
Evolutionary Art Using the Fly Algorithm

Zainab Ali Abbood, Othman Amlal, and Franck P. Vidal(B)

School of Computer Science, Bangor University, Bangor, UK
{z.a.abbood,f.vidal}@bangor.ac.uk, attumy.22022@gmail.com

Abstract. This study is about Evolutionary art such as digital mosaics.
The most common techniques to generate a digital mosaic effect heav-
ily rely on Centroidal Voronoi diagrams. Our method generates artistic
images as an optimisation problem without the introduction of any a
priori knowledge or constraint other than the input image. We adapt a
cooperative co-evolution strategy based on the Parisian evolution app-
roach, the Fly algorithm, to produce artistic visual effects from an input
image (e.g. a photograph). The primary usage of the Fly algorithm is in
computer vision, especially stereo-vision in robotics. It has also been used
in image reconstruction for tomography. Until now the individuals corre-
spond to simplistic primitives: Infinitely small 3-D points. In this paper,
the individuals have a much more complex representation and represent
tiles in a mosaic. They have their own position, size, colour, and rotation
angle. We take advantage of graphics processing units (GPUs) to gen-
erate the images using the modern OpenGL Shading Language. Differ-
ent types of tiles are implemented, some with transparency, to generate
different visual effects, such as digital mosaic and spray paint. A user
study has been conducted to evaluate some of our results. We also com-
pare results with those obtained with GIMP, an open-source software
for image manipulation.

Keywords: Digital mosaic · Evolutionary art · Fly algorithm · Parisian
evolution · Cooperative co-evolution

1 Introduction

The boundaries between artists and computer scientists may become thinner
as the technology becomes more and more ubiquitous. A relatively new field of
computer graphics (CG) is called non-photorealistic rendering (NPR). One of
the main goals of NPR is to produce “digital art” that can benefit the artis-
tic community as well as the scientific community, e.g. in scientific and medical
visualisation [1]. Rendering algorithms have been proposed to simulate multiple
forms of traditional art, e.g. digital watercolours [2], line art drawing [3], expres-
sive painting [4], and Celtic art [5]. This paper focuses on the most ancient of
classical art forms, mosaics, but also includes other types such as spray paint.

A digital mosaic tries to provide artistic touches to a source image by covering
it by tens, hundreds, or thousands of small coloured square tiles in a way that
c© Springer International Publishing AG 2017
G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part I, LNCS 10199, pp. 455–470, 2017.
DOI: 10.1007/978-3-319-55849-3 30

456 Z.A. Abbood et al.

resembles ancient mosaics or stained-glass windows. The main goal is to generate
a discrete coloured image that still gives the same impression as the real image.
To design a piece of mosaic, an artist needs to precisely decompose the original
image into tiles with different size, colour, and orientation. The artist requires
a large area where to fit the tiles together like a jigsaw forming a special image
(it is not unusual to have mosaics over several square metres) [6,7].

In image processing and computer vision, the approach consists of building an
algorithm that produces an image with mosaic effects automatically or with as
little user intervention as possible. The produced mosaic image should replicate
the features of the real image [8]. One of the difficulties in digital mosaic gen-
eration is that the same original image may be visualised into various mosaics.
Therefore, choosing an appropriate tile data set (including tile number, position,
size, colour and rotation of every tile) will impact onto the final mosaic image.

Mosaic images can be categorised into four types: (i) crystallization mosaic,
(ii) ancient mosaic, (iii) photo mosaic, and (iv) puzzle image mosaic. The first
two types of mosaics are traditional. The mosaic is the reconstruction of a real
image using small square tiles. The last two types are obtained by aggregating
multiple small images to approximate the real image.

In this article, we revisit digital mosaic-like image generation. Our method
is also suitable for other effects, such as spray paint. The image generation is
considered as an optimisation problem (image reconstruction) and we propose to
solve it using artificial evolution (AE), in a particular cooperative co-evolution
(CoCo) strategy. Our method relies on the Fly algorithm [9]. To validate our
results, a user study has been conducted. It is used to ascertain which version of
our algorithm produces the most visually appealing results. We also demonstrate
the ability of the algorithm to preserve edges and compared some of our results
with similar ones produced with GNU Image Manipulation Program (GIMP)
(http://www.gimp.org/), an open-source software for image editing.

Section 2 discusses previous work. It primarily focuses on digital mosaic,
which is the problem the closest to the one considered in this paper. The following
section is a general overview of the “Parisian evolution” strategy and of the Fly
algorithm. Section 4 describes our approach. It explains how the Fly algorithm
can be adapted from robotic applications and medical tomography reconstruc-
tion into an evolutionary art generator. The penultimate section presents our
results. Several images have been generated with different versions of the algo-
rithm. We conducted an experiment with 25 participants to judge some these
results. Concluding remarks are given in the last section.

2 Previous Work

To our knowledge Haeberli is the first researcher who worked on digital
mosaic [10]. He created attractive images using an ordered collection of brush
strokes to create mosaic and paint effects. He generated images by regulating the
colour, shape, size, and orientation of individual brush strokes. To control the
mosaic effect his method heavily relies on Voronoi diagrams. One of the main

http://www.gimp.org/

Evolutionary Art Using the Fly Algorithm 457

limitations of his algorithm at the time is that it took several hours to produce
a satisfactory image. However, much less time should be required with today’s
“massively parallel processors”. This is actually the approach followed by Hoff
and his colleagues to overcome the limitation mentioned above. They presented
an implementation to compute discrete Voronoi diagrams on graphics processing
units (GPUs) [11]. The method starts with a set of random points representing
various sites in the image. They are used as the basis to create polygonal meshes
that can be rendered in OpenGL to create the Voronoi diagrams. Their approach
relies on a metrics based on the Euclidean distance for each site, which computes
the distance from any point to that site. Each site has a unique colour.

Hausner improved Hoff’s method to use regular and square tiles only. The
aim is to create images that have an effect similar to actual mosaics [12]. Each tile
may have a different size, colour, and orientation based on the image considered.
This approach relies on Centroidal Voronoi (CV) diagrams, which usually order
points in regular hexagonal grids. Instead of using the Euclidean distance as
a metrics, the Manhattan distance is preferred to place the tiles in different
orientation following the edges of the original image.

Lai et al. [13] extended Hausner’s work by trying to place mosaic tiles on
a surface. The tiles are located over a mesh model that is created using a CV
diagram and the Manhattan distance. The size of tiles is regular, i.e all the tiles
have the same shape (rectangle) and size. The orientation of tiles depends on
a vector field, which is interpolated over the surface based on control vectors.
The algorithm is sensitive to sharp creases, open boundaries, and boundaries
between regions of different colours, which may affect the orientation of tiles.

Lu et al. presented a hybrid method that combines Centroidal Voronoi Tes-
sellation (CVT) and Monte Carlo with minimisation (MCM). CVT places the
tiles on a mesh surface. Because of local minima, MCM is applied to optimise
the result of CVT on a global basis, which improves the final results [14].

In 2015, Hu and his colleagues presented an algorithm for the reconstruc-
tion of digital surface mosaics based on irregularly shaped tiles [15]. They use a
hybrid optimisation paradigm, which includes continuous configuration optimi-
sation and discrete combinatorial optimisation. In the continuous configuration
optimisation scheme, the tiles are adjusted using iterative relaxation. The aim is
to adapt their position, orientation, and scale to fit onto approximated Voronoi
regions. The aims of the discrete combinatorial optimisation are to reduce the
amount of overlapping tiles and to increase the surface coverage.

Nguyen et al. [16] produced digital images using an evolutionary algorithm
(EA) based on (MAP-Elites). Their aim was to demonstrate that deep neural
networks (DNNs) can be easily fooled. Their implementation evolves a popu-
lation to produce a tremendous diversity of images with a strong chance that
DNN can classify the objects correctly.

Another approach is the use of Evolutionary art [17]. In this context, an EA
somehow generates images. Artificial evolution is used to modify the images
(e.g. by mutation and recombination). Evolutionary art is often an interac-
tive task where the user/artist plays the role of a selection operator. Our work

458 Z.A. Abbood et al.

follows the Evolutionary art paradigm. We provide a method without the need
of any user interaction, without constraints such as the requirement to generate
a Voronoi diagram, and limit the amount of a priori knowledge to the input
image.

3 Fly Algorithm Paradigm

We saw in the previous section various approaches to translate an input image
into a digital mosaic. The problem can be defined as follows:

Given a rectangular region I2 in the plane R
2, a dataset of N tiles, a set

of constraints, and a vector field φ(x, y) defined on that region, find N
sites Pi(xi, yi) in I2 to place the N tiles, one at each site Pi, such that all
tiles are disjoint, the area they cover is maximized and the constraints are
verified as much as possible.

In this context, image generation can be studied as a special case of the set
cover problem, which is NP-complete [18]. It can be solved as an optimisation
problem [7,12]: Find the best set of tiles to generate a rectangular region to
approximate a coloured image. Each tile has a colour that represents the specific
part of the image it covers. For more realistic reconstruction, the tiles can rotate
at a given angle φ(x, y) following the direction field for that region and may have
sightly different sizes. If there are N tiles to place, as each tile has 9 parameters
(3-D position, 3 colour components, width, height, and rotation angle), the search
space has 9 × N dimensions.

In addition to being a difficult optimisation problem to solve, the digital
mosaic generation is also related to topics in computer graphics and visualisation.
In particular we saw in Sect. 2 that most of the mosaic synthesis methods are
based on Centroidal Voronoi. In this paper, we propose to solve such a problem
without the use of any Voronoi diagram. Instead we rely on an unsupervised EA
based on cooperative co-evolution principles.

The approach we follow is called “Parisian evolution”. In classical EAs the
best individual of the population corresponds to the solution of the optimisation
problem, i.e a global optimum. In the Parisian approach all the individuals of
the population (or at least a subset of the population) is the solution: Each
individual only encodes a part of the solution, and they have to collaborate to
build the final solution. Fig. 1 illustrates the mechanics of the Parisian evolution.
A Parisian EA usually contains all the usual components of an EA (i.e. genetic
operators such as selection, mutation, and recombination), plus the additional
components as follows:

– 2 levels of fitness
• Global fitness computed on the whole population,
• Local fitness computed on each individual to assess their own contribution

to the global solution.

Evolutionary Art Using the Fly Algorithm 459

Fig. 1. Steady-state Parisian evolution algorithm.

The global fitness may be the sum (or a complex combination) of the local
fitnesses but not necessarily. The local fitness of an individual may be defined
as its marginal contribution to the global fitness.

– A diversity mechanism to avoid individuals gathering in only a few areas
of the search space.

The Parisian approach shares many similarities with the Cooperative Co-
Evolution Algorithm (CCEA). Similar internal evolutionary engines are con-
sidered in classical EA, CCEA and Parisian evolution. The difference between
CCEA and Parisian evolution resides in the population’s semantics. CCEA
divides a big problem into sub-problems (groups of individuals) and solves them
separately toward the big problem [19]. There is no interaction/breeding between
individuals of the different sub-populations, only with individuals of the same
sub-population. However, Parisian EAs solve a whole problem as a big compo-
nent. All population’s individuals cooperate together to drive the whole popu-
lation toward attractive areas of the search space.

One good example of Parisian EA is the Fly algorithm. Here an individual is
a 3-D point. The position of each fly is optimised using the repetitive application
of genetic operators. The global and local fitness functions are the key elements of
the algorithm. The final set of points is the solution of the optimisation problem.

It has first been applied in computer vision, particularly stereovision, and
robotics [9], where flies are projected to gather on the surface of objects. It has
been successfully applied to autonomous robots for obstacle avoidance [20,21]
and to self localisation and mapping (SLAM) [22]. Another computer vision
application is related to hand gesture recognition [23]. Computer vision is not the
only field where the Fly algorithm has been applied. It has been tried in tomogra-
phy reconstruction in nuclear medicine, where the concentration of flies approx-
imate a radioactive concentration within the human body [24]. Our approach is
closely related to this work.

460 Z.A. Abbood et al.

4 Evolutionary Image Reconstruction

The individuals correspond to extremely simple primitives: The flies. To date,
the Fly algorithm has been used to find 3-D positions only. In this paper we
propose to give flies a finite size so that they now correspond to rectangular
tiles. This is because hand-crafted mosaics tend to use such a shape and also
because paint brush strokes could be represented using patterned rectangles.
Each fly is a vector of 9 elements (see Fig. 2):

Position is a 3D point with coordinates (x, y, z), which are randomly generated
between 0 and width − 1, 0 and height − 1, and 1 and –1 respectively (with
width and height the number of pixels in the image along the x- and y-axes).
An example of an image generated by an initial population is shown in Fig. 3.

Colour has three components (r, g, b) (for red, green and blue), which are ran-
domly generated between 0 and 1. This is to ensure diversity at the start of
the optimisation. Tile colours are evolved rather than assigned determinis-
tically. It leads to better results in term of sharpness when tiles are located
at edges between different regions of the image (see the difference between
Figs. 6(a) and (b), when tile colours are evolved, and Figs. 6(c) and (d), when
the tile colours are not evolved).

Rotation Angle is randomly generated between 0 and 360.
Scaling factor has two components (w, h), which control the size of the tile

along its horizontal and vertical axes.
Local fitness measures its marginal contribution toward the global solution.

Position
Colour

Rotation Angle
Scaling factor
Local fitness

x
y
z

r
g
b

w
h

Fly

Fig. 2. Structure of the fly data.

The initial scaling factors are set to make sure the tiles could cover the
totality of the image [12]. If there are N individuals, the scaling factors are:

d =
√

(width × height)/N (1)

Due to the randomness in the initial tile positions, tiles overlap. It creates holes
in Fig. 3. They progressively disappear during the evolution process, which aims
to optimise the 9 parameters (position, colour, scale, and rotation) of all the
N individuals. To achieve this, the algorithm minimises the global fitness func-
tion. To assess how good the population is, we compare the input image (ref)
with the image generated using the tiles corresponding to the population (pop).

Evolutionary Art Using the Fly Algorithm 461

Fig. 3. Random initial population.

We use the sum of absolute error (SAE) (also known as Manhattan distance) to
quantify the error between ref and the computed image pop:

SAE(pop, ref) =
∑

i

∑

j

|ref(i, j) − pop(i, j)| (2)

To improve the population’s performance, we need a large proportion of good
individuals. The performance of a single fly is evaluated using the local fitness
function, which is used during the selection process. In our context, the local
fitness is called “marginal fitness”, Fm) (see Eq. 3). It measures the impact of
the selected fly on the global performance of the population. To measure how
good or bad the contribution of Fly i is, we use the SAE metrics with the leave-
one-out cross-validation method:

Fm(i) = SAE(pop − {i} , ref) − SAE(pop, ref)) (3)

with pop−{i} the image computed with all individuals but Fly i. The numerical
value of Fm(i) can be easily interpreted by looking at its sign:

– If the error is greater with Fly i than without, sgn(Fm(i)) < 0, then Fly i
damages the performance of the population.

– If the error is smaller with Fly i than without, sgn(Fm(i)) > 0, then Fly i has
a positive impact on the performance of the population.

– If the error is the same, sgn(Fm(i)) = 0, then Fly i is not beneficial nor
detrimental. It may happen when Fly i is covering similar flies.

We use this principle in our Threshold selection operator [24]. To find a fly to
kill, pick a random number i between 0 and N − 1. If Fm(i) ≤ 0, then Fly i can
be killed, if not pick another random number i until Fm(i) ≤ 0. To find a fly to
reproduce, find one whose fitness Fm(i) is strictly positive. During the evolution
process, the number of flies whose fitness is negative or null will decrease. There
will be more and more good flies; and fewer and fewer bad flies: It gives a good
stopping criteria to the algorithm as the selection operator will struggle to find
bad flies to kill.

Computing the marginal fitness for the problem considered here is time
consuming on a central processing unit (CPU). Therefore, all the computa-
tions to generate images are performed on a GPU using the OpenGL Shading

462 Z.A. Abbood et al.

Language (GLSL). The image is stored in a 2-D texture using a framebuffer
object (FBO). The texture is then passed to a shader program to compute
the pixel-wise absolute error between ref and pop. The sum is also performed
on the GPU using the OpenCL implementation of the reduction operator in
Boost.Compute [25,26]. It provides the SAE in an effective manner.

Our implementation is based on a steady state evolutionary strategy (see
Fig. 1). At each iteration of the optimisation process, a bad fly is selected for
death and replaced with another one. We use a mutation operator to produce a
new fly that is slightly different from the selected good fly. The aim is to create
a new fly in the vicinity of a good fly. In this way the new fly is likely to be a
good one too. Crossover is not used: If we consider two good flies located at the
opposite corners of the image, a new fly in between is very likely to be bad.

The algorithm stops when a stopping criterion is met, e.g. maximum number
of iterations, when the evolution process does not improve the performance of
the whole population, or when the Threshold selection becomes too slow to find
bad flies. A restart mechanism is eventually used to further improve the results.
It allows the algorithm to leave a local minima (see Fig. 5).

5 Results

In this section we evaluate our method using the results obtained with five test
images of increasing complexity (see Row 0 in Fig. 4). We consider the image
reconstruction with 12 different schemes (see Table 1) using:

– Different image sizes: 256 × 256 or 512 × 512;
– Different colour quantisations: 60 colours or full RGB colours (i.e. 224);
– Different types of tiles: square with a border, square without a border, set of

lines, or flower;
– With or without restart mechanism.

For each test image, evolutionary reconstructions are obtained with these
schemes:

– As a feasibility study, the first two images (Star and Yin & Yang) are relatively
simple and have a relatively low resolution. 6 schemes of Table 1 are used.

– Three other test images are more complex. They are used to evaluate the
12 schemes.

Schemes 1 to 4 uses the algorithm presented in Fig. 1. The flies correspond
to uniform rectangles (see “one shader” in Table 1). Schemes 5 to 8 uses the
algorithm presented in Fig. 1 twice, with one restart between the two runs. The
initial population of the first run is random (as in Fig. 3). The initial population
of the second run is the best population of the first run. The flies correspond
to complex shapes (see “two shaders” in Table 1). Examples of template shapes
are given in Fig. 7. Different shader programs can be used to generate different
effects depending on the pixel colour/intensity of the templates. Schemes 9 to 12
are almost similar to Schemes 5 to 8. The only difference is that the flies are

Evolutionary Art Using the Fly Algorithm 463

Table 1. Summary of all the possible configurations used in Fig. 4.

256 × 256 512 × 512 60 colours Full colour One shader Two shaders Restart

1 � � �
2 � � �
3 � � �
4 � � �
5 � � �
6 � � �
7 � � �
8 � � �
9 � � � � �
10 � � � � �
11 � � � � �
12 � � � � �

uniform rectangles during the first run and complex shapes during the second
run. The aim is to speed-up computations.

The algorithm is tested with two sets of parameters (see Table 2), one with
a 22500-D search space, and the other one with a 45000-D search space. We
fix the mutation probability to 100% because, as we saw previously, crossover
is not suitable in our case. In practice, the only parameters chosen by the user
are the image (and its size) and the number of individuals. The initial size of
tiles is computed depending on the images size and the number of individuals
(see Eq. 1). Note that the sizes will then encompass evolution. We empirically
estimated suitable population sizes for different image resolutions. We balanced
the number of flies and image size to avoid a premature convergence that would
slow down the entire process.

Table 2. Parameters used to generate the images in Fig. 4.

Image size 256 × 256 512 × 512

Number of flies 2500 5000

Number of generations 40000 40000

Probability of mutation 100% 100%

Probability of crossover 0.0% 0.0%

Corresponding scheme 1, 2, 5, 6, 9 and 10 3, 4, 7, 8, 11 and 12

Number of unknowns 9 × 2, 500 = 22, 500 9 × 5, 000 = 45, 000

To assess which scheme from Table 1 is the most suitable one, Fig. 4 was
printed on A3 paper and we individually asked 25 participants to indicate which

464 Z.A. Abbood et al.

Scheme # Star Yin Yang Glasses Bird Woman

0

1

2 N/A N/A

3

4 N/A N/A

5

6 N/A N/A

7

8 N/A N/A

9

10 N/A N/A

11

12 N/A N/A

Fig. 4. Evolutionary art using schemes of Table 1. The woman image (Fatima) is
from the artist Lubna Ashrafis. Other test images are from the Open Images Dataset
(https://github.com/openimages/dataset) under CC BY 4.0 license.

https://github.com/openimages/dataset

Evolutionary Art Using the Fly Algorithm 465

Table 3. Vote results (25 participants voted for their preferred image for each column
in Fig. 4).

Scheme # Star Yin Yang Glasses Bird Woman

3 0% 12% 20% 0% 0%

4 0% 0% 0% 0% 4%

9 12% 4% 8% 24% 4%

10 0% 0% 20% 32% 0%

11 88% 84% 36% 20% 48%

12 0% 0% 16% 24% 44%

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 3x107

 3.5x107

 4x107

00:00
00:10

00:20
00:30

00:40
00:50

01:00
01:10

01:20
01:30

G
lo

ba
l

tn
es

s

Time

Fig. 5. Evolution of the global fitness with 4 restarts. Images were computed using
a Macbook Laptop with a 2.6 GHz Intel Core i5 CPU with an Intel Iris 5100 GPU.
(Color figure online)

image in each column they prefer. Table 3 shows the results in percentages.
Strategies 11 and 12 are particularly popular among participants. To a lesser
exten, the 10th scheme is also popular, the 3rd and 9th also received some votes.
Other schemes did not. Schemes 10, 11, and 12 use two shader programs and a
restart mechanism. Scheme 11 uses full-colour in the original image, Scheme 12
did not.

Figure 5 shows the evolution of global fitness with and without restart. It is
well known that restart is useful in classical evolutionary algorithms where the
solution of the optimisation problem is the best individual of the population.
However, very little has been done for the cooperative co-evolution scheme of
the Fly algorithm. In [24] a mitosis operator is used to double the size of the
population. Here we keep the size of the population constant. When restart
is not used, the evolution reaches a plateau then stagnates (see purple curve).
After the first restart, the global fitness decreases (see green curve). After the

466 Z.A. Abbood et al.

(a) (b) ROI of (a).

(c) (d) ROI of (c).

(e) (f) ROI of (e).

Fig. 6. Edge and depth detection: (a) Image reconstructed using our method (evolving
colours); (b) Image reconstructed using our method (without evolving colours); (c)
Image reconstructed using GIMPressionist. (Color figure online)

(a) (b) (c) (d)

Fig. 7. Examples of tile templates.

global minimum is found, it is possible that the global fitness increases. A similar
phenomenon is observed for the subsequent restarts (see blue, yellow, and orange
curves). This experiment demonstrates the benefit of a few restarts in the Fly
algorithm.

During the generation of the images, tiles can be located at different depth
to determine the colour of the closest (visible) tile. It is efficiently implemented

Evolutionary Art Using the Fly Algorithm 467

(a) Mask: Flower (Fig. 7a). (b) Mask: Flower (Fig. 7a).

(c) Mask: Set of lines (Fig. 7b). (d) Mask: Set of lines (Fig. 7b).

(e) Mask: square (Fig. 7c). (f) Mask: Flower (Fig. 7d).

Fig. 8. More appealing visual effects using different masks and shader programs.

468 Z.A. Abbood et al.

using OpenGL’s Z-buffer. Depending on the properties of the regions of the
image, black tiles may be located behind red tiles, or vice versa. The algorithm
picks up the discriminated edge between the black and red regions, no matter
how small the regions are in the original image compared to the minimum size
of a tile. For example, in Fig. 6(b) red tiles are over black tiles that are larger
than the actual region in the original image. It also shows that our evolutionary
algorithm chooses the right rotation angle to follow the curvature of the edges
in the original image when colours are evolved. This is not as accurate when
colours are picked up directly from the original image as in Fig. 6(d). Edges
are even blurrier in images generated using GIMP’s filter (GIMPressionist) (see
Fig. 6(f)).

In the following examples, four shapes (or masks) (see Fig. 7) to generate
tiles: Square, flowers and stripes. Figure 8 shows the results using the toucan
as a test image. The shader program to generate the images can be altered to
create different visual effects. The aim is to generate more appealing images.
Figure 8(a) and (b) have been produced using the same mask (Fig. 7(a)) but
with slightly different shader programs. Figure 8(c) and (d) have been generated
using Fig. 7(b) as mask, but with a much bigger size and without considering the
rotation angle of the tiles in the second image. The masks used in Fig. 8(e) and
(f) include an edge. More results are available as videos on YouTube at http://
tinyurl.com/ho5kfvb.

To demonstrate the usefulness of our approach, further comparison examples
have been done between the proposed algorithm and GIMP using two types of
mask: Flower and stripe (see Figs. 8(d), (f) and 9). Our method leads to better
reconstructions in term of edges and colours (brightness).

(a) Mask: Set of lines (Fig. 7b). (b) Mask: Flower (Fig. 7d).

Fig. 9. Example of images produced with GIMP’s filter (GIMPressionist).

http://tinyurl.com/ho5kfvb
http://tinyurl.com/ho5kfvb

Evolutionary Art Using the Fly Algorithm 469

6 Conclusion

The problem tackled here lies within the field of Evolutionary art. Our method
relies on techniques inherited from CG, AE and scientific computing. We used
an AE strategy based on the Fly algorithm for creating visual effects on an
image in a fully-automatic fashion. The algorithm optimises the location of tiles
in the 3-D space to approximate an input image. We used real-time CG ren-
dering to generate the image data, and GPU computing to calculate the fitness
functions. The algorithm can be modified to introduce multiple artistic visual
effects. Different templates are used (square, flower, stripes) to define the shape
of tiles.

Our initial proof-of-concept shows that the Fly algorithm can be used in
Evolutionary Arts. Our implementation could be refined to take advantage of
more advanced genetic operators, for example to speed-up computations, and
to recover fine details. Further work will also include a more robust evaluation
to ascertain that the resulting images are visually appealing. It will include
a more extensive comparison study and an user evaluation survey. A friendly
graphical user interface (GUI) will be added to introduce an optional level of
user interaction. It will allow the user to control some parameters of the output
image, e.g. shape of tiles, number of tiles, etc. A plugin for an image manipulation
program, such as GIMP, will be released to make it available to potential users.

Acknowledgements. This work was partially supported by the European Commis-
sion, Grant no. 321968 (http://fly4pet.fpvidal.net), and the Iraqi Ministry of Higher
Education and Scientific Research (MOHESR).

References

1. Isenberg, T.: A survey of illustrative visualization techniques for diffusion-weighted
MRI tractography. In: Hotz, I., Schultz, T. (eds.) Visualization and Processing of
Higher Order Descriptors for Multi-valued Data, pp. 235–256. Springer, Cham
(2015)

2. Devinck, F., Spillmann, L.: The watercolor effect: spacing constraints. Vis. Res.
49(24), 2911–2917 (2009)

3. Li, Z., Qin, S., Jin, X., Yu, Z., Lin, J.: Skeleton-enhanced line drawings for 3D
models. Graph Models 76(6), 620–632 (2014)

4. Chu, N.S.H., Tai, C.L.: Real-time painting with an expressive virtual Chinese
brush. IEEE Comput. Graph 24(5), 76–85 (2004)

5. Kaplan, M., Cohen, E.: Computer generated celtic design. In: Proceedings of the
14th Eurographics Workshop on Rendering, vol. 44, pp. 9–19 (2003)

6. Elber, G., Wolberg, G.: Rendering traditional mosaics. Visual Comput. 19(1), 67–
78 (2003)

7. Battiato, S., Blasi, G.D., Farinella, G.M., Gallo, G.: Digital mosaic frameworks -
an overview. Comput. Graph Forum 26(4), 794–812 (2007)

8. Faustino, G.M., De Figueiredo, L.H.: Simple adaptive mosaic effects. In: Brazilian
Symposium of Computer Graphic and Image Processing, pp. 315–322 (2005)

http://fly4pet.fpvidal.net

470 Z.A. Abbood et al.

9. Louchet, J.: Stereo analysis using individual evolution strategy. In: Proceedings
of the International Conference on Pattern Recognition, ICPR 2000, vol. 1, pp.
908–911 (2000)

10. Haeberli, P.: Paint by numbers: abstract image representations. SIGGRAPH Com-
put. Graph. 24(4), 207–214 (1990)

11. Hoff III., K.E., Keyser, J., Lin, M., Manocha, D., Culver, T.: Fast computation
of generalized Voronoi diagrams using graphics hardware. In: Proceedings of SIG-
GRAPH 1999, pp. 277–286 (1999)

12. Hausner, A.: Simulating decorative mosaics. In: Proceedings of SIGGRAPH 2001,
pp. 573–580 (2001)

13. Lai, Y.K., Hu, S.M., Martin, R.R.: Surface mosaics. Visual Comput. 22(9), 604–611
(2006)

14. Lu, L., Sun, F., Pan, H., Wang, W.: Global optimization of centroidal voronoi
tessellation with monte carlo approach. IEEE T Vis. Comput. Gr. 18(11), 1880–
1890 (2012)

15. Hu, W., Chen, Z., Pan, H., Yu, Y., Grinspun, E., Wang, W.: Surface mosaic syn-
thesis with irregular tiles. IEEE Trans. Vis. Comput. Gr. 22(3), 1302–1313 (2016)

16. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high
confidence predictions for unrecognizable images. In: IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 427–436 (2015)

17. Collomosse, J.: Evolutionary search for the artistic rendering of photographs. In:
Romero, J., Machado, P. (eds.) The Art of Artificial Evolution: A Handbook on
Evolutionary Art and Music, pp. 39–62. Springer, Heidelberg (2007)

18. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds.) Complexity of Computer Computations,
pp. 85–103. Springer, New York (1972)

19. Mesejo, P., Ibáñez, O., Fernández-Blanco, E., Pazos, A., Porto-Pazos, A.B.,
Cedrón, F.: Artificial neuron-glia networks learning approach based on cooperative
coevolution. Int. J. Neural Syst. 25(4), 1550012 (2015)

20. Boumaza, A.M., Louchet, J.: Dynamic flies: using real-time parisian evolution in
robotics. In: Boers, E.J.W. (ed.) EvoWorkshops 2001. LNCS, vol. 2037, pp. 288–
297. Springer, Heidelberg (2001). doi:10.1007/3-540-45365-2 30

21. Louchet, J., Guyon, M., Lesot, M.J., Boumaza, A.: Dynamic flies: a new pattern
recognition tool applied to stereo sequence processing. Pattern Recogn. Lett. 23(1–
3), 335–345 (2002)

22. Louchet, J., Sapin, E.: Flies open a door to SLAM. In: Applications of Evolutionary
Computation: EvoApplicatons 2009, pp. 385–394 (2010)

23. Kaufmann, B., Louchet, J., Lutton, E.: Hand posture recognition using real-time
artificial evolution. In: Applications of Evolutionary Computation: EvoApplicatons
2010, pp. 251–260 (2010)

24. Vidal, F.P., Louchet, J., Rocchisani, J.M., Lutton, É.: New genetic operators in the
fly algorithm: application to medical PET image reconstruction. In: Applicationsof
Evolutionary Computation: EvoApplicatons 2010, pp. 292–301 (2010)

25. Lutz, K.: Boost.Compute (2016). http://boostorg.github.io/compute/. Accessed
26 Oct 2016

26. Gaster, B., Howes, L., Kaeli, D.R., Mistry, P., Schaa, D.: Heterogeneous Computing
with OpenCL. 1edn. Morgan Kaufmann, USA (2011)

http://dx.doi.org/10.1007/3-540-45365-2_30
http://boostorg.github.io/compute/

	Evolutionary Art Using the Fly Algorithm
	1 Introduction
	2 Previous Work
	3 Fly Algorithm Paradigm
	4 Evolutionary Image Reconstruction
	5 Results
	6 Conclusion
	References

