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Abstract. Computational neuroscience lays the foundations of intelli-
gent behavior through the application of machine learning approaches.
Brain programming, which derives from such approaches, is emerging
as a new evolutionary computing paradigm for solving computer vision
and pattern recognition problems. Primate brains have several distinctive
features that are obtained by a complex arrangement of highly intercon-
nected and numerous cortical visual areas. This paper describes a virtual
system that mimics the complex structure of primate brains composed
of an artificial dorsal pathway – or “where” stream – and an artificial
ventral pathway – or “what” stream – that are fused to recreate an arti-
ficial visual cortex. The goal is to show that brain programming is able
to discover numerous heterogeneous functions that are applied within
a hierarchical structure of our virtual brain. Thus, the proposal applies
two key ideas: first, object recognition can be achieved by a hierarchical
structure in combination with the concept of function composition; sec-
ond, the functions can be discovered through multiple random runs of
the search process. This last point is important since is the first step in
any evolutionary algorithm; in this way, enhancing the possibilities for
solving hard optimization problems.
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1 Introduction

Object recognition is a fundamental task for humans and all living beings endowed
with the sense of sight, since it allows the interaction of the organism with the
surrounding environment and the understanding of a given object. In the last
two decades computer vision and evolutionary algorithms have seen a growing
interest from the scientific community [1]. In general, the human visual system
is able to recognize and classify an object according to its category with ease.
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Both tasks consider that the set of attributes or features extracted from the
images are general enough to classify the object as part of the category, while
maintaining in memory the features that serve to identify that particular object
within a given scene [2–4]. The aim of this paper is to present a new model
inspired by the transformations that take place within the visual cortex for the
solution of the object classification task.

Fig. 1. Conceptual Model of the Artificial Visual Cortex. The color image is decom-
posed into four dimensions (color, orientation, shape and intensity). Then, a hierarchi-
cal structure is charged of solving the object classification problem through a function
driven paradigm.

Ungerleider and Mishkin in 1982 proposed the existence of two routes in the
visual cortex. These pathways have been called dorsal and ventral streams, the
functionality of the dorsal stream provides the location of an object within the
scene, while the ventral stream is dedicated to the task of object recognition.
Thus, efficient visual functionality is achieved by a high interchange of infor-
mation between the two streams [5–10]. In this way, object recognition involves
processes performed along the dorsal stream such as selectivity that is defined
as the ability to filter unwanted information, and those performed in the ven-
tral stream in charge of describing the objects. Thus, the approach proposed in
this work is suggested by a computational model based in these two information
streams of the visual cortex. This approach differs from those of the state-of-
the-art where a data-driven principle is applied using a set of patches – image
regions – while creating a dictionary of visual words like in a bag-of-words app-
roach [11–15]. In our work, the first hypothesis is that the dictionary of visual
words can be replaced by a set of visual operators which are built with a group of
mathematical functions. The second idea is based on the integration of properties
responsible for the visual attention process – or selectivity – that is related to the
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creation of conspicuity maps (CMs) and the center surround process together
with description and combination of maximum responses executed by a max
operation of the functions that select features, which categorize the object; see
Fig. 1. In this way, this model sees the brain as a collection of functions joined
into a structural unit that serves to the purpose of object recognition, where the
functionality of each area or layer in the visual cortex is represented by a kind
of mathematical function, and the interconnection among them is given by the
hierarchical structure of the model. Hence, each compound mathematical func-
tion mimics the functionality of its natural counterpart as a way of designing a
set of virtual brain areas, called Artificial Visual Cortex (AVC ). Therefore, the
object categorization for the presence/absence problem is achieved through the
application of the correct combination of functions within the AVC ; an approach
that we are calling brain programming [16–18].

In this manner, brain programming is defined by an evolutionary cycle. In
this paradigm, the optimization problem is defined as the search of multiple parts
embedded on a hierarchical system known as the AVC model, which plays a key
role on the representation of the solutions that are more complex than a single
syntax tree. In this kind of systems, we must encapsulate the key parts of the
hierarchical structure in order to evolve them. Hence, by integrating the evolved
operations within the complex structure we were able to synthesize solutions for
difficult problems; in this case, the object recognition problem [31].

The applicability and efficiency of this methodology has been described in
several works [16–21], nevertheless, an individual analysis of the AVC model and
the brain programming methodology has not been done. As in many optimization
paradigms, we propose to compare brain programming with a random search
approach, in order to characterize the benefits of the AVC model by itself and
the improvement brought by the evolutionary approach. This paper focus on the
random search and we will explore the whole algorithm in a future article.

1.1 Research Contributions

This paper outlines the following research contributions:

– First, in the proposed approach the total number of visual operators made of
mathematical functions and embedded within the hierarchical structure can be
discovered through a small number of random trials, while actually achieving
outstanding results on an standard testbed. This article provides evidence
that the hierarchical structure plays a significant role on the solution of visual
problems.

– Second, a comparison of the random search with state-of-the-art algorithms
and the whole evolutionary cycle gives us a clear picture of the benefit of
applying brain programming.

1.2 Related Work

Most of the works are divided in two basic approaches, the first is regarding visual
attention conducted along the dorsal stream, while a second approach is related
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on object recognition held in the ventral stream. Nevertheless, there are a few
works that attempted to integrate the two approaches. For example, Fukushima
in 1987 implemented a hierarchical neural network that serves as a model for
selective attention and object recognition [22]. In this case, when several pat-
terns are presented simultaneously, the model performs a selective attention to
each one, segmenting it from the rest and recognizing it separately. Afterwards,
Olshausen et al. in 1993 defined a biologically plausible model that combines
an attentional mechanism with an object recognition process to form position
and scale invariant representations in the visual world [23]. Then, Walther et al.
suggested a combined model for spatial attention and object recognition [24]. In
their work, visual attention follows the computational model proposed by Itti
and Koch [15] and object recognition is achieved through the HMAX model of
Riesenhuber and Poggio [25]. Their information stream follows the whole visual
attention process and the final saliency map is fed into the S2 layer of the HMAX
model to accomplish the task of object detection. This model was applied to the
problem of recognizing artificial paperclips. Next, Walther and Koch in 2007
suggested, with a computational model, that features learned by the HMAX
model used for the recognition of a particular object category may also serve for
top-down attention tasks [26]. Finally, Heinke and Humphteys applied a model
called SAIM for visual search involving simple lines and letters [27]. This model,
in a first stage selects the object within the image and subsequently performs
an object identification step using a template matching technique.

In our work, we propose a hierarchical model following the preattentive stage
of visual attention described in [28] in order to locate the conspicuity regions
within the image. Then, a description process is performed using the max oper-
ator in combination with a series of functions that emulate the functionality of
the V4 area in the visual cortex. This approach differs from traditional models
for object recognition [4,12,13,25–27] where a set of patches – or visual words –
are used to identify the object. In contrast, in our proposed approach the dis-
covered functions provide the functionality of multiple patches; hence, helping
in the creation of a straightforward process as will be shown in the experimental
results.

2 The AVC Algorithm

In the natural system the interrelation between the layers of the visual cortex is not
fully understood; nevertheless, the functionality at each stage has been described
on previous works. Figure 1 depicts the proposed model based on these processes.
The AVC is divided in two main parts. In the first stage the proposed system
executes the acquisition and transformation of features. Then, in a second stage
the AVC performs description and classification associated to the studied object.

2.1 Acquisition and Transformation of Features

The first step of our algorithm is represented by the image acquired with the
camera, whose natural counterpart is the retina. Here, the system considers
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Fig. 2. Schematic representation of the computational algorithm whose output is a
label that represents the membership to a specific class.
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digital color images in the RGB color model, which are later transformed into
the CMYK and HSV color models; see Fig. 2. In this way, the color image is
decomposed into multiple color channels. The idea is to build the set Icolor = {Ir,
Ig, Ib, Ic, Im, Iy, Ik, Ih, Is, Iv}, which corresponds to the red, green, blue, cyan,
magenta, yellow, black, hue, saturation, and value components of their respective
color models and which are used to provide the initial representation of the
scene. In our work, the input images in Icolor are transformed by four visual
operators (V Os) applied independently to emphasize specific image features.
The transformations are performed to recreate the feature extraction process of
the brain; resulting into a visual map (V M) per dimension [28].

2.2 Feature Dimensions

The V Os are defined with the aim of classifying specific image features along sev-
eral dimensions: color, shape, orientation and intensity; hence, d ∈ {C,S,O, Int}.
Figure 2 shows that features are extracted sequentially one at a time by applying
the corresponding operator V Od.

2.3 Center Surround Process

The center surround method is based on the functionality of the ganglion cells
that measure the difference between the firing rates at the center and surrounding
areas of their receptive fields. The goal of this process is to generate a conspicuity
map (CM) per dimension according to the model proposed in [29]. The algorithm
consists of a two step process where the information is built to emulate its natural
counterpart as follows; see Fig. 2. First, the computation of the CMs is modeled
as the difference between fine and coarse scales, which are computed through
a pyramid of nine levels P σ

d = {P σ=0
d , P σ=1

d , P σ=2
d , P σ=3

d , . . . , Pσ=8
d }. Each

pyramid is calculated from its corresponding V Md using a Gaussian smoothing
filter resulting in an image that is half of the input map size and the process is
repeated recursively eight times to complete the nine level pyramid. Second, the
pyramid P σ

d is used as input to a center surround procedure to derive six new
maps that result from the difference between some of the pyramid levels that
are calculated as follows.

Qj
d = P

σ=� j+9
2 �+1

d − P
σ=� j+2

2 �+1

d ,

where j = {1, 2, . . . , 6}. Note that the levels of P σ
d have different size and are

scaled down to the size of the top level to calculate their difference. Next, each
of these six maps are normalized and combined into a unique map through the
summation operation, which is then normalized and scaled up to the V Md maps’
original size using a polynomial interpolation to define the final CMd.

2.4 Description and Classification Stage

After the construction of the CMs, the next stage along the AVC is to define a
descriptor vector that will be used as input to a support vector machine (SVM )
model for classification purposes.
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2.5 Computation of the Mental Maps

In this stage of the process a single set of visual operators is used to produce
a mental map (MMd) per dimension; see Fig. 2. After the computation of the
conspicuity maps a set of visual operators V OMM is applied with the aim of
describing the image content. Note that the proposed visual operators are homo-
geneous and independently applied to each feature dimension. This operation is
defined as follows:

MMd =
k∑

i=1

(V OMMi
(CMd)), (1)

where d is the dimension index and k represents the cardinality of the set V OMM .
Each summation is applied to integrate the output of all operations V OMMk

to
produce a MMd per dimension. Thereafter, the four Mental Maps are concate-
nated into a single array and the n highest values are selected to define the vector−→ν that describes the image.

In contrast to our proposal, the state-of-the-art methodologies [11–15] are
based on a template matching paradigm with the goal of learning a set of proto-
type image patches. Traditionally, the idea is to learn such a set by using what
is known as the bag-of-words model, which is applied to identify a given object
category. In this way, our approach substitutes the set of templates with the set
of visual operators to characterize one object class with excellent results as we
will show in the experiments.

3 Experiments and Results

We use the CalTech 5 and CalTech 101 image databases, despite many serious
concerns raised about them [30,31]. Nevertheless, that test is still widely used
in the object recognition community and thus most state-of-the-art algorithms
report their classification results [12,13,32–36].

3.1 Methodology to Obtain an AVC Solution

The methodology that was used to generate the AVC programs followed the
algorithm of Sect. 2, where an important step is the construction of V Os. These
operators consist of syntax trees made of internal and leaf nodes, which are
defined by a set of primitive elements also called function set (see Table 1) and
the terminal set defined by the domain of each function. In our work, each tree
has its own sets of functions and terminals that were carefully chosen according
to the desired functionality that we attempt to emulate within the AVC. All V Os
were generated through a random procedure with a maximum depth of 5 levels,
where half of the trees were balance trees and the other half were constructed
as arbitrary trees adding nodes until the maximum depth is reached.

The proposed methodology for designing AVC s to study the absent/present
classification problem is divided in three steps. The first two steps define the
training stage while the last one is devoted to the testing stage. In this way, all
image databases were randomly divided into three subsets for each class; one
per step. This process is detailed next.
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Table 1. Functions for the visual operators (V Os).

Function Description

A + B, A − B, A × B, A/B Arithmetic functions between two images A and B

log(A), exp(A) Transcendental functions over the image A

(A)2 Square function over the image A√
A Square root function over the image A

(A)c Image complement over the image A

Opr−g(I), Opb−y(I) Color opponency Red - Green and Blue - Yellow

thr(A) Dynamic threshold function over the image A

k + A, k − A, k × A, A/k Arithmetic functions between an image A and a
constant k

round(A), half , �A�, �A� Round, half, floor and ceil functions over the image A

A ⊕ SEd, A ⊕ SEs, A ⊕ SEdm Dilation operator with disk, square, and diamond
structure element (SE)

A � SEd, A � SEs, A � SEdm Erosion operator with disk, square, and diamond
structure element (SE)

Sk(A) Skeleton operator over the image A

Perim(A) Find perimeter of objects in the image A

A � SEd, A � SEs, A � SEdm Hit or miss transformation with disk, square, and
diamond structures

That(A), Bhat(A) Performs morphological top-hat and bottom-hat
filtering over the image A

A � SEs, A 	 SEs Opening and closing morphological operators on A

|A|, |A + B|, |A − B| Absolute value applied to A, and the addition and
subtraction operators

inf(A, B), sup(A, B) Infimum and supremum functions between the
images A and B

Gσ=1(A), Gσ=2(A) Convolution of the image A and a Gaussian filter
with σ = 1 or 2

Dx(A), Dy(A) Derivative of the image A along direction x and y

1. The first step starts by randomly generating a set of V Os to be used inside
the AVC structure. Then, it proceeds to the training stage of the SVM using
the images from the first subset, called training-A. As a constraint, if the
SVM achieves a given threshold in classification accuracy during its training,
the process continues to step 2; on the other hand, the V Os together with
the SVM are discarded and the process is restarted.

2. At step 2 the system uses the set of V Os found in step 1 but it trains a new
SVM with the second image subset, called training-B. Once again, if the SVM
scores the given threshold in classification accuracy the process continues to
step 3 and the AVC structure is considered as the solution; on the other hand,
both V Os and SVM are discarded and the search continues at step 1.
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3. In the last step, the best AVC structures are tested by classifying the third
image subset. The testing is performed with the estimated SVM from step 2
and the V Os from step 1. The whole process is repeated until the best set of
solutions are discovered.

Finally, all experimental results are provided in the following sections.

Table 2. Total number of random runs needed to discover 100 solutions per class for
all subset sizes.

Class Size of the training set

10 20 30 40 50 60 70

Airplanes 2501 3219 1916 2088 1993 1971 3253

Cars 7294 11032 6652 10674 4447 4845 22037

Faces 1811 3041 1489 2148 1556 1462 1940

Leaves 1781 1960 1392 1843 1893 1355 1763

Motorcycles 10419 23131 12871 20214 9386 6662 39470

Fig. 3. Sample images from CalTech-5 database, and the category background from
CalTech-101 database.

3.2 Experimental Evaluation of the AVC for Classification of Color
Images

In a first experiment, the performance of the proposed model was evaluated
through a binary test using five classes from the Caltech-5 database in combi-
nation with the Google background of Caltech-101, see Fig. 3. The goal is to
analyze the effect on the recognition performance by using training sets of dif-
ferent sizes. Thus, the AVC model was trained with randomly selected positive
images used to define the training-A subset of size: 1, 10, 20, 30, 40, 50, 60, and
70; while using a constant subset of 50 negative images for all experiments. In the
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case of one positive training image and after 7500 randomly possible evaluations
an AVC was never found; hence, it was discarded from further tests. Thus, the
numbers of images selected for training-B were set to 50 positive images and 50
negative images. In this way, Table 2 provides the number of random runs that
were necessary to discover the solutions. This experiment was repeated until
100 AVC s were found for each training-B subset producing a total of 700 solu-
tions with 100% accuracy during the training stage per class. All these solutions
were tested and the mean and standard deviation are reported in the following
section.

3.3 Testing the Performance of the Random Search

Table 3 presents the summary of the experiment showing the average, standard
deviation, maximum and minimum performance for the testing stage. All results
were normalized between 0 and 1 in such a way that 1 represents 100% of classi-
fication accuracy. The best solutions were obtained for the airplanes, faces and
leaves classes scoring 95%, 99% and 97% respectively; while in the case of cars
and motorcycles classes the best solutions scored a classification accuracy of
77% and 75% respectively. Note that these final scores are similar regardless
of the subset size that is applied during the training stage. Moreover, the solu-
tions whose scores are highlighted in bold at Table 3 are provided with their
corresponding formulae in Table 4.

Table 3. This table shows a summary of the results of the AVC testing which were
obtained with a random search and using the color category background from CalTech-
101 database.

Images on training Airplane class Cars class Faces class

Mean Std Max Min Mean Std Max Min Mean Std Max Min

10 0.64 0.08 0.87 0.50 0.57 0.06 0.76 0.46 0.66 0.15 0.98 0.48

20 0.61 0.08 0.83 0.50 0.55 0.05 0.77 0.45 0.67 0.14 0.99 0.45

30 0.62 0.09 0.88 0.45 0.56 0.05 0.71 0.47 0.65 0.13 0.98 0.50

40 0.61 0.09 0.95 0.50 0.57 0.06 0.75 0.45 0.64 0.12 0.98 0.45

50 0.61 0.08 0.88 0.49 0.55 0.05 0.74 0.46 0.64 0.14 0.98 0.50

60 0.57 0.07 0.83 0.49 0.54 0.05 0.74 0.46 0.58 0.10 0.99 0.46

70 0.61 0.08 0.92 0.50 0.55 0.04 0.73 0.47 0.62 0.12 0.98 0.50

Leaves class Motorcycle class

Mean Std Max Min Mean Std Max Min

10 0.68 0.14 0.97 0.48 0.58 0.05 0.75 0.46

20 0.67 0.12 0.95 0.48 0.58 0.06 0.75 0.46

30 0.64 0.12 0.95 0.50 0.56 0.05 0.70 0.44

40 0.65 0.13 0.97 0.49 0.55 0.05 0.71 0.47

50 0.59 0.09 0.93 0.48 0.54 0.04 0.74 0.47

60 0.62 0.11 0.97 0.48 0.54 0.04 0.70 0.46

70 0.61 0.09 0.94 0.50 0.57 0.06 0.74 0.47
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Table 4. This table shows the best solutions that were discovered after a random
process.

Name VO V OMMk Evaluation

AV CA1

V OO = round(Dxy(Ik))

V OC = Ir

V OS = �Ir�

V OMM1 = Dyy(CMd)

V OMM2 = Gσ=2(Dxx(CMd))

V OMM3 =
√

Dxy(CMd)

V OMM4 = Dxx(CMd)

V OMM5 = Dy(CMd)

V OMM6 = |Dxy(CM) − Dx(CMd)|
V OMM7 = Gσ=2(Dyy(CMd))

V OMM8 = Dxx(CMd)

V OMM9 = log(Dxx(CMd))

Tr = 100%

Tst = 95%

AV CC1

V OO = Dy(Iv)

V OC =
Ib

Ir

V OS = �Ic�

V OMM1 = Dx(CMd)

V OMM2 = log(CMd)

V OMM3 = Dxx(CMd)

V OMM4 = Dxy(CMd)

V OMM5 = Dxy(CMd)

V OMM6 = Dyy(CMd)

V OMM7 = Gσ=1(Dy(CMd))

V OMM8 = Dy(CMd)

V OMM9 = CMd

V OMM10 = Dxy(CMd)

V OMM11 = log(Dy(CMd))

V OMM12 = Gσ=2(Dyy(CMd))

Tr = 100%

Tst = 77%

AV CF1

V OO = round(Dxx(Im))

V OC =
√

Ik

V OS = 0.45 ∗ (Ib)

V OMM1 = (Dxx(CMd))
2 Tr = 100%

Tst = 99%

AV CL1

V OO =
√

Dx(Ib)

V OC = Ib ∗ Ig

V OS = �Ih�

V OMM1 = 0.5 ∗ (Dy(CMd))

V OMM2 = Dyy(CMd) − Dy(CMd)

Tr = 100%

Tst = 97%

AV CM1

V OO = Gσ=1(Dx(Iy)
2)

V OC =
Ic
b

Ig−Ir

V OS = (Iv − 0.21) ⊕ SEdm

V OMM1 =
Dxx(CMd)
Dxx(CMd) − log(Dx(CMd))

Tr = 100%

Tst = 75%

3.4 Comparison Between the AVC and HMAX Models

The HMAX model was used in a second series of tests based on the experimental
design proposed in [12], in order to compare our results with the state-of-the-
art. Thus, once again, the solutions from the first experiment were tested, in
the object present/absent experiment, with a new random set of images con-
sidering 50 positive images for the object classes selected earlier, as well as 50
negative images selected from the Caltech-5 background database. The aim is
to investigate the effect on the 700 final solutions per class using the recogni-
tion performance based on the accuracy. Note that for this test the background
images are in gray scale; hence, the color components of the image were initialized
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Table 5. This table summarizes the classification results achieved on testing using
the background Caltech-5 database as the negative class. Note that the performance is
better than the previous experiment, since the background is built by gray tone images.

Images on training Airplane class Cars class Faces class

Mean Std Max Min Mean Std Max Min Mean Std Max Min

10 0.64 0.10 0.95 0.50 0.59 0.07 0.78 0.47 0.66 0.15 0.97 0.43

20 0.63 0.09 0.90 0.49 0.61 0.12 0.97 0.45 0.67 0.14 0.98 0.47

30 0.63 0.10 0.86 0.48 0.60 0.09 0.97 0.50 0.66 0.13 0.99 0.47

40 0.62 0.09 0.97 0.50 0.59 0.09 0.92 0.45 0.64 0.13 0.97 0.46

50 0.62 0.10 0.96 0.49 0.61 0.11 0.96 0.47 0.65 0.14 1.00 0.48

60 0.59 0.10 0.95 0.50 0.57 0.09 0.92 0.46 0.60 0.13 0.97 0.42

70 0.64 0.11 0.96 0.50 0.60 0.10 0.98 0.46 0.63 0.12 0.99 0.47

Leaves class Motorcycle class

Mean Std Max Min Mean Std Max Min

10 0.70 0.14 0.98 0.50 0.62 0.12 0.95 0.43

20 0.67 0.13 0.97 0.49 0.61 0.12 0.98 0.48

30 0.65 0.12 0.91 0.47 0.58 0.08 0.97 0.46

40 0.66 0.13 0.95 0.46 0.59 0.10 0.96 0.47

50 0.59 0.11 0.97 0.45 0.59 0.11 0.96 0.45

60 0.63 0.13 0.96 0.46 0.55 0.07 0.90 0.45

70 0.61 0.11 0.92 0.47 0.61 0.12 1.00 0.41

with the same value. The results summary is shown in Table 5. The comparison
between our model and the HMAX model is provided in Table 6. We report
the error rate at equilibrium point as the measure performance in these exper-
iments. For the sake of showing that the differences between the performances
of the proposed AVC and the HMAX -SVM models are statistically significant,
we used two non-parametric statistical tests: the Wilcoxon rank sum [37] and a
two-sample Kolmogorov-Smirnov test [38]. These last experiments were tested
on the 30 best random solutions out of the 700 found for each class.

Table 6. This table shows a comparison of the performance achieved among the HMAX
model, considering the boost and SVM classifiers, and the AVC model. Note that in
the case of the HMAX model a learning process was applied in order to identify the best
patches. However, for the AVC model only a random sampling was used to discover
the best solution.

Datasets Performance of HMAX Artificial V. C Statistical Significance

boost SVM K-S test Wilcoxon test

Airplanes 96.7 94.9 98.6 4.9 × 10−15 1.1 × 10−7

Cars 99.7 99.8 98.1 2.1 × 10−13 3.9 × 10−8

Faces 98.2 98.1 100 1.8 × 10−15 1.3 × 10−10

Leaves 97.0 95.9 96.2 7.9 × 10−17 6.3 × 10−12

Motorcycles 98.0 97.4 100 5.4 × 10−13 9.6 × 10−6
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Using the whole evolutionary process, we present in Table 7 the solutions that
were discovered by the brain programming. The selection process was imple-
mented following the roulette-wheel strategy, which consists in assigning to each
individual a probability of selection proportional to its fitness value. Termination
criteria was defined using a a maximum number of generations; 30 in this case
and 30 solutions per generation. Thus, the aim is that each evolutionary process
reaches an optimal AVC program at each single run. Note that the performance
of each solution in testing is 100% in classification accuracy.

Table 7. This table shows some solutions that were discovered after of evolutionary
process of the brain programming.

Solution EV O EV OMMk Accuracy

Airplanes

EV OO = Dxy(Ir)

EV OC = Opb−y(I)

EV OS =
Ir�SEdm

K

EV OMM1 = 0.5 ∗ (Dx(MC))

Tr. = 100%

V al. = 100%

Tst. = 100%

Cars

EV OO =
√

0.33 ∗ Dyy(Iy)

EV OC = ((Opr−g(I))
c)2

EV OS = Sk(Iv) − 0.33 ∗ Im

EV OMM1 = |0.5 ∗ (Dx(MC))|
Tr. = 100%

V al. = 100%

Tst. = 100%

Faces

EV OO = Gσ=2(0.5 ∗ Dyy(Ir))

EV OC =
Opr−g(I)

Ik∗√
Im

EV OS = That(Ih � SEs)

EV OMM1 = log(Dxx(MC))

Tr. = 100%

V al. = 100%

Tst. = 100%

Leaves

EV OO = Dx(log(Ih − Is))

EV OC = (Ik)2

EV OS = 0.13 ∗ ((Ih ⊕ SEs)

⊕SEs)

EV OMM1 = 0.5 ∗ |√MC − (Dyy(

MC) − Dx(MC))|
EV OMM2 =

|Dy(MC)−Dy(MC)|
Dy(MC)−MC

Tr. = 100%

V al. = 100%

Tst. = 100%

Motorcycles

EV OO = sup(
√

Dx(Ir), thr(

Dx(Ir)))

EV OC =

√√
(Ir)2

EV OS = Ig − Im

EV OMM1 = log(|Dxy(MC) + Dx(MC)|)
EV OMM2 = 0.5 ∗ (Gσ=1(Dxy(MC)))

Tr. = 99.5%

V al. = 99.66%

Tst. = 100%

4 Conclusions and Future Work

This paper presented a computational model of the visual cortex following the
hierarchical structure of previous visual attention and object recognition pro-
posals. As a result, the proposed methodology replicates the initial stages of the
artificial dorsal stream using four dimensions: color, shape, orientation and inten-
sity, in combination with the final stages of an artificial ventral stream, which
are used to approach the task of object categorization. The overall approach
considers that the process of visual information extraction and description can
be enforced by function composition through a set of mathematical operations
that are used in the aforementioned stages. According to the results all functions
embedded within the hierarchical structure of the AVC can be easily discovered
through random search while achieving excellent results on the Caltech data-
base. In this sense, we presented examples that illustrate the behavior of the
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discovered AVC s for the problems of faces and motorcycles of the Caltech cat-
egorization problem. Finally, we provide a comparison with the HMAX model
that is considered as the reference for these kind of approaches and found that
the AVC model was superior according to the results obtained for the Caltech
testbed.

As a conclusion, we can say that the AVC methodology offers a new perspec-
tive to study the development of artificial brains since the structural complexity
can be improved because the approach is susceptible of being framed as an
optimization problem. This article provides some results of the whole evolution-
ary cycle for the studied database. Indeed, the results score perfect accuracy
except for one case. In this way, we can synthesize new structures according
to the task at hand. In particular, as future research we would like to test the
approach with more complex datasets, such as the GRAZ and the VOC chal-
lenge datasets. Additionally, since the methodology is computationally costly,
we propose to undergo a change towards a parallel computing implementation
of the AVC model through the application of GPGPU technology [39]. Finally,
we would like to explore the application of this new paradigm to problems of
humanoid robotics.
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evolutivo”.

References

1. Olague, G.: Evolutionary Computer Vision: The First Footprints. Springer,
Heidelberg (2016)

2. Logothetis, N.K., Sheinberg, D.L.: Visual object recognition. Ann. Rev. Neurosci.
19, 577–621 (1996)

3. DiCarlo, J.J., Zoccolan, D., Rust, N.C.: How does the brain solve visual object
recognition? Neuron 73(3), 415–434 (2012)

4. Riesenhuber, M., Poggio, T.: Models of object recognition. Nat. Neurosci. 3,
1199–1204 (2000)

5. Rees, G., Frackowiak, R., Frith, C.: Two modulatory effects of attention that medi-
ate object categorization in human cortex. Science. 275(5301), 835–8 (1997)

6. Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Ann.
Rev. Neurosci. 18, 193–222 (1995)

7. Kastner, S., Ungerleider, L.G.: Mechanisms of visual attention in the human cortex.
Ann. Rev. Neurosci. 23, 315–341 (2000)

8. Milner, A.D., Goodale, M.A.: The Visual Brain in Action, 2nd edn. Oxford
University Press, Oxford (2006)

9. Creem, S.H., Proffitt, D.R.: Defining the cortical visual systems: “what”, “where”,
and “how”. Acta Psychol. 107(1–3), 43–68 (2001)

10. Farivar, R.: Dorsal-ventral integration in object recognition. Brain Res. Rev. 61(2),
144–153 (2009)



536 G. Olague et al.

11. Fukushima, K.: Neocognitron: a self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position. Biol. Cybern. 36(4),
193–202 (1980)

12. Serre, T., Kouh, C., Cadieu, M., Knoblich, G., Kreiman, U., Poggio, T.: Theory
of object recognition: computations and circuits in the feedforward path of the
ventral stream in primate visual cortex. Technical report, Massachusetts Institute
of Technology Computer Science and Artificial Intelligence Laboratory (2005)

13. Mutch, J., Lowe, D.G.: Object class recognition and localization using sparse fea-
tures with limited receptive fields. Int. J. Comput. Vis. 80(1), 45–57 (2008)

14. Mel, B.W.: Seemore: combining color, shape, and texture histogramming in a neu-
rally inspired approach to visual object recognition. Neural Comput. 9(4), 777–804
(1997)

15. Itti, L., Koch, C.: Computational modeling of visual attention. Nat. Rev. Neurosci.
2(3), 194–203 (2001)

16. Clemente, E., Olague, G., Dozal, L., Mancilla, M.: Object recognition with an
optimized ventral stream model using genetic programming. In: Chio, C., et al.
(eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 315–325. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-29178-4 32

17. Clemente, E., Olague, G., Dozal, L.: Purposive evolution for object recognition
using an artificial visual cortex. In: Schuetze, O., Coello, C.A.C., Tantar, A.-A.,
Tantar, E., Bouvry, P., Del Moral, P., Legrand, P. (eds.) EVOLVE - A Bridge
between Probability, Set Oriented Numerics, and Evolutionary Computation II,
pp. 355–370. Springer, Heidelberg (2013)

18. Olague, G., Clemente, E., Dozal, L., Hernádez, D.E.: Evolving an artificial visual
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