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Abstract. In this paper we analyze the performance of a novel genetic
selection mechanism based on the classic tournament selection. This
method tries to utilize the information present in the solution space
of individuals, before mapping their solutions to a fitness measure. This
allows to favour individuals dependent on what state the evolutionary
search is in. If a population is caught up in several local optima, the cor-
relation of the distance between the individuals and their performance
tends to be lower than when the population converges to a single global
optimum. We utilize this information by structuring the tournaments in
a way favorable to each situation. The results of the experiments suggest
that this new selection method is beneficial.
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1 Introduction

Multiple optima are still a challenge in many optimization problems. With stan-
dard approaches, one always balances exploitation of locality against exploration
of the search space. In genetic algorithms [3] this is done by choosing the right
evolutionary parameters and genetic operators. However, these values are fixed
over the course of the optimization and do not take into account the current
state of the population or where it is located in the search space. Genetic algo-
rithms (GAs) base the guidance of their search on a single measure; the fitness.
This single-value metric defines which individuals reproduce, and, over several
generations, in which areas of the search space the population concentrates. In
this study we want to open the discussion on using the genetic distribution of
the population to guide the search process. To do this, we propose the use of
genetic distances between individuals to modify the tournament composition in
the selection stage of genetic algorithms. By measuring the correlation of the
distances between individuals and their fitness, we believe that we can introduce
mechanics which will enhance the algorithms performance.

This approach is related to niching methods [7,8] but does not rely on fixed
distances and is adaptive to the state of the convergence process. It is an example
of how to use additional information to guide the search process. In our method,
depending on an individual’s place in the population, only the chance of com-
peting in a given tournament is modified. This results in a softer modification
of the standard approach.
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The rest of this article is structured as follows. In Sect. 2 the proposed method
is presented. Section 3 describes the test cases and the evolutionary settings
employed in this study. The results of the experiments are presented in Sects. 4
and 5 concludes this study and introduces further ideas and future areas of
research.

2 Methodology

There are different ways to influence a GA’s convergence behavior through addi-
tional information. In this study, we influence the convergence of the algorithm
by modifying which opponents compete in a tournament. Note that this is an
alternative approach to fitness sharing [12], fitness penalties [5] or other mea-
sures which directly change the selection probability of an individual. Instead,
depending on the state of the genetic algorithm, we alter a tournament’s oppo-
nents which can be genetically more or less diverse. In case of a very homogeneous
tournament, meaning the individuals are similar, there is a high chance that the
best individual of the local cluster will be selected. In more heterogeneous tour-
naments, as the individuals will not always have to compete against the best
individual in the cluster, individuals in more distant regions of the search space
have a higher chance of selection. Instead of modifying directly which individuals
are selected, we basically give certain individuals a higher chance of participating
in a tournament.
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Fig. 1. The correlation of average distances to the other individuals and the individual’s
fitness. The dark blue spot around (20, 20) is the optimum. When the individuals
gather in one optimum, the negative correlation of fitness to the average distance to
other individuals tends to be stronger than in the case where some individuals are
located in a local optima. (Color figure online)

Figure 1 shows an example for the two different cases of a negative correla-
tion between the individual’s average distance to each other and their fitness.
In the left panel, the individuals gather in one optimum and the most central
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individual1 of the population exhibits the highest fitness. On the right hand side,
the correlation is weaker, as the best individual is no longer in the spatial center
of the population. The optimal tournament will look different in both cases.
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Fig. 2. Two probability transformations based on the rank distance to the initial tour-
nament candidate. The x-axis shows the rank distance, the y-axis shows the probability
of this rank’s selection into the tournament.

In each tournament, the initial candidate is chosen at random. This is done
uniformly and does not differ from standard tournament selection. However,
once the initial candidate is chosen, the other constituents of the tournament
are chosen based on their rank distance. To build the rank-distances between
the individuals, we initially measure the Canberra-Distance [6] of their genomes.
The Canberra-Distance is used such that the different dimensions have similar
importance. It is defined by:

d(u, v) =
n∑

i=1

|ui − vi|
|ui| + |vi| , (1)

where u and v are the vectors to compare, in this case the genomes. These
distances are then turned into ranks r from 1 to N where N is the population
size. Depending of the state of the algorithm a probability transformation is
chosen to either favor individuals which are close to the initial candidate or
solutions that are genetically further apart. This transformation is then applied
to the rank distances to the other individuals and for each individual of the
population a probability is assigned with which that individual is chosen for the
current spot in the tournament. The probability of individual j to end up in a
particular tournament pj is then:
1 The one with the lowest average distance to other individuals.
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pj =

{
g1(rj) if ρ ≥ α

g2(rj) if ρ < α
(2)

where ρ is this generation’s correlation between the average distance between
individuals to their fitness score, and alpha is a threshold. The selection into
the tournament is then done akin to a roulette wheel selection. This process
is repeated for all opponents in the tournament. Once all opponents have been
found, the tournament is performed and the tournament winner is determined
and marked for reproduction and survival.

Figure 2 shows two probability transformations to select further individuals
into the tournament. The x-axis shows the rank distance to the initial tourna-
ment candidate, and the y-axis the probability of the corresponding individual
to be selected into the tournament. The transformations have been determined
by Monte Carlo search over the Schwefel 1.2 problem (f2(x)), shown in Sect. 3.
This problem has been chosen as over the course of the runs, it has a wide range
of values of ρ.

3 Experiments

To test the new concept, we apply it to most of the benchmark problems pro-
posed in [14]. The functions are listed in Table 1. Functions f1 to f7 are unimodal,
and the functions f8 to f14 multimodal. The parameter n defines the dimension-
ality of the problem and S the range. fmin shows the minimum value of the
optimization problem.

The functions are well-known benchmarks from the literature. f1(x) is a
simple sphere model, f2(x), f3(x), f4(x) are Schwefel’s problems 2.22, 1.2, and
2.21 [13]. f5(x) is the generalized Rosenbrock’s function [11]. f6(x) is a step
function and f7(x) is a quartic function with noise. A generalized version of
Schwefel’s problem 2.26 is given in f8(x). f9(x) is the generalized Rastrigin’s
function [10], and f10(x) Ackley’s function [1]. The benchmark function f11(x)
is the generalized Griewank function [4], and f12(x) Shekel’s Foxholes function
[9]. f13(x), f14, and f15(x) are Kowalik’s [14], Six-Hump Camel-Back [9], and
Branin [2] functions.

All experiments are conducted with the same evolutionary parameters listed
in Table 2. 300 runs are performed for both the standard tournament selection as
well as for the novel distance-based tournament. The fitness is calculated by the
mean-squared error (MSE). As noted in the previous section, problem f2(x) has
been used to find a piecewise-linear probability transformation by Monte Carlo
search. The parameters of the piecewise function are listed in Table 3. We apply
two different probability transformations g1(r) and g2(r) depending on ρ. The
ranks are split into three different segments, and the probabilities of selection
into the tournament are interpolated based on the rank of the individuals.
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Table 1. Benchmark functions

Test function n S fmin

f1(x) =
∑n

i=1 x2
i 30 [−100, 100]n 0

f2(x) =
∑n

i=1 |xi| +
∏n

n=1 |xi| 30 [−10, 10]n 0

f3(x) =
∑n

i=1(
∑i

j=1 xj)
2 30 [−100, 100]n 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100]n 0

f5(x) =
∑n−1

i=1

[
100(xi+1 − x2

i )
2 + (xi − 1)2

]
30 [−30, 30]n 0

f6(x) =
∑n

i=1(|xi + 0.5|)2 30 [−100, 100]n 0

f7(x) =
∑n

i=1 ix4
i + random[0, 1) 30 [−1.28, 1.28]n 0

f8(x) =
∑n

i=1 −xi sin(
√|xi|) 30 [−500, 500]n −12569.5

f9(x) =
∑n

i=1[x
2
i − 10 cos(2πxi) + 10] 30 [−5.12, 5.12]n 0

f10(x) = −20 exp(−0.2
√

1
n

∑n
i=1 x2

i )

− exp( 1
n

∑n
i=1 cos(2πxi)) + 20 + e

30 [−32, 32]n 0

f11(x) =
1

4000

∑n
i=1 x2

i −∏n
i=1 cos(

xi√
i
) + 1 30 [−600, 600]n 0

f12(x) = [ 1
500

+
∑2

j=1 5]
1

j+
∑2

i=1(xi−aij)6

aij =

[
−32 −16 0 16 32 −32 0 16 32

−32 −32 −32 −32 −32 −16 32 32 32

]
2 [−65.536, 65.536]n 1

f13(x) =
∑1

i=1 1[ai − x1(b2i+bix2)

b2i+bix3+x4
]

ai = (0.1957, 0.1947, 0.1735, 0.1600, 0.0844,

0.0627, 0.456, 0.0342, 0.0323, 0.0235, 0.0246)

b−1
i = (0.25, 0.5, 1, 2, 4, 6, 8, 10, 12, 14, 16)

4 [−5, 5]n 0.0003075

f14(x) = 4x2
1 − 2.1x4

1 + 1
3
x6

i + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5]n −1.0316285

f15(x) = (x2 − 5.1
4π2 x2

1 + 5
π

x1 − 6)2

+10(1 − 18π) cosx1 + 10
2 [−5, 10] × [0, 15] 0.398

4 Results

Table 4 shows the percentage of the mean-squared error in the distance-based
tournament compared to the baseline runs for different quantiles and the mean.
For example for problem f1(x) the minimum MSE at the end of the run was
64.4% of the baseline result. It is clear to see that our method dominates the
standard implementation in most of the problems. Except for f14(x) and f15(x)
the median of the MSE is smaller in the distance-based approach. Especially in
the unimodal case, the new structure of the tournament performs well. Remem-
ber that in these cases, the correlation between the average distance to the
other individuals and the fitness is most likely high. This means, the probability
transformation p1(r) is applied predominantly. The method also outperforms the
standard approach in the multimodal functions. However, the difference is not
as large. Further performance improvements might be achieved by performing a
more thorough search for the parameters of g1 and g2. The results are further
presented in Fig. 3. The figure shows box plots of the results of all the benchmark
problems. The reason for why the method does not work as well for functions
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Table 2. Settings

Parameter Value

Number of runs 300

Generations 400

Population size 200

Crossover probability 0.8

Mutation probability 0.065

Selection Tournament

Tournament Size 8

Fitness MSE

Table 3. Parameters of the probability transformation

p(r0.0) p(r0.33) p(r0.66) p(r1.0)

g1 : ρ > 0.562 0.0035 0.0077 0.0040 0.0032

g2 : ρ ≤ 0.562 0.0003 0.0010 0.0099 0.0078

Table 4. Percentage of baseline MSE

Min Q.25 Q.5 Q.75 Max Mean

f1(x) 64.4% 80.2% 79.9% 80.7% 75.3% 79.7%

f2(x) 71.1% 91.4% 91.4% 92.2% 98.0% 91.9%

f3(x) 68.6% 83.3% 81.4% 83.4% 66.9% 81.0%

f4(x) 112.5% 92.3% 93.1% 93.9% 96.7% 93.6%

f5(x) 75.0% 90.3% 89.9% 82.6% 107.6% 81.5%

f6(x) 106.0% 83.4% 85.1% 87.5% 92.2% 84.5%

f7(x) 99.5% 99.0% 98.8% 99.8% 100.0% 99.1%

f8(x) 108.8% 83.9% 83.4% 82.6% 93.2% 84.1%

f9(x) 89.8% 90.4% 91.5% 91.4% 105.7% 92.9%

f10(x) 99.2% 92.5% 92.6% 92.7% 97.9% 92.7%

f11(x) 98.8% 98.4% 98.5% 98.3% 97.6% 98.4%

f12(x) 50.1% 97.2% 97.4% 101.2% 85.4% 98.3%

f13(x) 128.2% 84.2% 84.9% 97.2% 104.5% 103.6%

f14(x) 55.6% 125.7% 136.5% 99.5% 183.2% 111.9%

f15(x) 1238.6% 112.8% 124.6% 127.6% 60.8% 124.2%
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Fig. 3. The boxplots comparing distance-based tournament to the standard tourna-
ment selection.

f13(x) to f15(x) is not entirely clear. However, they all have a lower dimension-
ality in common. The loss of information from mapping low dimension genomes
to the fitness might not be as large as in problems with higher dimensionality,
dismantling the advantage of the distance-based method.

5 Conclusion

We have presented a new distance-based tournament for genetic algorithms.
By influencing the chance of selection into the tournament, chances of being
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selected for survival and reproduction are influenced. While this short article is
only a proof-of-concept, we think that it shows the potential of influencing the
tournament composition through additional information gained from analyzing
the population’s distribution. The method does improve the performance of the
GAs in most cases of a standard benchmark test set. Both the mean and the
median of the MSE can be improved by the new method which incorporates the
Canberra distances between genomes to construct tournaments in the selection
mechanism. In future work we will try to further exploit the information that
is in the distribution of the population to improve the search performance of
GAs. Further, the technique can also be applied to genetic programing, when
the genetic distances are replaced with distances of output vectors. Preliminary
experiments show that the technique might be even more promising in this area.

A Appendix

Table 5 shows the quantiles and mean of the mean-squared errors for all the
benchmark problems. The baseline results are dominated for nearly all problems
except for f13 to f15.
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