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Abstract. Monte Carlo Tree Search techniques have generally dom-
inated General Video Game Playing, but recent research has started
looking at Evolutionary Algorithms and their potential at matching
Tree Search level of play or even outperforming these methods. Online
or Rolling Horizon Evolution is one of the options available to evolve
sequences of actions for planning in General Video Game Playing, but
no research has been done up to date that explores the capabilities of the
vanilla version of this algorithm in multiple games. This study aims to
critically analyse the different configurations regarding population size
and individual length in a set of 20 games from the General Video Game
AI corpus. Distinctions are made between deterministic and stochastic
games, and the implications of using superior time budgets are stud-
ied. Results show that there is scope for the use of these techniques,
which in some configurations outperform Monte Carlo Tree Search, and
also suggest that further research in these methods could boost their
performance.

Keywords: General Video Game Playing · Rolling Horizon Evolution ·
Games · Monte Carlo Tree Search · Random search

1 Introduction

General Video Game Playing (GVGP) is a sub-domain of Artificial General Intel-
ligence (AGI), which aims to create an agent capable of achieving a high level of
play in any given environment, that was potentially previously unknown. It uses
video games as testbeds for this purpose because of their complex nature, offer-
ing practical problems in a constrained environment where it is easy to quantify
results and observe performance. In contrast with other domains such as robot-
ics, where errors are expensive to correct, video games are cheap alternatives for
testing AI algorithms, as well as having the possibility of multiple tests run very
quickly (due to modern computational power).

The General Video Game AI Competition (GVGAI) [22,23] offers a large
corpus of games described in a plain text language, making it easy to run gen-
eral AI agents in several different environments and analyse their performance.
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The competition has already completed three editions of its single player track
(starting in 2014), with two additional tracks running in 2016 for two player
games [7] and level generation [11]. Therefore, it is attracting a large interest on
an international scale, with close to a hundred participants every year across its
different tracks.

This competition is becoming a popular way of benchmarking AI algorithms
such as enforced hill climbing [2], algorithms employing advanced path finding
or using the knowledge gained during the game in interesting ways [6,19], or
dominant Monte Carlo Tree Search techniques [18]. All of the authors appear
to agree on the complexity of the problem proposed, as well as its importance,
going beyond the realm of video games towards that of AGI.

Among the techniques employed over the last years of the GVGAI, one of
the most promising is that of Rolling Horizon Evolutionary Algorithms (RHEA).
These methods, rather than basing the search on game tree structures, use influ-
ences from biological sciences to evolve a population of individuals until a suit-
able one, corresponding to a solution to the problem, is obtained. The way they
are applied to the domain of GVGP is by encoding sequences of in-game actions
as individuals, using heuristics to analyse the value of each sequence [20].

Up to date, there is no in depth evaluation of the vanilla version of RHEA
on the GVGAI framework, attending to certain crucial parameters such as pop-
ulation size and individual length. It is hardly possible that the same parameter
setting would work equally well for all of the assorted games of the GVGAI corpus:
on one hand, these games can vary in many forms, such as their level of stochas-
ticity, average duration of a game, presence or absence of other NPCs, etc., but
on the other hand, variations of the population size and the lengths of the action
sequences explored may be sensitive to variations in the game design space.

The first objective of this paper is to perform an analysis of the vanilla version
of RHEA (see Sect. 3.2) on a subset of 20 GVGAI games, with special focus on
the population size and the individual length of this technique. This analysis
is performed attending to the different games presented, and their stochastic
nature. Additionally, this study aims to make a comparison with the sample
Open Loop Monte Carlo Tree Search (OLMCTS), the best sample agent included
in the GVGAI framework, which is actually the starting point of several winners
of the competition in past editions.

The rest of this paper is structured as follows: Sect. 2 reviews work already
present in the literature on this topic, with Sect. 3 detailing background infor-
mation on the framework and algorithms used. Section 4 describes the approach
taken and the experimental setup, while Sect. 5 presents the results obtained
from this experiment. The paper concludes in Sect. 6 with a discussion of the
results and notes on future work that will be undertaken as a consequence of
this study.

2 Relevant Research

The popularity of General Game Playing (GGP) has increased in the last decade,
since M. Genesereth et al. [8] organised the first GGP competition allowing
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participants to submit game agents to play in a diverse collection of board games.
Sharma et al. [25] motivates research in this area by bringing to attention how
agents trained without prior knowledge of the game and excelling in specific
games, such as TD-Gammon in Backgammon [26] and Blondie24 in Checkers
[1], cannot be successfully applied in other scenarios or environments.

The problem is further expanded to video games in General Video Game
Playing (GVGP [12]), which provide the agents with new and possibly more
complex challenges due to a higher and continuous, in practice, rate of actions.
One of the first frameworks to allow testing of such general agents was the
Arcade Learning Environment (ALE) [3], later used as benchmark for applying
Deep Q-Learning to achieve human level of play on the Atari 2600 collection [16].
The way the world was presented to the agents in this framework was via screen
capture; they would return an action to be performed and the next game state
would be processed by the system.

Monte Carlo Tree Search methods have dominated GVGP so far, and their
variations have been explored in various works [5]. However, Evolutionary Algo-
rithms (EA) show great promise at obtaining just as good, if not better,
performance. Perez et al. [21] compare EA techniques with tree search on the
Physical Salesman Travelling Problem, and their results are satisfactory, encour-
aging research in the area. In their work, the authors employ several techniques to
improve the state evaluation function, such as avoiding opposite actions, move-
ment blocks and pheromone exploration.

Samothrakis et al. [24] compare two variations of the Rolling Horizon setting
of EAs in a number of continuous environments, including a Lunar Lander game.
The first algorithm uses a co-variance matrix, while the second employs a value
optimisation algorithm. The Rolling Horizon refers to evolving plans of actions
and, at each game step, executing the first action that appears to be the best
at present, while starting fresh and creating a new plan for the next move,
sequentially increasing the “horizon”. Their research suggests EAs to be viable
algorithms in general environments, and that a deeper exploration should be
performed with an emphasis on heuristic improvement.

N. Justesen et al. [10] used online evolution for action decision in Hero Acad-
emy, a game in which each player counts on multiple units to move in a single
turn, presenting a branching factor of a million actions. In this study, groups of
actions are evolved for a single turn, to be performed by up to 6 different units.
With a fixed population of 100 individuals, the authors show that online evolu-
tion is able to beat MCTS and other greedy methods. Later, Wang et al. [27]
employed a modified version of online evolution using a portfolio of script to
play Starcraft micro. In this work, rather than evolving groups or sequences of
actions, the algorithm evolved plans to determine which script (among a set of
available ones) each unit should use at each time step. Each gene in the individ-
ual represents a script that will be executed by a given unit in the next turn.

Other different approaches to EAs have been explored in the past, such as
combining them with other techniques in order to produce hybrids, and take
advantage of the benefits of each algorithm [9]. For example, evolution was used
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during the simulation phase in a Monte Carlo Tree Search algorithm by Perez
et al. [19], or, for a different effect, the MCTS parameters were adjusted with
evolutionary methods [14]. There has been recent work that has attempted to
give more focus to the evolutionary process and instead integrates tree structures
into EAs, or uses N-armed bandit techniques and Upper Confidence Bounds
(UCB) for informing and guiding the evolution process [13].

3 Background

3.1 The GVGAI Framework

The experiments presented in this paper were run within the General Video
Game AI framework1, frequently used in recent literature for benchmarking Arti-
ficial Intelligence agents due to its large and constantly increasing collection of
games. This framework currently includes 100 single player and 40 two-player
games, of both deterministic and stochastic nature. All of them are real time
games, where the agents receive a 1 s time budget for initialisation purposes and
a 40ms budget for selecting an action to be performed during each game step.

The action space available to the agents is limited to a maximum of 5,
although it can vary across games. The agents may choose to perform no action
(ACTION NIL; it is important to note that this is not equivalent to the avatar
stopping movement), to move in a certain direction (ACTION LEFT or RIGHT,
UP or DOWN, correspondingly), or to perform a special action (ACTION USE)
that depends on the game, and may range from shooting to creating or activating
various game objects.

Concrete information about the game rules is not available to the agents,
although they do have access to details about the current game state through a
State Observation object. This includes the current score, game tick, a descrip-
tion of the state of the avatar (such as position, orientation, resources etc.), and
data about other game objects (such as NPCs, portals or static objects).

Another tool available to the agents through this framework is a Forward
Model (FM), which allows for simulation of possible future states of the game
(this simulated state may not be accurate in stochastic games). In order to
advance the Forward Model, the agent must supply one of the legal actions of
the game to an advance function, which would roll the state of the game forward
following this move.

Games vary in nature not only in their probabilistic states, but also in
the presence of certain game objects (e.g. NPCs and portals), scoring meth-
ods (binary, in which 1 point is awarded for winning, 0 otherwise; incremental,
which sees continuous small rewards spread out in the game; or discontinuous, in
which certain actions or sequences of actions may produce a sudden large gain),
or the conditions which lead to an end state (e.g. counters, timers or exit doors).
This results in a great variety of games, which truly tests the abilities of gen-
eral agents. Figure 1 shows a few examples of games included in this framework,
which were also employed in this study.
1 www.gvgai.net.

www.gvgai.net
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The ranking of controllers in the GVGAI competition used for the results
analysis of this paper employs a Formula 1 point system per game: agents are
sorted based on their performance (win percentage, score and time steps, in this
order, with the secondary ones used as tiebreakers if needed) for each game, then
awarded a number of points depending on their position: 25 for the first, then
18, 15, 12, 10, 8, 6, 4, 2, 1 and 0 for all subsequent entries. The points are then
summed to a total used to determine the position in the overall rankings. This
system is meant to emphasise the generic aspect of the competition, as achieving
a high average win rate is not equivalent to performing well across all games.

Fig. 1. Games in GVGAI Framework: Aliens, Missile Command, Sea Quest and Survive
Zombies (from left corner, clockwise).

Fig. 2. Rolling Horizon Evolutionary Algorithm cycle.
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3.2 Rolling Horizon Evolutionary Algorithms

Rolling Horizon Evolutionary Algorithms (RHEA) [21] are a subset of EAs which
use populations of individuals representing action plans or sequences of actions.
The individuals are evaluated by simulating moves ahead using a Forward Model.
From the current state of the games, all actions (genes of the individual) are
executed in order, until a terminal state or the length of the individual is reached.
The state reached at that point is then evaluated with a heuristic function and
the value assigned as the fitness of the individual (Fig. 2).

In general, the algorithm starts with a random population of individuals. At
each game step it applies traditional genetic operators (such as mutation, ran-
domly changing some actions in the sequence, and cross-over, combining individ-
uals in different ways) to obtain new individuals for the next generation of the
population. Each one of them is then evaluated and assigned a fitness, according
to which the population is sorted and only the best are carried forward to sub-
sequent generations. This process ends when an end condition is satisfied, such
as a time or memory limit reached or a certain number of iterations have been
performed. The action selected by the algorithm is represented by the first gene
in the best individual found at the end of the evolutionary process. The action
is played in the game, a new state is received in the next step by the agent, and
new iterations are performed to evolve new action plans.

As the agents have a limited amount of time to make decisions in real-time
games, one of the popular methods in the literature consists of generating only
one new individual at each generation, therefore making it possible to interrupt
the process at any point. The most basic form this algorithm can take is that of
a Random Mutation Hill Climber [15], where the population size is only 1, using
the mutation operator as the only way to navigate through the search space.

3.3 Open Loop Monte Carlo Tree Search (OLMCTS)

Open Loop Monte Carlo Tree Search (OLMCTS) is an MCTS implementation
for the GVGAI framework. This particular agent does not store the states of the

Fig. 3. Monte Carlo Tree Search steps [5]
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game in the nodes of the tree, but instead uses the forward model to reevaluate
each action. OLMCTS uses four simple steps to produce a high level of play:
selection (using a tree policy to select one of the current leaves of the tree, which
is not yet fully expanded), expansion (adding a new child of the selected node to
the tree), simulation (a Monte Carlo process using the forward model to advance
through the game with random actions) and back-propagation (the state reached
after the MC simulation is evaluated using a heuristic and its value backed up
the tree to the root node, updating all other parent nodes). The steps of the
MCTS algorithm are depicted in Fig. 3.

When reaching the limit of its execution budget (memory, time, iterations,
or, as is the case of this paper, number of calls to the forward model advance
function), the algorithm returns action to apply via a recommendation policy. In
the GVGAI implementation of this agent, the action returned is that of the child
of the root node that has been selected more often. For an in depth description of
Monte Carlo Tree Search, variants, improvements, and applications, the reader
is referred to [5].

4 Approach and Experimental Setup

4.1 Methods

This paper analyses how modifying the population size (P ) and individual length
(L) configuration of the vanilla Rolling Horizon Evolutionary Algorithm (RHEA)
impacts performance in a generic setting. Exhaustive experiments were run on all
combinations between population sizes P = {1, 2, 5, 7, 10, 13, 20} and individual
lengths L = {6, 8, 10, 12, 14, 16, 20}. The budget defined for planning at each
game step was set as 480 Forward Model calls to the advance function, the
average number of calls OLMCTS is able to perform in 40ms of thinking time
in the games of this framework2. Larger values for either individual length or
population size were not considered due to the limited budget and the complete
nature of the experiment (analysis of all combinations); values above 24 would
not allow in certain cases for a full evaluation of even one population.

The fitness function used by RHEA evaluates the state reached after execut-
ing the sequence of actions in an individual, and returns the current in-game
score of the player. In the case where an end-game state has been reached, it
instead gives a large penalty for losing the game (or, alternatively, a high reward
for winning).

To expand the analysis of the results, a particular configuration was also
tested, using P = 24 and L = 20. Effectively, given the budget of 480 Forward
Model calls, this is an equivalent method of Random Search (RS). The algorithm
only has enough budget to initialise the population before applying any genetic
operator. In essence, this configuration evaluates 24 random walks and returns
the first action of the best sequence of moves found.

2 Using these forward model calls instead of real execution time is more robust to
fluctuations on the machine used to run the experiments, making it time independent
and results comparable across different architectures.
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The algorithm itself begins with the initialisation of the population, which
sets each individual to a sequence of actions selected uniformly at random. The
genes of the individual take integer values in the interval [0, N-1], where N is
the number of available actions in that particular game state, therefore each
value corresponding to an in-game legal action. The evolutionary process then
proceeds in a slightly different way depending on the population size. For the
case in which there is only one individual in a population, one new individual is
mutated at each iteration and it replaces the first if its fitness is higher (RHEA
is set to maximize the fitness provided by the value function).

For a population of size 2, the best individual is passed on to the next gener-
ation unchanged (elitism of 1), then uniform crossover and mutation are applied
to the 2 individuals to generate the second solution for the new population. If the
population contains 3 or more individuals, similar rules apply, but the 2 parents
are selected for crossover through a tournament of size 2. The mutation operator
always modifies one gene of the individual, chosen uniformly at random. It is
important to note that the initialisation is counted in the budget received for
evolution, in order to ensure that there is a trade-off in higher population sizes.

In order to validate the results, Open Loop Monte Carlo Tree Search was also
tested on the same set of 20 games, under the same budget conditions. OLMCTS
has proven to be the dominating technique out of the sample ones provided in
the GVGAI competition, with numerous participants using it as a basis for their
entries before adding various enhancements on top of its vanilla form. The winner
of the first edition of the competition in 2014, Adrien Couëtoux [23], employed
an Open Loop technique quite similar to this algorithm.

4.2 Games

All of the combinations explored in this study were run on 20 games of the
GVGAI corpus, on all 5 levels, 20 times each, resulting in 100 games played per
configuration. The games were selected using two different classifications present
in literature in order to balance the game set and analyse performance on an
assorted selection of different games. The first classification was that generated
by Mark Nelson [17] in his analysis of the vanilla Monte Carlo Tree Search
algorithm in 62 of the games in the framework, sorted using the win rate of
MCTS as a simple criterion. The second classification considered for this study
was the clustering of 49 games by Bontrager et al. [4], which separated the games
into groups based on their similarity in terms of game features. Combining these
two lists and uniformly sampling from both provided a diverse subset appropriate
for this experiment, which contains 10 stochastic and 10 deterministic games.
See Table 1 for the name of these games and the indices used in later figures in
this document.

5 Results and Discussion

This section presents and analyses the results obtained from different angles.
Observations are made attending to the nature of the game and variations of
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Table 1. Names, indexes and types of the 20 games from the subset selected. Legend:
S - Stochastic, D - Deterministic.

Idx Name Type Idx Name Type Idx Name Type Idx Name Type

0 Aliens S 4 Bait D 13 Butterflies S 15 Camel Race D

18 Chase D 22 Chopper S 25 Crossfire S 29 Dig Dug S

36 Escape D 46 Hungry Birds D 49 Infection S 50 Intersection S

58 Lemmings D 60 Missile Command D 61 Modality D 67 Plaque Attack D

75 Roguelike S 77 Sea Quest S 84 Survive Zombies S 91 Wait for Breakfast D

the population size and individual length. Section 5.1 compares the performance
using smaller or larger population, while Sect. 5.2 discusses the impact of individ-
ual length. Later, the performance of RHEA is also compared to RS employing
different budgets (Sect. 5.3) and OLMCTS (Sect. 5.4) as supplied by the GVGAI
framework. As the game set used is divided equally between deterministic and
stochastic games, an in-depth analysis is carried out on each game type, although
it is not implied the trend would carry through in other games of the same type
(Tables 3 and 4).
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Fig. 4. Change in winning rate as population size increases, for individual lengths
L = 6 and L = 14, in all games tested for this paper. The Standard Error is shown
by the shaded boundary. Please refer to Table 1 for the names of the game indexes
presented here.
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Table 2. Winning rate for different values of population size (P ) and individual length
(L), in all 20 tested games. Average of standard errors indicated between brackets.
Highlighted in bold style is the best result.

P L=6 L=8 L=10 L=12 L=14 L=16 L=20

1 35.45(2.54) 38.25(2.54) 37.95(2.47) 36.70(2.58) 34.20(2.42) 33.55(2.57) 33.15(2.60)

2 39.95(2.62) 40.95(2.55) 41.05(2.62) 40.25(2.48) 39.50(2.56) 38.75(2.56) 36.80(2.60)

5 42.55(2.57) 43.50(2.39) 44.65(2.40) 44.25(2.38) 43.80(2.34) 44.95(2.53) 46.05(2.54)

7 43.00(2.49) 42.60(2.43) 44.65(2.36) 44.35(2.45) 45.30(2.23) 44.80(2.47) 47.05(2.56)

10 42.25(2.53) 43.60(2.49) 44.05(2.26) 45.80(2.47) 45.05(2.35) 46.60(2.45) 46.80(2.49)

13 42.65(2.43) 45.15(2.48) 45.15(2.47) 45.00(2.42) 46.25(2.41) 47.40(2.30) 47.05(2.42)

20 42.75(2.51) 43.20(2.60) 44.75(2.31) 45.50(2.34) 46.45(2.32) 46.30(2.32) 47.50(2.33)

Table 3. Winning rate for different values of population size (P ) and individual length
(L), in the 10 deterministic tested games. Average of standard errors indicated between
brackets. Highlighted in bold style is the best result.

P L=6 L=8 L=10 L=12 L=14 L=16 L=20

1 22.30(2.88) 26.80(2.95) 26.90(2.93) 25.30(2.91) 24.20(2.84) 23.00(3.01) 22.50(2.99)

2 26.40(3.13) 26.80(3.08) 27.90(3.05) 27.90(2.92) 27.10(2.91) 26.80(2.93) 24.50(2.99)

5 28.70(3.08) 29.70(3.10) 31.90(3.18) 31.80(2.88) 30.00(2.86) 32.00(3.04) 32.20(3.19)

7 28.80(3.26) 29.00(3.00) 30.80(3.09) 30.40(3.01) 31.70(2.82) 32.00(2.99) 34.30(3.12)

10 27.70(3.18) 31.00(3.27) 29.50(2.90) 33.00(3.03) 32.60(2.94) 32.40(3.11) 33.20(3.05)

13 28.90(3.19) 32.20(3.32) 32.10(3.06) 31.80(3.07) 33.30(3.18) 34.70(2.88) 34.00(2.97)

20 28.60(3.19) 29.90(3.34) 31.50(2.87) 32.30(3.05) 33.10(3.11) 32.10(2.84) 34.30(3.02)

Table 4. Winning rate for different values of population size (P ) and individual length
(L), in the 10 stochastic tested games. Average of standard errors indicated between
brackets. Highlighted in bold style is the best result.

P L=6 L=8 L=10 L=12 L=14 L=16 L=20

1 48.60(2.20) 49.70(2.13) 49.00(2.01) 48.10(2.25) 44.20(2.00) 44.10(2.12) 43.80(2.22)

2 53.50(2.12) 55.10(2.02) 54.20(2.20) 52.60(2.05) 51.90(2.20) 50.70(2.20) 49.10(2.22)

5 56.40(2.07) 57.30(1.68) 57.40(1.61) 56.70(1.88) 57.60(1.81) 57.90(2.01) 59.90(1.89)

7 57.20(1.72) 56.20(1.85) 58.50(1.64) 58.30(1.90) 58.90(1.63) 57.60(1.95) 59.80(2.00)

10 56.80(1.88) 56.20(1.71) 58.60(1.63) 58.60(1.91) 57.50(1.77) 60.80(1.79) 60.40(1.93)

13 56.40(1.68) 58.10(1.65) 58.20(1.88) 58.20(1.76) 59.20(1.63) 60.10(1.71) 60.10(1.86)

20 56.90(1.83) 56.50(1.86) 58.00(1.74) 58.70(1.64) 59.80(1.53) 60.50(1.80) 60.70(1.64)

Additionally, a Mann-Whitney non-parametric test was used to measure the
statistical significance of results for each game (p-value = 0.05). Table 2 sum-
marises the winning rates of all configurations tested in this study.

5.1 Population Variation

Figure 4 shows the change in winning rate as population size increases, for L = 6
and L = 14 (figures for other individual lengths have been omitted for the sake
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of space). Each of the 20 games that these algorithm configurations were tested
on showed different performance and variations. There is a trend noticed in most
of the games, with win rate increasing, regardless of the game type (c.f. Table 4).
Exceptions are for games where the win rate starts at 100%, therefore leaving no
room for improvement (games with indexes 0 and 50, Aliens and Intersection,
respectively) or, on the contrary, when the win rate stays very close to 0%
due to outstanding difficulty (game index 75, Roguelike). The winning rate on
game with index 25, Crossfire, increases significantly from 0 to 10% (p-value =
0.02) along with the increase in population size. This suggests that games which
a priori seem unsolvable, can be approached by exploring more with a larger
population.

Deterministic games. Winning rate increases progressively in most of the tested
deterministic games (Fig. 4, top). A high diversity of the performance over the
tested games is observed, with the concrete winning rate having a high depen-
dency on the given game. The games with indexes 60 and 91 (Missile Command
and Wait for Breakfast, respectively), stand out in these cases as they achieve a
larger increase in performance, particularly with longer individuals.

Stochastic games. Regarding stochastic games (Fig. 4, bottom) in particular, it
is important to separate them based on their probabilistic elements and their
impact on the outcome of the game. For example, the game with index 84,
Survive Zombies, has numerous random NPCs and probabilistic spawn points for
all object types, in contrast with game numbered 0, Aliens, where its stochastic
nature comes only from the NPCs dropping bombs in irregular intervals.

In games numbered 13 and 22 (Butterflies and Chopper respectively), a big
improvement in terms of winning rate is observed by increasing the population
size from 2 (the case in which there is no tournament) to 1, and this remains
stable with larger populations.

When the length of the individual is fixed to a small value, increasing the
population size is not beneficial in all cases, sometimes having the opposite
effect and causing a drop in win rate (games with indexes 77 and 84, Sea Quest
and Survive Zombies, respectively). On the contrary, the game with index 22,
Chopper, sees a great improvement (from an average of 29% in population size
P = 1 to 98% in population size P = 20, p-value � 0.001, for both win rate and
scores achieved).

In general, a conclusion that could be drawn from these experiments is that
increasing the population size rarely hinders the agent to find good solutions.
In fact, in some cases it makes the difference between a very poor and a very
successful performance (from 29% to 98% in Chopper). An explanation for this
phenomena could be that the higher diversity in the population allows the algo-
rithm to perform a better exploration of the search space.

5.2 Individual Variation

Figure 5 illustrates the change of the winning rate in each of the 20 games as
individual length increases, for population sizes P = 1 and P = 5. The full
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Fig. 5. Change of the winning rate as individual length increases, for population sizes
P = 1 and P = 5, in all games tested for this paper. The standard error is shown by the
shaded boundary. Please refer to Table 1 for the names of the game indexes presented
here.

results using a variety of population size and individual length are given in
Table 2. Using identical numbers of individuals when the population size is large
(P ≥ 5) and increasing the individual length, i.e., simulation depth, leads to a
growth of winning rate (c.f. Table 2).

Deterministic games. When there is only one individual in the population, thus
no crossover is involved, the winning rate experiences a significant increase fol-
lowed by a drop along with the increase of individual length. This is due to the
fact that the size of search space of solutions increases exponentially with the
individual length. With few individuals evaluated, the algorithm struggles to find
optimal solutions. This issue can be solved by increasing the population size, as
shown in Fig. 5 (top). For instance, the game with index 67, Plaque Attack, sees
a variation from 68% to 83% to 55% with population size P = 1; while with
population size P = 5, there is a constant increase from 79% to 97%.

Stochastic games. In stochastic games, however, matters are different. In this
case, the performance of the different variants of RHEA depends greatly on the
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game played. For instance, in game 13 (Butterflies), performance drops signifi-
cantly (p-value = 0.001) from a win rate of 91% (L = 6) to 75% (L = 20), using
a population of P = 2 individuals. An even bigger difference can be seen in game
22 (Chopper) which drops from 78% (L = 6) to 30% (L = 20) for a population
of P = 2 individuals (p-value � 0.001 for both win rate and in-game scores).
No significant change in win rate can be appreciated in larger population sizes.

In general, increasing the length of the individual provides better solutions if
the size of the population is high, although the effect of increasing the population
size seems to be bigger. This can be clearly observed in the results reported in
Table 4.

5.3 Random Search

The version of RHEA using large values for population size and individual length
is reminiscent of the Random Search (RS) algorithm. We perform a RS on the
same set of games using P = 24 individuals and simulation depth L = 20. As
a budget of 480 calls to the forward model is allocated to this algorithm, RS
is equivalent to RHEA using this population size and individual length. The
average winning rate in each of the tested games is summarized in the last row
of Table 5.

RS performs no worse than any variant of RHEA studied previously. This
result supports one of the main findings on this paper: the vanilla version of
RHEA is not able to explore the search space better than (and, in most cases,
not even as good as) RS in the framework tested when the budget is very limited.
In order to test the limits and potential benefits of evolution, an additional set
of experiments was run, using the same P = 24, L = 20 configuration, but
increasing the forward model budget from 480 advance calls to 960, 1440 and
1920. It’s notable that, for these new budgets, the population is evolved during
2, 3 and 4 generations, respectively.

The results, presented in Table 5, suggest that the solution recommended by
RHEA at the end of optimisation converges towards the optimal solution while
increasing the budget. As the budget becomes higher, the win rate increases
first, to then stabilise when it reaches the highest budget tested. The difference
observed is smaller than that given by the search in terms of population sizes
and individual lengths.

Table 5. Comparison of winning rates and points achieved by RHEA with different
budgets and OLMCTS. It shows rates and points for all games (T), deterministic
(D) and stochastic (S). With budget 480, the RS is equivalent to a RHEA using 24
individuals and individual length 20.

Algorithm Average wins (T) Points (T) Average wins (D) Points (D) Average wins (S) Points (S)

RHEA-1920 48.25(2.36) 351 36.30(2.88) 181 60.20(1.84) 170

RHEA-1440 48.05(2.23) 339 35.40(2.82) 177 60.70(1.65) 162

RHEA-960 47.85(2.39) 323 34.60(2.99) 162 61.10(1.79) 161

OLMCTS-480 41.45(1.89) 316 22.20(2.45) 149 60.70(1.34) 167

RHEA/RS-480 46.60(2.40) 271 32.90(3.04) 131 60.30(1.76) 140
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In stochastic games, there is no difference observed in the average winning
rate, but there is a small increase in ranking points, which vary according to the
budget. However, there is a clearer improvement in performance distinguished in
deterministic games. This may be due to the fact that resampling an individual
is useless in deterministic games, whilst a single evaluation of a solution in a
stochastic environment may be inaccurate.

5.4 RHEA vs OLMCTS

Table 5 also includes the performance of the GVGAI sample OLMCTS agent.
The sample OLMCTS agent uses a playout depth of 10, hence the comparisons
presented here relate to RHEA configurations with individual length L = 10.
Results show that, although RHEA is significantly worse when its population size
is small, it outperforms OLMCTS when the number of individuals per population
is increased (P > 5). A second interesting contribution of this paper is that
it is possible to create an RHEA capable of achieving a higher level of play
than OLMCTS, which is the base of most dominating algorithms in the GVGAI
literature.

In addition, OLMCTS also falls short when comparing it to RS with regards
to the average percentage of victories. However, it does manage to gain a higher
number of ranking points in these games against the other 4 agents. Considering
the fact that points are awarded for each game in order to value their generic
capabilities, this result suggests that OLMCTS is more general than the vanilla
version of RHEA.

Finally, if an analysis is carried out per game type, OLMCTS appears to
be similar to RS in stochastic games but, not surprisingly, its performance is
much worse than RS in deterministic games, becoming comparable to the worst
configuration of RHEA found during these experiments (population size P = 1
and individual length L = 20).

6 Conclusions and Future Work

This paper presents an analysis of population size and individual length of the
vanilla version of Rolling Horizon Evolutionary Algorithm (RHEA). The perfor-
mance of this algorithm is measured in terms of winning rate in a subset of 20
games of the General Video Game AI corpus. These games were selected based
on their difficulty and game features, in order to present a reduced set of chal-
lenges as assorted as possible. Games were also chosen so there would be a split
between deterministic and stochastic ones.

One of the main findings of this research is the fact that RHEA is unable to
find better solutions than Random Search (RS) in the settings explored, being
worse than RS in many cases. Rather than an indication of RHEA being not
suitable for GVGAI, these results suggest that the vanilla version of the algo-
rithm is not able to explore the search space quickly enough given the limited
budget. Therefore, this finding motivates research in RHEA, in order to find
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operators and techniques able to evolve sequences of actions in a more efficient
way. The results presented in this paper with higher execution budgets are an
indication that this is possible.

At the same time, this paper highlights another interesting conclusion: given
the same length for the sequence of actions and the same budget (480 calls
to the forward model), RHEA is able to outperform Open Loop Monte Carlo
Tree Search (OLMCTS) hen configured with a high population size. Most of the
entries of the GVGAI competition, including some of the winners, base their
entries in OLMCTS or similar tree search methods. Thus, RHEA presents itself
as a valuable alternative with a potentially promising future.

Finally, this study analyses the performance of the different versions of the
algorithm in a game per game basis, and it is clear that in some games the
agent performance shows a trend after increasing the population size or the
individual length. For instance, in most games the agent benefits from using
larger populations, but, in some of them, it works better with fewer individuals.
Similarly, a long sequence of actions typically helps finding better solutions,
but some games form the exception and RHEA performs better with shorter
individual lengths. In general, however, it has been observed that an increase in
the population size has a higher impact on the performance than considering a
further look ahead (longer individuals).

Therefore, although the general finding is that bigger populations and longer
individuals improve the performance of RHEA on average, it should be possible
to devise methods that could identify the type of game being played, and employ
different (or, maybe, modify dynamically) parameter settings. In a form of a
meta-heuristic, an agent could be able to select which configuration better fits
the game being played at the moment and increases the average performance in
this domain.

The most straightforward line of future work, however, is the improvement
of the vanilla RHEA in this general setting. The objectives are twofold: first,
seeking bigger improvements of action sequences during the evolution phase,
without the need of having too broad an exploration as in the case of RS; and
second, being able to better handle long individual lengths in order for them
to not hinder the evolutionary process. Additionally, further analysis could be
conducted on stochastic games, considering the effects of more elite members in
the population or resampling individuals, in order to alleviate the effect of noise
in the evaluations.
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