenance for reliability, an owner/operator perspective, in Sandia Wind
Plant Reliability Workshop, Albuquerque, New Mexico (2013)

13. M. Wilkinson, Measuring wind turbine reliability—results of the reliawind project, in
Proceedings of EWEA, Brussels (2011)

14. International Electrotechnical Commission, Wind Turbine Generator Systems—Part 24:
Lightning Protection, IEC/TR 61400-24:2002(E)

Towards a More Robust Understanding of the Uncertainty … 167



Data Analysis in Python: Anonymized
Features and Imbalanced Data Target

Emanuel Rocha Woiski

Abstract Remaining useful life (RUL) of an equipment or system is a prognostic
value that depends on data gathered from multiple and diverse sources. Moreover,
assumed for the sake of the present study as a binary classification problem, the
probability of failure of any system is usually very much smaller than that of the
same system to be in normal operating conditions. The imbalanced outcome (lar-
gely much more ‘normal’ than ‘failure’ states) at any time results from the com-
bined values of a large set of features, some related to one another, some redundant,
and most quite noisy. Previewing the development and requirements of a robust
framework, it is advocated that by using Python libraries, those difficulties can be
dealt with. In the present Chapter, DOROTHEA, a dataset from UCI library with a
hundred thousand of sparse anonymized (i.e. unrecognizable labels) binary features
and imbalanced binary classes are analyzed. For that, an ipython (jupyter) note-
book, pandas are used to import the data set, then some exploratory analysis and
feature engineering are performed and several estimators (classifiers) obtained from
scikit-learn library are applied. It is demonstrated that global accuracy does not
work for this case, since the minority class is easily overlooked by the algorithms.
Therefore, receiver operating characteristics (ROC), Precision-Recall curves and
respective area under curve (AUCs) evaluated from each estimator or ensemble, as
well as some simple statistics, using three hybrid methods, that are, a mix of filter,
embedded and wrapper methods, feature selection strategies, were compared.
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1 Introduction

Remaining useful life (RUL) of a system is a prediction into the future. The proper
estimation of RUL depends on the quality of the data of the current state of the
system and on the capability of obtaining the relevant features from this data. On
the other hand, actual raw data, even carefully collected from the field, is almost
never ready for immediate analysis and interpretation. This is not only because of
missing and/or erroneous values, but also because of the unsuitable features
exposed [1]. In order to be useful, data needs to be processed, altered and properly
conformed to the answers we seek and then, decisions have to be made about
missing values. Some guidelines for this phase, that should never be overlooked,
are described briefly here.

Regarding the models themselves, Machine Learning (ML) has been used to
train the models from the data features, that is, common characteristics for each
instance (e.g. result or outcome), and then used to infer conclusions from (mostly)
unseen new data. Taking into account the overwhelming data production in every
field, more and more analysts and researchers are using semi-automated inference
from the data, that is, ML. As for the selection of models, there are plenty of ML
techniques available, that are adopted to the data and the types of questions to be
answered, as will be shown in the following sections.

Python is a well-known interpreted dynamic open-source multi-platform pro-
gramming language and because of the easiness to learn and the number of
libraries, is increasingly becoming popular among scientists and engineers [2]. In
fact, with the right libraries, one can do almost anything without ever leaving the
language domain, a great advantage for non-programmer scientists and engineers.
However, because of the need for C/C++/Fortran compiled extensions into mod-
ules, Python libraries installation used to represent a big hurdle, but that is not a
problem any longer. For example, Anaconda [3] or Enthought [4] furnish freely all
what is needed to have a full scientific Python distribution, more than 200 packages,
installed in few minutes, regardless of platform.

Therefore, numpy [5], scipy [6], matplotlib [7], Ipython (Jupyter) notebook [8],
pandas [9], statsmodels [10] and scikit-learn [11] are becoming household names in
Science and Engineering in general and among data scientists and engineers in
particular. In the present book chapter, most of those libraries are deployed in the
prediction problem for imbalanced binary classes, given a hundred thousand
anonymized sparse binary features, the DOROTHEA–UCI dataset [12]. The rest of
this chapter is organized as follows: in the Sect. 2 some guidelines for data analysis
are summarized. In Sect. 3, some introductory material on ML is presented. In
Sect. 4, the scikit-learn Python library is introduced, stressing its API (Application
Programming Interface) consistency, which facilitates everything even for the
non-specialized user. The problem stated by the authors of DOROTHEA [12]
dataset and its specifications are established in Sect. 5. In Sect. 6, there is a brief
description of the procedure to load and transform DOROTHEA [12] dataset. The
basic definitions of feature processing are in Sect. 7 and the search procedure for
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duplicated features in Sect. 8. In Sect. 9, the largest, scoring parameters adequate
for imbalanced data are defined, as well as the selected estimators are briefly
described and the results of their application for DOROTHEA [12] are presented
and discussed. Finally, some conclusions on the feasibility of the use of the Python
libraries to DOROTHEA [12] problem, a highly imbalanced classification problem
with several thousand of anonymized features close the chapter in Sect. 10.

2 Guidelines for Data Analysis

Applying the algorithms on data is probably one of the final task that an analyst will
perform. Before considering that, a number of tasks need to be fulfilled. For the
sake of clarity, a recommended checklist is discussed in the sub-sections that follow
[1, 13].

2.1 Answering the Question

• Specify the type of analytical question to be formulated (e.g. exploration,
association, causality) before analyzing the data;

• Define the metric for the success of answering the question correctly;
• Understand the context for the question and the scientific or business

application;
• Record the experimental data; and
• Consider if the question could be answered with the available data.

2.2 Checking the Data

• Plot univariate and multivariate summaries of the data; and
• Check for discrepancies in the data.

2.3 Tidying the Data

• Each variable (feature) should be one column and each observation (instance)
one row;

• Record the procedure for moving from raw to tidy data; and
• Record all parameters, units, and functions applied to the data.
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2.4 Exploratory Analysis

• Identify missing values;
• Make univariate plots (histograms, density plots, boxplots);
• Consider correlations between variables (scatterplots);
• Check the units of all data points to make sure they are in the right range;
• Identify any errors or miscoding of variables; and
• Consider plotting on a log scale.

2.5 Inference

• Identify what large population you are trying to describe;
• Clearly identify the quantities of interest in your model;
• Consider potential confounders;
• Identify and model potential sources of correlation such as measurements over

time or space; and
• Calculate a measure of uncertainty for each estimate on the scientific scale.

2.6 Prediction

• Identify in advance your error measure;
• Split your data into training and validation (testing);
• Use cross validation, resampling, or bootstrapping only on the training data;
• Create features using only the training data;
• Estimate parameters only on the training data;
• Fix all features, parameters, and models before applying to the validation data;

and
• Apply only one final model to the validation (testing) data and report the error

rate.

3 Fundamentals of Machine Learning

A frequently quoted definition of Machine Learning (ML) from [14] says: “A
computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with the experience E”. ML systems semi-automatically learn pro-
grams from data [15] using a number of models in the form of proper algorithms.
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The learning models are categorized in two groups, namely, supervised and un-
supervised models. Supervised learning models make predictions using previously
labeled data, whereas unsupervised learning models extract some structure from
unlabeled data. Depending on the type of outcome (result), ML can be categorized
as classification, in the case of unordered categorical classes, or regression, in the
case of continuous values for the outcomes. There is a third category, reinforcement
learning, a special case of classification, but with emphasis on the rewards, in
which the model has to respond to changes in the environment [16].

There are so many supervised and unsupervised models to choose from, besides
ensembles, i.e., several much weaker individual models working cooperatively to
build a stronger one. For a given application, the best model depends upon a
number of factors, such as the category, the questions to be answered or the
inferences to be made, the selected metrics for success, and the kind of data to be
dealt with. Moreover, almost every model can be tuned, by altering the values of its
many hyperparameters, much like turning radio knobs.

Whereas there are numerous algorithms available, ML can be described as
constituting of three components [17]:

Representation: The learning algorithms must be represented in some formal lan-
guage that the computer can handle and conversely, choosing a representation for a
learner is choosing the set of structures that it can possibly learn.
Evaluation: An evaluation function (also called objective or scoring function) is
needed to distinguish good algorithms from bad ones in some pre-defined sense.
Optimization: A method is needed to search among the algorithms for the
highest-scoring one.

4 The Scikit-Learn Package

Open-source BSD licensed scikit-learn package started as part of the Scikits (SciPy
Toolkits), and is now, alongside pandas, the core of data science operations on
Python. In scikit-learn package there is everything necessary for data preprocessing,
supervised and unsupervised learning, model selection, validation, and error metrics
[18].

One of the great advantages of scikit-learn for scientists and engineers is the API
consistency across all included algorithms, selecting very sensible defaults for the
hyperparameters [19]. Once clearly establishing the problem, that API consistency
allows one to try several models with very little change, in such a way that
experimentation on ML becomes truly accessible to anyone without regard to
mathematics skills or programming skills. Numpy, Pandas and sckit-learn libraries
were employed in the problem analysis presented in this book chapter. A descrip-
tion of the problem is object of the next section.
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5 The Problem

Consider the DOROTHEA [12] dataset applied to UCI ML Repositories [20].
DOROTHEA [12] is just one of the five experiments designed for the NIPS 2003
variable selection benchmark. The dataset with which DOROTHEA [12] was
produced is one of the knowledge discovery in data mining (KDD) Cup 2001.
DuPont Pharmaceuticals graciously furnished the original data set for the KDD Cup
2001 competition.

The task of KDD dataset was to predict which compounds bind to thrombin, a
substance of blood clot. This is a two-class classification, that means each com-
pound (instance) results classified in “active” (positive) or “non active” (negative),
depending on a very sparse binary vector of features (variables), defining a set of
characteristics for each compound. Among many compounds, few truly bind to
thrombin in such a way that positive class outcomes are very rare. That is a case of
imbalanced classes (outcomes). The data was split into training, validation, and test
sets while maintaining the same proportion of samples (examples, instances) of the
positive and negative class in each set. The final classes and samples are distributed
according to Table 1. Notice that there are less than 10% positive (“active”)
instances from a total of 1,950 compounds, in such a way that more than 90% are
negative (“inactive”).

In order to build DOROTHEA [12], only the top ranking 100,000 original
features were kept. For the second half lowest ranked features, the order of the
instances was individually randomly exchanged (in order to create what the
DOROTHEA [12] authors called “random probes”). The order of the instances and
the order of the features were globally randomly permuted to mix the original
training and the test instances and remove any feature order. All features are binary
and anonymized, that is, no feature identification is available, and there are no
missing values. The feature set is very sparse, since less than 1% of the entries are
nonzero (1,776,363 nonzero in 1.95 × 108 entries). The produced data set was
saved as a sparse-binary 1,950 instances × 100,000 features matrix, row-wise
starting from 1. In DOROTHEA [12] feature files, each entry in a row is the
nonzero column position, also starting from 1. Table 2 shows some statistics on the
distribution of nonzero feature values in that matrix. Considering all rows and
respective labels, instance classification is inferred from at most 11,475 nonzero in
100,000 entries.

Table 1 Distribution of
positive and negative classes
among the samples

Label Positive Negative Total

Training 78 722 800
Validation 34 316 350
Test 78 722 800
Total 190 1,760 1,950
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The DOROTHEA [12] dataset is distributed in training, validation and test data
files, for the feature arrays, and training and validation label files, for the binary
class, originally (−1, +1) distribution.

6 Loading the Data

First of all, the files containing training, validation and test data as well as
respective label file (for training and validation), except test label files, not in
DOROTHEA [12] file set, were loaded using pandas [9]. Pandas is a Python
library able to deal with all sorts of malformed data source, even with missing
values, either in text or binary formats. Using numpy masks and taking ‘int8’ (byte)
as dtype, the feature array for each set was constructed. Column positions were
decreased by 1, because of the zero counting. Training, validation and test data
were row-wise concatenated, so that the whole dense 1,950 × 100,000 feature byte
array could be regenerated in memory. All −1 labels (negative class) were con-
verted to 0. Each row position values vector was simply treated as an index array in
such a fashion that a pandas data frame was produced.

7 Performing Feature Engineering

The dimension space is defined by the size of the feature vectors. As the space
dimension grows, the instances, limited in number, become further and further
apart, under any concept of distance, truly an almost empty space, a phenomenon
called “curse of dimensionality” [21, 22]. In the presence of hundreds or thousands
of features, a large number of them are not informative because they are either
irrelevant or redundant to help predicting a class. When the number of features is
high but the number of instances is small, ML gets a difficult task, since the search
space will be sparsely populated and the model will not be able to correctly separate
the relevant data from the noise. Therefore, the feature number had to be consid-
erably reduced. There are two choices: feature extraction and feature selection. By
using feature selection, several features are assembled together in order to obtain
entirely new features. The major difficulty in the interpretation of the relationship
between features and outcomes (results, targets) is the main shortcoming of that
approach, since the original features are hidden from view. On the other hand,

Table 2 Statistics of
non-zero feature values
between classes

Label Min Max Median

Positive 687 11,475 846
Negative 653 3,185 783
All 653 11,475 787
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feature selection has been an important activity in data pre-processing and has been
widely studied in the past few years. Feature selection does not change the features
in any way, just pruning them (reducing their number down) using some proper
algorithm. There are four choices here: filters, wrappers, embedded and hybrid
approaches. Filters use the statistics within the proper data in order to remove the
irrelevant features, without relying in any estimator. Wrappers are built into the
models, taking the role of sorting all the features according to their relevance along
their own estimation procedures. Embedded methods use specially developed
models for the selection of the features. There are many forms to build a hybrid
approach. Whatever the method, features can be either individually ranked or a
subset is selected, always according to some criteria [21, 23–25]. In the present
book chapter, several hybrid approaches, using filters as well as wrapper methods
have been designed and are described further. Nevertheless, duplicated features
have to be removed because they are useless for estimation since they waste time
and processor cycles. In a hundred thousand features, any procedure bringing the
number down without harming their information content is worth.

8 Searching for Duplicated Features

In the search for duplicated features in the whole data, a very fast and efficient
algorithm (see the code in the Appendix), using Python ordered dictionaries,
sparse array and string conversions. The purpose of this algorithm was to reduce
the range of comparisons of row and column values in order to avoid useless
computational expenses to compare redundant data. The transpose of the feature
array was converted row wise in a sparse array and each row was turned into a
string and afterwards, stored into a dictionary key. Every time the same key was
met by the searcher, a duplicated feature vector was detected thus its index was
recorded to be removed afterwards. That way, the size of the remaining feature set
was reduced from 100,000 to 83,218.

Suppose there were duplicated instances but with flipped classes. That was noise
that had to be treated somehow, since would confuse any training procedure.
Therefore, after removing the duplicated features, the same algorithm was used to
search for duplicate instances. There was none, but at least on can remain assured
that there were no duplicated instances in the DOROTHEA [12] data set.

9 The Score Parameters and the Estimators

In supervised classification problems, the model learns from the features about the
probability of any instance belongs to each class, given a threshold value. This
threshold is the probability value chosen to make a decision about the transition of
the categorical classification of any sample target from one class to the other.
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Imbalanced data still presents a challenge for estimators [26, 27]. Information on
binary classification for imbalanced classes is mainly conveyed by the confusion
matrix. This matrix, as shown in Table 3, is built out from the comparisson between
the target values predicted by some algorithm for a selected threshold value.
Comparing the estimates from the model with the real targets (the ground truth), the
confusion matrix is built. Table 3 is one of the several representations of the
confusion matrix in the literature [11]. Along the main diagonal is the TN, classified
as true negative instances, corresponding to the majority class, and the TP, clas-
sified as true positive instances, corresponding to the minority (rare) class. Along
the opposite diagonal, from the top there is the FP, false positive, instances mis-
classified as positive but that are actually negative, and the FN, false negative, the
negative ones that are in fact positive [28–30]. Check that TP + FN is P the total of
34 positive instances in the validation data set, TN + FP is N, the total of 316
negative instances, while TP + FP is the sensitivity to discriminate the true positive
classes.

With TP, TN, FP, FN a number of scoring parameters to evaluate and compare
the quality of the estimates can be defined. The most common scoring parameters,
for a chosen threshold value, are defined in the Eqs. 1–6 [29, 31–33]. Note that the
authors in [32] wrongly exchange TN and FN definitions, although the parameter
formulations are correct.

• True Positive Rate or Recall (Sensitivity):

TPR=
TP

TP+FN
ð1Þ

• False Positive Rate:

FPR=
FP

FP+TN
, ð2Þ

• Precision:

Precision=
TP

TP+FP
, ð3Þ

Table 3 Samples of confusion matrices for a selected threshold value for DOROTHEA [12]

Training Validation
PREDICTED PREDICTED

TRUE VALUES TN FP TOTAL TN FP TOTAL
722 0 722 TN + FP 308 8 316
0 78 78 FN + TP 10 24 34
FN TP 808 FN TP 350
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• F-Measure:

F1= 2
Precision×Recallð Þ
Precision+Recall

, ð4Þ

• Matthew’s correlation (phi) coefficient:

MCC=
TP× TN −FP×FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP+FPð Þ TP+FNð Þ TN +FPð Þ TN +FNð Þp , ð5Þ

• Accuracy:

ACC =
TP+TN
P+N

. ð6Þ

Note that ACC, which is commonly used for supervised classification problems,
is not a reliable scoring parameter in the case of highly imbalanced classes, since
the much larger TN overwhelms the evaluation [26]. In the present book chapter,
receiver operating characteristics (ROC) and Precision-Recall curves were selected
as scoring parameters to evaluate the quality of the fit for each selected estimator.
The ROC curve corresponds to the representation of the TPR × FPR pairs for the
whole range of threshold values [0, 1]. One way to summarize the quality of the fit
is the area under the curve (AUC) for the ROC curve. The same reasoning is made
for the Precision-Recall Curve and its respective AUC, also evaluated using the full
range of threshold values [31]. Although AUC ROC has been put in question as
performance measure, as in [34], it still can be used, together with ROC curve, to
compare estimators [35].

As for the estimators, in order to control over fitting and bias, ensemble clas-
sifiers were selected, with the sole exception of the multi-layer perceptron
(MLP) classifier. In scikit-learn, that class implements a MLP algorithm that trains
by adjusting the values of a set of weights along layers of neurons using back-
propagation, when submitted to the training data and corresponding labels. In
ensemble algorithms, averaging methods represent a class of algorithms in which
several instances of a black-box estimator are applied on random subsets of the
original training set and then their individual predictions are aggregated to produce
a final prediction. For the present book chapter, RandomForest, ExtraTrees and
Bagging classifiers were selected. RandomForest and ExtraTrees are ensembles of
binary decision trees, each one built out of specially defined randomized selection
of features and instances. Bagging classifier is a meta-estimator, that implements a
base estimator several times over randomized inputs [11, 36, 37].

On the other hand, in boosting methods, several base weak estimators are
deployed sequentially in order to reduce the bias of the combined estimator, usually
resulting in a much stronger and powerful ensemble. For the present book chapter,
AdaBoost, GradientTreeBoosting and Xgboost classifiers were selected. AdaBoost
implements a sequential application of weak learners, changing weights at each
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iteration towards improving the wrongly predicted results. GradientTreeBoosting
deploys a sequence of weak learners, usually shallow trees, reforcing each other
outcomes [11, 18].

Some of the classifiers, among them the RandomForest and the ExtraTrees,
produce a list of feature importance, evaluated according to the role of each feature
in the development of the trees. So, in order to reduce further the number of
features, three strategies were employed. In the first strategy, the robust Ran-
domForest classifier was applied on the training data, 1, 2, 3, 4 and 5 times
sequentially, each iteration removing all zero importance features and a last one
developed to stop when reaching a change less than 5% of the current number of
features. That strategy reduced the count to 6,204, 3,395, 2,778, 1,759 and 1,220
features, respectively. In the second strategy, the meta-model SelectfromModel was
employed to the ExtraTrees and then sequentially to the RandomForest classifier to
remove features with importance equal or less than the mean value. That way, the
count was at once reduced to 1,292 features. In the third strategy, a filter was
designed to remove irrelevant features relying on the chi2 and p-values univariate
significance test between features and targets [11, 38]. That reduced the number
from 83,218 to 10,517. With two pass over RandomForest removing all features
with importance less than the mean value, this was further reduced to 491 features,
a worrying cardinality because of the possibility of increased bias. However, in the
tuning, hundreds more estimators (like trees grown) could be employed to com-
pensate. Notice that 491 features correspond to less than 0.5% of the original
100,000 features. Are those the most important or relevant features of the set? This
is further discussed alongside the results.

It has to be stressed that most estimator hyperparameters were tuned by hand
making sure that both classes were always represented in any sampling process.
Also, the validation data set was never used to fit the estimators.

With each reduced feature set, ROC and Precision-Recall curves were drawn for
validation data, after applying the training data on each model, namely: mlp, ada,
bag, ext, ran, gra and xgb. All resulting AUCs can be seen in Tables 4 (ROC) and
5 (Precision-Recall), and the curves in Figs. 1 (ROC) and 2 (Precision-Recall) only
for the second strategy. Compare with Figs. 3 (ROC) and 4 (Precision-Recall) for
the third strategy.

Using the first strategy, the decreasing number of features from 6,204 to 1,220
seemed to produce no great effect on both AUCs. The second strategy brought the
number down to 1,292 and that did not make any difference either. So the third
strategy was designed to use an univariate filter (chi2) followed by a wrapper
(RandomForest) to see what would happen with the AUC scoring under a very
reduced feature set. It is interesting to conclude that the third strategy and its 491
features can cope quite well to the estimation procedure. All the results can be
analyzed in Tables 4 and 5.
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Analyzing the ROC curves and AUC for the positive class with the validation
data for each estimator in Figs. 1 and 3 and one can notice the compromise between
TPR and FPR, that is, one can cope with some FP, as long as the TP is high enough.
The dotted line represents the random choice, for which the AUC is 0.5. Again,
comparing Figs. 1 and 3, there is not much difference between the second and third
strategies. Pay attention to the steepness at the left side and also to the nonlinear
staircase effect. The ideal ROC curve is the one following the upper left corner,
resulting unitary AUC, in such a way that TPR = 1.0 would be associated to
FPR = 0.0. Therefore, the steepness is very important since for TPR (Recall) up to
about 0.70 or TP = 24 instances (over 34), FPR can be kept small, of order of about
0.05, or FP = 16 instances (over 316). On the other hand, the staircase means that
TPR does not change for large FPR as well as threshold ranges. However, going a
little more to the right and the ROC curve is almost useless, as FPR becomes very
large for imbalanced data.

Table 4 AUCs for the ROC curves

Estimator Number of features
1,220a 1,759a 2,778a 3,395a 6,204a 1,292b 491c

mlp 0.94 0.90 0.89 0.90 0.91 0.93 0.93
ada 0.95 0.91 0.94 0.91 0.93 0.91 0.93
bag 0.90 0.89 0.92 0.91 0.89 0.92 0.91
ext 0.92 0.91 0.93 0.93 0.94 0.92 0.91
ran 0.92 0.91 0.94 0.91 0.94 0.92 0.93
gra 0.89 0.87 0.91 0.90 0.89 0.89 0.92
xgb 0.88 0.88 0.88 0.88 0.88 0.90 0.88
aAccording to the first strategy
bAccording to the second strategy
cAccording to the third strategy

Table 5 AUCs for the Precision-Recall curves

Estimator Number of features
1,220a 1,759a 2,778a 3,395a 6,204a 1,292b 491c

mlp 0.73 0.70 0.70 0.70 0.69 0.75 0.75
ada 0.75 0.74 0.73 0.74 0.75 0.69 0.76
bag 0.68 0.70 0.71 0.71 0.72 0.70 0.71
ext 0.75 0.73 0.76 0.75 0.77 0.72 0.76
ran 0.73 0.74 0.75 0.75 0.76 0.75 0.77
gra 0.69 0.65 0.69 0.67 0.66 0.67 0.73
xgb 0.69 0.69 0.69 0.69 0.69 0.71 0.71
aAccording to the first strategy
bAccording to the second strategy
cAccording to the third strategy
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Fig. 1 ROC curves for the second strategy

Fig. 2 Precision-Recall curves for the second strategy
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Fig. 3 ROC curves for the third strategy

Fig. 4 Precision-Recall curves for the third strategy
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Now, consider the Precision-Recall curves and AUC for each estimator,
according to strategy two in Fig. 2 and strategy three in Fig. 4. Corroborating all
previous conclusions, when comparing Figs. 2 and 4, there is not much difference
between those strategies. Here the ideal curve would correspond to both unitary
precision and recall (TPR), that is, the upper right corner, also resulting unitary
AUC. Notice the jagged effect of the curves, resulting from the nonlinear staircase
effect in ROC curves. For wide ranges of Recall and threshold values, Precision
changes very little. However, for each estimator, along the discontinuities, Precision
might drop significantly, meaning that for a value of Recall along those boundaries
there is a wide Precision range.

In order to understand the statistical significance in the variation of AUC figures,
Tables 6 to 9 were designed to show the values of mean, standard deviation and
median evaluated from Tables 4 and 5, across all estimators (Tables 6 and 7) and
across all number of features (Tables 8 and 9), obtained according to the three
strategies already described. It is observed that every AUC value fit quite well
within the two standard deviation range, with almost no apparent skewness. The
global ROC AUC mean and standard deviation evaluated across estimators and
number of features (and strategies) were respectively 0.91 and 0.020, while the
corresponding global Precision-Recall AUC mean and standard deviation were 0.72
and 0.031 respectively.

In this sense, ExtraTrees and RandomForest estimators came strong, consistent
across all strategies, right in accord with the literature [39], but MLP came sur-
prisingly well in all accounts. The worse results came from XGBoost, not because
of the estimator in itself, but perhaps it could have used some more tuning.
Regarding the feature selection strategy and number of features, it can be noticed
from Table 6 and 7 that the third strategy with 491 features did not show any signs
of appreciable bias, with the final results being even better across all estimators than
any other strategy with many more features. Also, due to that small number of
features, hundreds more individual estimators could be applied. Moreover, it is long
known that there is no single optimum approach to feature selection [21]. Some

Table 6 Mean, standard
deviation and median across
all estimators for ROC AUC
values

Number of
features

Mean Standard
deviation

Median

1,220a 0.91 0.026 0.92
1,759a 0.90 0.017 0.90
2,778a 0.92 0.024 0.92
3,395a 0.91 0.015 0.91
6,204a 0.91 0.025 0.91
1,292b 0.91 0.014 0.92
491c 0.92 0.018 0.92
aAccording to the first strategy
bAccording to the second strategy
cAccording to the third strategy
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further reduction (to about a hundred features) was tried, but the results degraded
very quickly.

The best threshold value for a given estimator to make predictions over test
(unseen) data could be the one for the maximum Matthew’s correlation coefficient
(MCC) for each strategy. In order to analyze this relationship, Table 10 was pro-
duced only for the third strategy. Table 10 contains for each estimator the recorded
values of the largest threshold value for the maximum MCC score and the
respective values of TP, TN, FP, FN, Precision, Recall (TPR) and FPR considering
the third strategy and the validation dataset. From the point of view of each max
MCC, notice how the threshold values ended up skewed regarding the 50% tran-
sition probability. Moreover, reading from Fig. 4 it seems that max MCC represents
the best compromise between Precision and Recall and, in that case, the winners are

Table 7 Mean, standard
deviation and median across
all estimators for Precision-
Recall AUC values

Number of
features

Mean Standard
deviation

Median

1,220a 0.72 0.030 0.73
1,759a 0.71 0.033 0.70
2,778a 0.72 0.029 0.71
3,395a 0.72 0.032 0.71
6,204a 0.72 0.042 0.72
1,292b 0.71 0.030 0.71
491c 0.74 0.025 0.75
aAccording to the first strategy
bAccording to the second strategy
cAccording to the third strategy

Table 8 Mean, standard
deviation and median across
all number of features
(obtained according to the
strategies) for ROC AUC
values

Estimator Mean Standard deviation Median

mlp 0.91 0.019 0.91
ada 0.93 0.016 0.93
bag 0.91 0.012 0.91
ext 0.92 0.011 0.92
ran 0.92 0.013 0.92
gra 0.90 0.014 0.89
xgb 0.88 0.008 0.88

Table 9 Mean, standard
deviation and median across
across all number of features
(obtained according to the
strategies) for Precision-
Recall AUC values

Estimator Mean Standard deviation Median

mlp 0.71 0.026 0.70
ada 0.74 0.023 0.74
bag 0.70 0.013 0.71
ext 0.75 0.018 0.75
ran 0.75 0.013 0.75
gra 0.68 0.026 0.67
xgb 0.70 0.010 0.69

184 E.R. Woiski



mlp, ext and ran. Assuming Recall the most important score, reading from Figs. 3
and 4, a very high 0.90 Recall would take the FPR up to 0.18, and would bring the
Precision tumbling down to about 0.40 (mlp).

Finally, it is not easy to compare the results from the original NIPS 2003, since
DOROTHEA [12] was just one of the sets compounding that challenging event.
However, regarding AUC ROC alone, the global mean value obtained in the pre-
sent work would easily rank among the 20 first winners, as can be seen in [40].
Notice that in that report, the definition of ROC curve has been wrongly defined as
TPR versus FNR (false negative rate), instead of FPR (false positive rate).

10 Conclusions

The growth of data is overwhelming. There is more data than ever in human history
available in the internet from every source, even through open repositories, such as
the UCI Machine Language Repositories. It is becoming an impossible task for
humans alone to sort that out. Thus ML, born from artificial intelligence (AI) and
statistics, is getting so much traction among researchers and specialists in all
knowledge fields. The case of highly dimensional data with imbalanced classes is
particularly relevant to RUL studies, since feature number can grow up very easily.
Moreover, instance production can be very expensive or experimentally challenging
and “failure” for systems or equipment is clearly a rare instance.

Some fundamentals of data analysis and ML have been presented and the use of
Python and Python libraries has been brought to attention, as an approachable way
to load, pre-process and perform ML on raw data obtained from the Web. In order
to illustrate the use of those libraries, DOROTHEA [12] dataset was selected.
A highly imbalanced binary classification problem, with one hundred thousand
highly sparse anonymized binary features and limited number of instances, was
divided into train, validation and test data. In order to reduce the number of features
after removing the duplications, three different hybrid strategies were designed and
employed, and several classifiers, mostly ensemble models, were applied.

Table 10 Limit threshold value and respective TP, TN, FP, FN, Precision, Recall (TPR) and FPR
for each estimator, for maximum MCC, according to the third strategy, using validation data

Estimator Threshold Max MCC TP TN FP FN Precision Recall (TPR) FPR

mlp 0.29 0.73 26 307 9 8 0.74 0.76 0.028
ada 0.30 0.64 19 311 5 15 0.79 0.56 0.016
bag 0.40 0.67 24 306 10 10 0.71 0.71 0.032
ext 0.19 0.71 26 306 10 8 0.72 0.76 0.032
ran 0.17 0.71 26 306 10 8 0.72 0.76 0.032
gra 0.10 0.66 22 308 8 12 0.73 0.65 0.025
xgb 0.49 0.68 21 311 5 13 0.81 0.62 0.016
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Since the usual accuracy score (ACC) does not work for imbalanced classes,
receiver operating characteristics (ROC) and Precision-Recall curves were obtained
for all classifiers, from which only those from strategies three and four are shown in
the present work. Area under the curves (AUCs) of ROC and Precision-Recall
curves for all strategies as well some simple statistics and estimators are tabulated
and compared. Strategy four reduced the data to less than 0.5% of the 100,000
original features and these results showed to be as good as or even better than all the
others with many more features. In order to obtain better accuracies than those in
the present book chapter, further correlations between instances and classes must be
uncovered, perhaps using binary encoding and information theory.
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Appendix

Fast and memory-light procedure to search for duplicated features in large sparse
arrays. X is the feature matrix (1950, 100000) and XT its transpose.
Python code follows:

import numpy as np

import collections

import scipy.sparse as sp

from time import time

start = time()

d = collections.OrderedDict()

remove = np.zeros((100000,),dtype=‘int8’)

Xsp = sp.lil_matrix(X.T)
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for j,row in enumerate(Xsp):

t = str(row)

if t in d and j != 0:

remove[j] = 1

else:

d[t] = 1

if j%10000 == 0: print j,

print ’%g s’ %(time() - start)
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The Use of Trend Lines Channels
and Remaining Useful Life Prediction

Luciano Barbanti, Berenice Camargo Damasceno,
Aparecido Carlos Gonçalves and Hadamez Kuzminskas

Abstract One of the most important aspects in a working machine is the remaining
useful life (RUL) of its components. Prognostics in this case depends on estab-
lishing the cause-effect entries in the process as well as how it behaves from the
series of measures done under experimental conditions. This work introduces two
techniques in analyzing series data coming originally from the financial market
frame. One of them is the Bollinger Bands theory and another is the Markowitz
theory on composite series. Both have a wide spectrum of applications in the
cause-effect series prediction.

Keywords Bollinger bands ⋅ Trend lines ⋅ Forecasting ⋅ H. Markowitz
theory ⋅ Saturated data sequence

1 Introduction

Here we are proposing two methods for determining pairs of cause-effect action and
its resulting intensity in a series of data measured in a wind turbine by considering
frequency velocity, temperature, viscosity of lubricants, and forces that can poten-
tially cause the structural damage on components due to crack propagation [1].

In experiments, the results outputs are generally done by a sequence of measured
data. In this work—through the consideration of a historical data series of such
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outputs—we will propose a specific technique for forecasting analysis known in the
literature as the Bollinger Bands (BB) procedure, widely used to perform analysis
on the stock market area. Moreover, we are proposing a method to transform a
series in a saturated one (the definition will be provided on sub-section 3.2) to
induce extreme situations when using it in the optimal predictive theory credited to
H. Markowitz [6]. In the same way the Markowitz theory has its use in the stock
market.

2 Bollinger Bands

Developed by Bollinger [2], the Bollinger Bands (BB) are volatility bands placed
above and below a moving average. Volatility is based on the standard deviation
with respect to a moving average, which changes as volatility changes: the bands
automatically widen when volatility increases and then narrow when volatility
decreases. The dynamic nature of BB indicates when data are sub or super eval-
uated with respect to a “normal” value done by the moving average (MA).

The construction of BB is illustrated as follows: given the sequence of output
data in an experiment, let us fix a natural number n > 1 and then the n-MA (i.e., the
moving average of length equal to n in the data sequence). Let σ be the standard
deviation associated to the n-MA, and k > 0, a real number. The BB is constituted,
then, by the three curves: the n-MA, a lower band ð=MA− kσÞ and the upper band
ð=MA+ kσÞ. The Bollinger strip is the region in the plane confined by the upper
and lower bands (Fig. 1).

Fig. 1 Bollinger bands with n = 20 and k = 2
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The use of the BB provides us with a powerful tool to determine the relationship
of cause-effect especially in extreme situations, as proved by Bollinger [2] in the
framework of the financial market. The main characteristic of the BB is, by con-
sidering statistical confidence intervals, that at least in 94% of the cases, the next
real data in the experiment is expected to be in the Bollinger strip with n = 20 and
k = 2. Then, when the data in the series are out of that strip, we have an instance
that is out of the normal statistical pattern. When the data is above the upper band,
we say that we having a super-valued data situation, and a sub-valued data in the
opposite situation.

The parameters given by Bollinger are the most commonly found, but some-
times we could have more efficient changes. As shown in [3], with the use of
weighted average in the field of the derivatives options market, the utilization of the
BB with n = 12 and k = 2 is a more efficient strategy than if BB is considered with
n = 20.

Despite the importance of this method in the literature and the massive amount
of research that has been applied in the past 15 years in the financial market, only a
very few number of work applications (specifically in the general engineering
literature) are available. As an example of one of those rare works, Ngan and Pang
[4] have used BB to inspect and indicate defective areas in patterned fabric.

The method of BB, with its predictive character, surely will be releasing ele-
ments for the study of the RUL of a system. In fact, when a local or global tendency
is identified in a process, the use of the BB method enables us to analyze the
oscillations of the measured data and how far they are around the tendency line.

There are other procedures in the literature that enable us to see if a data in a
sequence is sub or super valued by using trend lines. It is the case of the known
Parabolic System Approach, the Stop-and-Reverse (SAR) techniques, Relative
Strength Index (RSI), the Moving Average Convergence-Divergence (MACD), the
Fibonacci Analysis, the Elliot wave analysis, and Ichimoku clouds, among others,
[5]. A very extensive research field for future works it is based on the identification
of the characteristic parameters for each of the procedures mentioned above by
using experimental data, and then applying the prognostic information to RUL
analysis.

3 The H. Markowitz Theory and Saturated Series

When measuring aspects of a phenomenon in a data series there are in general
several series of cause-effect pairs embedded in such original series.

In the terminology of the financial market, the data series is the composition of
all the other series in a “portfolio”. The dynamics of this “portfolio” is very effi-
ciently described in the literature as the Optimal Portfolio Theory by H. Markowitz
[6, 7]. The fundamental aspect in this theory is represented by the possibility of
combining weighted composing series in a specified way, in order to vary the risk
(represented by the standard deviation) by varying the average in the original series.
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Several attempts were made, when the theory was first published, in order to
reduce the portfolio risk. In this sense, slightly different risk definitions were done.
As an illustrative example, see the definitions of the average absolute deviation and
of the semi-variance as in Chap. 4.2 in Elton and Gruber [7].

Next, we propose a modification of the original series based on the above
framework and according to a method called “saturation of series” presented by
Damasceno and Barbanti [8]. As it will be shown, it results in a modification of the
original series. Moreover, Damasceno and Barbanti [8] have shown that, by using a
random example, the saturated series improves the result of the Markowitz theory
when the original series is used.

3.1 The Markowitz Strategy

The Markowitz strategy [9] is based on the following general rules:

• It is necessary to diversify the stocks in a portfolio (i.e. choosing the lowest
correlated stocks to put together or “do not put all your eggs in a single basket”);

• It is necessary to balance the stocks in the Portfolio following the principle;
• In the Markowitz plane (risk − the standard deviation mean × turn − mean

value) take the return and risk in the portfolio P as the composite form from the
return and risk of the series that compose P. For instance, in the minimum
possible case diversification (2 stocks A, B composing P) with the proportion x,
P = x A + (1 − x) B, the return and risk of P are:

RP = x RA + ð1− xÞ RB ð1Þ

and

σ2P = x2σ2A + ð1− xÞ2σ2B +2x ð1− xÞ σAB ð2Þ

where σAB is the AB—covariance. The minimum risk in the composition of the
stocks series in the Portfolio is done by, using derivations, the value x0 that
solves the equation (in x):

2x σ2A +2 ð1− xÞ σ2B +2 ð1− 2xÞ σAB =0 ð3Þ

then

x0 =
− σ2B − σAB

σ2A − σ2B − 2σAB
. ð4Þ

Moreover, if we use σ (non-usual sign) to denote the AB—correlation, the curve
composition of A, B in the Markowitz plane looks like the Fig. 2.
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3.2 The Saturation Method for Series

Given the original series S, we introduce a modification on it to obtain a new series
[8]. In an inductive manner we construct the series S0, S1, …, beginning with:

S0 = S. ð5Þ

Assuming that

Sj: s
j
1, s

j
2, . . . , s

j
k, . . . ð6Þ

This allows us to construct the series Sj+1, j=0, 1, 2, 3, . . . , and
define for the series Sj linear regression in the plane (x, y)

Lj: y= αjx+ βj. ð7Þ

The Sj+1 is the series with the elements:

sj+1
k = s jk if s jk ≤ αjk+ βj, ð8Þ

sj+1
k = αjk+ βj if s jk > αjk+ βj. ð9Þ

Note that we could apply in the definition of Sj+1 the signs ≥ and < instead of
≤ and >, respectively, creating in this way a new series Tj+1 from Tj by fixing
T0 = S.

It can be notice also that the series ðSjÞ0≤ j and ðTjÞ0≤ j have upward and
downward bias, respectively.

Fig. 2 Risk × Return curves
for composition of A and B
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Damasceno and Barbanti [8], also pointed out the existence a situation in
Brazilian stock market (BM&F-BOVESPA) in which information provided by the
Markowitz Theory was improved with the use of saturated series, when compared
to the use of the original series S.

4 The Next Step

The next step will be towards the identification of parameters in a series concerning
data obtained from wind turbine measurements, specifically of n and k above,
grounded on the physics underlying the experiments themselves. The general
purpose is to establish some cause–effect connections by making inferences on the
value of future data, and in this way, leading to RUL predictions. This can also be
done through the saturation of the original series obtained in the process.
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The Derivative as a Probabilistic Synthesis
of Past and Future Data and Remaining
Useful Life Prediction

Berenice Camargo Damasceno, Luciano Barbanti,
Hadamez Kuzminskas and Márcio Antonio Bazani

Abstract The concept of remaining useful life (RUL) is crucial when dealing with
mechanical systems. RUL is taken into account in a system through a series of
prognostics and the study of stability in a related data series. This paper is focused
on a powerful optimal technique in prognosis coming from the Grünwald–Letnikov
definition of derivative.

Keywords Grünwald–Letnikov derivative ⋅ Probability ⋅ Forecasting

1 Introduction

Remaining useful life (RUL) of a mechanical systems or equipment is the survival
time that the unit has. The predictions allowed by RUL models provide schedules
for decision-making in production management and the maintenance of the unit
itself [1, 2].

In this work consider the Grünwalk–Letnikov derivative definition, which
consists in a version of the Newtonian derivative. It allows the n-th derivative in a
point as being the probabilistic synthesis of present and past data that can be used to
forecast the behavior of future data.
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However, the application of results presented in this chapter to analyse real data
coming from experiments may demand for more complex structured models, as the
ones using fractional calculus and/or with large interval of data [3–8].

2 The Grünwald–Letnikov Derivative

Let this be the first derivative of a function f ðxÞ, given by the Newton form:

f ð1ÞðxÞ= limh→ 0 ½f ðxÞ− f ðx− hÞ
h

�. ð1Þ

In a recursive way, we can write:

f ð2ÞðxÞ= limh→ 0

limh→ 0
f ðxÞ− f ðx− hÞ

h

h i
− limh→ 0

f ðx− hÞ− f ðx− 2hÞ
h

h i

h

8<
:

9=
; ð2Þ

and

f ð2ÞðxÞ= limh→ 0
f ðxÞ− 2f ðx− hÞ+ f ðx− 2hÞ

h2

� �
. ð3Þ

Then, the Grünwald–Letnikov formula for the n-th derivative of f ðxÞ is given by:

f ðnÞðxÞ= limh→ 0
1
hn

f ðxÞ− nf ðx− hÞ+ nðn− 1Þ f x− 2hð Þ
2

− nðn− 1Þðn− 2Þ f ðx− 3hÞ
6

+⋯
� �� �� �

ð4Þ

in which n = 1, 2, 3, …, for n ∈ N indicates the drivative order.
Now, consider r ∈ N in which r ≥ n. Then we have that n < r and the factorial

relationship is true.

n!
r!ðn− rÞ! = 0. ð5Þ

Thus, in general terms, Eq. (4) can be written as,

f ðnÞðxÞ= limh→ 0
1
hn

∑
n

r=0
ð− 1Þr n!

r!ðn− rÞ!
� �

f ðx− rhÞ
� �� �� �

. ð6Þ

In (Eq. 6) it is possible to identify that, roughly speaking, the n-th derivative in a
point is the probabilistic synthesis of the present (x = 0) and the displaced points
are x− h, x− 2h, . . . , x− nh. This is an advantage in the method, because the
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expected value of f in a displaced point can be verified in several manners for
different n.

Some immediate results can be inferred when observing Eq. (6) in probabilistic
terms: for every n=1, 2, 3, . . . we have, considering r=0, that

n!
r!ðn− rÞ! = 1. ð7Þ

This result shows us that for the initial value x, the probability of
f ðxÞ, f ð1ÞðxÞ, . . . , f ðnÞðxÞ is equal to 1, and then the expression

− ∑
n

r=1
ð− 1Þr n!

r!ðn− rÞ!
� �� �

=1, ð8Þ

for n = 1, 2, 3, …, and r≤ n.
Thus,

− ∑
n

r=1
ð− 1Þr n!

r!ðn− rÞ!
� �� �

f ðx− rhÞ, ð9Þ

can be seen as, the expected value of the variable Y = f ðrhÞ with

𝔼 ðY = f ðrhÞÞ= n!
r!ðn− rÞ! = ð− 1Þr n!

r!ðn− rÞ!
� �� �����

���� for

n=1, 2, 3, . . . , and r≤ n.
ð10Þ

The above process enables us to deduce the expected value for f at future or past
points (relative to a fixed point x).

3 An Example

Choose a series of numbers (e.g. as the data in an experiment) and the function
f :ℝ → ℝ, an optimal continuous approximation of the series itself.

Let us take as an instance n=3 for r=1, 2 and 3. The the resulting Grünwald–
Letnikov formula in Eq. (6) is:

f ð3ÞðxÞ ≅ f ðxÞ
h3

− 3
f ðx− hÞ

h3
+ 3

f ðx− 2hÞ
h3

−
f ðx− 3hÞ

h3
, ð11Þ

where the signal ≅ means that when considering a fixed h (which can made as small
as we like) the symbol for equality, =, is applied.
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Since we have the expected values for some f ðx− hÞ, f ðx− 2hÞ, f ðx− 3hÞ
[h>0, and h<0], this example shows that equilibrium equation in (11) enabling us
to find the probability of the unknowns values of f among the points

x− sh; s=1, 2, 3. ð12Þ

Notice that as long as we increase n, we are refining the prognostics values in the
original series. Furthermore, we see that the same values in (12) can be considered
for other values of n.

4 An Extension

As previously mentioned, the Grünwald–Letnikov derivative works well in the field
of Dynamics described by fractional derivative. In fact, the Grünwald–Letnikov
derivative is the most suitable to permit numerical treatment [5] and can be
extended from the integer derivatives to the fractional ones.

In fact, the equality in Eq. (8) can be transformed when extending the notion of
factorial on natural n by the function Γ on the real positive numbers α.

Thus, we have in the case of the fractional derivative Dα (for 0< α<1):

Dαf ðxÞ= limh→ 0
1
hα

∑
∞

r=0
γðα, rÞf ðx− rhÞ

� �� �
, ð13Þ

where

γ ðα, rÞ= ð− 1Þr Γ ðα+1Þ
r!Γ ðα− r+1Þ . ð14Þ

This definition can be extended to Eqs. (4), (5), and (7), allowing in this way the
extension of the result as in Eq. (10) to systems modeled with fractional derivatives,
that is, a real new possibility in modeling systems based upon experimental data.

5 Conclusion

By making the above considerations, we could see that the formulation of
derivatives due to Grünwald–Letnikov allows us to synthetize the expected value at
points of a data series (represented here by points of an optimum approximation
function f), contributing in this way to the enrichment of the predictive techniques
in the domain of the RUL theory.

198 B.C. Damasceno et al.



References

1. J.Z. Sikorska, M. Hodkiewicz, L. Ma, Prognostic modeling options for remaining useful life
estimation by industry. Mech. Syst. Signal Process. 25(5), 1803–1836 (2011)

2. S. Sankararaman, Significance, interpretation and quantification of uncertainty in prognostics
and remaining useful life prediction. Mech. Syst. Signal Process. 52–53, 228–247 (2015)

3. B. Tremeac, F. Meunier, Life cycle analysis of 4.5 MW and 250 W wind turbines. Renew.
Sustain. Energy Rev. 13(8), 2104–2110 (2009)

4. D. Baleanu, K. Diethelm, E. Scalas, Fractional Calculus Models and Numerical Methods
(World Scientific Book, 2011)

5. V.E. Tarasov, Lattice model of fractional gradient and integral elasticity: long-range interaction
of Grünwald–Letnikov–Riesz type. Mech. Mater. 70, 106–114 (2014)

6. R. Scherer, S.L. Kalla, Y. Tang, J. Huang, The Grünwald–Letnikov method for fractional
differential equations. Comput. Math. Appl. 62(3), 902–917 (2011)

7. R, Garrappa, A Grunwald–Letnikov scheme for fractional operators of Havriliak–Negami type.
Recent Adv. Appl. Math. Modell. Simul. 34, 70–76 (2014)

8. R.J. Hyndman, G. Athanasopoulos, Forecasting: Principles and Practice (OTexts, 2014)

The Derivative as a Probabilistic Synthesis of Past … 199



Part III
Condition Monitoring



Monitoring and Fault Identification
in Aeronautical Structures Using
an Wavelet-Artificial Immune System
Algorithm

Fernando P.A. Lima, Fábio R. Chavarette, Simone S.F. Souza
and Mara L.M. Lopes

Abstract This chapter presents a Wavelet-Artificial Immune System (WAIS)
algorithm to diagnose failures in aeronautical structures. Basically, after obtaining
the vibration signals in the structure, the wavelet module is used to transform the
signals into the wavelet domain. Afterward, a negative selection artificial immune
system performs the diagnosis via identifying and classifying the failures. The main
application of this methodology is in the auxiliary structures inspection process in
order to identify and characterize the flaws as well as assist in the decision making
process that is aiming at avoiding accidents or disasters. In order to evaluate this
methodology, we carried out the modeling and simulation of signals from a
numerical model of an aluminum beam that represent an aircraft structure such as a
wing. The proposed algorithm presented good results, with 100% matching in
detecting and classifying of the failures tested. The results demonstrate the
robustness and accuracy of the methodology.

Keywords Wavelet-artificial immune systems (WAIS) ⋅ Monitoring and fault
identification ⋅ Aeronautical structures ⋅ Artificial intelligence

1 Introduction

In the last few decades, the aeronautical industry have placed significant invest-
ments in research and technological development in order to obtain efficient
methods to analyze the integrity of structures and to prevent disasters and/or
accidents from happening to ensure the safety of people’s lives and to avoid eco-
nomic damages.

Fault diagnosis systems, aka Structural Health Monitoring Systems (SHMS),
perform tasks such as: acquisition and data processing, validation and analysis,
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detection, characterization and interpretation of adverse changes in a structure so to
assist in making decisions and identifying structural faults [1].

Structural failures occur as a consequence of factors such as component wear,
cracks, loosening of screw connections or simply a combination of these. Regardless
of the source, in most cases, structural failure causes a variation of spatial parameters
of the structure, generating a reduced structural rigidity, mass, and also increased
damping so that the dynamic behavior of the structure is changed [2].

To solve this problem, several solutions have been proposed such as traditional
SHMS based on ultrasonic inspection, radiography (X-ray) or acoustic emission
testing. However, these traditional techniques cannot meet increasing demands of
industries, especially when the structures are in motion [3]. Thus, one solution to
develop the most modern and efficient SHMS is the utilization of intelligent
techniques, and efficient data acquisition systems.

In literature, several studies that utilize smart materials and SHMS that have
robustness, accuracy and good performance are available. The following few
paragraphs present the most relevant papers in this field.

Krawczuk et al. [4] presented the application of a genetic algorithm in con-
junction with a Perceptron Multi-Layer neural network with back-propagation to
perform fault detection and location in a numerical model of a beam. Giurgiutiu [5]
used the method of electro-mechanical impedance to monitor aerospace structures
with piezoelectric sensors attached. Palaia [6] presented a methodology for struc-
tural analysis of buildings using a non-destructive method (NDT). Chandrashekhar
and Ganguli [7] proposed a fuzzy system to detect structural faults using curvature
mode shapes.

Chen et al. [8] used a model that implement wavelet transform to evaluate the
integrity of bridge structures through the vibration signals. A system for identifi-
cation and location of damage in an airplane wing using a probabilistic neural
network was proposed in [9]. Wang et al. [10] proposed a multimodal genetic
algorithm for diagnosing damage in a steel truss bridge. Song et al. [11] proposed
an experimental method to perform structural analysis of buildings. Souza et al.
[12] proposed an ARTMAP-Fuzzy neural network applied to diagnosis of faults in
buildings. Lima et al. [13], proposed an immune algorithm with negative selection
to diagnose failures in aircraft structures.

Lima et al. [14] has presented a SHMS based on ARTMAP-Fuzzy neural net-
work and wavelet transform, to diagnose faults in buildings. Lima et al. [15]
presented a hybrid method based on ARTMAP-Fuzzy neural network and wavelet
transform to diagnose failures in aluminum beams. Abreu et al. [16] presented a
failure analysis tool in aircraft structures using complex wavelet transform.

In this paper, a new approach to fault diagnosis in aeronautical structures using a
Wavelet-Artificial Immune System (WAIS) algorithm is presented. This method-
ology is divided into three main modules: the acquisition and processing of data,
fault detection and classification. From the signal acquisition, the wavelet transform
is applied to decompose the signals into four levels of resolution. After obtaining
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the processed signals, the Negative Selection Algorithm (NSA) is applied to per-
form the detection of abnormalities in the structure, and thus the characterization of
structural faults can be detected.

The Artificial Immune System (AIS) is a promising algorithms in Artificial
Intelligence (AI). The concept is based on Biological Immune Systems (BIS) and
aims to computationally reproduce its principal characteristics, properties and
abilities [7]. As emphasized by [17], AIS is an adequate tool to be applied in failure
diagnosis due to the natural characteristics of diagnoses.

The wavelet transform is a mathematical tool for signal analysis that decomposes
or breaks the constituent signals into parts, allowing scientists to analyze the data at
different levels of frequency with the resolution of each component in its range. In
summary, the wavelet transform allows to view the approximation of the discon-
tinuous data in functions (i.e., view the abnormalities in the signals) so that it can
become an important tool in the analysis and diagnosis of abnormality in aero-
nautical structures. The use of a wavelet transform provides a sensitivity to the
diagnosis system that allows the system to identify signal abnormalities easily.

Unlike several studies that have been presented in the literature, the main
advantage of the method presented in this work is the ability to filter the signals
using wavelet module, and thereafter applying the NSA, one of the most efficient
techniques for failure diagnosis. This combination generates a powerful failure
analysis tool that is demonstrated by the results obtained in this work. Thus, the
main contribution of this work is a new efficient and accurate hybrid failure
diagnosis approach composed of a signal processing mathematical tool, i.e. the
wavelet transform, and an intelligent method, i.e. AIS.

In order to evaluate the proposed methodology, we have used one database
containing the signals numerically simulated from a model of an aluminum beam
that represents the wing of aircraft. This structure was modeled by finite elements
and simulated in MATLAB. The results demonstrate the efficiency, accuracy and
robustness of the proposed method.

This text is organized as follows: Sect. 2 presents the negative selection algo-
rithm. Section 3 describes the wavelet transform. The modelling and simulation is
presented in Sect. 4. Section 5 presents the proposed methodology and finally, the
results and conclusions are presented, respectively, in Sects. 6 and 7.

2 Negative Selection Algorithm

The Negative Selection Algorithm (NSA), which was proposed in [18], detects
changes in systems based on the biological process of negative selection of T
lymphocytes, that occur in the thymus. This process works on the discrimination of
proper versus non-proper cells. The algorithm is executed in two phases, according
to the following description [19, 20]:

Monitoring and Fault Identification in Aeronautical Structures … 205



1. Censor:

• Define a set of proper chains (S) to be protected;
• Generate random chains and evaluate the affinity (Match) between each

chain and the proper chains. If the affinity is greater than a predefined value,
then reject the chain. Otherwise, file the chain into a detector set (R).

2. Monitor:

• Given a set of chains to be protected (protected chains), evaluate the affinity
with each chain and the detector set. If the affinity is superior to a predefined
value, then a non-proper element is identified.

The censor-phase of the NSA primarily consists of generating a detector set from
the data that were randomly chosen and verifying which data can then recognize a
non-proper pattern. The detectors are similar to mature T cells, which can recognize
pathogenic agents [21].

The monitoring phase consists of monitoring a system to identify a change in the
behavior; thus, this phase classifies the change using the detector set that was
created in the censor-phase. The censor-phase occurs offline, and the
monitoring-phase occurs in real time [19, 21].

The antigen (Ag) is the signal to be analyzed in the negative selection algorithm
and can be represented by

Ag=Ag1,Ag2,Ag3,Ag4, . . . ,AgL. ð1Þ

The detectors represent the antibodies (Ab) and are expressed as [17, 20]:

Ab=Ab1,Ab2,Ab3,Ab4, . . . ,AbL ð2Þ

where L is the dimension of the space of the antigen and the antibody.

2.1 Matching Criterion

To evaluate the affinity with the chains and to prove that they are similar, a
matching criterion is used, which has the same meaning as the combination. The
matching can be perfect or partial [22]. The matching is perfect when the two
analyzed chains have the same value in every position, and the matching is partial
when the patterns have only one identical position value to confirm the matching
(which has been previously defined in [17]). This quantity is known as the affinity
rate, and represents a similar grade for matching to occur between two analyzed
chains [20]. Reference [22] defines the affinity rate as:
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TAf =
An
At

� �
* 100 ð3Þ

where

• TAf is the affinity rate,
• An is the quantity of normal rates in the problem (proper rates), and
• At is the total number of chains in the problem (proper and non-proper chains).

Equation (3) allows the precise calculation of the affinity rate for the proposed
problem and represents the statistical analysis with the samples of the problem.

To dynamically improve the diagnosis, a deflection is proposed that is attached
to the antibody (detector pattern—Ab), i.e., a tolerance with which it is possible to
accept the combination with the patterns. This tolerance is defined according to
Eq. (4) [17]. This deflection acts individually in each position i of vector (Ab),
allowing verification of the matching in each position:

Abi ≤ Agi ≤ Abi ð4Þ

where:

• Agi is the nominal value of position i of the antigen (pattern under analysis),
• Abi is the nominal value of position i except for the deflection adopted at the

antibody (detector pattern), and
• Abi is the nominal value of position i plus the deflection adopted at the antibody

(detector pattern).

In this way, if the value of position i of antigen (Ag) is in the interval expressed
in Eq. (4), then the position is considered to match. Thus, it is possible to quantify
the affinity using the patterns analyzing position-by-position (point-by-point).

Equation (5) shown below represents the method for quantifying the total
affinity with the analyzed patterns [23]:

Aft= ∑
L

i=1
Pci ð5Þ

where:

• AfT is the percentage of the affinity with the patterns analyzed,
• L is the total quantity of positions, and
• Pc is the matched position.

Thus, if Aft is greater than TAf, then the combination/matching with the patterns
occurs, and the patterns are considered to be equal/similar. Otherwise, there is no
matching with the patterns.
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3 Wavelet Transform

The wavelet functions are mathematical transformations that can decompose
functions, which allows these functions to be re-written in a more detailed form,
i.e., with a global vision. Thus, it is possible to differentiate the local characteristics
of a signal with different sizes (resolutions) and to analyze all of the signals by
translations. Because most of the wavelets have compact support, they are useful in
analyzing non-stationary signals. In this way, the wavelet analysis is better than the
Fourier analysis [24].

There are several wavelet families. This work considers the orthonormal family
functions and the Daubechies discrete family [25] due to having faster computa-
tional algorithms [24].

3.1 Discrete Wavelet Transform (DWT)

Define a signal y ½t�= ðy0, . . . , yn− 1, ynÞ, which represents a discrete vector; then, it
can be represented by a wavelet series, as follows [24]:

y ½t�= ∑
Nj

k=0
Cj, kϕj, kðtÞ+ ∑

1

j= J
∑
Nj

l=0
dj, kvj, kðtÞ, ∇t∈ ½0,N0� ð6Þ

where J represents the resolution level, Nj = ðN ̸ 2Þ− 1 represents the quantity of
points in each new vector obtained by transformation; ϕj, kðtÞ and υj, kðtÞ are the
wavelet and scale functions that perform the transformation; j is the scale (dilation);
and k is the position (translation).

The Discrete Wavelet Transform (DWT), when applied directly to a signal to
generate a set of coefficients, is calculated by several entrances into a G filter (low
pass) and H filter (high pass), which are known as resolution levels. The filters G
and H are calculated constant values vectors that provide an orthogonal base related
to the scale and wavelet functions, respectively. This process is known as the Mallat
Pyramidal algorithm [24] and is shown in Fig. 1.

In Fig. 1, C0 corresponds to the original discrete signal ðC0 = y ½t�Þ, and H and
G represent the low-pass and high-pass filters, respectively. The parameters d1, d2
and d3 are the wavelet coefficients or the detail at each resolution level, and C3 are
the scale coefficients or approximations at the last level of the transform. These
coefficients are obtained by a convolution of the constants with the filters repre-
sented in Eqs. (7) and (8) [24]:

Cj+ l, k = ∑
D− 1

l=0
hlCj, 2k + l ð7Þ
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dj+ l, k = ∑
D− 1

l=0
glCj, 2k+ l ð8Þ

where k= ½0, . . . , N ̸2 jð Þ− 1�, and D is the number of constants in the filter. Thus,
the coefficients Cj, k represent the average local media, and the wavelet coefficients
dj, k represent the complementary information or the details that depart from the
average media. Therefore, the transform coefficients, when ordered by scale (j) and
position (k), are represented as follows [24]:

ψ = CJ, k½ �NJ
k=0, ðdj, kÞNJ

k=0

� �1
j= J

h i
ð9Þ

in which ψ is a finite representation in terms of the coefficients of the signal
decomposition in Eq. (6). Figure 2 shows the decomposition process of a signal at
two resolution levels. Observe that at each transformation level, the size of the
vectors is reduced by half ðN ̸2JÞ. Figure 2 represents an adaptation of Fig. 1 that
represents the pyramidal algorithm for DWT.

Fig. 1 Flowchart of the
algorithm for DWT

Fig. 2 Adaptation of the pyramidal algorithm for DWT
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4 Modeling and Simulations

The proposed methodology is demonstrated considering a finite element model of
an aluminum cantilever beam discretized by 10 finite elements, each having two
degrees of freedom. The material has a modulus of elasticity, E = 700 GPa and a
density of ρ = 2710 kg/m3. The dimensions of the beam are 500 mm long, 25 mm
wide and 5 mm thick. Figure 3 illustrates the discretized beam [26].

Using the beam model, several simulations were performed with different per-
centages of wear and locations of faults. The database consists of generated signals
captured by an accelerometer attached to the beam. In all simulations, the beam was
excited in the 3rd degree of freedom (element 2) and the signal was captured on the
19th degree of freedom (element 10). Thus, 1400 signals were simulated in the
structure, 500 without wear (baseline condition) and 900 signs with wear (structural
failure) as presented in Table 1. In the present analysis, 150 signals were simulated
in each type of failure and 500 signals were simulated in normal conditions.

5 Proposed Methodology

The WAIS algorithm proposed in this work to detect and classify failures was based
on the negative selection principle, and the phases are presented as follows:

Fig. 3 Aeronautical structure
model [26]

Table 1 Number of signals
simulated

Wear level Number of simulations

Normal condition (0%) 500
5% 150
10% 150
15% 150
20% 150
25% 150
30% 150
Total 1400
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5.1 Censor-Phase

This phase generates the proper detectors and the disturbance detector set. The
detector sets are used by the diagnosis system during the monitoring process and are
generated for each kind of signal of the database generated by modeling and
simulation.

The proper detectors represent the baseline or normal condition of the structure.
To generate this kind of detector, normal signals were randomly selected, and are
defined as proper detectors. Once a proper detector is generated, it is then possible
to generate the failure detectors. This process is illustrated in Fig. 4.

The next procedure is divided into three modules: the reading of the signals to
create the detectors, the wavelet module that decomposes the signals using a dis-
crete wavelet transform with four resolution levels, and the censor module with
randomly chosen signals and that verifies the matching in relation to the proper
detector set. If the affinity criterion is satisfied, the signals are rejected because they
have proper characteristics. Otherwise, the signals are placed in the failure detector
set.

The quantity of detectors that are used is determined by the operator. However, it
is recommended to use 30% of the available data. The matching criterion is pro-
posed in [27], which uses a deviate of 3%.

5.2 Monitoring-Phase

The monitoring-phase is divided into four modules: the input or the reading of the
signals (by the acquisition data system), the wavelet module that decomposes the
signals into four resolution levels, the detector module, which performs the dis-
crimination of proper/non-proper, and the classification module to classify the
failures. Figure 5 illustrates the monitoring-phase.

The wavelet module is executed after the acquisition of the signal and decom-
poses the signals by transforming them into the wavelet domain. Afterwards, the
detector module compares the signals that are under analysis with the proper
detectors to identify the matching with the signals. This module performs the
diagnosis of the analyzed signals and classify them into proper and non-proper
categories.

When an abnormality is detected, the abnormal signal is separated, and the
classification module is executed. The classification module compares the abnormal
signal with the failures detector set, and the matching is then verified. Thus, the
abnormal signal is classified according to the detector class that the signal matches.
This phase uses the partial matching criterion proposed in [22], and hence adopts a
standard deviation of 3% in the detectors.
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5.3 Wavelet Decomposition Module

The wavelet decomposition module is important to extract and emphasize the signal
characteristics, which are easily detected in the wavelet world.

In this work, we have used four levels of decomposition for the DWT. This
procedure was adopted aiming to allow the signals abnormalities representation
more easily. Table 2 presents the frequency ranges for each level of resolution in
the DWT.

Fig. 4 Flowchart of the censor-phase
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Figure 6 illustrates a signal with a normal condition and a signal with 15% of
damage. These signals were presented at the input of the wavelet decomposition
module, and after the signal processing, the results shown in Fig. 7.

These figures show the importance of wavelet decomposition for the diagnosis
system. The failures are emphasized when the signal is decomposed into the

Fig. 5 Flowchart of the
monitoring-phase
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Table 2 Frequency ranges
for each level of resolution in
the DWT

Resolution level Parameter Frequency range (KHz)

1 D1 component 7.68–3.84
2 D2 component 3.84–1.92
3 D3 component 1.92–0.96
4 D4 component 0.96–0.48
4 C4 component 0.00–0.48

Fig. 6 Frequency domain signal

Fig. 7 Wavelet decomposition signal
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wavelet world, and thus, the wavelet module contributes to the NSA. This is
because its sensitivity when analyzing patterns which allows easy recognition of
any abnormality.

6 Applications and Results

This section presents the results that were obtained with the proposed method
implemented in a test database. The algorithm was developed in MATLAB® [28].
The proposed algorithm is applied to a database composed of signals in the fre-
quency domain obtained from a numerical model of an aluminum beam, repre-
senting the wing of the aircraft.

6.1 Parameter Used in the Method

In the tests proposed in this work, an assessment of the proposed methodology was
applied by checking the efficiency, accuracy and the computational time for dif-
ferent configurations of the set of detectors of the WAIS. Accordingly, three sets of
detectors (CD1, CD2 and CD3) have been generated using, respectively, 10%, 20%
and 30% of the normal signal (baseline). For instance, a CD value 10% means that
50 signals were selected to be proper. Identical percentages were also considered to
generate failure detectors. The parameters used for the tests are shown in Table 3.

6.2 Results

In order to evaluate the proposed methodology, tests were performed considering
different settings of the WAIS. The results obtained are shown in Table 4, and rep-
resents the best configuration of theWAIS. The results presented in Table 4 represent
the average values obtained by a cross-reference test that was performed 20 times
while performing theWAIS for each set of detectors in order to guarantee the veracity
of the results. The cross-reference test is a statistical test to analysis of the results.

It was observed that the WAIS has a good performance (with an accuracy rate
equal to 100% for the best configuration as shown in Table 4), and that the quantity

Table 3 Parameters used in
the tests

Parameters Value

TAf 66.66%
Deviation (ε) 3%
CD1 10% of the data
CD2 20% of the data

CD3 30% of the data
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of detectors used in censor-phase directly influences the failure diagnosis process.
Thus, we recommend to use 30% of database information to generate the set of
detectors to bring robustness to the system. That is, the more knowledge is available
in the learning phase, the more efficient is the process of diagnosis of the WAIS.

Finally, we highlight that the WAIS was ran with a time of less than 100 ms,
which provides the application of this system in real time, as decisions must be
taken in time to prevent tragedies and disasters.

6.3 Comparative Study

In this section, we present a comparative study between the present methodology
and the methodology proposed by other authors [7, 10, 12, 14, 15, 29]. For this
comparison, the total accuracy of the methodologies for the detection and classi-
fication of structural failure has been taken into consideration.

Table 5 shows the comparison between the accuracy obtained by the proposed
method and the main methods available in the literature.

Table 4 Results of the tests

Analyzed
signals

CD1 CD2 CD3

Samples
tests

Match
correct

Samples
tests

Match
correct

Samples
tests

Match
correct

Normal
condition (0%)

500 496 500 498 500 500

5% 150 146 150 148 150 150
10% 150 147 150 148 150 150
15% 150 149 150 149 150 150
20% 150 143 150 147 150 150
25% 150 142 150 147 150 150

30% 150 146 150 148 150 150

Accuracy (%) 97.78 98.92 100%
Time (ms) 96.03 97.32 95.43

Table 5 Comparative study

References Data type Technique used Accuracy (%)

[10] Experimental Multi-objective Genetic Algorithm 93.70
[29] Experimental Multilayer Perceptron (Levenberg-Marquardt) 98.52
[7] Simulated Fuzzy Logic 98.74
[12] Simulated ARTMAP-Fuzzy 100.00
[14, 15] Simulated ARTMAP-Fuzzy-Wavelet 100.00
This work Simulated WAIS 100.00
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In Table 5, we note that the proposed method had a very good success rate
(matched 100%), when compared to other methods. It is important to emphasize
that from the comparison of the results obtained, it is clear that the application of the
proposed method in real problem will also bring good efficiency levels.

6.4 Positive and Negative Aspects of the Proposed
Methodology

After performing all tests and getting the results of WAIS algorithm proposed in
this work, we present an analysis highlighting the main positive and negative
aspects of the proposed methodology.

• Positive Aspects:

– Regarding the accuracy in diagnosing, the WAIS showed to have excellent
performance;

– The proposed WAIS runs with low processing time which allows this
method to be applied in real situations as decision making should be taken
instantly to avoid disasters;

– WAIS is robust because using only 30% of the available information it was
able to diagnose 100% of actual signals (high level of learning);

– Compared with different neural networks, employing WAIS means that it is
not necessary to execute the learning phase (training) every time monitoring
runs.

• Negative Aspects:

– WAIS has parameters that must be calibrated, especially in the wavelet
module.

7 Conclusion

This work presented a new approach to detect and classify failures in aeronautical
structures using WAIS algorithm. A finite element numerical model was used to
simulate the failure signals, to generate a data set to be analyzed and test the
methodology. The proposed algorithm presented good results, with 100% matching
in detecting and classifying the failures tested. The detector generation phase was
executed off-line with no bias for the algorithm. The monitoring-phase is quickly
executed in a total time of less than 100 ms, which allows for it to be used in real
time to aid the decision making process. The combination of the wavelet transform
with the NSA (Negative Selection Algorithm) provides more precision to the
diagnosis due to the high resolution level in decomposing signals, making it easy to
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identify abnormalities. Thus, the proposed Wavelet Immune System Algorithm
showed to be precise, robust, efficient and suitable in several applications, partic-
ularly in real systems as aircraft structures.

The authors believe that this work will contribute to the SHM research area
introducing a new hybrid approach to perform the monitoring of aeronautical
structures using intelligent techniques and wavelet transforms.
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An Illustration of Some Methods to Detect
Faults in Geared Systems Using a Simple
Model of Two Meshed Gears
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Michael John Brennan, Amarildo T. Paschoalini, A. Arato Junior
and Erickson F.M. Silva

Abstract Gears are the components in many mechanical systems that are likely to
develop faults due to their dynamic characteristics, such as the cyclic loading
applied to the meshing teeth. The main faults in gears are pitting and scuffing,
where the tooth profile (involute) is heavily affected, and hence, signal processing
techniques have been developed to aid in the detection of gear faults in their early
stages. It is already known that the dynamic behaviour of a mechanical system
changes when its characteristics are affected (such as in the presence of a fault), and
as a result, the vibration of such a system can be used to detect a fault in its early
stage. To investigate and develop techniques based on vibration analysis, a physical
understanding of the system involving meshing gears is required. In this chapter, a
model is introduced that can be used for simulating vibration data of toothed
meshing gears. The data generated by the simulations is then used to investigate
some classic techniques used in gear fault detection problems.
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1 Introduction

Meshing gears are ubiquitous in industry, and are being applied to many
mechanical systems to transmit power. Additionally, gears are used to smooth the
angular velocity transmission from one gear to another. This characteristic, how-
ever, is only possible due to the involute tooth form which leads to the fundamental
law of gearing where the angular velocity ratio between two meshing gears remains
constant during the mesh [1]. It is conventional to refer to the smaller gear in the
gear set (two gears) as the pinion and the other as the gear. Because of their
widespread use and importance, there is a need to monitor the health of gearboxes
to detect incipient faults as gears are the parts more likely to present faults in
gearboxes due to their dynamic characteristics (cyclic loads applied to the teeth).
The main faults are due to contact stress fatigue (known as pitting) and damage
generated by wear due to sliding gear contact (which is called scuffing) [2]. These
defects change the tooth profile so that the contact between the meshing gears is
affected causing non-uniform gear rate, reduced efficiency, increased dynamic
effects, and may lead to severe tooth failure [3].

Signal processing techniques have been developed to aid in predicting gear
faults in their early stages. As the dynamic behaviour of a mechanical system
changes due to the presence of a fault, the vibration of the system can be used to
detect faults in their early stages. However, to investigate and develop such tech-
niques, we need to use an analytical model of meshing gears so that controlled
conditions can be obtained using this model and physical insight can also be
achieved. The aim of this chapter is to show how the complicated problem of
meshing gears can be turned into the simple model of a one degree of freedom
system which can then be used to investigate techniques to detect faults in gears.
Moreover, techniques to detect faults in gears in the time domain (time synchronous
averaging), frequency domain (discrete Fourier transform) and time-frequency
domain (wavelet transform) will be carried out using simulated data.

2 Modeling the Dynamic Response of Toothed Gears Pair

The model used in this work is the one developed by Harris [4] as this model is well
known in the literature and has been used for many years. Furthermore, this model
describes the meshing forces for a pair of gears, and it is these forces, together with
the variation of the meshing stiffness (time varying stiffness during tooth-mesh) that
are considered to be the source of gear vibration [5]. This time varying stiffness can
be modelled in many ways as shown in [6], but in this work, however, the varying
stiffness is assumed to be a cosine function varying around its mean value.
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2.1 The Equivalent One Degree-of-Freedom System
for Toothed Geared Systems

In this model it is considered that the gears are connected to a rigid support so that
the tooth-mesh is the only parameter responsible for the vibrating behaviour of the
mechanical system. Figure 1 shows a schematic of the dynamics of a pair of
meshing gears. Figure 1a shows the pair of meshing gears considering a rigid
support (pinned). Figure 1b shows the free-body diagram of meshing gears which is
used to derive the fundamental equations that the dynamic model is based on. The
equations of motion are given by

T1 −Pr1 cosφ− T1′= I1θ1̈, ð1Þ

Pr2 cos φ+T2′− T2 = I2θ2̈, ð2Þ

where P is the contact force between meshing gears, r is the pitch circle radius, T is
the torque, T′ is torque due to the friction, φ is the pressure angle and I is the polar
moment of inertia. The subscripts 1 and 2 denote the driving and driven gears
respectively.

Assuming that the torques are a function of the gear angular displacement θ (i.e.
T1(θ) and T2(θ)), so that these torques can be expressed as the product of a constant
force Pō along the path of contact and the gear radius, then T1 =Pōr1 cosθ and
T2 =Pōr2cosθ. Considering that the relative displacement between the driving and
driven gears is expressed as x= ðr1θ1 − r2θ2Þcosθ and combining this with Eq. (1)
and Eq. (2) results in

x ̈+ c′x ̇+ σF′ðx, θÞ= σF, ð3Þ

in which σ = r21 ̸I1 + r22 ̸I2
� �

is a constant, c′x ̇= T1′r1 ̸I1 +T2′r2 ̸I2ð Þcosφ is the
damping force, F′ðx, θÞ=Pcos2ϕ is a time-varying force, and F = P̄0cos2ϕ.

Pressure angle 
Driven gear

Line of contact

Driving gear

(a)

(b)

Fig. 1 Schematic of meshing gears. a Pair of meshing gears and the nomenclature used in this
work. b Free-body diagram of meshing gears
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According to the work carried out by Harris [4], the contact force between meshing
teeth can be expressed as

Pðx, θÞ=K 1+ acosθð Þ x− x0cosθð Þ, ð4Þ

where K is a constant stiffness, a is the maximum stiffness, and x0 is the maximum
deviation from the ideal meshing surface (involute). Substituting Eq. (4) into
Eq. (3) gives

x ̈+ c′x ̇+ σkðθÞx= σF + σkðθÞeðθÞ, ð5Þ

where e′ðθÞ= x0cosθ is a spatially periodic displacement excitation function and
K 1+ acosθð Þ is a spatially periodic stiffness function. Multiplying Eq. (5) by the
equivalent mass, which is m=1 ̸σ, then Eq. (5) becomes

mx ̈+ cx ̇+ kðθÞx=F + kðθÞeðθÞ, ð6Þ

in which mx ̈ is the inertial force, cx ̇ is the damping force, kðθÞx comes from the
variation of meshing stiffness, c= c′ ̸σ, F is a constant load, and kðθÞeðθÞ comes
from the displacement excitation. This equation describes a linear oscillator, which
is shown in a schematic way in Fig. 2. Moreover, Eq. (6) shows that the two
degrees of freedom system was simplified to a one degree of freedom system.

3 Time Histories Generated by the Dynamic Simulator
of Toothed Gear Pair

A simulation is carried out using the linear oscillator given by Eq. (6). Solutions of
Eq. (6) are calculated numerically, and although the simulation is based on a the-
oretical model, some data was collected from the work developed in [7], such as the
damping ratio. The parameters used in the simulations are as follows:

• Gear: 15 teeth, pitch radius 30 mm. Pinion: 13 teeth, pitch radius 14 mm.
• Angular speed of the driven gear: 385 RPM. Angular speed of the driving gear

(pinion): 833 RPM.

Fig. 2 The schematic of a
linear oscillator given by
Eq. (6)
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• Equivalent mass 0.5 kg. Damping ratio 0.0625. Load force (F) 1.56 kN.
Meshing Stiffness kðθÞ=22 × 106 1+ 0.1cosθð Þ N/m.

Figure 3 shows the results obtained using the model given by Eq. (6) consid-
ering two cases. The labels ‘i’ and ‘ii’ are for cases where there is no fault and when
a fault is introduced by reducing the time-varying stiffness in the meshing gears,
respectively. Figure 1a show the schematic of the 7 pinion teeth used in the anal-
ysis. Figure 3b shows the time-varying stiffness. Figure 3c shows the time series
(acceleration). As observed, the presence of a fault (simulated by reducing the
stiffness of one tooth) affects the simulated time series. Hence, such a model can be
used to investigate signal processing techniques for gear faults as it is representative
of the system dynamics.
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Fig. 3 Meshing stiffness and acceleration of meshing gears using the toothed model. The labels
“i” and “ii” stand for a healthy and a damaged gear, respectively. a Meshing stiffness.
b Acceleration
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4 The Effect of Uncorrelated Noise on the Time Histories
of Simulated Data and Time Synchronous Averaging
(TSA) Technique

Uncorrelated noise due to external sources is present in any actual vibration data so
techniques should be used to attenuate its effect prior to analysis. One of these
techniques is synchronous averaging or time synchronous averaging (TSA) or time
domain average [8, 9]. The technique generally used in gear fault detection prob-
lems. To obtain a synchronous sample of the vibration signal from meshing gears,
the average between these vibration signals collected over many gear revolutions
(or cycles) (in which any block (sample length) starts at the same angular position)
is required. Figure 4 shows a schematic highlighting how this technique (averaging)
is conducted. Every gear cycle (block) q has the same period, Tc, so that the signal x
can be averaged Q times generating an averaged signal y.

The result of this technique is a synchronous sample that is then dominated by
synchronous components (such as the gear meshing response). Moreover, the
uncorrelated noise is also attenuated in the time histories (since such noise is
random in each block) so that its average tends to zero. In a practical situation,
however, a device (such as a trigger like a tachometer) should be used to detect the
angular position (reference) from which the averaging will be carried out. Figure 5a
shows an infrared optical sensor used as a trigger. Figure 5b shows the optical
sensor mounted in an experimental test rig.

This sensor gives a pulse when the light beam generated by it crosses a reflecting
tape (angular position) glued, in this case, to the input shaft. Figure 6a, b shows the
time history of the trigger and the time history of an accelerometer mounted on the
gear box, respectively, to highlight the use of such a device in the calculation of
TSA.

One way of calculating the TSA (shown in Fig. 4) is by conducting the recursive
average, and this average is conducted by calculating a weighted residual for each
block, which is added to the TSA. The mathematical equation for this average is
given by

Fig. 4 The schematic of how
the time synchronous
averaging is conducted
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yq = yq− 1 +
xq − yq− 1

Q
, ð7Þ

where y is the time synchronous averaging, x is the actual block of the signal and n
is the block number.

Returning to the simulated data, it has been seen that noise is present in actual
vibration signals. Hence, to check how such noise affects the time histories and also
how TSA works, uncorrelated noise will be added to the simulated data given in
Fig. 3. The signal-to-noise ratio (SNR) of −6.5 dB is adopted in this simulation.
This is achieved by adding Gaussian noise to the signal. Figure 7a(i), b(i) show the
simulated data without and with a defect, respectively, for one revolution of the
pinion with no time averaging. Figure 7a(ii), b(ii) show the simulated data without
and with a defect, respectively, after applying TSA. It can be seen that this tech-
nique is effective in reducing the uncorrelated noise added to the signal. Further-
more, TSA can also be used as a pre-processing tool before conducting other fault

(a) (b)
Gear box

Infrared 
sensor

Reflecting
tape

Fig. 5 Experimental test rig a the infrared sensor (trigger), and b the test rig
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Fig. 6 The time history of: a Infrared optical sensor (trigger), b Vibration signal (velocity)
measured on the gear box shown in Fig. 5
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detection methods (such as the discrete Fourier transform and the wavelet transform
which are presented later in this chapter).

5 Statistical Analysis in the Time Domain

Statistical moments [10, 11] and their normalizations are included in this group as
these moments are commonly used to describe the shape of probability density
functions (PDF) so that they are able to detect any change in its original form.
In gears, for example, if the interactions between meshing gears (tooth surface
interaction) are in good conditions, then the PDF has a particular shape which is
similar to a bell. However, if a fault and/or a severe wear cause a change in the load
condition over the tooth surfaces, then the PDF shape will also change so that such
change can be detected via statistical moments [10].

The mean value of a sample is the first moment and the variance is the second
one. The RMS (Root-mean-square) value, which is very often used in gear fault
detection problems, is the square root of the variance (second moment). So, the
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Fig. 7 Time histories of simulated data generated by the toothed meshing gear model. The labels
“i” and “ii” stand for cases without and with the application of the time synchronous average
technique, respectively, a Gear without fault, b Gear with fault
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RMS value is a variation (normalization) of the second moment. In addition to
those, the third moment (which is called the skewness), the fourth moment (which
is called kurtosis), and the crest factor (which is the ratio between the peak in the
time histories) and the RMS value are all used in fault detection in gears. These
moments and their normalizations are described in this section.

The first moment (or mean value) is a measurement of the central tendency of a
set of numbers characterized by a probability distribution function [12]. The mean
shows where the scatter of points of a sample is centred so that it can also be
interpreted as a measure of location [13]. For a discrete signal, the mean is given by

x ̄=
1
N

∑
N

n=1
xn, ð8Þ

where x is the discrete time history and N is the total sample elements.
The root-mean-square (RMS) value is a measurement of the amount of energy

contained in the vibration time histories (vibration signature). Although this tool is
valuable for measuring vibration level, it does not provide any evidence that a fault
is occurring in the mechanical system (such as a severe tooth wear in a gearbox).
The RMS equation for a discrete signal is given by

RMS=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

∑
N

n=1
x2n

s
. ð9Þ

This tool can also be used to aid the maintenance management as vibration
severity (and given by its calculation) can be used as an indication of the machine
health condition. There are charts which show that a machine can operate without
any severe damage (e.g., the ISO 2372 which is defined according to the machine
horsepower and operating angular speed, and gives a threshold value, and, in this
case, an RMS value). In this situation, the vibration measurement is velocity given
in mm/s.

The crest factor (also called peak-to-RMS-ratio) is given by the ratio of the
highest peak in the vibration signal to its RMS value. This technique is good for
transient signals, such as a broken gear tooth, where the RMS value is not too
sensitive to such transient change. Hence, the presence of peaks in the vibration
signature will increase the crest factor value, and indicate the presence of a fault
occurring in the mechanical system. For a normal operation, the crest factor should
be between 2 and 6 [14], and is a non-dimensional number. The crest factor can be
calculated by

CF =
xpeak
RMS

, ð10Þ

where xpeak is the highest peak in the vibration signature.
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The third moment about the mean (or the so-called skewness) is a measure of the
asymmetry of a probability density function or any random variable associate with
it. It is given by

S=
1
N

∑
N

n=1
xn − x ̄ð Þ3

ðσ2Þ3 , ð11Þ

where σ2 is the variance of the time histories.
The fourth moment about the mean (or kurtosis) is a measure of the relative

“peakedness” or “flatness” of probability distribution function compared to the
normal (Gaussian) distribution [14]. This moment is used as an indication of the
degradation of a mechanical system, such as gears, and an increment in the kurtosis
indicates an increment in the crest factor. Kurtosis can be evaluated by using the
following mathematical equation

K =
1
N

∑
N

n=1
xn − x ̄ð Þ4

ðσ2Þ4 . ð12Þ

To investigate how these measures work, the simulated data shown in Figs. 3
and 7 are used to evaluate 4 out of the 5 measures mentioned previously. Table 1
shows the result for six simulated cases where the RMS, crest factor, skewness and
kurtosis were evaluated. It is observed that the RMS value and crest factor are more
sensitive to noise. Moreover, when TSA is conducted, the effect of noise is dras-
tically reduced as already shown in Fig. 7. Furthermore, the values calculated for
the two measurements with noise attenuated by the use of TSA are close to the ones
calculated using the ideal case without noise.

6 Frequency Domain Analysis: The Discrete Fourier
Transform (DFT)

The severity of vibration or vibration level, as mentioned in the previous section, is
a valuable tool to detect critical vibration conditions such as severe wear in gears.
Although this technique provides a good indication when there is a fault developing
in a mechanical system (which is given by the increment of the RMS value, for
example), such a technique does not allow identification of the source of the fault.

It is known that a mechanical system has many sources of excitation from its
mechanical parts (such as gears, bearings, shafts, among others). The time history
of such a system is given by the summation of the vibrations of each component so
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that the time histories are complicated to analyse, and the vibration information
from each mechanical part is masked by the global response of the system. Hence, a
technique that overcomes such problem is needed. This can be achieved in the
frequency domain by analysing the frequency components from each mechanical
part. Figure 8 shows a schematic highlighting vibration sources from different
mechanical parts of a mechanical system and their responses in the time and fre-
quency domains. In this specific case, the vibration sources are periodic so that each
component has its own amplitude and phase.

As observed, the signal in the time domain (time histories) does not give clear
information about the vibration sources whereas the components from each
vibration source can be clearly seen in the frequency domain. One way of calcu-
lating the signal in the frequency domain is via the Fourier transform. In rotating
mechanical systems (such as gear vibration), this technique is fundamental for
vibration analysis. The Fourier transform Xðf Þ of a vibration signal xðtÞ is given by

Xðf Þ=
Z∞
−∞

xðtÞe− j2πftdt, ð13Þ

where f is frequency in Hz and j=
ffiffiffiffiffiffiffiffi
− 1

p
. However, analog-to-digital converter

(ADC) systems are used in actual vibration problems in signal acquisition systems,
which means that the continuous vibration signal xðtÞ is then digitalized at a
sampling frequency fs to its discrete form, so that

Table 1 Evaluation of the RMS, crest factor, skewness and kurtosis for simulated data
considering cases with and without gear faults, noise and TSA

Simulated cases RMS
(m/s2)

Crest
factor

Skewness Kurtosis

Signal without
noise

Gear without fault 5.95 1.06 −0.54 1.78

Signal shown in Fig. 3a

Gear with fault 8.06 6.27 −0.7 11.1

Signal shown in Fig. 3b

Signal with noise Gear without fault and no
TSA

13.4 2.68 −0.2 3.12

Signal shown in Fig. 7a(i)

Gear without fault with
TSA

7 2.68 −0.33 2.38

Signal shown in Fig. 7a(ii)

Gear with fault and no TSA 14.3 2.5 −0.4 3.5

Signal shown in Fig. 7b(i)

Gear with fault and with
TSA

8.8 5.53 −0.6 8.33

Signal shown in Fig. 7b(ii)
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xðnΔÞ= xðtÞ ∑
∞

n= −∞
δðt− nΔÞ, ð14Þ

where δ is the delta function and Δ=1 ̸fs is the time resolution. Hence, the discrete
form of Eq. (13) for a sampled signal xðnΔÞ is then given by

Xðej2πfΔÞ= ∑
∞

n= −∞
xðnΔÞe− j2πfnΔ. ð15Þ

However f =w ̸ðNΔÞ, where w is an integer. Moreover, in practical situations
the length of data acquisition is finite, hence Eq. (15) can be rewritten as

XðwÞ= ∑
N

n=1
xðnΔÞe− jð2π ̸NÞnk. ð16Þ

Equation (16) is the Discrete Fourier Transform (DFT). This equation shows that
the sampled data for a finite length in the time domain generates a discrete spectrum
equally sampled in the frequency domain (which is an approximation of the Fourier
series) [15]. As the data is finite, then the DFT will be distorted by data truncation
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Fig. 8 Schematic of different sources of vibration excitation present in a mechanical system
together with its representation in frequency and time domain
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(or “windowing effect”), which is known as leakage. One way of reducing leakage
problems is by multiplying the truncated data by another window (such as the
Hamming window) so that these distortions can be attenuated.

For meshing gears, it is expected that frequencies at the meshing frequency
(which is the angular speed of the gear multiplied to the number of gear teeth) and
its multiples are present in the spectrum. Figure 9 shows cases where the DFT has
been calculated. Figure 9a shows the case where no additive Gaussian noise is
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Fig. 9 The discrete Fourier Transform of the simulated signal generated by the toothed gear
model. The labels “i” and ‘ii’ stand for cases of health and damaged gear, respectively, a Signals
without any additive Gaussian noise present, b Signals with additive Gaussian noise and no use of
time synchronous average technique, and c Signals with additive Gaussian noise smoothed by the
use of time synchronous average technique
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present in the data which is also shown in Fig. 7. The labels “i” and “ii” stand for
healthy and damaged gears, respectively. It can be observed that for the damaged
gear, there is a frequency band around 1000 Hz which is not observed for the
healthy gear. However, when Gaussian noise is added to the data, such noise masks
the main features present in the DFT as shown in Fig. 9b(i), b(ii). Figure 9c(i), c(ii)
show the use of the TSA to attenuate external noise, and thus, the TSA technique is
effective in enhancing the signal, therefore, highlighting the main features present in
the DFT.

7 Time-Frequency Domain Analysis: The Wavelet
Transform

Wavelets (or little waves) are functions that contain information in both the time
and the frequency domains. They have one advantage when compared to the
Fourier transform which deals only with the frequency domain where the temporal
information is not available. The wavelet transform uses a scaled and shifted ver-
sion of a basis function hwðtÞ, which is also called mother wavelet, together with the
signal xðtÞ to compose the inner product that evaluates a decomposition of the
signal into a weighted set of scaled waves [16]. The continuous wavelet transform
is defined as [17]

CWTðb, aÞ= 1ffiffiffi
a

p
Z

xðtÞh*w
t− b
a

� �
dt, ð17Þ

where b and a are the translation (shifting) and scaling coefficients, respectively. It
is observed that Eq. (17) is similar to that the Fourier transform. However, the basis
function for the Fourier transform is e− j2πft, which means that the signal xðtÞ can be
decomposed in sine and cosine functions. For the wavelet, however, this is a
time-scale distribution, where the time-frequency analysis can be performed by
establishing a relationship between the scale coefficient a and the frequency f . For
signal analysis, the wavelet transform is suitable for non-stationary signals, such as
vibration signals from damaged gears. To isolate signal discontinuities, it is
desirable to have short basis functions, but at the same time, in order to obtain a
detailed frequency analysis, it is desirable to have long basis functions. The wavelet
transform provides good time resolution when analyzing high-frequency compo-
nents, and provides good frequency resolution when analyzing low-frequency
components because this transform is limited by the Heisenberg’s Uncertainty
Principle where the BT product remains constant. Figure 10 shows the
time-frequency resolution plane highlighting that low-frequency components (high
scale) have high-frequency resolution, and high-frequency components (low scale)
have high time resolution.
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Although there are many basis function (wavelets) available in the literature, two
of them are well-known: the Morlet wavelet and the Symlet wavelet. Figure 11a, b
show the Morlet wavelet and the Symlet wavelet of order 2, respectively.

These wavelets are used to investigate how the wavelet transform can be used to
detect faults in gears. Figure 12a, b show the wavelet transform performed using
Morlet wavelet for simulated data of a healthy gear and a damaged gear, respec-
tively. The frequency and time domain signals are also shown for convenience.
Thus, it can be observed that the meshing gear frequency is clearly seen in this
wavelet transform. Additionally, for the case with damage present in the system, it
is observed that the wavelet transform can show when the damage occurs in time so
that it is possible to know which tooth is damaged. Figure 13a, b show the wavelet
transform performed using Symlet wavelet for simulated data of a healthy and a
damaged gear, respectively. The frequency and time domain signals are also shown
for convenience. It can be observed that the meshing gear frequency is also clearly
seen in this wavelet transform, and it is even clearer to see where the damage is in
this particular wavelet than when using the Morlet wavelet.
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8 Conclusions

In this chapter a vibration simulator for toothed gearing systems has been described.
This simulator was used to reproduce vibration signals considering gears without a
fault or with a fault by reducing the mesh stiffness to simulate a broken tooth.
Moreover, these signals were used to illustrate how classical signal processing
techniques can be applied to detect fault in gears. These techniques can be carried
out in the time domain, frequency domain or in the time-frequency domain. In the
time domain the Time Synchronous Average (TSA) and statistical analysis methods
were evaluated. The first (TSA) is very helpful in reducing the effects of uncor-
related noise present in the data, so that it can be used as a pre-processor prior to
evaluating a signal processing method to detect faults. The statistical analysis gives
an indication of the healthy condition of the mechanical system, but does not
indicate which fault is in the system. This can be achieved by analysing the data in
the frequency domain using the Fourier transform or by using time-frequency
domain techniques, such as the Wavelet transform. These techniques together with
Probabilistic Prognostics and Health Management tools can be used to enhance the
estimation of the remaining lifetime of the mechanical system before failure.
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Condition Monitoring of Structures Under
Non-ideal Excitation Using Low Cost
Equipment

Paulo J. Paupitz Gonçalves and Marcos Silveira

Abstract Monitoring the integrity of structures and machines is an evergrowing

concern in engineering applications. Better knowledge of structural conditions allows

optimized maintenance cycles, increasing the availability and return of investment,

and preventing failure of various systems from manufacturing equipment to air and

land vehicles. A common way of evaluating the integrity of mechanical systems is

capturing and analyzing vibration signals during operation. Many of the condition

monitoring systems are highly specialized, incurring high initial investment. In this

context, the objective of this work is to demonstrate the possibility of using low-cost

systems for monitoring the integrity of structures. The use of piezoelectric sensors

to capture vibration signals is currently ubiquitous, and acquisition and conditioning

of these signals can be performed by low cost and open source logic programmable

microcontrollers such as Arduino. Structures coupled to non-ideal motors (such that

the phenomenon of resonance capture can occur) are used in this study. Controlled

structural modifications are performed by the addition of point masses along the

length of the beam, and by the application of magnetomotive forces with the use of

an electromagnet at a fixed point on the beam. The experimental data is compared to

analytical and numerical results, and to an established commercial system, demon-

strating the possibility of satisfactory monitoring of structural integrity with such

system.

Keywords Condition monitoring ⋅Non-ideal excitation ⋅ Sommerfeld effect ⋅ Low

cost

1 Introduction

Structural integrity monitoring (more specifically, damage detection at the earliest

possible stage) is an increasingly studied topic in many engineering applications in

order to improve manufacturing planning, machinery performance, and to prevent
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downtime, failures, financial loss and disasters. Damage to structures can be defined

as undesirable changes to a given system. Such changes can be either geometric such

as deformations or wear, as well as changes to the parameters defining the material

properties such as stiffness or mass.

Many examples of machines attached to flexible structures can be found in civil,

mechanical and aerospace engineering. For example, aircraft wings with jet engines

or propellers, cranes for loading vessels and industrial hoists. Rotors tend to become

unbalanced due to the accumulation of particles, magnetic asymmetry and uneven

wear of its components and may become a source of vibratory mechanical excitation.

These induced vibrations may coincide with the eigenfrequencies of vibration modes

of the structure, often resulting in undesirable effects, such as resonance capture,

which causes energy to be transferred to increase structural vibration instead of motor

rotation.

Farrar et al. [1, 2] define the scope of condition monitoring as a part an area

known as Prognosis and Heath Monitoring of structures. They define two classes

of monitoring. The first is the Usage Monitoring, which is the process of acquiring

operational data from a structure or system. On the other hand, Health Monitoring
is the process of identifying the presence and quantifying the quantity of damage in

a system based on information extracted from measured data.

Specialized integrity monitoring systems exist, and may consist of sensors inte-

grated in the structure, data acquisition hardware and signal analysis software. Due to

their high initial costs, the complexity and size of such systems, only critical equip-

ment or components are monitored. In other cases, it is impractical to install the

necessary number of sensors due to size or harsh conditions restrictions. In this con-

text, the use of modular and low cost equipment for data acquisition has become an

interesting solution. An important compromising relationship exists between cost,

reliability and signal processing capabilities of the systems. Currently, it is possible

to obtain sensors and microcontrollers with high acquisition rates which are rela-

tively low cost, which makes it interesting to understand their applicability as struc-

tural health monitoring systems in various engineering areas. The recent push in the

direction of connectivity and big data analysis (such as Internet of Things) relies

on the accessibility, availability and reliability of sensors and signal processing to

enable wide adoption.

1.1 Smart Structures and Structural Health Monitoring

Structures are said to be intelligent or smart when they are able to detect and resolve

problems before a failure occurs, by receiving signals from sensors and then process-

ing them via a central control unit. In general, smart structures should employ sensors

that record internal and external information, contain actuators to apply designated

forces and have a central control system capable of acquiring signals and making

decisions. In these terms, any structure that is capable of capturing different signals

in response to any change in the environment or integrity can be considered a smart

structure.
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The techniques involved in Structural Health Monitoring (SHM) allow optimiza-

tion of the use of the structure (reducing downtime and preventing disasters), enable

maintenance planning based on performance or true working condition and, in

general, assist the designer in improving the structure. Non-destructive evaluation

(NDE) techniques used in SHM include electromechanical impedance, and consist

of comparing the signals obtained from a structure without damage (known as the

baseline signal) to signals of a structure to be inspected. However, the sensitivity to

environmental changes (such as temperature and noise) need to be taken into account

when using SHM.

Rytter and Kirkegaard [3] describes the use of inspection based on the vibra-

tion and modal analysis to determine structural damage and to estimate the life of

the system. Damage identification is divided into four levels: determination of dam-

age present in the structure, determination of the geometric location of the dam-

age, quantification of the severity of damage, and prediction of the remaining life of

the structure. Narkis [4] conducted simulations in a simple supported beam under

bending and axial vibrations with damage increased along the beam. Comparisons

with numerical simulations calculated by the finite element method for validation

indicated that data from two natural frequencies of the system is sufficient for the

location of the damage.

Doebling [5] described several damage identification methods using mechani-

cal vibrations, including damage detection based on changes in modal properties

(defined by frequency of resonance, damping and mode shape), methods based on

dynamic measurement of stiffness, methods based on changes of the matrices of the

structural model (such as mass, stiffness and damping) and modal information indi-

cating the vibration modes and natural frequencies. The optimal matrix method was

presented by Zimmerman and Kaouk [6] who also formulated the algorithm of the

minimum rank perturbation, demonstrating how the perturbation of two matrix prop-

erties can be estimated simultaneously. Sohn et al. [7] conducted a literature review

of structural health monitoring with damage settings, integrity and the methods used

to perform the monitoring of the condition of the structure (which involves sensing,

acquisition, signal conditioning, development of statistical models to detect changes

in the modal parameters).

Yan et al. [8] developed methods of detecting structural damage based on mechan-

ical vibrations with changes in natural frequencies, vibration modes, structural stiff-

ness, transfer function or frequency response of the system and based on statisti-

cal information. The development of modern techniques such as wavelet analysis,

neural networks and genetic algorithm methods are also mentioned. Signal treat-

ment, processing and analysis using discrete Fourier series and state space methods

are exemplified by Lathi [9]. Statistical techniques are required for analysis of sam-

ples. The presence of noise is inherent and may interfere to the extent of damage and

the sensitivity of amplitude or natural frequency to damage extent is usually very

low. The measure of the degree of flattening of the distribution (known as kurtosis),

can be used as a filter to the signal [10, 11].
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1.2 Non-ideal Excitation and Health Monitoring

As described by Gonçalves et al. [12, 13], rotating machines suffer from unbalance

and alignment problems that can lead to excessive levels of vibration causing vari-

ous undesirable problems and failures. Critical speed occurs when the shaft angular

speed matches the shaft bending natural frequency. Laval was the first to perform

an experiment with a steam turbine to observe that quick passage though critical

speed would significantly reduce the levels of vibration when compared to steady

state excitation [14]. This procedure would require a motor with enough power to

be accelerated quickly in the range of resonance frequency. In some cases, motors

have limited power to perform such operations, and the angular velocity increases

so slowly that the passage through resonance becomes a problem.

Another class of problem related to unbalanced motors with limited power was

discussed by Sommerfeld [15]. He proposed an experiment of a motor mounted on

a flexible wooden table and observed that the energy supplied to the motor was con-

verted in the form of table vibration instead of being converted to increase angular

velocity of the motor. This observation was used to explain a class of motors called

non-ideal energy sources. The non-ideal energy source have an influence on the sys-

tem near the resonance regime. When considering a DC motor, usually the angular

velocity increases according to the power supplied by the source. However, due to the

Sommerfeld effect, near the resonance and with additional energy, the average angu-

lar velocity of the DC motor remains unchanged until it suddenly jumps to a much

higher value upon exceeding a critical input power. Simultaneously, the amplitude

of oscillations of the excited system jumps to a much lower value. Before the jump,

the non-ideal oscillating system cannot pass through the resonance frequency of the

system, or requires an intensive interaction between the vibrating system and the

energy source to be able to do so [14, 16, 17].

The interaction between non-ideal motors and flexible structures has been stud-

ied by many authors. A review of non-ideal energy sources is presented by Balthazar

et al. [14] and Cveticanin [18]. Eckert [19] presents a brief review of the problem

investigated by Sommerfeld. Blekhman et al. [20] discuss the motion of an unbal-

anced rotor when passing through a resonance zone solved by the iteration method

combined with the method of the direct separation of motions. Dimentberg et al. [21]

presents a method to avoid resonance capture by switching on and off a mechanism

to change the stiffness of an engine mount, while Castão et al. [22] makes use of

magneto-rheological dampers to avoid resonance capture. Tsuchida et al. [23] stud-

ied the dynamics of a non-ideal system with two coupled oscillators, with results

that showed that jump phenomena and chaos are present for certain values of the

parameters in the resonant regime. Zukovic and Cvetićanin [16, 17] detected the

Sommerfeld effect and chaotic regimes on the dynamics of a non-ideal system com-

prised of an oscillator connected with an unbalanced motor with clearance. Moraes

et al. [24] analyzed the dynamics of a vibro-impact system with a non-ideal source

by means of a DC motor with limited power supply and an unbalanced rotor. Three

different situations were presented: in the first situation, the motor has reached a
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steady state angular frequency similar to the angular velocity constant of the motor,

while in the second and third situations, the motor exhibits resonance capture.

Considering the analysis of such systems, Palacios et al. [25] applied the Bogoli-

ubov Averaging Method to study the vibrations of an elastic foundation with a non-

ideal energy source. They considered a model consisting of a planar portal frame

with quadratic nonlinearities and internal resonance 1:2 that supported a direct cur-

rent motor with limited power. Quinn et al. [26] presented an approximated method

to identify which sets of initial conditions lead to resonance capture. Kerschen et al.

[27] reported an experimental study of transient resonance capture that may occur

in a system of two coupled oscillators with essential nonlinearity, that showed that,

during transient resonance capture, the two oscillators are in a state of resonance, the

frequency of which varies with time. Lee et al. [28] studied the dynamics of a two-

degree-of-freedom (DOF) nonlinear system consisting of a grounded linear oscilla-

tor coupled to a light mass by means of an essentially nonlinear stiffness. They first

considered the undamped system and performed a numerical study based on non-

smooth transformations to determine its periodic solutions in a frequency-energy

plot. Bishop and Galvanetto [29] considered the behavior of a mechanical oscillator

with cubic nonlinearity subjected to a forcing excitation whose frequency remained

constant while the amplitude was ramped. They found that the reduced level of forc-

ing at the initial stages of ramping produces a delay in bifurcational events when

compared to the constant sinusoidally forced counterpart. Felix et al. [30] studied a

nonlinear control method based on the phenomenon of mode saturation which was

applied to a portal frame support and unbalanced motor with limited power. An alter-

native method was analized in [31] which consists in the energy transfer of a structure

(cantilever beam) with a non-ideal motor using Linear Electromechanical Vibration

Absorber (LEVA) and a Nonlinear Electromechanical Vibration Absorber (NEVA).

In terms of continuous systems with coupled motors, Krasnopolskaya [32] stud-

ied an infinite plate immersed in an acoustic medium. The plate was subject of a point

excitation by an electric motor of limited power-supply, and it was shown that chaos

might occur in the system due to the feedback influence of waves in the infinite hydro-

elastic subsystem in the regime of motor shaft rotation. In terms of damage detection,

Ko et al. [33] presented a method combining sensitivity analysis and MAC/COMAC

analysis that showed that some methods can predict structural changes without infor-

mation of the system parameters by comparing healthy with damage states by means

of signal processing.

1.3 Piezoelectric Sensors

A piezoelectric sensor is a passive transducer that converts mechanical excitation

energy into electrical energy (and vice versa) due to the phenomenon of the gen-

eration of electrical charges on the surface of a material under mechanical strain,

a process called piezoelectricity. Piezoelectricity properties are related to the crys-

talline structure of the Perovskite type. Piezoelectric elements began to be studied in
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(a) (b)

Fig. 1 Cristalline structure of piezoelectric ceramics

1880 [34] for generating an electric charge by means of pressure applied to crystals.

The reverse effect was studied shortly after [35], and the electric potential differ-

ence application in crystals was already called piezoelectric, leading to mechanical

deformations.

From a structure as shown in Fig. 1a, the unpolarized ceramic is centralized (cubic

structure), which occurs when the temperature is above the Curie point. The struc-

ture shown in Fig. 1b has tetragonal symmetry in which the center of symmetry of

the positive electric charge does not coincide with the center of symmetry of neg-

ative charges and generates an electric dipole. The Curie point defines the critical

temperature that divides the two situations shown [36].

The equivalent electrical circuit of a piezoelectric element is a resonant serial

RLC circuit in parallel to a capacitor equivalent to the parallelism of the materi-

als (as can be seen in Fig. 2a). The characteristic impedance curve (a function of

frequency) reveals two points resulting in impedance at resonance which are the

(a) (b)

Fig. 2 Equivalent electrical circuit of piezoelectric sensor and characteristic impedance curve
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minimum impedance point (Zmin) at frequency f1 and maximum impedance (Zmax)
at frequency f2 (as shown in Fig. 2b). This is why piezoelectric elements are widely

used in components that promote stability in oscillator circuits (called XTAL).

The impedance as a function of the frequency is given by

Z(𝜔) =
1 − C1L1𝜔2

j𝜔
(
C0 + C1 − C0C1L1𝜔2

) (1)

where the resonance frequency is given by

f1 =
1
2𝜋

√
1

C1L1
(2)

and the anti-resonance is written as

f2 =
1
2𝜋

√
C0 + C1
C0C1L1

. (3)

The objective of this work is to demonstrate the possibility of using low-cost

systems for monitoring the integrity of structures. A frame structure coupled to a

non-ideal motor is used in this study so that the phenomenon of resonance capture

can occur. Controlled structural modifications are performed by the addition of point

masses along the length of the beam, and also by the application of magnetomotive

forces with the use of an electromagnet at a fixed point on the beam. The experi-

mental data is compared to analytical and numerical results and to an established

commercial system in order to evaluate the possibility of satisfactory monitoring of

structural integrity with such system. In the sequence, a 2-DOF discrete (lumped)

parameter model of a mass vibrating in a plane is presented in Sect. 2 which is used

to investigate the phenomenon of resonance capture and demonstrate the Sommer-

feld Effect. An experimental set-up was built (which is compatible with the 2-DOF

model) and its sensors and data acquisition system are presented in Sect. 3. The

experimental results are presented in Sect. 4, including the damage emulations and

comparisons with a commercial monitoring system.

2 Mathematical Modeling

The system considered in this section is presented in Fig. 3, which consists of a block

with mass M supported by springs and viscous dampers in two orthogonal directions

(x and y). The spring constants are defined by k and the dampers by c. The subscripts

x and y indicate the displacement direction. Attached to the mass is a rotating motor,
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Fig. 3 Discrete parameter

system with two degrees of

freedom and coupled

non-ideal unbalanced motor

with an unbalanced mass m at a distance r from the center of the motor shaft. The

motor shaft has moment of inertia defined by J0.

The equations of motion of an electrical motor attached to a structure are devel-

oped based on Lagrange equations and the model is related to an experimental device

described in later sections.

2.1 Energy Equations

To apply Hamilton’s principle, expressions for the kinetic and the potential energy

need to be written in terms of the unknown degrees of freedom. The kinetic energy

is defined as

T = 1
2
Mẋ2 + 1

2
Mẏ2 + 1

2
J0�̇�2 + 1

2
m
(
ẋ2m + ẏ2m

)
. (4)

The term J0 defines the motor shaft moment of inertia, and the terms xm = x +
r cos𝜙 and ym = y + r sin𝜙 define the position of the motor’s unbalanced mass m,

with r being the distance of this mass to the motor’s center of rotation. Thus, Eq. 4

can be written as

T = 1
2
(M + m) ẋ2 + 1

2
(M + m) ẏ2 + 1

2
(
J0 + mr2

)
�̇�
2

+ mr�̇� (ẏ cos𝜙 − ẋ sin𝜙) .
(5)

If the gravity potential energy is neglected, then the system’s potential energy is

simply

U = 1
2
kxx2 +

1
2
kyy2. (6)
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2.2 Equations of Motion

The equations of motion of the system are obtained by writing the Lagrangian, L =
T − U, and first-order stationary conditions in the form of Hamilton’s equation

d
dt

(
𝜕L
𝜕q̇i

)
−
(
𝜕L
𝜕qi

)
= Fi (7)

in which Fi are the non-conservative forces, which are the viscous damping forces

Fdamp
x = −cxẋ, Fdamp

y = −cyẏ and the torque 𝔐 supplied by the motor.

Applying Eqs. 5 and 6 into 7, it is possible to obtain the block’s equations of

motion for x and y directions

(M + m) ẍ + kxx + cxẋ = mr
(
�̇�
2 cos𝜙 + �̈� sin𝜙

)
(8)

(M + m) ÿ + kyy + cyẏ = mr
(
�̇�
2 sin𝜙 − �̈� cos𝜙

)
(9)

and the equation of motion for the unbalanced mass

(
J0 + mr2

)
�̈� = mr (ẍ sin𝜙 − ÿ cos𝜙) +𝔐

(
�̇�

)
. (10)

Equations 8, 9 and 10 can be conveniently written in terms of the parameters

𝜔x =
√

kx
M + m

𝜉x =
cx

2(M + m)𝜔x
𝜇1 =

mr
M + m

𝜔y =

√
ky

M + m
𝜉y =

cy
2(M + m)𝜔y

𝜇2 =
mr

J0 + mr2

such that

ẍ + 𝜔
2
xx + 2𝜉x𝜔xẋ = 𝜇1

(
�̇�
2 cos𝜙 + �̈� sin𝜙

)

ÿ + 𝜔
2
yy + 2𝜉y𝜔yẏ = 𝜇1

(
�̇�
2 sin𝜙 − �̈� cos𝜙

)

�̈� = 𝜇2 (ẍ sin𝜙 − ÿ cos𝜙) +𝔐
(
�̇�

)
∕
(
J0 + mr2

)
. (11)

2.3 Model Order Reduction

The order of the equations describing the motion of the system (Eq. 11) is reduced

by the use of the state variables q1 = x, q2 = y, q3 = 𝜙, q4 = ẋ, q5 = ẏ and q6 = �̇�,

such that the velocities are re-written as
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q̇1 = q4 q̇2 = q5 q̇3 = q6. (12)

The accelerations can then be calculated by solving the linear system of differen-

tial equations

⎡
⎢
⎢
⎣

1 0 −𝜇1 sin𝜙
0 1 𝜇1 cos𝜙

−𝜇2 sin𝜙 𝜇2 cos𝜙 1

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

ẍ
ÿ
�̈�

⎤
⎥
⎥
⎦
=
⎡
⎢
⎢
⎣

−𝜔2
xx − 2𝜉x𝜔xẋ + 𝜇1�̇�

2 cos𝜙
−𝜔2

yy − 2𝜉y𝜔yẏ + 𝜇1�̇�
2 sin𝜙

𝔐(�̇�)∕
(
J0 + mr2

)

⎤
⎥
⎥
⎦

(13)

in which q̇4 = ẍ, q̇5 = ÿ and q̇6 = �̈�.

2.4 Non-ideal Motor

To define a limited power (or non-ideal) motor, two parameters are used to represent

the torque as a function of the angular velocity, given by

𝔐(�̇�) = M0

(
1 − �̇�

Ω0

)
(14)

in which M0 and Ω0 are constants of the motor, the first related to static torque and

the second related to zero torque.

Equation 14 is represented by the curve shown in Fig. 4 where the torque 𝔐 is a

function of the angular velocity �̇�. For values of angular velocity equal to Ω0, the

torque reduces to zero, and when the angular velocity is zero, the torque is maximum

and equal to M0.

Fig. 4 Motor torque

characteristic curve (adopted

from Ref. [12])
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(a) (b)

Fig. 5 The illustration of the Sommerfeld effect. a Angular velocity as a function of Ω0 and b
displacement amplitude as a function of Ω0

2.5 Sommerfeld Effect

This numerical example considers the case of setting the motor angular velocity

to a fixed value. The motor is accelerated from rest to a fixed velocity by chang-

ing the parameter Ω0. The simulations were performed for frequencies around the

mass block resonance frequency 𝜔0 and are presented in Fig. 5. Figure 5a shows

that when Ω0 is slightly bigger than 𝜔0 the angular velocity does not increase. For

instance, when setting Ω0 = 1.1𝜔0, the motor does not reach the angular velocity

1.1𝜔0; instead it will oscillate with angular velocity 𝜔0. The consequence is that this

energy is transferred to cart displacement amplitude. The mass magnitude (in RMS

(root mean square)) is shown in Fig. 5a as a function of the oscillation frequency as

the parameter Ω0 increases.

3 Experimental Set-Up

The experimental system considered in this work is a frame structure consisting of a

long horizontal beam supported by two shorter vertical beams, as shown schemati-

cally in Fig. 6. The bending stiffness of the horizontal beam corresponds to ky of the

2-DOF discrete system shown in Fig. 3, while the equivalent bending stiffness of the

two vertical beams corresponds to kx. Attached to the center of the horizontal beam

is a non-ideal electrical DC motor with an unbalanced mass that excites the structure

at a frequency determined by its angular velocity. The first two mode shapes were

investigated. In the first mode, the horizontal beam had large bending motion, while

Fig. 6 The experimental

set-up illustrating the sensors

and the motor
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Fig. 7 The experimental set-up showing the use of electromagnetic transducer to introduce struc-

tural changes in the system

(a) (b)

Fig. 8 The experimental set-up showing the use of concentrated masses in two positions to intro-

duce structural changes in the system. a Mass at 35 mm and b mass at 160 mm from the corner

the vertical beams had very small motion. In the second mode, all beams presented

large bending motion.

Structural modifications were applied to the structure in two forms: the first was

by the introduction of an electromagnet and a permanent magnet as illustrated in

Fig. 7. The second form of structural modification was introduced by addition of

concentrated masses in two different positions as shown in Fig. 8.

3.1 Using Arduino UNO as a DAQ

The success of the monitoring system depends heavily on the sensors and the data

acquisition. The application of piezoelectric elements as sensors was explained by

Park et al. [37] and Wang et al. [38] (the latter specifically for concrete structures).

Guechaichia and Trendafilova [39] conducted experiments of fault detection on a

beam, detecting and locating damage using only the first natural frequency of the

system, and the Arduino UNO microcontroller.

A summing non-inverter amplifier circuit was built using a LM741 operational

amplifier with two inputs: one for the signal generated by the piezoelectric element

and another for a DC input adjustable by a potentiometer. This set-up allows the

actual sum of signals from the inputs, and has a gain easily calculated by the ratio of

feedback resistors with negative input. The circuit requires a symmetrical DC power

of 12 V and has a variable gain. The amplifier circuit has a voltage gain in the range

from 1 to 6 (0 to 15 dB) and DC voltage of 0 to 4 V (its use is necessary because

the signal generated by the piezoelectric sensor which is centered in neutral and

symmetrical point), contains positive and negative components, and the amplitude

is proportional to the deformation. Depending on the excitation source, the signal

may be too low for good detail in the acquisition. Further to that, the signal must

be conditioned to have the peak voltage at the maximum analog input voltage of

the microcontroller (5.5 V), and its midpoint at half this voltage (providing that no
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Fig. 9 Signal conditioning for acquisition via Arduino microcontroller

signal component is negative) as the microcontroller accepts only positive signals.

This process is depicted in Fig. 9.

3.1.1 Resolution

Arduino UNO has 10 bit resolution which means that it has (210) 1023 divisions of

the reference voltage (which is by default 5 V). This provides a voltage resolution

of 4.9 mV. The reference voltage can also be adjusted internally to 1.1 V or other

voltage using an external reference. If 1.1 V is used, a resolution of 1.1 mV can be

achieved (Fig. 10).

Fig. 10 Original voltage signal from sensor, and signal entering the Arduino
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3.1.2 Data Sampling

Commercial DAQs acquire data at given time intervals, so if, for instance, a com-

mercial data acquisition is set to acquire 1000 samples per second (1 kHz), there is

no need to capture the time each sample was acquired since it is known that every

sample was captured at a constant interval. This is not true when using Arduino as an

acquisition system, as the system does not sample at constant time intervals because

other Arduino tasks share the same CPU. A solution for this is to print a time stamp

for every sample.

4 Experimental Results

In this section, the results acquired by the piezoelectric sensor using Arduino are

compared to the results acquired by the accelerometer with a commercial data acqui-

sition system. The signals after structural modifications are used. To perform the

comparison between the two sensors, the measurements from the piezoelectric sen-

sor and accelerometer were normalized.

4.1 Baseline Signals

Figure 11 shows the baseline signal using the piezo sensor and accelerometer as RMS

of measured signal as function of voltage applied to the motor.

4.2 Damage Emulations

In order to introduce a modification of the stiffness of the structure, an electromagnet

was placed under the beam and a neodymium magnet was attached to the beam (as

shown in Fig. 12). With this set-up, the equivalent bending stiffness of the beam

(with the attached magnet) was increased. The electromagnet was used in two levels,

6 and 12 V, the last being its maximum input voltage. Figure 13 shows the signals

from baseline and electromagnet at 6 V acquired with piezo sensor and with the

accelerometer. As a result of the increase in stiffness due to the magnetic interaction,

the eigenfrequencies were higher than the baseline (as can be observed in the two

resonance peaks).

Another modification to the original beam was performed by addition of mass at

different locations, as shown in Fig. 14. As a result of this modification, the eigen-

frequencies of the beam are reduced. Figure 15 shows the response of the system

measured in three configurations: baseline, additional mass attached at 35 mm from

the right edge, and additional mass attached at 160 mm from the right edge. We found
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Fig. 11 Root Mean Squared (RMS) as a function of the voltage applied to the motor. This is a

comparison of the signal acquired using the piezo sensor (blue dotted line) and the signal acquired

using the accelerometer (red squared line) (color figure online)

Fig. 12 Detail of the electromagnet coupled to the horizontal beam to emulate damage

that the first modification (35 mm) strongly influenced the second resonance capture

while the second modification influenced both resonance captures.

The third and fourth central moments were calculated for the previous signals.

These moments give an indication of asymmetry (skewness) and flattening (kurtosis)

of the signals, and are shown in Figs. 16 and 17 for the mass modifications, and in
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(a) (b)

Fig. 13 Root Mean Squared (RMS) as a function of the voltage applied to the motor with the

signal acquired for the baseline configuration (blue dotted line) and the system modified by the

electromagnet (green squared line). a Piezo, b Accelerometer (color figure online)

Fig. 14 Detail of placement of additional mass to emulate damage

(a) (b)

Fig. 15 Root Mean Squared (RMS) as a function of the voltage applied to the motor: signals

acquired for the baseline configuration (blue dotted line), system modified—mass at 35 mm (green
square line) and mass at 160 mm (red triangle line). a Piezo, b Accelerometer (color figure online)

Figs. 18 and 19 for the stiffness modifications. Positive skewness indicates that the

distribution is asymmetric to the right, which was the case of addition of mass, while

negative skewness indicates that the distribution is asymmetric to the left, which was

the case of magnetic interaction.

The kurtosis curve indicates that the increase in stiffness exacerbates the peak

values at the first resonance and diminishes at the second resonance. Regarding the
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(a) (b)

Fig. 16 Skweness mass. a Piezo, b Accelerometer

(a) (b)

Fig. 17 Kurtosis mass. a Piezo, b Accelerometer

(a) (b)

Fig. 18 Skewness. a Piezo, b Accelerometer

modifications of mass, the first resonance peak is shifted to the right, and this shift is

more pronounced as the added mass is closer to the edge of the beam. The addition

of mass shifts the second resonance peak to left, and this shift is more pronounced

as the added mass is closer to the edge.

When comparing the signal from the piezo sensor to the commercial accelerome-

ter, a difference in peak values can be observed in most curves. The piezo sensor has

a maximum reading as the system goes through the second resonance peak, while
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(a) (b)

Fig. 19 Kurtosis. a Piezo, b Accelerometer

the maximum reading of the accelerometer occurs as the system goes through the

first resonance.

The accelerometer, as used, senses the vertical vibrations of the beam, and so is

more susceptible to the first bending mode. The piezo sensor output depends on the

local strains deforming the crystal structure which are greater on the second vibration

mode. A possible solution to make both signals more similar is to place the piezo-

electric sensor on the vertical supports of the horizontal beam, which would match

the strain orientation of the piezo to the movement direction of the accelerometer.

The skewness coefficient was effective in identifying the structural modifications

related to the vibration modes to which the sensors had less sensibility, which were

the first bending mode for the piezoelectric sensor, and the second bending mode for

the accelerometer. This occurs as the shifts related to stiffness or mass modifications

are larger relative to the signal amplitude. A similar effect was observed for kurtosis,

with the piezo sensor showing changes of stiffness more clearly at the first resonance

and the accelerometer at the second resonance.

Apart from this difference in maximum points, both signals were very similar

and made possible the distinction among all cases tested, baseline, stiffness and

mass modifications. The double resonance capture (Sommerfeld effect) is also clear

from all signals. Considering the cost difference between the systems (2–3 orders of

magnitude), this makes a low-cost system based on piezoelectric sensors and multi-

function microcontroller a very interesting possibility.

5 Conclusions

This work has proposed a method for monitoring structural changes in systems using

low cost equipments (such as piezoelectric sensors and microcontrollers). A system

considered as an example consisted of an unbalanced DC motor supported by a flex-

ible structure. This is a situation that occurs in many common appliances and could

be used as an example for health monitoring of devices connected in the Internet of

Things.
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In terms of the analysis of such systems, power limited motors can lead to the

phenomenon of resonance capture (Sommerfeld effect), and this must be considered

when analyzing structural changes in structures with coupled motors.

The low cost system was able to capture the dynamic behavior of the system

with a similar capability of an existing commercial system. The results showed that

mass and stiffness modifications induce significant changes in the signals. Using a

piezoelectric sensor to acquire the signal, such changes were possible to be identified

in the frequency response and also via skewness and kurtosis analysis. Further to that,

the double resonance capture (Sommerfeld effect) was clear from all signals.

As the piezoelectric sensor measurement is related to local strain, and the

accelerometer measurement is related to local acceleration, the measurement values

are quantitatively different. Qualitatively, however, two natural frequencies could be

clearly observed, and the structural modifications were identified in all cases.

Position and orientation of the piezo sensors for optimizing its characteristics

must be considered for better comparison with systems based on accelerometer sig-

nals. The piezo sensors have to be positioned on the region with the correct strain

orientation relative to the movement direction which is being analyzed.

The results show that the resolution of currently available low-cost sensors (such

as piezoelectric sensors) combined to robust statistics measures (such as skewness

and kurtosis) embedded in versatile microcontrolers (such as Arduino) makes a very

interesting solution to condition monitoring in engineering systems.
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Maintenance Management and Case
Studies in the Luís Carlos Prestes
Thermoelectric Power Plant

Bernardo Botamede, Leonardo Leucas and Marcelo Pelegrini

Abstract Operating on the growing Brazilian thermoelectricity market since 2002,
Petrobras S.A. is today the largest thermoelectric generation company nationwide
and the seventh on the overall Brazilian energy market. During the past few years,
Petrobras has increased its generation capacity reaching 6,885 GW of installed
capacity. In order to achieve the maximum availability and performance of its
machines, Petrobras has built global performance and conditioning monitoring
systems which are applied to support complementary monitoring strategies and
predictive maintenance tasks at Luís Carlos Prestes (LCP) thermoelectric power
plant. Specific models are under development with the purpose of further enhancing
turbomachinery performance and reliability.

Keywords Asset management ⋅ Machine diagnosis ⋅ Maintenance tasks

1 Introduction

Every day and since the new market demands have become apparent, maintenance
management has sought new approaches to asset reliability optimization problems
[1]. For example, the introduction of ISO 55.000 standards offers an integrated
view of the asset management process, which then has a direct impact on main-
tenance policies.

One of the most important tools for optimization and active cost reduction is to
implement effective and comprehensive usage of predictive maintenance tech-
niques, which may be defined as an intervention methodology in equipment based
on the verification and analysis of the condition or performance parameters and
which follows a pre-defined methodology [2].
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Furthermore, enhancement of the operation and maintenance of thermal power
plants can be achieved through integrated monitoring systems that continuously
observe the intrinsic variables of the various processes in order to reveal the true
condition of specialized components and systems. Additionally, any degradation of
a thermal power plant can be monitored and recorded continuously using standard
computer systems and plant instrumentation.

It is also imperative that all of this information must be available to all parties
involved in the maintenance process (including the technicians and other stake-
holders) to support their final decisions and then to further evaluate their actions.

2 Objective

The object of this paper is to present a general maintenance philosophy adopted in
Luís Carlos Prestes (LCP) power plant in order to achieve the best reliability and
performance for its machinery, including:

• Description of the predictive tasks performed in the power plant;
• General explanation of two integrated monitor systems applied in Petrobras;
• Present three case studies that illustrate how monitoring systems and predictive

maintenance can be used by a local team for effective tracking of turboma-
chinery and then, if action is required, to support any further corrective inter-
vention decisions.

3 Predictive Maintenance Strategy

Ongoing and effective maintenance management policies in LCP power plant rely
on increased use of predictive maintenance techniques and, when combined with
the concepts of Total Productive Maintenance (TPM), facilitate the achievement of
power plant goals that should be the combination of highest availability and reli-
ability rates with the lowest costs.

Predictive maintenance techniques applied in LCP power plant include:

• Vibration analysis for general rotary equipment, performed by a local technical
team;

• Vibration analysis on turbomachinery, performed by subcontractors;
• Oil analysis (as applied to turbomachinery, gear boxes and special pumps

systems);
• Thermography and ultrasound tests applied to electric equipment.

264 B. Botamede et al.



4 Integrated Monitoring Systems [3, 4]

Petrobras has implemented integrated monitoring systems to support several
industrial facilities, such as the Plant Information Management System (PIMS)
which is applied to both power plants and refineries units. PIMS is used to gather
general data available on machinery that can be used for further historical analysis
or to supply raw data for post-processing.

Other specific tool available in Petrobras power plants is the Diagnosis and
Monitoring Center (or CMD) that receives data from critical equipment in power
plants. CMD has tools designed for data processing and real time analysis which
can support condition monitoring and provide the following data for a more
complete picture:

• Variable trends and variable data exportation;
• Equipment status reports and early alarms of defects or process deviations;
• Balance calculations and combined cycle efficiency;
• Customized monitor models for each equipment;
• Data comparison of similar machinery and arrangements among power plants;
• Fault trees for equipment failure;
• Database with failure rates of the monitored equipment.

All of the above-mentioned integrated systems receive raw data from digital
control systems via local network servers, and the access to these systems for local
users is granted through remote applications. Figure 1 illustrates the LCP power
plant maintenance philosophy based on both predictive tasks and the integrated
monitoring systems.

5 Case Studies

The case studies presented in this section work that have been performed (or is
under development) by the Petrobras engineering team and is related to predictive
maintenance and prognostics models for turbomachinery system optimization and
further reliability enhancement.

5.1 Case Study #1: Detecting Damage on Turbine Bearing

After a shutdown of one GE 6FA gas turbine, it was noted that the temperature
indicated for one of its bearings had started to increase and then begin to reach the
alarm level approximately one month of operation after the event. Then, an
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investigation process of all operational parameters was initiated to support any
further inspection on the machine. After a careful analysis of the available data, it
was found that some vibration levels of the bearings had been increased slightly
during the continued operation of the machine, and then by further small increments
after each shutdown/start up. However, such vibration levels were still far below the
alarm limits, as shown in Fig. 2.

With the information provided by the monitoring systems, the engineering team
decided to proceed with an advanced vibration analysis during shutdown, which
detected an issue in a specific bearing. The damaged bearing was finally replaced in
a planned outage, allowing the equipment to keep operating safely and avoiding
any major damage or change in productivity.

This case study analysis demonstrates that it is possible to utilize data as an early
signal and as a valuable alarm in fore seeing potential problems, even if only a
function of a very simple variable pattern such as rate of change over a long time.
Other complex pattern alarms are possible but will need further developments.

Fig. 1 LCP maintenance diagram
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5.2 Case Study #2: Gas Turbine Offline Washing Time
Optimization

The deposition of fouling on the compressor blades is one of the major mechanisms
responsible for gas turbine degradation. It is caused mostly by the presence of air
contaminants, such as, dust, sand, salt, moisture, oil, and many others and has
negative impact on airflow and compressor efficiency. In order to minimize such
negative impacts and to recover turbine performance, a suitable maintenance pro-
cedure is to wash the compressor blades during compressor offline periods.

One major issue is to determine the best time to execute offline washing, in order
to achieve best turbine average performance throughout each operation period and to
guarantee minimal compressor surge margin for the machine safe operation. With
the monitoring systems available, Petrobras teams are able to model and monitor
compressor fouling degradation and should define the best moment to schedule gas
turbine outage and to execute offline washing, as exemplified on Fig. 3.

Fig. 2 Temperature and vibration analysis on CMD [3]

Fig. 3 Curves for turbine
power output after time period
between offline washings and
turbine average power within
the same period of time. Data
is shown as percentage of
initial values in function of
time period between offline
washings
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5.3 Case Study #3: Gas Turbine Compressor Monitoring

The occurrence of a failure on the compressor blades represents a major risk in gas
turbine machinery, resulting in downstream damage throughout the compressor and
turbine sections. Many events of this nature have been reported across the world
during the last decade, with some of them reporting generalized damage throughout
the whole compressor. Consequently, several different monitoring approaches have
been developed in order to enhance gas turbines compressor reliability [5].

Along with market available solutions, which are under technical-economic
viability analysis for implementation, Petrobras engineering team objective is to
develop mathematical models based on additional vibration probes (not provided by
equipment manufacturer) located on compressor casing. The aim is to identify
vibration patterns and develop a monitoring tool that should be capable of detecting
major compressor issues, including:

• compressor clashing between stator and rotor blades,
• compressor rubbing between rotor blades and casing, and
• foreign or domestic object damage (FOD/DOD).

6 Conclusions

Integrated monitoring systems allow for the sharing of findings and experiences
between interested parties providing a common data base that may be consulted at
any time by all Petrobras power plants. Processed data can also be used (along with
predictive tasks) to help in many decisions taken by local staff (e.g. machine fault
diagnosis, continuous improvement of maintenance tasks and so on) which can help
to streamline such a process.

The CMD tool is a large platform that can provide solid data to a better
understanding of the machines behavior. As more people use it, the historical
database will become larger (and thus more useful) and this can then provide more
reliable data in the ongoing decision making process.

The case studies previously presented have been developed by Petrobras and
show the advantages of applying an integrated monitoring strategy and predictive
maintenance for effective machine maintenance in power plants. Other models that
use health-monitoring techniques (including early fault detection and advanced real
time diagnosis) are currently in development to provide technicians key information
to improve turbomachinery and the overall combined cycle performance.
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Stiffness Nonlinearity in Structural
Dynamics: Our Friend or Enemy?

Michael John Brennan

Abstract The effects of nonlinearity, particularly stiffness nonlinearity, has been of
concern to structural engineers for many years. Primarily this has been because this
type of nonlinearity can cause unpredictable dynamics, and considerable effort is
necessary to analyze nonlinear structures. Due to the constant drive to improve the
performance and efficiency of structures and mechanical devices, engineers have
recently started to investigate whether nonlinearity can be incorporated into
structures to provide some benefit. This chapter discusses some of the problems that
stiffness nonlinearity can cause, and gives three examples where this type of
nonlinearity can be put to good use. The examples are in vibration isolators,
vibration absorbers and energy harvesters. If the nonlinearity is introduced in an
appropriate way then it should not have an adverse impact on probabilistic prog-
nostics and health management of energy systems.

Keywords Nonlinear vibrations ⋅ Vibration isolation ⋅ Energy harvesting

1 Introduction

For many years, engineers have sought to eliminate nonlinearity in stiffness ele-
ments, at least from the point of view of structural dynamics, mainly because this
type of nonlinearity can cause unpredictable dynamics, and nonlinear structures can
be difficult to analyze [1]. In recent years, however, there have been attempts to
harvest the beneficial effects of stiffness nonlinearity, for example [2]. This has been
driven by the need to improve the performance of structures by making them
compact, and without adding weight. Greater understanding of the effects of non-
linearity and improved prediction methods have facilitated this. In this chapter,
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three systems in which nonlinearity in the stiffness is deliberately introduced, are
discussed. The systems involve vibration isolation [3], vibration control using
absorbers/neutralizers [4], and energy harvesting from ambient vibrations [5].

2 Stiffness Nonlinearity

The stiffness of a system or structure is often the cause of nonlinearity, and this can
take the form of a softening or hardening stiffness, a bilinear stiffness, a clearance,
or a saturation [1]. The type of stiffness considered here is the hardening type as this
occurs often in practice and it is relatively easy to design a structure with this type
of nonlinearity. The displacement frequency response curve for a simple oscillator
that has a softening, linear and hardening stiffness is shown in Fig. 1.

In Fig. 1, the non-dimensional frequency is the excitation frequency divided by
the natural frequency of the linear system. It can be seen that for the linear system,
for each excitation frequency there is a unique displacement response (i.e., it is
single-valued), with a clear resonant peak. However, for the softening and the
hardening systems, the frequency response curve bends to the left and to the right
respectively, resulting in the displacement response being multi-valued (three val-
ues) in certain frequency regions (the dashed lines in the figure denote unstable
solutions that cannot be reached in practice). The net effect of this behavior is that
large jumps in the vibration can occur at specific frequencies [6]. These jumps,
which occur as frequency is either increased from low to high frequency or
decreased from high to low frequency, are denoted by black arrows in Fig. 1, and
can be dangerous or can cause damage. Furthermore, unpredictable chaotic
behavior can occur in such systems [7]. It is for these reasons that engineers have
tried to eliminate nonlinearity from structural design. However, incorporating
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nonlinearity in some structures can offer advantages. The engineering challenge is
to make use of these advantages while minimizing the undesirable dynamic effects
discussed above.

3 Nonlinear Vibration Isolators

A recurrent problem in many engineering applications is that of preventing the
transmission of vibrations using a vibration isolator [8]. Ideally, an isolator should
have a high-static (HS) stiffness—capable of bearing the load with little static
displacement, and a low-dynamic stiffness (LDS) so called HSLDS isolators. These
provide the low natural frequency required for improved vibration isolation per-
formance. Such a characteristic requires stiffness nonlinearity [9]. An example of an
isolator and the force-deflection characteristics for several different models of the
isolator (a bubble mount) can be seen in Fig. 2.

The static equilibrium position is marked in Fig. 2b. It can be seen that the slope
of the graphs (the local or dynamic stiffness) is small at this position. Simple models
of such an isolator and the optimum parameters to maximize the benefits of the
nonlinearity and to minimize undesirable dynamic effects for these types of isola-
tors have been studied by the author and co-workers [3, 10–12]. Further work in
this area has involved the study of using magnetics in an isolator [13]. The
asymmetry of the isolator about the static equilibrium position can be seen in
Fig. 2b. This is often found in such isolators, and has been studied in [14].

(a) 

(b) Static equilibrium position

Fig. 2 A typical nonlinear isolator (http://www.novibes.com) a rubber isolator, b force-deflection
characteristic
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Essentially, the type of nonlinear isolator shown in Fig. 2 can increase the
frequency range over which isolation occurs, extending it to very low frequencies.
The undesirable dynamic effects can be avoided if the excitation forces are rela-
tively small compared to the static loading on the isolator and the damping in the
isolator is high enough to avoid the occurrence of nonlinear jumps.

4 Nonlinear Vibration Absorbers/Neutralizers

Vibration absorbers and vibration neutralizers are tuned mass-spring-damper
devices that are attached to structures to reduce vibration in a specific frequency
range. A vibration absorber is designed to reduce the resonance response of the host
structure, and a vibration neutralizer is used to reduce the vibration of the host
structure at a particular forcing frequency. Whilst it does not seem that there are
significant advantages in using a nonlinear vibration absorber compared to a linear
vibration absorber [15], there are some advantages in using a nonlinear vibration
neutralizer [4]. For such a device with a hardening stiffness nonlinearity, a plot of
the change in vibration level of a mass-like structure to which it is attached, as a
function of frequency, is shown in Fig. 3. For comparison, the effect that a linear
neutralizer would have is shown as a black dashed-dotted line. The frequency is
normalized to the frequency at which the neutralizer is tuned to. It can be seen that
close to the tuned frequency, the nonlinearity in the neutralizer has little effect.
However the nonlinearity has a profound effect close to the resonance frequency. It
has the beneficial effect of shifting this peak to much higher frequencies, away from
the tuned frequency. In a linear neutralizer, this effect can only be achieved by
adding mass to the neutralizer. Thus, the inclusion of nonlinearity, in this case, has
the benefit of saving weight.
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5 Nonlinear Energy Harvesters

Harvesting energy from ambient sources has become an area of increasing interest
within the last decade or so, particularly with the increase in the use of wireless
sensors, which often require autonomous power supplies. Among the sources,
ambient vibration has the potential to power these sensors in remote and hostile
environments. Many energy harvesting devices are linear mass-spring-damper
systems in which the devices are tuned so their natural frequencies coincide with
particular forcing frequencies allowing maximum energy to be harvested [16].
However, the ambient frequency may not be tonal and could vary with time, which
can degrade the performance of the device drastically. To overcome this limitation,
nonlinear energy harvesters have been proposed [5]. Such devices can improve the
bandwidth by using a hardening spring or by creating a bi-stable device [17]. An
example of such a device is shown in Fig. 4a.

The positive stiffness in the system is provided by the steel beam and the
magnets provide negative stiffness. The resulting potential energy characteristic of
the system is shown in Fig. 3b. It can be seen that the shape of the potential energy
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as a function of the displacement is governed by the gap between the magnets. If the
gap is large then the device has a hardening stiffness and if the gap is small then the
device is bi-stable. If the device is tuned so that it acts as an oscillator with a
hardening stiffness, then the system will behave as shown in Fig. 1, with a fre-
quency response curve that bends to higher frequencies. This can achieve a wider
bandwidth of operation compared to a linear energy harvester, but there are issues
in achieving this in practice. A better configuration is when the stiffness is adjusted
so that the system behaves as a bi-stable system, which has recently attracted
considerable attention in the literature [18]. Essentially, this device is useful when
there is low frequency excitation and it is difficult to design a system with a low
natural frequency to match this frequency. The device has the advantage that once
there is a strong enough level of excitation to cause it to vibrate in its bi-stable
mode, then it will continue to vibrate in this way over a wide range of frequencies.
Thus, it does not suffer from tuning issues that affect many designs of energy
harvesters. An example of the vibration output for a two levels of excitation for the
device in Fig. 4 is shown in Fig. 5.

6 Conclusions

This chapter has described the concept of introducing nonlinearity to improve the
performance of some mechanical situations. Three examples have been described:
in vibration isolators, vibration absorbers and energy harvesters. In all three cases, it
has been shown that the nonlinearity can have a beneficial effect. However, it can
also have undesirable dynamic effects, and so it has to be implemented carefully to
minimize or avoid these effects. If this is done correctly, then nonlinearity can be
the engineer’s friend rather than his enemy. Moreover, if these concerns are
attended to then the nonlinearity incorporated into an energy system then it should
not have an adverse impact on probabilistic prognostics and health management of
such systems.

High amplitude excitation

Low amplitude 
excitation

Fig. 5 Acceleration of the
mass of the two-mode
electro-dynamic energy
harvester shown in Fig. 4
working in bi-stable mode
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