
Bagging and Feature Selection for Classification
with Incomplete Data

Cao Truong Tran(B), Mengjie Zhang, Peter Andreae, and Bing Xue

School of Engineering and Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6140, New Zealand

{cao.truong.tran,mengjie.zhang,peter.andreae,bing.xue}@ecs.vuw.ac.nz

Abstract. Missing values are an unavoidable issue of many real-world
datasets. Dealing with missing values is an essential requirement in classi-
fication problem, because inadequate treatment with missing values often
leads to large classification errors. Some classifiers can directly work with
incomplete data, but they often result in big classification errors and
generate complex models. Feature selection and bagging have been suc-
cessfully used to improve classification, but they are mainly applied to
complete data. This paper proposes a combination of bagging and feature
selection to improve classification with incomplete data. To achieve this
purpose, a wrapper-based feature selection which can directly work with
incomplete data is used to select suitable feature subsets for bagging.
The experiments on eight incomplete datasets were designed to compare
the proposed method with three other popular methods that are able to
deal with incomplete data using C4.5/REPTree as classifiers and using
Particle Swam Optimisation as a search technique in feature selection.
Results show that the combination of bagging and feature selection can
not only achieve better classification accuracy than the other methods
but also generate less complex models compared to the bagging method.

Keywords: Incomplete data · Ensemble · Feature selection ·
Classification · Particle swam optimisation · C4.5 · REPTree

1 Introduction

Classification is one of the main tasks in machine learning and data mining, and
has been successfully applied to many areas such as computer science, engineer-
ing and biology. Moreover, classification has been continuously received a great
attention. However, there are still open issues in classification, and one of the
issues is classification with incomplete data [6,9].

Incomplete data is data which contains some fields without values. Missing
values are a common problem in many datasets. For example, 45% of the datasets
in UCI machine learning repository, which is one of the most popular collection
of benchmark datasets for machine learning, contain missing values [6]. Reasons
for datastes containing missing values are various. For example, social survey
sheets often contain missing values because respondents refuse to answer some
c© Springer International Publishing AG 2017
G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part I, LNCS 10199, pp. 471–486, 2017.
DOI: 10.1007/978-3-319-55849-3 31



472 C.T. Tran et al.

questions; medical patient records also usually have missing values because all
tests often cannot be done on patients [13].

Missing values cause serious problems for classification. One of the most seri-
ous problems is the non-applicability of majority classifiers with incomplete data.
Majority classifiers require complete data; therefore, they cannot directly work
with incomplete data. Moreover, missing values often lead to big classification
errors [6,20].

One of the most popular approaches to solving classification with incomplete
data is to use a classifier which can directly classify incomplete data. For exam-
ple, C4.5 can directly deal with incomplete data in both training and testing
process. Although this approach can tackle incomplete data to some extent, it
often results in more complex learnt models and bigger classification errors [19].
Therefore, further approaches to improving classifiers able to directly classify
incomplete data should be investigated.

Feature selection is the process to select a suitable feature subset from the
original features. Feature selection has been proven capable of improving classi-
fication accuracy and reducing the complexity of learnt models [14]. Although
feature selection is mainly applied to complete data, it is also used to improve
classification with incomplete data [18,22].

Ensemble is a machine learning method that builds a set of classifiers instead
of a single classifier for classification tasks. Ensemble methods have been demon-
strated to enhance classification accuracy [4]. One of the most popular ensemble
methods is bagging. Although bagging helps improve classification accuracy, it
often generates more complex learnt models [17]. Moreover, bagging is mainly
applied to complete data. Therefore, researches on improving bagging for clas-
sification with incomplete data should be investigated.

1.1 Research Goals

The goal of this paper is to propose a new method which improves bagging for
classification with incomplete data. In order to achieve the goal, a combination
of bagging and feature selection is proposed to classify incomplete data. The
proposed method is compared with three benchmark methods for classification
with incomplete data. The first benchmark method is to use a classifier which can
directly classify incomplete data. The second benchmark method is to combine
feature selection and a classifier which can directly classify incomplete data.
The third benchmark method is to combine bagging and a classifier which can
directly classify incomplete data. The experimental results are used to address
the following objectives:

1. Whether the combination of bagging and feature selection can achieve better
classification accuracy compared to the other methods for classification with
incomplete data.

2. Whether the combination of bagging and feature selection can generate less
complex learnt models compared to bagging with all features for classification
with incomplete data.



Bagging and Feature Selection for Classification with Incomplete Data 473

1.2 Organisation

The rest of this paper is organised as follows. Section 2 outlines related work.
Section 3 presents the proposed method. After that, Sect. 4 presents comparison
method and experiment design. Section 5 shows results and analysis. Finally,
Sect. 6 presents conclusions and future work.

2 Related Work

This section outlines related work including classification with incomplete data,
feature selection and ensemble learning.

2.1 Classification with Incomplete Data

There are two main approaches to classification with incomplete data. One app-
roach is to use imputation methods to transform incomplete data to complete
data before using classification algorithms. The other approach is to use classi-
fication algorithms which can directly work with incomplete data without using
imputation methods [6].

The purpose of imputation methods is to replace missing values with plausible
values. For example, mean imputation fills all missing values in each feature
with the average of all complete values in the same feature. The main benefit
of using imputation methods is that they can provide complete data which can
be used by any classification algorithm. However, simple imputation methods
such as mean imputation often lead to the big classification error. Moreover,
more sophisticated imputation methods are often computationally intensive to
estimate missing values before using classification algorithms [20].

The majority of classification algorithms cannot directly work with incom-
plete data. However, there are some classification algorithms which are able to
directly classify incomplete data. For example, C4.5 [19] use a probabilistic app-
roach to tackle missing values in both the training set and test set. The main
benefit of using classification algorithms able to directly classify incomplete data
is that the classification algorithms do not require any time for estimating miss-
ing values. However, when the classification algorithms work with incomplete
data, they often generate more complexed models and lead to large classifica-
tion errors [20]. Therefore, further approaches to improving the classification
algorithms should be investigated.

2.2 Feature Selection

Feature selection is the process of selecting a relevant subset of features from
the original features. The underlying reason for using feature selection is that
the data often contains redundant/irrelevant features, which should be removed
without much loss of information. By removing redundant/irrelevant features,
feature selection can help improve classification accuracy. Moreover, thanks to



474 C.T. Tran et al.

providing a smaller number of features, feature selection can help to speed up the
training process and make simpler learnt classifiers which are easier to interpret
[1,14,24].

Feature selection includes two main procedures: a search procedure and an
evaluation procedure. The search procedure is used to search feature subsets
while the evaluation procedure is used to measure the quality of feature subsets.
The performance of feature selection strongly depends on the quality of both of
the procedures [1,14,24].

Search methods for feature selection can be categorised into traditional search
methods and evolutionary search methods. For example, sequential forward
selection and sequential backward selection are two common traditional search
methods for feature selection. In recent times, evolutionary algorithms have been
successfully used as search methods in feature selection. Genetic algorithms and
particle swarm optimisation (PSO) are two popular evolutionary search methods
for feature selection [24].

Evaluation methods for feature selection can be categorised into wrapper
methods and filter methods. A wrapper method uses a classifier to evaluate fea-
ture subsets while a filter method uses a measure such as information gain to
evaluate. In order to evaluate each feature subset, wrapper methods need to
train a classifier and then test its performance; therefore, they are often com-
putationally expensive. In contrast, evaluation measures in filter methods are
often computationally cheap; therefore, filter methods are often more efficient
and general than wrapper methods. However, wrapper methods are often more
accurate than filter methods [1,14,24].

Particle swarm optimisation (PSO) is a swarm intelligent algorithm proposed
by Kennedy and Eberhart in 1995 [10]. Recently, PSO has been widely used as a
search method for feature selection. Continuous PSO is usually used for feature
selection, where the dimensionality of each particle is equal to the total number
of features and a threshold θ is often used to determine whether or not a feature is
selected. If the value is smaller than θ, the corresponding feature is not selected,
otherwise, it is selected. PSO has been used for both wrapper and filter. In a
PSO-based wrapper, a classifier is required to evaluate particles, and the fitness
of each particle is the accuracy of the classifier by using selected features. In a
PSO-based filter, an evaluation measure is required to evaluate particles, and the
fitness of each particle is estimated by the measure with selected features [24].

Feature selection methods have been mainly applied to complete data. How-
ever, in recent times, there are some feature selection approaches to incomplete
data. In [5], the mutual information criterion which is based on k-nearest neigh-
bours is expanded to tackle with missing values. The experimental results show
that the method can select important feature subsets without using any imputa-
tion method and help enhance the performance of the prediction models. In [18],
a combination of the mutual information measure and rough sets is proposed to
evaluate feature subsets with incomplete data. The empirical results show that
the proposed method is effective for selecting feature subsets with incomplete
data. A wrapper-based feature selection for incomplete data is proposed in [22],



Bagging and Feature Selection for Classification with Incomplete Data 475

where PSO is used as a search technique and C4.5 which is able to directly
classify incomplete data is used to evaluate feature subsets. The experimental
results show that the proposed methods not only can improve the accuracy of
the classifier, but it also can reduce the complexity of the classifier.

2.3 Ensemble Learning

Ensemble learning is a machine learning method which constructs a set of classi-
fiers for a classification task. It classifies a new instance by voting the decision of
individual classifiers. The set of classifiers has been proved capable of achieving
higher accuracy than any of the individual classifiers [4].

An ensemble of classifiers is accurate if the individual classifiers in the ensem-
ble is accurate and diverse. Two popular methods to construct accurate ensem-
bles are Bagging and Boosting. Both of the methods use “resampling” techniques
to construct different training sets for each of the classifier. Bagging manipulates
the original training data by randomly drawing with replacement instances. Con-
sequently, some of the original instances might appear multiple times in the
resulting training data while others might disappear. Bagging is usually help-
ful with “unstable”classification algorithms like neural networks and decision
trees where small changes in the training data often result in major changes in
predictions. Experimental results reveal that Bagging ensemble almost always
achieves better accuracy than a single classifier. Boosting also manipulates the
original training data by drawing with replacement, but it uses the performance
of the previous classifier(s) to calculate the probability of selecting each instance.
Boosting tries to construct new classifiers that are better to classify instances
for which the current ensemble’s performance is poor. Therefore, in Boosting,
instances which are incorrectly classified by previous classifiers are more often
selected than instances which are correctly classified. Experimental results reveal
that with little or no classification noise, Boosting ensemble also almost always
achieve better accuracy than a single classifier, and it is sometimes more accurate
than Bagging ensemble. However, with substantial classification noise, Boosting
ensemble is often less accurate than a single classifier since Boosting ensemble
often overfits noisy datasets [16].

Feature selection also has been used to improve ensemble learning. In [17],
a genetic algorithm (GA) is used to search a suitable set of feature subsets for
ensemble. Initially, a set of classifiers is generated where each classifier is built
by randomly picking a set of features. After that, new classifiers are created by
using the genetic operators. Finally, the best fit individuals are chosen to build
an appropriate set of feature subsets which is then used to create an ensemble.
Neural network is used as a classifier and the fitness of each individual is the
combination of accuracy and diversity. Experiment results show that the feature
selection ensemble can achieve better accuracy than the popular and powerful
ensembles of Bagging and Boosting. In [7], GA is also applied to search a set of
feature subsets for ensemble, where the GA runs multiple times with different
training data to provide different feature subsets. C4.5 and Euclidean Decision
Tables are used as classifiers and the fitness of each individual is the classification



476 C.T. Tran et al.

accuracy. Experiments show that the feature selection ensemble is more accurate
than other existing ensemble methods. In [15], a multi-objective GA is used to
select a set of feature subsets which is used to construct a set of classifiers. After
that the multi-objective GA is used again to select an optimal set of classifiers.
The experimental results show that the proposed method is more effective than
Boosting and Bagging for the handwriting recognition problem.

Ensemble learning also has been used to solve classification with incomplete
data. In [11], a set of classifiers is constructed to classify incomplete data, where
each base classifier is trained with a random subset of features. In [2], incomplete
data is firstly grouped into complete subsets, and then each subset is used to
train one classifier. Although the two methods can tackle incomplete data in
some extent, they cannot ensure to classify all incomplete instances.

Popular ensemble methods such as bagging/boosting have been mainly
applied to complete data. Therefore, the application of popular ensemble meth-
ods for incomplete data should be investigated. Moreover, combining popular
ensemble methods with feature selection has not been investigated. Feature
selection can improve the performance of classification with incomplete data.
Therefore, a combination of popular ensemble methods with feature selection
for incomplete data also need be investigated.

3 The Proposed Method

The key idea of the proposed method is that bagging is combined with feature
selection to improve the accuracy and diversity of a set of learnt classifiers. The
underlying reason is that to construct a set of classifiers, bagging repeatedly
resamples the training dataset to build a set of training resampled datasets.
The resampled datasets often contain redundant/irrelavant features. Moreover,
feature selection has been proven capable of remove redundant/irrelavant fea-
tures. Therefore, feature selection could be applied to each resampled dataset
to eliminate redundant/irrelavant features. By eliminating redundant/irrelavant
features, feature selection can help improve resampled datasets which in turn
can help build more accurate and less complex learnt classifiers.

Figure 1 shows main steps of the training process of the proposed method.
In the training process, firstly, the training dataset is put into a resam-
pling procedure several times to generate a set of training resampled datasets.

Fig. 1. The training process of classification with incomplete data by combining bag-
ging and feature selection.



Bagging and Feature Selection for Classification with Incomplete Data 477

After that, each training resampled dataset is put into a feature selection proce-
dure to select a suitable feature subset which is then used to transform the train-
ing resampled dataset into the training selected dataset. Subsequently, each the
training selected dataset is used by a classification algorithm to learn a classifier.
As a result, the training process generates a set of classifiers. In the application
process, the set of classifiers is combined to classify a new instance.

The main steps of the proposed method are presented in the following sub-
sections.

3.1 Resampling Data

The purpose of each time resampling training dataset is to create a random
redistribution of the training dataset. Each training resampled dataset is gener-
ated by randomly choosing with replacement the same number of instances in
the original training dataset. As a result, many of the original instances might
be repeated in the training resampled dataset while others might be left out.

3.2 Feature Selection

The key difference between the proposed method and bagging is this step. Bag-
ging immediately uses a set of training resampled datasets to build a set of
classifiers. In contrast, the proposed method applies feature selection to elim-
inate redundant/irrelevant features in each training resampled dataset before
building a set of classifiers.

In order to remove redundant/irrelevant features in incomplete data, any
search technique can be used to find feature subsets. However, to evaluate a fea-
ture subset which may contain incomplete features, the feature selection proce-
dure requires a feature subset evaluation method which can deal with incomplete
data. In [22,23], a combination of PSO and a classifier able to classify incom-
plete data has been successfully used to remove redundant/irrelevant features in
incomplete data. Therefore, in the proposed method, PSO will be used to search
feature subsets and a classifier which is able to classify incomplete data such as
C4.5 will be used to evaluate feature subsets.

3.3 Combining Classifiers

A set of classifiers which is built in the training process is combined to classify
new instances in the application process. The majority vote chooses a class label
with the most votes from the ensemble members as the ensemble output. The
majority is a simple and powerful voting method [16]. Therefore, in the proposed
method, the majority vote will be used to combine classifiers.

4 Method and Experiment Design

This section shows the comparison method and experiment design including
datasets used in the experiment, parameter settings for feature selection and
classification algorithm.



478 C.T. Tran et al.

4.1 The Comparison Method

Experiments are conducted to evaluate the effectiveness of the combination of
bagging and feature selection for classification with incomplete data. In order to
achieve the goal, a combination of bagging and feature selection for classification
with incomplete data as shown in Fig. 1 is compared with three other common
methods for classification with incomplete data as shown in Figs. 2, 3 and 4.
Figure 2 shows the training process of classification with incomplete data by
using a classifier able to directly classify with incomplete data. Figure 3 shows
the training process of classification with incomplete data by combining feature
selection and a classifier able to directly classify with incomplete data. Figure 4
shows the training process of classification with incomplete data by combining
bagging and a classifier able to directly classify with incomplete data.

Fig. 2. The training process of classification with incomplete data by directly using a
classifier able to classify incomplete data.

Fig. 3. The training process of classification with incomplete data by using feature
selection.

Fig. 4. The training process of classification with incomplete data by using bagging.

In the four setups, firstly, incomplete dataset is divided into training dataset
and testing dataset. In the proposed setup shown in Fig. 1, the training dataset
is used by bagging and feature selection to build a set of classifiers which is used
to classify the testing dataset. In the setup shown in Fig. 2, the training dataset
is directly put into a classification algorithm to learn a classifier which is then
used to classify the testing dataset. In the setup shown in Fig. 3, the training
dataset is put into a feature selection procedure to select a suitable feature subset
which is used to transform the training dataset into the training selected dataset.
After that, the training selected dataset is used by a classification algorithm to
learn a classifier which is used to classify the testing dataset. In the setup shown



Bagging and Feature Selection for Classification with Incomplete Data 479

Fig. 4, the training dataset is put into a resampling procedure to generate a set
of training resampled dataset. After that the set of training resampled dataset is
used by a classification algorithm to build a set of classifiers which is then used
to classify the testing dataset.

4.2 Datasets

The experiments used eight benchmark incomplete datasets chosen from UCI
Repository of Machine Learning Databases [12]. Table 1 presents main character-
istics of these datasets which include the name, the number of features (R:real/I:
integer/N:nominal values), the number of classes, the number of instances and
the percentage of incomplete instances which contain at least one missing field.

Table 1. Datasets used in the experiments.

Name #Features(R/I/N) #Classes #Instances Incomplete
instances (%)

Breast 9 (0/0/9) 2 286 3.15

Cleveland 13 (13/0/0) 5 303 1.98

Crx 15 (3/3/9) 2 690 5.36

Dermatology 34 (0/34/0) 6 366 2.19

Hepatitis 19 (2/17/0) 2 155 48.39

Mammographic 5 (0/5/0) 2 961 13.63

Marketing 13 (0/13/0) 9 8993 23.54

Wisconsin 9 (0/9/0) 2 699 2.29

These datsets were carefully chosen to represent classification tasks with
incomplete data of varying difficulty, dimensionality, feature types and number of
classes. These datasets have varying levels of incomplete instances (Cleveland has
1.98% incomplete instances while Hepatitis has 48.39% incomplete instances).
These problems also range low and high dimensionality (Mammographic has five
features while Dermatology has 34 features), different feature types and binary
classification and multi-class classification.

None of the datasets has a specific test set. Furthermore, the number of
instances in some datasets is relatively small. Consequently, the ten-fold cross-
validation method was applied to measure the performance of the learnt classi-
fiers. In the experiments, with each dataset, the ten-fold cross-validation method
was done 30 times. Therefore, with each dataset, 300 pairs of training set and
test set were generated to evaluate the performance of the algorithms.

4.3 Classification Algorithms

In the experiments, we used C4.5 [19] and REPTree [21] to classify data
and evaluate the quality of feature subsets in the feature selection procedure.



480 C.T. Tran et al.

Both of the algorithms are able to directly classify incomplete data. The WEKA
[8] was used to implement the algorithms by setting its parameters as the default
values. Following [16], in the proposed method and the original bagging method,
the number of classifiers was set 10.

4.4 PSO Parameter Settings

The experiments used continuous PSO to search feature subsets in the feature
selection procedure. The PSO parameters were set as common parameter set-
tings proposed by Clerc and Kennedy [3]. The detailed parameter settings are
shown as follows: inertia weight (ω) was set 0.729844, the cognitive parameter
(c1) and the social parameter (c2) were set 1.49618, population size was set to 30,
the maximum iteration was set to 50 and the fully connected topology. The clas-
sification accuracy was used to evaluate the quality of particles. The threshold
θ was set 0.8 to determine whether or not a feature is selected.

5 Results and Analysis

This section shows the comparison of the proposed method with the other meth-
ods on classification accuracy and the complexity of learnt classifiers. This section
also mentions some reasons for the experimental results.

5.1 Classification Accuracy

Table 2 shows the average of classification accuracy and standard deviation of
the four methods with the two classifiers on the eight incomplete datasets. The
average of classification accuracy is the average of accuracies of 30 times per-
forming ten-fold cross-validation on each dataset. In the table, BaFS column
presents the average of accuracy from the proposed setup shown in Fig. 1; All
column presents the average of accuracy from the setup shown in Fig. 2; FS col-
umn presents the average of accuracy from the setup shown in Fig. 3, and BaAll
column presents the average of accuracy from the setup shown in Fig. 4.

To compare the performance of the proposed method with the other methods,
the Wilcoxon signed-ranks tests at 95% confidence interval is used to compare the
classification accuracy achieved by BaFS with the other methods. “T”columns
in Table 2 show significant test of the columns before them against BaFS, where
“+”, “=”and “−” mean BaFS is significantly more accurate, not significantly
different, and significantly less accurate, respectively. The bold ones mean the
best results for each dataset.

It is clear from Table 2 that in most cases, the proposed method can achieve
the best classification accuracy. In all cases, the proposed method achieves sig-
nificantly better classification accuracy than using all features as shown in Fig. 2.
In all cases, the proposed method also achieves significantly better classification
accuracy than using selected features as shown in Fig. 3. Compared to bagging
as shown in Fig. 4, in 16 cases, the proposed method achieves significantly better



Bagging and Feature Selection for Classification with Incomplete Data 481

Table 2. The classification accuracy of different methods.

Dataset Algorithm BaFS All T FS T BaAll T

Breast C4.5 96.19± 0.53 94.64± 0.43 + 94.40± 0.61 + 95.89± 0.42 +

REPTree 95.98± 0.45 94.42± 0.42 + 94.16± 0.58 + 95.75± 0.39 =

Clevelant C4.5 58.67± 1.34 54.45± 2.00 + 57.68± 1.58 + 57.06± 1.56 +

REPTree 58.68± 1.10 56.63± 1.49 + 57.60± 1.54 + 59.03± 1.17 =

Crx C4.5 85.89± 0.41 84.98± 0.80 + 84.62± 0.68 + 85.89± 0.61 =

REPTree 86.03± 0.41 84.55± 0.83 + 84.91± 0.46 + 84.90± 0.63 +

Dermatology C4.5 96.67± 0.72 95.66± 0.48 + 92.35± 1.20 + 96.84± 0.56 =

REPTree 96.23± 0.67 94.75± 0.71 + 92.09± 1.50 + 95.67± 0.56 +

Hepatitis C4.5 83.04± 1.78 78.87± 1.89 + 80.58± 1.73 + 80.97± 1.30 +

REPTree 82.71± 1.69 80.21± 2.23 + 80.14± 1.77 + 81.69± 1.96 +

Mammographic C4.5 82.84± 0.48 82.08± 0.36 + 82.17± 0.48 + 82.67± 0.45 =

REPTree 82.60± 0.50 82.00± 0.68 + 81.76± 0.59 + 82.65± 0.50 =

Marketing C4.5 33.14± 0.35 30.86± 0.41 + 32.04± 0.49 + 31.54± 0.28 +

REPTree 33.66± 0.31 32.75± 0.42 + 32.16± 0.59 + 33.04± 0.35 +

Wisconsin C4.5 96.19± 0.32 94.61± 0.49 + 94.42± 0.51 + 95.76± 0.44 +

REPTree 96.03± 0.42 94.45± 0.48 + 94.00± 0.67 + 95.68± 0.45 +

Bold values indicate the best results for each dataset

classification accuracy than bagging in 10 cases, similar classification accuracy
to bagging in 6 cases and never significantly worse classification accuracy than
bagging.

In summary, the combination of bagging and feature selection is able to help
significantly improve accuracy of classification with incomplete data.

5.2 Classifier Size

Table 3 shows the average size of decision trees(the number of nodes in the trees)
of the four methods with two classifiers on the eight incomplete datasets. The
average size of decision trees is the average size of 30 times performing ten-fold
cross-validation on each dataset. In the table, BaFS column presents the average
size from the proposed setup shown in Fig. 1; All column presents the average
size from the setup shown in Fig. 2; FS column presents the average size from
the setup shown in Fig. 3, and BaAll column presents the average size from the
setup shown in Fig. 4.

Figure 5 summaries Table 3 by showing the average of tree size ratio between
the other methods and the proposed method with C4.5 and REPTree (bigger
than one means bigger tree, otherwise equal or smaller tree). It can be seen from
Fig. 5 that the feature selection with original data shown in Fig. 3 provides the
smallest trees. Moreover, it is clear from Fig. 5 that with both C4.5 and REPTree,
the average of tree size generated by bagging with all features is bigger than the
combination of bagging and feature selection. In other words, the combination



482 C.T. Tran et al.

Table 3. The tree size of different methods.

Dataset Algorithm BaFS All FS BaAll

Breast C4.5 18.67 22.96 14.89 22.81

REPTree 14.54 13.35 13.12 14.86

Clevelant C4.5 71.33 79.19 18.13 73.36

REPTree 30.33 17.42 11.61 32.24

Crx C4.5 38.08 29.00 9.45 48.85

REPTree 30.76 22.76 13.10 46.76

Dermatology C4.5 20.88 15.20 17.28 17.43

REPTree 15.66 15.66 13.85 15.24

Hepatitis C4.5 11.40 17.46 7.04 15.17

REPTree 8.55 6.42 7.18 8.91

Mammographic C4.5 15.88 10.49 8.78 31.75

REPTree 22.75 13.99 11.08 35.54

Marketing C4.5 1031.61 1372.32 186.12 1713.21

REPTree 442.72 361.64 163.12 724.25

Wisconsin C4.5 18.93 22.95 15.26 23.09

REPTree 14.50 13.12 12.51 14.87

Fig. 5. Tree size ratio between the other methods and BaFS

of bagging and feature selection helps reduce the complexity of learnt classifiers
from bagging.

In summary, the combination of bagging and feature selection not only help
improve classification accuracy of bagging, but also helps reduce the complexity
of the learn classifiers compared with the standard bagging method.



Bagging and Feature Selection for Classification with Incomplete Data 483

5.3 Further Analysis

To understand how the combination of bagging and feature selection can achieve
better classification and smaller trees than bagging with all features, we looked
carefully at the trees generated by C4.5 bagging with all features and bagging
with selected features on Hepatitis dataset which has 19 features (Age, Sex,
Steroid, Antivirals, Fatigue, Malaise, Anorexia, LiverBig, LiverFirm, SpleenPal-
pable, Spiders, Ascites, Varices, Bilirubin, AlkPhosphate, Sgot, AlbuMin, Pro-
Time, Histology). The Hepatitis dataset was chosen since the trees generated on
Hepatitis are not too big to analyse. Figures 6 and 7 present two typical pattern
trees we observed.

It is clear from Figs. 6 and 7 that the combination of bagging and feature
selection can generate more accurate and less complex trees than bagging with
all features. The reason might be that classifiers like C4.5 are greedy algorithms
which make the locally optimal choice at each stage. Therefore, they may pro-
vide locally optimal solutions. The purpose of feature selection is to search for
more suitable feature subsets. Therefore, feature selection can help reduce the
limitation of greedy algorithms. For example, in Fig. 6, with a training resam-
pled data, when C4.5 bagging uses all features, the information gain of feature
Spiders and feature Sex are higher than the information gain of feature Age, so
feature Spiders and feature Sex are chosen to build the right tree before choosing
feature Age. When feature selection is applied to the training resampled data,
only three features Age, Ascite and LiverBig are selected. Consequently, feature
Age is chosen to develop the right tree instead of feature Spiders or feature Sex.
As a result, bagging with selected features generates more accurate and less
complex trees than bagging with all features.

Fig. 6. Left tree with 90.0% of accuracy generated by C4.5 bagging with all features
and right tree with 92.14% of accuracy generated by C4.5 bagging with selected features



484 C.T. Tran et al.

Fig. 7. Left tree with 86.42.0% of accuracy generated by C4.5 bagging with all features
and right tree with 91.42% of accuracy generated by C4.5 bagging with selected features

It also can be seen from Figs. 6 and 7 that the combination of bagging and
feature selection can generate more diverse trees than bagging with all features.
For example, the right tree on Fig. 6 uses the same feature Ascites in the first
level as the right tree on Fig. 7. However, the left tree on Fig. 6 uses different
feature in the first level from the right tree on Fig. 7. By generating more diverse
trees, feature selection helps improve the bagging method.

In summary, bagging with selected features can generate more accurate, less
complex and more diverse learnt models than bagging with all features. There-
fore, the combination of bagging and feature selection helps improve the tradi-
tional bagging method.

6 Conclusions and Future Work

This paper proposed a combination of bagging and feature selection method to
improve classification with incomplete data. In order to achieve the purpose,
bagging is firstly used to construct a set of training resampled data. After that,
the set of training resampled data is used by a wrapper-based feature selec-
tion to build a set of training selected data which is then used to learn a set of
classifiers. The proposed method was compared with three other popular classifi-
cation methods which can directly work with incomplete data. The experiments
on eight incomplete datasets used C4.5 and REPTree, which is able to directly
classify incomplete data, as classifiers and PSO as a search technique in fea-
ture selection. The results showed that the combination of bagging and feature
selection method is more accurate than the other methods. Moreover, the com-
bination of bagging and feature selection is able to reduce the complex learnt
models generated by the bagging method.

One of the other most popular ensemble methods is boosting. We already
tried to use the same process as the proposed method to combine boosting and
feature section for classification with incomplete data. However, experimental



Bagging and Feature Selection for Classification with Incomplete Data 485

results were not promising. Therefore, future work could be to investigate more
suitable approaches to combining boosting and feature selection, and check which
ensemble methods are more suitable to what kinds of problems.

References

1. Chandrashekar, G., Sahin, F.: A survey on feature selection methods. Comput.
Electr. Eng. 40(1), 16–28 (2014)

2. Chen, H., Du, Y., Jiang, K.: Classification of incomplete data using classifier ensem-
bles. In: 2012 International Conference on Systems and Informatics (ICSAI), pp.
2229–2232 (2012)

3. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence
in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

4. Dietterich, T.G.: Ensemble methods in machine learning. In: International Work-
shop on Multiple Classifier Systems, pp. 1–15 (2000)

5. Doquire, G., Verleysen, M.: Feature selection with missing data using mutual infor-
mation estimators. Neurocomputing 90, 3–11 (2012)

6. Garćıa-Laencina, P.J., Sancho-Gómez, J.L., Figueiras-Vidal, A.R.: Pattern classi-
fication with missing data: a review. Neural Comput. Appl. 19, 263–282 (2010)

7. Guerra-Salcedo, C., Whitley, D.: Feature selection mechanisms for ensemble cre-
ation: a genetic search perspective. In: Data Mining with Evolutionary Algorithms:
Research Directions. Papers from the AAAI Workshop (1999)

8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
weka data mining software: An update. SIGKDD Explor. Newsl. 11, 10–18 (2009)

9. Han, J., Pei, J., Kamber, M.: Data Mining: Concepts and Techniques. Elsevier,
Waltham (2011)

10. Kennedy, J.: Particle swarm optimization. In: Encyclopedia of Machine Learning,
pp. 760–766 (2011)

11. Krause, S., Polikar, R.: An ensemble of classifiers approach for the missing feature
problem. In: 2003 Proceedings of the International Joint Conference on Neural
Networks, vol. 1, pp. 553–558 (2003)

12. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.
edu/ml

13. Little, R.J., Rubin, D.B.: Statistical Analysis with Missing Data. Wiley, New York
(2014)

14. Liu, H., Motoda, H.: Feature Selection for Knowledge Discovery and Data Mining,
vol. 454. Springer, Heidelberg (2012)

15. Oliveira, L.S., Morita, M., Sabourin, R.: Feature selection for ensembles applied to
handwriting recognition. Int. J. Doc. Anal. Recogn. (IJDAR) 8, 262–279 (2006)

16. Opitz, D., Maclin, R.: Popular ensemble methods: An empirical study. J. Artif.
Intell. Res. 11, 169–198 (1999)

17. Opitz, D.W.: Feature selection for ensembles. In: AAAI/IAAI 379–384 (1999)
18. Qian, W., Shu, W.: Mutual information criterion for feature selection from incom-

plete data. Neurocomputing 168, 210–220 (2015)
19. Quinlan, J.R.: C4.5: Programs for Machine Learning. Elsevier, New York (2014)
20. Saar-Tsechansky, M., Provost, F.: Handling missing values when applying classifi-

cation models. J. Mach. Learn. Res. 8, 1623–1657 (2007)
21. Su, J., Zhang, H.: A fast decision tree learning algorithm. In: Proceedings of the

21st National Conference on Artificial Intelligence, vol. 1, pp. 500–505 (2006)

http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml


486 C.T. Tran et al.

22. Tran, C.T., Zhang, M., Andreae, P., Xue, B.: Improving performance for classifi-
cation with incomplete data using wrapper-based feature selection. Evol. Intell. 9,
81–94 (2016)

23. Tran, C.T., Zhang, M., Andreae, P., Xue, B.: A wrapper feature selection approach
to classification with missing data. In: Squillero, G., Burelli, P. (eds.) EvoAppli-
cations 2016. LNCS, vol. 9597, pp. 685–700. Springer, Cham (2016). doi:10.1007/
978-3-319-31204-0 44

24. Xue, B., Zhang, M., Browne, W., Yao, X.: A survey on evolutionary computation
approaches to feature selection. IEEE Trans. Evol. Comput. 20, 606–626 (2016)

http://dx.doi.org/10.1007/978-3-319-31204-0_44
http://dx.doi.org/10.1007/978-3-319-31204-0_44

	Bagging and Feature Selection for Classification with Incomplete Data
	1 Introduction
	1.1 Research Goals
	1.2 Organisation

	2 Related Work
	2.1 Classification with Incomplete Data
	2.2 Feature Selection
	2.3 Ensemble Learning

	3 The Proposed Method
	3.1 Resampling Data
	3.2 Feature Selection
	3.3 Combining Classifiers

	4 Method and Experiment Design
	4.1 The Comparison Method
	4.2 Datasets
	4.3 Classification Algorithms
	4.4 PSO Parameter Settings

	5 Results and Analysis
	5.1 Classification Accuracy
	5.2 Classifier Size
	5.3 Further Analysis

	6 Conclusions and Future Work
	References


